CINXE.COM

Search results for: stochastic simulation

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: stochastic simulation</title> <meta name="description" content="Search results for: stochastic simulation"> <meta name="keywords" content="stochastic simulation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="stochastic simulation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="stochastic simulation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5347</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: stochastic simulation</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5347</span> Stochastic Simulation of Random Numbers Using Linear Congruential Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Melvin%20Ballera">Melvin Ballera</a>, <a href="https://publications.waset.org/abstracts/search?q=Aldrich%20Olivar"> Aldrich Olivar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mary%20Soriano"> Mary Soriano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Digital computers nowadays must be able to have a utility that is capable of generating random numbers. Usually, computer-generated random numbers are not random given predefined values such as starting point and end points, making the sequence almost predictable. There are many applications of random numbers such business simulation, manufacturing, services domain, entertainment sector and other equally areas making worthwhile to design a unique method and to allow unpredictable random numbers. Applying stochastic simulation using linear congruential algorithm, it shows that as it increases the numbers of the seed and range the number randomly produced or selected by the computer becomes unique. If this implemented in an environment where random numbers are very much needed, the reliability of the random number is guaranteed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stochastic%20simulation" title="stochastic simulation">stochastic simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20numbers" title=" random numbers"> random numbers</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20congruential%20algorithm" title=" linear congruential algorithm"> linear congruential algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudorandomness" title=" pseudorandomness"> pseudorandomness</a> </p> <a href="https://publications.waset.org/abstracts/52819/stochastic-simulation-of-random-numbers-using-linear-congruential-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52819.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5346</span> Study of Transport in Electronic Devices with Stochastic Monte Carlo Method: Modeling and Simulation along with Submicron Gate (Lg=0.5um)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Massoum">N. Massoum</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Bouazza"> B. Bouazza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we have developed a numerical simulation model to describe the electrical properties of GaInP MESFET with submicron gate (Lg = 0.5 µm). This model takes into account the three-dimensional (3D) distribution of the load in the short channel and the law effect of mobility as a function of electric field. Simulation software based on a stochastic method such as Monte Carlo has been established. The results are discussed and compared with those of the experiment. The result suggests experimentally that, in a very small gate length in our devices (smaller than 40 nm), short-channel tunneling explains the degradation of transistor performance, which was previously enhanced by velocity overshoot. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20simulation" title="Monte Carlo simulation">Monte Carlo simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20electron%20transport" title=" transient electron transport"> transient electron transport</a>, <a href="https://publications.waset.org/abstracts/search?q=MESFET%20device" title=" MESFET device"> MESFET device</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation%20software" title=" simulation software"> simulation software</a> </p> <a href="https://publications.waset.org/abstracts/19931/study-of-transport-in-electronic-devices-with-stochastic-monte-carlo-method-modeling-and-simulation-along-with-submicron-gate-lg05um" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19931.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">513</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5345</span> Building a Stochastic Simulation Model for Blue Crab Population Evolution in Antinioti Lagoon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nikolaos%20Simantiris">Nikolaos Simantiris</a>, <a href="https://publications.waset.org/abstracts/search?q=Markos%20Avlonitis"> Markos Avlonitis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work builds a simulation platform, modeling the spatial diffusion of the invasive species Callinectes sapidus (blue crab) as a random walk, incorporating also generation, fatality, and fishing rates modeling the time evolution of its population. Antinioti lagoon in West Greece was used as a testbed for applying the simulation model. Field measurements from June 2020 to June 2021 on the lagoon’s setting, bathymetry, and blue crab juveniles provided the initial population simulation of blue crabs, as well as biological parameters from the current literature were used to calibrate simulation parameters. The scope of this study is to render the authors able to predict the evolution of the blue crab population in confined environments of the Ionian Islands region in West Greece. The first result of the simulation experiments shows the possibility for a robust prediction for blue crab population evolution in the Antinioti lagoon. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antinioti%20lagoon" title="antinioti lagoon">antinioti lagoon</a>, <a href="https://publications.waset.org/abstracts/search?q=blue%20crab" title=" blue crab"> blue crab</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20simulation" title=" stochastic simulation"> stochastic simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20walk" title=" random walk"> random walk</a> </p> <a href="https://publications.waset.org/abstracts/140487/building-a-stochastic-simulation-model-for-blue-crab-population-evolution-in-antinioti-lagoon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5344</span> Robust Optimisation Model and Simulation-Particle Swarm Optimisation Approach for Vehicle Routing Problem with Stochastic Demands</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohanad%20Al-Behadili">Mohanad Al-Behadili</a>, <a href="https://publications.waset.org/abstracts/search?q=Djamila%20Ouelhadj"> Djamila Ouelhadj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a specific type of vehicle routing problem under stochastic demand (SVRP) is considered. This problem is of great importance because it models for many of the real world vehicle routing applications. This paper used a robust optimisation model to solve the problem along with the novel Simulation-Particle Swarm Optimisation (Sim-PSO) approach. The proposed Sim-PSO approach is based on the hybridization of the Monte Carlo simulation technique with the PSO algorithm. A comparative study between the proposed model and the Sim-PSO approach against other solution methods in the literature has been given in this paper. This comparison including the Analysis of Variance (ANOVA) to show the ability of the model and solution method in solving the complicated SVRP. The experimental results show that the proposed model and Sim-PSO approach has a significant impact on the obtained solution by providing better quality solutions comparing with well-known algorithms in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stochastic%20vehicle%20routing%20problem" title="stochastic vehicle routing problem">stochastic vehicle routing problem</a>, <a href="https://publications.waset.org/abstracts/search?q=robust%20optimisation%20model" title=" robust optimisation model"> robust optimisation model</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20simulation" title=" Monte Carlo simulation"> Monte Carlo simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimisation" title=" particle swarm optimisation"> particle swarm optimisation</a> </p> <a href="https://publications.waset.org/abstracts/86908/robust-optimisation-model-and-simulation-particle-swarm-optimisation-approach-for-vehicle-routing-problem-with-stochastic-demands" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86908.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5343</span> Numerical Simulation of Wishart Diffusion Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raphael%20Naryongo">Raphael Naryongo</a>, <a href="https://publications.waset.org/abstracts/search?q=Philip%20%20Ngare"> Philip Ngare</a>, <a href="https://publications.waset.org/abstracts/search?q=Anthony%20%20Waititu"> Anthony Waititu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with numerical simulation of Wishart processes for a single asset risky pricing model whose volatility is described by Wishart affine diffusion processes. The multi-factor specification of volatility will make the model more flexible enough to fit the stock market data for short or long maturities for better returns. The Wishart process is a stochastic process which is a positive semi-definite matrix-valued generalization of the square root process. The aim of the study is to model the log asset stock returns under the double Wishart stochastic volatility model. The solution of the log-asset return dynamics for Bi-Wishart processes will be obtained through Euler-Maruyama discretization schemes. The numerical results on the asset returns are compared to the existing models returns such as Heston stochastic volatility model and double Heston stochastic volatility model <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=euler%20schemes" title="euler schemes">euler schemes</a>, <a href="https://publications.waset.org/abstracts/search?q=log-asset%20return" title=" log-asset return"> log-asset return</a>, <a href="https://publications.waset.org/abstracts/search?q=infinitesimal%20generator" title=" infinitesimal generator"> infinitesimal generator</a>, <a href="https://publications.waset.org/abstracts/search?q=wishart%20diffusion%20affine%20processes" title=" wishart diffusion affine processes "> wishart diffusion affine processes </a> </p> <a href="https://publications.waset.org/abstracts/137631/numerical-simulation-of-wishart-diffusion-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137631.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5342</span> A Multi-Objective Programming Model to Supplier Selection and Order Allocation Problem in Stochastic Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rouhallah%20Bagheri">Rouhallah Bagheri</a>, <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Mahmoudi"> Morteza Mahmoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadi%20Moheb-Alizadeh"> Hadi Moheb-Alizadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims at developing a multi-objective model for supplier selection and order allocation problem in stochastic environment, where purchasing cost, percentage of delivered items with delay and percentage of rejected items provided by each supplier are supposed to be stochastic parameters following any arbitrary probability distribution. In this regard, dependent chance programming is used which maximizes probability of the event that total purchasing cost, total delivered items with delay and total rejected items are less than or equal to pre-determined values given by decision maker. The abovementioned stochastic multi-objective programming problem is then transformed into a stochastic single objective programming problem using minimum deviation method. In the next step, the further problem is solved applying a genetic algorithm, which performs a simulation process in order to calculate the stochastic objective function as its fitness function. Finally, the impact of stochastic parameters on the given solution is examined via a sensitivity analysis exploiting coefficient of variation. The results show that whatever stochastic parameters have greater coefficients of variation, the value of the objective function in the stochastic single objective programming problem is deteriorated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supplier%20selection" title="supplier selection">supplier selection</a>, <a href="https://publications.waset.org/abstracts/search?q=order%20allocation" title=" order allocation"> order allocation</a>, <a href="https://publications.waset.org/abstracts/search?q=dependent%20chance%20programming" title=" dependent chance programming"> dependent chance programming</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a> </p> <a href="https://publications.waset.org/abstracts/32384/a-multi-objective-programming-model-to-supplier-selection-and-order-allocation-problem-in-stochastic-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5341</span> Formulating the Stochastic Finite Elements for Free Vibration Analysis of Plates with Variable Elastic Modulus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Aghamiri%20Esfahani">Mojtaba Aghamiri Esfahani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Karkon"> Mohammad Karkon</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Majid%20Hosseini%20Nezhad"> Seyed Majid Hosseini Nezhad</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Hosseini-Ara"> Reza Hosseini-Ara </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the effect of uncertainty in elastic modulus of a plate on free vibration response is investigated. For this purpose, the elastic modulus of the plate is modeled as stochastic variable with normal distribution. Moreover, the distance autocorrelation function is used for stochastic field. Then, by applying the finite element method and Monte Carlo simulation, stochastic finite element relations are extracted. Finally, with a numerical test, the effect of uncertainty in the elastic modulus on free vibration response of a plate is studied. The results show that the effect of uncertainty in elastic modulus of the plate cannot play an important role on the free vibration response. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stochastic%20finite%20elements" title="stochastic finite elements">stochastic finite elements</a>, <a href="https://publications.waset.org/abstracts/search?q=plate%20bending" title=" plate bending"> plate bending</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20vibration" title=" free vibration"> free vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo" title=" Monte Carlo"> Monte Carlo</a>, <a href="https://publications.waset.org/abstracts/search?q=Neumann%20expansion%20method." title=" Neumann expansion method. "> Neumann expansion method. </a> </p> <a href="https://publications.waset.org/abstracts/45285/formulating-the-stochastic-finite-elements-for-free-vibration-analysis-of-plates-with-variable-elastic-modulus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5340</span> Wind Power Forecast Error Simulation Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Josip%20Vasilj">Josip Vasilj</a>, <a href="https://publications.waset.org/abstracts/search?q=Petar%20Sarajcev"> Petar Sarajcev</a>, <a href="https://publications.waset.org/abstracts/search?q=Damir%20Jakus"> Damir Jakus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the major difficulties introduced with wind power penetration is the inherent uncertainty in production originating from uncertain wind conditions. This uncertainty impacts many different aspects of power system operation, especially the balancing power requirements. For this reason, in power system development planing, it is necessary to evaluate the potential uncertainty in future wind power generation. For this purpose, simulation models are required, reproducing the performance of wind power forecasts. This paper presents a wind power forecast error simulation models which are based on the stochastic process simulation. Proposed models capture the most important statistical parameters recognized in wind power forecast error time series. Furthermore, two distinct models are presented based on data availability. First model uses wind speed measurements on potential or existing wind power plant locations, while the seconds model uses statistical distribution of wind speeds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20power" title="wind power">wind power</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty" title=" uncertainty"> uncertainty</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20process" title=" stochastic process"> stochastic process</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20simulation" title=" Monte Carlo simulation"> Monte Carlo simulation</a> </p> <a href="https://publications.waset.org/abstracts/17977/wind-power-forecast-error-simulation-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17977.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5339</span> Identification of Wiener Model Using Iterative Schemes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vikram%20Saini">Vikram Saini</a>, <a href="https://publications.waset.org/abstracts/search?q=Lillie%20Dewan"> Lillie Dewan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the iterative schemes based on Least square, Hierarchical Least Square and Stochastic Approximation Gradient method for the Identification of Wiener model with parametric structure. A gradient method is presented for the parameter estimation of wiener model with noise conditions based on the stochastic approximation. Simulation results are presented for the Wiener model structure with different static non-linear elements in the presence of colored noise to show the comparative analysis of the iterative methods. The stochastic gradient method shows improvement in the estimation performance and provides fast convergence of the parameters estimates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hard%20non-linearity" title="hard non-linearity">hard non-linearity</a>, <a href="https://publications.waset.org/abstracts/search?q=least%20square" title=" least square"> least square</a>, <a href="https://publications.waset.org/abstracts/search?q=parameter%20estimation" title=" parameter estimation"> parameter estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20approximation%20gradient" title=" stochastic approximation gradient"> stochastic approximation gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=Wiener%20model" title=" Wiener model"> Wiener model</a> </p> <a href="https://publications.waset.org/abstracts/70632/identification-of-wiener-model-using-iterative-schemes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5338</span> Supplier Selection and Order Allocation Using a Stochastic Multi-Objective Programming Model and Genetic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rouhallah%20Bagheri">Rouhallah Bagheri</a>, <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Mahmoudi"> Morteza Mahmoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadi%20Moheb-Alizadeh"> Hadi Moheb-Alizadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we develop a supplier selection and order allocation multi-objective model in stochastic environment in which purchasing cost, percentage of delivered items with delay and percentage of rejected items provided by each supplier are supposed to be stochastic parameters following any arbitrary probability distribution. To do so, we use dependent chance programming (DCP) that maximizes probability of the event that total purchasing cost, total delivered items with delay and total rejected items are less than or equal to pre-determined values given by decision maker. After transforming the above mentioned stochastic multi-objective programming problem into a stochastic single objective problem using minimum deviation method, we apply a genetic algorithm to get the later single objective problem solved. The employed genetic algorithm performs a simulation process in order to calculate the stochastic objective function as its fitness function. At the end, we explore the impact of stochastic parameters on the given solution via a sensitivity analysis exploiting coefficient of variation. The results show that as stochastic parameters have greater coefficients of variation, the value of objective function in the stochastic single objective programming problem is worsened. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dependent%20chance%20programming" title="dependent chance programming">dependent chance programming</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=minimum%20deviation%20method" title=" minimum deviation method"> minimum deviation method</a>, <a href="https://publications.waset.org/abstracts/search?q=order%20allocation" title=" order allocation"> order allocation</a>, <a href="https://publications.waset.org/abstracts/search?q=supplier%20selection" title=" supplier selection"> supplier selection</a> </p> <a href="https://publications.waset.org/abstracts/42319/supplier-selection-and-order-allocation-using-a-stochastic-multi-objective-programming-model-and-genetic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42319.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5337</span> The Optimal Public Debt Ceiling in Taiwan: A Simulation Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ho%20Yuan-Hong">Ho Yuan-Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Huang%20Chiung-Ju"> Huang Chiung-Ju </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study conducts simulation analyses to find the optimal debt ceiling of Taiwan, while factoring in welfare maximization under a dynamic stochastic general equilibrium framework. The simulation is based on Taiwan's 2001 to 2011 economic data and shows that welfare is maximized at a "debt"⁄"GDP" ratio of 0.2, increases in the "debt"⁄"GDP " ratio leads to increases in both tax and interest rates and decreases in the consumption ratio and working hours. The study results indicate that the optimal debt ceiling of Taiwan is 20% of GDP, where if the "debt"⁄"GDP" ratio is greater than 40%, the welfare will be negative and result in welfare loss. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=debt%20sustainability" title="debt sustainability">debt sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20debt%20ceiling" title=" optimal debt ceiling"> optimal debt ceiling</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20stochastic%20general%20equilibrium" title=" dynamic stochastic general equilibrium"> dynamic stochastic general equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=welfare%20maximization" title=" welfare maximization"> welfare maximization</a> </p> <a href="https://publications.waset.org/abstracts/29739/the-optimal-public-debt-ceiling-in-taiwan-a-simulation-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29739.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5336</span> Stochastic Age-Structured Population Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arcady%20Ponosov">Arcady Ponosov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many well-known age-structured population models are derived from the celebrated McKendrick-von Foerster equation (MFE), also called the biological conservation law. A similar technique is suggested for the stochastically perturbed MFE. This technique is shown to produce stochastic versions of the deterministic population models, which appear to be very different from those one can construct by simply appending additive stochasticity to deterministic equations. In particular, it is shown that stochastic Nicholson’s blowflies model should contain both additive and multiplicative stochastic noises. The suggested transformation technique is similar to that used in the deterministic case. The difference is hidden in the formulas for the exact solutions of the simplified boundary value problem for the stochastically perturbed MFE. The analysis is also based on the theory of stochastic delay differential equations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boundary%20value%20problems" title="boundary value problems">boundary value problems</a>, <a href="https://publications.waset.org/abstracts/search?q=population%20models" title=" population models"> population models</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20delay%20differential%20equations" title=" stochastic delay differential equations"> stochastic delay differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20partial%20differential%20equation" title=" stochastic partial differential equation"> stochastic partial differential equation</a> </p> <a href="https://publications.waset.org/abstracts/138398/stochastic-age-structured-population-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138398.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5335</span> Simulation as a Problem-Solving Spotter for System Reliability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wheyming%20Tina%20Song">Wheyming Tina Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi-Hao%20Hong"> Chi-Hao Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Peisyuan%20Lin"> Peisyuan Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An important performance measure for stochastic manufacturing networks is the system reliability, defined as the probability that the production output meets or exceeds a specified demand. The system parameters include the capacity of each workstation and numbers of the conforming parts produced in each workstation. We establish that eighteen archival publications, containing twenty-one examples, provide incorrect values of the system reliability. The author recently published the Song Rule, which provides the correct analytical system-reliability value; it is, however, computationally inefficient for large networks. In this paper, we use Monte Carlo simulation (implemented in C and Flexsim) to provide estimates for the above-mentioned twenty-one examples. The simulation estimates are consistent with the analytical solution for small networks but is computationally efficient for large networks. We argue here for three advantages of Monte Carlo simulation: (1) understanding stochastic systems, (2) validating analytical results, and (3) providing estimates even when analytical and numerical approaches are overly expensive in computation. Monte Carlo simulation could have detected the published analysis errors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20simulation" title="Monte Carlo simulation">Monte Carlo simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=analytical%20results" title=" analytical results"> analytical results</a>, <a href="https://publications.waset.org/abstracts/search?q=leading%20digit%20rule" title=" leading digit rule"> leading digit rule</a>, <a href="https://publications.waset.org/abstracts/search?q=standard%20error" title=" standard error"> standard error</a> </p> <a href="https://publications.waset.org/abstracts/66317/simulation-as-a-problem-solving-spotter-for-system-reliability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66317.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5334</span> Stochastic Modeling for Parameters of Modified Car-Following Model in Area-Based Traffic Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20C.%20Sarkar">N. C. Sarkar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bhaskar"> A. Bhaskar</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Zheng"> Z. Zheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The driving behavior in area-based (i.e., non-lane based) traffic is induced by the presence of other individuals in the choice space from the driver&rsquo;s visual perception area. The driving behavior of a subject vehicle is constrained by the potential leaders and leaders are frequently changed over time. This paper is to determine a stochastic model for a parameter of modified intelligent driver model (MIDM) in area-based traffic (as in developing countries). The parametric and non-parametric distributions are presented to fit the parameters of MIDM. The goodness of fit for each parameter is measured in two different ways such as graphically and statistically. The quantile-quantile (Q-Q) plot is used for a graphical representation of a theoretical distribution to model a parameter and the Kolmogorov-Smirnov (K-S) test is used for a statistical measure of fitness for a parameter with a theoretical distribution. The distributions are performed on a set of estimated parameters of MIDM. The parameters are estimated on the real vehicle trajectory data from India. The fitness of each parameter with a stochastic model is well represented. The results support the applicability of the proposed modeling for parameters of MIDM in area-based traffic flow simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=area-based%20traffic" title="area-based traffic">area-based traffic</a>, <a href="https://publications.waset.org/abstracts/search?q=car-following%20model" title=" car-following model"> car-following model</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-simulation" title=" micro-simulation"> micro-simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20modeling" title=" stochastic modeling"> stochastic modeling</a> </p> <a href="https://publications.waset.org/abstracts/98244/stochastic-modeling-for-parameters-of-modified-car-following-model-in-area-based-traffic-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5333</span> Non-Stationary Stochastic Optimization of an Oscillating Water Column</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mar%C3%ADa%20L.%20Jal%C3%B3n">María L. Jalón</a>, <a href="https://publications.waset.org/abstracts/search?q=Feargal%20Brennan"> Feargal Brennan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A non-stationary stochastic optimization methodology is applied to an OWC (oscillating water column) to find the design that maximizes the wave energy extraction. Different temporal cycles are considered to represent the long-term variability of the wave climate at the site in the optimization problem. The results of the non-stationary stochastic optimization problem are compared against those obtained by a stationary stochastic optimization problem. The comparative analysis reveals that the proposed non-stationary optimization provides designs with a better fit to reality. However, the stationarity assumption can be adequate when looking at averaged system response. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-stationary%20stochastic%20optimization" title="non-stationary stochastic optimization">non-stationary stochastic optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=oscillating%20water" title=" oscillating water"> oscillating water</a>, <a href="https://publications.waset.org/abstracts/search?q=temporal%20variability" title=" temporal variability"> temporal variability</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20energy" title=" wave energy"> wave energy</a> </p> <a href="https://publications.waset.org/abstracts/75300/non-stationary-stochastic-optimization-of-an-oscillating-water-column" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75300.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5332</span> Weak Solutions Of Stochastic Fractional Differential Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lev%20Idels">Lev Idels</a>, <a href="https://publications.waset.org/abstracts/search?q=Arcady%20Ponosov"> Arcady Ponosov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stochastic fractional differential equations have recently attracted considerable attention, as they have been used to model real-world processes, which are subject to natural memory effects and measurement uncertainties. Compared to conventional hereditary differential equations, one of the advantages of fractional differential equations is related to more realistic geometric properties of their trajectories that do not intersect in the phase space. In this report, a Peano-like existence theorem for nonlinear stochastic fractional differential equations is proven under very general hypotheses. Several specific classes of equations are checked to satisfy these hypotheses, including delay equations driven by the fractional Brownian motion, stochastic fractional neutral equations and many others. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=delay%20equations" title="delay equations">delay equations</a>, <a href="https://publications.waset.org/abstracts/search?q=operator%20methods" title=" operator methods"> operator methods</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20noise" title=" stochastic noise"> stochastic noise</a>, <a href="https://publications.waset.org/abstracts/search?q=weak%20solutions" title=" weak solutions"> weak solutions</a> </p> <a href="https://publications.waset.org/abstracts/146592/weak-solutions-of-stochastic-fractional-differential-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5331</span> Lyapunov and Input-to-State Stability of Stochastic Differential Equations </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arcady%20Ponosov">Arcady Ponosov</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramazan%20Kadiev"> Ramazan Kadiev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Input-to-State Stability (ISS) is widely used in deterministic control theory but less known in the stochastic case. Roughly speaking, the theory explains when small perturbations of the right-hand sides of the system on the entire semiaxis cause only small changes in the solutions of the system, again on the entire semiaxis. This property is crucial in many applications. In the report, we explain how to define and study ISS for systems of linear stochastic differential equations with or without delays. The central result connects ISS with the property of Lyapunov stability. This relationship is well-known in the deterministic setting, but its stochastic version is new. As an application, a method of studying asymptotic Lyapunov stability for stochastic delay equations is described and justified. Several examples are provided that confirm the efficiency and simplicity of the framework. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymptotic%20stability" title="asymptotic stability">asymptotic stability</a>, <a href="https://publications.waset.org/abstracts/search?q=delay%20equations" title=" delay equations"> delay equations</a>, <a href="https://publications.waset.org/abstracts/search?q=operator%20methods" title=" operator methods"> operator methods</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20perturbations" title=" stochastic perturbations"> stochastic perturbations</a> </p> <a href="https://publications.waset.org/abstracts/127764/lyapunov-and-input-to-state-stability-of-stochastic-differential-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127764.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5330</span> Stochastic Energy and Reserve Scheduling with Wind Generation and Generic Energy Storage Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amirhossein%20Khazali">Amirhossein Khazali</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Kalantar"> Mohsen Kalantar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Energy storage units can play an important role to provide an economic and secure operation of future energy systems. In this paper, a stochastic energy and reserve market clearing scheme is presented considering storage energy units. The approach is proposed to deal with stochastic and non-dispatchable renewable sources with a high level of penetration in the energy system. A two stage stochastic programming scheme is formulated where in the first stage the energy market is cleared according to the forecasted amount of wind generation and demands and in the second stage the real time market is solved according to the assumed scenarios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20and%20reserve%20market" title="energy and reserve market">energy and reserve market</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20storage%20device" title=" energy storage device"> energy storage device</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20programming" title=" stochastic programming"> stochastic programming</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20generation" title=" wind generation"> wind generation</a> </p> <a href="https://publications.waset.org/abstracts/36215/stochastic-energy-and-reserve-scheduling-with-wind-generation-and-generic-energy-storage-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36215.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">575</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5329</span> Sufficient Conditions for Exponential Stability of Stochastic Differential Equations with Non Trivial Solutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fakhreddin%20Abedi">Fakhreddin Abedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Wah%20June%20Leong"> Wah June Leong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Exponential stability of stochastic differential equations with non trivial solutions is provided in terms of Lyapunov functions. The main result of this paper establishes that, under certain hypotheses for the dynamics f(.) and g(.), practical exponential stability in probability at the small neighborhood of the origin is equivalent to the existence of an appropriate Lyapunov function. Indeed, we establish exponential stability of stochastic differential equation when almost all the state trajectories are bounded and approach a sufficiently small neighborhood of the origin. We derive sufficient conditions for exponential stability of stochastic differential equations. Finally, we give a numerical example illustrating our results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exponential%20stability%20in%20probability" title="exponential stability in probability">exponential stability in probability</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20differential%20equations" title=" stochastic differential equations"> stochastic differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20technique" title=" Lyapunov technique"> Lyapunov technique</a>, <a href="https://publications.waset.org/abstracts/search?q=Ito%27s%20formula" title=" Ito&#039;s formula"> Ito&#039;s formula</a> </p> <a href="https://publications.waset.org/abstracts/184321/sufficient-conditions-for-exponential-stability-of-stochastic-differential-equations-with-non-trivial-solutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">52</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5328</span> Accelerated Evaluation of Structural Reliability under Tsunami Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sai%20Hung%20Cheung">Sai Hung Cheung</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhe%20Shao"> Zhe Shao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is of our great interest to quantify the risk to structural dynamic systems due to earthquake-induced tsunamis in view of recent earthquake-induced tsunamis in Padang, 2004 and Tohoku, 2011 which brought huge losses of lives and properties. Despite continuous advancement in computational simulation of the tsunami and wave-structure interaction modeling, it still remains computationally challenging to evaluate the reliability of a structural dynamic system when uncertainties related to the system and its modeling are taken into account. The failure of the structure in a tsunami-wave-structural system is defined as any response quantities of the system exceeding specified thresholds during the time when the structure is subjected to dynamic wave impact due to earthquake-induced tsunamis. In this paper, an approach based on a novel integration of a recently proposed moving least squares response surface approach for stochastic sampling and the Subset Simulation algorithm is proposed. The effectiveness of the proposed approach is discussed by comparing its results with those obtained from the Subset Simulation algorithm without using the response surface approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=response%20surface" title="response surface">response surface</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20simulation" title=" stochastic simulation"> stochastic simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20reliability%20tsunami" title=" structural reliability tsunami"> structural reliability tsunami</a>, <a href="https://publications.waset.org/abstracts/search?q=risk" title=" risk"> risk</a> </p> <a href="https://publications.waset.org/abstracts/20810/accelerated-evaluation-of-structural-reliability-under-tsunami-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20810.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">676</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5327</span> Comparative Study and Parallel Implementation of Stochastic Models for Pricing of European Options Portfolios using Monte Carlo Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vinayak%20Bassi">Vinayak Bassi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajpreet%20Singh"> Rajpreet Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the years, with the emergence of sophisticated computers and algorithms, finance has been quantified using computational prowess. Asset valuation has been one of the key components of quantitative finance. In fact, it has become one of the embryonic steps in determining risk related to a portfolio, the main goal of quantitative finance. This study comprises a drawing comparison between valuation output generated by two stochastic dynamic models, namely Black-Scholes and Dupire’s bi-dimensionality model. Both of these models are formulated for computing the valuation function for a portfolio of European options using Monte Carlo simulation methods. Although Monte Carlo algorithms have a slower convergence rate than calculus-based simulation techniques (like FDM), they work quite effectively over high-dimensional dynamic models. A fidelity gap is analyzed between the static (historical) and stochastic inputs for a sample portfolio of underlying assets. In order to enhance the performance efficiency of the model, the study emphasized the use of variable reduction methods and customizing random number generators to implement parallelization. An attempt has been made to further implement the Dupire’s model on a GPU to achieve higher computational performance. Furthermore, ideas have been discussed around the performance enhancement and bottleneck identification related to the implementation of options-pricing models on GPUs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=monte%20carlo" title="monte carlo">monte carlo</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20models" title=" stochastic models"> stochastic models</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20finance" title=" computational finance"> computational finance</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20programming" title=" parallel programming"> parallel programming</a>, <a href="https://publications.waset.org/abstracts/search?q=scientific%20computing" title=" scientific computing"> scientific computing</a> </p> <a href="https://publications.waset.org/abstracts/143605/comparative-study-and-parallel-implementation-of-stochastic-models-for-pricing-of-european-options-portfolios-using-monte-carlo-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143605.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5326</span> Accelerated Structural Reliability Analysis under Earthquake-Induced Tsunamis by Advanced Stochastic Simulation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sai%20Hung%20Cheung">Sai Hung Cheung</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhe%20Shao"> Zhe Shao </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent earthquake-induced tsunamis in Padang, 2004 and Tohoku, 2011 brought huge losses of lives and properties. Maintaining vertical evacuation systems is the most crucial strategy to effectively reduce casualty during the tsunami event. Thus, it is of our great interest to quantify the risk to structural dynamic systems due to earthquake-induced tsunamis. Despite continuous advancement in computational simulation of the tsunami and wave-structure interaction modeling, it still remains computationally challenging to evaluate the reliability (or its complement failure probability) of a structural dynamic system when uncertainties related to the system and its modeling are taken into account. The failure of the structure in a tsunami-wave-structural system is defined as any response quantities of the system exceeding specified thresholds during the time when the structure is subjected to dynamic wave impact due to earthquake-induced tsunamis. In this paper, an approach based on a novel integration of the Subset Simulation algorithm and a recently proposed moving least squares response surface approach for stochastic sampling is proposed. The effectiveness of the proposed approach is discussed by comparing its results with those obtained from the Subset Simulation algorithm without using the response surface approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20model" title="response surface model">response surface model</a>, <a href="https://publications.waset.org/abstracts/search?q=subset%20simulation" title=" subset simulation"> subset simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20reliability" title=" structural reliability"> structural reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=Tsunami%20risk" title=" Tsunami risk"> Tsunami risk</a> </p> <a href="https://publications.waset.org/abstracts/15608/accelerated-structural-reliability-analysis-under-earthquake-induced-tsunamis-by-advanced-stochastic-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15608.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5325</span> Finding DEA Targets Using Multi-Objective Programming</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farzad%20Sharifi">Farzad Sharifi</a>, <a href="https://publications.waset.org/abstracts/search?q=Raziyeh%20Shamsi"> Raziyeh Shamsi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we obtain the projection of inefficient units in data envelopment analysis (DEA) in the case of stochastic inputs and outputs using the multi-objective programming (MOP) structure. In some problems, the inputs might be stochastic while the outputs are deterministic, and vice versa. In such cases, we propose molti-objective DEA-R model, because in some cases (e.g., when unnecessary and irrational weights by the BCC model reduces the efficiency score), an efficient DMU is introduced as inefficient by the BCC model, whereas the DMU is considered efficient by the DEA-R model. In some other case, only the ratio of stochastic data may be available (e.g; the ratio of stochastic inputs to stochastic outputs). Thus, we provide multi objective DEA model without explicit outputs and prove that in-put oriented MOP DEA-R model in the invariable return to scale case can be replacing by MOP- DEA model without explicit outputs in the variable return to scale and vice versa. Using the interactive methods for solving the proposed model, yields a projection corresponding to the viewpoint of the DM and the analyst, which is nearer to reality and more practical. Finally, an application is provided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DEA" title="DEA">DEA</a>, <a href="https://publications.waset.org/abstracts/search?q=MOLP" title=" MOLP"> MOLP</a>, <a href="https://publications.waset.org/abstracts/search?q=STOCHASTIC" title=" STOCHASTIC"> STOCHASTIC</a>, <a href="https://publications.waset.org/abstracts/search?q=DEA-R" title=" DEA-R"> DEA-R</a> </p> <a href="https://publications.waset.org/abstracts/59723/finding-dea-targets-using-multi-objective-programming" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5324</span> Finding Data Envelopment Analysis Targets Using Multi-Objective Programming in DEA-R with Stochastic Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Shamsi">R. Shamsi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Sharifi"> F. Sharifi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we obtain the projection of inefficient units in data envelopment analysis (DEA) in the case of stochastic inputs and outputs using the multi-objective programming (MOP) structure. In some problems, the inputs might be stochastic while the outputs are deterministic, and vice versa. In such cases, we propose a multi-objective DEA-R model because in some cases (e.g., when unnecessary and irrational weights by the BCC model reduce the efficiency score), an efficient decision-making unit (DMU) is introduced as inefficient by the BCC model, whereas the DMU is considered efficient by the DEA-R model. In some other cases, only the ratio of stochastic data may be available (e.g., the ratio of stochastic inputs to stochastic outputs). Thus, we provide a multi-objective DEA model without explicit outputs and prove that the input-oriented MOP DEA-R model in the invariable return to scale case can be replaced by the MOP-DEA model without explicit outputs in the variable return to scale and vice versa. Using the interactive methods for solving the proposed model yields a projection corresponding to the viewpoint of the DM and the analyst, which is nearer to reality and more practical. Finally, an application is provided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DEA-R" title="DEA-R">DEA-R</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-objective%20programming" title=" multi-objective programming"> multi-objective programming</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20data" title=" stochastic data"> stochastic data</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20envelopment%20analysis" title=" data envelopment analysis"> data envelopment analysis</a> </p> <a href="https://publications.waset.org/abstracts/154613/finding-data-envelopment-analysis-targets-using-multi-objective-programming-in-dea-r-with-stochastic-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154613.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5323</span> A Stochastic Diffusion Process Based on the Two-Parameters Weibull Density Function</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meriem%20Bahij">Meriem Bahij</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Nafidi"> Ahmed Nafidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Boujem%C3%A2a%20Achchab"> Boujemâa Achchab</a>, <a href="https://publications.waset.org/abstracts/search?q=S%C3%ADlvio%20M.%20A.%20Gama"> Sílvio M. A. Gama</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20A.%20O.%20Matos"> José A. O. Matos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stochastic modeling concerns the use of probability to model real-world situations in which uncertainty is present. Therefore, the purpose of stochastic modeling is to estimate the probability of outcomes within a forecast, i.e. to be able to predict what conditions or decisions might happen under different situations. In the present study, we present a model of a stochastic diffusion process based on the bi-Weibull distribution function (its trend is proportional to the bi-Weibull probability density function). In general, the Weibull distribution has the ability to assume the characteristics of many different types of distributions. This has made it very popular among engineers and quality practitioners, who have considered it the most commonly used distribution for studying problems such as modeling reliability data, accelerated life testing, and maintainability modeling and analysis. In this work, we start by obtaining the probabilistic characteristics of this model, as the explicit expression of the process, its trends, and its distribution by transforming the diffusion process in a Wiener process as shown in the Ricciaardi theorem. Then, we develop the statistical inference of this model using the maximum likelihood methodology. Finally, we analyse with simulated data the computational problems associated with the parameters, an issue of great importance in its application to real data with the use of the convergence analysis methods. Overall, the use of a stochastic model reflects only a pragmatic decision on the part of the modeler. According to the data that is available and the universe of models known to the modeler, this model represents the best currently available description of the phenomenon under consideration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diffusion%20process" title="diffusion process">diffusion process</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20sampling" title=" discrete sampling"> discrete sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=likelihood%20estimation%20method" title=" likelihood estimation method"> likelihood estimation method</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20diffusion%20process" title=" stochastic diffusion process"> stochastic diffusion process</a>, <a href="https://publications.waset.org/abstracts/search?q=trends%20functions" title=" trends functions"> trends functions</a>, <a href="https://publications.waset.org/abstracts/search?q=bi-parameters%20weibull%20density%20function" title=" bi-parameters weibull density function"> bi-parameters weibull density function</a> </p> <a href="https://publications.waset.org/abstracts/52569/a-stochastic-diffusion-process-based-on-the-two-parameters-weibull-density-function" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52569.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5322</span> An Approach to Noise Variance Estimation in Very Low Signal-to-Noise Ratio Stochastic Signals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Miljan%20B.%20Petrovi%C4%87">Miljan B. Petrović</a>, <a href="https://publications.waset.org/abstracts/search?q=Du%C5%A1an%20B.%20Petrovi%C4%87"> Dušan B. Petrović</a>, <a href="https://publications.waset.org/abstracts/search?q=Goran%20S.%20Nikoli%C4%87"> Goran S. Nikolić</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes a method for AWGN (Additive White Gaussian Noise) variance estimation in noisy stochastic signals, referred to as Multiplicative-Noising Variance Estimation (MNVE). The aim was to develop an estimation algorithm with minimal number of assumptions on the original signal structure. The provided MATLAB simulation and results analysis of the method applied on speech signals showed more accuracy than standardized AR (autoregressive) modeling noise estimation technique. In addition, great performance was observed on very low signal-to-noise ratios, which in general represents the worst case scenario for signal denoising methods. High execution time appears to be the only disadvantage of MNVE. After close examination of all the observed features of the proposed algorithm, it was concluded it is worth of exploring and that with some further adjustments and improvements can be enviably powerful. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=noise" title="noise">noise</a>, <a href="https://publications.waset.org/abstracts/search?q=signal-to-noise%20ratio" title=" signal-to-noise ratio"> signal-to-noise ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20signals" title=" stochastic signals"> stochastic signals</a>, <a href="https://publications.waset.org/abstracts/search?q=variance%20estimation" title=" variance estimation"> variance estimation</a> </p> <a href="https://publications.waset.org/abstracts/39515/an-approach-to-noise-variance-estimation-in-very-low-signal-to-noise-ratio-stochastic-signals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39515.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5321</span> Gamification Using Stochastic Processes: Engage Children to Have Healthy Habits </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andre%20M.%20Carvalho">Andre M. Carvalho</a>, <a href="https://publications.waset.org/abstracts/search?q=Pedro%20Sebastiao"> Pedro Sebastiao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article is based on a dissertation that intends to analyze and make a model, intelligently, algorithms based on stochastic processes of a gamification application applied to marketing. Gamification is used in our daily lives to engage us to perform certain actions in order to achieve goals and gain rewards. This strategy is an increasingly adopted way to encourage and retain customers through game elements. The application of gamification aims to encourage children between 6 and 10 years of age to have healthy habits and the purpose of serving as a model for use in marketing. This application was developed in unity; we implemented intelligent algorithms based on stochastic processes, web services to respond to all requests of the application, a back-office website to manage the application and the database. The behavioral analysis of the use of game elements and stochastic processes in children’s motivation was done. The application of algorithms based on stochastic processes in-game elements is very important to promote cooperation and to ensure fair and friendly competition between users which consequently stimulates the user’s interest and their involvement in the application and organization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=engage" title="engage">engage</a>, <a href="https://publications.waset.org/abstracts/search?q=games" title=" games"> games</a>, <a href="https://publications.waset.org/abstracts/search?q=gamification" title=" gamification"> gamification</a>, <a href="https://publications.waset.org/abstracts/search?q=randomness" title=" randomness"> randomness</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20processes" title=" stochastic processes"> stochastic processes</a> </p> <a href="https://publications.waset.org/abstracts/85625/gamification-using-stochastic-processes-engage-children-to-have-healthy-habits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5320</span> Stochastic Variation of the Hubble&#039;s Parameter Using Ornstein-Uhlenbeck Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mary%20Chriselda%20A">Mary Chriselda A</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the fact that the Hubble's parameter is not constant and tends to vary stochastically with time. This premise has been proven by converting it to a stochastic differential equation using the Ornstein-Uhlenbeck process. The formulated stochastic differential equation is further solved analytically using the Euler and the Kolmogorov Forward equations, thereby obtaining the probability density function using the Fourier transformation, thereby proving that the Hubble's parameter varies stochastically. This is further corroborated by simulating the observations using Python and R-software for validation of the premise postulated. We can further draw conclusion that the randomness in forces affecting the white noise can eventually affect the Hubble’s Parameter leading to scale invariance and thereby causing stochastic fluctuations in the density and the rate of expansion of the Universe. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chapman%20Kolmogorov%20forward%20differential%20equations" title="Chapman Kolmogorov forward differential equations">Chapman Kolmogorov forward differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=fourier%20transformation" title=" fourier transformation"> fourier transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=hubble%27s%20parameter" title=" hubble&#039;s parameter"> hubble&#039;s parameter</a>, <a href="https://publications.waset.org/abstracts/search?q=ornstein-uhlenbeck%20process" title=" ornstein-uhlenbeck process "> ornstein-uhlenbeck process </a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20differential%20equations" title=" stochastic differential equations "> stochastic differential equations </a> </p> <a href="https://publications.waset.org/abstracts/116444/stochastic-variation-of-the-hubbles-parameter-using-ornstein-uhlenbeck-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116444.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5319</span> A Multivariate 4/2 Stochastic Covariance Model: Properties and Applications to Portfolio Decisions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuyang%20Cheng">Yuyang Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcos%20Escobar-Anel"> Marcos Escobar-Anel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper introduces a multivariate 4/2 stochastic covariance process generalizing the one-dimensional counterparts presented in Grasselli (2017). Our construction permits stochastic correlation not only among stocks but also among volatilities, also known as co-volatility movements, both driven by more convenient 4/2 stochastic structures. The parametrization is flexible enough to separate these types of correlation, permitting their individual study. Conditions for proper changes of measure and closed-form characteristic functions under risk-neutral and historical measures are provided, allowing for applications of the model to risk management and derivative pricing. We apply the model to an expected utility theory problem in incomplete markets. Our analysis leads to closed-form solutions for the optimal allocation and value function. Conditions are provided for well-defined solutions together with a verification theorem. Our numerical analysis highlights and separates the impact of key statistics on equity portfolio decisions, in particular, volatility, correlation, and co-volatility movements, with the latter being the least important in an incomplete market. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stochastic%20covariance%20process" title="stochastic covariance process">stochastic covariance process</a>, <a href="https://publications.waset.org/abstracts/search?q=4%2F2%20stochastic%20volatility%20model" title=" 4/2 stochastic volatility model"> 4/2 stochastic volatility model</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20co-volatility%20movements" title=" stochastic co-volatility movements"> stochastic co-volatility movements</a>, <a href="https://publications.waset.org/abstracts/search?q=characteristic%20function" title=" characteristic function"> characteristic function</a>, <a href="https://publications.waset.org/abstracts/search?q=expected%20utility%20theory" title=" expected utility theory"> expected utility theory</a>, <a href="https://publications.waset.org/abstracts/search?q=veri%0Ccation%20theorem" title=" veri cation theorem"> veri cation theorem</a> </p> <a href="https://publications.waset.org/abstracts/153747/a-multivariate-42-stochastic-covariance-model-properties-and-applications-to-portfolio-decisions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153747.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5318</span> Stochastic Prioritization of Dependent Actuarial Risks: Preferences among Prospects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ezgi%20Nevruz">Ezgi Nevruz</a>, <a href="https://publications.waset.org/abstracts/search?q=Kasirga%20Yildirak"> Kasirga Yildirak</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashis%20SenGupta"> Ashis SenGupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Comparing or ranking risks is the main motivating factor behind the human trait of making choices. Cumulative prospect theory (CPT) is a preference theory approach that evaluates perception and bias in decision making under risk and uncertainty. We aim to investigate the aggregate claims of different risk classes in terms of their comparability and amenability to ordering when the impact of risk perception is considered. For this aim, we prioritize the aggregate claims taken as actuarial risks by using various stochastic ordering relations. In order to prioritize actuarial risks, we use stochastic relations such as stochastic dominance and stop-loss dominance that are proposed in the frame of partial order theory. We take into account the dependency of the individual claims exposed to similar environmental risks. At first, we modify the zero-utility premium principle in order to obtain a solution for the stop-loss premium under CPT. Then, we propose a stochastic stop-loss dominance of the aggregate claims and find a relation between the stop-loss dominance and the first-order stochastic dominance under the dependence assumption by using properties of the familiar as well as some emerging multivariate claim distributions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cumulative%20prospect%20theory" title="cumulative prospect theory">cumulative prospect theory</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20order%20theory" title=" partial order theory"> partial order theory</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20perception" title=" risk perception"> risk perception</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20dominance" title=" stochastic dominance"> stochastic dominance</a>, <a href="https://publications.waset.org/abstracts/search?q=stop-loss%20dominance" title=" stop-loss dominance"> stop-loss dominance</a> </p> <a href="https://publications.waset.org/abstracts/55845/stochastic-prioritization-of-dependent-actuarial-risks-preferences-among-prospects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55845.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stochastic%20simulation&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stochastic%20simulation&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stochastic%20simulation&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stochastic%20simulation&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stochastic%20simulation&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stochastic%20simulation&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stochastic%20simulation&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stochastic%20simulation&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stochastic%20simulation&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stochastic%20simulation&amp;page=178">178</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stochastic%20simulation&amp;page=179">179</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stochastic%20simulation&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10