CINXE.COM
Prof. Marcelle Boudagher-Fadel | University College London - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Prof. Marcelle Boudagher-Fadel | University College London - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="GGGDeqKfuRRNOn-7Kw4C7lDwJtHvoGY6xtisr8CD2ysdU48Rp8PdkJ-UnxwDBmXvzWhW9pa24TK3FfRsfZfTDg" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-3d36c19b4875b226bfed0fcba1dcea3f2fe61148383d97c0465c016b8c969290.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-79e78ce59bef0a338eb6540ec3d93b4a7952115b56c57f1760943128f4544d42.css" /><script type="application/ld+json">{"@context":"https://schema.org","@type":"ProfilePage","mainEntity":{"@context":"https://schema.org","@type":"Person","name":"Prof. Marcelle Boudagher-Fadel","url":"https://ucl.academia.edu/MarcelleBoudagherFadel","image":"https://0.academia-photos.com/6407942/2675568/3113943/s200_marcelle.boudagher-fadel.jpg","sameAs":[]},"dateCreated":"2013-10-27T10:31:03-07:00","dateModified":"2022-06-08T10:27:52-07:00","name":"Prof. Marcelle Boudagher-Fadel","description":"","image":"https://0.academia-photos.com/6407942/2675568/3113943/s200_marcelle.boudagher-fadel.jpg","thumbnailUrl":"https://0.academia-photos.com/6407942/2675568/3113943/s65_marcelle.boudagher-fadel.jpg","primaryImageOfPage":{"@type":"ImageObject","url":"https://0.academia-photos.com/6407942/2675568/3113943/s200_marcelle.boudagher-fadel.jpg","width":200},"sameAs":[],"relatedLink":"https://www.academia.edu/78733731/The_closure_of_the_Vardar_ocean_the_western_domain_of_the_northern_Neotethys_from_early_Middle_Jurassic_to_Paleocene_time_based_on_surface_geology_of_eastern_Pelagonia_and_the_Vardar_zone_biostratigraphy_and_seismic_tomographic_images_of_the_mantle_below_the_Central_Hellenides"}</script><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-95367dc03b794f6737f30123738a886cf53b7a65cdef98a922a98591d60063e3.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-8c9ae4b5c8a2531640c354d92a1f3579c8ff103277ef74913e34c8a76d4e6c00.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-170d1319f0e354621e81ca17054bb147da2856ec0702fe440a99af314a6338c5.css" /><style type="text/css">@media(max-width: 567px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 32px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 30px;--type-sans-serif-lg-line-height: 36px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 30px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 24px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 24px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 18px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 32px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 20px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 32px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 40px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 24px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 26px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 48px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 52px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 48px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 58px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 80px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 64px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}@media(min-width: 568px)and (max-width: 1279px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 42px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 32px;--type-sans-serif-lg-line-height: 36px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 34px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 28px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 25px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 20px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 30px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 24px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 40px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 48px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 28px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 32px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 58px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 68px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 74px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 82px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 104px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 80px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}@media(min-width: 1280px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 42px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 32px;--type-sans-serif-lg-line-height: 38px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 34px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 28px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 25px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 20px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 30px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 24px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 40px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 48px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 28px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 32px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 58px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 68px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 74px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 82px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 152px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 80px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}</style><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-57f9da13cef3fd4e2a8b655342c6488eded3e557e823fe67571f2ac77acd7b6f.css" /> <meta name="author" content="prof. marcelle boudagher-fadel" /> <meta name="description" content="Prof. Marcelle Boudagher-Fadel, University College London: 165 Followers, 38 Following, 189 Research papers. Research interests: Earth Sciences, Tectonics,…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '0d66fc26b410fab18899f35191ec1219c8e3ff27'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":13930,"monthly_visitors":"143 million","monthly_visitor_count":143701084,"monthly_visitor_count_in_millions":143,"user_count":285914459,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1743154243000); window.Aedu.timeDifference = new Date().getTime() - 1743154243000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link rel="preload" href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" as="style" onload="this.rel='stylesheet'"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-9982828ed1de4777566441c35ccf7157c55ca779141fce69380d727ebdbbb926.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-a16f2f63712f47da129db801247ecab11f5858a61d732c9434f2ae62a03a9458.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-08f4d2761301896e0b81ad24c59c899a459c9b72383f67316154df2737176402.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://ucl.academia.edu/MarcelleBoudagherFadel" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-b94460767d572c2cdb82b120dcc6a5b9ddb80bf47276962990758b2685a0da74.js" defer="defer"></script><script>$viewedUser = Aedu.User.set_viewed( {"id":6407942,"first_name":"Prof. Marcelle","middle_initials":"","last_name":"Boudagher-Fadel","page_name":"MarcelleBoudagherFadel","domain_name":"ucl","created_at":"2013-10-27T10:31:03.235-07:00","display_name":"Prof. Marcelle Boudagher-Fadel","url":"https://ucl.academia.edu/MarcelleBoudagherFadel","photo":"https://0.academia-photos.com/6407942/2675568/3113943/s65_marcelle.boudagher-fadel.jpg","has_photo":true,"department":{"id":71795,"name":"Earth Sciences","url":"https://ucl.academia.edu/Departments/Earth_Sciences/Documents","university":{"id":111,"name":"University College London","url":"https://ucl.academia.edu/"}},"position":"Faculty Member","position_id":1,"is_analytics_public":true,"interests":[{"id":400,"name":"Earth Sciences","url":"https://www.academia.edu/Documents/in/Earth_Sciences"},{"id":10769,"name":"Tectonics","url":"https://www.academia.edu/Documents/in/Tectonics"},{"id":20691,"name":"Micropalaeontology","url":"https://www.academia.edu/Documents/in/Micropalaeontology"},{"id":184,"name":"Sociology","url":"https://www.academia.edu/Documents/in/Sociology"},{"id":88694,"name":"Earth and Environmental Science","url":"https://www.academia.edu/Documents/in/Earth_and_Environmental_Science"},{"id":797,"name":"International Relations","url":"https://www.academia.edu/Documents/in/International_Relations"},{"id":671,"name":"Music","url":"https://www.academia.edu/Documents/in/Music"},{"id":261,"name":"Geography","url":"https://www.academia.edu/Documents/in/Geography"},{"id":7125,"name":"Culture","url":"https://www.academia.edu/Documents/in/Culture"},{"id":17215,"name":"Micropaleontology","url":"https://www.academia.edu/Documents/in/Micropaleontology"},{"id":424973,"name":"Micropalaeontology foraminifera","url":"https://www.academia.edu/Documents/in/Micropalaeontology_foraminifera"},{"id":109,"name":"Christianity","url":"https://www.academia.edu/Documents/in/Christianity"},{"id":159232,"name":"Applied Sciences","url":"https://www.academia.edu/Documents/in/Applied_Sciences"},{"id":64633,"name":"Society","url":"https://www.academia.edu/Documents/in/Society"},{"id":26227,"name":"Entertainment","url":"https://www.academia.edu/Documents/in/Entertainment"},{"id":922,"name":"Education","url":"https://www.academia.edu/Documents/in/Education"},{"id":479666,"name":"PhD education","url":"https://www.academia.edu/Documents/in/PhD_education"},{"id":10770,"name":"Biostratigraphy","url":"https://www.academia.edu/Documents/in/Biostratigraphy"},{"id":24376,"name":"Cretaceous life","url":"https://www.academia.edu/Documents/in/Cretaceous_life"},{"id":7075,"name":"Paleoenvironment","url":"https://www.academia.edu/Documents/in/Paleoenvironment"},{"id":417,"name":"Paleontology","url":"https://www.academia.edu/Documents/in/Paleontology"},{"id":39442,"name":"Carbonate Sedimentology","url":"https://www.academia.edu/Documents/in/Carbonate_Sedimentology"},{"id":31237,"name":"Benthic foraminifera","url":"https://www.academia.edu/Documents/in/Benthic_foraminifera"},{"id":2259,"name":"Paleoceanography","url":"https://www.academia.edu/Documents/in/Paleoceanography"},{"id":993247,"name":"Mediterrranean Archaeology","url":"https://www.academia.edu/Documents/in/Mediterrranean_Archaeology"},{"id":2258,"name":"Paleoclimatology","url":"https://www.academia.edu/Documents/in/Paleoclimatology"},{"id":126624,"name":"Foraminifera","url":"https://www.academia.edu/Documents/in/Foraminifera"},{"id":64108,"name":"Paleogeography","url":"https://www.academia.edu/Documents/in/Paleogeography"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://ucl.academia.edu/MarcelleBoudagherFadel","location":"/MarcelleBoudagherFadel","scheme":"https","host":"ucl.academia.edu","port":null,"pathname":"/MarcelleBoudagherFadel","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-83c45391-67ee-479a-86d5-de5cdee8e79c"></div> <div id="ProfileCheckPaperUpdate-react-component-83c45391-67ee-479a-86d5-de5cdee8e79c"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="Prof. Marcelle Boudagher-Fadel" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/6407942/2675568/3113943/s200_marcelle.boudagher-fadel.jpg" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Prof. Marcelle Boudagher-Fadel</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://ucl.academia.edu/">University College London</a>, <a class="u-tcGrayDarker" href="https://ucl.academia.edu/Departments/Earth_Sciences/Documents">Earth Sciences</a>, <span class="u-tcGrayDarker">Faculty Member</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Prof. Marcelle" data-follow-user-id="6407942" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="6407942"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">165</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">38</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">10</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="suggested-academics-container"><div class="suggested-academics--header"><h3 class="ds2-5-heading-sans-serif-xs">Related Authors</h3></div><ul class="suggested-user-card-list" data-nosnippet="true"><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://ucsb.academia.edu/JudithGreen"><img class="profile-avatar u-positionAbsolute" alt="Judith L Green related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/10819/3653/21016275/s200_judith.green.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://ucsb.academia.edu/JudithGreen">Judith L Green</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of California, Santa Barbara</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://kcl.academia.edu/KatherineButlerSchofield"><img class="profile-avatar u-positionAbsolute" alt="Katherine Butler Schofield related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/40928/13423/154117205/s200_katherine_butler.schofield.jpeg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://kcl.academia.edu/KatherineButlerSchofield">Katherine Butler Schofield</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">King's College London</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://lancaster.academia.edu/BobJessop"><img class="profile-avatar u-positionAbsolute" alt="Bob Jessop related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/52629/14702723/15971774/s200_bob.jessop.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://lancaster.academia.edu/BobJessop">Bob Jessop</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Lancaster University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://ksu.academia.edu/DavidSeamon"><img class="profile-avatar u-positionAbsolute" alt="David Seamon related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/93547/25922/29662134/s200_david.seamon.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://ksu.academia.edu/DavidSeamon">David Seamon</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Kansas State University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://uppsala.academia.edu/HeminKoyi"><img class="profile-avatar u-positionAbsolute" alt="Hemin Koyi related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/102248/28141/11213115/s200_hemin.koyi.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://uppsala.academia.edu/HeminKoyi">Hemin Koyi</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Uppsala University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://universidadhumanistadelasamericas.academia.edu/JoseRubenGuzmanGutierrez"><img class="profile-avatar u-positionAbsolute" alt="Jose Ruben Guzman-Gutierrez related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/128581/34268/17081319/s200_jose_ruben.guzman-gutierrez.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://universidadhumanistadelasamericas.academia.edu/JoseRubenGuzmanGutierrez">Jose Ruben Guzman-Gutierrez</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Universidad Humanista de las Americas</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://ntnu-no.academia.edu/RoeFremstedal"><img class="profile-avatar u-positionAbsolute" alt="Roe Fremstedal related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/130923/34905/11028540/s200_roe.fremstedal.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://ntnu-no.academia.edu/RoeFremstedal">Roe Fremstedal</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Norwegian University of Science and Technology</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://ntnu-no.academia.edu/EgilBakka"><img class="profile-avatar u-positionAbsolute" alt="Egil Bakka related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/132166/35197/56353/s200_egil.bakka.132166" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://ntnu-no.academia.edu/EgilBakka">Egil Bakka</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Norwegian University of Science and Technology</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://cria.academia.edu/ArmandoMarquesGuedes"><img class="profile-avatar u-positionAbsolute" alt="Armando Marques-Guedes related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/134181/3401094/148494125/s200_armando.marques-guedes.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://cria.academia.edu/ArmandoMarquesGuedes">Armando Marques-Guedes</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">UNL - New University of Lisbon</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://queenslandmuseum.academia.edu/SusanTurner"><img class="profile-avatar u-positionAbsolute" alt="Susan Turner related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/155416/40357/28688117/s200_susan.turner.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://queenslandmuseum.academia.edu/SusanTurner">Susan Turner</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Queensland Museum</p></div></div></ul></div><style type="text/css">.suggested-academics--header h3{font-size:16px;font-weight:500;line-height:20px}</style><div class="ri-section"><div class="ri-section-header"><span>Interests</span><a class="ri-more-link js-profile-ri-list-card" data-click-track="profile-user-info-primary-research-interest" data-has-card-for-ri-list="6407942">View All (11)</a></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="6407942" href="https://www.academia.edu/Documents/in/Earth_Sciences"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://ucl.academia.edu/MarcelleBoudagherFadel","location":"/MarcelleBoudagherFadel","scheme":"https","host":"ucl.academia.edu","port":null,"pathname":"/MarcelleBoudagherFadel","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Earth Sciences"]}" data-trace="false" data-dom-id="Pill-react-component-4e744ad0-37e8-4ebe-93f3-6ee82c0e4dca"></div> <div id="Pill-react-component-4e744ad0-37e8-4ebe-93f3-6ee82c0e4dca"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="6407942" href="https://www.academia.edu/Documents/in/Sociology"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Sociology"]}" data-trace="false" data-dom-id="Pill-react-component-ea2f7ff7-3015-4d9d-962e-30747158c0ff"></div> <div id="Pill-react-component-ea2f7ff7-3015-4d9d-962e-30747158c0ff"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="6407942" href="https://www.academia.edu/Documents/in/Earth_and_Environmental_Science"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Earth and Environmental Science"]}" data-trace="false" data-dom-id="Pill-react-component-23a4ef5f-bad5-4e53-8294-9fdbb36c79bf"></div> <div id="Pill-react-component-23a4ef5f-bad5-4e53-8294-9fdbb36c79bf"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="6407942" href="https://www.academia.edu/Documents/in/International_Relations"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["International Relations"]}" data-trace="false" data-dom-id="Pill-react-component-94938a77-54d6-46bf-a832-4e3fb42d2fbd"></div> <div id="Pill-react-component-94938a77-54d6-46bf-a832-4e3fb42d2fbd"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="6407942" href="https://www.academia.edu/Documents/in/Music"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Music"]}" data-trace="false" data-dom-id="Pill-react-component-45175634-0cd2-4190-93b2-7b908133198f"></div> <div id="Pill-react-component-45175634-0cd2-4190-93b2-7b908133198f"></div> </a></div></div><div class="external-links-container"><ul class="profile-links new-profile js-UserInfo-social"><li class="profile-profiles js-social-profiles-container"><i class="fa fa-spin fa-spinner"></i></li></ul></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Prof. Marcelle Boudagher-Fadel</h3></div><div class="js-work-strip profile--work_container" data-work-id="78733731"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/78733731/The_closure_of_the_Vardar_ocean_the_western_domain_of_the_northern_Neotethys_from_early_Middle_Jurassic_to_Paleocene_time_based_on_surface_geology_of_eastern_Pelagonia_and_the_Vardar_zone_biostratigraphy_and_seismic_tomographic_images_of_the_mantle_below_the_Central_Hellenides"><img alt="Research paper thumbnail of The closure of the Vardar ocean (the western domain of the northern Neotethys) from early Middle Jurassic to Paleocene time, based on surface geology of eastern Pelagonia and the Vardar zone, biostratigraphy, and seismic-tomographic images of the mantle below the Central Hellenides" class="work-thumbnail" src="https://attachments.academia-assets.com/85676589/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/78733731/The_closure_of_the_Vardar_ocean_the_western_domain_of_the_northern_Neotethys_from_early_Middle_Jurassic_to_Paleocene_time_based_on_surface_geology_of_eastern_Pelagonia_and_the_Vardar_zone_biostratigraphy_and_seismic_tomographic_images_of_the_mantle_below_the_Central_Hellenides">The closure of the Vardar ocean (the western domain of the northern Neotethys) from early Middle Jurassic to Paleocene time, based on surface geology of eastern Pelagonia and the Vardar zone, biostratigraphy, and seismic-tomographic images of the mantle below the Central Hellenides</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Seismic tomographic images of the mantle below the Hellenides indicate that the Vardar ocean prob...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Seismic tomographic images of the mantle below the Hellenides indicate that the Vardar ocean probably had a composite width of over 3000 kilometres. From surface geology we know that this ocean was initially located between two passive margins: Pelagonian Adria in the west and Serbo-Macedonian-Eurasia in the east. Pelagonia was covered by a carbonate platform that accumulated, during Late Triassic to Early Cretaceous time, where highly diversified carbonate sedimentary environments evolved and reacted to the adjacent, converging Vardar ocean plate. We conceive that on the east side of the Vardar ocean, a Cretaceous carbonate platform evolved from Aptian to Maastrichtian time in the forearc basin of the Vardar supra-subduction volcanic arc complex. The closure of the Vardar ocean occurred in one episode of ophiolite obduction and in two episodes of intra-oceanic subduction. 1. During Middle Jurassic time a 1200-kilometre slab of west Vardar lithosphere subducted beneath the supra-subduction, "Eohellenic", arc, while a 200-kilometre-wide slab obducted onto Pelagonia between Callovian and Valanginian time. 2. During Late Jurassic through Cretaceous time a 1700-kilometre-wide slab subducted beneath the evolving east Vardar-zone arc-complex. Pelagonia, the trailing edge of the subducting east-Vardar ocean slab, crashed and underthrust the Vardar arc complex during Paleocene time and ultimately crashed with Serbo-Macedonia. Since late Early Jurassic time, the Hellenides have moved about 3000 kilometres toward the northeast while the Atlantic Ocean spread.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9ae19f8ac0473377b35f1e60d6891060" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":85676589,"asset_id":78733731,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/85676589/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="78733731"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="78733731"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 78733731; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=78733731]").text(description); $(".js-view-count[data-work-id=78733731]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 78733731; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='78733731']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9ae19f8ac0473377b35f1e60d6891060" } } $('.js-work-strip[data-work-id=78733731]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":78733731,"title":"The closure of the Vardar ocean (the western domain of the northern Neotethys) from early Middle Jurassic to Paleocene time, based on surface geology of eastern Pelagonia and the Vardar zone, biostratigraphy, and seismic-tomographic images of the mantle below the Central Hellenides","translated_title":"","metadata":{"publisher":"UCL Press","grobid_abstract":"Seismic tomographic images of the mantle below the Hellenides indicate that the Vardar ocean probably had a composite width of over 3000 kilometres. From surface geology we know that this ocean was initially located between two passive margins: Pelagonian Adria in the west and Serbo-Macedonian-Eurasia in the east. Pelagonia was covered by a carbonate platform that accumulated, during Late Triassic to Early Cretaceous time, where highly diversified carbonate sedimentary environments evolved and reacted to the adjacent, converging Vardar ocean plate. We conceive that on the east side of the Vardar ocean, a Cretaceous carbonate platform evolved from Aptian to Maastrichtian time in the forearc basin of the Vardar supra-subduction volcanic arc complex. The closure of the Vardar ocean occurred in one episode of ophiolite obduction and in two episodes of intra-oceanic subduction. 1. During Middle Jurassic time a 1200-kilometre slab of west Vardar lithosphere subducted beneath the supra-subduction, \"Eohellenic\", arc, while a 200-kilometre-wide slab obducted onto Pelagonia between Callovian and Valanginian time. 2. During Late Jurassic through Cretaceous time a 1700-kilometre-wide slab subducted beneath the evolving east Vardar-zone arc-complex. Pelagonia, the trailing edge of the subducting east-Vardar ocean slab, crashed and underthrust the Vardar arc complex during Paleocene time and ultimately crashed with Serbo-Macedonia. Since late Early Jurassic time, the Hellenides have moved about 3000 kilometres toward the northeast while the Atlantic Ocean spread.","publication_date":{"day":8,"month":7,"year":2021,"errors":{}},"grobid_abstract_attachment_id":85676589},"translated_abstract":null,"internal_url":"https://www.academia.edu/78733731/The_closure_of_the_Vardar_ocean_the_western_domain_of_the_northern_Neotethys_from_early_Middle_Jurassic_to_Paleocene_time_based_on_surface_geology_of_eastern_Pelagonia_and_the_Vardar_zone_biostratigraphy_and_seismic_tomographic_images_of_the_mantle_below_the_Central_Hellenides","translated_internal_url":"","created_at":"2022-05-08T01:38:42.626-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6407942,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":85676589,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85676589/thumbnails/1.jpg","file_name":"1_202021_20corrected_20closure_20of_20Vardar_20ocean_20text_Figs_205-21-21_20reduced_20size.pdf","download_url":"https://www.academia.edu/attachments/85676589/download_file","bulk_download_file_name":"The_closure_of_the_Vardar_ocean_the_west.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85676589/1_202021_20corrected_20closure_20of_20Vardar_20ocean_20text_Figs_205-21-21_20reduced_20size-libre.pdf?1651999750=\u0026response-content-disposition=attachment%3B+filename%3DThe_closure_of_the_Vardar_ocean_the_west.pdf\u0026Expires=1741739494\u0026Signature=e91~SYGvkyv~eM37PtdyxwLgOWRcxQuU1bxhHhhtLg8r5P84O0ykzv1JrX3QO~ljRQPeQl0Fonk44n8s91BwbXTIfZMjYm6NTdNO2lnSQezx6xSWbR6iMin4wEG~djC9w92bRUQgf0J7AnaWHUBElvTOAXwnV5xh4fgZdNiz3eGYt3v2fYvNzAWiwit1r8vKGo65pEH42aqRv6B1kGUP~tO2sJv71sRfdYpXNRPTW46LuSqeqESP4jD3wX9hdPqkc0R30of3iuOdhxnqTxFLoSZ1-Scjz21jCNognSANkNoKMbjRgcMfiYwKdDeazNMiHf4l-ID9cs9ZquIpD1nDNg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_closure_of_the_Vardar_ocean_the_western_domain_of_the_northern_Neotethys_from_early_Middle_Jurassic_to_Paleocene_time_based_on_surface_geology_of_eastern_Pelagonia_and_the_Vardar_zone_biostratigraphy_and_seismic_tomographic_images_of_the_mantle_below_the_Central_Hellenides","translated_slug":"","page_count":42,"language":"en","content_type":"Work","summary":"Seismic tomographic images of the mantle below the Hellenides indicate that the Vardar ocean probably had a composite width of over 3000 kilometres. From surface geology we know that this ocean was initially located between two passive margins: Pelagonian Adria in the west and Serbo-Macedonian-Eurasia in the east. Pelagonia was covered by a carbonate platform that accumulated, during Late Triassic to Early Cretaceous time, where highly diversified carbonate sedimentary environments evolved and reacted to the adjacent, converging Vardar ocean plate. We conceive that on the east side of the Vardar ocean, a Cretaceous carbonate platform evolved from Aptian to Maastrichtian time in the forearc basin of the Vardar supra-subduction volcanic arc complex. The closure of the Vardar ocean occurred in one episode of ophiolite obduction and in two episodes of intra-oceanic subduction. 1. During Middle Jurassic time a 1200-kilometre slab of west Vardar lithosphere subducted beneath the supra-subduction, \"Eohellenic\", arc, while a 200-kilometre-wide slab obducted onto Pelagonia between Callovian and Valanginian time. 2. During Late Jurassic through Cretaceous time a 1700-kilometre-wide slab subducted beneath the evolving east Vardar-zone arc-complex. Pelagonia, the trailing edge of the subducting east-Vardar ocean slab, crashed and underthrust the Vardar arc complex during Paleocene time and ultimately crashed with Serbo-Macedonia. Since late Early Jurassic time, the Hellenides have moved about 3000 kilometres toward the northeast while the Atlantic Ocean spread.","owner":{"id":6407942,"first_name":"Prof. Marcelle","middle_initials":"","last_name":"Boudagher-Fadel","page_name":"MarcelleBoudagherFadel","domain_name":"ucl","created_at":"2013-10-27T10:31:03.235-07:00","display_name":"Prof. Marcelle Boudagher-Fadel","url":"https://ucl.academia.edu/MarcelleBoudagherFadel"},"attachments":[{"id":85676589,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85676589/thumbnails/1.jpg","file_name":"1_202021_20corrected_20closure_20of_20Vardar_20ocean_20text_Figs_205-21-21_20reduced_20size.pdf","download_url":"https://www.academia.edu/attachments/85676589/download_file","bulk_download_file_name":"The_closure_of_the_Vardar_ocean_the_west.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85676589/1_202021_20corrected_20closure_20of_20Vardar_20ocean_20text_Figs_205-21-21_20reduced_20size-libre.pdf?1651999750=\u0026response-content-disposition=attachment%3B+filename%3DThe_closure_of_the_Vardar_ocean_the_west.pdf\u0026Expires=1741739494\u0026Signature=e91~SYGvkyv~eM37PtdyxwLgOWRcxQuU1bxhHhhtLg8r5P84O0ykzv1JrX3QO~ljRQPeQl0Fonk44n8s91BwbXTIfZMjYm6NTdNO2lnSQezx6xSWbR6iMin4wEG~djC9w92bRUQgf0J7AnaWHUBElvTOAXwnV5xh4fgZdNiz3eGYt3v2fYvNzAWiwit1r8vKGo65pEH42aqRv6B1kGUP~tO2sJv71sRfdYpXNRPTW46LuSqeqESP4jD3wX9hdPqkc0R30of3iuOdhxnqTxFLoSZ1-Scjz21jCNognSANkNoKMbjRgcMfiYwKdDeazNMiHf4l-ID9cs9ZquIpD1nDNg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":20316569,"url":"https://ucl.scienceopen.com/document_file/2d35b750-14a5-476b-b77f-b72a141708c4/ScienceOpenPreprint/1%202021%20corrected%20closure%20of%20Vardar%20ocean%20text+Figs%205-21-21%20reduced%20size.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="78733725"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/78733725/The_Paleogene_record_of_Himalayan_erosion_Bengal_Basin_Bangladesh"><img alt="Research paper thumbnail of The Paleogene record of Himalayan erosion: Bengal Basin, Bangladesh" class="work-thumbnail" src="https://attachments.academia-assets.com/85676619/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/78733725/The_Paleogene_record_of_Himalayan_erosion_Bengal_Basin_Bangladesh">The Paleogene record of Himalayan erosion: Bengal Basin, Bangladesh</a></div><div class="wp-workCard_item"><span>Earth and Planetary Science Letters</span><span>, 2008</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This article appeared in a journal published by Elsevier. The attached copy is furnished to the a...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: <a href="http://www.elsevier.com/copyright" rel="nofollow">http://www.elsevier.com/copyright</a></span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1d471c30808d3e8fda3796f2d89473ed" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":85676619,"asset_id":78733725,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/85676619/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="78733725"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="78733725"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 78733725; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=78733725]").text(description); $(".js-view-count[data-work-id=78733725]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 78733725; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='78733725']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1d471c30808d3e8fda3796f2d89473ed" } } $('.js-work-strip[data-work-id=78733725]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":78733725,"title":"The Paleogene record of Himalayan erosion: Bengal Basin, Bangladesh","translated_title":"","metadata":{"publisher":"Elsevier BV","ai_title_tag":"Paleogene Himalayan Erosion in Bangladesh's Bengal Basin","grobid_abstract":"This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"Earth and Planetary Science Letters","grobid_abstract_attachment_id":85676619},"translated_abstract":null,"internal_url":"https://www.academia.edu/78733725/The_Paleogene_record_of_Himalayan_erosion_Bengal_Basin_Bangladesh","translated_internal_url":"","created_at":"2022-05-08T01:38:34.782-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6407942,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":85676619,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85676619/thumbnails/1.jpg","file_name":"Najman_20et_20al_20EPSL_202008.pdf","download_url":"https://www.academia.edu/attachments/85676619/download_file","bulk_download_file_name":"The_Paleogene_record_of_Himalayan_erosio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85676619/Najman_20et_20al_20EPSL_202008-libre.pdf?1651999735=\u0026response-content-disposition=attachment%3B+filename%3DThe_Paleogene_record_of_Himalayan_erosio.pdf\u0026Expires=1742082204\u0026Signature=HWmi1ysx1DPZS6kZR289jzxBqmJrkzBnS~W3lFUICWp~y4LrO6ykADMOSrcsrcMtHz2KNMzYhTZDtdPrgVaZ8u~QwA2YU7wtHQjx7y-beaBFUfoyKD3yoNCloht7j3ZKyIR2kq1oB5-6AHJXTVRbiiPY62Fi4oa7bO6UvQsSvfhqsAM-29Cc22JvLXP8R6rCsXL8uECYMV4AfQtdEFE7-7upUIggCQssVNe-m6cdv6ZmMEuNVB7n-TQFXBLKviK6A56TIUX8u~yL7KkOJG1Vmqwm89B2fLwdTHnHMpp-KLUEATYh93BWS4prJM08W~37P-rR46ojnNlRIQ6-KmJdkQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_Paleogene_record_of_Himalayan_erosion_Bengal_Basin_Bangladesh","translated_slug":"","page_count":15,"language":"en","content_type":"Work","summary":"This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright","owner":{"id":6407942,"first_name":"Prof. Marcelle","middle_initials":"","last_name":"Boudagher-Fadel","page_name":"MarcelleBoudagherFadel","domain_name":"ucl","created_at":"2013-10-27T10:31:03.235-07:00","display_name":"Prof. Marcelle Boudagher-Fadel","url":"https://ucl.academia.edu/MarcelleBoudagherFadel"},"attachments":[{"id":85676619,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85676619/thumbnails/1.jpg","file_name":"Najman_20et_20al_20EPSL_202008.pdf","download_url":"https://www.academia.edu/attachments/85676619/download_file","bulk_download_file_name":"The_Paleogene_record_of_Himalayan_erosio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85676619/Najman_20et_20al_20EPSL_202008-libre.pdf?1651999735=\u0026response-content-disposition=attachment%3B+filename%3DThe_Paleogene_record_of_Himalayan_erosio.pdf\u0026Expires=1742082204\u0026Signature=HWmi1ysx1DPZS6kZR289jzxBqmJrkzBnS~W3lFUICWp~y4LrO6ykADMOSrcsrcMtHz2KNMzYhTZDtdPrgVaZ8u~QwA2YU7wtHQjx7y-beaBFUfoyKD3yoNCloht7j3ZKyIR2kq1oB5-6AHJXTVRbiiPY62Fi4oa7bO6UvQsSvfhqsAM-29Cc22JvLXP8R6rCsXL8uECYMV4AfQtdEFE7-7upUIggCQssVNe-m6cdv6ZmMEuNVB7n-TQFXBLKviK6A56TIUX8u~yL7KkOJG1Vmqwm89B2fLwdTHnHMpp-KLUEATYh93BWS4prJM08W~37P-rR46ojnNlRIQ6-KmJdkQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":400,"name":"Earth Sciences","url":"https://www.academia.edu/Documents/in/Earth_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":241723,"name":"Earth and Planetary Science","url":"https://www.academia.edu/Documents/in/Earth_and_Planetary_Science"},{"id":675513,"name":"Earth and Planetary Sciences","url":"https://www.academia.edu/Documents/in/Earth_and_Planetary_Sciences"},{"id":862322,"name":"Channel Flow","url":"https://www.academia.edu/Documents/in/Channel_Flow"},{"id":897823,"name":"Elsevier","url":"https://www.academia.edu/Documents/in/Elsevier"},{"id":1260395,"name":"Crustal Deformation","url":"https://www.academia.edu/Documents/in/Crustal_Deformation"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="72711915"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/72711915/The_Geographic_Environmental_and_Phylogenetic_Evolution_of_the_Alveolinoidea_from_the_Cretaceous_to_the_Present_Day"><img alt="Research paper thumbnail of The Geographic, Environmental and Phylogenetic Evolution of the Alveolinoidea from the Cretaceous to the Present Day" class="work-thumbnail" src="https://attachments.academia-assets.com/81531220/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/72711915/The_Geographic_Environmental_and_Phylogenetic_Evolution_of_the_Alveolinoidea_from_the_Cretaceous_to_the_Present_Day">The Geographic, Environmental and Phylogenetic Evolution of the Alveolinoidea from the Cretaceous to the Present Day</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The superfamily Alveolinoidea is a member of the Order Miliolida, and is comprised of three main ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The superfamily Alveolinoidea is a member of the Order Miliolida, and is comprised of three main families, the Alveolinidae, the Fabulariidae and the Rhapydioninidae. They are examples of Larger Benthic Foraminifera (LBF), which are single-celled organisms with specific characteristic endoskeletons. Alveolinoids are found globally from the Cretaceous to the the repeated re-occurrence of certain morphological features. Understanding this propensity to homoplasy is essential in understanding and constructing the phylogenetic relationships within the alveolinoid superfamily.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e366601f38406c5cc517975d126c1383" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":81531220,"asset_id":72711915,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/81531220/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="72711915"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="72711915"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 72711915; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=72711915]").text(description); $(".js-view-count[data-work-id=72711915]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 72711915; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='72711915']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e366601f38406c5cc517975d126c1383" } } $('.js-work-strip[data-work-id=72711915]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":72711915,"title":"The Geographic, Environmental and Phylogenetic Evolution of the Alveolinoidea from the Cretaceous to the Present Day","translated_title":"","metadata":{"publisher":"UCL Press","ai_title_tag":"Evolution and Phylogeny of Alveolinoidea Since the Cretaceous","grobid_abstract":"The superfamily Alveolinoidea is a member of the Order Miliolida, and is comprised of three main families, the Alveolinidae, the Fabulariidae and the Rhapydioninidae. They are examples of Larger Benthic Foraminifera (LBF), which are single-celled organisms with specific characteristic endoskeletons. Alveolinoids are found globally from the Cretaceous to the the repeated re-occurrence of certain morphological features. Understanding this propensity to homoplasy is essential in understanding and constructing the phylogenetic relationships within the alveolinoid superfamily.","publication_date":{"day":23,"month":1,"year":2021,"errors":{}},"grobid_abstract_attachment_id":81531220},"translated_abstract":null,"internal_url":"https://www.academia.edu/72711915/The_Geographic_Environmental_and_Phylogenetic_Evolution_of_the_Alveolinoidea_from_the_Cretaceous_to_the_Present_Day","translated_internal_url":"","created_at":"2022-03-01T13:07:10.541-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6407942,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":81531220,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531220/thumbnails/1.jpg","file_name":"alveolinid_20article_20without_20highlight_20combined_20JH_20and_20PH_20reviews_20and_20final_20corrections_20MF_20and_20DP_20REDUCED_20.pdf","download_url":"https://www.academia.edu/attachments/81531220/download_file","bulk_download_file_name":"The_Geographic_Environmental_and_Phyloge.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531220/alveolinid_20article_20without_20highlight_20combined_20JH_20and_20PH_20reviews_20and_20final_20corrections_20MF_20and_20DP_20REDUCED_20-libre.pdf?1646169129=\u0026response-content-disposition=attachment%3B+filename%3DThe_Geographic_Environmental_and_Phyloge.pdf\u0026Expires=1742542208\u0026Signature=WvFH6cakVVtwIdUca5zWmigNlxB5ZfCkljN3csexMZE3FeTCK1BYWr00UWS3PKhxxHuNcEGfnFyk2g8sGeZuA5ETlMhNL0lm11rHXEBm7ZFy2D5b7xVmEHGvbubApi-lvPxdv1jlB1xl9z0oS1a1dk2w~rytjHAQmSEcQtNLpK-jHgcMjqjQMTQnD3zosU47dJka1Z34zgWLIxpUsGfBqDUgjoPDYkSU1RPGCRWjgTK9Z0qULxGWoQqe2FIHAaXl7gxgGL7ZMgREI3d0e40Fk6h~A7HS7RQ1Xao~CjX4wkwwD4xPub5l4wNXd6LKZEB7o5gaeTCflNcky07WtBzbZA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_Geographic_Environmental_and_Phylogenetic_Evolution_of_the_Alveolinoidea_from_the_Cretaceous_to_the_Present_Day","translated_slug":"","page_count":69,"language":"en","content_type":"Work","summary":"The superfamily Alveolinoidea is a member of the Order Miliolida, and is comprised of three main families, the Alveolinidae, the Fabulariidae and the Rhapydioninidae. They are examples of Larger Benthic Foraminifera (LBF), which are single-celled organisms with specific characteristic endoskeletons. Alveolinoids are found globally from the Cretaceous to the the repeated re-occurrence of certain morphological features. Understanding this propensity to homoplasy is essential in understanding and constructing the phylogenetic relationships within the alveolinoid superfamily.","owner":{"id":6407942,"first_name":"Prof. Marcelle","middle_initials":"","last_name":"Boudagher-Fadel","page_name":"MarcelleBoudagherFadel","domain_name":"ucl","created_at":"2013-10-27T10:31:03.235-07:00","display_name":"Prof. Marcelle Boudagher-Fadel","url":"https://ucl.academia.edu/MarcelleBoudagherFadel"},"attachments":[{"id":81531220,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531220/thumbnails/1.jpg","file_name":"alveolinid_20article_20without_20highlight_20combined_20JH_20and_20PH_20reviews_20and_20final_20corrections_20MF_20and_20DP_20REDUCED_20.pdf","download_url":"https://www.academia.edu/attachments/81531220/download_file","bulk_download_file_name":"The_Geographic_Environmental_and_Phyloge.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531220/alveolinid_20article_20without_20highlight_20combined_20JH_20and_20PH_20reviews_20and_20final_20corrections_20MF_20and_20DP_20REDUCED_20-libre.pdf?1646169129=\u0026response-content-disposition=attachment%3B+filename%3DThe_Geographic_Environmental_and_Phyloge.pdf\u0026Expires=1742542208\u0026Signature=WvFH6cakVVtwIdUca5zWmigNlxB5ZfCkljN3csexMZE3FeTCK1BYWr00UWS3PKhxxHuNcEGfnFyk2g8sGeZuA5ETlMhNL0lm11rHXEBm7ZFy2D5b7xVmEHGvbubApi-lvPxdv1jlB1xl9z0oS1a1dk2w~rytjHAQmSEcQtNLpK-jHgcMjqjQMTQnD3zosU47dJka1Z34zgWLIxpUsGfBqDUgjoPDYkSU1RPGCRWjgTK9Z0qULxGWoQqe2FIHAaXl7gxgGL7ZMgREI3d0e40Fk6h~A7HS7RQ1Xao~CjX4wkwwD4xPub5l4wNXd6LKZEB7o5gaeTCflNcky07WtBzbZA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":81531221,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531221/thumbnails/1.jpg","file_name":"alveolinid_20article_20without_20highlight_20combined_20JH_20and_20PH_20reviews_20and_20final_20corrections_20MF_20and_20DP_20REDUCED_20.pdf","download_url":"https://www.academia.edu/attachments/81531221/download_file","bulk_download_file_name":"The_Geographic_Environmental_and_Phyloge.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531221/alveolinid_20article_20without_20highlight_20combined_20JH_20and_20PH_20reviews_20and_20final_20corrections_20MF_20and_20DP_20REDUCED_20-libre.pdf?1646169126=\u0026response-content-disposition=attachment%3B+filename%3DThe_Geographic_Environmental_and_Phyloge.pdf\u0026Expires=1742542208\u0026Signature=PqmhCMIQ4VgjtW5ChQgZCkAK6z7Xn8yBFo8PuQM4Y~N8mS8bUBV8BvFSobR7td4gLYxE-LwLUYhSSMXfm-9m6W5I~7Dk9RGLtwAhIhGwIJAVL4sUY2QFgmqgfTNQkWld0K9ja-Iru1MAGoiKM0uv5o~dFOgOkUdrAlhNQCe73wDcilK-Wi7g0uYJUJAD7RzZS1e3iPttAhyFJs0xdmBW30GPFfkCfDu5-4ZGeu4luIupyA1dYHe7V5lqV3IO-VVB~jOIzEYsv5S07hi8TdB-Sjb1kVYM9-6e4z5ogSZvXYtE4edZz5soOLBif5ffswrjZtcv19nmX9h1qwAT3JoSRA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":261,"name":"Geography","url":"https://www.academia.edu/Documents/in/Geography"}],"urls":[{"id":18119937,"url":"https://ucl.scienceopen.com/document_file/a13c8064-ac3e-4264-9fd3-959053df5b7b/ScienceOpenPreprint/alveolinid%20article%20without%20highlight%20combined%20JH%20and%20PH%20reviews%20and%20final%20corrections%20MF%20and%20DP%20(REDUCED%20SIZE).pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="72711914"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/72711914/Geochemistry_and_biostratigraphy_of_Eocene_sediments_from_Samothraki_Island_NE_Greece"><img alt="Research paper thumbnail of Geochemistry and biostratigraphy of Eocene sediments from Samothraki Island, NE Greece" class="work-thumbnail" src="https://attachments.academia-assets.com/83909707/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/72711914/Geochemistry_and_biostratigraphy_of_Eocene_sediments_from_Samothraki_Island_NE_Greece">Geochemistry and biostratigraphy of Eocene sediments from Samothraki Island, NE Greece</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract: Elevated whole-rock concentrations in Cr, Ni and V as well as the occurrence of detrita...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract: Elevated whole-rock concentrations in Cr, Ni and V as well as the occurrence of detrital chrome spinel suggest an input of (ultra)mafic detritus into the Eocene clastic sediments of Samo-thraki Island. Detrital chrome spinel chemistry indicates a mixed source of MOR-type peridotites and supra-subduction zone (SSZ) peridotites, and minor volcanic rocks, supposedly island-arc basalts and MORB-type rocks, most likely derived from Vardarian ophiolites. Wackestones from the southwest of Samothraki contain a moderately well-preserved calcareous microfossil assemblage, comprising Nummulites fabianii (PREVER), Nummulites striatus (BRUGUIÈRE), Pellatispira sp., and Operculina sp., indicating an early Priabonian age (Late Eocene). The sedimentation of the Eocene succession was influenced by regional tectonic and volcanic activity. The rocks have been deposited contemporaneous with the extensional exhumation of the eastern Rhodope Massif.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8822087d374d6333fee99065d4058f43" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":83909707,"asset_id":72711914,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/83909707/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="72711914"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="72711914"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 72711914; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=72711914]").text(description); $(".js-view-count[data-work-id=72711914]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 72711914; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='72711914']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8822087d374d6333fee99065d4058f43" } } $('.js-work-strip[data-work-id=72711914]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":72711914,"title":"Geochemistry and biostratigraphy of Eocene sediments from Samothraki Island, NE Greece","translated_title":"","metadata":{"abstract":"Abstract: Elevated whole-rock concentrations in Cr, Ni and V as well as the occurrence of detrital chrome spinel suggest an input of (ultra)mafic detritus into the Eocene clastic sediments of Samo-thraki Island. Detrital chrome spinel chemistry indicates a mixed source of MOR-type peridotites and supra-subduction zone (SSZ) peridotites, and minor volcanic rocks, supposedly island-arc basalts and MORB-type rocks, most likely derived from Vardarian ophiolites. Wackestones from the southwest of Samothraki contain a moderately well-preserved calcareous microfossil assemblage, comprising Nummulites fabianii (PREVER), Nummulites striatus (BRUGUIÈRE), Pellatispira sp., and Operculina sp., indicating an early Priabonian age (Late Eocene). The sedimentation of the Eocene succession was influenced by regional tectonic and volcanic activity. The rocks have been deposited contemporaneous with the extensional exhumation of the eastern Rhodope Massif.","ai_title_tag":"Eocene Sediment Geochemistry in Samothraki","publication_date":{"day":null,"month":null,"year":2016,"errors":{}}},"translated_abstract":"Abstract: Elevated whole-rock concentrations in Cr, Ni and V as well as the occurrence of detrital chrome spinel suggest an input of (ultra)mafic detritus into the Eocene clastic sediments of Samo-thraki Island. Detrital chrome spinel chemistry indicates a mixed source of MOR-type peridotites and supra-subduction zone (SSZ) peridotites, and minor volcanic rocks, supposedly island-arc basalts and MORB-type rocks, most likely derived from Vardarian ophiolites. Wackestones from the southwest of Samothraki contain a moderately well-preserved calcareous microfossil assemblage, comprising Nummulites fabianii (PREVER), Nummulites striatus (BRUGUIÈRE), Pellatispira sp., and Operculina sp., indicating an early Priabonian age (Late Eocene). The sedimentation of the Eocene succession was influenced by regional tectonic and volcanic activity. The rocks have been deposited contemporaneous with the extensional exhumation of the eastern Rhodope Massif.","internal_url":"https://www.academia.edu/72711914/Geochemistry_and_biostratigraphy_of_Eocene_sediments_from_Samothraki_Island_NE_Greece","translated_internal_url":"","created_at":"2022-03-01T13:07:10.332-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6407942,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":83909707,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83909707/thumbnails/1.jpg","file_name":"bc9feea8f979c12d59ccaded0dcdd830749b.pdf","download_url":"https://www.academia.edu/attachments/83909707/download_file","bulk_download_file_name":"Geochemistry_and_biostratigraphy_of_Eoce.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83909707/bc9feea8f979c12d59ccaded0dcdd830749b-libre.pdf?1649738407=\u0026response-content-disposition=attachment%3B+filename%3DGeochemistry_and_biostratigraphy_of_Eoce.pdf\u0026Expires=1742082204\u0026Signature=SxxGx~5AqgRGqdJIjaz7vruX-yohRUx6tSS0dA9MGsp1C24t8IzQVkP3QEe3sC~4qjnrKqXUqO~X84u8d5b8O2gLNU0q665MaNyTyvapcGiCEC7th3WhPKWI0xM~sL3xAplhYPw3j10TgOKKkbYDC~3QI5~p7avpS80r7V6ZXKxGEKgHTry8XEmatRlhREaFupu576ZACmGaeuGgn3GPYbZGN2hnOLOBAP3ZatN1JghMTzvVSwMOZqEbFImPkAKSAlpEC5vuFXiZWbWs2rt3CnDSWOj7VDwJ2N6RubOB21WwOH3ROKOv~mJvszCxLqefQonoRZDvN99gw1kOdwVwmg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Geochemistry_and_biostratigraphy_of_Eocene_sediments_from_Samothraki_Island_NE_Greece","translated_slug":"","page_count":22,"language":"en","content_type":"Work","summary":"Abstract: Elevated whole-rock concentrations in Cr, Ni and V as well as the occurrence of detrital chrome spinel suggest an input of (ultra)mafic detritus into the Eocene clastic sediments of Samo-thraki Island. Detrital chrome spinel chemistry indicates a mixed source of MOR-type peridotites and supra-subduction zone (SSZ) peridotites, and minor volcanic rocks, supposedly island-arc basalts and MORB-type rocks, most likely derived from Vardarian ophiolites. Wackestones from the southwest of Samothraki contain a moderately well-preserved calcareous microfossil assemblage, comprising Nummulites fabianii (PREVER), Nummulites striatus (BRUGUIÈRE), Pellatispira sp., and Operculina sp., indicating an early Priabonian age (Late Eocene). The sedimentation of the Eocene succession was influenced by regional tectonic and volcanic activity. The rocks have been deposited contemporaneous with the extensional exhumation of the eastern Rhodope Massif.","owner":{"id":6407942,"first_name":"Prof. Marcelle","middle_initials":"","last_name":"Boudagher-Fadel","page_name":"MarcelleBoudagherFadel","domain_name":"ucl","created_at":"2013-10-27T10:31:03.235-07:00","display_name":"Prof. Marcelle Boudagher-Fadel","url":"https://ucl.academia.edu/MarcelleBoudagherFadel"},"attachments":[{"id":83909707,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83909707/thumbnails/1.jpg","file_name":"bc9feea8f979c12d59ccaded0dcdd830749b.pdf","download_url":"https://www.academia.edu/attachments/83909707/download_file","bulk_download_file_name":"Geochemistry_and_biostratigraphy_of_Eoce.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83909707/bc9feea8f979c12d59ccaded0dcdd830749b-libre.pdf?1649738407=\u0026response-content-disposition=attachment%3B+filename%3DGeochemistry_and_biostratigraphy_of_Eoce.pdf\u0026Expires=1742082204\u0026Signature=SxxGx~5AqgRGqdJIjaz7vruX-yohRUx6tSS0dA9MGsp1C24t8IzQVkP3QEe3sC~4qjnrKqXUqO~X84u8d5b8O2gLNU0q665MaNyTyvapcGiCEC7th3WhPKWI0xM~sL3xAplhYPw3j10TgOKKkbYDC~3QI5~p7avpS80r7V6ZXKxGEKgHTry8XEmatRlhREaFupu576ZACmGaeuGgn3GPYbZGN2hnOLOBAP3ZatN1JghMTzvVSwMOZqEbFImPkAKSAlpEC5vuFXiZWbWs2rt3CnDSWOj7VDwJ2N6RubOB21WwOH3ROKOv~mJvszCxLqefQonoRZDvN99gw1kOdwVwmg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":155,"name":"Evolutionary Biology","url":"https://www.academia.edu/Documents/in/Evolutionary_Biology"},{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":9846,"name":"Ecology","url":"https://www.academia.edu/Documents/in/Ecology"},{"id":10477,"name":"Provenance","url":"https://www.academia.edu/Documents/in/Provenance"},{"id":60645,"name":"Eocene","url":"https://www.academia.edu/Documents/in/Eocene"},{"id":126624,"name":"Foraminifera","url":"https://www.academia.edu/Documents/in/Foraminifera"},{"id":427161,"name":"Aegean Sea","url":"https://www.academia.edu/Documents/in/Aegean_Sea"},{"id":1177474,"name":"Samothraki","url":"https://www.academia.edu/Documents/in/Samothraki"}],"urls":[{"id":18119936,"url":"http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.714.2533\u0026rep=rep1\u0026type=pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="72711913"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/72711913/Benthic_foraminifera_distribution_and_sedimentary_environmental_evolution_of_a_carbonate_platform_A_case_study_of_the_Guadalupian_middle_Permian_in_eastern_Sichuan_Basin"><img alt="Research paper thumbnail of Benthic foraminifera distribution and sedimentary environmental evolution of a carbonate platform: A case study of the Guadalupian (middle Permian) in eastern Sichuan Basin" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Benthic foraminifera distribution and sedimentary environmental evolution of a carbonate platform: A case study of the Guadalupian (middle Permian) in eastern Sichuan Basin</div><div class="wp-workCard_item"><span>Marine Micropaleontology</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="72711913"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="72711913"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 72711913; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=72711913]").text(description); $(".js-view-count[data-work-id=72711913]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 72711913; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='72711913']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=72711913]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":72711913,"title":"Benthic foraminifera distribution and sedimentary environmental evolution of a carbonate platform: A case study of the Guadalupian (middle Permian) in eastern Sichuan Basin","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_name":"Marine Micropaleontology"},"translated_abstract":null,"internal_url":"https://www.academia.edu/72711913/Benthic_foraminifera_distribution_and_sedimentary_environmental_evolution_of_a_carbonate_platform_A_case_study_of_the_Guadalupian_middle_Permian_in_eastern_Sichuan_Basin","translated_internal_url":"","created_at":"2022-03-01T13:07:10.099-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6407942,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Benthic_foraminifera_distribution_and_sedimentary_environmental_evolution_of_a_carbonate_platform_A_case_study_of_the_Guadalupian_middle_Permian_in_eastern_Sichuan_Basin","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":6407942,"first_name":"Prof. Marcelle","middle_initials":"","last_name":"Boudagher-Fadel","page_name":"MarcelleBoudagherFadel","domain_name":"ucl","created_at":"2013-10-27T10:31:03.235-07:00","display_name":"Prof. Marcelle Boudagher-Fadel","url":"https://ucl.academia.edu/MarcelleBoudagherFadel"},"attachments":[],"research_interests":[{"id":155,"name":"Evolutionary Biology","url":"https://www.academia.edu/Documents/in/Evolutionary_Biology"},{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":9846,"name":"Ecology","url":"https://www.academia.edu/Documents/in/Ecology"},{"id":573084,"name":"Marine Micropaleontology","url":"https://www.academia.edu/Documents/in/Marine_Micropaleontology"}],"urls":[{"id":18119935,"url":"https://api.elsevier.com/content/article/PII:S0377839821001201?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="72711911"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/72711911/The_geographic_environmental_and_phylogenetic_evolution_of_the_Alveolinoidea_from_the_Cretaceous_to_the_present_day"><img alt="Research paper thumbnail of The geographic, environmental and phylogenetic evolution of the Alveolinoidea from the Cretaceous to the present day" class="work-thumbnail" src="https://attachments.academia-assets.com/81531222/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/72711911/The_geographic_environmental_and_phylogenetic_evolution_of_the_Alveolinoidea_from_the_Cretaceous_to_the_present_day">The geographic, environmental and phylogenetic evolution of the Alveolinoidea from the Cretaceous to the present day</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The superfamily Alveolinoidea is a member of the Order Miliolida, and is comprised of three main ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The superfamily Alveolinoidea is a member of the Order Miliolida, and is comprised of three main families, the Alveolinidae, the Fabulariidae and the Rhapydioninidae. They are examples of Larger Benthic Foraminifera (LBF), which are single cell organisms with specific characteristic endoskeletons. Alveolinoids are found globally from the Cretaceous to present day and are very important biostratigraphic index fossils in shallow-marine carbonates. They are often associated with significant hydrocarbon reservoirs, and exhibit provincialism with characteristic genera often confined to one of the American, Tethyan or Indo-Pacific provinces. Previously, the systematic study of the global interrelationship between the various alveolinoid lineages has not been possible because of the absence of biostratigraphic correlation between the geographically scattered assemblages, and the scarcity of described material from the Indo-Pacific province. Here we use the literature and new material from ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5d920c499765cb69196c40d4fdd06356" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":81531222,"asset_id":72711911,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/81531222/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="72711911"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="72711911"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 72711911; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=72711911]").text(description); $(".js-view-count[data-work-id=72711911]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 72711911; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='72711911']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5d920c499765cb69196c40d4fdd06356" } } $('.js-work-strip[data-work-id=72711911]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":72711911,"title":"The geographic, environmental and phylogenetic evolution of the Alveolinoidea from the Cretaceous to the present day","translated_title":"","metadata":{"abstract":"The superfamily Alveolinoidea is a member of the Order Miliolida, and is comprised of three main families, the Alveolinidae, the Fabulariidae and the Rhapydioninidae. They are examples of Larger Benthic Foraminifera (LBF), which are single cell organisms with specific characteristic endoskeletons. Alveolinoids are found globally from the Cretaceous to present day and are very important biostratigraphic index fossils in shallow-marine carbonates. They are often associated with significant hydrocarbon reservoirs, and exhibit provincialism with characteristic genera often confined to one of the American, Tethyan or Indo-Pacific provinces. Previously, the systematic study of the global interrelationship between the various alveolinoid lineages has not been possible because of the absence of biostratigraphic correlation between the geographically scattered assemblages, and the scarcity of described material from the Indo-Pacific province. Here we use the literature and new material from ...","publication_date":{"day":null,"month":null,"year":2021,"errors":{}}},"translated_abstract":"The superfamily Alveolinoidea is a member of the Order Miliolida, and is comprised of three main families, the Alveolinidae, the Fabulariidae and the Rhapydioninidae. They are examples of Larger Benthic Foraminifera (LBF), which are single cell organisms with specific characteristic endoskeletons. Alveolinoids are found globally from the Cretaceous to present day and are very important biostratigraphic index fossils in shallow-marine carbonates. They are often associated with significant hydrocarbon reservoirs, and exhibit provincialism with characteristic genera often confined to one of the American, Tethyan or Indo-Pacific provinces. Previously, the systematic study of the global interrelationship between the various alveolinoid lineages has not been possible because of the absence of biostratigraphic correlation between the geographically scattered assemblages, and the scarcity of described material from the Indo-Pacific province. Here we use the literature and new material from ...","internal_url":"https://www.academia.edu/72711911/The_geographic_environmental_and_phylogenetic_evolution_of_the_Alveolinoidea_from_the_Cretaceous_to_the_present_day","translated_internal_url":"","created_at":"2022-03-01T13:07:09.864-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6407942,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":81531222,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531222/thumbnails/1.jpg","file_name":"ucloe-02-015.pdf","download_url":"https://www.academia.edu/attachments/81531222/download_file","bulk_download_file_name":"The_geographic_environmental_and_phyloge.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531222/ucloe-02-015-libre.pdf?1646169106=\u0026response-content-disposition=attachment%3B+filename%3DThe_geographic_environmental_and_phyloge.pdf\u0026Expires=1742082204\u0026Signature=Tjy9WK9TG3PagBV6mv9nEo4H-nbvtmRIB9nKhczT0C3pxeGP2nfWU~Fkx8rkjIkRpUPjSjEMJnabgt-IYyPv~H0XPLRi-ZcpcZMgc8-1a6tsl0obIwYE30Al6tsRxO1MnHWfmbKmMFp-xtimR2q5e3iL8RvkXdA3cvqvvrXs6LdUhqdg92isOp95jcTr87Dv2Du8EjCHs1ebCwlj~UMcuDID8Ph5CIaskUFT~If8KSu9JSNRw9kmjGWLCYiEENIAKaJeO01m9maZhfg~LYQubUiuk0SiQQ84Iq2Za2HpGeBW-uWiL5u5UXauFmaKuZ-QUo1k0mZE6MqTcmnhDHZbMg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_geographic_environmental_and_phylogenetic_evolution_of_the_Alveolinoidea_from_the_Cretaceous_to_the_present_day","translated_slug":"","page_count":34,"language":"en","content_type":"Work","summary":"The superfamily Alveolinoidea is a member of the Order Miliolida, and is comprised of three main families, the Alveolinidae, the Fabulariidae and the Rhapydioninidae. They are examples of Larger Benthic Foraminifera (LBF), which are single cell organisms with specific characteristic endoskeletons. Alveolinoids are found globally from the Cretaceous to present day and are very important biostratigraphic index fossils in shallow-marine carbonates. They are often associated with significant hydrocarbon reservoirs, and exhibit provincialism with characteristic genera often confined to one of the American, Tethyan or Indo-Pacific provinces. Previously, the systematic study of the global interrelationship between the various alveolinoid lineages has not been possible because of the absence of biostratigraphic correlation between the geographically scattered assemblages, and the scarcity of described material from the Indo-Pacific province. Here we use the literature and new material from ...","owner":{"id":6407942,"first_name":"Prof. Marcelle","middle_initials":"","last_name":"Boudagher-Fadel","page_name":"MarcelleBoudagherFadel","domain_name":"ucl","created_at":"2013-10-27T10:31:03.235-07:00","display_name":"Prof. Marcelle Boudagher-Fadel","url":"https://ucl.academia.edu/MarcelleBoudagherFadel"},"attachments":[{"id":81531222,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531222/thumbnails/1.jpg","file_name":"ucloe-02-015.pdf","download_url":"https://www.academia.edu/attachments/81531222/download_file","bulk_download_file_name":"The_geographic_environmental_and_phyloge.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531222/ucloe-02-015-libre.pdf?1646169106=\u0026response-content-disposition=attachment%3B+filename%3DThe_geographic_environmental_and_phyloge.pdf\u0026Expires=1742082204\u0026Signature=Tjy9WK9TG3PagBV6mv9nEo4H-nbvtmRIB9nKhczT0C3pxeGP2nfWU~Fkx8rkjIkRpUPjSjEMJnabgt-IYyPv~H0XPLRi-ZcpcZMgc8-1a6tsl0obIwYE30Al6tsRxO1MnHWfmbKmMFp-xtimR2q5e3iL8RvkXdA3cvqvvrXs6LdUhqdg92isOp95jcTr87Dv2Du8EjCHs1ebCwlj~UMcuDID8Ph5CIaskUFT~If8KSu9JSNRw9kmjGWLCYiEENIAKaJeO01m9maZhfg~LYQubUiuk0SiQQ84Iq2Za2HpGeBW-uWiL5u5UXauFmaKuZ-QUo1k0mZE6MqTcmnhDHZbMg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":81531223,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531223/thumbnails/1.jpg","file_name":"ucloe-02-015.pdf","download_url":"https://www.academia.edu/attachments/81531223/download_file","bulk_download_file_name":"The_geographic_environmental_and_phyloge.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531223/ucloe-02-015-libre.pdf?1646169109=\u0026response-content-disposition=attachment%3B+filename%3DThe_geographic_environmental_and_phyloge.pdf\u0026Expires=1742082204\u0026Signature=EXuk8VvWHB6nWnD-wXW9XvV6NYKJafEGRkfzxiWiwruP2jyD8Xj9nooEAVXKYxjsGsCz4iMnpMBrFDVGN8IxRA8KgqzVhBOh5BZDkkUD~OB6vH99eZY~515NDRsCV3pR4XQwHdGZP-e~lQbW3ekZJE~BxHerIRCyYzhVIdT3hswaZXU~poYMAMqxqxj087LzkPquAfMC2bQNLQZqm3L0dZkCQMjZzsxpQ48uCzRF-X26rpWVM9~qHYt-otWSCEvIH71vh92Z9Lg3u1diqbJ~oELan3Udb6zvblRU5Ouem90bYDzMm0hrt464mUojjoBlos3goGX9Ji7mpzppOvxTaQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":261,"name":"Geography","url":"https://www.academia.edu/Documents/in/Geography"}],"urls":[{"id":18119933,"url":"https://discovery.ucl.ac.uk/id/eprint/10125491/1/ucloe-02-015.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="72711910"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/72711910/Genotypes_of_Septatrocholina_and_Alzonorbitopsella_two_new_Jurassic_foraminifera_subsequent_designations"><img alt="Research paper thumbnail of Genotypes of Septatrocholina and Alzonorbitopsella, two new Jurassic foraminifera: subsequent designations" class="work-thumbnail" src="https://attachments.academia-assets.com/81531216/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/72711910/Genotypes_of_Septatrocholina_and_Alzonorbitopsella_two_new_Jurassic_foraminifera_subsequent_designations">Genotypes of Septatrocholina and Alzonorbitopsella, two new Jurassic foraminifera: subsequent designations</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">When the genera Septatrocholina BouDagher-Fadel and Banner and Alzonorbitopsella BouDagher-Fadel ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">When the genera Septatrocholina BouDagher-Fadel and Banner and Alzonorbitopsella BouDagher-Fadel were erected (BouDagher-Fadel 2008, pp. 161; 175), the genotypes Septatrocholina banneri and Alzonorbitopsella arabia, respectively, were described and figured, but through an oversight the holotypes and paratypes were not identified among the illustrated specimens. The type specimens are here subsequently designated, in accordance with ICZN 1999, article 69, and are further described. The type specimen slides are deposited in the invertebrate collections of the Natural History Museum, London.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="40f76645bd99c0ad831ef1e31312e40f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":81531216,"asset_id":72711910,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/81531216/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="72711910"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="72711910"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 72711910; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=72711910]").text(description); $(".js-view-count[data-work-id=72711910]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 72711910; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='72711910']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "40f76645bd99c0ad831ef1e31312e40f" } } $('.js-work-strip[data-work-id=72711910]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":72711910,"title":"Genotypes of Septatrocholina and Alzonorbitopsella, two new Jurassic foraminifera: subsequent designations","translated_title":"","metadata":{"abstract":"When the genera Septatrocholina BouDagher-Fadel and Banner and Alzonorbitopsella BouDagher-Fadel were erected (BouDagher-Fadel 2008, pp. 161; 175), the genotypes Septatrocholina banneri and Alzonorbitopsella arabia, respectively, were described and figured, but through an oversight the holotypes and paratypes were not identified among the illustrated specimens. The type specimens are here subsequently designated, in accordance with ICZN 1999, article 69, and are further described. The type specimen slides are deposited in the invertebrate collections of the Natural History Museum, London.","publication_date":{"day":null,"month":null,"year":2016,"errors":{}}},"translated_abstract":"When the genera Septatrocholina BouDagher-Fadel and Banner and Alzonorbitopsella BouDagher-Fadel were erected (BouDagher-Fadel 2008, pp. 161; 175), the genotypes Septatrocholina banneri and Alzonorbitopsella arabia, respectively, were described and figured, but through an oversight the holotypes and paratypes were not identified among the illustrated specimens. The type specimens are here subsequently designated, in accordance with ICZN 1999, article 69, and are further described. The type specimen slides are deposited in the invertebrate collections of the Natural History Museum, London.","internal_url":"https://www.academia.edu/72711910/Genotypes_of_Septatrocholina_and_Alzonorbitopsella_two_new_Jurassic_foraminifera_subsequent_designations","translated_internal_url":"","created_at":"2022-03-01T13:07:09.652-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6407942,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":81531216,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531216/thumbnails/1.jpg","file_name":"Genotypes_20of_20Septatrocholina_20and_20Alzonorbitopsella.pdf","download_url":"https://www.academia.edu/attachments/81531216/download_file","bulk_download_file_name":"Genotypes_of_Septatrocholina_and_Alzonor.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531216/Genotypes_20of_20Septatrocholina_20and_20Alzonorbitopsella-libre.pdf?1646169097=\u0026response-content-disposition=attachment%3B+filename%3DGenotypes_of_Septatrocholina_and_Alzonor.pdf\u0026Expires=1742082204\u0026Signature=RssuJN0vldwTLzR0QsioPgj~J3WncAZ6woRiZE6DrUvwmXQBZbROM8OalmHfxFfyzfsUwHP6N-uBpH9NnL1bSvGFQNW-i-EWYpP17jiN-K1Vd0OI8vmr-W9XifydqwdeSe6n3n-azHc1eGGL7xAnNCimSoJNDvEhaWEsYbhbOiyidx8nPRjc3826whijHaeOdr~4DP0yEmhCHHYemti7FP8jHjBr-CAqO4RjcuPDeWYRY00e8aaxnHmFubmoiK7pBTMHZfwUoqGVVItRs86hjH2gaNNXRi8GHg1hYMKXOX4JeKuvgH076VmHI1txdnDgegyI3D0neQA9xBJAegL-ew__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Genotypes_of_Septatrocholina_and_Alzonorbitopsella_two_new_Jurassic_foraminifera_subsequent_designations","translated_slug":"","page_count":4,"language":"en","content_type":"Work","summary":"When the genera Septatrocholina BouDagher-Fadel and Banner and Alzonorbitopsella BouDagher-Fadel were erected (BouDagher-Fadel 2008, pp. 161; 175), the genotypes Septatrocholina banneri and Alzonorbitopsella arabia, respectively, were described and figured, but through an oversight the holotypes and paratypes were not identified among the illustrated specimens. The type specimens are here subsequently designated, in accordance with ICZN 1999, article 69, and are further described. The type specimen slides are deposited in the invertebrate collections of the Natural History Museum, London.","owner":{"id":6407942,"first_name":"Prof. Marcelle","middle_initials":"","last_name":"Boudagher-Fadel","page_name":"MarcelleBoudagherFadel","domain_name":"ucl","created_at":"2013-10-27T10:31:03.235-07:00","display_name":"Prof. Marcelle Boudagher-Fadel","url":"https://ucl.academia.edu/MarcelleBoudagherFadel"},"attachments":[{"id":81531216,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531216/thumbnails/1.jpg","file_name":"Genotypes_20of_20Septatrocholina_20and_20Alzonorbitopsella.pdf","download_url":"https://www.academia.edu/attachments/81531216/download_file","bulk_download_file_name":"Genotypes_of_Septatrocholina_and_Alzonor.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531216/Genotypes_20of_20Septatrocholina_20and_20Alzonorbitopsella-libre.pdf?1646169097=\u0026response-content-disposition=attachment%3B+filename%3DGenotypes_of_Septatrocholina_and_Alzonor.pdf\u0026Expires=1742082204\u0026Signature=RssuJN0vldwTLzR0QsioPgj~J3WncAZ6woRiZE6DrUvwmXQBZbROM8OalmHfxFfyzfsUwHP6N-uBpH9NnL1bSvGFQNW-i-EWYpP17jiN-K1Vd0OI8vmr-W9XifydqwdeSe6n3n-azHc1eGGL7xAnNCimSoJNDvEhaWEsYbhbOiyidx8nPRjc3826whijHaeOdr~4DP0yEmhCHHYemti7FP8jHjBr-CAqO4RjcuPDeWYRY00e8aaxnHmFubmoiK7pBTMHZfwUoqGVVItRs86hjH2gaNNXRi8GHg1hYMKXOX4JeKuvgH076VmHI1txdnDgegyI3D0neQA9xBJAegL-ew__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":81531218,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531218/thumbnails/1.jpg","file_name":"Genotypes_20of_20Septatrocholina_20and_20Alzonorbitopsella.pdf","download_url":"https://www.academia.edu/attachments/81531218/download_file","bulk_download_file_name":"Genotypes_of_Septatrocholina_and_Alzonor.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531218/Genotypes_20of_20Septatrocholina_20and_20Alzonorbitopsella-libre.pdf?1646169097=\u0026response-content-disposition=attachment%3B+filename%3DGenotypes_of_Septatrocholina_and_Alzonor.pdf\u0026Expires=1742082204\u0026Signature=U3-pUUCcuKqUGOos3NEQxmMjxXpmGsSywvC093nnXnqEkuekZhjwGHiUJrxybWSDXk7eWs0i5lzLVqrjif0qwKzKR18o0p-IB-kFYmwey0KErOTAPagoaU05H-LRLoHVx3jgm68uXY-FLfqAALegnqJwpBgF8CW-lN9qk8OwhAJLkqBRpgZvUnkJDYQTxn23hL6X44uiMCY1Agsn4LN7Qfz2YEcKXdZm35LRq8C7DpLkfJbaoo2knEEUn6TqjGVQSex9SW0cwtTLzjCVkFx2ny8JLsyv1AXCaqzjTtkFnmIB3Wmk6r6zRuo7xjyKvrhqyDm~L52PKX05ZS~GbyFtmQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":17215,"name":"Micropaleontology","url":"https://www.academia.edu/Documents/in/Micropaleontology"}],"urls":[{"id":18119932,"url":"http://discovery.ucl.ac.uk/1476835/1/Genotypes%20of%20Septatrocholina%20and%20Alzonorbitopsella.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="72711909"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/72711909/Loftusia_persica_an_Eocene_Lazarus_occurrence"><img alt="Research paper thumbnail of Loftusia persica: an Eocene Lazarus occurrence?" class="work-thumbnail" src="https://attachments.academia-assets.com/81531213/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/72711909/Loftusia_persica_an_Eocene_Lazarus_occurrence">Loftusia persica: an Eocene Lazarus occurrence?</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A specimen of Loftusia persica Brady is described that contains as a part of its inner test a spe...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A specimen of Loftusia persica Brady is described that contains as a part of its inner test a specimen of Turborotalia pomeroli (Toumarkine and Both), which is a very distinctive Middle to Late Eocene planktonic foraminifera. Although originally described as a &quot;Tertiary&quot; form, more recently Loftusia persica has been considered to be restricted to the Maastrichtian. A number of scenarios that could have led to the inclusion of an Eocene planktonic foraminifera deep within the test of a specimen of Loftusia are discussed, and it is concluded that the most probable interpretation is that Loftusia persica reappeared as a &quot;Lazarus&quot; species in the Eocene having survived the Cretaceous-Paleocene mass extinction, but was eventually driven to extinction by the orogeny that led to the formation of the Zagros Mountains.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="aa2ab7df395e58b5359fbc660859322d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":81531213,"asset_id":72711909,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/81531213/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="72711909"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="72711909"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 72711909; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=72711909]").text(description); $(".js-view-count[data-work-id=72711909]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 72711909; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='72711909']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "aa2ab7df395e58b5359fbc660859322d" } } $('.js-work-strip[data-work-id=72711909]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":72711909,"title":"Loftusia persica: an Eocene Lazarus occurrence?","translated_title":"","metadata":{"abstract":"A specimen of Loftusia persica Brady is described that contains as a part of its inner test a specimen of Turborotalia pomeroli (Toumarkine and Both), which is a very distinctive Middle to Late Eocene planktonic foraminifera. Although originally described as a \u0026quot;Tertiary\u0026quot; form, more recently Loftusia persica has been considered to be restricted to the Maastrichtian. A number of scenarios that could have led to the inclusion of an Eocene planktonic foraminifera deep within the test of a specimen of Loftusia are discussed, and it is concluded that the most probable interpretation is that Loftusia persica reappeared as a \u0026quot;Lazarus\u0026quot; species in the Eocene having survived the Cretaceous-Paleocene mass extinction, but was eventually driven to extinction by the orogeny that led to the formation of the Zagros Mountains.","publication_date":{"day":null,"month":null,"year":2009,"errors":{}}},"translated_abstract":"A specimen of Loftusia persica Brady is described that contains as a part of its inner test a specimen of Turborotalia pomeroli (Toumarkine and Both), which is a very distinctive Middle to Late Eocene planktonic foraminifera. Although originally described as a \u0026quot;Tertiary\u0026quot; form, more recently Loftusia persica has been considered to be restricted to the Maastrichtian. A number of scenarios that could have led to the inclusion of an Eocene planktonic foraminifera deep within the test of a specimen of Loftusia are discussed, and it is concluded that the most probable interpretation is that Loftusia persica reappeared as a \u0026quot;Lazarus\u0026quot; species in the Eocene having survived the Cretaceous-Paleocene mass extinction, but was eventually driven to extinction by the orogeny that led to the formation of the Zagros Mountains.","internal_url":"https://www.academia.edu/72711909/Loftusia_persica_an_Eocene_Lazarus_occurrence","translated_internal_url":"","created_at":"2022-03-01T13:07:09.458-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6407942,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":81531213,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531213/thumbnails/1.jpg","file_name":"99078_MS.pdf","download_url":"https://www.academia.edu/attachments/81531213/download_file","bulk_download_file_name":"Loftusia_persica_an_Eocene_Lazarus_occur.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531213/99078_MS-libre.pdf?1646169097=\u0026response-content-disposition=attachment%3B+filename%3DLoftusia_persica_an_Eocene_Lazarus_occur.pdf\u0026Expires=1741739494\u0026Signature=fgVqD7zyqvYauFcX0J86nWEzMM-WcH~GzlwubckY5DIa4P6mPhPw95wEoB2vqLX7JSjGxdZpn~SqU6KIQQTzlGF5AbytQRHjjfmXqg4LAe7FOevr8-v9S6pJt4Ekv0w01ABIeOI83PInq0393fMVVZWN5QfZ6jYsegEo6-auEgYSc5eAnpzR91YD1c4dWm4dulBSMW~uvLGwD0IE5087ZVGcokUkQC40DxEJi2G1sWYFi4Xzw90GqwPdvxt-3~h5~fvUGSkTEdAgRrD2eYFcEr8jw~WIC8bpdUkCL-dF1y3v9bykTizV2HLjkBhlN0uQ1KEvLhDd-WVnamBJr5SIGA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Loftusia_persica_an_Eocene_Lazarus_occurrence","translated_slug":"","page_count":14,"language":"en","content_type":"Work","summary":"A specimen of Loftusia persica Brady is described that contains as a part of its inner test a specimen of Turborotalia pomeroli (Toumarkine and Both), which is a very distinctive Middle to Late Eocene planktonic foraminifera. Although originally described as a \u0026quot;Tertiary\u0026quot; form, more recently Loftusia persica has been considered to be restricted to the Maastrichtian. A number of scenarios that could have led to the inclusion of an Eocene planktonic foraminifera deep within the test of a specimen of Loftusia are discussed, and it is concluded that the most probable interpretation is that Loftusia persica reappeared as a \u0026quot;Lazarus\u0026quot; species in the Eocene having survived the Cretaceous-Paleocene mass extinction, but was eventually driven to extinction by the orogeny that led to the formation of the Zagros Mountains.","owner":{"id":6407942,"first_name":"Prof. Marcelle","middle_initials":"","last_name":"Boudagher-Fadel","page_name":"MarcelleBoudagherFadel","domain_name":"ucl","created_at":"2013-10-27T10:31:03.235-07:00","display_name":"Prof. Marcelle Boudagher-Fadel","url":"https://ucl.academia.edu/MarcelleBoudagherFadel"},"attachments":[{"id":81531213,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531213/thumbnails/1.jpg","file_name":"99078_MS.pdf","download_url":"https://www.academia.edu/attachments/81531213/download_file","bulk_download_file_name":"Loftusia_persica_an_Eocene_Lazarus_occur.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531213/99078_MS-libre.pdf?1646169097=\u0026response-content-disposition=attachment%3B+filename%3DLoftusia_persica_an_Eocene_Lazarus_occur.pdf\u0026Expires=1741739494\u0026Signature=fgVqD7zyqvYauFcX0J86nWEzMM-WcH~GzlwubckY5DIa4P6mPhPw95wEoB2vqLX7JSjGxdZpn~SqU6KIQQTzlGF5AbytQRHjjfmXqg4LAe7FOevr8-v9S6pJt4Ekv0w01ABIeOI83PInq0393fMVVZWN5QfZ6jYsegEo6-auEgYSc5eAnpzR91YD1c4dWm4dulBSMW~uvLGwD0IE5087ZVGcokUkQC40DxEJi2G1sWYFi4Xzw90GqwPdvxt-3~h5~fvUGSkTEdAgRrD2eYFcEr8jw~WIC8bpdUkCL-dF1y3v9bykTizV2HLjkBhlN0uQ1KEvLhDd-WVnamBJr5SIGA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":81531212,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531212/thumbnails/1.jpg","file_name":"99078_MS.pdf","download_url":"https://www.academia.edu/attachments/81531212/download_file","bulk_download_file_name":"Loftusia_persica_an_Eocene_Lazarus_occur.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531212/99078_MS-libre.pdf?1646169098=\u0026response-content-disposition=attachment%3B+filename%3DLoftusia_persica_an_Eocene_Lazarus_occur.pdf\u0026Expires=1741739495\u0026Signature=Ncm6Vr~GDb2JmoKwATtcf7dX16TsRUdlrkv~sOk2EYnDDODypKTv6pl-bcNUs5bdQVK-YTJDhu8ICUwU4qyBE~26wCDug-FijAR0NtVXQgY-xpNHuo6CXTKczzsGWmvQ3P~UHf0zEasGUWAijpS39zpD7mmWJSiNyJJsIgLljeyUmGnZ7H59dd3pmx18~014zGuIM-LI5Skm0zPCivQtwMKWoYfJvKMbb17MWk83JFCj24eZ42mBhnYSB5m1q7nIo6FZ~e7PJe~IU5k~31PuNPN-sjvZwUeO4Ls2l-aTH4PToSqNA5-78TzsYilJOXGVCLVkMOYfCpm3ltVaT9bH7A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":155,"name":"Evolutionary Biology","url":"https://www.academia.edu/Documents/in/Evolutionary_Biology"},{"id":261,"name":"Geography","url":"https://www.academia.edu/Documents/in/Geography"},{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":9846,"name":"Ecology","url":"https://www.academia.edu/Documents/in/Ecology"},{"id":17215,"name":"Micropaleontology","url":"https://www.academia.edu/Documents/in/Micropaleontology"}],"urls":[{"id":18119931,"url":"http://discovery.ucl.ac.uk/99078/1/99078_MS.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="72711907"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/72711907/Significant_Miocene_larger_foraminifera_from_South_Central_Java"><img alt="Research paper thumbnail of Significant Miocene larger foraminifera from South Central Java" class="work-thumbnail" src="https://attachments.academia-assets.com/81531211/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/72711907/Significant_Miocene_larger_foraminifera_from_South_Central_Java">Significant Miocene larger foraminifera from South Central Java</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The Gunung Sewu area of South Central Java, Indonesia during Mid Miocene, Langhian-Serravallian (...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The Gunung Sewu area of South Central Java, Indonesia during Mid Miocene, Langhian-Serravallian (Tf1-Tf2), was deposited in a large area of warm, very shallow-marine water. Coralline algae and abundant larger benthic foraminifera dominate the carbonate lithologies. Larger benthic foraminifera from previously unstudied sections in South Central Java are described and figured. They have led to an understanding of sequence stratigraphic and facies relationship of Miocene carbonates in Indonesia. Thirteen larger foraminifera species are described and illustrated. A detailed biostratigraphical studies of The phylogeny Katacycloclypeus annulatus - K. martini and the gradual evolution from Austrotrillina asmariensis into A. howchini are recognised. Analysis of the larger benthic foraminifera has allowed accurate dating of the carbonate sections studied using the East Indian Letter Classification.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="664f51e47ff9d50eec258aba3e64db05" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":81531211,"asset_id":72711907,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/81531211/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="72711907"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="72711907"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 72711907; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=72711907]").text(description); $(".js-view-count[data-work-id=72711907]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 72711907; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='72711907']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "664f51e47ff9d50eec258aba3e64db05" } } $('.js-work-strip[data-work-id=72711907]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":72711907,"title":"Significant Miocene larger foraminifera from South Central Java","translated_title":"","metadata":{"abstract":"The Gunung Sewu area of South Central Java, Indonesia during Mid Miocene, Langhian-Serravallian (Tf1-Tf2), was deposited in a large area of warm, very shallow-marine water. Coralline algae and abundant larger benthic foraminifera dominate the carbonate lithologies. Larger benthic foraminifera from previously unstudied sections in South Central Java are described and figured. They have led to an understanding of sequence stratigraphic and facies relationship of Miocene carbonates in Indonesia. Thirteen larger foraminifera species are described and illustrated. A detailed biostratigraphical studies of The phylogeny Katacycloclypeus annulatus - K. martini and the gradual evolution from Austrotrillina asmariensis into A. howchini are recognised. Analysis of the larger benthic foraminifera has allowed accurate dating of the carbonate sections studied using the East Indian Letter Classification.","publication_date":{"day":null,"month":null,"year":2005,"errors":{}}},"translated_abstract":"The Gunung Sewu area of South Central Java, Indonesia during Mid Miocene, Langhian-Serravallian (Tf1-Tf2), was deposited in a large area of warm, very shallow-marine water. Coralline algae and abundant larger benthic foraminifera dominate the carbonate lithologies. Larger benthic foraminifera from previously unstudied sections in South Central Java are described and figured. They have led to an understanding of sequence stratigraphic and facies relationship of Miocene carbonates in Indonesia. Thirteen larger foraminifera species are described and illustrated. A detailed biostratigraphical studies of The phylogeny Katacycloclypeus annulatus - K. martini and the gradual evolution from Austrotrillina asmariensis into A. howchini are recognised. Analysis of the larger benthic foraminifera has allowed accurate dating of the carbonate sections studied using the East Indian Letter Classification.","internal_url":"https://www.academia.edu/72711907/Significant_Miocene_larger_foraminifera_from_South_Central_Java","translated_internal_url":"","created_at":"2022-03-01T13:07:09.273-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6407942,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":81531211,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531211/thumbnails/1.jpg","file_name":"Boudagher-fadel_significant_RdP_2005.pdf","download_url":"https://www.academia.edu/attachments/81531211/download_file","bulk_download_file_name":"Significant_Miocene_larger_foraminifera.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531211/Boudagher-fadel_significant_RdP_2005-libre.pdf?1646169108=\u0026response-content-disposition=attachment%3B+filename%3DSignificant_Miocene_larger_foraminifera.pdf\u0026Expires=1741739495\u0026Signature=WRjt9O49JQd8pbcW9xGiSOf5foKFLf7Uklne4ceVldNbWEi9MCP6MgDEQ388g4dCrISGSEL2sDOmb5m8SDZDUabq0-78c~QRMD1j0uLZEXfGF0pOyZaW6FwAsXXOxuNlTYKKzgT-G3scdJN1aMnYkmHezTu5IFqB6VTEdxkXouyUjuylwGG-xFDND7qSkcTwdc7j9a6XABvoap6kjVHVfqotPndJRAK~jMC5AZszAjSpD2OdUFJIolvBlVe8ONqERHUp20B7Qg4vJ8vnbQzG92WT-~G7u01TynvC1XZI8RMVqzU~PvS8qwRpvhadrOcRgOc7IN1Qi-36ZBcv3KRb~g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Significant_Miocene_larger_foraminifera_from_South_Central_Java","translated_slug":"","page_count":19,"language":"en","content_type":"Work","summary":"The Gunung Sewu area of South Central Java, Indonesia during Mid Miocene, Langhian-Serravallian (Tf1-Tf2), was deposited in a large area of warm, very shallow-marine water. Coralline algae and abundant larger benthic foraminifera dominate the carbonate lithologies. Larger benthic foraminifera from previously unstudied sections in South Central Java are described and figured. They have led to an understanding of sequence stratigraphic and facies relationship of Miocene carbonates in Indonesia. Thirteen larger foraminifera species are described and illustrated. A detailed biostratigraphical studies of The phylogeny Katacycloclypeus annulatus - K. martini and the gradual evolution from Austrotrillina asmariensis into A. howchini are recognised. Analysis of the larger benthic foraminifera has allowed accurate dating of the carbonate sections studied using the East Indian Letter Classification.","owner":{"id":6407942,"first_name":"Prof. Marcelle","middle_initials":"","last_name":"Boudagher-Fadel","page_name":"MarcelleBoudagherFadel","domain_name":"ucl","created_at":"2013-10-27T10:31:03.235-07:00","display_name":"Prof. Marcelle Boudagher-Fadel","url":"https://ucl.academia.edu/MarcelleBoudagherFadel"},"attachments":[{"id":81531211,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531211/thumbnails/1.jpg","file_name":"Boudagher-fadel_significant_RdP_2005.pdf","download_url":"https://www.academia.edu/attachments/81531211/download_file","bulk_download_file_name":"Significant_Miocene_larger_foraminifera.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531211/Boudagher-fadel_significant_RdP_2005-libre.pdf?1646169108=\u0026response-content-disposition=attachment%3B+filename%3DSignificant_Miocene_larger_foraminifera.pdf\u0026Expires=1741739495\u0026Signature=WRjt9O49JQd8pbcW9xGiSOf5foKFLf7Uklne4ceVldNbWEi9MCP6MgDEQ388g4dCrISGSEL2sDOmb5m8SDZDUabq0-78c~QRMD1j0uLZEXfGF0pOyZaW6FwAsXXOxuNlTYKKzgT-G3scdJN1aMnYkmHezTu5IFqB6VTEdxkXouyUjuylwGG-xFDND7qSkcTwdc7j9a6XABvoap6kjVHVfqotPndJRAK~jMC5AZszAjSpD2OdUFJIolvBlVe8ONqERHUp20B7Qg4vJ8vnbQzG92WT-~G7u01TynvC1XZI8RMVqzU~PvS8qwRpvhadrOcRgOc7IN1Qi-36ZBcv3KRb~g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":417,"name":"Paleontology","url":"https://www.academia.edu/Documents/in/Paleontology"},{"id":10770,"name":"Biostratigraphy","url":"https://www.academia.edu/Documents/in/Biostratigraphy"},{"id":54433,"name":"Phylogeny","url":"https://www.academia.edu/Documents/in/Phylogeny"},{"id":515315,"name":"Larger foraminifera","url":"https://www.academia.edu/Documents/in/Larger_foraminifera"},{"id":1010773,"name":"Middle Miocene","url":"https://www.academia.edu/Documents/in/Middle_Miocene"}],"urls":[{"id":18119930,"url":"http://discovery.ucl.ac.uk/40307/1/Boudagher-fadel_significant_RdP_2005.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="72711906"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/72711906/Diagnostic_First_and_Last_Occurrences_of_Mesozoic_and_Cenozoic_Planktonic_Foraminifera"><img alt="Research paper thumbnail of Diagnostic First and Last Occurrences of Mesozoic and Cenozoic Planktonic Foraminifera" class="work-thumbnail" src="https://attachments.academia-assets.com/81531210/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/72711906/Diagnostic_First_and_Last_Occurrences_of_Mesozoic_and_Cenozoic_Planktonic_Foraminifera">Diagnostic First and Last Occurrences of Mesozoic and Cenozoic Planktonic Foraminifera</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The diagnostic first and last occurrences of Cretaceous, Paleogene and Neogene planktonic foramin...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The diagnostic first and last occurrences of Cretaceous, Paleogene and Neogene planktonic foraminifera species are given, and have been calibrated against the most recent biostratigraphical time scale and radio-isotope data.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="aa177c2f2c2e7efc22a982773b081edb" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":81531210,"asset_id":72711906,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/81531210/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="72711906"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="72711906"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 72711906; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=72711906]").text(description); $(".js-view-count[data-work-id=72711906]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 72711906; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='72711906']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "aa177c2f2c2e7efc22a982773b081edb" } } $('.js-work-strip[data-work-id=72711906]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":72711906,"title":"Diagnostic First and Last Occurrences of Mesozoic and Cenozoic Planktonic Foraminifera","translated_title":"","metadata":{"abstract":"The diagnostic first and last occurrences of Cretaceous, Paleogene and Neogene planktonic foraminifera species are given, and have been calibrated against the most recent biostratigraphical time scale and radio-isotope data.","publication_date":{"day":null,"month":null,"year":2013,"errors":{}}},"translated_abstract":"The diagnostic first and last occurrences of Cretaceous, Paleogene and Neogene planktonic foraminifera species are given, and have been calibrated against the most recent biostratigraphical time scale and radio-isotope data.","internal_url":"https://www.academia.edu/72711906/Diagnostic_First_and_Last_Occurrences_of_Mesozoic_and_Cenozoic_Planktonic_Foraminifera","translated_internal_url":"","created_at":"2022-03-01T13:07:09.095-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6407942,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":81531210,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531210/thumbnails/1.jpg","file_name":"BOUDAGHER-FADEL_Calibration_charts.pdf","download_url":"https://www.academia.edu/attachments/81531210/download_file","bulk_download_file_name":"Diagnostic_First_and_Last_Occurrences_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531210/BOUDAGHER-FADEL_Calibration_charts-libre.pdf?1646169098=\u0026response-content-disposition=attachment%3B+filename%3DDiagnostic_First_and_Last_Occurrences_of.pdf\u0026Expires=1741739495\u0026Signature=LYoJ6ioDvC-cvQiIShOCIHq3EF~HI8B3a4e1fg0HCGnt65M73bE3bEdoKabF8BYinmt8vIx1Ntb6V03FGEE~Jsvow3JeHo2NdxKnxhSmMonIau4ePbLjpnFl6aGsiGslVFvVrhu6vYjk68G4OoPK2epRQNiNd0nugxkdewS4vPymMndKxC3MKI4xNaa301WZ1fXLHpRPGgM4tgojFrMx1lJ1BhnVXdv9TQq2ehxypCLmudeFCrtYfESSbgF2WRzEN3ozKpNlqVwVi3G~DzgZ57LFcBsKG3PgfM7EVhF-hpbH-H7t6VuPmpYrnsCvMtGUaKlkDghAsAhljE3KygVqpQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Diagnostic_First_and_Last_Occurrences_of_Mesozoic_and_Cenozoic_Planktonic_Foraminifera","translated_slug":"","page_count":4,"language":"en","content_type":"Work","summary":"The diagnostic first and last occurrences of Cretaceous, Paleogene and Neogene planktonic foraminifera species are given, and have been calibrated against the most recent biostratigraphical time scale and radio-isotope data.","owner":{"id":6407942,"first_name":"Prof. Marcelle","middle_initials":"","last_name":"Boudagher-Fadel","page_name":"MarcelleBoudagherFadel","domain_name":"ucl","created_at":"2013-10-27T10:31:03.235-07:00","display_name":"Prof. Marcelle Boudagher-Fadel","url":"https://ucl.academia.edu/MarcelleBoudagherFadel"},"attachments":[{"id":81531210,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531210/thumbnails/1.jpg","file_name":"BOUDAGHER-FADEL_Calibration_charts.pdf","download_url":"https://www.academia.edu/attachments/81531210/download_file","bulk_download_file_name":"Diagnostic_First_and_Last_Occurrences_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531210/BOUDAGHER-FADEL_Calibration_charts-libre.pdf?1646169098=\u0026response-content-disposition=attachment%3B+filename%3DDiagnostic_First_and_Last_Occurrences_of.pdf\u0026Expires=1741739495\u0026Signature=LYoJ6ioDvC-cvQiIShOCIHq3EF~HI8B3a4e1fg0HCGnt65M73bE3bEdoKabF8BYinmt8vIx1Ntb6V03FGEE~Jsvow3JeHo2NdxKnxhSmMonIau4ePbLjpnFl6aGsiGslVFvVrhu6vYjk68G4OoPK2epRQNiNd0nugxkdewS4vPymMndKxC3MKI4xNaa301WZ1fXLHpRPGgM4tgojFrMx1lJ1BhnVXdv9TQq2ehxypCLmudeFCrtYfESSbgF2WRzEN3ozKpNlqVwVi3G~DzgZ57LFcBsKG3PgfM7EVhF-hpbH-H7t6VuPmpYrnsCvMtGUaKlkDghAsAhljE3KygVqpQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":81531209,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531209/thumbnails/1.jpg","file_name":"BOUDAGHER-FADEL_Calibration_charts.pdf","download_url":"https://www.academia.edu/attachments/81531209/download_file","bulk_download_file_name":"Diagnostic_First_and_Last_Occurrences_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531209/BOUDAGHER-FADEL_Calibration_charts-libre.pdf?1646169099=\u0026response-content-disposition=attachment%3B+filename%3DDiagnostic_First_and_Last_Occurrences_of.pdf\u0026Expires=1741739495\u0026Signature=WQlLeqNbTne9Z8yFZo61qzXzXx-OMZPvKzkyW2hksdG2U15HYi4rS~LDsymi63rf89ll72pj2x1G8aGBkqca3klvu3kRxXbLEMw~koywHz8X24DzD9xcezUbsVZqHtLPcsCGbQL4xKLmpKO9fR2n-LanKbCPHjf-pGO-Tw5jIm7u4oQ68j13pkWk7HXuRSRLA1U1x5mGYWeTHkZXvHbR90REcZZOz~XCp9sz8WMexPUr1JrpvNTHhSmUokvVVc3pPNdpZMTk8OIkLSDKWU0SjjWz6jt0ath-6ou6tpepR3TOfZgQOnKySNze6ZQH3~h~CXdKCAuOWuKyEIUbD7vxYw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":18119929,"url":"http://discovery.ucl.ac.uk/1397013/1/BOUDAGHER-FADEL_Calibration_charts.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="72711905"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/72711905/Tectono_stratigraphic_correlations_between_Northern_Evvoia_Skopelos_and_Alonnisos_and_the_postulated_collision_of_the_Pelagonian_carbonate_platform_with_the_Paikon_forearc_basin_Pelagonian_Vardar_zones_Internal_Hellenides_Greece_"><img alt="Research paper thumbnail of Tectono-stratigraphic correlations between Northern Evvoia, Skopelos and Alonnisos, and the postulated collision of the Pelagonian carbonate platform with the Paikon forearc basin (Pelagonian–Vardar zones, Internal Hellenides, Greece)" class="work-thumbnail" src="https://attachments.academia-assets.com/81531282/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/72711905/Tectono_stratigraphic_correlations_between_Northern_Evvoia_Skopelos_and_Alonnisos_and_the_postulated_collision_of_the_Pelagonian_carbonate_platform_with_the_Paikon_forearc_basin_Pelagonian_Vardar_zones_Internal_Hellenides_Greece_">Tectono-stratigraphic correlations between Northern Evvoia, Skopelos and Alonnisos, and the postulated collision of the Pelagonian carbonate platform with the Paikon forearc basin (Pelagonian–Vardar zones, Internal Hellenides, Greece)</a></div><div class="wp-workCard_item"><span>UCL Open Environment</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The Pelagonian stratigraphy of the Internal Hellenides consists of a Permo-Triassic basement and ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The Pelagonian stratigraphy of the Internal Hellenides consists of a Permo-Triassic basement and an Upper Triassic and Jurassic carbonate platform formation that has been overthrust by the Eohellenic ophiolite sheet during the Early Cretaceous. Intensive erosion, during the Cretaceous, removed most of the ophiolite and parts of the Jurassic formation. It is hypothesised that uplift and erosion of eastern Pelagonia was triggered by the break-off of the subducted oceanic leading edge of the Pelagonian plate. An investigation of the rocks that succeed the erosional unconformity shows that they constitute a shear-zone that is tectonically overlain by Cretaceous platform carbonates. Geochemical analyses of the shear-zone rocks substantiate that they are of mid-oceanic ridge and island arc provenience. Eastern Pelagonia collided with a Cretaceous carbonate platform, probably the Paikon forearc basin, as the Almopias ocean crust subducted beneath that island–arc complex. The Cretaceous pla...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="351961da536b50fbc296a1ee50811906" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":81531282,"asset_id":72711905,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/81531282/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="72711905"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="72711905"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 72711905; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=72711905]").text(description); $(".js-view-count[data-work-id=72711905]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 72711905; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='72711905']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "351961da536b50fbc296a1ee50811906" } } $('.js-work-strip[data-work-id=72711905]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":72711905,"title":"Tectono-stratigraphic correlations between Northern Evvoia, Skopelos and Alonnisos, and the postulated collision of the Pelagonian carbonate platform with the Paikon forearc basin (Pelagonian–Vardar zones, Internal Hellenides, Greece)","translated_title":"","metadata":{"abstract":"The Pelagonian stratigraphy of the Internal Hellenides consists of a Permo-Triassic basement and an Upper Triassic and Jurassic carbonate platform formation that has been overthrust by the Eohellenic ophiolite sheet during the Early Cretaceous. Intensive erosion, during the Cretaceous, removed most of the ophiolite and parts of the Jurassic formation. It is hypothesised that uplift and erosion of eastern Pelagonia was triggered by the break-off of the subducted oceanic leading edge of the Pelagonian plate. An investigation of the rocks that succeed the erosional unconformity shows that they constitute a shear-zone that is tectonically overlain by Cretaceous platform carbonates. Geochemical analyses of the shear-zone rocks substantiate that they are of mid-oceanic ridge and island arc provenience. Eastern Pelagonia collided with a Cretaceous carbonate platform, probably the Paikon forearc basin, as the Almopias ocean crust subducted beneath that island–arc complex. The Cretaceous pla...","publisher":"UCL Press","publication_name":"UCL Open Environment"},"translated_abstract":"The Pelagonian stratigraphy of the Internal Hellenides consists of a Permo-Triassic basement and an Upper Triassic and Jurassic carbonate platform formation that has been overthrust by the Eohellenic ophiolite sheet during the Early Cretaceous. Intensive erosion, during the Cretaceous, removed most of the ophiolite and parts of the Jurassic formation. It is hypothesised that uplift and erosion of eastern Pelagonia was triggered by the break-off of the subducted oceanic leading edge of the Pelagonian plate. An investigation of the rocks that succeed the erosional unconformity shows that they constitute a shear-zone that is tectonically overlain by Cretaceous platform carbonates. Geochemical analyses of the shear-zone rocks substantiate that they are of mid-oceanic ridge and island arc provenience. Eastern Pelagonia collided with a Cretaceous carbonate platform, probably the Paikon forearc basin, as the Almopias ocean crust subducted beneath that island–arc complex. The Cretaceous pla...","internal_url":"https://www.academia.edu/72711905/Tectono_stratigraphic_correlations_between_Northern_Evvoia_Skopelos_and_Alonnisos_and_the_postulated_collision_of_the_Pelagonian_carbonate_platform_with_the_Paikon_forearc_basin_Pelagonian_Vardar_zones_Internal_Hellenides_Greece_","translated_internal_url":"","created_at":"2022-03-01T13:07:08.893-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6407942,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":81531282,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531282/thumbnails/1.jpg","file_name":"ucloe20200006.pdf","download_url":"https://www.academia.edu/attachments/81531282/download_file","bulk_download_file_name":"Tectono_stratigraphic_correlations_betwe.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531282/ucloe20200006-libre.pdf?1646169214=\u0026response-content-disposition=attachment%3B+filename%3DTectono_stratigraphic_correlations_betwe.pdf\u0026Expires=1741739495\u0026Signature=OCZTwiC6YMNX7I0EH4gp0LCMc6qP8HmlTVn2wk~Cr1wgwZl8mA56xvmYbDRRQ0jTqLLk7KdMV40aZPAJqRBw9rk86-KZDxliw1yPv5ZafwrqTZIqOZAviOWAZWpasdEX8R6sxZ6OfEBBw7JfThrK1REBfn0oflvLz8sjEyChqIC4m403wQCRR7gJsbqYYKjKIL-feMhHwEuEQYFAAmjgS5fuTXxA6-pHvavBczJLNrclHp00OWpX2CnxhsHU3aPFoj5nZLpGr-zoAbKs-7JTgteN3qgnKy3uJpaLssiIsjPqUn1oHvXwDMeErbvHUkXob7F3nOXljh8ZT5hdjci0sg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Tectono_stratigraphic_correlations_between_Northern_Evvoia_Skopelos_and_Alonnisos_and_the_postulated_collision_of_the_Pelagonian_carbonate_platform_with_the_Paikon_forearc_basin_Pelagonian_Vardar_zones_Internal_Hellenides_Greece_","translated_slug":"","page_count":22,"language":"en","content_type":"Work","summary":"The Pelagonian stratigraphy of the Internal Hellenides consists of a Permo-Triassic basement and an Upper Triassic and Jurassic carbonate platform formation that has been overthrust by the Eohellenic ophiolite sheet during the Early Cretaceous. Intensive erosion, during the Cretaceous, removed most of the ophiolite and parts of the Jurassic formation. It is hypothesised that uplift and erosion of eastern Pelagonia was triggered by the break-off of the subducted oceanic leading edge of the Pelagonian plate. An investigation of the rocks that succeed the erosional unconformity shows that they constitute a shear-zone that is tectonically overlain by Cretaceous platform carbonates. Geochemical analyses of the shear-zone rocks substantiate that they are of mid-oceanic ridge and island arc provenience. Eastern Pelagonia collided with a Cretaceous carbonate platform, probably the Paikon forearc basin, as the Almopias ocean crust subducted beneath that island–arc complex. The Cretaceous pla...","owner":{"id":6407942,"first_name":"Prof. Marcelle","middle_initials":"","last_name":"Boudagher-Fadel","page_name":"MarcelleBoudagherFadel","domain_name":"ucl","created_at":"2013-10-27T10:31:03.235-07:00","display_name":"Prof. Marcelle Boudagher-Fadel","url":"https://ucl.academia.edu/MarcelleBoudagherFadel"},"attachments":[{"id":81531282,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531282/thumbnails/1.jpg","file_name":"ucloe20200006.pdf","download_url":"https://www.academia.edu/attachments/81531282/download_file","bulk_download_file_name":"Tectono_stratigraphic_correlations_betwe.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531282/ucloe20200006-libre.pdf?1646169214=\u0026response-content-disposition=attachment%3B+filename%3DTectono_stratigraphic_correlations_betwe.pdf\u0026Expires=1741739495\u0026Signature=OCZTwiC6YMNX7I0EH4gp0LCMc6qP8HmlTVn2wk~Cr1wgwZl8mA56xvmYbDRRQ0jTqLLk7KdMV40aZPAJqRBw9rk86-KZDxliw1yPv5ZafwrqTZIqOZAviOWAZWpasdEX8R6sxZ6OfEBBw7JfThrK1REBfn0oflvLz8sjEyChqIC4m403wQCRR7gJsbqYYKjKIL-feMhHwEuEQYFAAmjgS5fuTXxA6-pHvavBczJLNrclHp00OWpX2CnxhsHU3aPFoj5nZLpGr-zoAbKs-7JTgteN3qgnKy3uJpaLssiIsjPqUn1oHvXwDMeErbvHUkXob7F3nOXljh8ZT5hdjci0sg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"}],"urls":[{"id":18119928,"url":"https://ucl.scienceopen.com/document?vid=1ee73202-32dc-4b55-b2ca-014e7469e15b"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="72711904"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/72711904/Pre_Oxfordian_163_Ma_ophiolite_obduction_in_central_Tibet"><img alt="Research paper thumbnail of Pre‐Oxfordian (>163 Ma) ophiolite obduction in central Tibet" class="work-thumbnail" src="https://attachments.academia-assets.com/81531283/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/72711904/Pre_Oxfordian_163_Ma_ophiolite_obduction_in_central_Tibet">Pre‐Oxfordian (>163 Ma) ophiolite obduction in central Tibet</a></div><div class="wp-workCard_item"><span>Geophysical Research Letters</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The timing of Bangong-Nujiang suture ophiolite obduction between the Lhasa and Qiangtang terranes...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The timing of Bangong-Nujiang suture ophiolite obduction between the Lhasa and Qiangtang terranes in central Tibet is important for understanding the closure history of the Meso-Tethys but remains poorly constrained. We investigated subaerial to shallow marine strata of the Dongqiao Formation that sit unconformably on Bangong-Nujiang suture ophiolites that crystallized in a supra-subduction zone setting at 189-181 Ma. Based on foraminiferal and coral studies, the depositional age of the Dongqiao Formation is constrained to be Oxfordian and Kimmeridgian (Late Jurassic). Provenance analyses including detrital modes, geochemistry of detrital chromian spinels, and U-Pb age populations of detrital zircons suggest the Dongqiao Formation was sourced from uplifted Bangong-Nujiang suture ophiolites and sedimentary and metamorphic rocks of Lhasa terrane affinity to the south. We conclude that Bangong-Nujiang suture ophiolites were obducted soon after crystallization (prior to Oxfordian time; >163 Ma) onto the Lhasa terrane or a microcontinent of Lhasa terrane affinity. Plain Language Summary Ophiolite obduction often occurs when a passive continental margin enters an oceanic subduction zone and thus may mark when an arc-continent or continent-continent collision begins. In central Tibet, the Dongqiao ophiolite represents a relict of Meso-Tethys oceanic lithosphere. Initial research during the 1980s provided rough constraints on the timing, polarity, and mechanism of Dongqiao ophiolite obduction. However, there has been little advancement in our knowledge of the obduction history since. Here we report results of sedimentologic, stratigraphic, and provenance studies on the Dongqiao Formation overlying the Dongqiao ophiolite. Our foraminiferal and coral biostratigraphic data show that subaerial to shallow marine strata of the Dongqiao Formation were deposited between 163 and 152 million years ago. We demonstrate that the clastic rocks in the Dongqiao Formation received detritus from both the underlying Dongqiao ophiolite and Lhasa terrane affinity continental crust. We propose that a continental margin of Lhasa terrane affinity entered a north-dipping oceanic trench, and the Dongqiao ophiolite was obducted southwards on to it, no later than 163 million years ago.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8110f946e650476827aa0a378e0bc7fc" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":81531283,"asset_id":72711904,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/81531283/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="72711904"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="72711904"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 72711904; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=72711904]").text(description); $(".js-view-count[data-work-id=72711904]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 72711904; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='72711904']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8110f946e650476827aa0a378e0bc7fc" } } $('.js-work-strip[data-work-id=72711904]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":72711904,"title":"Pre‐Oxfordian (\u003e163 Ma) ophiolite obduction in central Tibet","translated_title":"","metadata":{"publisher":"American Geophysical Union (AGU)","ai_title_tag":"Ophiolite Obduction Timing in Central Tibet","grobid_abstract":"The timing of Bangong-Nujiang suture ophiolite obduction between the Lhasa and Qiangtang terranes in central Tibet is important for understanding the closure history of the Meso-Tethys but remains poorly constrained. We investigated subaerial to shallow marine strata of the Dongqiao Formation that sit unconformably on Bangong-Nujiang suture ophiolites that crystallized in a supra-subduction zone setting at 189-181 Ma. Based on foraminiferal and coral studies, the depositional age of the Dongqiao Formation is constrained to be Oxfordian and Kimmeridgian (Late Jurassic). Provenance analyses including detrital modes, geochemistry of detrital chromian spinels, and U-Pb age populations of detrital zircons suggest the Dongqiao Formation was sourced from uplifted Bangong-Nujiang suture ophiolites and sedimentary and metamorphic rocks of Lhasa terrane affinity to the south. We conclude that Bangong-Nujiang suture ophiolites were obducted soon after crystallization (prior to Oxfordian time; \u003e163 Ma) onto the Lhasa terrane or a microcontinent of Lhasa terrane affinity. Plain Language Summary Ophiolite obduction often occurs when a passive continental margin enters an oceanic subduction zone and thus may mark when an arc-continent or continent-continent collision begins. In central Tibet, the Dongqiao ophiolite represents a relict of Meso-Tethys oceanic lithosphere. Initial research during the 1980s provided rough constraints on the timing, polarity, and mechanism of Dongqiao ophiolite obduction. However, there has been little advancement in our knowledge of the obduction history since. Here we report results of sedimentologic, stratigraphic, and provenance studies on the Dongqiao Formation overlying the Dongqiao ophiolite. Our foraminiferal and coral biostratigraphic data show that subaerial to shallow marine strata of the Dongqiao Formation were deposited between 163 and 152 million years ago. We demonstrate that the clastic rocks in the Dongqiao Formation received detritus from both the underlying Dongqiao ophiolite and Lhasa terrane affinity continental crust. We propose that a continental margin of Lhasa terrane affinity entered a north-dipping oceanic trench, and the Dongqiao ophiolite was obducted southwards on to it, no later than 163 million years ago.","publication_name":"Geophysical Research Letters","grobid_abstract_attachment_id":81531283},"translated_abstract":null,"internal_url":"https://www.academia.edu/72711904/Pre_Oxfordian_163_Ma_ophiolite_obduction_in_central_Tibet","translated_internal_url":"","created_at":"2022-03-01T13:07:08.662-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6407942,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":81531283,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531283/thumbnails/1.jpg","file_name":"2019GL086650.pdf","download_url":"https://www.academia.edu/attachments/81531283/download_file","bulk_download_file_name":"Pre_Oxfordian_163_Ma_ophiolite_obduction.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531283/2019GL086650-libre.pdf?1646169223=\u0026response-content-disposition=attachment%3B+filename%3DPre_Oxfordian_163_Ma_ophiolite_obduction.pdf\u0026Expires=1741739495\u0026Signature=gX2st0TdAJIuacoSdPQpP92akwvgyv5DCq-E4TblVItJRkP7GSYS0yoL85ADb9e299g-RpGo25bBBuJPj9GnU16JIJh85QSAvte~m9~6luxMboJbhPt-9SWsDZrZrdt9PpDmTpamhVDG847OD3XTydJSDBEgP22bpn6TK7ObGv~jyXNHJz1fb5eKgPtsoSANSw0YRgBIKR2DwYjxRsvWhFuFAawzYR3vb-wtJ2UdFV1ogDwnKSrrv-ZTCewU91z~T2Ec58lnQ8zPFW7PBy7krGfixthKxdXLVHTIJwIoMrwuCzhUrCyA-DQ9uvLHb-IRs-hjEQnwRJKKChHv59Q7Xg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Pre_Oxfordian_163_Ma_ophiolite_obduction_in_central_Tibet","translated_slug":"","page_count":11,"language":"en","content_type":"Work","summary":"The timing of Bangong-Nujiang suture ophiolite obduction between the Lhasa and Qiangtang terranes in central Tibet is important for understanding the closure history of the Meso-Tethys but remains poorly constrained. We investigated subaerial to shallow marine strata of the Dongqiao Formation that sit unconformably on Bangong-Nujiang suture ophiolites that crystallized in a supra-subduction zone setting at 189-181 Ma. Based on foraminiferal and coral studies, the depositional age of the Dongqiao Formation is constrained to be Oxfordian and Kimmeridgian (Late Jurassic). Provenance analyses including detrital modes, geochemistry of detrital chromian spinels, and U-Pb age populations of detrital zircons suggest the Dongqiao Formation was sourced from uplifted Bangong-Nujiang suture ophiolites and sedimentary and metamorphic rocks of Lhasa terrane affinity to the south. We conclude that Bangong-Nujiang suture ophiolites were obducted soon after crystallization (prior to Oxfordian time; \u003e163 Ma) onto the Lhasa terrane or a microcontinent of Lhasa terrane affinity. Plain Language Summary Ophiolite obduction often occurs when a passive continental margin enters an oceanic subduction zone and thus may mark when an arc-continent or continent-continent collision begins. In central Tibet, the Dongqiao ophiolite represents a relict of Meso-Tethys oceanic lithosphere. Initial research during the 1980s provided rough constraints on the timing, polarity, and mechanism of Dongqiao ophiolite obduction. However, there has been little advancement in our knowledge of the obduction history since. Here we report results of sedimentologic, stratigraphic, and provenance studies on the Dongqiao Formation overlying the Dongqiao ophiolite. Our foraminiferal and coral biostratigraphic data show that subaerial to shallow marine strata of the Dongqiao Formation were deposited between 163 and 152 million years ago. We demonstrate that the clastic rocks in the Dongqiao Formation received detritus from both the underlying Dongqiao ophiolite and Lhasa terrane affinity continental crust. We propose that a continental margin of Lhasa terrane affinity entered a north-dipping oceanic trench, and the Dongqiao ophiolite was obducted southwards on to it, no later than 163 million years ago.","owner":{"id":6407942,"first_name":"Prof. Marcelle","middle_initials":"","last_name":"Boudagher-Fadel","page_name":"MarcelleBoudagherFadel","domain_name":"ucl","created_at":"2013-10-27T10:31:03.235-07:00","display_name":"Prof. Marcelle Boudagher-Fadel","url":"https://ucl.academia.edu/MarcelleBoudagherFadel"},"attachments":[{"id":81531283,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531283/thumbnails/1.jpg","file_name":"2019GL086650.pdf","download_url":"https://www.academia.edu/attachments/81531283/download_file","bulk_download_file_name":"Pre_Oxfordian_163_Ma_ophiolite_obduction.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531283/2019GL086650-libre.pdf?1646169223=\u0026response-content-disposition=attachment%3B+filename%3DPre_Oxfordian_163_Ma_ophiolite_obduction.pdf\u0026Expires=1741739495\u0026Signature=gX2st0TdAJIuacoSdPQpP92akwvgyv5DCq-E4TblVItJRkP7GSYS0yoL85ADb9e299g-RpGo25bBBuJPj9GnU16JIJh85QSAvte~m9~6luxMboJbhPt-9SWsDZrZrdt9PpDmTpamhVDG847OD3XTydJSDBEgP22bpn6TK7ObGv~jyXNHJz1fb5eKgPtsoSANSw0YRgBIKR2DwYjxRsvWhFuFAawzYR3vb-wtJ2UdFV1ogDwnKSrrv-ZTCewU91z~T2Ec58lnQ8zPFW7PBy7krGfixthKxdXLVHTIJwIoMrwuCzhUrCyA-DQ9uvLHb-IRs-hjEQnwRJKKChHv59Q7Xg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"}],"urls":[{"id":18119927,"url":"https://onlinelibrary.wiley.com/doi/pdf/10.1029/2019GL086650"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="72711903"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/72711903/Paleogene_carbonate_systems_of_Saint_Barth%C3%A9lemy_Lesser_Antilles_stratigraphy_and_general_organization"><img alt="Research paper thumbnail of Paleogene carbonate systems of Saint Barthélemy, Lesser Antilles: stratigraphy and general organization" class="work-thumbnail" src="https://attachments.academia-assets.com/81531279/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/72711903/Paleogene_carbonate_systems_of_Saint_Barth%C3%A9lemy_Lesser_Antilles_stratigraphy_and_general_organization">Paleogene carbonate systems of Saint Barthélemy, Lesser Antilles: stratigraphy and general organization</a></div><div class="wp-workCard_item"><span>Newsletters on Stratigraphy</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Saint Barthélemy is the only island of the northern Lesser Antilles where it is possible to inves...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Saint Barthélemy is the only island of the northern Lesser Antilles where it is possible to investigate in the detail the chronostratigraphy of the mixed carbonate-volcaniclastic deposits of the Paleogene Caribbean volcanic arc. Based on field mapping and new biostratigraphical and sedimentological data, we study the limestone units interbedded in the Paleogene volcaniclastic deposits. We find that four main carbonate units occur instead of previously believed six ones. Based on the ages given by the foraminifera assemblages, and taking into account the recently published 40 Ar/ 39 Ar ages of magmatic rocks, the Lower Limestone unit dates Lutetian, the Intermediate Limestone unit late (?) Bartonian-late Priabonian, the Upper Limestone late Priabonian and the Top Limestone unit early Miocene. The Paleogene carbonate beds were deposited on gently dipping submarine volcaniclastic deposits issued from emergent volcanoes, in muddy, unrimmed inner to mid-ramp setting dominated by bottom communities. A major subaerial unconformity is evidenced during the Oligocene, most probably corresponding to uplift affecting Saint Barthélemy. Our work offers a revised lithostratigraphic succession of Saint Barthélemy as a first key-point for further studies of the Paleogene Caribbean arc deposits which were dismembered following the entrance of the Bahamas Bank in the Lesser Antilles subduction zone.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="fcf09571902330eea6221a73d8412fb9" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":81531279,"asset_id":72711903,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/81531279/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="72711903"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="72711903"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 72711903; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=72711903]").text(description); $(".js-view-count[data-work-id=72711903]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 72711903; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='72711903']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "fcf09571902330eea6221a73d8412fb9" } } $('.js-work-strip[data-work-id=72711903]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":72711903,"title":"Paleogene carbonate systems of Saint Barthélemy, Lesser Antilles: stratigraphy and general organization","translated_title":"","metadata":{"publisher":"Schweizerbart","grobid_abstract":"Saint Barthélemy is the only island of the northern Lesser Antilles where it is possible to investigate in the detail the chronostratigraphy of the mixed carbonate-volcaniclastic deposits of the Paleogene Caribbean volcanic arc. Based on field mapping and new biostratigraphical and sedimentological data, we study the limestone units interbedded in the Paleogene volcaniclastic deposits. We find that four main carbonate units occur instead of previously believed six ones. Based on the ages given by the foraminifera assemblages, and taking into account the recently published 40 Ar/ 39 Ar ages of magmatic rocks, the Lower Limestone unit dates Lutetian, the Intermediate Limestone unit late (?) Bartonian-late Priabonian, the Upper Limestone late Priabonian and the Top Limestone unit early Miocene. The Paleogene carbonate beds were deposited on gently dipping submarine volcaniclastic deposits issued from emergent volcanoes, in muddy, unrimmed inner to mid-ramp setting dominated by bottom communities. A major subaerial unconformity is evidenced during the Oligocene, most probably corresponding to uplift affecting Saint Barthélemy. Our work offers a revised lithostratigraphic succession of Saint Barthélemy as a first key-point for further studies of the Paleogene Caribbean arc deposits which were dismembered following the entrance of the Bahamas Bank in the Lesser Antilles subduction zone.","publication_name":"Newsletters on Stratigraphy","grobid_abstract_attachment_id":81531279},"translated_abstract":null,"internal_url":"https://www.academia.edu/72711903/Paleogene_carbonate_systems_of_Saint_Barth%C3%A9lemy_Lesser_Antilles_stratigraphy_and_general_organization","translated_internal_url":"","created_at":"2022-03-01T13:07:08.540-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6407942,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":81531279,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531279/thumbnails/1.jpg","file_name":"Text.pdf","download_url":"https://www.academia.edu/attachments/81531279/download_file","bulk_download_file_name":"Paleogene_carbonate_systems_of_Saint_Bar.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531279/Text-libre.pdf?1646169218=\u0026response-content-disposition=attachment%3B+filename%3DPaleogene_carbonate_systems_of_Saint_Bar.pdf\u0026Expires=1742082204\u0026Signature=ey-tswoPy04ZoLzN-ZsxUXUFF0cIKN1UmsUvM1DaSPDqk--Pqpl3o8QqCuSogPqr9RuWhTs0FQdWJzgYEf1mX3JUpt-pAsP2~t3buszhmKq-dJosxlR8h3pkq69GcygOJITgTWEDOxWwzBuGAaEQcHztkd7jNtwqvnlfKm13WqngJebSL6RJO2JCawTk7i7Uu-KIXQMlv6xC0sY4cS0kuLAMri4pHHBSPc3J9CM9ZczypqU7sJU4Dchq7lQc1U3Ld2QLAZGU3bs0HxhU67a966TzmumOCLNqwQZ3fS0iJesubIdQbYtgpVZvC~jU4wDX7K81s59ISLSRoEOEbwioeA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Paleogene_carbonate_systems_of_Saint_Barthélemy_Lesser_Antilles_stratigraphy_and_general_organization","translated_slug":"","page_count":27,"language":"en","content_type":"Work","summary":"Saint Barthélemy is the only island of the northern Lesser Antilles where it is possible to investigate in the detail the chronostratigraphy of the mixed carbonate-volcaniclastic deposits of the Paleogene Caribbean volcanic arc. Based on field mapping and new biostratigraphical and sedimentological data, we study the limestone units interbedded in the Paleogene volcaniclastic deposits. We find that four main carbonate units occur instead of previously believed six ones. Based on the ages given by the foraminifera assemblages, and taking into account the recently published 40 Ar/ 39 Ar ages of magmatic rocks, the Lower Limestone unit dates Lutetian, the Intermediate Limestone unit late (?) Bartonian-late Priabonian, the Upper Limestone late Priabonian and the Top Limestone unit early Miocene. The Paleogene carbonate beds were deposited on gently dipping submarine volcaniclastic deposits issued from emergent volcanoes, in muddy, unrimmed inner to mid-ramp setting dominated by bottom communities. A major subaerial unconformity is evidenced during the Oligocene, most probably corresponding to uplift affecting Saint Barthélemy. Our work offers a revised lithostratigraphic succession of Saint Barthélemy as a first key-point for further studies of the Paleogene Caribbean arc deposits which were dismembered following the entrance of the Bahamas Bank in the Lesser Antilles subduction zone.","owner":{"id":6407942,"first_name":"Prof. Marcelle","middle_initials":"","last_name":"Boudagher-Fadel","page_name":"MarcelleBoudagherFadel","domain_name":"ucl","created_at":"2013-10-27T10:31:03.235-07:00","display_name":"Prof. Marcelle Boudagher-Fadel","url":"https://ucl.academia.edu/MarcelleBoudagherFadel"},"attachments":[{"id":81531279,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531279/thumbnails/1.jpg","file_name":"Text.pdf","download_url":"https://www.academia.edu/attachments/81531279/download_file","bulk_download_file_name":"Paleogene_carbonate_systems_of_Saint_Bar.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531279/Text-libre.pdf?1646169218=\u0026response-content-disposition=attachment%3B+filename%3DPaleogene_carbonate_systems_of_Saint_Bar.pdf\u0026Expires=1742082204\u0026Signature=ey-tswoPy04ZoLzN-ZsxUXUFF0cIKN1UmsUvM1DaSPDqk--Pqpl3o8QqCuSogPqr9RuWhTs0FQdWJzgYEf1mX3JUpt-pAsP2~t3buszhmKq-dJosxlR8h3pkq69GcygOJITgTWEDOxWwzBuGAaEQcHztkd7jNtwqvnlfKm13WqngJebSL6RJO2JCawTk7i7Uu-KIXQMlv6xC0sY4cS0kuLAMri4pHHBSPc3J9CM9ZczypqU7sJU4Dchq7lQc1U3Ld2QLAZGU3bs0HxhU67a966TzmumOCLNqwQZ3fS0iJesubIdQbYtgpVZvC~jU4wDX7K81s59ISLSRoEOEbwioeA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="72711902"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/72711902/Insights_into_the_Cenozoic_geology_of_North_Beirut_harbour_area_biostratigraphy_sedimentology_and_structural_history"><img alt="Research paper thumbnail of Insights into the Cenozoic geology of North Beirut (harbour area): biostratigraphy, sedimentology and structural history" class="work-thumbnail" src="https://attachments.academia-assets.com/81531284/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/72711902/Insights_into_the_Cenozoic_geology_of_North_Beirut_harbour_area_biostratigraphy_sedimentology_and_structural_history">Insights into the Cenozoic geology of North Beirut (harbour area): biostratigraphy, sedimentology and structural history</a></div><div class="wp-workCard_item"><span>UCL Open Environment</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The biostratigraphy and sedimentology of the outcrops and bedrock recently exposed in archaeologi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The biostratigraphy and sedimentology of the outcrops and bedrock recently exposed in archaeological excavations around the harbour area of Beirut (~5 km²) unlock the geological and structural history of that area, which in turn are key to understanding the hydrocarbon and hydrogeological potential of the region. A key location (Site 2) of a studied outcrop section and newly uncovered bedrock is on the northern foothill cliff of East Beirut (Achrafieh). The outcrop section of carbonates is of Eocene beds overlain by conformable Miocene beds. The excavation of the slope bordering the outcrop uncovered a bedrock section of an early Pliocene shoreline of carbonate/siliciclastic sands at its base and topped by a beach-rock structure. The early Pliocene age of the shoreline section is dated by an assemblage of planktonic foraminifera that includes Sphaeroidinellopsis subdehiscens , Sphaeroidinella dehiscens and Orbulina universa . The Eocene carbonates of Site 2 extend the coverage of th...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a2bf2263c4b27019d0598e578a87d728" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":81531284,"asset_id":72711902,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/81531284/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="72711902"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="72711902"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 72711902; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=72711902]").text(description); $(".js-view-count[data-work-id=72711902]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 72711902; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='72711902']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a2bf2263c4b27019d0598e578a87d728" } } $('.js-work-strip[data-work-id=72711902]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":72711902,"title":"Insights into the Cenozoic geology of North Beirut (harbour area): biostratigraphy, sedimentology and structural history","translated_title":"","metadata":{"abstract":"The biostratigraphy and sedimentology of the outcrops and bedrock recently exposed in archaeological excavations around the harbour area of Beirut (~5 km²) unlock the geological and structural history of that area, which in turn are key to understanding the hydrocarbon and hydrogeological potential of the region. A key location (Site 2) of a studied outcrop section and newly uncovered bedrock is on the northern foothill cliff of East Beirut (Achrafieh). The outcrop section of carbonates is of Eocene beds overlain by conformable Miocene beds. The excavation of the slope bordering the outcrop uncovered a bedrock section of an early Pliocene shoreline of carbonate/siliciclastic sands at its base and topped by a beach-rock structure. The early Pliocene age of the shoreline section is dated by an assemblage of planktonic foraminifera that includes Sphaeroidinellopsis subdehiscens , Sphaeroidinella dehiscens and Orbulina universa . The Eocene carbonates of Site 2 extend the coverage of th...","publisher":"UCL Press","ai_title_tag":"Cenozoic Geology of North Beirut Harbour","publication_name":"UCL Open Environment"},"translated_abstract":"The biostratigraphy and sedimentology of the outcrops and bedrock recently exposed in archaeological excavations around the harbour area of Beirut (~5 km²) unlock the geological and structural history of that area, which in turn are key to understanding the hydrocarbon and hydrogeological potential of the region. A key location (Site 2) of a studied outcrop section and newly uncovered bedrock is on the northern foothill cliff of East Beirut (Achrafieh). The outcrop section of carbonates is of Eocene beds overlain by conformable Miocene beds. The excavation of the slope bordering the outcrop uncovered a bedrock section of an early Pliocene shoreline of carbonate/siliciclastic sands at its base and topped by a beach-rock structure. The early Pliocene age of the shoreline section is dated by an assemblage of planktonic foraminifera that includes Sphaeroidinellopsis subdehiscens , Sphaeroidinella dehiscens and Orbulina universa . The Eocene carbonates of Site 2 extend the coverage of th...","internal_url":"https://www.academia.edu/72711902/Insights_into_the_Cenozoic_geology_of_North_Beirut_harbour_area_biostratigraphy_sedimentology_and_structural_history","translated_internal_url":"","created_at":"2022-03-01T13:07:08.318-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6407942,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":81531284,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531284/thumbnails/1.jpg","file_name":"ucloe20200004.pdf","download_url":"https://www.academia.edu/attachments/81531284/download_file","bulk_download_file_name":"Insights_into_the_Cenozoic_geology_of_No.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531284/ucloe20200004-libre.pdf?1646169217=\u0026response-content-disposition=attachment%3B+filename%3DInsights_into_the_Cenozoic_geology_of_No.pdf\u0026Expires=1742082204\u0026Signature=ReWj4vbb5i7JWqELyLQyKe5slvaZlI9EEtn2a8lGa0jRNlTE7MaPcLATvMB34YffFA4K-dcBK2AbwUQMuMgsMCwnJFrqckDcI3SpLAlXp1zN9daHq~NtJ5ujEzk4WU~-3XPPkh~5MO8mI2nZkWSjgWdnfcz49FvlZe1c4AOQlZsFvdw4KNDlwJf9bzML8YR6noYvXlOc51CVHGmQvGJL0WdnkHK5QnZi7jK22qLV0BVIoYgu8kKdhdktLxSdH-~eUcv327t2liQWR7kLEJ0SbHSoaiSXbKwsC~GCKSmYSsu-05Q1EJRX4xoC6IqUjj8rX87qeKuzCXiThqdaM4Et8Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Insights_into_the_Cenozoic_geology_of_North_Beirut_harbour_area_biostratigraphy_sedimentology_and_structural_history","translated_slug":"","page_count":17,"language":"en","content_type":"Work","summary":"The biostratigraphy and sedimentology of the outcrops and bedrock recently exposed in archaeological excavations around the harbour area of Beirut (~5 km²) unlock the geological and structural history of that area, which in turn are key to understanding the hydrocarbon and hydrogeological potential of the region. A key location (Site 2) of a studied outcrop section and newly uncovered bedrock is on the northern foothill cliff of East Beirut (Achrafieh). The outcrop section of carbonates is of Eocene beds overlain by conformable Miocene beds. The excavation of the slope bordering the outcrop uncovered a bedrock section of an early Pliocene shoreline of carbonate/siliciclastic sands at its base and topped by a beach-rock structure. The early Pliocene age of the shoreline section is dated by an assemblage of planktonic foraminifera that includes Sphaeroidinellopsis subdehiscens , Sphaeroidinella dehiscens and Orbulina universa . The Eocene carbonates of Site 2 extend the coverage of th...","owner":{"id":6407942,"first_name":"Prof. Marcelle","middle_initials":"","last_name":"Boudagher-Fadel","page_name":"MarcelleBoudagherFadel","domain_name":"ucl","created_at":"2013-10-27T10:31:03.235-07:00","display_name":"Prof. Marcelle Boudagher-Fadel","url":"https://ucl.academia.edu/MarcelleBoudagherFadel"},"attachments":[{"id":81531284,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531284/thumbnails/1.jpg","file_name":"ucloe20200004.pdf","download_url":"https://www.academia.edu/attachments/81531284/download_file","bulk_download_file_name":"Insights_into_the_Cenozoic_geology_of_No.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531284/ucloe20200004-libre.pdf?1646169217=\u0026response-content-disposition=attachment%3B+filename%3DInsights_into_the_Cenozoic_geology_of_No.pdf\u0026Expires=1742082204\u0026Signature=ReWj4vbb5i7JWqELyLQyKe5slvaZlI9EEtn2a8lGa0jRNlTE7MaPcLATvMB34YffFA4K-dcBK2AbwUQMuMgsMCwnJFrqckDcI3SpLAlXp1zN9daHq~NtJ5ujEzk4WU~-3XPPkh~5MO8mI2nZkWSjgWdnfcz49FvlZe1c4AOQlZsFvdw4KNDlwJf9bzML8YR6noYvXlOc51CVHGmQvGJL0WdnkHK5QnZi7jK22qLV0BVIoYgu8kKdhdktLxSdH-~eUcv327t2liQWR7kLEJ0SbHSoaiSXbKwsC~GCKSmYSsu-05Q1EJRX4xoC6IqUjj8rX87qeKuzCXiThqdaM4Et8Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":18119926,"url":"https://ucl.scienceopen.com/document?vid=0ba21b97-d764-4d63-84ac-514c29e32cca"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="72711901"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/72711901/The_history_of_Cenozoic_magmatism_and_collision_in_NW_New_Guinea_New_insights_into_the_tectonic_evolution_of_the_northernmost_margin_of_the_Australian_Plate"><img alt="Research paper thumbnail of The history of Cenozoic magmatism and collision in NW New Guinea – New insights into the tectonic evolution of the northernmost margin of the Australian Plate" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">The history of Cenozoic magmatism and collision in NW New Guinea – New insights into the tectonic evolution of the northernmost margin of the Australian Plate</div><div class="wp-workCard_item"><span>Gondwana Research</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract Evidence of Cenozoic magmatism is found along the length of New Guinea. However, the pet...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract Evidence of Cenozoic magmatism is found along the length of New Guinea. However, the petrogenetic and tectonic setting for this magmatism is poorly understood. This study presents new field, petrographic, U–Pb zircon, and geochemical data from NW New Guinea. These data have been used to identify six units of Cenozoic igneous rocks which record episodes of magmatism during the Oligocene, Miocene, and Pliocene. These episodes occurred in response to the ongoing interaction between the Australian and Philippine Sea plates. During the Eocene, the Australian Plate began to obliquely subduct beneath the Philippine Sea Plate forming the Philippine–Caroline Arc. Magmatism in this arc is recorded in the Dore, Mandi, and Arfak volcanics of NW New Guinea where calc-alkaline and tholeiitic rocks formed within subduction-related fore-arc and extension-related back-arc settings from 32 to 27 Ma. Collision along this plate boundary in the Oligocene–Miocene jammed the subduction zone and caused a reversal in subduction polarity from north-dipping to south-dipping. Following this, subduction of the Philippine Sea Plate beneath the Australian Plate produced magmatism throughout western New Guinea. In NW New Guinea this is recorded by the middle Miocene (18–12 Ma) Moon Volcanics, which include an early period of high-K to shoshonitic igneous activity. These earlier magmatic rocks are associated with the subduction zone polarity reversal and an initially steeply dipping slab. The magmatic products later changed to more calc-alkaline compositions and were emplaced as volcanic rocks in the fore-arc section of a primitive continental arc. Finally, following terminal arc–continent collision in the late Miocene–Pliocene, mantle derived magmas (including the Berangan Andesite) migrated up large strike-slip faults becoming crustally contaminated prior to their eruption during the Plio–Pleistocene. This study of the Cenozoic magmatic history of NW New Guinea provides new data and insights into the tectonic evolution of the northern margin of the Australian Plate.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="72711901"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="72711901"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 72711901; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=72711901]").text(description); $(".js-view-count[data-work-id=72711901]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 72711901; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='72711901']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=72711901]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":72711901,"title":"The history of Cenozoic magmatism and collision in NW New Guinea – New insights into the tectonic evolution of the northernmost margin of the Australian Plate","translated_title":"","metadata":{"abstract":"Abstract Evidence of Cenozoic magmatism is found along the length of New Guinea. However, the petrogenetic and tectonic setting for this magmatism is poorly understood. This study presents new field, petrographic, U–Pb zircon, and geochemical data from NW New Guinea. These data have been used to identify six units of Cenozoic igneous rocks which record episodes of magmatism during the Oligocene, Miocene, and Pliocene. These episodes occurred in response to the ongoing interaction between the Australian and Philippine Sea plates. During the Eocene, the Australian Plate began to obliquely subduct beneath the Philippine Sea Plate forming the Philippine–Caroline Arc. Magmatism in this arc is recorded in the Dore, Mandi, and Arfak volcanics of NW New Guinea where calc-alkaline and tholeiitic rocks formed within subduction-related fore-arc and extension-related back-arc settings from 32 to 27 Ma. Collision along this plate boundary in the Oligocene–Miocene jammed the subduction zone and caused a reversal in subduction polarity from north-dipping to south-dipping. Following this, subduction of the Philippine Sea Plate beneath the Australian Plate produced magmatism throughout western New Guinea. In NW New Guinea this is recorded by the middle Miocene (18–12 Ma) Moon Volcanics, which include an early period of high-K to shoshonitic igneous activity. These earlier magmatic rocks are associated with the subduction zone polarity reversal and an initially steeply dipping slab. The magmatic products later changed to more calc-alkaline compositions and were emplaced as volcanic rocks in the fore-arc section of a primitive continental arc. Finally, following terminal arc–continent collision in the late Miocene–Pliocene, mantle derived magmas (including the Berangan Andesite) migrated up large strike-slip faults becoming crustally contaminated prior to their eruption during the Plio–Pleistocene. This study of the Cenozoic magmatic history of NW New Guinea provides new data and insights into the tectonic evolution of the northern margin of the Australian Plate.","publisher":"Elsevier BV","publication_name":"Gondwana Research"},"translated_abstract":"Abstract Evidence of Cenozoic magmatism is found along the length of New Guinea. However, the petrogenetic and tectonic setting for this magmatism is poorly understood. This study presents new field, petrographic, U–Pb zircon, and geochemical data from NW New Guinea. These data have been used to identify six units of Cenozoic igneous rocks which record episodes of magmatism during the Oligocene, Miocene, and Pliocene. These episodes occurred in response to the ongoing interaction between the Australian and Philippine Sea plates. During the Eocene, the Australian Plate began to obliquely subduct beneath the Philippine Sea Plate forming the Philippine–Caroline Arc. Magmatism in this arc is recorded in the Dore, Mandi, and Arfak volcanics of NW New Guinea where calc-alkaline and tholeiitic rocks formed within subduction-related fore-arc and extension-related back-arc settings from 32 to 27 Ma. Collision along this plate boundary in the Oligocene–Miocene jammed the subduction zone and caused a reversal in subduction polarity from north-dipping to south-dipping. Following this, subduction of the Philippine Sea Plate beneath the Australian Plate produced magmatism throughout western New Guinea. In NW New Guinea this is recorded by the middle Miocene (18–12 Ma) Moon Volcanics, which include an early period of high-K to shoshonitic igneous activity. These earlier magmatic rocks are associated with the subduction zone polarity reversal and an initially steeply dipping slab. The magmatic products later changed to more calc-alkaline compositions and were emplaced as volcanic rocks in the fore-arc section of a primitive continental arc. Finally, following terminal arc–continent collision in the late Miocene–Pliocene, mantle derived magmas (including the Berangan Andesite) migrated up large strike-slip faults becoming crustally contaminated prior to their eruption during the Plio–Pleistocene. This study of the Cenozoic magmatic history of NW New Guinea provides new data and insights into the tectonic evolution of the northern margin of the Australian Plate.","internal_url":"https://www.academia.edu/72711901/The_history_of_Cenozoic_magmatism_and_collision_in_NW_New_Guinea_New_insights_into_the_tectonic_evolution_of_the_northernmost_margin_of_the_Australian_Plate","translated_internal_url":"","created_at":"2022-03-01T13:07:08.076-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6407942,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_history_of_Cenozoic_magmatism_and_collision_in_NW_New_Guinea_New_insights_into_the_tectonic_evolution_of_the_northernmost_margin_of_the_Australian_Plate","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Abstract Evidence of Cenozoic magmatism is found along the length of New Guinea. However, the petrogenetic and tectonic setting for this magmatism is poorly understood. This study presents new field, petrographic, U–Pb zircon, and geochemical data from NW New Guinea. These data have been used to identify six units of Cenozoic igneous rocks which record episodes of magmatism during the Oligocene, Miocene, and Pliocene. These episodes occurred in response to the ongoing interaction between the Australian and Philippine Sea plates. During the Eocene, the Australian Plate began to obliquely subduct beneath the Philippine Sea Plate forming the Philippine–Caroline Arc. Magmatism in this arc is recorded in the Dore, Mandi, and Arfak volcanics of NW New Guinea where calc-alkaline and tholeiitic rocks formed within subduction-related fore-arc and extension-related back-arc settings from 32 to 27 Ma. Collision along this plate boundary in the Oligocene–Miocene jammed the subduction zone and caused a reversal in subduction polarity from north-dipping to south-dipping. Following this, subduction of the Philippine Sea Plate beneath the Australian Plate produced magmatism throughout western New Guinea. In NW New Guinea this is recorded by the middle Miocene (18–12 Ma) Moon Volcanics, which include an early period of high-K to shoshonitic igneous activity. These earlier magmatic rocks are associated with the subduction zone polarity reversal and an initially steeply dipping slab. The magmatic products later changed to more calc-alkaline compositions and were emplaced as volcanic rocks in the fore-arc section of a primitive continental arc. Finally, following terminal arc–continent collision in the late Miocene–Pliocene, mantle derived magmas (including the Berangan Andesite) migrated up large strike-slip faults becoming crustally contaminated prior to their eruption during the Plio–Pleistocene. This study of the Cenozoic magmatic history of NW New Guinea provides new data and insights into the tectonic evolution of the northern margin of the Australian Plate.","owner":{"id":6407942,"first_name":"Prof. Marcelle","middle_initials":"","last_name":"Boudagher-Fadel","page_name":"MarcelleBoudagherFadel","domain_name":"ucl","created_at":"2013-10-27T10:31:03.235-07:00","display_name":"Prof. Marcelle Boudagher-Fadel","url":"https://ucl.academia.edu/MarcelleBoudagherFadel"},"attachments":[],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":409,"name":"Geophysics","url":"https://www.academia.edu/Documents/in/Geophysics"},{"id":78133,"name":"Gondwana","url":"https://www.academia.edu/Documents/in/Gondwana"}],"urls":[{"id":18119925,"url":"https://api.elsevier.com/content/article/PII:S1342937X20300307?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="72711900"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/72711900/Caribbean_intra_plate_deformation_Paleomagnetic_evidence_from_St_Barth%C3%A9lemy_Island_for_post_Oligocene_rotation_in_the_Lesser_Antilles_forearc"><img alt="Research paper thumbnail of Caribbean intra-plate deformation: Paleomagnetic evidence from St. Barthélemy Island for post-Oligocene rotation in the Lesser Antilles forearc" class="work-thumbnail" src="https://attachments.academia-assets.com/81531277/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/72711900/Caribbean_intra_plate_deformation_Paleomagnetic_evidence_from_St_Barth%C3%A9lemy_Island_for_post_Oligocene_rotation_in_the_Lesser_Antilles_forearc">Caribbean intra-plate deformation: Paleomagnetic evidence from St. Barthélemy Island for post-Oligocene rotation in the Lesser Antilles forearc</a></div><div class="wp-workCard_item"><span>Tectonophysics</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">As subduction zones and their related processes are often studied in 2D, or cylindrical 3D sectio...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">As subduction zones and their related processes are often studied in 2D, or cylindrical 3D sections, the dynamic effects of trench curvature and its evolution through time remain under-explored. Whereas temporal variations in trench trend may be estimated through restoring upper plate deformation, we investigate the forearc deformation history of the strongly curved northern Lesser Antilles trench, connecting the near-orthogonal Lesser Antilles subduction zone with the Motagua-Cayman transform plate boundary. Our new paleomagnetic dataset consists of 310 cores from Eo-Oligocene magmatic rocks and limestones from St. Barthélemy Island. The limestones yielded a post-folding magnetization containing a similar magnetic direction to those stored in magmatic rocks that intrude the folded carbonates, both indicating a post-Oligocene~15°, and perhaps up to 25°c ounterclockwise rotation of the island. Our results highlight that the present-day trench curvature formed progressively during the Cenozoic, allowing us to discuss different tectonic scenarios explaining NE Caribbean plate deformation, and to identify key targets for future research on tectonic architecture and the potential present-day activity of intra-plate deformation that may pose seismic hazards.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3ad2be3e11d6278c26056865ad268c65" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":81531277,"asset_id":72711900,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/81531277/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="72711900"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="72711900"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 72711900; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=72711900]").text(description); $(".js-view-count[data-work-id=72711900]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 72711900; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='72711900']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3ad2be3e11d6278c26056865ad268c65" } } $('.js-work-strip[data-work-id=72711900]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":72711900,"title":"Caribbean intra-plate deformation: Paleomagnetic evidence from St. Barthélemy Island for post-Oligocene rotation in the Lesser Antilles forearc","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"As subduction zones and their related processes are often studied in 2D, or cylindrical 3D sections, the dynamic effects of trench curvature and its evolution through time remain under-explored. Whereas temporal variations in trench trend may be estimated through restoring upper plate deformation, we investigate the forearc deformation history of the strongly curved northern Lesser Antilles trench, connecting the near-orthogonal Lesser Antilles subduction zone with the Motagua-Cayman transform plate boundary. Our new paleomagnetic dataset consists of 310 cores from Eo-Oligocene magmatic rocks and limestones from St. Barthélemy Island. The limestones yielded a post-folding magnetization containing a similar magnetic direction to those stored in magmatic rocks that intrude the folded carbonates, both indicating a post-Oligocene~15°, and perhaps up to 25°c ounterclockwise rotation of the island. Our results highlight that the present-day trench curvature formed progressively during the Cenozoic, allowing us to discuss different tectonic scenarios explaining NE Caribbean plate deformation, and to identify key targets for future research on tectonic architecture and the potential present-day activity of intra-plate deformation that may pose seismic hazards.","publication_name":"Tectonophysics","grobid_abstract_attachment_id":81531277},"translated_abstract":null,"internal_url":"https://www.academia.edu/72711900/Caribbean_intra_plate_deformation_Paleomagnetic_evidence_from_St_Barth%C3%A9lemy_Island_for_post_Oligocene_rotation_in_the_Lesser_Antilles_forearc","translated_internal_url":"","created_at":"2022-03-01T13:07:07.819-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6407942,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":81531277,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531277/thumbnails/1.jpg","file_name":"2020_Philippon_Tectonophysics.pdf","download_url":"https://www.academia.edu/attachments/81531277/download_file","bulk_download_file_name":"Caribbean_intra_plate_deformation_Paleom.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531277/2020_Philippon_Tectonophysics-libre.pdf?1646169216=\u0026response-content-disposition=attachment%3B+filename%3DCaribbean_intra_plate_deformation_Paleom.pdf\u0026Expires=1741739495\u0026Signature=KHejdLUXA9rJguHPX4I8vnfoLT8AsK7JTO-bx-2Xz93H59qkJ8GfFgCFT2yTPP9OqkEHfTIUEjMTB~kh50KVD~M7E58~Eidi3Y6ZI0yTapHWrXsBa9tzc0bmmttp3QFqQB0iUmWzr-mpcsJKZuOTivROhsObimuE~bdwxAocL8vsb1DRj4iWkhXMcRmwcPjMz~LUxEhe-9SDK3ZuHmO7TlfM5VzWufD0~xu8e20arjQjXqgfNDUgAsOWJQzUVs~0EOb-oChPInmnzqz2g2gp6wj-MPlgvTSFoxA3uN-iMkwy2OZmYpV-NuwYsxRWuVb9ROj-HjHYo8I-6~NJOmhQFw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Caribbean_intra_plate_deformation_Paleomagnetic_evidence_from_St_Barthélemy_Island_for_post_Oligocene_rotation_in_the_Lesser_Antilles_forearc","translated_slug":"","page_count":13,"language":"en","content_type":"Work","summary":"As subduction zones and their related processes are often studied in 2D, or cylindrical 3D sections, the dynamic effects of trench curvature and its evolution through time remain under-explored. Whereas temporal variations in trench trend may be estimated through restoring upper plate deformation, we investigate the forearc deformation history of the strongly curved northern Lesser Antilles trench, connecting the near-orthogonal Lesser Antilles subduction zone with the Motagua-Cayman transform plate boundary. Our new paleomagnetic dataset consists of 310 cores from Eo-Oligocene magmatic rocks and limestones from St. Barthélemy Island. The limestones yielded a post-folding magnetization containing a similar magnetic direction to those stored in magmatic rocks that intrude the folded carbonates, both indicating a post-Oligocene~15°, and perhaps up to 25°c ounterclockwise rotation of the island. Our results highlight that the present-day trench curvature formed progressively during the Cenozoic, allowing us to discuss different tectonic scenarios explaining NE Caribbean plate deformation, and to identify key targets for future research on tectonic architecture and the potential present-day activity of intra-plate deformation that may pose seismic hazards.","owner":{"id":6407942,"first_name":"Prof. Marcelle","middle_initials":"","last_name":"Boudagher-Fadel","page_name":"MarcelleBoudagherFadel","domain_name":"ucl","created_at":"2013-10-27T10:31:03.235-07:00","display_name":"Prof. Marcelle Boudagher-Fadel","url":"https://ucl.academia.edu/MarcelleBoudagherFadel"},"attachments":[{"id":81531277,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531277/thumbnails/1.jpg","file_name":"2020_Philippon_Tectonophysics.pdf","download_url":"https://www.academia.edu/attachments/81531277/download_file","bulk_download_file_name":"Caribbean_intra_plate_deformation_Paleom.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531277/2020_Philippon_Tectonophysics-libre.pdf?1646169216=\u0026response-content-disposition=attachment%3B+filename%3DCaribbean_intra_plate_deformation_Paleom.pdf\u0026Expires=1741739495\u0026Signature=KHejdLUXA9rJguHPX4I8vnfoLT8AsK7JTO-bx-2Xz93H59qkJ8GfFgCFT2yTPP9OqkEHfTIUEjMTB~kh50KVD~M7E58~Eidi3Y6ZI0yTapHWrXsBa9tzc0bmmttp3QFqQB0iUmWzr-mpcsJKZuOTivROhsObimuE~bdwxAocL8vsb1DRj4iWkhXMcRmwcPjMz~LUxEhe-9SDK3ZuHmO7TlfM5VzWufD0~xu8e20arjQjXqgfNDUgAsOWJQzUVs~0EOb-oChPInmnzqz2g2gp6wj-MPlgvTSFoxA3uN-iMkwy2OZmYpV-NuwYsxRWuVb9ROj-HjHYo8I-6~NJOmhQFw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":409,"name":"Geophysics","url":"https://www.academia.edu/Documents/in/Geophysics"},{"id":44126,"name":"Tectonophysics","url":"https://www.academia.edu/Documents/in/Tectonophysics"}],"urls":[{"id":18119924,"url":"https://api.elsevier.com/content/article/PII:S0040195120300068?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="72711847"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/72711847/Late_Cretaceous_to_early_Paleogene_foraminiferal_biozones_in_the_Tibetan_Himalayas_and_a_pan_Tethyan_foraminiferal_correlation_scheme"><img alt="Research paper thumbnail of Late Cretaceous to early Paleogene foraminiferal biozones in the Tibetan Himalayas, and a pan-Tethyan foraminiferal correlation scheme" class="work-thumbnail" src="https://attachments.academia-assets.com/81531170/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/72711847/Late_Cretaceous_to_early_Paleogene_foraminiferal_biozones_in_the_Tibetan_Himalayas_and_a_pan_Tethyan_foraminiferal_correlation_scheme">Late Cretaceous to early Paleogene foraminiferal biozones in the Tibetan Himalayas, and a pan-Tethyan foraminiferal correlation scheme</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This investigation of Upper Cretaceous and lower Paleogene sediments from the Tibetan Himalayas, ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This investigation of Upper Cretaceous and lower Paleogene sediments from the Tibetan Himalayas, based on three stratigraphic sections from the southern margin of Asian Plate and nine sections from the northern Indian Plate margin, provides the first high resolution biostratigraphic description of the region. The sedimentary successions from these two plate margins evolved during the following depositional stages, which we here divide into eleven new biozones (TLK2-3 and TP1-9); (i) an outer neritic stage from the Coniacian to the Maastrichtian, dominated by keeled planktonic foraminifera (PF), such as Globotruncana (TLK2); (ii) a latest Maastrichtian forereef assemblage dominated by Lepidorbitoides, Omphalocyclus andOrbitoides (TLK3); (iii) an early Paleocene, intermittently occurring backreef/shallow reefal warm environment with benthic assemblages dominated by small miliolids and rotaliids, such as Daviesina and Lockhartia (TP1-2); (iv) a late Paleocene-early Eocene, shallow reef...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f5b30c52ab31939eb32d43adcb0cf8b9" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":81531170,"asset_id":72711847,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/81531170/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="72711847"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="72711847"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 72711847; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=72711847]").text(description); $(".js-view-count[data-work-id=72711847]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 72711847; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='72711847']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f5b30c52ab31939eb32d43adcb0cf8b9" } } $('.js-work-strip[data-work-id=72711847]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":72711847,"title":"Late Cretaceous to early Paleogene foraminiferal biozones in the Tibetan Himalayas, and a pan-Tethyan foraminiferal correlation scheme","translated_title":"","metadata":{"abstract":"This investigation of Upper Cretaceous and lower Paleogene sediments from the Tibetan Himalayas, based on three stratigraphic sections from the southern margin of Asian Plate and nine sections from the northern Indian Plate margin, provides the first high resolution biostratigraphic description of the region. The sedimentary successions from these two plate margins evolved during the following depositional stages, which we here divide into eleven new biozones (TLK2-3 and TP1-9); (i) an outer neritic stage from the Coniacian to the Maastrichtian, dominated by keeled planktonic foraminifera (PF), such as Globotruncana (TLK2); (ii) a latest Maastrichtian forereef assemblage dominated by Lepidorbitoides, Omphalocyclus andOrbitoides (TLK3); (iii) an early Paleocene, intermittently occurring backreef/shallow reefal warm environment with benthic assemblages dominated by small miliolids and rotaliids, such as Daviesina and Lockhartia (TP1-2); (iv) a late Paleocene-early Eocene, shallow reef...","ai_title_tag":"Foraminiferal Biozones in Tibetan Himalayas","publication_date":{"day":null,"month":null,"year":2015,"errors":{}}},"translated_abstract":"This investigation of Upper Cretaceous and lower Paleogene sediments from the Tibetan Himalayas, based on three stratigraphic sections from the southern margin of Asian Plate and nine sections from the northern Indian Plate margin, provides the first high resolution biostratigraphic description of the region. The sedimentary successions from these two plate margins evolved during the following depositional stages, which we here divide into eleven new biozones (TLK2-3 and TP1-9); (i) an outer neritic stage from the Coniacian to the Maastrichtian, dominated by keeled planktonic foraminifera (PF), such as Globotruncana (TLK2); (ii) a latest Maastrichtian forereef assemblage dominated by Lepidorbitoides, Omphalocyclus andOrbitoides (TLK3); (iii) an early Paleocene, intermittently occurring backreef/shallow reefal warm environment with benthic assemblages dominated by small miliolids and rotaliids, such as Daviesina and Lockhartia (TP1-2); (iv) a late Paleocene-early Eocene, shallow reef...","internal_url":"https://www.academia.edu/72711847/Late_Cretaceous_to_early_Paleogene_foraminiferal_biozones_in_the_Tibetan_Himalayas_and_a_pan_Tethyan_foraminiferal_correlation_scheme","translated_internal_url":"","created_at":"2022-03-01T13:06:06.510-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6407942,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":81531170,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531170/thumbnails/1.jpg","file_name":"Biostratigraphy_20and_20paleogeography_20in_20the_20Tibetian_20Himalayas_20Consolidated_20with_20Figs.pdf","download_url":"https://www.academia.edu/attachments/81531170/download_file","bulk_download_file_name":"Late_Cretaceous_to_early_Paleogene_foram.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531170/Biostratigraphy_20and_20paleogeography_20in_20the_20Tibetian_20Himalayas_20Consolidated_20with_20Figs.pdf?1738479967=\u0026response-content-disposition=attachment%3B+filename%3DLate_Cretaceous_to_early_Paleogene_foram.pdf\u0026Expires=1742082204\u0026Signature=VVj-AfN-sHlXHx5TdCNBR1adSiNVipLqo1jmWUYteH4jUiXU6Owv5wMkD~K~MjIC1QE82GD9W12fxnQtgphF7iLuDo~39XaW0WihJajXMfQgrqQc~DmvaYdmZOZhztCefl-IrzpflHIg-LZ8BX8Fh6~cOCTbdC9aIYCc8F5S70xM7gMEaiiAr~Alwlcrx2vBRiRxOnRUY3HTWhpWfvPGSjT6PB3aadc1q3IiJycnYBPPRphdcWhj0wB3jzp5hRPjuuMPmIb5aeaVSx0QZcACCVD28WGzIfEVNp6A2kAzPRUrNxHoBgw0fOTbfHMs5miy~GpDqxo20Sgin8hrIu5ixw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Late_Cretaceous_to_early_Paleogene_foraminiferal_biozones_in_the_Tibetan_Himalayas_and_a_pan_Tethyan_foraminiferal_correlation_scheme","translated_slug":"","page_count":56,"language":"en","content_type":"Work","summary":"This investigation of Upper Cretaceous and lower Paleogene sediments from the Tibetan Himalayas, based on three stratigraphic sections from the southern margin of Asian Plate and nine sections from the northern Indian Plate margin, provides the first high resolution biostratigraphic description of the region. The sedimentary successions from these two plate margins evolved during the following depositional stages, which we here divide into eleven new biozones (TLK2-3 and TP1-9); (i) an outer neritic stage from the Coniacian to the Maastrichtian, dominated by keeled planktonic foraminifera (PF), such as Globotruncana (TLK2); (ii) a latest Maastrichtian forereef assemblage dominated by Lepidorbitoides, Omphalocyclus andOrbitoides (TLK3); (iii) an early Paleocene, intermittently occurring backreef/shallow reefal warm environment with benthic assemblages dominated by small miliolids and rotaliids, such as Daviesina and Lockhartia (TP1-2); (iv) a late Paleocene-early Eocene, shallow reef...","owner":{"id":6407942,"first_name":"Prof. Marcelle","middle_initials":"","last_name":"Boudagher-Fadel","page_name":"MarcelleBoudagherFadel","domain_name":"ucl","created_at":"2013-10-27T10:31:03.235-07:00","display_name":"Prof. Marcelle Boudagher-Fadel","url":"https://ucl.academia.edu/MarcelleBoudagherFadel"},"attachments":[{"id":81531170,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531170/thumbnails/1.jpg","file_name":"Biostratigraphy_20and_20paleogeography_20in_20the_20Tibetian_20Himalayas_20Consolidated_20with_20Figs.pdf","download_url":"https://www.academia.edu/attachments/81531170/download_file","bulk_download_file_name":"Late_Cretaceous_to_early_Paleogene_foram.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531170/Biostratigraphy_20and_20paleogeography_20in_20the_20Tibetian_20Himalayas_20Consolidated_20with_20Figs.pdf?1738479967=\u0026response-content-disposition=attachment%3B+filename%3DLate_Cretaceous_to_early_Paleogene_foram.pdf\u0026Expires=1742082204\u0026Signature=VVj-AfN-sHlXHx5TdCNBR1adSiNVipLqo1jmWUYteH4jUiXU6Owv5wMkD~K~MjIC1QE82GD9W12fxnQtgphF7iLuDo~39XaW0WihJajXMfQgrqQc~DmvaYdmZOZhztCefl-IrzpflHIg-LZ8BX8Fh6~cOCTbdC9aIYCc8F5S70xM7gMEaiiAr~Alwlcrx2vBRiRxOnRUY3HTWhpWfvPGSjT6PB3aadc1q3IiJycnYBPPRphdcWhj0wB3jzp5hRPjuuMPmIb5aeaVSx0QZcACCVD28WGzIfEVNp6A2kAzPRUrNxHoBgw0fOTbfHMs5miy~GpDqxo20Sgin8hrIu5ixw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":81531167,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531167/thumbnails/1.jpg","file_name":"Biostratigraphy_20and_20paleogeography_20in_20the_20Tibetian_20Himalayas_20Consolidated_20with_20Figs.pdf","download_url":"https://www.academia.edu/attachments/81531167/download_file","bulk_download_file_name":"Late_Cretaceous_to_early_Paleogene_foram.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531167/Biostratigraphy_20and_20paleogeography_20in_20the_20Tibetian_20Himalayas_20Consolidated_20with_20Figs.pdf?1738479967=\u0026response-content-disposition=attachment%3B+filename%3DLate_Cretaceous_to_early_Paleogene_foram.pdf\u0026Expires=1742082204\u0026Signature=Bnhw0nVnxJbqiEd5Aaq2qLRenfB18At7gFLRFGTr~sqYu7pjDTFx5AqA9nfnralQPFPb2lBlE6kNbKrPPtjYvnvHGYULutE3d2dUYZVkpWrHP0g9mJuwFEzdDcaivrBUkDQwDuDh~Emh4eNUeGtajPO6D-N79Vorvcy49WCOYOtCUkctNdrumYdQulDMBimDFEdkf1hpWTs9VaWlQHTSsB8uE2SFS~nwQBgd8jykD37dyuriLmBOeAGJ5IaOuweRcaQUyalpR5AhIFrAh7K-3yjWSsadNj79NQU5LMCLAxfk~9mEIhYA8Ko86dHuYjUrhnPBlT11qAFoce1CeKjYoQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"}],"urls":[{"id":18119909,"url":"http://discovery.ucl.ac.uk/1470061/1/Biostratigraphy%20and%20paleogeography%20in%20the%20Tibetian%20Himalayas%20Consolidated%20with%20Figs.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="67948701"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/67948701/The_phylogenetic_and_palaeogeographic_evolution_of_the_nummulitoid_larger_benthic_foraminifera"><img alt="Research paper thumbnail of The phylogenetic and palaeogeographic evolution of the nummulitoid larger benthic foraminifera" class="work-thumbnail" src="https://attachments.academia-assets.com/78604778/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/67948701/The_phylogenetic_and_palaeogeographic_evolution_of_the_nummulitoid_larger_benthic_foraminifera">The phylogenetic and palaeogeographic evolution of the nummulitoid larger benthic foraminifera</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Nummulitoidea are larger benthic foraminifera, and were major reef-forming organisms from the Mid...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Nummulitoidea are larger benthic foraminifera, and were major reef-forming organisms from the Middle Paleogene to Early Neogene. Today, porous nummulitoid limestones, which occur globally from the Atlantic to the Indo-Pacific, form potentially valuable oil reservoirs. Until now the origin, evolution and palaeogeographic development of the nummulitoids have not been fully articulated, but new material allows here the first systematic, global biostratigraphic comparison and correlation of the nummulitoids to be made. It is suggested that the nummulitoids originated in the Americas during the Middle Paleocene (Selandian). These early nummulitoids are inferred to have migrated across the Atlantic in the Late Paleocene (Thanetian) following two paths: south towards SW Africa, and northeastward through the Tethyan corridor. The Tethyan forms evolved during the Eocene into many lineages, which in turn migrated, within a few million years of their first appearance, into the Indo-Pacific, wh...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f6fa58fc61101c5c4f45a65c95dbd07f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":78604778,"asset_id":67948701,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/78604778/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="67948701"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="67948701"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 67948701; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=67948701]").text(description); $(".js-view-count[data-work-id=67948701]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 67948701; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='67948701']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f6fa58fc61101c5c4f45a65c95dbd07f" } } $('.js-work-strip[data-work-id=67948701]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":67948701,"title":"The phylogenetic and palaeogeographic evolution of the nummulitoid larger benthic foraminifera","translated_title":"","metadata":{"abstract":"Nummulitoidea are larger benthic foraminifera, and were major reef-forming organisms from the Middle Paleogene to Early Neogene. Today, porous nummulitoid limestones, which occur globally from the Atlantic to the Indo-Pacific, form potentially valuable oil reservoirs. Until now the origin, evolution and palaeogeographic development of the nummulitoids have not been fully articulated, but new material allows here the first systematic, global biostratigraphic comparison and correlation of the nummulitoids to be made. It is suggested that the nummulitoids originated in the Americas during the Middle Paleocene (Selandian). These early nummulitoids are inferred to have migrated across the Atlantic in the Late Paleocene (Thanetian) following two paths: south towards SW Africa, and northeastward through the Tethyan corridor. The Tethyan forms evolved during the Eocene into many lineages, which in turn migrated, within a few million years of their first appearance, into the Indo-Pacific, wh...","publication_date":{"day":null,"month":null,"year":2014,"errors":{}}},"translated_abstract":"Nummulitoidea are larger benthic foraminifera, and were major reef-forming organisms from the Middle Paleogene to Early Neogene. Today, porous nummulitoid limestones, which occur globally from the Atlantic to the Indo-Pacific, form potentially valuable oil reservoirs. Until now the origin, evolution and palaeogeographic development of the nummulitoids have not been fully articulated, but new material allows here the first systematic, global biostratigraphic comparison and correlation of the nummulitoids to be made. It is suggested that the nummulitoids originated in the Americas during the Middle Paleocene (Selandian). These early nummulitoids are inferred to have migrated across the Atlantic in the Late Paleocene (Thanetian) following two paths: south towards SW Africa, and northeastward through the Tethyan corridor. The Tethyan forms evolved during the Eocene into many lineages, which in turn migrated, within a few million years of their first appearance, into the Indo-Pacific, wh...","internal_url":"https://www.academia.edu/67948701/The_phylogenetic_and_palaeogeographic_evolution_of_the_nummulitoid_larger_benthic_foraminifera","translated_internal_url":"","created_at":"2022-01-13T04:49:17.543-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6407942,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":78604778,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78604778/thumbnails/1.jpg","file_name":"The_20phylogenetic_20and_20palaeogeographic_20evolution_20of_20the_20nummulitoid_20larger.pdf","download_url":"https://www.academia.edu/attachments/78604778/download_file","bulk_download_file_name":"The_phylogenetic_and_palaeogeographic_ev.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78604778/The_20phylogenetic_20and_20palaeogeographic_20evolution_20of_20the_20nummulitoid_20larger-libre.pdf?1642083405=\u0026response-content-disposition=attachment%3B+filename%3DThe_phylogenetic_and_palaeogeographic_ev.pdf\u0026Expires=1742542208\u0026Signature=Gj208TjcsKtmuZyOhAlkf1HCfF6XVTqQN7wLWAKI78hcMNd1grewg~irA1eDzEBzn3yECEbIxf-BcR~wH1ZAJJioJi-f0T~6DTqRGiWpSNby01ygSElkfwlTFGWnMKoYwocL9TWH8RVwMMyQ3fXLroT1xYU1o2YEmQEsKyDkAwAJJjvaWdE-7n4Ospt0lsOL5ltA7fD3A1~yQc3muPghQ3RpHH1Vt5aa26B4Q7js8WQN~Pq863UysLyk2jgc3uaHJ7-Hn2UhssMnUygHsvaQLZu5QTq~C6H8SuGB~rkCc~8O8QlMIifBHIJy9~wibMC5zHqLJQDYs1wSo06TsLZgdw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_phylogenetic_and_palaeogeographic_evolution_of_the_nummulitoid_larger_benthic_foraminifera","translated_slug":"","page_count":46,"language":"en","content_type":"Work","summary":"Nummulitoidea are larger benthic foraminifera, and were major reef-forming organisms from the Middle Paleogene to Early Neogene. Today, porous nummulitoid limestones, which occur globally from the Atlantic to the Indo-Pacific, form potentially valuable oil reservoirs. Until now the origin, evolution and palaeogeographic development of the nummulitoids have not been fully articulated, but new material allows here the first systematic, global biostratigraphic comparison and correlation of the nummulitoids to be made. It is suggested that the nummulitoids originated in the Americas during the Middle Paleocene (Selandian). These early nummulitoids are inferred to have migrated across the Atlantic in the Late Paleocene (Thanetian) following two paths: south towards SW Africa, and northeastward through the Tethyan corridor. The Tethyan forms evolved during the Eocene into many lineages, which in turn migrated, within a few million years of their first appearance, into the Indo-Pacific, wh...","owner":{"id":6407942,"first_name":"Prof. Marcelle","middle_initials":"","last_name":"Boudagher-Fadel","page_name":"MarcelleBoudagherFadel","domain_name":"ucl","created_at":"2013-10-27T10:31:03.235-07:00","display_name":"Prof. Marcelle Boudagher-Fadel","url":"https://ucl.academia.edu/MarcelleBoudagherFadel"},"attachments":[{"id":78604778,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78604778/thumbnails/1.jpg","file_name":"The_20phylogenetic_20and_20palaeogeographic_20evolution_20of_20the_20nummulitoid_20larger.pdf","download_url":"https://www.academia.edu/attachments/78604778/download_file","bulk_download_file_name":"The_phylogenetic_and_palaeogeographic_ev.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78604778/The_20phylogenetic_20and_20palaeogeographic_20evolution_20of_20the_20nummulitoid_20larger-libre.pdf?1642083405=\u0026response-content-disposition=attachment%3B+filename%3DThe_phylogenetic_and_palaeogeographic_ev.pdf\u0026Expires=1742542208\u0026Signature=Gj208TjcsKtmuZyOhAlkf1HCfF6XVTqQN7wLWAKI78hcMNd1grewg~irA1eDzEBzn3yECEbIxf-BcR~wH1ZAJJioJi-f0T~6DTqRGiWpSNby01ygSElkfwlTFGWnMKoYwocL9TWH8RVwMMyQ3fXLroT1xYU1o2YEmQEsKyDkAwAJJjvaWdE-7n4Ospt0lsOL5ltA7fD3A1~yQc3muPghQ3RpHH1Vt5aa26B4Q7js8WQN~Pq863UysLyk2jgc3uaHJ7-Hn2UhssMnUygHsvaQLZu5QTq~C6H8SuGB~rkCc~8O8QlMIifBHIJy9~wibMC5zHqLJQDYs1wSo06TsLZgdw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":78604773,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78604773/thumbnails/1.jpg","file_name":"The_20phylogenetic_20and_20palaeogeographic_20evolution_20of_20the_20nummulitoid_20larger.pdf","download_url":"https://www.academia.edu/attachments/78604773/download_file","bulk_download_file_name":"The_phylogenetic_and_palaeogeographic_ev.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78604773/The_20phylogenetic_20and_20palaeogeographic_20evolution_20of_20the_20nummulitoid_20larger-libre.pdf?1642083400=\u0026response-content-disposition=attachment%3B+filename%3DThe_phylogenetic_and_palaeogeographic_ev.pdf\u0026Expires=1742542208\u0026Signature=aYfG2u9Eh-eZ0VOSZm1PfffQyKmV98z61TL-XLRF7Mw7TUN050L9~xdEEE3QhdOHR~z1JwNMEBYTrCaXvTv0D~YHpUbI8HrBxb1agmEU8kJlK76Gk~4g2VO9ssOw98Ff7zVG9u1QraIl-3qJf2PLl0VanAk4R4yUXxBSF9kx7wwjAvy--OGDvixT9deGn7yCyqkSWB1~XGtpMRjnIgp0DGFnvewg3NYaWCF7OmLSXJRVCbzySoDLaOUC7sMdlZcZv7y34pBu2VjCXU4SUKs2ntxDiIKdGm087iYPGyhM7E1an9w-dma9YzbRyY81yczu8j45U89VTNY3P4WRI8JcKQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"}],"urls":[{"id":16349552,"url":"http://discovery.ucl.ac.uk/1426612/2/The%20phylogenetic%20and%20palaeogeographic%20evolution%20of%20the%20nummulitoid%20larger.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="67948683"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/67948683/Initial_growth_of_the_Northern_Lhasaplano_Tibetan_Plateau_in_the_early_Late_Cretaceous_ca_92_Ma_"><img alt="Research paper thumbnail of Initial growth of the Northern Lhasaplano, Tibetan Plateau in the early Late Cretaceous (ca. 92 Ma)" class="work-thumbnail" src="https://attachments.academia-assets.com/78604943/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/67948683/Initial_growth_of_the_Northern_Lhasaplano_Tibetan_Plateau_in_the_early_Late_Cretaceous_ca_92_Ma_">Initial growth of the Northern Lhasaplano, Tibetan Plateau in the early Late Cretaceous (ca. 92 Ma)</a></div><div class="wp-workCard_item"><span>GSA Bulletin</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Constraining the growth of the Tibetan Plateau in time and space is critical for testing geodynam...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Constraining the growth of the Tibetan Plateau in time and space is critical for testing geodynamic models and climatic changes at the regional and global scale. The Lhasa block is a key region for unraveling the early history of the Tibetan Plateau. Distinct from the underlying shallow-marine limestones, the Jingzhushan and Daxiong formations consist of conglomerate and sandstone deposited in alluvial-fan and braided-river systems. Both units were deposited at ca. 92 Ma, as constrained by interbedded tuff layers, detrital zircons, and micropaleontological data. Provenance and paleocurrent analyses indicate that both units were derived from the same elevated source area located in the central-northern Lhasa block. These two parallel belts of coeval conglomerates record a major change in paleogeography of the source region from a shallow seaway to a continental highland, implying initial topographic growth of an area over 160,000 km 2 , named here the Northern Lhasaplano. The early Late Cretaceous topographic growth of the Northern Lhasaplano was associated with the demise of Tethyan seaways, thrustbelt development, and crustal thickening. The same paleogeographic and paleotectonic changes were recorded earlier in the Northern Lhasaplano than in the Southern Lhasaplano, indicating progressive topographic growth from north to south across the Bangong-Nujiang suture and Lhasa block during the Cretaceous. Similar to the Central Andean Plateau, the Northern Lhasaplano developed by plate convergence above the oceanic Neo-Tethyan subduction zone before the onset of the India-Asia collision.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="24a725341b17c976ec95dd272b921c51" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":78604943,"asset_id":67948683,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/78604943/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="67948683"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="67948683"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 67948683; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=67948683]").text(description); $(".js-view-count[data-work-id=67948683]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 67948683; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='67948683']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "24a725341b17c976ec95dd272b921c51" } } $('.js-work-strip[data-work-id=67948683]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":67948683,"title":"Initial growth of the Northern Lhasaplano, Tibetan Plateau in the early Late Cretaceous (ca. 92 Ma)","translated_title":"","metadata":{"publisher":"Geological Society of America","grobid_abstract":"Constraining the growth of the Tibetan Plateau in time and space is critical for testing geodynamic models and climatic changes at the regional and global scale. The Lhasa block is a key region for unraveling the early history of the Tibetan Plateau. Distinct from the underlying shallow-marine limestones, the Jingzhushan and Daxiong formations consist of conglomerate and sandstone deposited in alluvial-fan and braided-river systems. Both units were deposited at ca. 92 Ma, as constrained by interbedded tuff layers, detrital zircons, and micropaleontological data. Provenance and paleocurrent analyses indicate that both units were derived from the same elevated source area located in the central-northern Lhasa block. These two parallel belts of coeval conglomerates record a major change in paleogeography of the source region from a shallow seaway to a continental highland, implying initial topographic growth of an area over 160,000 km 2 , named here the Northern Lhasaplano. The early Late Cretaceous topographic growth of the Northern Lhasaplano was associated with the demise of Tethyan seaways, thrustbelt development, and crustal thickening. The same paleogeographic and paleotectonic changes were recorded earlier in the Northern Lhasaplano than in the Southern Lhasaplano, indicating progressive topographic growth from north to south across the Bangong-Nujiang suture and Lhasa block during the Cretaceous. Similar to the Central Andean Plateau, the Northern Lhasaplano developed by plate convergence above the oceanic Neo-Tethyan subduction zone before the onset of the India-Asia collision.","publication_name":"GSA Bulletin","grobid_abstract_attachment_id":78604943},"translated_abstract":null,"internal_url":"https://www.academia.edu/67948683/Initial_growth_of_the_Northern_Lhasaplano_Tibetan_Plateau_in_the_early_Late_Cretaceous_ca_92_Ma_","translated_internal_url":"","created_at":"2022-01-13T04:49:04.602-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6407942,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":78604943,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78604943/thumbnails/1.jpg","file_name":"f63c638f-bb01-40ce-aaa5-513022cc57cf.pdf","download_url":"https://www.academia.edu/attachments/78604943/download_file","bulk_download_file_name":"Initial_growth_of_the_Northern_Lhasaplan.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78604943/f63c638f-bb01-40ce-aaa5-513022cc57cf-libre.pdf?1642079236=\u0026response-content-disposition=attachment%3B+filename%3DInitial_growth_of_the_Northern_Lhasaplan.pdf\u0026Expires=1742082205\u0026Signature=IsSTHFfukeSahrKH4EWtapPv8nOTFm4RGTr7A3TA~0oeIPHj3rJd2IMU1s3C3fOGNm5aGXv6yVU3OBKkC6xlLsgXia8kTtKvvGLPVOvRIqONPiEh17ZhWXLh3PPDU-g~85KhjP3tSc2Y5ee6sMod-Ok-d8QS2np-5rq4ETT3WfI2is2FblYYhPmzXe04DX7w-AqMeNRU93bwOM4Lc5jbvegSp24iE8lFUHNmAPDhoy4Clhzb0KQ30shrHkJXgNNx0owRtRsffxYQGpTDuqkO0Ep3wkbnAam2pfP3bkpeQOztLhmVTFaqFMXCLKmMmNalbCT19Vsb3rcUPkYcAUuRng__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Initial_growth_of_the_Northern_Lhasaplano_Tibetan_Plateau_in_the_early_Late_Cretaceous_ca_92_Ma_","translated_slug":"","page_count":14,"language":"en","content_type":"Work","summary":"Constraining the growth of the Tibetan Plateau in time and space is critical for testing geodynamic models and climatic changes at the regional and global scale. The Lhasa block is a key region for unraveling the early history of the Tibetan Plateau. Distinct from the underlying shallow-marine limestones, the Jingzhushan and Daxiong formations consist of conglomerate and sandstone deposited in alluvial-fan and braided-river systems. Both units were deposited at ca. 92 Ma, as constrained by interbedded tuff layers, detrital zircons, and micropaleontological data. Provenance and paleocurrent analyses indicate that both units were derived from the same elevated source area located in the central-northern Lhasa block. These two parallel belts of coeval conglomerates record a major change in paleogeography of the source region from a shallow seaway to a continental highland, implying initial topographic growth of an area over 160,000 km 2 , named here the Northern Lhasaplano. The early Late Cretaceous topographic growth of the Northern Lhasaplano was associated with the demise of Tethyan seaways, thrustbelt development, and crustal thickening. The same paleogeographic and paleotectonic changes were recorded earlier in the Northern Lhasaplano than in the Southern Lhasaplano, indicating progressive topographic growth from north to south across the Bangong-Nujiang suture and Lhasa block during the Cretaceous. Similar to the Central Andean Plateau, the Northern Lhasaplano developed by plate convergence above the oceanic Neo-Tethyan subduction zone before the onset of the India-Asia collision.","owner":{"id":6407942,"first_name":"Prof. Marcelle","middle_initials":"","last_name":"Boudagher-Fadel","page_name":"MarcelleBoudagherFadel","domain_name":"ucl","created_at":"2013-10-27T10:31:03.235-07:00","display_name":"Prof. Marcelle Boudagher-Fadel","url":"https://ucl.academia.edu/MarcelleBoudagherFadel"},"attachments":[{"id":78604943,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78604943/thumbnails/1.jpg","file_name":"f63c638f-bb01-40ce-aaa5-513022cc57cf.pdf","download_url":"https://www.academia.edu/attachments/78604943/download_file","bulk_download_file_name":"Initial_growth_of_the_Northern_Lhasaplan.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78604943/f63c638f-bb01-40ce-aaa5-513022cc57cf-libre.pdf?1642079236=\u0026response-content-disposition=attachment%3B+filename%3DInitial_growth_of_the_Northern_Lhasaplan.pdf\u0026Expires=1742082205\u0026Signature=IsSTHFfukeSahrKH4EWtapPv8nOTFm4RGTr7A3TA~0oeIPHj3rJd2IMU1s3C3fOGNm5aGXv6yVU3OBKkC6xlLsgXia8kTtKvvGLPVOvRIqONPiEh17ZhWXLh3PPDU-g~85KhjP3tSc2Y5ee6sMod-Ok-d8QS2np-5rq4ETT3WfI2is2FblYYhPmzXe04DX7w-AqMeNRU93bwOM4Lc5jbvegSp24iE8lFUHNmAPDhoy4Clhzb0KQ30shrHkJXgNNx0owRtRsffxYQGpTDuqkO0Ep3wkbnAam2pfP3bkpeQOztLhmVTFaqFMXCLKmMmNalbCT19Vsb3rcUPkYcAUuRng__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":409,"name":"Geophysics","url":"https://www.academia.edu/Documents/in/Geophysics"}],"urls":[{"id":16349541,"url":"https://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/doi/10.1130/B35124.1/4676179/b35124.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="62300491"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/62300491/Early_Jurassic_carbon_isotope_perturbations_in_a_shallow_water_succession_from_the_Tethys_Himalaya_southern_hemisphere"><img alt="Research paper thumbnail of Early Jurassic carbon-isotope perturbations in a shallow-water succession from the Tethys Himalaya, southern hemisphere" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Early Jurassic carbon-isotope perturbations in a shallow-water succession from the Tethys Himalaya, southern hemisphere</div><div class="wp-workCard_item"><span>Newsletters on Stratigraphy</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="62300491"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="62300491"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 62300491; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=62300491]").text(description); $(".js-view-count[data-work-id=62300491]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 62300491; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='62300491']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=62300491]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":62300491,"title":"Early Jurassic carbon-isotope perturbations in a shallow-water succession from the Tethys Himalaya, southern hemisphere","translated_title":"","metadata":{"publisher":"Schweizerbart","publication_name":"Newsletters on Stratigraphy"},"translated_abstract":null,"internal_url":"https://www.academia.edu/62300491/Early_Jurassic_carbon_isotope_perturbations_in_a_shallow_water_succession_from_the_Tethys_Himalaya_southern_hemisphere","translated_internal_url":"","created_at":"2021-11-24T16:19:29.192-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6407942,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Early_Jurassic_carbon_isotope_perturbations_in_a_shallow_water_succession_from_the_Tethys_Himalaya_southern_hemisphere","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":6407942,"first_name":"Prof. Marcelle","middle_initials":"","last_name":"Boudagher-Fadel","page_name":"MarcelleBoudagherFadel","domain_name":"ucl","created_at":"2013-10-27T10:31:03.235-07:00","display_name":"Prof. Marcelle Boudagher-Fadel","url":"https://ucl.academia.edu/MarcelleBoudagherFadel"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="848012" id="papers"><div class="js-work-strip profile--work_container" data-work-id="78733731"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/78733731/The_closure_of_the_Vardar_ocean_the_western_domain_of_the_northern_Neotethys_from_early_Middle_Jurassic_to_Paleocene_time_based_on_surface_geology_of_eastern_Pelagonia_and_the_Vardar_zone_biostratigraphy_and_seismic_tomographic_images_of_the_mantle_below_the_Central_Hellenides"><img alt="Research paper thumbnail of The closure of the Vardar ocean (the western domain of the northern Neotethys) from early Middle Jurassic to Paleocene time, based on surface geology of eastern Pelagonia and the Vardar zone, biostratigraphy, and seismic-tomographic images of the mantle below the Central Hellenides" class="work-thumbnail" src="https://attachments.academia-assets.com/85676589/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/78733731/The_closure_of_the_Vardar_ocean_the_western_domain_of_the_northern_Neotethys_from_early_Middle_Jurassic_to_Paleocene_time_based_on_surface_geology_of_eastern_Pelagonia_and_the_Vardar_zone_biostratigraphy_and_seismic_tomographic_images_of_the_mantle_below_the_Central_Hellenides">The closure of the Vardar ocean (the western domain of the northern Neotethys) from early Middle Jurassic to Paleocene time, based on surface geology of eastern Pelagonia and the Vardar zone, biostratigraphy, and seismic-tomographic images of the mantle below the Central Hellenides</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Seismic tomographic images of the mantle below the Hellenides indicate that the Vardar ocean prob...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Seismic tomographic images of the mantle below the Hellenides indicate that the Vardar ocean probably had a composite width of over 3000 kilometres. From surface geology we know that this ocean was initially located between two passive margins: Pelagonian Adria in the west and Serbo-Macedonian-Eurasia in the east. Pelagonia was covered by a carbonate platform that accumulated, during Late Triassic to Early Cretaceous time, where highly diversified carbonate sedimentary environments evolved and reacted to the adjacent, converging Vardar ocean plate. We conceive that on the east side of the Vardar ocean, a Cretaceous carbonate platform evolved from Aptian to Maastrichtian time in the forearc basin of the Vardar supra-subduction volcanic arc complex. The closure of the Vardar ocean occurred in one episode of ophiolite obduction and in two episodes of intra-oceanic subduction. 1. During Middle Jurassic time a 1200-kilometre slab of west Vardar lithosphere subducted beneath the supra-subduction, "Eohellenic", arc, while a 200-kilometre-wide slab obducted onto Pelagonia between Callovian and Valanginian time. 2. During Late Jurassic through Cretaceous time a 1700-kilometre-wide slab subducted beneath the evolving east Vardar-zone arc-complex. Pelagonia, the trailing edge of the subducting east-Vardar ocean slab, crashed and underthrust the Vardar arc complex during Paleocene time and ultimately crashed with Serbo-Macedonia. Since late Early Jurassic time, the Hellenides have moved about 3000 kilometres toward the northeast while the Atlantic Ocean spread.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9ae19f8ac0473377b35f1e60d6891060" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":85676589,"asset_id":78733731,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/85676589/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="78733731"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="78733731"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 78733731; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=78733731]").text(description); $(".js-view-count[data-work-id=78733731]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 78733731; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='78733731']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9ae19f8ac0473377b35f1e60d6891060" } } $('.js-work-strip[data-work-id=78733731]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":78733731,"title":"The closure of the Vardar ocean (the western domain of the northern Neotethys) from early Middle Jurassic to Paleocene time, based on surface geology of eastern Pelagonia and the Vardar zone, biostratigraphy, and seismic-tomographic images of the mantle below the Central Hellenides","translated_title":"","metadata":{"publisher":"UCL Press","grobid_abstract":"Seismic tomographic images of the mantle below the Hellenides indicate that the Vardar ocean probably had a composite width of over 3000 kilometres. From surface geology we know that this ocean was initially located between two passive margins: Pelagonian Adria in the west and Serbo-Macedonian-Eurasia in the east. Pelagonia was covered by a carbonate platform that accumulated, during Late Triassic to Early Cretaceous time, where highly diversified carbonate sedimentary environments evolved and reacted to the adjacent, converging Vardar ocean plate. We conceive that on the east side of the Vardar ocean, a Cretaceous carbonate platform evolved from Aptian to Maastrichtian time in the forearc basin of the Vardar supra-subduction volcanic arc complex. The closure of the Vardar ocean occurred in one episode of ophiolite obduction and in two episodes of intra-oceanic subduction. 1. During Middle Jurassic time a 1200-kilometre slab of west Vardar lithosphere subducted beneath the supra-subduction, \"Eohellenic\", arc, while a 200-kilometre-wide slab obducted onto Pelagonia between Callovian and Valanginian time. 2. During Late Jurassic through Cretaceous time a 1700-kilometre-wide slab subducted beneath the evolving east Vardar-zone arc-complex. Pelagonia, the trailing edge of the subducting east-Vardar ocean slab, crashed and underthrust the Vardar arc complex during Paleocene time and ultimately crashed with Serbo-Macedonia. Since late Early Jurassic time, the Hellenides have moved about 3000 kilometres toward the northeast while the Atlantic Ocean spread.","publication_date":{"day":8,"month":7,"year":2021,"errors":{}},"grobid_abstract_attachment_id":85676589},"translated_abstract":null,"internal_url":"https://www.academia.edu/78733731/The_closure_of_the_Vardar_ocean_the_western_domain_of_the_northern_Neotethys_from_early_Middle_Jurassic_to_Paleocene_time_based_on_surface_geology_of_eastern_Pelagonia_and_the_Vardar_zone_biostratigraphy_and_seismic_tomographic_images_of_the_mantle_below_the_Central_Hellenides","translated_internal_url":"","created_at":"2022-05-08T01:38:42.626-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6407942,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":85676589,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85676589/thumbnails/1.jpg","file_name":"1_202021_20corrected_20closure_20of_20Vardar_20ocean_20text_Figs_205-21-21_20reduced_20size.pdf","download_url":"https://www.academia.edu/attachments/85676589/download_file","bulk_download_file_name":"The_closure_of_the_Vardar_ocean_the_west.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85676589/1_202021_20corrected_20closure_20of_20Vardar_20ocean_20text_Figs_205-21-21_20reduced_20size-libre.pdf?1651999750=\u0026response-content-disposition=attachment%3B+filename%3DThe_closure_of_the_Vardar_ocean_the_west.pdf\u0026Expires=1741739494\u0026Signature=e91~SYGvkyv~eM37PtdyxwLgOWRcxQuU1bxhHhhtLg8r5P84O0ykzv1JrX3QO~ljRQPeQl0Fonk44n8s91BwbXTIfZMjYm6NTdNO2lnSQezx6xSWbR6iMin4wEG~djC9w92bRUQgf0J7AnaWHUBElvTOAXwnV5xh4fgZdNiz3eGYt3v2fYvNzAWiwit1r8vKGo65pEH42aqRv6B1kGUP~tO2sJv71sRfdYpXNRPTW46LuSqeqESP4jD3wX9hdPqkc0R30of3iuOdhxnqTxFLoSZ1-Scjz21jCNognSANkNoKMbjRgcMfiYwKdDeazNMiHf4l-ID9cs9ZquIpD1nDNg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_closure_of_the_Vardar_ocean_the_western_domain_of_the_northern_Neotethys_from_early_Middle_Jurassic_to_Paleocene_time_based_on_surface_geology_of_eastern_Pelagonia_and_the_Vardar_zone_biostratigraphy_and_seismic_tomographic_images_of_the_mantle_below_the_Central_Hellenides","translated_slug":"","page_count":42,"language":"en","content_type":"Work","summary":"Seismic tomographic images of the mantle below the Hellenides indicate that the Vardar ocean probably had a composite width of over 3000 kilometres. From surface geology we know that this ocean was initially located between two passive margins: Pelagonian Adria in the west and Serbo-Macedonian-Eurasia in the east. Pelagonia was covered by a carbonate platform that accumulated, during Late Triassic to Early Cretaceous time, where highly diversified carbonate sedimentary environments evolved and reacted to the adjacent, converging Vardar ocean plate. We conceive that on the east side of the Vardar ocean, a Cretaceous carbonate platform evolved from Aptian to Maastrichtian time in the forearc basin of the Vardar supra-subduction volcanic arc complex. The closure of the Vardar ocean occurred in one episode of ophiolite obduction and in two episodes of intra-oceanic subduction. 1. During Middle Jurassic time a 1200-kilometre slab of west Vardar lithosphere subducted beneath the supra-subduction, \"Eohellenic\", arc, while a 200-kilometre-wide slab obducted onto Pelagonia between Callovian and Valanginian time. 2. During Late Jurassic through Cretaceous time a 1700-kilometre-wide slab subducted beneath the evolving east Vardar-zone arc-complex. Pelagonia, the trailing edge of the subducting east-Vardar ocean slab, crashed and underthrust the Vardar arc complex during Paleocene time and ultimately crashed with Serbo-Macedonia. Since late Early Jurassic time, the Hellenides have moved about 3000 kilometres toward the northeast while the Atlantic Ocean spread.","owner":{"id":6407942,"first_name":"Prof. Marcelle","middle_initials":"","last_name":"Boudagher-Fadel","page_name":"MarcelleBoudagherFadel","domain_name":"ucl","created_at":"2013-10-27T10:31:03.235-07:00","display_name":"Prof. Marcelle Boudagher-Fadel","url":"https://ucl.academia.edu/MarcelleBoudagherFadel"},"attachments":[{"id":85676589,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85676589/thumbnails/1.jpg","file_name":"1_202021_20corrected_20closure_20of_20Vardar_20ocean_20text_Figs_205-21-21_20reduced_20size.pdf","download_url":"https://www.academia.edu/attachments/85676589/download_file","bulk_download_file_name":"The_closure_of_the_Vardar_ocean_the_west.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85676589/1_202021_20corrected_20closure_20of_20Vardar_20ocean_20text_Figs_205-21-21_20reduced_20size-libre.pdf?1651999750=\u0026response-content-disposition=attachment%3B+filename%3DThe_closure_of_the_Vardar_ocean_the_west.pdf\u0026Expires=1741739494\u0026Signature=e91~SYGvkyv~eM37PtdyxwLgOWRcxQuU1bxhHhhtLg8r5P84O0ykzv1JrX3QO~ljRQPeQl0Fonk44n8s91BwbXTIfZMjYm6NTdNO2lnSQezx6xSWbR6iMin4wEG~djC9w92bRUQgf0J7AnaWHUBElvTOAXwnV5xh4fgZdNiz3eGYt3v2fYvNzAWiwit1r8vKGo65pEH42aqRv6B1kGUP~tO2sJv71sRfdYpXNRPTW46LuSqeqESP4jD3wX9hdPqkc0R30of3iuOdhxnqTxFLoSZ1-Scjz21jCNognSANkNoKMbjRgcMfiYwKdDeazNMiHf4l-ID9cs9ZquIpD1nDNg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":20316569,"url":"https://ucl.scienceopen.com/document_file/2d35b750-14a5-476b-b77f-b72a141708c4/ScienceOpenPreprint/1%202021%20corrected%20closure%20of%20Vardar%20ocean%20text+Figs%205-21-21%20reduced%20size.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="78733725"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/78733725/The_Paleogene_record_of_Himalayan_erosion_Bengal_Basin_Bangladesh"><img alt="Research paper thumbnail of The Paleogene record of Himalayan erosion: Bengal Basin, Bangladesh" class="work-thumbnail" src="https://attachments.academia-assets.com/85676619/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/78733725/The_Paleogene_record_of_Himalayan_erosion_Bengal_Basin_Bangladesh">The Paleogene record of Himalayan erosion: Bengal Basin, Bangladesh</a></div><div class="wp-workCard_item"><span>Earth and Planetary Science Letters</span><span>, 2008</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This article appeared in a journal published by Elsevier. The attached copy is furnished to the a...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: <a href="http://www.elsevier.com/copyright" rel="nofollow">http://www.elsevier.com/copyright</a></span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1d471c30808d3e8fda3796f2d89473ed" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":85676619,"asset_id":78733725,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/85676619/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="78733725"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="78733725"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 78733725; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=78733725]").text(description); $(".js-view-count[data-work-id=78733725]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 78733725; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='78733725']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1d471c30808d3e8fda3796f2d89473ed" } } $('.js-work-strip[data-work-id=78733725]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":78733725,"title":"The Paleogene record of Himalayan erosion: Bengal Basin, Bangladesh","translated_title":"","metadata":{"publisher":"Elsevier BV","ai_title_tag":"Paleogene Himalayan Erosion in Bangladesh's Bengal Basin","grobid_abstract":"This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"Earth and Planetary Science Letters","grobid_abstract_attachment_id":85676619},"translated_abstract":null,"internal_url":"https://www.academia.edu/78733725/The_Paleogene_record_of_Himalayan_erosion_Bengal_Basin_Bangladesh","translated_internal_url":"","created_at":"2022-05-08T01:38:34.782-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6407942,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":85676619,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85676619/thumbnails/1.jpg","file_name":"Najman_20et_20al_20EPSL_202008.pdf","download_url":"https://www.academia.edu/attachments/85676619/download_file","bulk_download_file_name":"The_Paleogene_record_of_Himalayan_erosio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85676619/Najman_20et_20al_20EPSL_202008-libre.pdf?1651999735=\u0026response-content-disposition=attachment%3B+filename%3DThe_Paleogene_record_of_Himalayan_erosio.pdf\u0026Expires=1742082204\u0026Signature=HWmi1ysx1DPZS6kZR289jzxBqmJrkzBnS~W3lFUICWp~y4LrO6ykADMOSrcsrcMtHz2KNMzYhTZDtdPrgVaZ8u~QwA2YU7wtHQjx7y-beaBFUfoyKD3yoNCloht7j3ZKyIR2kq1oB5-6AHJXTVRbiiPY62Fi4oa7bO6UvQsSvfhqsAM-29Cc22JvLXP8R6rCsXL8uECYMV4AfQtdEFE7-7upUIggCQssVNe-m6cdv6ZmMEuNVB7n-TQFXBLKviK6A56TIUX8u~yL7KkOJG1Vmqwm89B2fLwdTHnHMpp-KLUEATYh93BWS4prJM08W~37P-rR46ojnNlRIQ6-KmJdkQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_Paleogene_record_of_Himalayan_erosion_Bengal_Basin_Bangladesh","translated_slug":"","page_count":15,"language":"en","content_type":"Work","summary":"This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright","owner":{"id":6407942,"first_name":"Prof. Marcelle","middle_initials":"","last_name":"Boudagher-Fadel","page_name":"MarcelleBoudagherFadel","domain_name":"ucl","created_at":"2013-10-27T10:31:03.235-07:00","display_name":"Prof. Marcelle Boudagher-Fadel","url":"https://ucl.academia.edu/MarcelleBoudagherFadel"},"attachments":[{"id":85676619,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85676619/thumbnails/1.jpg","file_name":"Najman_20et_20al_20EPSL_202008.pdf","download_url":"https://www.academia.edu/attachments/85676619/download_file","bulk_download_file_name":"The_Paleogene_record_of_Himalayan_erosio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85676619/Najman_20et_20al_20EPSL_202008-libre.pdf?1651999735=\u0026response-content-disposition=attachment%3B+filename%3DThe_Paleogene_record_of_Himalayan_erosio.pdf\u0026Expires=1742082204\u0026Signature=HWmi1ysx1DPZS6kZR289jzxBqmJrkzBnS~W3lFUICWp~y4LrO6ykADMOSrcsrcMtHz2KNMzYhTZDtdPrgVaZ8u~QwA2YU7wtHQjx7y-beaBFUfoyKD3yoNCloht7j3ZKyIR2kq1oB5-6AHJXTVRbiiPY62Fi4oa7bO6UvQsSvfhqsAM-29Cc22JvLXP8R6rCsXL8uECYMV4AfQtdEFE7-7upUIggCQssVNe-m6cdv6ZmMEuNVB7n-TQFXBLKviK6A56TIUX8u~yL7KkOJG1Vmqwm89B2fLwdTHnHMpp-KLUEATYh93BWS4prJM08W~37P-rR46ojnNlRIQ6-KmJdkQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":400,"name":"Earth Sciences","url":"https://www.academia.edu/Documents/in/Earth_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":241723,"name":"Earth and Planetary Science","url":"https://www.academia.edu/Documents/in/Earth_and_Planetary_Science"},{"id":675513,"name":"Earth and Planetary Sciences","url":"https://www.academia.edu/Documents/in/Earth_and_Planetary_Sciences"},{"id":862322,"name":"Channel Flow","url":"https://www.academia.edu/Documents/in/Channel_Flow"},{"id":897823,"name":"Elsevier","url":"https://www.academia.edu/Documents/in/Elsevier"},{"id":1260395,"name":"Crustal Deformation","url":"https://www.academia.edu/Documents/in/Crustal_Deformation"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="72711915"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/72711915/The_Geographic_Environmental_and_Phylogenetic_Evolution_of_the_Alveolinoidea_from_the_Cretaceous_to_the_Present_Day"><img alt="Research paper thumbnail of The Geographic, Environmental and Phylogenetic Evolution of the Alveolinoidea from the Cretaceous to the Present Day" class="work-thumbnail" src="https://attachments.academia-assets.com/81531220/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/72711915/The_Geographic_Environmental_and_Phylogenetic_Evolution_of_the_Alveolinoidea_from_the_Cretaceous_to_the_Present_Day">The Geographic, Environmental and Phylogenetic Evolution of the Alveolinoidea from the Cretaceous to the Present Day</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The superfamily Alveolinoidea is a member of the Order Miliolida, and is comprised of three main ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The superfamily Alveolinoidea is a member of the Order Miliolida, and is comprised of three main families, the Alveolinidae, the Fabulariidae and the Rhapydioninidae. They are examples of Larger Benthic Foraminifera (LBF), which are single-celled organisms with specific characteristic endoskeletons. Alveolinoids are found globally from the Cretaceous to the the repeated re-occurrence of certain morphological features. Understanding this propensity to homoplasy is essential in understanding and constructing the phylogenetic relationships within the alveolinoid superfamily.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e366601f38406c5cc517975d126c1383" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":81531220,"asset_id":72711915,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/81531220/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="72711915"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="72711915"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 72711915; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=72711915]").text(description); $(".js-view-count[data-work-id=72711915]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 72711915; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='72711915']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e366601f38406c5cc517975d126c1383" } } $('.js-work-strip[data-work-id=72711915]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":72711915,"title":"The Geographic, Environmental and Phylogenetic Evolution of the Alveolinoidea from the Cretaceous to the Present Day","translated_title":"","metadata":{"publisher":"UCL Press","ai_title_tag":"Evolution and Phylogeny of Alveolinoidea Since the Cretaceous","grobid_abstract":"The superfamily Alveolinoidea is a member of the Order Miliolida, and is comprised of three main families, the Alveolinidae, the Fabulariidae and the Rhapydioninidae. They are examples of Larger Benthic Foraminifera (LBF), which are single-celled organisms with specific characteristic endoskeletons. Alveolinoids are found globally from the Cretaceous to the the repeated re-occurrence of certain morphological features. Understanding this propensity to homoplasy is essential in understanding and constructing the phylogenetic relationships within the alveolinoid superfamily.","publication_date":{"day":23,"month":1,"year":2021,"errors":{}},"grobid_abstract_attachment_id":81531220},"translated_abstract":null,"internal_url":"https://www.academia.edu/72711915/The_Geographic_Environmental_and_Phylogenetic_Evolution_of_the_Alveolinoidea_from_the_Cretaceous_to_the_Present_Day","translated_internal_url":"","created_at":"2022-03-01T13:07:10.541-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6407942,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":81531220,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531220/thumbnails/1.jpg","file_name":"alveolinid_20article_20without_20highlight_20combined_20JH_20and_20PH_20reviews_20and_20final_20corrections_20MF_20and_20DP_20REDUCED_20.pdf","download_url":"https://www.academia.edu/attachments/81531220/download_file","bulk_download_file_name":"The_Geographic_Environmental_and_Phyloge.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531220/alveolinid_20article_20without_20highlight_20combined_20JH_20and_20PH_20reviews_20and_20final_20corrections_20MF_20and_20DP_20REDUCED_20-libre.pdf?1646169129=\u0026response-content-disposition=attachment%3B+filename%3DThe_Geographic_Environmental_and_Phyloge.pdf\u0026Expires=1742542208\u0026Signature=WvFH6cakVVtwIdUca5zWmigNlxB5ZfCkljN3csexMZE3FeTCK1BYWr00UWS3PKhxxHuNcEGfnFyk2g8sGeZuA5ETlMhNL0lm11rHXEBm7ZFy2D5b7xVmEHGvbubApi-lvPxdv1jlB1xl9z0oS1a1dk2w~rytjHAQmSEcQtNLpK-jHgcMjqjQMTQnD3zosU47dJka1Z34zgWLIxpUsGfBqDUgjoPDYkSU1RPGCRWjgTK9Z0qULxGWoQqe2FIHAaXl7gxgGL7ZMgREI3d0e40Fk6h~A7HS7RQ1Xao~CjX4wkwwD4xPub5l4wNXd6LKZEB7o5gaeTCflNcky07WtBzbZA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_Geographic_Environmental_and_Phylogenetic_Evolution_of_the_Alveolinoidea_from_the_Cretaceous_to_the_Present_Day","translated_slug":"","page_count":69,"language":"en","content_type":"Work","summary":"The superfamily Alveolinoidea is a member of the Order Miliolida, and is comprised of three main families, the Alveolinidae, the Fabulariidae and the Rhapydioninidae. They are examples of Larger Benthic Foraminifera (LBF), which are single-celled organisms with specific characteristic endoskeletons. Alveolinoids are found globally from the Cretaceous to the the repeated re-occurrence of certain morphological features. Understanding this propensity to homoplasy is essential in understanding and constructing the phylogenetic relationships within the alveolinoid superfamily.","owner":{"id":6407942,"first_name":"Prof. Marcelle","middle_initials":"","last_name":"Boudagher-Fadel","page_name":"MarcelleBoudagherFadel","domain_name":"ucl","created_at":"2013-10-27T10:31:03.235-07:00","display_name":"Prof. Marcelle Boudagher-Fadel","url":"https://ucl.academia.edu/MarcelleBoudagherFadel"},"attachments":[{"id":81531220,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531220/thumbnails/1.jpg","file_name":"alveolinid_20article_20without_20highlight_20combined_20JH_20and_20PH_20reviews_20and_20final_20corrections_20MF_20and_20DP_20REDUCED_20.pdf","download_url":"https://www.academia.edu/attachments/81531220/download_file","bulk_download_file_name":"The_Geographic_Environmental_and_Phyloge.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531220/alveolinid_20article_20without_20highlight_20combined_20JH_20and_20PH_20reviews_20and_20final_20corrections_20MF_20and_20DP_20REDUCED_20-libre.pdf?1646169129=\u0026response-content-disposition=attachment%3B+filename%3DThe_Geographic_Environmental_and_Phyloge.pdf\u0026Expires=1742542208\u0026Signature=WvFH6cakVVtwIdUca5zWmigNlxB5ZfCkljN3csexMZE3FeTCK1BYWr00UWS3PKhxxHuNcEGfnFyk2g8sGeZuA5ETlMhNL0lm11rHXEBm7ZFy2D5b7xVmEHGvbubApi-lvPxdv1jlB1xl9z0oS1a1dk2w~rytjHAQmSEcQtNLpK-jHgcMjqjQMTQnD3zosU47dJka1Z34zgWLIxpUsGfBqDUgjoPDYkSU1RPGCRWjgTK9Z0qULxGWoQqe2FIHAaXl7gxgGL7ZMgREI3d0e40Fk6h~A7HS7RQ1Xao~CjX4wkwwD4xPub5l4wNXd6LKZEB7o5gaeTCflNcky07WtBzbZA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":81531221,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531221/thumbnails/1.jpg","file_name":"alveolinid_20article_20without_20highlight_20combined_20JH_20and_20PH_20reviews_20and_20final_20corrections_20MF_20and_20DP_20REDUCED_20.pdf","download_url":"https://www.academia.edu/attachments/81531221/download_file","bulk_download_file_name":"The_Geographic_Environmental_and_Phyloge.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531221/alveolinid_20article_20without_20highlight_20combined_20JH_20and_20PH_20reviews_20and_20final_20corrections_20MF_20and_20DP_20REDUCED_20-libre.pdf?1646169126=\u0026response-content-disposition=attachment%3B+filename%3DThe_Geographic_Environmental_and_Phyloge.pdf\u0026Expires=1742542208\u0026Signature=PqmhCMIQ4VgjtW5ChQgZCkAK6z7Xn8yBFo8PuQM4Y~N8mS8bUBV8BvFSobR7td4gLYxE-LwLUYhSSMXfm-9m6W5I~7Dk9RGLtwAhIhGwIJAVL4sUY2QFgmqgfTNQkWld0K9ja-Iru1MAGoiKM0uv5o~dFOgOkUdrAlhNQCe73wDcilK-Wi7g0uYJUJAD7RzZS1e3iPttAhyFJs0xdmBW30GPFfkCfDu5-4ZGeu4luIupyA1dYHe7V5lqV3IO-VVB~jOIzEYsv5S07hi8TdB-Sjb1kVYM9-6e4z5ogSZvXYtE4edZz5soOLBif5ffswrjZtcv19nmX9h1qwAT3JoSRA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":261,"name":"Geography","url":"https://www.academia.edu/Documents/in/Geography"}],"urls":[{"id":18119937,"url":"https://ucl.scienceopen.com/document_file/a13c8064-ac3e-4264-9fd3-959053df5b7b/ScienceOpenPreprint/alveolinid%20article%20without%20highlight%20combined%20JH%20and%20PH%20reviews%20and%20final%20corrections%20MF%20and%20DP%20(REDUCED%20SIZE).pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="72711914"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/72711914/Geochemistry_and_biostratigraphy_of_Eocene_sediments_from_Samothraki_Island_NE_Greece"><img alt="Research paper thumbnail of Geochemistry and biostratigraphy of Eocene sediments from Samothraki Island, NE Greece" class="work-thumbnail" src="https://attachments.academia-assets.com/83909707/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/72711914/Geochemistry_and_biostratigraphy_of_Eocene_sediments_from_Samothraki_Island_NE_Greece">Geochemistry and biostratigraphy of Eocene sediments from Samothraki Island, NE Greece</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract: Elevated whole-rock concentrations in Cr, Ni and V as well as the occurrence of detrita...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract: Elevated whole-rock concentrations in Cr, Ni and V as well as the occurrence of detrital chrome spinel suggest an input of (ultra)mafic detritus into the Eocene clastic sediments of Samo-thraki Island. Detrital chrome spinel chemistry indicates a mixed source of MOR-type peridotites and supra-subduction zone (SSZ) peridotites, and minor volcanic rocks, supposedly island-arc basalts and MORB-type rocks, most likely derived from Vardarian ophiolites. Wackestones from the southwest of Samothraki contain a moderately well-preserved calcareous microfossil assemblage, comprising Nummulites fabianii (PREVER), Nummulites striatus (BRUGUIÈRE), Pellatispira sp., and Operculina sp., indicating an early Priabonian age (Late Eocene). The sedimentation of the Eocene succession was influenced by regional tectonic and volcanic activity. The rocks have been deposited contemporaneous with the extensional exhumation of the eastern Rhodope Massif.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8822087d374d6333fee99065d4058f43" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":83909707,"asset_id":72711914,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/83909707/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="72711914"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="72711914"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 72711914; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=72711914]").text(description); $(".js-view-count[data-work-id=72711914]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 72711914; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='72711914']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8822087d374d6333fee99065d4058f43" } } $('.js-work-strip[data-work-id=72711914]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":72711914,"title":"Geochemistry and biostratigraphy of Eocene sediments from Samothraki Island, NE Greece","translated_title":"","metadata":{"abstract":"Abstract: Elevated whole-rock concentrations in Cr, Ni and V as well as the occurrence of detrital chrome spinel suggest an input of (ultra)mafic detritus into the Eocene clastic sediments of Samo-thraki Island. Detrital chrome spinel chemistry indicates a mixed source of MOR-type peridotites and supra-subduction zone (SSZ) peridotites, and minor volcanic rocks, supposedly island-arc basalts and MORB-type rocks, most likely derived from Vardarian ophiolites. Wackestones from the southwest of Samothraki contain a moderately well-preserved calcareous microfossil assemblage, comprising Nummulites fabianii (PREVER), Nummulites striatus (BRUGUIÈRE), Pellatispira sp., and Operculina sp., indicating an early Priabonian age (Late Eocene). The sedimentation of the Eocene succession was influenced by regional tectonic and volcanic activity. The rocks have been deposited contemporaneous with the extensional exhumation of the eastern Rhodope Massif.","ai_title_tag":"Eocene Sediment Geochemistry in Samothraki","publication_date":{"day":null,"month":null,"year":2016,"errors":{}}},"translated_abstract":"Abstract: Elevated whole-rock concentrations in Cr, Ni and V as well as the occurrence of detrital chrome spinel suggest an input of (ultra)mafic detritus into the Eocene clastic sediments of Samo-thraki Island. Detrital chrome spinel chemistry indicates a mixed source of MOR-type peridotites and supra-subduction zone (SSZ) peridotites, and minor volcanic rocks, supposedly island-arc basalts and MORB-type rocks, most likely derived from Vardarian ophiolites. Wackestones from the southwest of Samothraki contain a moderately well-preserved calcareous microfossil assemblage, comprising Nummulites fabianii (PREVER), Nummulites striatus (BRUGUIÈRE), Pellatispira sp., and Operculina sp., indicating an early Priabonian age (Late Eocene). The sedimentation of the Eocene succession was influenced by regional tectonic and volcanic activity. The rocks have been deposited contemporaneous with the extensional exhumation of the eastern Rhodope Massif.","internal_url":"https://www.academia.edu/72711914/Geochemistry_and_biostratigraphy_of_Eocene_sediments_from_Samothraki_Island_NE_Greece","translated_internal_url":"","created_at":"2022-03-01T13:07:10.332-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6407942,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":83909707,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83909707/thumbnails/1.jpg","file_name":"bc9feea8f979c12d59ccaded0dcdd830749b.pdf","download_url":"https://www.academia.edu/attachments/83909707/download_file","bulk_download_file_name":"Geochemistry_and_biostratigraphy_of_Eoce.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83909707/bc9feea8f979c12d59ccaded0dcdd830749b-libre.pdf?1649738407=\u0026response-content-disposition=attachment%3B+filename%3DGeochemistry_and_biostratigraphy_of_Eoce.pdf\u0026Expires=1742082204\u0026Signature=SxxGx~5AqgRGqdJIjaz7vruX-yohRUx6tSS0dA9MGsp1C24t8IzQVkP3QEe3sC~4qjnrKqXUqO~X84u8d5b8O2gLNU0q665MaNyTyvapcGiCEC7th3WhPKWI0xM~sL3xAplhYPw3j10TgOKKkbYDC~3QI5~p7avpS80r7V6ZXKxGEKgHTry8XEmatRlhREaFupu576ZACmGaeuGgn3GPYbZGN2hnOLOBAP3ZatN1JghMTzvVSwMOZqEbFImPkAKSAlpEC5vuFXiZWbWs2rt3CnDSWOj7VDwJ2N6RubOB21WwOH3ROKOv~mJvszCxLqefQonoRZDvN99gw1kOdwVwmg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Geochemistry_and_biostratigraphy_of_Eocene_sediments_from_Samothraki_Island_NE_Greece","translated_slug":"","page_count":22,"language":"en","content_type":"Work","summary":"Abstract: Elevated whole-rock concentrations in Cr, Ni and V as well as the occurrence of detrital chrome spinel suggest an input of (ultra)mafic detritus into the Eocene clastic sediments of Samo-thraki Island. Detrital chrome spinel chemistry indicates a mixed source of MOR-type peridotites and supra-subduction zone (SSZ) peridotites, and minor volcanic rocks, supposedly island-arc basalts and MORB-type rocks, most likely derived from Vardarian ophiolites. Wackestones from the southwest of Samothraki contain a moderately well-preserved calcareous microfossil assemblage, comprising Nummulites fabianii (PREVER), Nummulites striatus (BRUGUIÈRE), Pellatispira sp., and Operculina sp., indicating an early Priabonian age (Late Eocene). The sedimentation of the Eocene succession was influenced by regional tectonic and volcanic activity. The rocks have been deposited contemporaneous with the extensional exhumation of the eastern Rhodope Massif.","owner":{"id":6407942,"first_name":"Prof. Marcelle","middle_initials":"","last_name":"Boudagher-Fadel","page_name":"MarcelleBoudagherFadel","domain_name":"ucl","created_at":"2013-10-27T10:31:03.235-07:00","display_name":"Prof. Marcelle Boudagher-Fadel","url":"https://ucl.academia.edu/MarcelleBoudagherFadel"},"attachments":[{"id":83909707,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/83909707/thumbnails/1.jpg","file_name":"bc9feea8f979c12d59ccaded0dcdd830749b.pdf","download_url":"https://www.academia.edu/attachments/83909707/download_file","bulk_download_file_name":"Geochemistry_and_biostratigraphy_of_Eoce.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/83909707/bc9feea8f979c12d59ccaded0dcdd830749b-libre.pdf?1649738407=\u0026response-content-disposition=attachment%3B+filename%3DGeochemistry_and_biostratigraphy_of_Eoce.pdf\u0026Expires=1742082204\u0026Signature=SxxGx~5AqgRGqdJIjaz7vruX-yohRUx6tSS0dA9MGsp1C24t8IzQVkP3QEe3sC~4qjnrKqXUqO~X84u8d5b8O2gLNU0q665MaNyTyvapcGiCEC7th3WhPKWI0xM~sL3xAplhYPw3j10TgOKKkbYDC~3QI5~p7avpS80r7V6ZXKxGEKgHTry8XEmatRlhREaFupu576ZACmGaeuGgn3GPYbZGN2hnOLOBAP3ZatN1JghMTzvVSwMOZqEbFImPkAKSAlpEC5vuFXiZWbWs2rt3CnDSWOj7VDwJ2N6RubOB21WwOH3ROKOv~mJvszCxLqefQonoRZDvN99gw1kOdwVwmg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":155,"name":"Evolutionary Biology","url":"https://www.academia.edu/Documents/in/Evolutionary_Biology"},{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":9846,"name":"Ecology","url":"https://www.academia.edu/Documents/in/Ecology"},{"id":10477,"name":"Provenance","url":"https://www.academia.edu/Documents/in/Provenance"},{"id":60645,"name":"Eocene","url":"https://www.academia.edu/Documents/in/Eocene"},{"id":126624,"name":"Foraminifera","url":"https://www.academia.edu/Documents/in/Foraminifera"},{"id":427161,"name":"Aegean Sea","url":"https://www.academia.edu/Documents/in/Aegean_Sea"},{"id":1177474,"name":"Samothraki","url":"https://www.academia.edu/Documents/in/Samothraki"}],"urls":[{"id":18119936,"url":"http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.714.2533\u0026rep=rep1\u0026type=pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="72711913"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/72711913/Benthic_foraminifera_distribution_and_sedimentary_environmental_evolution_of_a_carbonate_platform_A_case_study_of_the_Guadalupian_middle_Permian_in_eastern_Sichuan_Basin"><img alt="Research paper thumbnail of Benthic foraminifera distribution and sedimentary environmental evolution of a carbonate platform: A case study of the Guadalupian (middle Permian) in eastern Sichuan Basin" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Benthic foraminifera distribution and sedimentary environmental evolution of a carbonate platform: A case study of the Guadalupian (middle Permian) in eastern Sichuan Basin</div><div class="wp-workCard_item"><span>Marine Micropaleontology</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="72711913"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="72711913"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 72711913; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=72711913]").text(description); $(".js-view-count[data-work-id=72711913]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 72711913; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='72711913']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=72711913]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":72711913,"title":"Benthic foraminifera distribution and sedimentary environmental evolution of a carbonate platform: A case study of the Guadalupian (middle Permian) in eastern Sichuan Basin","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_name":"Marine Micropaleontology"},"translated_abstract":null,"internal_url":"https://www.academia.edu/72711913/Benthic_foraminifera_distribution_and_sedimentary_environmental_evolution_of_a_carbonate_platform_A_case_study_of_the_Guadalupian_middle_Permian_in_eastern_Sichuan_Basin","translated_internal_url":"","created_at":"2022-03-01T13:07:10.099-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6407942,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Benthic_foraminifera_distribution_and_sedimentary_environmental_evolution_of_a_carbonate_platform_A_case_study_of_the_Guadalupian_middle_Permian_in_eastern_Sichuan_Basin","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":6407942,"first_name":"Prof. Marcelle","middle_initials":"","last_name":"Boudagher-Fadel","page_name":"MarcelleBoudagherFadel","domain_name":"ucl","created_at":"2013-10-27T10:31:03.235-07:00","display_name":"Prof. Marcelle Boudagher-Fadel","url":"https://ucl.academia.edu/MarcelleBoudagherFadel"},"attachments":[],"research_interests":[{"id":155,"name":"Evolutionary Biology","url":"https://www.academia.edu/Documents/in/Evolutionary_Biology"},{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":9846,"name":"Ecology","url":"https://www.academia.edu/Documents/in/Ecology"},{"id":573084,"name":"Marine Micropaleontology","url":"https://www.academia.edu/Documents/in/Marine_Micropaleontology"}],"urls":[{"id":18119935,"url":"https://api.elsevier.com/content/article/PII:S0377839821001201?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="72711911"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/72711911/The_geographic_environmental_and_phylogenetic_evolution_of_the_Alveolinoidea_from_the_Cretaceous_to_the_present_day"><img alt="Research paper thumbnail of The geographic, environmental and phylogenetic evolution of the Alveolinoidea from the Cretaceous to the present day" class="work-thumbnail" src="https://attachments.academia-assets.com/81531222/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/72711911/The_geographic_environmental_and_phylogenetic_evolution_of_the_Alveolinoidea_from_the_Cretaceous_to_the_present_day">The geographic, environmental and phylogenetic evolution of the Alveolinoidea from the Cretaceous to the present day</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The superfamily Alveolinoidea is a member of the Order Miliolida, and is comprised of three main ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The superfamily Alveolinoidea is a member of the Order Miliolida, and is comprised of three main families, the Alveolinidae, the Fabulariidae and the Rhapydioninidae. They are examples of Larger Benthic Foraminifera (LBF), which are single cell organisms with specific characteristic endoskeletons. Alveolinoids are found globally from the Cretaceous to present day and are very important biostratigraphic index fossils in shallow-marine carbonates. They are often associated with significant hydrocarbon reservoirs, and exhibit provincialism with characteristic genera often confined to one of the American, Tethyan or Indo-Pacific provinces. Previously, the systematic study of the global interrelationship between the various alveolinoid lineages has not been possible because of the absence of biostratigraphic correlation between the geographically scattered assemblages, and the scarcity of described material from the Indo-Pacific province. Here we use the literature and new material from ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5d920c499765cb69196c40d4fdd06356" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":81531222,"asset_id":72711911,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/81531222/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="72711911"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="72711911"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 72711911; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=72711911]").text(description); $(".js-view-count[data-work-id=72711911]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 72711911; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='72711911']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5d920c499765cb69196c40d4fdd06356" } } $('.js-work-strip[data-work-id=72711911]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":72711911,"title":"The geographic, environmental and phylogenetic evolution of the Alveolinoidea from the Cretaceous to the present day","translated_title":"","metadata":{"abstract":"The superfamily Alveolinoidea is a member of the Order Miliolida, and is comprised of three main families, the Alveolinidae, the Fabulariidae and the Rhapydioninidae. They are examples of Larger Benthic Foraminifera (LBF), which are single cell organisms with specific characteristic endoskeletons. Alveolinoids are found globally from the Cretaceous to present day and are very important biostratigraphic index fossils in shallow-marine carbonates. They are often associated with significant hydrocarbon reservoirs, and exhibit provincialism with characteristic genera often confined to one of the American, Tethyan or Indo-Pacific provinces. Previously, the systematic study of the global interrelationship between the various alveolinoid lineages has not been possible because of the absence of biostratigraphic correlation between the geographically scattered assemblages, and the scarcity of described material from the Indo-Pacific province. Here we use the literature and new material from ...","publication_date":{"day":null,"month":null,"year":2021,"errors":{}}},"translated_abstract":"The superfamily Alveolinoidea is a member of the Order Miliolida, and is comprised of three main families, the Alveolinidae, the Fabulariidae and the Rhapydioninidae. They are examples of Larger Benthic Foraminifera (LBF), which are single cell organisms with specific characteristic endoskeletons. Alveolinoids are found globally from the Cretaceous to present day and are very important biostratigraphic index fossils in shallow-marine carbonates. They are often associated with significant hydrocarbon reservoirs, and exhibit provincialism with characteristic genera often confined to one of the American, Tethyan or Indo-Pacific provinces. Previously, the systematic study of the global interrelationship between the various alveolinoid lineages has not been possible because of the absence of biostratigraphic correlation between the geographically scattered assemblages, and the scarcity of described material from the Indo-Pacific province. Here we use the literature and new material from ...","internal_url":"https://www.academia.edu/72711911/The_geographic_environmental_and_phylogenetic_evolution_of_the_Alveolinoidea_from_the_Cretaceous_to_the_present_day","translated_internal_url":"","created_at":"2022-03-01T13:07:09.864-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6407942,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":81531222,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531222/thumbnails/1.jpg","file_name":"ucloe-02-015.pdf","download_url":"https://www.academia.edu/attachments/81531222/download_file","bulk_download_file_name":"The_geographic_environmental_and_phyloge.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531222/ucloe-02-015-libre.pdf?1646169106=\u0026response-content-disposition=attachment%3B+filename%3DThe_geographic_environmental_and_phyloge.pdf\u0026Expires=1742082204\u0026Signature=Tjy9WK9TG3PagBV6mv9nEo4H-nbvtmRIB9nKhczT0C3pxeGP2nfWU~Fkx8rkjIkRpUPjSjEMJnabgt-IYyPv~H0XPLRi-ZcpcZMgc8-1a6tsl0obIwYE30Al6tsRxO1MnHWfmbKmMFp-xtimR2q5e3iL8RvkXdA3cvqvvrXs6LdUhqdg92isOp95jcTr87Dv2Du8EjCHs1ebCwlj~UMcuDID8Ph5CIaskUFT~If8KSu9JSNRw9kmjGWLCYiEENIAKaJeO01m9maZhfg~LYQubUiuk0SiQQ84Iq2Za2HpGeBW-uWiL5u5UXauFmaKuZ-QUo1k0mZE6MqTcmnhDHZbMg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_geographic_environmental_and_phylogenetic_evolution_of_the_Alveolinoidea_from_the_Cretaceous_to_the_present_day","translated_slug":"","page_count":34,"language":"en","content_type":"Work","summary":"The superfamily Alveolinoidea is a member of the Order Miliolida, and is comprised of three main families, the Alveolinidae, the Fabulariidae and the Rhapydioninidae. They are examples of Larger Benthic Foraminifera (LBF), which are single cell organisms with specific characteristic endoskeletons. Alveolinoids are found globally from the Cretaceous to present day and are very important biostratigraphic index fossils in shallow-marine carbonates. They are often associated with significant hydrocarbon reservoirs, and exhibit provincialism with characteristic genera often confined to one of the American, Tethyan or Indo-Pacific provinces. Previously, the systematic study of the global interrelationship between the various alveolinoid lineages has not been possible because of the absence of biostratigraphic correlation between the geographically scattered assemblages, and the scarcity of described material from the Indo-Pacific province. Here we use the literature and new material from ...","owner":{"id":6407942,"first_name":"Prof. Marcelle","middle_initials":"","last_name":"Boudagher-Fadel","page_name":"MarcelleBoudagherFadel","domain_name":"ucl","created_at":"2013-10-27T10:31:03.235-07:00","display_name":"Prof. Marcelle Boudagher-Fadel","url":"https://ucl.academia.edu/MarcelleBoudagherFadel"},"attachments":[{"id":81531222,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531222/thumbnails/1.jpg","file_name":"ucloe-02-015.pdf","download_url":"https://www.academia.edu/attachments/81531222/download_file","bulk_download_file_name":"The_geographic_environmental_and_phyloge.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531222/ucloe-02-015-libre.pdf?1646169106=\u0026response-content-disposition=attachment%3B+filename%3DThe_geographic_environmental_and_phyloge.pdf\u0026Expires=1742082204\u0026Signature=Tjy9WK9TG3PagBV6mv9nEo4H-nbvtmRIB9nKhczT0C3pxeGP2nfWU~Fkx8rkjIkRpUPjSjEMJnabgt-IYyPv~H0XPLRi-ZcpcZMgc8-1a6tsl0obIwYE30Al6tsRxO1MnHWfmbKmMFp-xtimR2q5e3iL8RvkXdA3cvqvvrXs6LdUhqdg92isOp95jcTr87Dv2Du8EjCHs1ebCwlj~UMcuDID8Ph5CIaskUFT~If8KSu9JSNRw9kmjGWLCYiEENIAKaJeO01m9maZhfg~LYQubUiuk0SiQQ84Iq2Za2HpGeBW-uWiL5u5UXauFmaKuZ-QUo1k0mZE6MqTcmnhDHZbMg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":81531223,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531223/thumbnails/1.jpg","file_name":"ucloe-02-015.pdf","download_url":"https://www.academia.edu/attachments/81531223/download_file","bulk_download_file_name":"The_geographic_environmental_and_phyloge.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531223/ucloe-02-015-libre.pdf?1646169109=\u0026response-content-disposition=attachment%3B+filename%3DThe_geographic_environmental_and_phyloge.pdf\u0026Expires=1742082204\u0026Signature=EXuk8VvWHB6nWnD-wXW9XvV6NYKJafEGRkfzxiWiwruP2jyD8Xj9nooEAVXKYxjsGsCz4iMnpMBrFDVGN8IxRA8KgqzVhBOh5BZDkkUD~OB6vH99eZY~515NDRsCV3pR4XQwHdGZP-e~lQbW3ekZJE~BxHerIRCyYzhVIdT3hswaZXU~poYMAMqxqxj087LzkPquAfMC2bQNLQZqm3L0dZkCQMjZzsxpQ48uCzRF-X26rpWVM9~qHYt-otWSCEvIH71vh92Z9Lg3u1diqbJ~oELan3Udb6zvblRU5Ouem90bYDzMm0hrt464mUojjoBlos3goGX9Ji7mpzppOvxTaQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":261,"name":"Geography","url":"https://www.academia.edu/Documents/in/Geography"}],"urls":[{"id":18119933,"url":"https://discovery.ucl.ac.uk/id/eprint/10125491/1/ucloe-02-015.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="72711910"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/72711910/Genotypes_of_Septatrocholina_and_Alzonorbitopsella_two_new_Jurassic_foraminifera_subsequent_designations"><img alt="Research paper thumbnail of Genotypes of Septatrocholina and Alzonorbitopsella, two new Jurassic foraminifera: subsequent designations" class="work-thumbnail" src="https://attachments.academia-assets.com/81531216/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/72711910/Genotypes_of_Septatrocholina_and_Alzonorbitopsella_two_new_Jurassic_foraminifera_subsequent_designations">Genotypes of Septatrocholina and Alzonorbitopsella, two new Jurassic foraminifera: subsequent designations</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">When the genera Septatrocholina BouDagher-Fadel and Banner and Alzonorbitopsella BouDagher-Fadel ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">When the genera Septatrocholina BouDagher-Fadel and Banner and Alzonorbitopsella BouDagher-Fadel were erected (BouDagher-Fadel 2008, pp. 161; 175), the genotypes Septatrocholina banneri and Alzonorbitopsella arabia, respectively, were described and figured, but through an oversight the holotypes and paratypes were not identified among the illustrated specimens. The type specimens are here subsequently designated, in accordance with ICZN 1999, article 69, and are further described. The type specimen slides are deposited in the invertebrate collections of the Natural History Museum, London.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="40f76645bd99c0ad831ef1e31312e40f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":81531216,"asset_id":72711910,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/81531216/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="72711910"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="72711910"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 72711910; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=72711910]").text(description); $(".js-view-count[data-work-id=72711910]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 72711910; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='72711910']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "40f76645bd99c0ad831ef1e31312e40f" } } $('.js-work-strip[data-work-id=72711910]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":72711910,"title":"Genotypes of Septatrocholina and Alzonorbitopsella, two new Jurassic foraminifera: subsequent designations","translated_title":"","metadata":{"abstract":"When the genera Septatrocholina BouDagher-Fadel and Banner and Alzonorbitopsella BouDagher-Fadel were erected (BouDagher-Fadel 2008, pp. 161; 175), the genotypes Septatrocholina banneri and Alzonorbitopsella arabia, respectively, were described and figured, but through an oversight the holotypes and paratypes were not identified among the illustrated specimens. The type specimens are here subsequently designated, in accordance with ICZN 1999, article 69, and are further described. The type specimen slides are deposited in the invertebrate collections of the Natural History Museum, London.","publication_date":{"day":null,"month":null,"year":2016,"errors":{}}},"translated_abstract":"When the genera Septatrocholina BouDagher-Fadel and Banner and Alzonorbitopsella BouDagher-Fadel were erected (BouDagher-Fadel 2008, pp. 161; 175), the genotypes Septatrocholina banneri and Alzonorbitopsella arabia, respectively, were described and figured, but through an oversight the holotypes and paratypes were not identified among the illustrated specimens. The type specimens are here subsequently designated, in accordance with ICZN 1999, article 69, and are further described. The type specimen slides are deposited in the invertebrate collections of the Natural History Museum, London.","internal_url":"https://www.academia.edu/72711910/Genotypes_of_Septatrocholina_and_Alzonorbitopsella_two_new_Jurassic_foraminifera_subsequent_designations","translated_internal_url":"","created_at":"2022-03-01T13:07:09.652-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6407942,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":81531216,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531216/thumbnails/1.jpg","file_name":"Genotypes_20of_20Septatrocholina_20and_20Alzonorbitopsella.pdf","download_url":"https://www.academia.edu/attachments/81531216/download_file","bulk_download_file_name":"Genotypes_of_Septatrocholina_and_Alzonor.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531216/Genotypes_20of_20Septatrocholina_20and_20Alzonorbitopsella-libre.pdf?1646169097=\u0026response-content-disposition=attachment%3B+filename%3DGenotypes_of_Septatrocholina_and_Alzonor.pdf\u0026Expires=1742082204\u0026Signature=RssuJN0vldwTLzR0QsioPgj~J3WncAZ6woRiZE6DrUvwmXQBZbROM8OalmHfxFfyzfsUwHP6N-uBpH9NnL1bSvGFQNW-i-EWYpP17jiN-K1Vd0OI8vmr-W9XifydqwdeSe6n3n-azHc1eGGL7xAnNCimSoJNDvEhaWEsYbhbOiyidx8nPRjc3826whijHaeOdr~4DP0yEmhCHHYemti7FP8jHjBr-CAqO4RjcuPDeWYRY00e8aaxnHmFubmoiK7pBTMHZfwUoqGVVItRs86hjH2gaNNXRi8GHg1hYMKXOX4JeKuvgH076VmHI1txdnDgegyI3D0neQA9xBJAegL-ew__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Genotypes_of_Septatrocholina_and_Alzonorbitopsella_two_new_Jurassic_foraminifera_subsequent_designations","translated_slug":"","page_count":4,"language":"en","content_type":"Work","summary":"When the genera Septatrocholina BouDagher-Fadel and Banner and Alzonorbitopsella BouDagher-Fadel were erected (BouDagher-Fadel 2008, pp. 161; 175), the genotypes Septatrocholina banneri and Alzonorbitopsella arabia, respectively, were described and figured, but through an oversight the holotypes and paratypes were not identified among the illustrated specimens. The type specimens are here subsequently designated, in accordance with ICZN 1999, article 69, and are further described. The type specimen slides are deposited in the invertebrate collections of the Natural History Museum, London.","owner":{"id":6407942,"first_name":"Prof. Marcelle","middle_initials":"","last_name":"Boudagher-Fadel","page_name":"MarcelleBoudagherFadel","domain_name":"ucl","created_at":"2013-10-27T10:31:03.235-07:00","display_name":"Prof. Marcelle Boudagher-Fadel","url":"https://ucl.academia.edu/MarcelleBoudagherFadel"},"attachments":[{"id":81531216,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531216/thumbnails/1.jpg","file_name":"Genotypes_20of_20Septatrocholina_20and_20Alzonorbitopsella.pdf","download_url":"https://www.academia.edu/attachments/81531216/download_file","bulk_download_file_name":"Genotypes_of_Septatrocholina_and_Alzonor.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531216/Genotypes_20of_20Septatrocholina_20and_20Alzonorbitopsella-libre.pdf?1646169097=\u0026response-content-disposition=attachment%3B+filename%3DGenotypes_of_Septatrocholina_and_Alzonor.pdf\u0026Expires=1742082204\u0026Signature=RssuJN0vldwTLzR0QsioPgj~J3WncAZ6woRiZE6DrUvwmXQBZbROM8OalmHfxFfyzfsUwHP6N-uBpH9NnL1bSvGFQNW-i-EWYpP17jiN-K1Vd0OI8vmr-W9XifydqwdeSe6n3n-azHc1eGGL7xAnNCimSoJNDvEhaWEsYbhbOiyidx8nPRjc3826whijHaeOdr~4DP0yEmhCHHYemti7FP8jHjBr-CAqO4RjcuPDeWYRY00e8aaxnHmFubmoiK7pBTMHZfwUoqGVVItRs86hjH2gaNNXRi8GHg1hYMKXOX4JeKuvgH076VmHI1txdnDgegyI3D0neQA9xBJAegL-ew__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":81531218,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531218/thumbnails/1.jpg","file_name":"Genotypes_20of_20Septatrocholina_20and_20Alzonorbitopsella.pdf","download_url":"https://www.academia.edu/attachments/81531218/download_file","bulk_download_file_name":"Genotypes_of_Septatrocholina_and_Alzonor.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531218/Genotypes_20of_20Septatrocholina_20and_20Alzonorbitopsella-libre.pdf?1646169097=\u0026response-content-disposition=attachment%3B+filename%3DGenotypes_of_Septatrocholina_and_Alzonor.pdf\u0026Expires=1742082204\u0026Signature=U3-pUUCcuKqUGOos3NEQxmMjxXpmGsSywvC093nnXnqEkuekZhjwGHiUJrxybWSDXk7eWs0i5lzLVqrjif0qwKzKR18o0p-IB-kFYmwey0KErOTAPagoaU05H-LRLoHVx3jgm68uXY-FLfqAALegnqJwpBgF8CW-lN9qk8OwhAJLkqBRpgZvUnkJDYQTxn23hL6X44uiMCY1Agsn4LN7Qfz2YEcKXdZm35LRq8C7DpLkfJbaoo2knEEUn6TqjGVQSex9SW0cwtTLzjCVkFx2ny8JLsyv1AXCaqzjTtkFnmIB3Wmk6r6zRuo7xjyKvrhqyDm~L52PKX05ZS~GbyFtmQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":17215,"name":"Micropaleontology","url":"https://www.academia.edu/Documents/in/Micropaleontology"}],"urls":[{"id":18119932,"url":"http://discovery.ucl.ac.uk/1476835/1/Genotypes%20of%20Septatrocholina%20and%20Alzonorbitopsella.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="72711909"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/72711909/Loftusia_persica_an_Eocene_Lazarus_occurrence"><img alt="Research paper thumbnail of Loftusia persica: an Eocene Lazarus occurrence?" class="work-thumbnail" src="https://attachments.academia-assets.com/81531213/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/72711909/Loftusia_persica_an_Eocene_Lazarus_occurrence">Loftusia persica: an Eocene Lazarus occurrence?</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A specimen of Loftusia persica Brady is described that contains as a part of its inner test a spe...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A specimen of Loftusia persica Brady is described that contains as a part of its inner test a specimen of Turborotalia pomeroli (Toumarkine and Both), which is a very distinctive Middle to Late Eocene planktonic foraminifera. Although originally described as a &quot;Tertiary&quot; form, more recently Loftusia persica has been considered to be restricted to the Maastrichtian. A number of scenarios that could have led to the inclusion of an Eocene planktonic foraminifera deep within the test of a specimen of Loftusia are discussed, and it is concluded that the most probable interpretation is that Loftusia persica reappeared as a &quot;Lazarus&quot; species in the Eocene having survived the Cretaceous-Paleocene mass extinction, but was eventually driven to extinction by the orogeny that led to the formation of the Zagros Mountains.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="aa2ab7df395e58b5359fbc660859322d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":81531213,"asset_id":72711909,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/81531213/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="72711909"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="72711909"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 72711909; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=72711909]").text(description); $(".js-view-count[data-work-id=72711909]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 72711909; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='72711909']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "aa2ab7df395e58b5359fbc660859322d" } } $('.js-work-strip[data-work-id=72711909]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":72711909,"title":"Loftusia persica: an Eocene Lazarus occurrence?","translated_title":"","metadata":{"abstract":"A specimen of Loftusia persica Brady is described that contains as a part of its inner test a specimen of Turborotalia pomeroli (Toumarkine and Both), which is a very distinctive Middle to Late Eocene planktonic foraminifera. Although originally described as a \u0026quot;Tertiary\u0026quot; form, more recently Loftusia persica has been considered to be restricted to the Maastrichtian. A number of scenarios that could have led to the inclusion of an Eocene planktonic foraminifera deep within the test of a specimen of Loftusia are discussed, and it is concluded that the most probable interpretation is that Loftusia persica reappeared as a \u0026quot;Lazarus\u0026quot; species in the Eocene having survived the Cretaceous-Paleocene mass extinction, but was eventually driven to extinction by the orogeny that led to the formation of the Zagros Mountains.","publication_date":{"day":null,"month":null,"year":2009,"errors":{}}},"translated_abstract":"A specimen of Loftusia persica Brady is described that contains as a part of its inner test a specimen of Turborotalia pomeroli (Toumarkine and Both), which is a very distinctive Middle to Late Eocene planktonic foraminifera. Although originally described as a \u0026quot;Tertiary\u0026quot; form, more recently Loftusia persica has been considered to be restricted to the Maastrichtian. A number of scenarios that could have led to the inclusion of an Eocene planktonic foraminifera deep within the test of a specimen of Loftusia are discussed, and it is concluded that the most probable interpretation is that Loftusia persica reappeared as a \u0026quot;Lazarus\u0026quot; species in the Eocene having survived the Cretaceous-Paleocene mass extinction, but was eventually driven to extinction by the orogeny that led to the formation of the Zagros Mountains.","internal_url":"https://www.academia.edu/72711909/Loftusia_persica_an_Eocene_Lazarus_occurrence","translated_internal_url":"","created_at":"2022-03-01T13:07:09.458-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6407942,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":81531213,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531213/thumbnails/1.jpg","file_name":"99078_MS.pdf","download_url":"https://www.academia.edu/attachments/81531213/download_file","bulk_download_file_name":"Loftusia_persica_an_Eocene_Lazarus_occur.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531213/99078_MS-libre.pdf?1646169097=\u0026response-content-disposition=attachment%3B+filename%3DLoftusia_persica_an_Eocene_Lazarus_occur.pdf\u0026Expires=1741739494\u0026Signature=fgVqD7zyqvYauFcX0J86nWEzMM-WcH~GzlwubckY5DIa4P6mPhPw95wEoB2vqLX7JSjGxdZpn~SqU6KIQQTzlGF5AbytQRHjjfmXqg4LAe7FOevr8-v9S6pJt4Ekv0w01ABIeOI83PInq0393fMVVZWN5QfZ6jYsegEo6-auEgYSc5eAnpzR91YD1c4dWm4dulBSMW~uvLGwD0IE5087ZVGcokUkQC40DxEJi2G1sWYFi4Xzw90GqwPdvxt-3~h5~fvUGSkTEdAgRrD2eYFcEr8jw~WIC8bpdUkCL-dF1y3v9bykTizV2HLjkBhlN0uQ1KEvLhDd-WVnamBJr5SIGA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Loftusia_persica_an_Eocene_Lazarus_occurrence","translated_slug":"","page_count":14,"language":"en","content_type":"Work","summary":"A specimen of Loftusia persica Brady is described that contains as a part of its inner test a specimen of Turborotalia pomeroli (Toumarkine and Both), which is a very distinctive Middle to Late Eocene planktonic foraminifera. Although originally described as a \u0026quot;Tertiary\u0026quot; form, more recently Loftusia persica has been considered to be restricted to the Maastrichtian. A number of scenarios that could have led to the inclusion of an Eocene planktonic foraminifera deep within the test of a specimen of Loftusia are discussed, and it is concluded that the most probable interpretation is that Loftusia persica reappeared as a \u0026quot;Lazarus\u0026quot; species in the Eocene having survived the Cretaceous-Paleocene mass extinction, but was eventually driven to extinction by the orogeny that led to the formation of the Zagros Mountains.","owner":{"id":6407942,"first_name":"Prof. Marcelle","middle_initials":"","last_name":"Boudagher-Fadel","page_name":"MarcelleBoudagherFadel","domain_name":"ucl","created_at":"2013-10-27T10:31:03.235-07:00","display_name":"Prof. Marcelle Boudagher-Fadel","url":"https://ucl.academia.edu/MarcelleBoudagherFadel"},"attachments":[{"id":81531213,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531213/thumbnails/1.jpg","file_name":"99078_MS.pdf","download_url":"https://www.academia.edu/attachments/81531213/download_file","bulk_download_file_name":"Loftusia_persica_an_Eocene_Lazarus_occur.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531213/99078_MS-libre.pdf?1646169097=\u0026response-content-disposition=attachment%3B+filename%3DLoftusia_persica_an_Eocene_Lazarus_occur.pdf\u0026Expires=1741739494\u0026Signature=fgVqD7zyqvYauFcX0J86nWEzMM-WcH~GzlwubckY5DIa4P6mPhPw95wEoB2vqLX7JSjGxdZpn~SqU6KIQQTzlGF5AbytQRHjjfmXqg4LAe7FOevr8-v9S6pJt4Ekv0w01ABIeOI83PInq0393fMVVZWN5QfZ6jYsegEo6-auEgYSc5eAnpzR91YD1c4dWm4dulBSMW~uvLGwD0IE5087ZVGcokUkQC40DxEJi2G1sWYFi4Xzw90GqwPdvxt-3~h5~fvUGSkTEdAgRrD2eYFcEr8jw~WIC8bpdUkCL-dF1y3v9bykTizV2HLjkBhlN0uQ1KEvLhDd-WVnamBJr5SIGA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":81531212,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531212/thumbnails/1.jpg","file_name":"99078_MS.pdf","download_url":"https://www.academia.edu/attachments/81531212/download_file","bulk_download_file_name":"Loftusia_persica_an_Eocene_Lazarus_occur.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531212/99078_MS-libre.pdf?1646169098=\u0026response-content-disposition=attachment%3B+filename%3DLoftusia_persica_an_Eocene_Lazarus_occur.pdf\u0026Expires=1741739495\u0026Signature=Ncm6Vr~GDb2JmoKwATtcf7dX16TsRUdlrkv~sOk2EYnDDODypKTv6pl-bcNUs5bdQVK-YTJDhu8ICUwU4qyBE~26wCDug-FijAR0NtVXQgY-xpNHuo6CXTKczzsGWmvQ3P~UHf0zEasGUWAijpS39zpD7mmWJSiNyJJsIgLljeyUmGnZ7H59dd3pmx18~014zGuIM-LI5Skm0zPCivQtwMKWoYfJvKMbb17MWk83JFCj24eZ42mBhnYSB5m1q7nIo6FZ~e7PJe~IU5k~31PuNPN-sjvZwUeO4Ls2l-aTH4PToSqNA5-78TzsYilJOXGVCLVkMOYfCpm3ltVaT9bH7A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":155,"name":"Evolutionary Biology","url":"https://www.academia.edu/Documents/in/Evolutionary_Biology"},{"id":261,"name":"Geography","url":"https://www.academia.edu/Documents/in/Geography"},{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":9846,"name":"Ecology","url":"https://www.academia.edu/Documents/in/Ecology"},{"id":17215,"name":"Micropaleontology","url":"https://www.academia.edu/Documents/in/Micropaleontology"}],"urls":[{"id":18119931,"url":"http://discovery.ucl.ac.uk/99078/1/99078_MS.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="72711907"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/72711907/Significant_Miocene_larger_foraminifera_from_South_Central_Java"><img alt="Research paper thumbnail of Significant Miocene larger foraminifera from South Central Java" class="work-thumbnail" src="https://attachments.academia-assets.com/81531211/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/72711907/Significant_Miocene_larger_foraminifera_from_South_Central_Java">Significant Miocene larger foraminifera from South Central Java</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The Gunung Sewu area of South Central Java, Indonesia during Mid Miocene, Langhian-Serravallian (...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The Gunung Sewu area of South Central Java, Indonesia during Mid Miocene, Langhian-Serravallian (Tf1-Tf2), was deposited in a large area of warm, very shallow-marine water. Coralline algae and abundant larger benthic foraminifera dominate the carbonate lithologies. Larger benthic foraminifera from previously unstudied sections in South Central Java are described and figured. They have led to an understanding of sequence stratigraphic and facies relationship of Miocene carbonates in Indonesia. Thirteen larger foraminifera species are described and illustrated. A detailed biostratigraphical studies of The phylogeny Katacycloclypeus annulatus - K. martini and the gradual evolution from Austrotrillina asmariensis into A. howchini are recognised. Analysis of the larger benthic foraminifera has allowed accurate dating of the carbonate sections studied using the East Indian Letter Classification.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="664f51e47ff9d50eec258aba3e64db05" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":81531211,"asset_id":72711907,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/81531211/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="72711907"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="72711907"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 72711907; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=72711907]").text(description); $(".js-view-count[data-work-id=72711907]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 72711907; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='72711907']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "664f51e47ff9d50eec258aba3e64db05" } } $('.js-work-strip[data-work-id=72711907]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":72711907,"title":"Significant Miocene larger foraminifera from South Central Java","translated_title":"","metadata":{"abstract":"The Gunung Sewu area of South Central Java, Indonesia during Mid Miocene, Langhian-Serravallian (Tf1-Tf2), was deposited in a large area of warm, very shallow-marine water. Coralline algae and abundant larger benthic foraminifera dominate the carbonate lithologies. Larger benthic foraminifera from previously unstudied sections in South Central Java are described and figured. They have led to an understanding of sequence stratigraphic and facies relationship of Miocene carbonates in Indonesia. Thirteen larger foraminifera species are described and illustrated. A detailed biostratigraphical studies of The phylogeny Katacycloclypeus annulatus - K. martini and the gradual evolution from Austrotrillina asmariensis into A. howchini are recognised. Analysis of the larger benthic foraminifera has allowed accurate dating of the carbonate sections studied using the East Indian Letter Classification.","publication_date":{"day":null,"month":null,"year":2005,"errors":{}}},"translated_abstract":"The Gunung Sewu area of South Central Java, Indonesia during Mid Miocene, Langhian-Serravallian (Tf1-Tf2), was deposited in a large area of warm, very shallow-marine water. Coralline algae and abundant larger benthic foraminifera dominate the carbonate lithologies. Larger benthic foraminifera from previously unstudied sections in South Central Java are described and figured. They have led to an understanding of sequence stratigraphic and facies relationship of Miocene carbonates in Indonesia. Thirteen larger foraminifera species are described and illustrated. A detailed biostratigraphical studies of The phylogeny Katacycloclypeus annulatus - K. martini and the gradual evolution from Austrotrillina asmariensis into A. howchini are recognised. Analysis of the larger benthic foraminifera has allowed accurate dating of the carbonate sections studied using the East Indian Letter Classification.","internal_url":"https://www.academia.edu/72711907/Significant_Miocene_larger_foraminifera_from_South_Central_Java","translated_internal_url":"","created_at":"2022-03-01T13:07:09.273-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6407942,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":81531211,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531211/thumbnails/1.jpg","file_name":"Boudagher-fadel_significant_RdP_2005.pdf","download_url":"https://www.academia.edu/attachments/81531211/download_file","bulk_download_file_name":"Significant_Miocene_larger_foraminifera.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531211/Boudagher-fadel_significant_RdP_2005-libre.pdf?1646169108=\u0026response-content-disposition=attachment%3B+filename%3DSignificant_Miocene_larger_foraminifera.pdf\u0026Expires=1741739495\u0026Signature=WRjt9O49JQd8pbcW9xGiSOf5foKFLf7Uklne4ceVldNbWEi9MCP6MgDEQ388g4dCrISGSEL2sDOmb5m8SDZDUabq0-78c~QRMD1j0uLZEXfGF0pOyZaW6FwAsXXOxuNlTYKKzgT-G3scdJN1aMnYkmHezTu5IFqB6VTEdxkXouyUjuylwGG-xFDND7qSkcTwdc7j9a6XABvoap6kjVHVfqotPndJRAK~jMC5AZszAjSpD2OdUFJIolvBlVe8ONqERHUp20B7Qg4vJ8vnbQzG92WT-~G7u01TynvC1XZI8RMVqzU~PvS8qwRpvhadrOcRgOc7IN1Qi-36ZBcv3KRb~g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Significant_Miocene_larger_foraminifera_from_South_Central_Java","translated_slug":"","page_count":19,"language":"en","content_type":"Work","summary":"The Gunung Sewu area of South Central Java, Indonesia during Mid Miocene, Langhian-Serravallian (Tf1-Tf2), was deposited in a large area of warm, very shallow-marine water. Coralline algae and abundant larger benthic foraminifera dominate the carbonate lithologies. Larger benthic foraminifera from previously unstudied sections in South Central Java are described and figured. They have led to an understanding of sequence stratigraphic and facies relationship of Miocene carbonates in Indonesia. Thirteen larger foraminifera species are described and illustrated. A detailed biostratigraphical studies of The phylogeny Katacycloclypeus annulatus - K. martini and the gradual evolution from Austrotrillina asmariensis into A. howchini are recognised. Analysis of the larger benthic foraminifera has allowed accurate dating of the carbonate sections studied using the East Indian Letter Classification.","owner":{"id":6407942,"first_name":"Prof. Marcelle","middle_initials":"","last_name":"Boudagher-Fadel","page_name":"MarcelleBoudagherFadel","domain_name":"ucl","created_at":"2013-10-27T10:31:03.235-07:00","display_name":"Prof. Marcelle Boudagher-Fadel","url":"https://ucl.academia.edu/MarcelleBoudagherFadel"},"attachments":[{"id":81531211,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531211/thumbnails/1.jpg","file_name":"Boudagher-fadel_significant_RdP_2005.pdf","download_url":"https://www.academia.edu/attachments/81531211/download_file","bulk_download_file_name":"Significant_Miocene_larger_foraminifera.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531211/Boudagher-fadel_significant_RdP_2005-libre.pdf?1646169108=\u0026response-content-disposition=attachment%3B+filename%3DSignificant_Miocene_larger_foraminifera.pdf\u0026Expires=1741739495\u0026Signature=WRjt9O49JQd8pbcW9xGiSOf5foKFLf7Uklne4ceVldNbWEi9MCP6MgDEQ388g4dCrISGSEL2sDOmb5m8SDZDUabq0-78c~QRMD1j0uLZEXfGF0pOyZaW6FwAsXXOxuNlTYKKzgT-G3scdJN1aMnYkmHezTu5IFqB6VTEdxkXouyUjuylwGG-xFDND7qSkcTwdc7j9a6XABvoap6kjVHVfqotPndJRAK~jMC5AZszAjSpD2OdUFJIolvBlVe8ONqERHUp20B7Qg4vJ8vnbQzG92WT-~G7u01TynvC1XZI8RMVqzU~PvS8qwRpvhadrOcRgOc7IN1Qi-36ZBcv3KRb~g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":417,"name":"Paleontology","url":"https://www.academia.edu/Documents/in/Paleontology"},{"id":10770,"name":"Biostratigraphy","url":"https://www.academia.edu/Documents/in/Biostratigraphy"},{"id":54433,"name":"Phylogeny","url":"https://www.academia.edu/Documents/in/Phylogeny"},{"id":515315,"name":"Larger foraminifera","url":"https://www.academia.edu/Documents/in/Larger_foraminifera"},{"id":1010773,"name":"Middle Miocene","url":"https://www.academia.edu/Documents/in/Middle_Miocene"}],"urls":[{"id":18119930,"url":"http://discovery.ucl.ac.uk/40307/1/Boudagher-fadel_significant_RdP_2005.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="72711906"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/72711906/Diagnostic_First_and_Last_Occurrences_of_Mesozoic_and_Cenozoic_Planktonic_Foraminifera"><img alt="Research paper thumbnail of Diagnostic First and Last Occurrences of Mesozoic and Cenozoic Planktonic Foraminifera" class="work-thumbnail" src="https://attachments.academia-assets.com/81531210/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/72711906/Diagnostic_First_and_Last_Occurrences_of_Mesozoic_and_Cenozoic_Planktonic_Foraminifera">Diagnostic First and Last Occurrences of Mesozoic and Cenozoic Planktonic Foraminifera</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The diagnostic first and last occurrences of Cretaceous, Paleogene and Neogene planktonic foramin...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The diagnostic first and last occurrences of Cretaceous, Paleogene and Neogene planktonic foraminifera species are given, and have been calibrated against the most recent biostratigraphical time scale and radio-isotope data.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="aa177c2f2c2e7efc22a982773b081edb" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":81531210,"asset_id":72711906,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/81531210/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="72711906"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="72711906"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 72711906; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=72711906]").text(description); $(".js-view-count[data-work-id=72711906]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 72711906; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='72711906']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "aa177c2f2c2e7efc22a982773b081edb" } } $('.js-work-strip[data-work-id=72711906]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":72711906,"title":"Diagnostic First and Last Occurrences of Mesozoic and Cenozoic Planktonic Foraminifera","translated_title":"","metadata":{"abstract":"The diagnostic first and last occurrences of Cretaceous, Paleogene and Neogene planktonic foraminifera species are given, and have been calibrated against the most recent biostratigraphical time scale and radio-isotope data.","publication_date":{"day":null,"month":null,"year":2013,"errors":{}}},"translated_abstract":"The diagnostic first and last occurrences of Cretaceous, Paleogene and Neogene planktonic foraminifera species are given, and have been calibrated against the most recent biostratigraphical time scale and radio-isotope data.","internal_url":"https://www.academia.edu/72711906/Diagnostic_First_and_Last_Occurrences_of_Mesozoic_and_Cenozoic_Planktonic_Foraminifera","translated_internal_url":"","created_at":"2022-03-01T13:07:09.095-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6407942,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":81531210,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531210/thumbnails/1.jpg","file_name":"BOUDAGHER-FADEL_Calibration_charts.pdf","download_url":"https://www.academia.edu/attachments/81531210/download_file","bulk_download_file_name":"Diagnostic_First_and_Last_Occurrences_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531210/BOUDAGHER-FADEL_Calibration_charts-libre.pdf?1646169098=\u0026response-content-disposition=attachment%3B+filename%3DDiagnostic_First_and_Last_Occurrences_of.pdf\u0026Expires=1741739495\u0026Signature=LYoJ6ioDvC-cvQiIShOCIHq3EF~HI8B3a4e1fg0HCGnt65M73bE3bEdoKabF8BYinmt8vIx1Ntb6V03FGEE~Jsvow3JeHo2NdxKnxhSmMonIau4ePbLjpnFl6aGsiGslVFvVrhu6vYjk68G4OoPK2epRQNiNd0nugxkdewS4vPymMndKxC3MKI4xNaa301WZ1fXLHpRPGgM4tgojFrMx1lJ1BhnVXdv9TQq2ehxypCLmudeFCrtYfESSbgF2WRzEN3ozKpNlqVwVi3G~DzgZ57LFcBsKG3PgfM7EVhF-hpbH-H7t6VuPmpYrnsCvMtGUaKlkDghAsAhljE3KygVqpQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Diagnostic_First_and_Last_Occurrences_of_Mesozoic_and_Cenozoic_Planktonic_Foraminifera","translated_slug":"","page_count":4,"language":"en","content_type":"Work","summary":"The diagnostic first and last occurrences of Cretaceous, Paleogene and Neogene planktonic foraminifera species are given, and have been calibrated against the most recent biostratigraphical time scale and radio-isotope data.","owner":{"id":6407942,"first_name":"Prof. Marcelle","middle_initials":"","last_name":"Boudagher-Fadel","page_name":"MarcelleBoudagherFadel","domain_name":"ucl","created_at":"2013-10-27T10:31:03.235-07:00","display_name":"Prof. Marcelle Boudagher-Fadel","url":"https://ucl.academia.edu/MarcelleBoudagherFadel"},"attachments":[{"id":81531210,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531210/thumbnails/1.jpg","file_name":"BOUDAGHER-FADEL_Calibration_charts.pdf","download_url":"https://www.academia.edu/attachments/81531210/download_file","bulk_download_file_name":"Diagnostic_First_and_Last_Occurrences_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531210/BOUDAGHER-FADEL_Calibration_charts-libre.pdf?1646169098=\u0026response-content-disposition=attachment%3B+filename%3DDiagnostic_First_and_Last_Occurrences_of.pdf\u0026Expires=1741739495\u0026Signature=LYoJ6ioDvC-cvQiIShOCIHq3EF~HI8B3a4e1fg0HCGnt65M73bE3bEdoKabF8BYinmt8vIx1Ntb6V03FGEE~Jsvow3JeHo2NdxKnxhSmMonIau4ePbLjpnFl6aGsiGslVFvVrhu6vYjk68G4OoPK2epRQNiNd0nugxkdewS4vPymMndKxC3MKI4xNaa301WZ1fXLHpRPGgM4tgojFrMx1lJ1BhnVXdv9TQq2ehxypCLmudeFCrtYfESSbgF2WRzEN3ozKpNlqVwVi3G~DzgZ57LFcBsKG3PgfM7EVhF-hpbH-H7t6VuPmpYrnsCvMtGUaKlkDghAsAhljE3KygVqpQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":81531209,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531209/thumbnails/1.jpg","file_name":"BOUDAGHER-FADEL_Calibration_charts.pdf","download_url":"https://www.academia.edu/attachments/81531209/download_file","bulk_download_file_name":"Diagnostic_First_and_Last_Occurrences_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531209/BOUDAGHER-FADEL_Calibration_charts-libre.pdf?1646169099=\u0026response-content-disposition=attachment%3B+filename%3DDiagnostic_First_and_Last_Occurrences_of.pdf\u0026Expires=1741739495\u0026Signature=WQlLeqNbTne9Z8yFZo61qzXzXx-OMZPvKzkyW2hksdG2U15HYi4rS~LDsymi63rf89ll72pj2x1G8aGBkqca3klvu3kRxXbLEMw~koywHz8X24DzD9xcezUbsVZqHtLPcsCGbQL4xKLmpKO9fR2n-LanKbCPHjf-pGO-Tw5jIm7u4oQ68j13pkWk7HXuRSRLA1U1x5mGYWeTHkZXvHbR90REcZZOz~XCp9sz8WMexPUr1JrpvNTHhSmUokvVVc3pPNdpZMTk8OIkLSDKWU0SjjWz6jt0ath-6ou6tpepR3TOfZgQOnKySNze6ZQH3~h~CXdKCAuOWuKyEIUbD7vxYw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":18119929,"url":"http://discovery.ucl.ac.uk/1397013/1/BOUDAGHER-FADEL_Calibration_charts.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="72711905"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/72711905/Tectono_stratigraphic_correlations_between_Northern_Evvoia_Skopelos_and_Alonnisos_and_the_postulated_collision_of_the_Pelagonian_carbonate_platform_with_the_Paikon_forearc_basin_Pelagonian_Vardar_zones_Internal_Hellenides_Greece_"><img alt="Research paper thumbnail of Tectono-stratigraphic correlations between Northern Evvoia, Skopelos and Alonnisos, and the postulated collision of the Pelagonian carbonate platform with the Paikon forearc basin (Pelagonian–Vardar zones, Internal Hellenides, Greece)" class="work-thumbnail" src="https://attachments.academia-assets.com/81531282/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/72711905/Tectono_stratigraphic_correlations_between_Northern_Evvoia_Skopelos_and_Alonnisos_and_the_postulated_collision_of_the_Pelagonian_carbonate_platform_with_the_Paikon_forearc_basin_Pelagonian_Vardar_zones_Internal_Hellenides_Greece_">Tectono-stratigraphic correlations between Northern Evvoia, Skopelos and Alonnisos, and the postulated collision of the Pelagonian carbonate platform with the Paikon forearc basin (Pelagonian–Vardar zones, Internal Hellenides, Greece)</a></div><div class="wp-workCard_item"><span>UCL Open Environment</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The Pelagonian stratigraphy of the Internal Hellenides consists of a Permo-Triassic basement and ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The Pelagonian stratigraphy of the Internal Hellenides consists of a Permo-Triassic basement and an Upper Triassic and Jurassic carbonate platform formation that has been overthrust by the Eohellenic ophiolite sheet during the Early Cretaceous. Intensive erosion, during the Cretaceous, removed most of the ophiolite and parts of the Jurassic formation. It is hypothesised that uplift and erosion of eastern Pelagonia was triggered by the break-off of the subducted oceanic leading edge of the Pelagonian plate. An investigation of the rocks that succeed the erosional unconformity shows that they constitute a shear-zone that is tectonically overlain by Cretaceous platform carbonates. Geochemical analyses of the shear-zone rocks substantiate that they are of mid-oceanic ridge and island arc provenience. Eastern Pelagonia collided with a Cretaceous carbonate platform, probably the Paikon forearc basin, as the Almopias ocean crust subducted beneath that island–arc complex. The Cretaceous pla...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="351961da536b50fbc296a1ee50811906" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":81531282,"asset_id":72711905,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/81531282/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="72711905"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="72711905"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 72711905; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=72711905]").text(description); $(".js-view-count[data-work-id=72711905]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 72711905; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='72711905']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "351961da536b50fbc296a1ee50811906" } } $('.js-work-strip[data-work-id=72711905]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":72711905,"title":"Tectono-stratigraphic correlations between Northern Evvoia, Skopelos and Alonnisos, and the postulated collision of the Pelagonian carbonate platform with the Paikon forearc basin (Pelagonian–Vardar zones, Internal Hellenides, Greece)","translated_title":"","metadata":{"abstract":"The Pelagonian stratigraphy of the Internal Hellenides consists of a Permo-Triassic basement and an Upper Triassic and Jurassic carbonate platform formation that has been overthrust by the Eohellenic ophiolite sheet during the Early Cretaceous. Intensive erosion, during the Cretaceous, removed most of the ophiolite and parts of the Jurassic formation. It is hypothesised that uplift and erosion of eastern Pelagonia was triggered by the break-off of the subducted oceanic leading edge of the Pelagonian plate. An investigation of the rocks that succeed the erosional unconformity shows that they constitute a shear-zone that is tectonically overlain by Cretaceous platform carbonates. Geochemical analyses of the shear-zone rocks substantiate that they are of mid-oceanic ridge and island arc provenience. Eastern Pelagonia collided with a Cretaceous carbonate platform, probably the Paikon forearc basin, as the Almopias ocean crust subducted beneath that island–arc complex. The Cretaceous pla...","publisher":"UCL Press","publication_name":"UCL Open Environment"},"translated_abstract":"The Pelagonian stratigraphy of the Internal Hellenides consists of a Permo-Triassic basement and an Upper Triassic and Jurassic carbonate platform formation that has been overthrust by the Eohellenic ophiolite sheet during the Early Cretaceous. Intensive erosion, during the Cretaceous, removed most of the ophiolite and parts of the Jurassic formation. It is hypothesised that uplift and erosion of eastern Pelagonia was triggered by the break-off of the subducted oceanic leading edge of the Pelagonian plate. An investigation of the rocks that succeed the erosional unconformity shows that they constitute a shear-zone that is tectonically overlain by Cretaceous platform carbonates. Geochemical analyses of the shear-zone rocks substantiate that they are of mid-oceanic ridge and island arc provenience. Eastern Pelagonia collided with a Cretaceous carbonate platform, probably the Paikon forearc basin, as the Almopias ocean crust subducted beneath that island–arc complex. The Cretaceous pla...","internal_url":"https://www.academia.edu/72711905/Tectono_stratigraphic_correlations_between_Northern_Evvoia_Skopelos_and_Alonnisos_and_the_postulated_collision_of_the_Pelagonian_carbonate_platform_with_the_Paikon_forearc_basin_Pelagonian_Vardar_zones_Internal_Hellenides_Greece_","translated_internal_url":"","created_at":"2022-03-01T13:07:08.893-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6407942,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":81531282,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531282/thumbnails/1.jpg","file_name":"ucloe20200006.pdf","download_url":"https://www.academia.edu/attachments/81531282/download_file","bulk_download_file_name":"Tectono_stratigraphic_correlations_betwe.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531282/ucloe20200006-libre.pdf?1646169214=\u0026response-content-disposition=attachment%3B+filename%3DTectono_stratigraphic_correlations_betwe.pdf\u0026Expires=1741739495\u0026Signature=OCZTwiC6YMNX7I0EH4gp0LCMc6qP8HmlTVn2wk~Cr1wgwZl8mA56xvmYbDRRQ0jTqLLk7KdMV40aZPAJqRBw9rk86-KZDxliw1yPv5ZafwrqTZIqOZAviOWAZWpasdEX8R6sxZ6OfEBBw7JfThrK1REBfn0oflvLz8sjEyChqIC4m403wQCRR7gJsbqYYKjKIL-feMhHwEuEQYFAAmjgS5fuTXxA6-pHvavBczJLNrclHp00OWpX2CnxhsHU3aPFoj5nZLpGr-zoAbKs-7JTgteN3qgnKy3uJpaLssiIsjPqUn1oHvXwDMeErbvHUkXob7F3nOXljh8ZT5hdjci0sg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Tectono_stratigraphic_correlations_between_Northern_Evvoia_Skopelos_and_Alonnisos_and_the_postulated_collision_of_the_Pelagonian_carbonate_platform_with_the_Paikon_forearc_basin_Pelagonian_Vardar_zones_Internal_Hellenides_Greece_","translated_slug":"","page_count":22,"language":"en","content_type":"Work","summary":"The Pelagonian stratigraphy of the Internal Hellenides consists of a Permo-Triassic basement and an Upper Triassic and Jurassic carbonate platform formation that has been overthrust by the Eohellenic ophiolite sheet during the Early Cretaceous. Intensive erosion, during the Cretaceous, removed most of the ophiolite and parts of the Jurassic formation. It is hypothesised that uplift and erosion of eastern Pelagonia was triggered by the break-off of the subducted oceanic leading edge of the Pelagonian plate. An investigation of the rocks that succeed the erosional unconformity shows that they constitute a shear-zone that is tectonically overlain by Cretaceous platform carbonates. Geochemical analyses of the shear-zone rocks substantiate that they are of mid-oceanic ridge and island arc provenience. Eastern Pelagonia collided with a Cretaceous carbonate platform, probably the Paikon forearc basin, as the Almopias ocean crust subducted beneath that island–arc complex. The Cretaceous pla...","owner":{"id":6407942,"first_name":"Prof. Marcelle","middle_initials":"","last_name":"Boudagher-Fadel","page_name":"MarcelleBoudagherFadel","domain_name":"ucl","created_at":"2013-10-27T10:31:03.235-07:00","display_name":"Prof. Marcelle Boudagher-Fadel","url":"https://ucl.academia.edu/MarcelleBoudagherFadel"},"attachments":[{"id":81531282,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531282/thumbnails/1.jpg","file_name":"ucloe20200006.pdf","download_url":"https://www.academia.edu/attachments/81531282/download_file","bulk_download_file_name":"Tectono_stratigraphic_correlations_betwe.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531282/ucloe20200006-libre.pdf?1646169214=\u0026response-content-disposition=attachment%3B+filename%3DTectono_stratigraphic_correlations_betwe.pdf\u0026Expires=1741739495\u0026Signature=OCZTwiC6YMNX7I0EH4gp0LCMc6qP8HmlTVn2wk~Cr1wgwZl8mA56xvmYbDRRQ0jTqLLk7KdMV40aZPAJqRBw9rk86-KZDxliw1yPv5ZafwrqTZIqOZAviOWAZWpasdEX8R6sxZ6OfEBBw7JfThrK1REBfn0oflvLz8sjEyChqIC4m403wQCRR7gJsbqYYKjKIL-feMhHwEuEQYFAAmjgS5fuTXxA6-pHvavBczJLNrclHp00OWpX2CnxhsHU3aPFoj5nZLpGr-zoAbKs-7JTgteN3qgnKy3uJpaLssiIsjPqUn1oHvXwDMeErbvHUkXob7F3nOXljh8ZT5hdjci0sg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"}],"urls":[{"id":18119928,"url":"https://ucl.scienceopen.com/document?vid=1ee73202-32dc-4b55-b2ca-014e7469e15b"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="72711904"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/72711904/Pre_Oxfordian_163_Ma_ophiolite_obduction_in_central_Tibet"><img alt="Research paper thumbnail of Pre‐Oxfordian (>163 Ma) ophiolite obduction in central Tibet" class="work-thumbnail" src="https://attachments.academia-assets.com/81531283/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/72711904/Pre_Oxfordian_163_Ma_ophiolite_obduction_in_central_Tibet">Pre‐Oxfordian (>163 Ma) ophiolite obduction in central Tibet</a></div><div class="wp-workCard_item"><span>Geophysical Research Letters</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The timing of Bangong-Nujiang suture ophiolite obduction between the Lhasa and Qiangtang terranes...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The timing of Bangong-Nujiang suture ophiolite obduction between the Lhasa and Qiangtang terranes in central Tibet is important for understanding the closure history of the Meso-Tethys but remains poorly constrained. We investigated subaerial to shallow marine strata of the Dongqiao Formation that sit unconformably on Bangong-Nujiang suture ophiolites that crystallized in a supra-subduction zone setting at 189-181 Ma. Based on foraminiferal and coral studies, the depositional age of the Dongqiao Formation is constrained to be Oxfordian and Kimmeridgian (Late Jurassic). Provenance analyses including detrital modes, geochemistry of detrital chromian spinels, and U-Pb age populations of detrital zircons suggest the Dongqiao Formation was sourced from uplifted Bangong-Nujiang suture ophiolites and sedimentary and metamorphic rocks of Lhasa terrane affinity to the south. We conclude that Bangong-Nujiang suture ophiolites were obducted soon after crystallization (prior to Oxfordian time; >163 Ma) onto the Lhasa terrane or a microcontinent of Lhasa terrane affinity. Plain Language Summary Ophiolite obduction often occurs when a passive continental margin enters an oceanic subduction zone and thus may mark when an arc-continent or continent-continent collision begins. In central Tibet, the Dongqiao ophiolite represents a relict of Meso-Tethys oceanic lithosphere. Initial research during the 1980s provided rough constraints on the timing, polarity, and mechanism of Dongqiao ophiolite obduction. However, there has been little advancement in our knowledge of the obduction history since. Here we report results of sedimentologic, stratigraphic, and provenance studies on the Dongqiao Formation overlying the Dongqiao ophiolite. Our foraminiferal and coral biostratigraphic data show that subaerial to shallow marine strata of the Dongqiao Formation were deposited between 163 and 152 million years ago. We demonstrate that the clastic rocks in the Dongqiao Formation received detritus from both the underlying Dongqiao ophiolite and Lhasa terrane affinity continental crust. We propose that a continental margin of Lhasa terrane affinity entered a north-dipping oceanic trench, and the Dongqiao ophiolite was obducted southwards on to it, no later than 163 million years ago.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8110f946e650476827aa0a378e0bc7fc" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":81531283,"asset_id":72711904,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/81531283/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="72711904"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="72711904"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 72711904; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=72711904]").text(description); $(".js-view-count[data-work-id=72711904]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 72711904; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='72711904']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8110f946e650476827aa0a378e0bc7fc" } } $('.js-work-strip[data-work-id=72711904]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":72711904,"title":"Pre‐Oxfordian (\u003e163 Ma) ophiolite obduction in central Tibet","translated_title":"","metadata":{"publisher":"American Geophysical Union (AGU)","ai_title_tag":"Ophiolite Obduction Timing in Central Tibet","grobid_abstract":"The timing of Bangong-Nujiang suture ophiolite obduction between the Lhasa and Qiangtang terranes in central Tibet is important for understanding the closure history of the Meso-Tethys but remains poorly constrained. We investigated subaerial to shallow marine strata of the Dongqiao Formation that sit unconformably on Bangong-Nujiang suture ophiolites that crystallized in a supra-subduction zone setting at 189-181 Ma. Based on foraminiferal and coral studies, the depositional age of the Dongqiao Formation is constrained to be Oxfordian and Kimmeridgian (Late Jurassic). Provenance analyses including detrital modes, geochemistry of detrital chromian spinels, and U-Pb age populations of detrital zircons suggest the Dongqiao Formation was sourced from uplifted Bangong-Nujiang suture ophiolites and sedimentary and metamorphic rocks of Lhasa terrane affinity to the south. We conclude that Bangong-Nujiang suture ophiolites were obducted soon after crystallization (prior to Oxfordian time; \u003e163 Ma) onto the Lhasa terrane or a microcontinent of Lhasa terrane affinity. Plain Language Summary Ophiolite obduction often occurs when a passive continental margin enters an oceanic subduction zone and thus may mark when an arc-continent or continent-continent collision begins. In central Tibet, the Dongqiao ophiolite represents a relict of Meso-Tethys oceanic lithosphere. Initial research during the 1980s provided rough constraints on the timing, polarity, and mechanism of Dongqiao ophiolite obduction. However, there has been little advancement in our knowledge of the obduction history since. Here we report results of sedimentologic, stratigraphic, and provenance studies on the Dongqiao Formation overlying the Dongqiao ophiolite. Our foraminiferal and coral biostratigraphic data show that subaerial to shallow marine strata of the Dongqiao Formation were deposited between 163 and 152 million years ago. We demonstrate that the clastic rocks in the Dongqiao Formation received detritus from both the underlying Dongqiao ophiolite and Lhasa terrane affinity continental crust. We propose that a continental margin of Lhasa terrane affinity entered a north-dipping oceanic trench, and the Dongqiao ophiolite was obducted southwards on to it, no later than 163 million years ago.","publication_name":"Geophysical Research Letters","grobid_abstract_attachment_id":81531283},"translated_abstract":null,"internal_url":"https://www.academia.edu/72711904/Pre_Oxfordian_163_Ma_ophiolite_obduction_in_central_Tibet","translated_internal_url":"","created_at":"2022-03-01T13:07:08.662-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6407942,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":81531283,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531283/thumbnails/1.jpg","file_name":"2019GL086650.pdf","download_url":"https://www.academia.edu/attachments/81531283/download_file","bulk_download_file_name":"Pre_Oxfordian_163_Ma_ophiolite_obduction.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531283/2019GL086650-libre.pdf?1646169223=\u0026response-content-disposition=attachment%3B+filename%3DPre_Oxfordian_163_Ma_ophiolite_obduction.pdf\u0026Expires=1741739495\u0026Signature=gX2st0TdAJIuacoSdPQpP92akwvgyv5DCq-E4TblVItJRkP7GSYS0yoL85ADb9e299g-RpGo25bBBuJPj9GnU16JIJh85QSAvte~m9~6luxMboJbhPt-9SWsDZrZrdt9PpDmTpamhVDG847OD3XTydJSDBEgP22bpn6TK7ObGv~jyXNHJz1fb5eKgPtsoSANSw0YRgBIKR2DwYjxRsvWhFuFAawzYR3vb-wtJ2UdFV1ogDwnKSrrv-ZTCewU91z~T2Ec58lnQ8zPFW7PBy7krGfixthKxdXLVHTIJwIoMrwuCzhUrCyA-DQ9uvLHb-IRs-hjEQnwRJKKChHv59Q7Xg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Pre_Oxfordian_163_Ma_ophiolite_obduction_in_central_Tibet","translated_slug":"","page_count":11,"language":"en","content_type":"Work","summary":"The timing of Bangong-Nujiang suture ophiolite obduction between the Lhasa and Qiangtang terranes in central Tibet is important for understanding the closure history of the Meso-Tethys but remains poorly constrained. We investigated subaerial to shallow marine strata of the Dongqiao Formation that sit unconformably on Bangong-Nujiang suture ophiolites that crystallized in a supra-subduction zone setting at 189-181 Ma. Based on foraminiferal and coral studies, the depositional age of the Dongqiao Formation is constrained to be Oxfordian and Kimmeridgian (Late Jurassic). Provenance analyses including detrital modes, geochemistry of detrital chromian spinels, and U-Pb age populations of detrital zircons suggest the Dongqiao Formation was sourced from uplifted Bangong-Nujiang suture ophiolites and sedimentary and metamorphic rocks of Lhasa terrane affinity to the south. We conclude that Bangong-Nujiang suture ophiolites were obducted soon after crystallization (prior to Oxfordian time; \u003e163 Ma) onto the Lhasa terrane or a microcontinent of Lhasa terrane affinity. Plain Language Summary Ophiolite obduction often occurs when a passive continental margin enters an oceanic subduction zone and thus may mark when an arc-continent or continent-continent collision begins. In central Tibet, the Dongqiao ophiolite represents a relict of Meso-Tethys oceanic lithosphere. Initial research during the 1980s provided rough constraints on the timing, polarity, and mechanism of Dongqiao ophiolite obduction. However, there has been little advancement in our knowledge of the obduction history since. Here we report results of sedimentologic, stratigraphic, and provenance studies on the Dongqiao Formation overlying the Dongqiao ophiolite. Our foraminiferal and coral biostratigraphic data show that subaerial to shallow marine strata of the Dongqiao Formation were deposited between 163 and 152 million years ago. We demonstrate that the clastic rocks in the Dongqiao Formation received detritus from both the underlying Dongqiao ophiolite and Lhasa terrane affinity continental crust. We propose that a continental margin of Lhasa terrane affinity entered a north-dipping oceanic trench, and the Dongqiao ophiolite was obducted southwards on to it, no later than 163 million years ago.","owner":{"id":6407942,"first_name":"Prof. Marcelle","middle_initials":"","last_name":"Boudagher-Fadel","page_name":"MarcelleBoudagherFadel","domain_name":"ucl","created_at":"2013-10-27T10:31:03.235-07:00","display_name":"Prof. Marcelle Boudagher-Fadel","url":"https://ucl.academia.edu/MarcelleBoudagherFadel"},"attachments":[{"id":81531283,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531283/thumbnails/1.jpg","file_name":"2019GL086650.pdf","download_url":"https://www.academia.edu/attachments/81531283/download_file","bulk_download_file_name":"Pre_Oxfordian_163_Ma_ophiolite_obduction.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531283/2019GL086650-libre.pdf?1646169223=\u0026response-content-disposition=attachment%3B+filename%3DPre_Oxfordian_163_Ma_ophiolite_obduction.pdf\u0026Expires=1741739495\u0026Signature=gX2st0TdAJIuacoSdPQpP92akwvgyv5DCq-E4TblVItJRkP7GSYS0yoL85ADb9e299g-RpGo25bBBuJPj9GnU16JIJh85QSAvte~m9~6luxMboJbhPt-9SWsDZrZrdt9PpDmTpamhVDG847OD3XTydJSDBEgP22bpn6TK7ObGv~jyXNHJz1fb5eKgPtsoSANSw0YRgBIKR2DwYjxRsvWhFuFAawzYR3vb-wtJ2UdFV1ogDwnKSrrv-ZTCewU91z~T2Ec58lnQ8zPFW7PBy7krGfixthKxdXLVHTIJwIoMrwuCzhUrCyA-DQ9uvLHb-IRs-hjEQnwRJKKChHv59Q7Xg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"}],"urls":[{"id":18119927,"url":"https://onlinelibrary.wiley.com/doi/pdf/10.1029/2019GL086650"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="72711903"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/72711903/Paleogene_carbonate_systems_of_Saint_Barth%C3%A9lemy_Lesser_Antilles_stratigraphy_and_general_organization"><img alt="Research paper thumbnail of Paleogene carbonate systems of Saint Barthélemy, Lesser Antilles: stratigraphy and general organization" class="work-thumbnail" src="https://attachments.academia-assets.com/81531279/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/72711903/Paleogene_carbonate_systems_of_Saint_Barth%C3%A9lemy_Lesser_Antilles_stratigraphy_and_general_organization">Paleogene carbonate systems of Saint Barthélemy, Lesser Antilles: stratigraphy and general organization</a></div><div class="wp-workCard_item"><span>Newsletters on Stratigraphy</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Saint Barthélemy is the only island of the northern Lesser Antilles where it is possible to inves...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Saint Barthélemy is the only island of the northern Lesser Antilles where it is possible to investigate in the detail the chronostratigraphy of the mixed carbonate-volcaniclastic deposits of the Paleogene Caribbean volcanic arc. Based on field mapping and new biostratigraphical and sedimentological data, we study the limestone units interbedded in the Paleogene volcaniclastic deposits. We find that four main carbonate units occur instead of previously believed six ones. Based on the ages given by the foraminifera assemblages, and taking into account the recently published 40 Ar/ 39 Ar ages of magmatic rocks, the Lower Limestone unit dates Lutetian, the Intermediate Limestone unit late (?) Bartonian-late Priabonian, the Upper Limestone late Priabonian and the Top Limestone unit early Miocene. The Paleogene carbonate beds were deposited on gently dipping submarine volcaniclastic deposits issued from emergent volcanoes, in muddy, unrimmed inner to mid-ramp setting dominated by bottom communities. A major subaerial unconformity is evidenced during the Oligocene, most probably corresponding to uplift affecting Saint Barthélemy. Our work offers a revised lithostratigraphic succession of Saint Barthélemy as a first key-point for further studies of the Paleogene Caribbean arc deposits which were dismembered following the entrance of the Bahamas Bank in the Lesser Antilles subduction zone.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="fcf09571902330eea6221a73d8412fb9" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":81531279,"asset_id":72711903,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/81531279/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="72711903"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="72711903"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 72711903; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=72711903]").text(description); $(".js-view-count[data-work-id=72711903]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 72711903; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='72711903']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "fcf09571902330eea6221a73d8412fb9" } } $('.js-work-strip[data-work-id=72711903]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":72711903,"title":"Paleogene carbonate systems of Saint Barthélemy, Lesser Antilles: stratigraphy and general organization","translated_title":"","metadata":{"publisher":"Schweizerbart","grobid_abstract":"Saint Barthélemy is the only island of the northern Lesser Antilles where it is possible to investigate in the detail the chronostratigraphy of the mixed carbonate-volcaniclastic deposits of the Paleogene Caribbean volcanic arc. Based on field mapping and new biostratigraphical and sedimentological data, we study the limestone units interbedded in the Paleogene volcaniclastic deposits. We find that four main carbonate units occur instead of previously believed six ones. Based on the ages given by the foraminifera assemblages, and taking into account the recently published 40 Ar/ 39 Ar ages of magmatic rocks, the Lower Limestone unit dates Lutetian, the Intermediate Limestone unit late (?) Bartonian-late Priabonian, the Upper Limestone late Priabonian and the Top Limestone unit early Miocene. The Paleogene carbonate beds were deposited on gently dipping submarine volcaniclastic deposits issued from emergent volcanoes, in muddy, unrimmed inner to mid-ramp setting dominated by bottom communities. A major subaerial unconformity is evidenced during the Oligocene, most probably corresponding to uplift affecting Saint Barthélemy. Our work offers a revised lithostratigraphic succession of Saint Barthélemy as a first key-point for further studies of the Paleogene Caribbean arc deposits which were dismembered following the entrance of the Bahamas Bank in the Lesser Antilles subduction zone.","publication_name":"Newsletters on Stratigraphy","grobid_abstract_attachment_id":81531279},"translated_abstract":null,"internal_url":"https://www.academia.edu/72711903/Paleogene_carbonate_systems_of_Saint_Barth%C3%A9lemy_Lesser_Antilles_stratigraphy_and_general_organization","translated_internal_url":"","created_at":"2022-03-01T13:07:08.540-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6407942,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":81531279,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531279/thumbnails/1.jpg","file_name":"Text.pdf","download_url":"https://www.academia.edu/attachments/81531279/download_file","bulk_download_file_name":"Paleogene_carbonate_systems_of_Saint_Bar.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531279/Text-libre.pdf?1646169218=\u0026response-content-disposition=attachment%3B+filename%3DPaleogene_carbonate_systems_of_Saint_Bar.pdf\u0026Expires=1742082204\u0026Signature=ey-tswoPy04ZoLzN-ZsxUXUFF0cIKN1UmsUvM1DaSPDqk--Pqpl3o8QqCuSogPqr9RuWhTs0FQdWJzgYEf1mX3JUpt-pAsP2~t3buszhmKq-dJosxlR8h3pkq69GcygOJITgTWEDOxWwzBuGAaEQcHztkd7jNtwqvnlfKm13WqngJebSL6RJO2JCawTk7i7Uu-KIXQMlv6xC0sY4cS0kuLAMri4pHHBSPc3J9CM9ZczypqU7sJU4Dchq7lQc1U3Ld2QLAZGU3bs0HxhU67a966TzmumOCLNqwQZ3fS0iJesubIdQbYtgpVZvC~jU4wDX7K81s59ISLSRoEOEbwioeA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Paleogene_carbonate_systems_of_Saint_Barthélemy_Lesser_Antilles_stratigraphy_and_general_organization","translated_slug":"","page_count":27,"language":"en","content_type":"Work","summary":"Saint Barthélemy is the only island of the northern Lesser Antilles where it is possible to investigate in the detail the chronostratigraphy of the mixed carbonate-volcaniclastic deposits of the Paleogene Caribbean volcanic arc. Based on field mapping and new biostratigraphical and sedimentological data, we study the limestone units interbedded in the Paleogene volcaniclastic deposits. We find that four main carbonate units occur instead of previously believed six ones. Based on the ages given by the foraminifera assemblages, and taking into account the recently published 40 Ar/ 39 Ar ages of magmatic rocks, the Lower Limestone unit dates Lutetian, the Intermediate Limestone unit late (?) Bartonian-late Priabonian, the Upper Limestone late Priabonian and the Top Limestone unit early Miocene. The Paleogene carbonate beds were deposited on gently dipping submarine volcaniclastic deposits issued from emergent volcanoes, in muddy, unrimmed inner to mid-ramp setting dominated by bottom communities. A major subaerial unconformity is evidenced during the Oligocene, most probably corresponding to uplift affecting Saint Barthélemy. Our work offers a revised lithostratigraphic succession of Saint Barthélemy as a first key-point for further studies of the Paleogene Caribbean arc deposits which were dismembered following the entrance of the Bahamas Bank in the Lesser Antilles subduction zone.","owner":{"id":6407942,"first_name":"Prof. Marcelle","middle_initials":"","last_name":"Boudagher-Fadel","page_name":"MarcelleBoudagherFadel","domain_name":"ucl","created_at":"2013-10-27T10:31:03.235-07:00","display_name":"Prof. Marcelle Boudagher-Fadel","url":"https://ucl.academia.edu/MarcelleBoudagherFadel"},"attachments":[{"id":81531279,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531279/thumbnails/1.jpg","file_name":"Text.pdf","download_url":"https://www.academia.edu/attachments/81531279/download_file","bulk_download_file_name":"Paleogene_carbonate_systems_of_Saint_Bar.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531279/Text-libre.pdf?1646169218=\u0026response-content-disposition=attachment%3B+filename%3DPaleogene_carbonate_systems_of_Saint_Bar.pdf\u0026Expires=1742082204\u0026Signature=ey-tswoPy04ZoLzN-ZsxUXUFF0cIKN1UmsUvM1DaSPDqk--Pqpl3o8QqCuSogPqr9RuWhTs0FQdWJzgYEf1mX3JUpt-pAsP2~t3buszhmKq-dJosxlR8h3pkq69GcygOJITgTWEDOxWwzBuGAaEQcHztkd7jNtwqvnlfKm13WqngJebSL6RJO2JCawTk7i7Uu-KIXQMlv6xC0sY4cS0kuLAMri4pHHBSPc3J9CM9ZczypqU7sJU4Dchq7lQc1U3Ld2QLAZGU3bs0HxhU67a966TzmumOCLNqwQZ3fS0iJesubIdQbYtgpVZvC~jU4wDX7K81s59ISLSRoEOEbwioeA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="72711902"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/72711902/Insights_into_the_Cenozoic_geology_of_North_Beirut_harbour_area_biostratigraphy_sedimentology_and_structural_history"><img alt="Research paper thumbnail of Insights into the Cenozoic geology of North Beirut (harbour area): biostratigraphy, sedimentology and structural history" class="work-thumbnail" src="https://attachments.academia-assets.com/81531284/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/72711902/Insights_into_the_Cenozoic_geology_of_North_Beirut_harbour_area_biostratigraphy_sedimentology_and_structural_history">Insights into the Cenozoic geology of North Beirut (harbour area): biostratigraphy, sedimentology and structural history</a></div><div class="wp-workCard_item"><span>UCL Open Environment</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The biostratigraphy and sedimentology of the outcrops and bedrock recently exposed in archaeologi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The biostratigraphy and sedimentology of the outcrops and bedrock recently exposed in archaeological excavations around the harbour area of Beirut (~5 km²) unlock the geological and structural history of that area, which in turn are key to understanding the hydrocarbon and hydrogeological potential of the region. A key location (Site 2) of a studied outcrop section and newly uncovered bedrock is on the northern foothill cliff of East Beirut (Achrafieh). The outcrop section of carbonates is of Eocene beds overlain by conformable Miocene beds. The excavation of the slope bordering the outcrop uncovered a bedrock section of an early Pliocene shoreline of carbonate/siliciclastic sands at its base and topped by a beach-rock structure. The early Pliocene age of the shoreline section is dated by an assemblage of planktonic foraminifera that includes Sphaeroidinellopsis subdehiscens , Sphaeroidinella dehiscens and Orbulina universa . The Eocene carbonates of Site 2 extend the coverage of th...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a2bf2263c4b27019d0598e578a87d728" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":81531284,"asset_id":72711902,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/81531284/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="72711902"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="72711902"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 72711902; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=72711902]").text(description); $(".js-view-count[data-work-id=72711902]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 72711902; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='72711902']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a2bf2263c4b27019d0598e578a87d728" } } $('.js-work-strip[data-work-id=72711902]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":72711902,"title":"Insights into the Cenozoic geology of North Beirut (harbour area): biostratigraphy, sedimentology and structural history","translated_title":"","metadata":{"abstract":"The biostratigraphy and sedimentology of the outcrops and bedrock recently exposed in archaeological excavations around the harbour area of Beirut (~5 km²) unlock the geological and structural history of that area, which in turn are key to understanding the hydrocarbon and hydrogeological potential of the region. A key location (Site 2) of a studied outcrop section and newly uncovered bedrock is on the northern foothill cliff of East Beirut (Achrafieh). The outcrop section of carbonates is of Eocene beds overlain by conformable Miocene beds. The excavation of the slope bordering the outcrop uncovered a bedrock section of an early Pliocene shoreline of carbonate/siliciclastic sands at its base and topped by a beach-rock structure. The early Pliocene age of the shoreline section is dated by an assemblage of planktonic foraminifera that includes Sphaeroidinellopsis subdehiscens , Sphaeroidinella dehiscens and Orbulina universa . The Eocene carbonates of Site 2 extend the coverage of th...","publisher":"UCL Press","ai_title_tag":"Cenozoic Geology of North Beirut Harbour","publication_name":"UCL Open Environment"},"translated_abstract":"The biostratigraphy and sedimentology of the outcrops and bedrock recently exposed in archaeological excavations around the harbour area of Beirut (~5 km²) unlock the geological and structural history of that area, which in turn are key to understanding the hydrocarbon and hydrogeological potential of the region. A key location (Site 2) of a studied outcrop section and newly uncovered bedrock is on the northern foothill cliff of East Beirut (Achrafieh). The outcrop section of carbonates is of Eocene beds overlain by conformable Miocene beds. The excavation of the slope bordering the outcrop uncovered a bedrock section of an early Pliocene shoreline of carbonate/siliciclastic sands at its base and topped by a beach-rock structure. The early Pliocene age of the shoreline section is dated by an assemblage of planktonic foraminifera that includes Sphaeroidinellopsis subdehiscens , Sphaeroidinella dehiscens and Orbulina universa . The Eocene carbonates of Site 2 extend the coverage of th...","internal_url":"https://www.academia.edu/72711902/Insights_into_the_Cenozoic_geology_of_North_Beirut_harbour_area_biostratigraphy_sedimentology_and_structural_history","translated_internal_url":"","created_at":"2022-03-01T13:07:08.318-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6407942,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":81531284,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531284/thumbnails/1.jpg","file_name":"ucloe20200004.pdf","download_url":"https://www.academia.edu/attachments/81531284/download_file","bulk_download_file_name":"Insights_into_the_Cenozoic_geology_of_No.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531284/ucloe20200004-libre.pdf?1646169217=\u0026response-content-disposition=attachment%3B+filename%3DInsights_into_the_Cenozoic_geology_of_No.pdf\u0026Expires=1742082204\u0026Signature=ReWj4vbb5i7JWqELyLQyKe5slvaZlI9EEtn2a8lGa0jRNlTE7MaPcLATvMB34YffFA4K-dcBK2AbwUQMuMgsMCwnJFrqckDcI3SpLAlXp1zN9daHq~NtJ5ujEzk4WU~-3XPPkh~5MO8mI2nZkWSjgWdnfcz49FvlZe1c4AOQlZsFvdw4KNDlwJf9bzML8YR6noYvXlOc51CVHGmQvGJL0WdnkHK5QnZi7jK22qLV0BVIoYgu8kKdhdktLxSdH-~eUcv327t2liQWR7kLEJ0SbHSoaiSXbKwsC~GCKSmYSsu-05Q1EJRX4xoC6IqUjj8rX87qeKuzCXiThqdaM4Et8Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Insights_into_the_Cenozoic_geology_of_North_Beirut_harbour_area_biostratigraphy_sedimentology_and_structural_history","translated_slug":"","page_count":17,"language":"en","content_type":"Work","summary":"The biostratigraphy and sedimentology of the outcrops and bedrock recently exposed in archaeological excavations around the harbour area of Beirut (~5 km²) unlock the geological and structural history of that area, which in turn are key to understanding the hydrocarbon and hydrogeological potential of the region. A key location (Site 2) of a studied outcrop section and newly uncovered bedrock is on the northern foothill cliff of East Beirut (Achrafieh). The outcrop section of carbonates is of Eocene beds overlain by conformable Miocene beds. The excavation of the slope bordering the outcrop uncovered a bedrock section of an early Pliocene shoreline of carbonate/siliciclastic sands at its base and topped by a beach-rock structure. The early Pliocene age of the shoreline section is dated by an assemblage of planktonic foraminifera that includes Sphaeroidinellopsis subdehiscens , Sphaeroidinella dehiscens and Orbulina universa . The Eocene carbonates of Site 2 extend the coverage of th...","owner":{"id":6407942,"first_name":"Prof. Marcelle","middle_initials":"","last_name":"Boudagher-Fadel","page_name":"MarcelleBoudagherFadel","domain_name":"ucl","created_at":"2013-10-27T10:31:03.235-07:00","display_name":"Prof. Marcelle Boudagher-Fadel","url":"https://ucl.academia.edu/MarcelleBoudagherFadel"},"attachments":[{"id":81531284,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531284/thumbnails/1.jpg","file_name":"ucloe20200004.pdf","download_url":"https://www.academia.edu/attachments/81531284/download_file","bulk_download_file_name":"Insights_into_the_Cenozoic_geology_of_No.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531284/ucloe20200004-libre.pdf?1646169217=\u0026response-content-disposition=attachment%3B+filename%3DInsights_into_the_Cenozoic_geology_of_No.pdf\u0026Expires=1742082204\u0026Signature=ReWj4vbb5i7JWqELyLQyKe5slvaZlI9EEtn2a8lGa0jRNlTE7MaPcLATvMB34YffFA4K-dcBK2AbwUQMuMgsMCwnJFrqckDcI3SpLAlXp1zN9daHq~NtJ5ujEzk4WU~-3XPPkh~5MO8mI2nZkWSjgWdnfcz49FvlZe1c4AOQlZsFvdw4KNDlwJf9bzML8YR6noYvXlOc51CVHGmQvGJL0WdnkHK5QnZi7jK22qLV0BVIoYgu8kKdhdktLxSdH-~eUcv327t2liQWR7kLEJ0SbHSoaiSXbKwsC~GCKSmYSsu-05Q1EJRX4xoC6IqUjj8rX87qeKuzCXiThqdaM4Et8Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":18119926,"url":"https://ucl.scienceopen.com/document?vid=0ba21b97-d764-4d63-84ac-514c29e32cca"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="72711901"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/72711901/The_history_of_Cenozoic_magmatism_and_collision_in_NW_New_Guinea_New_insights_into_the_tectonic_evolution_of_the_northernmost_margin_of_the_Australian_Plate"><img alt="Research paper thumbnail of The history of Cenozoic magmatism and collision in NW New Guinea – New insights into the tectonic evolution of the northernmost margin of the Australian Plate" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">The history of Cenozoic magmatism and collision in NW New Guinea – New insights into the tectonic evolution of the northernmost margin of the Australian Plate</div><div class="wp-workCard_item"><span>Gondwana Research</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract Evidence of Cenozoic magmatism is found along the length of New Guinea. However, the pet...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract Evidence of Cenozoic magmatism is found along the length of New Guinea. However, the petrogenetic and tectonic setting for this magmatism is poorly understood. This study presents new field, petrographic, U–Pb zircon, and geochemical data from NW New Guinea. These data have been used to identify six units of Cenozoic igneous rocks which record episodes of magmatism during the Oligocene, Miocene, and Pliocene. These episodes occurred in response to the ongoing interaction between the Australian and Philippine Sea plates. During the Eocene, the Australian Plate began to obliquely subduct beneath the Philippine Sea Plate forming the Philippine–Caroline Arc. Magmatism in this arc is recorded in the Dore, Mandi, and Arfak volcanics of NW New Guinea where calc-alkaline and tholeiitic rocks formed within subduction-related fore-arc and extension-related back-arc settings from 32 to 27 Ma. Collision along this plate boundary in the Oligocene–Miocene jammed the subduction zone and caused a reversal in subduction polarity from north-dipping to south-dipping. Following this, subduction of the Philippine Sea Plate beneath the Australian Plate produced magmatism throughout western New Guinea. In NW New Guinea this is recorded by the middle Miocene (18–12 Ma) Moon Volcanics, which include an early period of high-K to shoshonitic igneous activity. These earlier magmatic rocks are associated with the subduction zone polarity reversal and an initially steeply dipping slab. The magmatic products later changed to more calc-alkaline compositions and were emplaced as volcanic rocks in the fore-arc section of a primitive continental arc. Finally, following terminal arc–continent collision in the late Miocene–Pliocene, mantle derived magmas (including the Berangan Andesite) migrated up large strike-slip faults becoming crustally contaminated prior to their eruption during the Plio–Pleistocene. This study of the Cenozoic magmatic history of NW New Guinea provides new data and insights into the tectonic evolution of the northern margin of the Australian Plate.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="72711901"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="72711901"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 72711901; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=72711901]").text(description); $(".js-view-count[data-work-id=72711901]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 72711901; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='72711901']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=72711901]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":72711901,"title":"The history of Cenozoic magmatism and collision in NW New Guinea – New insights into the tectonic evolution of the northernmost margin of the Australian Plate","translated_title":"","metadata":{"abstract":"Abstract Evidence of Cenozoic magmatism is found along the length of New Guinea. However, the petrogenetic and tectonic setting for this magmatism is poorly understood. This study presents new field, petrographic, U–Pb zircon, and geochemical data from NW New Guinea. These data have been used to identify six units of Cenozoic igneous rocks which record episodes of magmatism during the Oligocene, Miocene, and Pliocene. These episodes occurred in response to the ongoing interaction between the Australian and Philippine Sea plates. During the Eocene, the Australian Plate began to obliquely subduct beneath the Philippine Sea Plate forming the Philippine–Caroline Arc. Magmatism in this arc is recorded in the Dore, Mandi, and Arfak volcanics of NW New Guinea where calc-alkaline and tholeiitic rocks formed within subduction-related fore-arc and extension-related back-arc settings from 32 to 27 Ma. Collision along this plate boundary in the Oligocene–Miocene jammed the subduction zone and caused a reversal in subduction polarity from north-dipping to south-dipping. Following this, subduction of the Philippine Sea Plate beneath the Australian Plate produced magmatism throughout western New Guinea. In NW New Guinea this is recorded by the middle Miocene (18–12 Ma) Moon Volcanics, which include an early period of high-K to shoshonitic igneous activity. These earlier magmatic rocks are associated with the subduction zone polarity reversal and an initially steeply dipping slab. The magmatic products later changed to more calc-alkaline compositions and were emplaced as volcanic rocks in the fore-arc section of a primitive continental arc. Finally, following terminal arc–continent collision in the late Miocene–Pliocene, mantle derived magmas (including the Berangan Andesite) migrated up large strike-slip faults becoming crustally contaminated prior to their eruption during the Plio–Pleistocene. This study of the Cenozoic magmatic history of NW New Guinea provides new data and insights into the tectonic evolution of the northern margin of the Australian Plate.","publisher":"Elsevier BV","publication_name":"Gondwana Research"},"translated_abstract":"Abstract Evidence of Cenozoic magmatism is found along the length of New Guinea. However, the petrogenetic and tectonic setting for this magmatism is poorly understood. This study presents new field, petrographic, U–Pb zircon, and geochemical data from NW New Guinea. These data have been used to identify six units of Cenozoic igneous rocks which record episodes of magmatism during the Oligocene, Miocene, and Pliocene. These episodes occurred in response to the ongoing interaction between the Australian and Philippine Sea plates. During the Eocene, the Australian Plate began to obliquely subduct beneath the Philippine Sea Plate forming the Philippine–Caroline Arc. Magmatism in this arc is recorded in the Dore, Mandi, and Arfak volcanics of NW New Guinea where calc-alkaline and tholeiitic rocks formed within subduction-related fore-arc and extension-related back-arc settings from 32 to 27 Ma. Collision along this plate boundary in the Oligocene–Miocene jammed the subduction zone and caused a reversal in subduction polarity from north-dipping to south-dipping. Following this, subduction of the Philippine Sea Plate beneath the Australian Plate produced magmatism throughout western New Guinea. In NW New Guinea this is recorded by the middle Miocene (18–12 Ma) Moon Volcanics, which include an early period of high-K to shoshonitic igneous activity. These earlier magmatic rocks are associated with the subduction zone polarity reversal and an initially steeply dipping slab. The magmatic products later changed to more calc-alkaline compositions and were emplaced as volcanic rocks in the fore-arc section of a primitive continental arc. Finally, following terminal arc–continent collision in the late Miocene–Pliocene, mantle derived magmas (including the Berangan Andesite) migrated up large strike-slip faults becoming crustally contaminated prior to their eruption during the Plio–Pleistocene. This study of the Cenozoic magmatic history of NW New Guinea provides new data and insights into the tectonic evolution of the northern margin of the Australian Plate.","internal_url":"https://www.academia.edu/72711901/The_history_of_Cenozoic_magmatism_and_collision_in_NW_New_Guinea_New_insights_into_the_tectonic_evolution_of_the_northernmost_margin_of_the_Australian_Plate","translated_internal_url":"","created_at":"2022-03-01T13:07:08.076-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6407942,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_history_of_Cenozoic_magmatism_and_collision_in_NW_New_Guinea_New_insights_into_the_tectonic_evolution_of_the_northernmost_margin_of_the_Australian_Plate","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Abstract Evidence of Cenozoic magmatism is found along the length of New Guinea. However, the petrogenetic and tectonic setting for this magmatism is poorly understood. This study presents new field, petrographic, U–Pb zircon, and geochemical data from NW New Guinea. These data have been used to identify six units of Cenozoic igneous rocks which record episodes of magmatism during the Oligocene, Miocene, and Pliocene. These episodes occurred in response to the ongoing interaction between the Australian and Philippine Sea plates. During the Eocene, the Australian Plate began to obliquely subduct beneath the Philippine Sea Plate forming the Philippine–Caroline Arc. Magmatism in this arc is recorded in the Dore, Mandi, and Arfak volcanics of NW New Guinea where calc-alkaline and tholeiitic rocks formed within subduction-related fore-arc and extension-related back-arc settings from 32 to 27 Ma. Collision along this plate boundary in the Oligocene–Miocene jammed the subduction zone and caused a reversal in subduction polarity from north-dipping to south-dipping. Following this, subduction of the Philippine Sea Plate beneath the Australian Plate produced magmatism throughout western New Guinea. In NW New Guinea this is recorded by the middle Miocene (18–12 Ma) Moon Volcanics, which include an early period of high-K to shoshonitic igneous activity. These earlier magmatic rocks are associated with the subduction zone polarity reversal and an initially steeply dipping slab. The magmatic products later changed to more calc-alkaline compositions and were emplaced as volcanic rocks in the fore-arc section of a primitive continental arc. Finally, following terminal arc–continent collision in the late Miocene–Pliocene, mantle derived magmas (including the Berangan Andesite) migrated up large strike-slip faults becoming crustally contaminated prior to their eruption during the Plio–Pleistocene. This study of the Cenozoic magmatic history of NW New Guinea provides new data and insights into the tectonic evolution of the northern margin of the Australian Plate.","owner":{"id":6407942,"first_name":"Prof. Marcelle","middle_initials":"","last_name":"Boudagher-Fadel","page_name":"MarcelleBoudagherFadel","domain_name":"ucl","created_at":"2013-10-27T10:31:03.235-07:00","display_name":"Prof. Marcelle Boudagher-Fadel","url":"https://ucl.academia.edu/MarcelleBoudagherFadel"},"attachments":[],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":409,"name":"Geophysics","url":"https://www.academia.edu/Documents/in/Geophysics"},{"id":78133,"name":"Gondwana","url":"https://www.academia.edu/Documents/in/Gondwana"}],"urls":[{"id":18119925,"url":"https://api.elsevier.com/content/article/PII:S1342937X20300307?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="72711900"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/72711900/Caribbean_intra_plate_deformation_Paleomagnetic_evidence_from_St_Barth%C3%A9lemy_Island_for_post_Oligocene_rotation_in_the_Lesser_Antilles_forearc"><img alt="Research paper thumbnail of Caribbean intra-plate deformation: Paleomagnetic evidence from St. Barthélemy Island for post-Oligocene rotation in the Lesser Antilles forearc" class="work-thumbnail" src="https://attachments.academia-assets.com/81531277/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/72711900/Caribbean_intra_plate_deformation_Paleomagnetic_evidence_from_St_Barth%C3%A9lemy_Island_for_post_Oligocene_rotation_in_the_Lesser_Antilles_forearc">Caribbean intra-plate deformation: Paleomagnetic evidence from St. Barthélemy Island for post-Oligocene rotation in the Lesser Antilles forearc</a></div><div class="wp-workCard_item"><span>Tectonophysics</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">As subduction zones and their related processes are often studied in 2D, or cylindrical 3D sectio...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">As subduction zones and their related processes are often studied in 2D, or cylindrical 3D sections, the dynamic effects of trench curvature and its evolution through time remain under-explored. Whereas temporal variations in trench trend may be estimated through restoring upper plate deformation, we investigate the forearc deformation history of the strongly curved northern Lesser Antilles trench, connecting the near-orthogonal Lesser Antilles subduction zone with the Motagua-Cayman transform plate boundary. Our new paleomagnetic dataset consists of 310 cores from Eo-Oligocene magmatic rocks and limestones from St. Barthélemy Island. The limestones yielded a post-folding magnetization containing a similar magnetic direction to those stored in magmatic rocks that intrude the folded carbonates, both indicating a post-Oligocene~15°, and perhaps up to 25°c ounterclockwise rotation of the island. Our results highlight that the present-day trench curvature formed progressively during the Cenozoic, allowing us to discuss different tectonic scenarios explaining NE Caribbean plate deformation, and to identify key targets for future research on tectonic architecture and the potential present-day activity of intra-plate deformation that may pose seismic hazards.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3ad2be3e11d6278c26056865ad268c65" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":81531277,"asset_id":72711900,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/81531277/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="72711900"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="72711900"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 72711900; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=72711900]").text(description); $(".js-view-count[data-work-id=72711900]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 72711900; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='72711900']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3ad2be3e11d6278c26056865ad268c65" } } $('.js-work-strip[data-work-id=72711900]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":72711900,"title":"Caribbean intra-plate deformation: Paleomagnetic evidence from St. Barthélemy Island for post-Oligocene rotation in the Lesser Antilles forearc","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"As subduction zones and their related processes are often studied in 2D, or cylindrical 3D sections, the dynamic effects of trench curvature and its evolution through time remain under-explored. Whereas temporal variations in trench trend may be estimated through restoring upper plate deformation, we investigate the forearc deformation history of the strongly curved northern Lesser Antilles trench, connecting the near-orthogonal Lesser Antilles subduction zone with the Motagua-Cayman transform plate boundary. Our new paleomagnetic dataset consists of 310 cores from Eo-Oligocene magmatic rocks and limestones from St. Barthélemy Island. The limestones yielded a post-folding magnetization containing a similar magnetic direction to those stored in magmatic rocks that intrude the folded carbonates, both indicating a post-Oligocene~15°, and perhaps up to 25°c ounterclockwise rotation of the island. Our results highlight that the present-day trench curvature formed progressively during the Cenozoic, allowing us to discuss different tectonic scenarios explaining NE Caribbean plate deformation, and to identify key targets for future research on tectonic architecture and the potential present-day activity of intra-plate deformation that may pose seismic hazards.","publication_name":"Tectonophysics","grobid_abstract_attachment_id":81531277},"translated_abstract":null,"internal_url":"https://www.academia.edu/72711900/Caribbean_intra_plate_deformation_Paleomagnetic_evidence_from_St_Barth%C3%A9lemy_Island_for_post_Oligocene_rotation_in_the_Lesser_Antilles_forearc","translated_internal_url":"","created_at":"2022-03-01T13:07:07.819-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6407942,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":81531277,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531277/thumbnails/1.jpg","file_name":"2020_Philippon_Tectonophysics.pdf","download_url":"https://www.academia.edu/attachments/81531277/download_file","bulk_download_file_name":"Caribbean_intra_plate_deformation_Paleom.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531277/2020_Philippon_Tectonophysics-libre.pdf?1646169216=\u0026response-content-disposition=attachment%3B+filename%3DCaribbean_intra_plate_deformation_Paleom.pdf\u0026Expires=1741739495\u0026Signature=KHejdLUXA9rJguHPX4I8vnfoLT8AsK7JTO-bx-2Xz93H59qkJ8GfFgCFT2yTPP9OqkEHfTIUEjMTB~kh50KVD~M7E58~Eidi3Y6ZI0yTapHWrXsBa9tzc0bmmttp3QFqQB0iUmWzr-mpcsJKZuOTivROhsObimuE~bdwxAocL8vsb1DRj4iWkhXMcRmwcPjMz~LUxEhe-9SDK3ZuHmO7TlfM5VzWufD0~xu8e20arjQjXqgfNDUgAsOWJQzUVs~0EOb-oChPInmnzqz2g2gp6wj-MPlgvTSFoxA3uN-iMkwy2OZmYpV-NuwYsxRWuVb9ROj-HjHYo8I-6~NJOmhQFw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Caribbean_intra_plate_deformation_Paleomagnetic_evidence_from_St_Barthélemy_Island_for_post_Oligocene_rotation_in_the_Lesser_Antilles_forearc","translated_slug":"","page_count":13,"language":"en","content_type":"Work","summary":"As subduction zones and their related processes are often studied in 2D, or cylindrical 3D sections, the dynamic effects of trench curvature and its evolution through time remain under-explored. Whereas temporal variations in trench trend may be estimated through restoring upper plate deformation, we investigate the forearc deformation history of the strongly curved northern Lesser Antilles trench, connecting the near-orthogonal Lesser Antilles subduction zone with the Motagua-Cayman transform plate boundary. Our new paleomagnetic dataset consists of 310 cores from Eo-Oligocene magmatic rocks and limestones from St. Barthélemy Island. The limestones yielded a post-folding magnetization containing a similar magnetic direction to those stored in magmatic rocks that intrude the folded carbonates, both indicating a post-Oligocene~15°, and perhaps up to 25°c ounterclockwise rotation of the island. Our results highlight that the present-day trench curvature formed progressively during the Cenozoic, allowing us to discuss different tectonic scenarios explaining NE Caribbean plate deformation, and to identify key targets for future research on tectonic architecture and the potential present-day activity of intra-plate deformation that may pose seismic hazards.","owner":{"id":6407942,"first_name":"Prof. Marcelle","middle_initials":"","last_name":"Boudagher-Fadel","page_name":"MarcelleBoudagherFadel","domain_name":"ucl","created_at":"2013-10-27T10:31:03.235-07:00","display_name":"Prof. Marcelle Boudagher-Fadel","url":"https://ucl.academia.edu/MarcelleBoudagherFadel"},"attachments":[{"id":81531277,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531277/thumbnails/1.jpg","file_name":"2020_Philippon_Tectonophysics.pdf","download_url":"https://www.academia.edu/attachments/81531277/download_file","bulk_download_file_name":"Caribbean_intra_plate_deformation_Paleom.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531277/2020_Philippon_Tectonophysics-libre.pdf?1646169216=\u0026response-content-disposition=attachment%3B+filename%3DCaribbean_intra_plate_deformation_Paleom.pdf\u0026Expires=1741739495\u0026Signature=KHejdLUXA9rJguHPX4I8vnfoLT8AsK7JTO-bx-2Xz93H59qkJ8GfFgCFT2yTPP9OqkEHfTIUEjMTB~kh50KVD~M7E58~Eidi3Y6ZI0yTapHWrXsBa9tzc0bmmttp3QFqQB0iUmWzr-mpcsJKZuOTivROhsObimuE~bdwxAocL8vsb1DRj4iWkhXMcRmwcPjMz~LUxEhe-9SDK3ZuHmO7TlfM5VzWufD0~xu8e20arjQjXqgfNDUgAsOWJQzUVs~0EOb-oChPInmnzqz2g2gp6wj-MPlgvTSFoxA3uN-iMkwy2OZmYpV-NuwYsxRWuVb9ROj-HjHYo8I-6~NJOmhQFw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":409,"name":"Geophysics","url":"https://www.academia.edu/Documents/in/Geophysics"},{"id":44126,"name":"Tectonophysics","url":"https://www.academia.edu/Documents/in/Tectonophysics"}],"urls":[{"id":18119924,"url":"https://api.elsevier.com/content/article/PII:S0040195120300068?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="72711847"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/72711847/Late_Cretaceous_to_early_Paleogene_foraminiferal_biozones_in_the_Tibetan_Himalayas_and_a_pan_Tethyan_foraminiferal_correlation_scheme"><img alt="Research paper thumbnail of Late Cretaceous to early Paleogene foraminiferal biozones in the Tibetan Himalayas, and a pan-Tethyan foraminiferal correlation scheme" class="work-thumbnail" src="https://attachments.academia-assets.com/81531170/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/72711847/Late_Cretaceous_to_early_Paleogene_foraminiferal_biozones_in_the_Tibetan_Himalayas_and_a_pan_Tethyan_foraminiferal_correlation_scheme">Late Cretaceous to early Paleogene foraminiferal biozones in the Tibetan Himalayas, and a pan-Tethyan foraminiferal correlation scheme</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This investigation of Upper Cretaceous and lower Paleogene sediments from the Tibetan Himalayas, ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This investigation of Upper Cretaceous and lower Paleogene sediments from the Tibetan Himalayas, based on three stratigraphic sections from the southern margin of Asian Plate and nine sections from the northern Indian Plate margin, provides the first high resolution biostratigraphic description of the region. The sedimentary successions from these two plate margins evolved during the following depositional stages, which we here divide into eleven new biozones (TLK2-3 and TP1-9); (i) an outer neritic stage from the Coniacian to the Maastrichtian, dominated by keeled planktonic foraminifera (PF), such as Globotruncana (TLK2); (ii) a latest Maastrichtian forereef assemblage dominated by Lepidorbitoides, Omphalocyclus andOrbitoides (TLK3); (iii) an early Paleocene, intermittently occurring backreef/shallow reefal warm environment with benthic assemblages dominated by small miliolids and rotaliids, such as Daviesina and Lockhartia (TP1-2); (iv) a late Paleocene-early Eocene, shallow reef...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f5b30c52ab31939eb32d43adcb0cf8b9" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":81531170,"asset_id":72711847,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/81531170/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="72711847"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="72711847"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 72711847; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=72711847]").text(description); $(".js-view-count[data-work-id=72711847]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 72711847; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='72711847']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f5b30c52ab31939eb32d43adcb0cf8b9" } } $('.js-work-strip[data-work-id=72711847]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":72711847,"title":"Late Cretaceous to early Paleogene foraminiferal biozones in the Tibetan Himalayas, and a pan-Tethyan foraminiferal correlation scheme","translated_title":"","metadata":{"abstract":"This investigation of Upper Cretaceous and lower Paleogene sediments from the Tibetan Himalayas, based on three stratigraphic sections from the southern margin of Asian Plate and nine sections from the northern Indian Plate margin, provides the first high resolution biostratigraphic description of the region. The sedimentary successions from these two plate margins evolved during the following depositional stages, which we here divide into eleven new biozones (TLK2-3 and TP1-9); (i) an outer neritic stage from the Coniacian to the Maastrichtian, dominated by keeled planktonic foraminifera (PF), such as Globotruncana (TLK2); (ii) a latest Maastrichtian forereef assemblage dominated by Lepidorbitoides, Omphalocyclus andOrbitoides (TLK3); (iii) an early Paleocene, intermittently occurring backreef/shallow reefal warm environment with benthic assemblages dominated by small miliolids and rotaliids, such as Daviesina and Lockhartia (TP1-2); (iv) a late Paleocene-early Eocene, shallow reef...","ai_title_tag":"Foraminiferal Biozones in Tibetan Himalayas","publication_date":{"day":null,"month":null,"year":2015,"errors":{}}},"translated_abstract":"This investigation of Upper Cretaceous and lower Paleogene sediments from the Tibetan Himalayas, based on three stratigraphic sections from the southern margin of Asian Plate and nine sections from the northern Indian Plate margin, provides the first high resolution biostratigraphic description of the region. The sedimentary successions from these two plate margins evolved during the following depositional stages, which we here divide into eleven new biozones (TLK2-3 and TP1-9); (i) an outer neritic stage from the Coniacian to the Maastrichtian, dominated by keeled planktonic foraminifera (PF), such as Globotruncana (TLK2); (ii) a latest Maastrichtian forereef assemblage dominated by Lepidorbitoides, Omphalocyclus andOrbitoides (TLK3); (iii) an early Paleocene, intermittently occurring backreef/shallow reefal warm environment with benthic assemblages dominated by small miliolids and rotaliids, such as Daviesina and Lockhartia (TP1-2); (iv) a late Paleocene-early Eocene, shallow reef...","internal_url":"https://www.academia.edu/72711847/Late_Cretaceous_to_early_Paleogene_foraminiferal_biozones_in_the_Tibetan_Himalayas_and_a_pan_Tethyan_foraminiferal_correlation_scheme","translated_internal_url":"","created_at":"2022-03-01T13:06:06.510-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6407942,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":81531170,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531170/thumbnails/1.jpg","file_name":"Biostratigraphy_20and_20paleogeography_20in_20the_20Tibetian_20Himalayas_20Consolidated_20with_20Figs.pdf","download_url":"https://www.academia.edu/attachments/81531170/download_file","bulk_download_file_name":"Late_Cretaceous_to_early_Paleogene_foram.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531170/Biostratigraphy_20and_20paleogeography_20in_20the_20Tibetian_20Himalayas_20Consolidated_20with_20Figs.pdf?1738479967=\u0026response-content-disposition=attachment%3B+filename%3DLate_Cretaceous_to_early_Paleogene_foram.pdf\u0026Expires=1742082204\u0026Signature=VVj-AfN-sHlXHx5TdCNBR1adSiNVipLqo1jmWUYteH4jUiXU6Owv5wMkD~K~MjIC1QE82GD9W12fxnQtgphF7iLuDo~39XaW0WihJajXMfQgrqQc~DmvaYdmZOZhztCefl-IrzpflHIg-LZ8BX8Fh6~cOCTbdC9aIYCc8F5S70xM7gMEaiiAr~Alwlcrx2vBRiRxOnRUY3HTWhpWfvPGSjT6PB3aadc1q3IiJycnYBPPRphdcWhj0wB3jzp5hRPjuuMPmIb5aeaVSx0QZcACCVD28WGzIfEVNp6A2kAzPRUrNxHoBgw0fOTbfHMs5miy~GpDqxo20Sgin8hrIu5ixw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Late_Cretaceous_to_early_Paleogene_foraminiferal_biozones_in_the_Tibetan_Himalayas_and_a_pan_Tethyan_foraminiferal_correlation_scheme","translated_slug":"","page_count":56,"language":"en","content_type":"Work","summary":"This investigation of Upper Cretaceous and lower Paleogene sediments from the Tibetan Himalayas, based on three stratigraphic sections from the southern margin of Asian Plate and nine sections from the northern Indian Plate margin, provides the first high resolution biostratigraphic description of the region. The sedimentary successions from these two plate margins evolved during the following depositional stages, which we here divide into eleven new biozones (TLK2-3 and TP1-9); (i) an outer neritic stage from the Coniacian to the Maastrichtian, dominated by keeled planktonic foraminifera (PF), such as Globotruncana (TLK2); (ii) a latest Maastrichtian forereef assemblage dominated by Lepidorbitoides, Omphalocyclus andOrbitoides (TLK3); (iii) an early Paleocene, intermittently occurring backreef/shallow reefal warm environment with benthic assemblages dominated by small miliolids and rotaliids, such as Daviesina and Lockhartia (TP1-2); (iv) a late Paleocene-early Eocene, shallow reef...","owner":{"id":6407942,"first_name":"Prof. Marcelle","middle_initials":"","last_name":"Boudagher-Fadel","page_name":"MarcelleBoudagherFadel","domain_name":"ucl","created_at":"2013-10-27T10:31:03.235-07:00","display_name":"Prof. Marcelle Boudagher-Fadel","url":"https://ucl.academia.edu/MarcelleBoudagherFadel"},"attachments":[{"id":81531170,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531170/thumbnails/1.jpg","file_name":"Biostratigraphy_20and_20paleogeography_20in_20the_20Tibetian_20Himalayas_20Consolidated_20with_20Figs.pdf","download_url":"https://www.academia.edu/attachments/81531170/download_file","bulk_download_file_name":"Late_Cretaceous_to_early_Paleogene_foram.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531170/Biostratigraphy_20and_20paleogeography_20in_20the_20Tibetian_20Himalayas_20Consolidated_20with_20Figs.pdf?1738479967=\u0026response-content-disposition=attachment%3B+filename%3DLate_Cretaceous_to_early_Paleogene_foram.pdf\u0026Expires=1742082204\u0026Signature=VVj-AfN-sHlXHx5TdCNBR1adSiNVipLqo1jmWUYteH4jUiXU6Owv5wMkD~K~MjIC1QE82GD9W12fxnQtgphF7iLuDo~39XaW0WihJajXMfQgrqQc~DmvaYdmZOZhztCefl-IrzpflHIg-LZ8BX8Fh6~cOCTbdC9aIYCc8F5S70xM7gMEaiiAr~Alwlcrx2vBRiRxOnRUY3HTWhpWfvPGSjT6PB3aadc1q3IiJycnYBPPRphdcWhj0wB3jzp5hRPjuuMPmIb5aeaVSx0QZcACCVD28WGzIfEVNp6A2kAzPRUrNxHoBgw0fOTbfHMs5miy~GpDqxo20Sgin8hrIu5ixw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":81531167,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81531167/thumbnails/1.jpg","file_name":"Biostratigraphy_20and_20paleogeography_20in_20the_20Tibetian_20Himalayas_20Consolidated_20with_20Figs.pdf","download_url":"https://www.academia.edu/attachments/81531167/download_file","bulk_download_file_name":"Late_Cretaceous_to_early_Paleogene_foram.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81531167/Biostratigraphy_20and_20paleogeography_20in_20the_20Tibetian_20Himalayas_20Consolidated_20with_20Figs.pdf?1738479967=\u0026response-content-disposition=attachment%3B+filename%3DLate_Cretaceous_to_early_Paleogene_foram.pdf\u0026Expires=1742082204\u0026Signature=Bnhw0nVnxJbqiEd5Aaq2qLRenfB18At7gFLRFGTr~sqYu7pjDTFx5AqA9nfnralQPFPb2lBlE6kNbKrPPtjYvnvHGYULutE3d2dUYZVkpWrHP0g9mJuwFEzdDcaivrBUkDQwDuDh~Emh4eNUeGtajPO6D-N79Vorvcy49WCOYOtCUkctNdrumYdQulDMBimDFEdkf1hpWTs9VaWlQHTSsB8uE2SFS~nwQBgd8jykD37dyuriLmBOeAGJ5IaOuweRcaQUyalpR5AhIFrAh7K-3yjWSsadNj79NQU5LMCLAxfk~9mEIhYA8Ko86dHuYjUrhnPBlT11qAFoce1CeKjYoQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"}],"urls":[{"id":18119909,"url":"http://discovery.ucl.ac.uk/1470061/1/Biostratigraphy%20and%20paleogeography%20in%20the%20Tibetian%20Himalayas%20Consolidated%20with%20Figs.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="67948701"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/67948701/The_phylogenetic_and_palaeogeographic_evolution_of_the_nummulitoid_larger_benthic_foraminifera"><img alt="Research paper thumbnail of The phylogenetic and palaeogeographic evolution of the nummulitoid larger benthic foraminifera" class="work-thumbnail" src="https://attachments.academia-assets.com/78604778/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/67948701/The_phylogenetic_and_palaeogeographic_evolution_of_the_nummulitoid_larger_benthic_foraminifera">The phylogenetic and palaeogeographic evolution of the nummulitoid larger benthic foraminifera</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Nummulitoidea are larger benthic foraminifera, and were major reef-forming organisms from the Mid...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Nummulitoidea are larger benthic foraminifera, and were major reef-forming organisms from the Middle Paleogene to Early Neogene. Today, porous nummulitoid limestones, which occur globally from the Atlantic to the Indo-Pacific, form potentially valuable oil reservoirs. Until now the origin, evolution and palaeogeographic development of the nummulitoids have not been fully articulated, but new material allows here the first systematic, global biostratigraphic comparison and correlation of the nummulitoids to be made. It is suggested that the nummulitoids originated in the Americas during the Middle Paleocene (Selandian). These early nummulitoids are inferred to have migrated across the Atlantic in the Late Paleocene (Thanetian) following two paths: south towards SW Africa, and northeastward through the Tethyan corridor. The Tethyan forms evolved during the Eocene into many lineages, which in turn migrated, within a few million years of their first appearance, into the Indo-Pacific, wh...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f6fa58fc61101c5c4f45a65c95dbd07f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":78604778,"asset_id":67948701,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/78604778/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="67948701"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="67948701"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 67948701; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=67948701]").text(description); $(".js-view-count[data-work-id=67948701]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 67948701; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='67948701']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f6fa58fc61101c5c4f45a65c95dbd07f" } } $('.js-work-strip[data-work-id=67948701]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":67948701,"title":"The phylogenetic and palaeogeographic evolution of the nummulitoid larger benthic foraminifera","translated_title":"","metadata":{"abstract":"Nummulitoidea are larger benthic foraminifera, and were major reef-forming organisms from the Middle Paleogene to Early Neogene. Today, porous nummulitoid limestones, which occur globally from the Atlantic to the Indo-Pacific, form potentially valuable oil reservoirs. Until now the origin, evolution and palaeogeographic development of the nummulitoids have not been fully articulated, but new material allows here the first systematic, global biostratigraphic comparison and correlation of the nummulitoids to be made. It is suggested that the nummulitoids originated in the Americas during the Middle Paleocene (Selandian). These early nummulitoids are inferred to have migrated across the Atlantic in the Late Paleocene (Thanetian) following two paths: south towards SW Africa, and northeastward through the Tethyan corridor. The Tethyan forms evolved during the Eocene into many lineages, which in turn migrated, within a few million years of their first appearance, into the Indo-Pacific, wh...","publication_date":{"day":null,"month":null,"year":2014,"errors":{}}},"translated_abstract":"Nummulitoidea are larger benthic foraminifera, and were major reef-forming organisms from the Middle Paleogene to Early Neogene. Today, porous nummulitoid limestones, which occur globally from the Atlantic to the Indo-Pacific, form potentially valuable oil reservoirs. Until now the origin, evolution and palaeogeographic development of the nummulitoids have not been fully articulated, but new material allows here the first systematic, global biostratigraphic comparison and correlation of the nummulitoids to be made. It is suggested that the nummulitoids originated in the Americas during the Middle Paleocene (Selandian). These early nummulitoids are inferred to have migrated across the Atlantic in the Late Paleocene (Thanetian) following two paths: south towards SW Africa, and northeastward through the Tethyan corridor. The Tethyan forms evolved during the Eocene into many lineages, which in turn migrated, within a few million years of their first appearance, into the Indo-Pacific, wh...","internal_url":"https://www.academia.edu/67948701/The_phylogenetic_and_palaeogeographic_evolution_of_the_nummulitoid_larger_benthic_foraminifera","translated_internal_url":"","created_at":"2022-01-13T04:49:17.543-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6407942,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":78604778,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78604778/thumbnails/1.jpg","file_name":"The_20phylogenetic_20and_20palaeogeographic_20evolution_20of_20the_20nummulitoid_20larger.pdf","download_url":"https://www.academia.edu/attachments/78604778/download_file","bulk_download_file_name":"The_phylogenetic_and_palaeogeographic_ev.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78604778/The_20phylogenetic_20and_20palaeogeographic_20evolution_20of_20the_20nummulitoid_20larger-libre.pdf?1642083405=\u0026response-content-disposition=attachment%3B+filename%3DThe_phylogenetic_and_palaeogeographic_ev.pdf\u0026Expires=1742542208\u0026Signature=Gj208TjcsKtmuZyOhAlkf1HCfF6XVTqQN7wLWAKI78hcMNd1grewg~irA1eDzEBzn3yECEbIxf-BcR~wH1ZAJJioJi-f0T~6DTqRGiWpSNby01ygSElkfwlTFGWnMKoYwocL9TWH8RVwMMyQ3fXLroT1xYU1o2YEmQEsKyDkAwAJJjvaWdE-7n4Ospt0lsOL5ltA7fD3A1~yQc3muPghQ3RpHH1Vt5aa26B4Q7js8WQN~Pq863UysLyk2jgc3uaHJ7-Hn2UhssMnUygHsvaQLZu5QTq~C6H8SuGB~rkCc~8O8QlMIifBHIJy9~wibMC5zHqLJQDYs1wSo06TsLZgdw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_phylogenetic_and_palaeogeographic_evolution_of_the_nummulitoid_larger_benthic_foraminifera","translated_slug":"","page_count":46,"language":"en","content_type":"Work","summary":"Nummulitoidea are larger benthic foraminifera, and were major reef-forming organisms from the Middle Paleogene to Early Neogene. Today, porous nummulitoid limestones, which occur globally from the Atlantic to the Indo-Pacific, form potentially valuable oil reservoirs. Until now the origin, evolution and palaeogeographic development of the nummulitoids have not been fully articulated, but new material allows here the first systematic, global biostratigraphic comparison and correlation of the nummulitoids to be made. It is suggested that the nummulitoids originated in the Americas during the Middle Paleocene (Selandian). These early nummulitoids are inferred to have migrated across the Atlantic in the Late Paleocene (Thanetian) following two paths: south towards SW Africa, and northeastward through the Tethyan corridor. The Tethyan forms evolved during the Eocene into many lineages, which in turn migrated, within a few million years of their first appearance, into the Indo-Pacific, wh...","owner":{"id":6407942,"first_name":"Prof. Marcelle","middle_initials":"","last_name":"Boudagher-Fadel","page_name":"MarcelleBoudagherFadel","domain_name":"ucl","created_at":"2013-10-27T10:31:03.235-07:00","display_name":"Prof. Marcelle Boudagher-Fadel","url":"https://ucl.academia.edu/MarcelleBoudagherFadel"},"attachments":[{"id":78604778,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78604778/thumbnails/1.jpg","file_name":"The_20phylogenetic_20and_20palaeogeographic_20evolution_20of_20the_20nummulitoid_20larger.pdf","download_url":"https://www.academia.edu/attachments/78604778/download_file","bulk_download_file_name":"The_phylogenetic_and_palaeogeographic_ev.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78604778/The_20phylogenetic_20and_20palaeogeographic_20evolution_20of_20the_20nummulitoid_20larger-libre.pdf?1642083405=\u0026response-content-disposition=attachment%3B+filename%3DThe_phylogenetic_and_palaeogeographic_ev.pdf\u0026Expires=1742542208\u0026Signature=Gj208TjcsKtmuZyOhAlkf1HCfF6XVTqQN7wLWAKI78hcMNd1grewg~irA1eDzEBzn3yECEbIxf-BcR~wH1ZAJJioJi-f0T~6DTqRGiWpSNby01ygSElkfwlTFGWnMKoYwocL9TWH8RVwMMyQ3fXLroT1xYU1o2YEmQEsKyDkAwAJJjvaWdE-7n4Ospt0lsOL5ltA7fD3A1~yQc3muPghQ3RpHH1Vt5aa26B4Q7js8WQN~Pq863UysLyk2jgc3uaHJ7-Hn2UhssMnUygHsvaQLZu5QTq~C6H8SuGB~rkCc~8O8QlMIifBHIJy9~wibMC5zHqLJQDYs1wSo06TsLZgdw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":78604773,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78604773/thumbnails/1.jpg","file_name":"The_20phylogenetic_20and_20palaeogeographic_20evolution_20of_20the_20nummulitoid_20larger.pdf","download_url":"https://www.academia.edu/attachments/78604773/download_file","bulk_download_file_name":"The_phylogenetic_and_palaeogeographic_ev.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78604773/The_20phylogenetic_20and_20palaeogeographic_20evolution_20of_20the_20nummulitoid_20larger-libre.pdf?1642083400=\u0026response-content-disposition=attachment%3B+filename%3DThe_phylogenetic_and_palaeogeographic_ev.pdf\u0026Expires=1742542208\u0026Signature=aYfG2u9Eh-eZ0VOSZm1PfffQyKmV98z61TL-XLRF7Mw7TUN050L9~xdEEE3QhdOHR~z1JwNMEBYTrCaXvTv0D~YHpUbI8HrBxb1agmEU8kJlK76Gk~4g2VO9ssOw98Ff7zVG9u1QraIl-3qJf2PLl0VanAk4R4yUXxBSF9kx7wwjAvy--OGDvixT9deGn7yCyqkSWB1~XGtpMRjnIgp0DGFnvewg3NYaWCF7OmLSXJRVCbzySoDLaOUC7sMdlZcZv7y34pBu2VjCXU4SUKs2ntxDiIKdGm087iYPGyhM7E1an9w-dma9YzbRyY81yczu8j45U89VTNY3P4WRI8JcKQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"}],"urls":[{"id":16349552,"url":"http://discovery.ucl.ac.uk/1426612/2/The%20phylogenetic%20and%20palaeogeographic%20evolution%20of%20the%20nummulitoid%20larger.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="67948683"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/67948683/Initial_growth_of_the_Northern_Lhasaplano_Tibetan_Plateau_in_the_early_Late_Cretaceous_ca_92_Ma_"><img alt="Research paper thumbnail of Initial growth of the Northern Lhasaplano, Tibetan Plateau in the early Late Cretaceous (ca. 92 Ma)" class="work-thumbnail" src="https://attachments.academia-assets.com/78604943/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/67948683/Initial_growth_of_the_Northern_Lhasaplano_Tibetan_Plateau_in_the_early_Late_Cretaceous_ca_92_Ma_">Initial growth of the Northern Lhasaplano, Tibetan Plateau in the early Late Cretaceous (ca. 92 Ma)</a></div><div class="wp-workCard_item"><span>GSA Bulletin</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Constraining the growth of the Tibetan Plateau in time and space is critical for testing geodynam...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Constraining the growth of the Tibetan Plateau in time and space is critical for testing geodynamic models and climatic changes at the regional and global scale. The Lhasa block is a key region for unraveling the early history of the Tibetan Plateau. Distinct from the underlying shallow-marine limestones, the Jingzhushan and Daxiong formations consist of conglomerate and sandstone deposited in alluvial-fan and braided-river systems. Both units were deposited at ca. 92 Ma, as constrained by interbedded tuff layers, detrital zircons, and micropaleontological data. Provenance and paleocurrent analyses indicate that both units were derived from the same elevated source area located in the central-northern Lhasa block. These two parallel belts of coeval conglomerates record a major change in paleogeography of the source region from a shallow seaway to a continental highland, implying initial topographic growth of an area over 160,000 km 2 , named here the Northern Lhasaplano. The early Late Cretaceous topographic growth of the Northern Lhasaplano was associated with the demise of Tethyan seaways, thrustbelt development, and crustal thickening. The same paleogeographic and paleotectonic changes were recorded earlier in the Northern Lhasaplano than in the Southern Lhasaplano, indicating progressive topographic growth from north to south across the Bangong-Nujiang suture and Lhasa block during the Cretaceous. Similar to the Central Andean Plateau, the Northern Lhasaplano developed by plate convergence above the oceanic Neo-Tethyan subduction zone before the onset of the India-Asia collision.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="24a725341b17c976ec95dd272b921c51" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":78604943,"asset_id":67948683,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/78604943/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="67948683"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="67948683"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 67948683; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=67948683]").text(description); $(".js-view-count[data-work-id=67948683]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 67948683; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='67948683']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "24a725341b17c976ec95dd272b921c51" } } $('.js-work-strip[data-work-id=67948683]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":67948683,"title":"Initial growth of the Northern Lhasaplano, Tibetan Plateau in the early Late Cretaceous (ca. 92 Ma)","translated_title":"","metadata":{"publisher":"Geological Society of America","grobid_abstract":"Constraining the growth of the Tibetan Plateau in time and space is critical for testing geodynamic models and climatic changes at the regional and global scale. The Lhasa block is a key region for unraveling the early history of the Tibetan Plateau. Distinct from the underlying shallow-marine limestones, the Jingzhushan and Daxiong formations consist of conglomerate and sandstone deposited in alluvial-fan and braided-river systems. Both units were deposited at ca. 92 Ma, as constrained by interbedded tuff layers, detrital zircons, and micropaleontological data. Provenance and paleocurrent analyses indicate that both units were derived from the same elevated source area located in the central-northern Lhasa block. These two parallel belts of coeval conglomerates record a major change in paleogeography of the source region from a shallow seaway to a continental highland, implying initial topographic growth of an area over 160,000 km 2 , named here the Northern Lhasaplano. The early Late Cretaceous topographic growth of the Northern Lhasaplano was associated with the demise of Tethyan seaways, thrustbelt development, and crustal thickening. The same paleogeographic and paleotectonic changes were recorded earlier in the Northern Lhasaplano than in the Southern Lhasaplano, indicating progressive topographic growth from north to south across the Bangong-Nujiang suture and Lhasa block during the Cretaceous. Similar to the Central Andean Plateau, the Northern Lhasaplano developed by plate convergence above the oceanic Neo-Tethyan subduction zone before the onset of the India-Asia collision.","publication_name":"GSA Bulletin","grobid_abstract_attachment_id":78604943},"translated_abstract":null,"internal_url":"https://www.academia.edu/67948683/Initial_growth_of_the_Northern_Lhasaplano_Tibetan_Plateau_in_the_early_Late_Cretaceous_ca_92_Ma_","translated_internal_url":"","created_at":"2022-01-13T04:49:04.602-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6407942,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":78604943,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78604943/thumbnails/1.jpg","file_name":"f63c638f-bb01-40ce-aaa5-513022cc57cf.pdf","download_url":"https://www.academia.edu/attachments/78604943/download_file","bulk_download_file_name":"Initial_growth_of_the_Northern_Lhasaplan.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78604943/f63c638f-bb01-40ce-aaa5-513022cc57cf-libre.pdf?1642079236=\u0026response-content-disposition=attachment%3B+filename%3DInitial_growth_of_the_Northern_Lhasaplan.pdf\u0026Expires=1742082205\u0026Signature=IsSTHFfukeSahrKH4EWtapPv8nOTFm4RGTr7A3TA~0oeIPHj3rJd2IMU1s3C3fOGNm5aGXv6yVU3OBKkC6xlLsgXia8kTtKvvGLPVOvRIqONPiEh17ZhWXLh3PPDU-g~85KhjP3tSc2Y5ee6sMod-Ok-d8QS2np-5rq4ETT3WfI2is2FblYYhPmzXe04DX7w-AqMeNRU93bwOM4Lc5jbvegSp24iE8lFUHNmAPDhoy4Clhzb0KQ30shrHkJXgNNx0owRtRsffxYQGpTDuqkO0Ep3wkbnAam2pfP3bkpeQOztLhmVTFaqFMXCLKmMmNalbCT19Vsb3rcUPkYcAUuRng__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Initial_growth_of_the_Northern_Lhasaplano_Tibetan_Plateau_in_the_early_Late_Cretaceous_ca_92_Ma_","translated_slug":"","page_count":14,"language":"en","content_type":"Work","summary":"Constraining the growth of the Tibetan Plateau in time and space is critical for testing geodynamic models and climatic changes at the regional and global scale. The Lhasa block is a key region for unraveling the early history of the Tibetan Plateau. Distinct from the underlying shallow-marine limestones, the Jingzhushan and Daxiong formations consist of conglomerate and sandstone deposited in alluvial-fan and braided-river systems. Both units were deposited at ca. 92 Ma, as constrained by interbedded tuff layers, detrital zircons, and micropaleontological data. Provenance and paleocurrent analyses indicate that both units were derived from the same elevated source area located in the central-northern Lhasa block. These two parallel belts of coeval conglomerates record a major change in paleogeography of the source region from a shallow seaway to a continental highland, implying initial topographic growth of an area over 160,000 km 2 , named here the Northern Lhasaplano. The early Late Cretaceous topographic growth of the Northern Lhasaplano was associated with the demise of Tethyan seaways, thrustbelt development, and crustal thickening. The same paleogeographic and paleotectonic changes were recorded earlier in the Northern Lhasaplano than in the Southern Lhasaplano, indicating progressive topographic growth from north to south across the Bangong-Nujiang suture and Lhasa block during the Cretaceous. Similar to the Central Andean Plateau, the Northern Lhasaplano developed by plate convergence above the oceanic Neo-Tethyan subduction zone before the onset of the India-Asia collision.","owner":{"id":6407942,"first_name":"Prof. Marcelle","middle_initials":"","last_name":"Boudagher-Fadel","page_name":"MarcelleBoudagherFadel","domain_name":"ucl","created_at":"2013-10-27T10:31:03.235-07:00","display_name":"Prof. Marcelle Boudagher-Fadel","url":"https://ucl.academia.edu/MarcelleBoudagherFadel"},"attachments":[{"id":78604943,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78604943/thumbnails/1.jpg","file_name":"f63c638f-bb01-40ce-aaa5-513022cc57cf.pdf","download_url":"https://www.academia.edu/attachments/78604943/download_file","bulk_download_file_name":"Initial_growth_of_the_Northern_Lhasaplan.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78604943/f63c638f-bb01-40ce-aaa5-513022cc57cf-libre.pdf?1642079236=\u0026response-content-disposition=attachment%3B+filename%3DInitial_growth_of_the_Northern_Lhasaplan.pdf\u0026Expires=1742082205\u0026Signature=IsSTHFfukeSahrKH4EWtapPv8nOTFm4RGTr7A3TA~0oeIPHj3rJd2IMU1s3C3fOGNm5aGXv6yVU3OBKkC6xlLsgXia8kTtKvvGLPVOvRIqONPiEh17ZhWXLh3PPDU-g~85KhjP3tSc2Y5ee6sMod-Ok-d8QS2np-5rq4ETT3WfI2is2FblYYhPmzXe04DX7w-AqMeNRU93bwOM4Lc5jbvegSp24iE8lFUHNmAPDhoy4Clhzb0KQ30shrHkJXgNNx0owRtRsffxYQGpTDuqkO0Ep3wkbnAam2pfP3bkpeQOztLhmVTFaqFMXCLKmMmNalbCT19Vsb3rcUPkYcAUuRng__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":409,"name":"Geophysics","url":"https://www.academia.edu/Documents/in/Geophysics"}],"urls":[{"id":16349541,"url":"https://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/doi/10.1130/B35124.1/4676179/b35124.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="62300491"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/62300491/Early_Jurassic_carbon_isotope_perturbations_in_a_shallow_water_succession_from_the_Tethys_Himalaya_southern_hemisphere"><img alt="Research paper thumbnail of Early Jurassic carbon-isotope perturbations in a shallow-water succession from the Tethys Himalaya, southern hemisphere" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Early Jurassic carbon-isotope perturbations in a shallow-water succession from the Tethys Himalaya, southern hemisphere</div><div class="wp-workCard_item"><span>Newsletters on Stratigraphy</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="62300491"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="62300491"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 62300491; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=62300491]").text(description); $(".js-view-count[data-work-id=62300491]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 62300491; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='62300491']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=62300491]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":62300491,"title":"Early Jurassic carbon-isotope perturbations in a shallow-water succession from the Tethys Himalaya, southern hemisphere","translated_title":"","metadata":{"publisher":"Schweizerbart","publication_name":"Newsletters on Stratigraphy"},"translated_abstract":null,"internal_url":"https://www.academia.edu/62300491/Early_Jurassic_carbon_isotope_perturbations_in_a_shallow_water_succession_from_the_Tethys_Himalaya_southern_hemisphere","translated_internal_url":"","created_at":"2021-11-24T16:19:29.192-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6407942,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Early_Jurassic_carbon_isotope_perturbations_in_a_shallow_water_succession_from_the_Tethys_Himalaya_southern_hemisphere","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":6407942,"first_name":"Prof. Marcelle","middle_initials":"","last_name":"Boudagher-Fadel","page_name":"MarcelleBoudagherFadel","domain_name":"ucl","created_at":"2013-10-27T10:31:03.235-07:00","display_name":"Prof. Marcelle Boudagher-Fadel","url":"https://ucl.academia.edu/MarcelleBoudagherFadel"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; } .sign-in-with-apple-button > div { margin: 0 auto; / This centers the Apple-rendered button horizontally }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "5f9538450c895c2758a04d859a9b5bb3772070afa66fe0785d5cc4129c7d098a", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="WC5fk_pZpHMjeI42kkrIEL59-BfHKcA-TIIsyZKpgpxdHFP4_wXA9_HWbpG6Qq8RI-WIML4_RzY9T3QKL72KuQ" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://ucl.academia.edu/MarcelleBoudagherFadel" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="VxhDp74pmD8ob2UeeuD7XOrbaXG_-1ECAp7-eOUNuKVSKk_Mu3X8u_rBhblS6Jxdd0MZVsbt1gpzU6a7WBmwgA" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2025</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>