CINXE.COM
Search results for: nanostructure bainitic steel
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: nanostructure bainitic steel</title> <meta name="description" content="Search results for: nanostructure bainitic steel"> <meta name="keywords" content="nanostructure bainitic steel"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="nanostructure bainitic steel" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="nanostructure bainitic steel"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1818</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: nanostructure bainitic steel</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1818</span> Morphology Feature of Nanostructure Bainitic Steel after Tempering Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chih%20Yuan%20Chen">Chih Yuan Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien%20Chon%20Chen"> Chien Chon Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-Shyong%20Lin"> Jin-Shyong Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The microstructure characterization of tempered nanocrystalline bainitic steel is investigated in the present study. It is found that two types of plastic relaxation, dislocation debris and nanotwin, occurs in the displacive transformation due to relatively low transformation temperature and high carbon content. Because most carbon atoms trap in the dislocation, high dislocation density can be sustained during the tempering process. More carbides only can be found in the high tempered temperature due to intense recovery progression. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanostructure%20bainitic%20steel" title="nanostructure bainitic steel">nanostructure bainitic steel</a>, <a href="https://publications.waset.org/abstracts/search?q=tempered" title=" tempered"> tempered</a>, <a href="https://publications.waset.org/abstracts/search?q=TEM" title=" TEM"> TEM</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-twin" title=" nano-twin"> nano-twin</a>, <a href="https://publications.waset.org/abstracts/search?q=dislocation%20debris" title=" dislocation debris"> dislocation debris</a>, <a href="https://publications.waset.org/abstracts/search?q=accommodation" title=" accommodation"> accommodation</a> </p> <a href="https://publications.waset.org/abstracts/5008/morphology-feature-of-nanostructure-bainitic-steel-after-tempering-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5008.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">535</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1817</span> Optimization of Process Parameters by Using Taguchi Method for Bainitic Steel Machining</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vinay%20Patil">Vinay Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=Swapnil%20Kekade"> Swapnil Kekade</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Supare"> Ashish Supare</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinayak%20Pawar"> Vinayak Pawar</a>, <a href="https://publications.waset.org/abstracts/search?q=Shital%20Jadhav"> Shital Jadhav</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajkumar%20Singh"> Rajkumar Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent days, bainitic steel is used in automobile and non-automobile sectors due to its high strength. Bainitic steel is difficult to machine because of its high hardness, hence in this paper machinability of bainitic steel is studied by using Taguchi design of experiments (DOE) approach. Convectional turning experiments were done by using L16 orthogonal array for three input parameters viz. cutting speed, depth of cut and feed. The Taguchi method is applied to study the performance characteristics of machining parameters with surface roughness (Ra), cutting force and tool wear rate. By using Taguchi analysis, optimized process parameters for best surface finish and minimum cutting forces were analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conventional%20turning" title="conventional turning">conventional turning</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a>, <a href="https://publications.waset.org/abstracts/search?q=S%2FN%20ratio" title=" S/N ratio"> S/N ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=bainitic%20steel%20machining" title=" bainitic steel machining"> bainitic steel machining</a> </p> <a href="https://publications.waset.org/abstracts/15099/optimization-of-process-parameters-by-using-taguchi-method-for-bainitic-steel-machining" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15099.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1816</span> Designing, Processing and Isothermal Transformation of Al-Si High Carbon Ultrafine High Strength Bainitic Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20K.%20El-Fawkhry">Mohamed K. El-Fawkhry</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Shash"> Ahmed Shash</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Ismail%20Zaki%20Farahat"> Ahmed Ismail Zaki Farahat</a>, <a href="https://publications.waset.org/abstracts/search?q=Sherif%20Ali%20Abd%20El%20Rahman"> Sherif Ali Abd El Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Taha%20Mattar"> Taha Mattar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High-carbon, silicon-rich steels are commonly suggested to obtain very fine bainitic microstructure at low temperature ranged from 200 to 300°C. Thereby, the resulted microstructure consists of slender of bainitic-ferritic plates interwoven with retained austenite. The advanced strength and ductility package of this steel is much dependent on the fineness of bainitic ferrite, as well as the retained austenite phase. In this article, Aluminum to Silicon ratio, and the isothermal transformation temperature have been adopted to obtain ultra high strength high carbon steel. Optical and SEM investigation of the produced steels have been performed. XRD has been used to track the retained austenite development as a result of the change in the chemical composition of developed steels and heat treatment process. Mechanical properties in terms of hardness and microhardness of obtained phases and structure were investigated. It was observed that the increment of aluminum to silicon ratio has a great effect in promoting the bainitic transformation, in tandem with improving the stability and the fineness of retained austenite. Such advanced structure leads to enhancement in the whole mechanical properties of the high carbon steel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high-carbon%20steel" title="high-carbon steel">high-carbon steel</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon-rich%20steels" title=" silicon-rich steels"> silicon-rich steels</a>, <a href="https://publications.waset.org/abstracts/search?q=fine%20bainitic%20microstructure" title=" fine bainitic microstructure"> fine bainitic microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=retained%20austenite" title=" retained austenite"> retained austenite</a>, <a href="https://publications.waset.org/abstracts/search?q=isothermal%20transformation" title=" isothermal transformation"> isothermal transformation</a> </p> <a href="https://publications.waset.org/abstracts/57724/designing-processing-and-isothermal-transformation-of-al-si-high-carbon-ultrafine-high-strength-bainitic-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57724.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1815</span> Effect of Nanostructure on Hydrogen Embrittlement Resistance of the Severely Deformed 316LN Austenitic Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Frank%20Jaksoni%20Mweta">Frank Jaksoni Mweta</a>, <a href="https://publications.waset.org/abstracts/search?q=Nozomu%20Adachi"> Nozomu Adachi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoshikazu%20Todaka"> Yoshikazu Todaka</a>, <a href="https://publications.waset.org/abstracts/search?q=Hirokazu%20Sato"> Hirokazu Sato</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuta%20Sato"> Yuta Sato</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiromi%20Miura"> Hiromi Miura</a>, <a href="https://publications.waset.org/abstracts/search?q=Masakazu%20Kobayashi"> Masakazu Kobayashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Chihiro%20Watanabe"> Chihiro Watanabe</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoshiteru%20Aoyagi"> Yoshiteru Aoyagi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Advances in the consumption of hydrogen fuel increase demands of high strength steel pipes and storage tanks. However, high strength steels are highly sensitive to hydrogen embrittlement. Because the introduction of hydrogen into steel during the fabrication process or from the environment is unavoidable, it is essential to improve hydrogen embrittlement resistance of high strength steels through microstructural control. In the present study, the heterogeneous nanostructure with a tensile strength of about 1.8 GPa and the homogeneous nanostructure with a tensile strength of about 2.0 GPa of 316LN steels were generated after 92% heavy cold rolling and high-pressure torsion straining, respectively. The heterogeneous nanostructure is composed of twin domains, shear bands, and lamellar grains. The homogeneous nanostructure is composed of uniformly distributed ultrafine nanograins. The influence of heterogeneous and homogenous nanostructures on the hydrogen embrittlement resistance was investigated. The specimen for each nanostructure was electrochemically charged with hydrogen for 3, 6, 12, and 24 hours, respectively. Under the same hydrogen charging time, both nanostructures show almost the same concentration of the diffusible hydrogen based on the thermal desorption analysis. The tensile properties of the homogenous nanostructure were severely affected by the diffusible hydrogen. However, the diffusible hydrogen shows less impact on the tensile properties of the heterogeneous nanostructure. The difference in embrittlement behavior between the heterogeneous and homogeneous nanostructures was elucidated based on the mechanism of the cracks' growth observed in the tensile fractography. The hydrogen embrittlement was suppressed in the heterogeneous nanostructure because the twin domain became an obstacle for crack growth. The homogeneous nanostructure was not consisting an obstacle such as a twin domain; thus, the crack growth resistance was low in this nanostructure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diffusible%20hydrogen" title="diffusible hydrogen">diffusible hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20nanostructure" title=" heterogeneous nanostructure"> heterogeneous nanostructure</a>, <a href="https://publications.waset.org/abstracts/search?q=homogeneous%20nanostructure" title=" homogeneous nanostructure"> homogeneous nanostructure</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20embrittlement" title=" hydrogen embrittlement"> hydrogen embrittlement</a> </p> <a href="https://publications.waset.org/abstracts/131052/effect-of-nanostructure-on-hydrogen-embrittlement-resistance-of-the-severely-deformed-316ln-austenitic-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131052.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1814</span> Production of Spherical Cementite within Bainitic Matrix Microstructures in High Carbon Powder Metallurgy Steels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Altunta%C5%9F">O. Altuntaş</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20G%C3%BCral"> A. Güral</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The hardness-microstructure relationships of spherical cementite in bainitic matrix obtained by a different heat treatment cycles carried out to high carbon powder metallurgy (P/M) steel were investigated. For this purpose, 1.5 wt.% natural graphite powder admixed in atomized iron powders and the mixed powders were compacted under 700 MPa at room temperature and then sintered at 1150 °C under a protective argon gas atmosphere. The densities of the green and sintered samples were measured via the Archimedes method. A density of 7.4 g/cm<sup>3</sup> was obtained after sintering and a density of 94% was achieved. The sintered specimens having primary cementite plus lamellar pearlitic structures were fully quenched from 950 <sup>°</sup>C temperature and then over-tempered at 705 °C temperature for 60 minutes to produce spherical-fine cementite particles in the ferritic matrix. After by this treatment, these samples annealed at 735 °C temperature for 3 minutes were austempered at 300 °C salt bath for a period of 1 to 5 hours. As a result of this process, it could be able to produced spherical cementite particle in the bainitic matrix. This microstructure was designed to improve wear and toughness of P/M steels. The microstructures were characterized and analyzed by SEM and micro and macro hardness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=powder%20metallurgy%20steel" title="powder metallurgy steel">powder metallurgy steel</a>, <a href="https://publications.waset.org/abstracts/search?q=bainite" title=" bainite"> bainite</a>, <a href="https://publications.waset.org/abstracts/search?q=cementite" title=" cementite"> cementite</a>, <a href="https://publications.waset.org/abstracts/search?q=austempering%20and%20spheroidization%20heat%20treatment" title=" austempering and spheroidization heat treatment"> austempering and spheroidization heat treatment</a> </p> <a href="https://publications.waset.org/abstracts/95968/production-of-spherical-cementite-within-bainitic-matrix-microstructures-in-high-carbon-powder-metallurgy-steels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1813</span> Effect of Plastic Deformation on the Carbide-Free Bainite Transformation in Medium C-Si Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mufath%20Zorgani">Mufath Zorgani</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Garcia-Mateo"> Carlos Garcia-Mateo</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Jahazi"> Mohammad Jahazi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the influence of pre-strained austenite on the extent of isothermal bainite transformation in medium-carbon, high-silicon steel was investigated. Different amounts of deformations were applied at 600°C on the austenite right before quenching to the region, where isothermal bainitic transformation is activated. Four different temperatures of 325, 350, 375, and 400°C considering similar holding time 1800s at each temperature, were selected to investigate the extent of isothermal bainitic transformation. The results showed that the deformation-free austenite transforms to the higher volume fraction of CFB bainite when the isothermal transformation temperature reduced from 400 to 325°C, the introduction of plastic deformation in austenite prior to the formation of bainite invariably involves a delay of the same or identical isothermal treatment. On the other side, when the isothermal transformation temperature and deformation increases, the volume fraction and the plate thickness of bainite decreases and the amount of retained austenite increases. The shape of retained austenite is mostly representing blocky-shape one due to the less amount of transformed bainite. Moreover, the plate-like shape bainite cannot be resolved when the deformation amount reached 30%, and the isothermal transformation temperatures are of 375 and 400°C. The amount of retained austenite and the percentage of its transformation to martensite during the final cooling stage play a significant role in the variation of hardness level for different thermomechanical regimes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ausforming" title="ausforming">ausforming</a>, <a href="https://publications.waset.org/abstracts/search?q=carbide%20free%20bainite" title=" carbide free bainite"> carbide free bainite</a>, <a href="https://publications.waset.org/abstracts/search?q=dilatometry" title=" dilatometry"> dilatometry</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/117105/effect-of-plastic-deformation-on-the-carbide-free-bainite-transformation-in-medium-c-si-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117105.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1812</span> Engineering of Stable and Improved Electrochemical Activities of Redox Dominating Charge Storage Electrode Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Girish%20Sambhaji%20Gund">Girish Sambhaji Gund</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The controlled nanostructure growth and its strong coupling with the current collector are key factors to achieve good electrochemical performance of faradaic-dominant electroactive materials. We employed binder-less and additive-free hydrothermal and physical vapor doping methods for the synthesis of nickel (Ni) and cobalt (Co) based compounds nanostructures (NiO, NiCo2O4, NiCo2S4) deposited on different conductive substrates such as carbon nanotube (CNT) on stainless steel, and reduced graphene oxide (rGO) and N-doped rGO on nickel foam (NF). The size and density of Ni- and Co-based compound nanostructures are controlled through the strong coupling with carbon allotropes on stainless steel and NF substrates. This controlled nanostructure of Ni- and Co-based compounds with carbon allotropes leads to stable faradaic electrochemical reactions at the material/current collector interface and within the electrode, which is consequence of strong coupling of nanostructure with functionalized carbon surface as a buffer layer. Thus, it is believed that the results provide the synergistic approaches to stabilize electrode materials physically and chemically, and hence overall electrochemical activity of faradaic dominating battery-type electrode materials through buffer layer engineering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20compounds" title="metal compounds">metal compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20allotropes" title=" carbon allotropes"> carbon allotropes</a>, <a href="https://publications.waset.org/abstracts/search?q=doping" title=" doping"> doping</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemicstry" title=" electrochemicstry"> electrochemicstry</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20supercapacitor" title=" hybrid supercapacitor"> hybrid supercapacitor</a> </p> <a href="https://publications.waset.org/abstracts/171622/engineering-of-stable-and-improved-electrochemical-activities-of-redox-dominating-charge-storage-electrode-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1811</span> Temperature Depended Austempering of High Carbon Steel Using Epoxidized-Transesterified Cotton Seed Oil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20M.%20Dodo">R. M. Dodo</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Musa"> Z. Musa</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20A.%20Bello"> K. A. Bello</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20Abdullahi"> U. Abdullahi</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20A.%20Faruna"> G. A. Faruna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Temperature depended austempering of high carbon steel using epoxidized-transesterified cotton seed oil (ETO) was examined. Five set of samples were heated to 850oC and held for one hour then quenched in oil bath of ETO at 250oC at one hour holding time. The same procedure was performed on the rest of the samples and austempered at 270oC, 290oC, 310oC and 330oC. Next, mechanical properties’ tests conducted. The austempered samples were then analyzed for microstructure using scanning electron microscope (SEM). The results indicate that tensile strength and hardness dip with increase in the temperature. Again, impact strength improved with rise in the temperature. It was observed that 270oC is the best austempering temperature, since it produces austempered sample with the best combination of mechanical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epoxidized%20transesterified%20cotton%20seed%20oil" title="epoxidized transesterified cotton seed oil">epoxidized transesterified cotton seed oil</a>, <a href="https://publications.waset.org/abstracts/search?q=austempering%20temperature" title=" austempering temperature"> austempering temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20carbon%20steel" title=" high carbon steel"> high carbon steel</a>, <a href="https://publications.waset.org/abstracts/search?q=bainitic%20structure" title=" bainitic structure"> bainitic structure</a> </p> <a href="https://publications.waset.org/abstracts/187597/temperature-depended-austempering-of-high-carbon-steel-using-epoxidized-transesterified-cotton-seed-oil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187597.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">46</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1810</span> Hydrothermally Fabricated 3-D Nanostructure Metal Oxide Sensors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Alenezi">Mohammad Alenezi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hierarchical nanostructures with higher dimensionality, consisting of nanostructure building blocks such as nanowires, nanotubes, or nanosheets are very attractive. They hold great properties like the high surface-to-volume ratio and well-ordered porous structures, which can be very challenging to attain for other mono-morphological nanostructures. Well-ordered hierarchical nanostructures with high surface-to-volume ratios facilitate gas diffusion into their surfaces as well as scattering of light. Therefore, hierarchical nanostructures are expected to perform highly as gas sensors. A multistage controlled hydrothermal synthesis method to fabricate high-performance single ZnO brushlike hierarchical nanostructure gas sensor from initial nanowires is reported. The performance of the sensor based on brush-like hierarchical nanostructure is analyzed and compared to that of a nanowire gas sensor. The hierarchical gas sensor demonstrated high sensitivity toward low concentration of acetone at high speed of response. The enhancement in the hierarchical sensor performance is attributed to the increased surface to volume ratio, reduction in dimensionality of the nanowire building blocks, formation of junctions between the initial nanowire and the secondary nanowires, and enhanced gas diffusion into the surfaces of the hierarchical nanostructures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20oxide" title="metal oxide">metal oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructure" title=" nanostructure"> nanostructure</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrothermal" title=" hydrothermal"> hydrothermal</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor" title=" sensor"> sensor</a> </p> <a href="https://publications.waset.org/abstracts/50686/hydrothermally-fabricated-3-d-nanostructure-metal-oxide-sensors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50686.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1809</span> Microstructures Evolution of a Nano/Ultrafine Grained Low Carbon Steel Produced by Martensite Treatment Using Accumulative Roll Bonding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Salari">Mehdi Salari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work introduces a new experimental method of martensite treatment contains accumulative roll-bonding used for producing the nano/ultrafine grained structure in low carbon steel. The ARB process up to 4 cycles was performed under unlubricated conditions, while the annealing process was carried out in the temperature range of 450–550°C for 30–100 min. The microstructures of the deformed and annealed specimens were investigated. The results showed that in the annealed specimen at 450°C for 30 or 60 min, recrystallization couldn’t be completed. Decrease in time and temperature intensified the volume fraction of the martensite cell blocks. Fully equiaxed nano/ultrafine grained ferrite was developed from the martensite cell blocks during the annealing at temperature around 500°C for 100 min. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=martensite%20process" title="martensite process">martensite process</a>, <a href="https://publications.waset.org/abstracts/search?q=accumulative%20roll%20bonding" title=" accumulative roll bonding"> accumulative roll bonding</a>, <a href="https://publications.waset.org/abstracts/search?q=recrystallization" title=" recrystallization"> recrystallization</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructure" title=" nanostructure"> nanostructure</a>, <a href="https://publications.waset.org/abstracts/search?q=plain%20carbon%20steel" title=" plain carbon steel"> plain carbon steel</a> </p> <a href="https://publications.waset.org/abstracts/17328/microstructures-evolution-of-a-nanoultrafine-grained-low-carbon-steel-produced-by-martensite-treatment-using-accumulative-roll-bonding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17328.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1808</span> Effect of O2 Pressure of Fe-Doped TiO2 Nanostructure on Morphology Properties for Gas Sensing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samar%20Y.%20Al-Dabagh">Samar Y. Al-Dabagh</a>, <a href="https://publications.waset.org/abstracts/search?q=Adawiya%20J.%20Haider"> Adawiya J. Haider</a>, <a href="https://publications.waset.org/abstracts/search?q=Mirvat%20D.%20Majed"> Mirvat D. Majed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pure nanostructure TiO2 and thin films doped with transition metal Fe were prepared by pulsed laser deposition (PLD) on Si (111) substrate. The thin films structures were determined by X-ray diffraction (XRD). The morphology properties were determined from atomic force microscopy (AFM), which shows that the roughness increases when TiO2 is doped with Fe. Results show TiO2 doped with Fe metal thin films deposited on Si (111) substrate has maximum sensitivity to ethanol vapor at 10 mbar oxygen pressure than at 0.01 and 0.1 mbar with optimum operation temperature of 250°C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pulsed%20laser%20deposition%20%28PLD%29" title="pulsed laser deposition (PLD)">pulsed laser deposition (PLD)</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO2%20doped%20thin%20films" title=" TiO2 doped thin films"> TiO2 doped thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructure" title=" nanostructure"> nanostructure</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20sensor" title=" gas sensor"> gas sensor</a> </p> <a href="https://publications.waset.org/abstracts/12159/effect-of-o2-pressure-of-fe-doped-tio2-nanostructure-on-morphology-properties-for-gas-sensing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12159.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1807</span> Silicon Nanostructure Based on Metal-Nanoparticle-Assisted Chemical Etching for Photovoltaic Application </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Bouktif">B. Bouktif</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Gaidi"> M. Gaidi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Benrabha"> M. Benrabha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal-nano particle-assisted chemical etching is an extraordinary developed wet etching method of producing uniform semiconductor nanostructure (nanowires) from the patterned metallic film on the crystalline silicon surface. The metal films facilitate the etching in HF and H2O2 solution and produce silicon nanowires (SiNWs). Creation of different SiNWs morphologies by changing the etching time and its effects on optical and optoelectronic properties was investigated. Combination effect of formed SiNWs and stain etching treatment in acid (HF/HNO3/H2O) solution on the surface morphology of Si wafers as well as on the optical and optoelectronic properties are presented in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=semiconductor%20nanostructure" title="semiconductor nanostructure">semiconductor nanostructure</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20etching" title=" chemical etching"> chemical etching</a>, <a href="https://publications.waset.org/abstracts/search?q=optoelectronic%20property" title=" optoelectronic property"> optoelectronic property</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20surface" title=" silicon surface"> silicon surface</a> </p> <a href="https://publications.waset.org/abstracts/19048/silicon-nanostructure-based-on-metal-nanoparticle-assisted-chemical-etching-for-photovoltaic-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19048.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1806</span> Hybrid Stainless Steel Girder for Bridge Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tetsuya%20Yabuki">Tetsuya Yabuki</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasunori%20Arizumi"> Yasunori Arizumi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tetsuhiro%20Shimozato"> Tetsuhiro Shimozato</a>, <a href="https://publications.waset.org/abstracts/search?q=Samy%20Guezouli"> Samy Guezouli</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroaki%20Matsusita"> Hiroaki Matsusita</a>, <a href="https://publications.waset.org/abstracts/search?q=Masayuki%20Tai"> Masayuki Tai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main object of this paper is to present the research results of the development of a hybrid stainless steel girder system for bridge construction undertaken at University of Ryukyu. In order to prevent the corrosion damage and reduce the fabrication costs, a hybrid stainless steel girder in bridge construction is developed, the stainless steel girder of which is stiffened and braced by structural carbon steel materials. It is verified analytically and experimentally that the ultimate strength of the hybrid stainless steel girder is equal to or greater than that of conventional carbon steel girder. The benefit of the life-cycle cost of the hybrid stainless steel girder is also shown. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smart%20structure" title="smart structure">smart structure</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20stainless%20steel%20members" title=" hybrid stainless steel members"> hybrid stainless steel members</a>, <a href="https://publications.waset.org/abstracts/search?q=ultimate%20strength" title=" ultimate strength"> ultimate strength</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20bridge" title=" steel bridge"> steel bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20prevention" title=" corrosion prevention"> corrosion prevention</a> </p> <a href="https://publications.waset.org/abstracts/51375/hybrid-stainless-steel-girder-for-bridge-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51375.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1805</span> A Range of Steel Production in Japan towards 2050</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reina%20Kawase">Reina Kawase</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Japan set the goal of 80% reduction in GHG emissions by 2050. To consider countermeasures for reducing GHG emission, the production estimation of energy intensive materials, such as steel, is essential. About 50% of steel production is exported in Japan, so it is necessary to consider steel production including export. Steel productions from 2005-2050 in Japan were estimated under various global assumptions based on combination of scenarios such as goods trade scenarios and steel making process selection scenarios. Process selection scenarios decide volume of steel production by process (basic oxygen furnace and electric arc furnace) with considering steel consumption projection, supply-demand balance of steel, and scrap surplus. The range of steel production by process was analyzed. Maximum steel production was estimated under the scenario which consumes scrap in domestic steel production at maximum level. In 2035, steel production reaches 149 million ton because of increase in electric arc furnace steel. However, it decreases towards 2050 and amounts to 120 million ton, which is almost same as a current level. Minimum steel production is under the scenario which assumes technology progress in steel making and supply-demand balance consideration in each region. Steel production decreases from base year and is 44 million ton in 2050. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=goods%20trade%20scenario" title="goods trade scenario">goods trade scenario</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20making%20process%20selection%20scenario" title=" steel making process selection scenario"> steel making process selection scenario</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20production" title=" steel production"> steel production</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20warming" title=" global warming"> global warming</a> </p> <a href="https://publications.waset.org/abstracts/41704/a-range-of-steel-production-in-japan-towards-2050" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41704.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1804</span> Structural Performance of Concrete Beams Reinforced with Steel Plates: Experimental Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mazin%20Mohammed%20S.%20Sarhan">Mazin Mohammed S. Sarhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents the performance of concrete beams reinforced with steel plates as a technique of reinforcement. Three reinforced concrete beams with the dimensions of 200 mm x 300 mm x 4000 mm (width x height x length, respectively) were experimentally investigated under flexural loading. The deformed steel bars were used as the main reinforcement for the first beam. A steel plate placed horizontally was used as the main reinforcement for the second beam. The bond between the steel plate and the surrounding concrete was enhanced by using steel bolts (with a diameter of 20 mm and length of 100 mm) welded to the steel plate at a regular distance of 200 mm. A pair of steel plates placed vertically was used as the main reinforcement for the third beam. The bond between the pair steel plates and the surrounding concrete was enhanced by using 4 equal steel angles (with the dimensions of 75 mm x 75 mm and the thickness of 8 mm) for each vertical steel plate. Two steel angles were welded at each end of the steel plate. The outcomes revealed that the bending stiffness of the beams reinforced with steel plates was higher than that reinforced with deformed steel bars. Also, the flexural ductile behavior of the second beam was much higher than the rest beams. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20beam" title="concrete beam">concrete beam</a>, <a href="https://publications.waset.org/abstracts/search?q=deflection" title=" deflection"> deflection</a>, <a href="https://publications.waset.org/abstracts/search?q=ductility" title=" ductility"> ductility</a>, <a href="https://publications.waset.org/abstracts/search?q=plate" title=" plate"> plate</a> </p> <a href="https://publications.waset.org/abstracts/114584/structural-performance-of-concrete-beams-reinforced-with-steel-plates-experimental-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114584.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1803</span> Comparative Studies of the Effects of Microstructures on the Corrosion Behavior of Micro-Alloyed Steels in Unbuffered 3.5 Wt% NaCl Saturated with CO2</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lawrence%20I.%20Onyeji">Lawrence I. Onyeji</a>, <a href="https://publications.waset.org/abstracts/search?q=Girish%20M.%20Kale"> Girish M. Kale</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bijan%20Kermani"> M. Bijan Kermani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Corrosion problem which exists in every stage of oil and gas production has been a great challenge to the operators in the industry. The conventional carbon steel with all its inherent advantages has been adjudged susceptible to the aggressive corrosion environment of oilfield. This has aroused increased interest in the use of micro alloyed steels for oil and gas production and transportation. The corrosion behavior of three commercially supplied micro alloyed steels designated as A, B, and C have been investigated with API 5L X65 as reference samples. Electrochemical corrosion tests were conducted in an unbuffered 3.5 wt% NaCl solution saturated with CO<sub>2</sub> at 30 <sup>0</sup>C for 24 hours. Pre-corrosion analyses revealed that samples A, B and X65 consist of ferrite-pearlite microstructures but with different grain sizes, shapes and distribution whereas sample C has bainitic microstructure with dispersed acicular ferrites. The results of the electrochemical corrosion tests showed that within the experimental conditions, the corrosion rate of the samples can be ranked as CR<sub>(A)</sub>< CR<sub>(X65)</sub>< CR<sub>(B)</sub>< CR<sub>(C)</sub>. These results are attributed to difference in microstructures of the samples as depicted by ASTM grain size number in accordance with ASTM E112-12 Standard and ferrite-pearlite volume fractions determined by ImageJ Fiji grain size analysis software. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide%20corrosion" title="carbon dioxide corrosion">carbon dioxide corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20behaviour" title=" corrosion behaviour"> corrosion behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-alloyed%20steel" title=" micro-alloyed steel"> micro-alloyed steel</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructures" title=" microstructures"> microstructures</a> </p> <a href="https://publications.waset.org/abstracts/57843/comparative-studies-of-the-effects-of-microstructures-on-the-corrosion-behavior-of-micro-alloyed-steels-in-unbuffered-35-wt-nacl-saturated-with-co2" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57843.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1802</span> Ultimate Stress of the Steel Tube in Circular Concrete-Filled Steel Tube Stub Columns Subjected to Axial Compression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siqi%20Lin">Siqi Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yangang%20Zhao"> Yangang Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concrete-filled steel tube column achieves the excellent performance of high strength, stiffness, and ductility due to the confinement from the steel tube. Well understanding the stress of the steel tube is important to make clear the confinement effect. In this paper, the ultimate stress of the steel tube in circular concrete-filled steel tube columns subjected to axial compression was studied. Experimental tests were conducted to investigate the effects of the parameters, including concrete strength, steel strength, and D/t ratio, on the ultimate stress of the steel tube. The stress of the steel tube was determined by employing the Prandtl-Reuss flow rule associated with isotropic strain hardening. Results indicate that the stress of steel tube was influenced by the parameters. Specimen with higher strength ratio fy/fc and smaller D/t ratio generally leads to a higher utilization efficiency of the steel tube. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete-filled%20steel%20tube" title="concrete-filled steel tube">concrete-filled steel tube</a>, <a href="https://publications.waset.org/abstracts/search?q=axial%20compression" title=" axial compression"> axial compression</a>, <a href="https://publications.waset.org/abstracts/search?q=ultimate%20stress" title=" ultimate stress"> ultimate stress</a>, <a href="https://publications.waset.org/abstracts/search?q=utilization%20efficiency" title=" utilization efficiency"> utilization efficiency</a> </p> <a href="https://publications.waset.org/abstracts/71468/ultimate-stress-of-the-steel-tube-in-circular-concrete-filled-steel-tube-stub-columns-subjected-to-axial-compression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71468.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1801</span> Surface Nanostructure Developed by Ultrasonic Shot Peening and Its Effect on Low Cycle Fatigue Life of the IN718 Superalloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanjeev%20Kumar">Sanjeev Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Vikas%20Kumar"> Vikas Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inconel 718 (IN718) is a high strength nickel-based superalloy designed for high-temperature applications up to 650 °C. It is widely used in gas turbines of jet engines and related aerospace applications because of its good mechanical properties and structural stability at elevated temperatures. Because of good performance ratio and excellent process capability, this alloy has been used predominantly for aeronautic engine components like compressor disc and compressor blade. The main precipitates that contribute to high-temperature strength of IN718 are γʹ Ni₃(Al, Ti) and mainly γʹʹ (Ni₃ Nb). Various processes have been used for modification of the surface of components, such as Laser Shock Peening (LSP), Conventional Shot Peening (SP) and Ultrasonic Shot Peening (USP) to induce compressive residual stress (CRS) and development of fine-grained structure in the surface region. Surface nanostructure by ultrasonic shot peening is a novel methodology of surface modification to improve the overall performance of structural components. Surface nanostructure was developed on the peak aged IN718 superalloy using USP and its effect was studied on low cycle fatigue (LCF) life. Nanostructure of ~ 49 to 73 nm was developed in the surface region of the alloy by USP. The gage section of LCF samples was USPed for 5 minutes at a constant frequency of 20 kHz using StressVoyager to modify the surface. Strain controlled cyclic tests were performed for non-USPed and USPed samples at ±Δεt/2 from ±0.50% to ±1.0% at strain rate (ė) 1×10⁻³ s⁻¹ under reversal loading (R=‒1) at room temperature. The fatigue life of the USPed specimens was found to be more than that of the non-USPed ones. LCF life of the USPed specimen at Δεt/2=±0.50% was enhanced by more than twice of the non-USPed specimen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IN718%20superalloy" title="IN718 superalloy">IN718 superalloy</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructure" title=" nanostructure"> nanostructure</a>, <a href="https://publications.waset.org/abstracts/search?q=USP" title=" USP"> USP</a>, <a href="https://publications.waset.org/abstracts/search?q=LCF%20life" title=" LCF life"> LCF life</a> </p> <a href="https://publications.waset.org/abstracts/116773/surface-nanostructure-developed-by-ultrasonic-shot-peening-and-its-effect-on-low-cycle-fatigue-life-of-the-in718-superalloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116773.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1800</span> Architectural Strategies for Designing Durable Steel Structural Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Taghdiri">Alireza Taghdiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Ghanbarzade%20Ghomi"> Sara Ghanbarzade Ghomi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, steel structures are used for not only common buildings but also high-rise construction and wide span covering. The advanced methods of construction as well as the advanced structural connections have a great effect on architecture. However a better use of steel structural systems will be achieved with the deep understanding of steel structures specifications and their substantial advantages. On the other hand, the steel structures face to the different environmental factors such as air flow which cause erosion and corrosion. With the time passing, the amount of these steel mass damages and also the imposed stress will be increased. In other words, the position of erosion in steel structures related to existing stresses indicates that effective environmental conditions will gradually decrease the structural resistance of steel components and result in decreasing the durability of steel components. In this paper, the durability of different steel structural components is evaluated and on the basis of these stress, architectural strategies for designing the system and the components of steel structures is recognized in order to achieve an optimum life cycle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=durability" title="durability">durability</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20stress" title=" bending stress"> bending stress</a>, <a href="https://publications.waset.org/abstracts/search?q=erosion%20in%20steel%20structure" title=" erosion in steel structure"> erosion in steel structure</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle" title=" life cycle"> life cycle</a> </p> <a href="https://publications.waset.org/abstracts/18159/architectural-strategies-for-designing-durable-steel-structural-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18159.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">560</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1799</span> Mechanical and Microstructural Properties of SA 210 Gr. C Pipes Welded by Tungsten Inert Gas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Demirta%C5%9F">H. Demirtaş</a>, <a href="https://publications.waset.org/abstracts/search?q=%C4%B0.%20H.%20Kara"> İ. H. Kara</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Ahlatc%C4%B1"> H. Ahlatcı</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Welding failures of steel pipes in power plants usually occur in weld zones. This is similar for the economizer, water walls and superheaters in the power plants where SA 210 Gr. C steel pipes are used. Although these steel pipes have very good welding properties, the welding parameters are also important for the welding life. Welding processes of this pipes are carried out by TIG and SMA techniques. In this study SA 210 Gr. C steel pipes were welded by TIG method and investigated how PWHT affected the welding properties. The results show that this steel does not require post weld heat treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SA%20210%20Gr.%20C%20steel%20pipes" title="SA 210 Gr. C steel pipes">SA 210 Gr. C steel pipes</a>, <a href="https://publications.waset.org/abstracts/search?q=TIG%20welding" title=" TIG welding"> TIG welding</a>, <a href="https://publications.waset.org/abstracts/search?q=HAZ%20region" title=" HAZ region"> HAZ region</a>, <a href="https://publications.waset.org/abstracts/search?q=Widmanstatten%20ferrite" title=" Widmanstatten ferrite"> Widmanstatten ferrite</a> </p> <a href="https://publications.waset.org/abstracts/62986/mechanical-and-microstructural-properties-of-sa-210-gr-c-pipes-welded-by-tungsten-inert-gas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62986.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1798</span> Behaviour of Beam Reinforced with Longitudinal Steel-CFRP Composite Reinforcement under Static Load</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faris%20A.%20Uriayer">Faris A. Uriayer</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehtab%20Alam"> Mehtab Alam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The concept of using a hybrid composite by combining two or more different materials to produce bilinear stress–strain behaviour has become a subject of interest. Having studied the mechanical properties of steel-CFRP specimens (CFRP Laminate Sandwiched between Mild Steel Strips), full size steel-CFRP composite reinforcement were fabricated and used as a new reinforcing material inside beams in lieu of traditional steel bars. Four beams, three beams reinforced with steel-CFRP composite reinforcement and one beam reinforced with traditional steel bars were cast, cured and tested under quasi-static loading. The flexural test results of the beams reinforced with this composite reinforcement showed that the beams with steel-CFRP composite reinforcement had comparable flexural strength and flexural ductility with beams reinforced with traditional steel bars. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFRP%20laminate" title="CFRP laminate">CFRP laminate</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20strip" title=" steel strip"> steel strip</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20behaviour" title=" flexural behaviour"> flexural behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20model" title=" modified model"> modified model</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20beam" title=" concrete beam"> concrete beam</a> </p> <a href="https://publications.waset.org/abstracts/23469/behaviour-of-beam-reinforced-with-longitudinal-steel-cfrp-composite-reinforcement-under-static-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">689</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1797</span> Investigation of the Corroded Steel Beam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hesamaddin%20Khoshnoodi">Hesamaddin Khoshnoodi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Rahbar%20Ranji"> Ahmad Rahbar Ranji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Corrosion in steel structures is one of the most important issues that should be considered in designing and constructing. Corrosion reduces the cross section and load capacity of element and leads to costly damage of structures. In this paper, the corrosion has been modeled for moment stresses. Moreover, the steel beam has been modeled using ABAQUS advanced finite element software. The conclusions of this study demonstrated that the displacement of the analyzed composite steel girder bridge might increase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abaqus" title="Abaqus">Abaqus</a>, <a href="https://publications.waset.org/abstracts/search?q=Corrosion" title=" Corrosion"> Corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=deformation" title=" deformation"> deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=Steel%20Beam" title=" Steel Beam"> Steel Beam</a> </p> <a href="https://publications.waset.org/abstracts/55152/investigation-of-the-corroded-steel-beam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55152.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1796</span> Nanostructure of Gamma-Alumina Prepared by a Modified Sol-Gel Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D%C3%A9bora%20N.%20Zambrano">Débora N. Zambrano</a>, <a href="https://publications.waset.org/abstracts/search?q=Marina%20O.%20Gosatti"> Marina O. Gosatti</a>, <a href="https://publications.waset.org/abstracts/search?q=Leandro%20M.%20Dufou"> Leandro M. Dufou</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20A.%20Serrano"> Daniel A. Serrano</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M%C3%B3nica%20Guraya"> M. Mónica Guraya</a>, <a href="https://publications.waset.org/abstracts/search?q=Soledad%20Perez-Cat%C3%A1n"> Soledad Perez-Catán</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanoporous g-Al<sub>2</sub>O<sub>3 </sub>samples were synthesized via a sol-gel technique, introducing changes in the Yoldas´ method. The aim of the work was to achieve an effective control of the nanostructure properties and morphology of the final g-Al<sub>2</sub>O<sub>3</sub>. The influence of the reagent temperature during the hydrolysis was evaluated in case of water at 5 ºC and 98 ºC, and alkoxide at -18 ºC and room temperature. Sol-gel transitions were performed at 120 ºC and room temperature. All g-Al<sub>2</sub>O<sub>3 </sub>samples were characterized by X-ray diffraction, nitrogen adsorption and thermal analysis. Our results showed that temperature of both water and alkoxide has not much influence on the nanostructure of the final g-Al<sub>2</sub>O<sub>3</sub>, thus giving a structure very similar to that of samples obtained by the reference method as long as the reaction temperature above 75 ºC is reached soon enough. XRD characterization showed diffraction patterns corresponding to g-Al<sub>2</sub>O<sub>3 </sub>for all samples. Also BET specific area values (253-280 m<sup>2</sup>/g) were similar to those obtained by Yoldas’s original method. The temperature of the sol-gel transition does not affect the resulting sample structure, and crystalline boehmite particles were identified in all dried gels. We analyzed the reproducibility of the samples’ structure by preparing different samples under identical conditions; we found that performing the sol-gel transition at 120 ºC favors the production of more reproducible samples and also reduces significantly the time of the sol-gel reaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanostructure%20alumina" title="nanostructure alumina">nanostructure alumina</a>, <a href="https://publications.waset.org/abstracts/search?q=boehmite" title=" boehmite"> boehmite</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel%20technique" title=" sol-gel technique"> sol-gel technique</a>, <a href="https://publications.waset.org/abstracts/search?q=N2%20adsorption%2Fdesorption%20isotherm" title=" N2 adsorption/desorption isotherm"> N2 adsorption/desorption isotherm</a>, <a href="https://publications.waset.org/abstracts/search?q=pore%20size%20distribution" title=" pore size distribution"> pore size distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=BET%20area." title=" BET area."> BET area.</a> </p> <a href="https://publications.waset.org/abstracts/41656/nanostructure-of-gamma-alumina-prepared-by-a-modified-sol-gel-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41656.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1795</span> Using Recyclable Steel Material in Tall Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Eren">O. Eren</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Zakar"> L. Zakar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recycling steel building components is key to the sustainability of a structure’s end-of-life, as it is the most economical solution. In this paper the effects of usage of recycled steel material in tall buildings aspects are investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building" title="building">building</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20material" title=" recycled material"> recycled material</a>, <a href="https://publications.waset.org/abstracts/search?q=steel" title=" steel"> steel</a>, <a href="https://publications.waset.org/abstracts/search?q=structure" title=" structure"> structure</a> </p> <a href="https://publications.waset.org/abstracts/2796/using-recyclable-steel-material-in-tall-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2796.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1794</span> Bond Strength of Concrete Beams Reinforced with Steel Plates: Experimental Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mazin%20Mohammed%20Sarhan%20Sarhan">Mazin Mohammed Sarhan Sarhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an experimental study of the bond behaviour of confined concrete beams reinforced with a chequer steel plate or a deformed steel bar by using the beam-bending pullout test. A total of three beams of 225 mm width, 300 mm height, and 600 mm length were cast and tested. All the beams had the same details of compression reinforcement and stirrups; two plain steel bars of 10 mm diameter (R10) were used for the compression reinforcement, and plain steel bars (R10) at a distance of 80 mm centre to centre were used for the stirrups. The first beam was reinforced with a deformed steel bar while the remaining beams were reinforced with horizontal or vertical chequer steel plates. The results showed no significant difference in the bond force between the beams reinforced with a deformed steel bar or a horizontal steel plate. The beam reinforced with a vertical steel plate considerably presented a bond force higher than the beam reinforced with a horizontal steel plate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bond" title="bond">bond</a>, <a href="https://publications.waset.org/abstracts/search?q=pullout" title=" pullout"> pullout</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete" title=" reinforced concrete"> reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20plate" title=" steel plate"> steel plate</a> </p> <a href="https://publications.waset.org/abstracts/114586/bond-strength-of-concrete-beams-reinforced-with-steel-plates-experimental-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114586.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1793</span> Estimation of World Steel Production by Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reina%20Kawase">Reina Kawase</a> </p> <p class="card-text"><strong>Abstract:</strong></p> World GHG emissions should be reduced 50% by 2050 compared with 1990 level. CO2 emission reduction from steel sector, an energy-intensive sector, is essential. To estimate CO2 emission from steel sector in the world, estimation of steel production is required. The world steel production by process is estimated during the period of 2005-2050. The world is divided into aggregated 35 regions. For a steel making process, two kinds of processes are considered; basic oxygen furnace (BOF) and electric arc furnace (EAF). Steel production by process in each region is decided based on a current production capacity, supply-demand balance of steel and scrap, technology innovation of steel making, steel consumption projection, and goods trade. World steel production under moderate countermeasure scenario in 2050 increases by 1.3 times compared with that in 2012. When domestic scrap recycling is promoted, steel production in developed regions increases about 1.5 times. The share in developed regions changes from 34 %(2012) to about 40%(2050). This is because developed regions are main suppliers of scrap. 48-57% of world steel production is produced by EAF. Under the scenario which thinks much of supply-demand balance of steel, steel production in developing regions increases is 1.4 times and is larger than that in developed regions. The share in developing regions, however, is not so different from current level. The increase in steel production by EAF is the largest under the scenario in which supply-demand balance of steel is an important factor. The share reaches 65%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=global%20steel%20production" title="global steel production">global steel production</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20distribution%20scenario" title=" production distribution scenario"> production distribution scenario</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20making%20process" title=" steel making process"> steel making process</a>, <a href="https://publications.waset.org/abstracts/search?q=supply-demand%20balance" title=" supply-demand balance"> supply-demand balance</a> </p> <a href="https://publications.waset.org/abstracts/42610/estimation-of-world-steel-production-by-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42610.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1792</span> Characterization and Nanostructure Formation of Banana Peels Nanosorbent with Its Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Opeyemi%20Atiba-Oyewo">Opeyemi Atiba-Oyewo</a>, <a href="https://publications.waset.org/abstracts/search?q=Maurice%20S.%20Onyango"> Maurice S. Onyango</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Wolkersdorfer"> Christian Wolkersdorfer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Characterization and nanostructure formation of banana peels as sorbent material are described in this paper. The transformation of this agricultural waste via mechanical milling to enhance its properties such as changed in microstructure and surface area for water pollution control and other applications were studied. Mechanical milling was employed using planetary continuous milling machine with ethanol as a milling solvent and the samples were taken at time intervals between 10 h to 30 h to examine the structural changes. The samples were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infra-red (FTIR), Transmission electron microscopy (TEM) and Brunauer Emmett and teller (BET). Results revealed three typical structures with different deformation mechanisms and the grain-sizes within the range of (71-12 nm), nanostructure of the particles and fibres. The particle size decreased from 65µm to 15 nm as the milling progressed for a period of 30 h. The morphological properties of the materials indicated that the particle shapes becomes regular and uniform as the milling progresses. Furthermore, particles fracturing resulted in surface area increment from 1.0694-4.5547 m2/g. The functional groups responsible for the banana peels capacity to coordinate and remove metal ions, such as the carboxylic and amine groups were identified at absorption bands of 1730 and 889 cm-1, respectively. However, the choice of this sorbent material for the sorption or any application will depend on the composition of the pollutant to be eradicated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=characterization" title="characterization">characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructure" title=" nanostructure"> nanostructure</a>, <a href="https://publications.waset.org/abstracts/search?q=nanosorbent" title=" nanosorbent"> nanosorbent</a>, <a href="https://publications.waset.org/abstracts/search?q=eco-friendly" title=" eco-friendly"> eco-friendly</a>, <a href="https://publications.waset.org/abstracts/search?q=banana%20peels" title=" banana peels"> banana peels</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20milling" title=" mechanical milling"> mechanical milling</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title=" water quality"> water quality</a> </p> <a href="https://publications.waset.org/abstracts/40245/characterization-and-nanostructure-formation-of-banana-peels-nanosorbent-with-its-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40245.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1791</span> Effect of Demineralized Water Purity on the Corrosion Behavior of Steel Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20El-Aziz">A. M. El-Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Elsehamy"> M. Elsehamy</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Hussein"> H. Hussein</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Steel or stainless steel have reasonable corrosion behavior in water, their corrosion resistance is significantly dependent on the water purity. It was not expected that demineralized water has an aggressive effect on steel alloys, in this study, the effect of water with different purity on steel X52 and stainless steel 316L was investigated. Weight loss and electrochemical measurements were employed to measure the corrosion behavior. Samples were microscopically investigated after test. It was observed that the higher the water purity the more reactive it is. Comparative analysis of the potentiodynamic curves for different water purity showed the aggressiveness of the demineralised water (conductivity of 0.05 microSiemens per cm) over the distilled water. Whereas, the corrosion rates of stainless steel 858 and 623 nm/y for demi and distilled water respectively. On the other hand, the corrosion rates of carbon steel x52 were estimated about 4.8 and 3.6 µm/y for demi and distilled water, respectively. Open circuit potential (OCP) recorded more positive potentials in case of stainless steel than carbon steel in different water purities. Generally, stainless steel illustrated high pitting resistance than carbon steel alloy, the surface film was investigated by scanning electron microscopy (SEM) and analyzed by energy dispersive X-ray spectroscopy (EDX). This behavior was explained based on that demi and distilled water might be considered as ‘hungry water’ in which it wants to be in equilibrium and will pull ions out of the surrounding metals trying to satisfy its ‘hunger’. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion" title="corrosion">corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=demineralized%20water" title=" demineralized water"> demineralized water</a>, <a href="https://publications.waset.org/abstracts/search?q=distilled%20water" title=" distilled water"> distilled water</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20alloys" title=" steel alloys"> steel alloys</a> </p> <a href="https://publications.waset.org/abstracts/50480/effect-of-demineralized-water-purity-on-the-corrosion-behavior-of-steel-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50480.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">813</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1790</span> Calculating Quantity of Steel Bar Placed in Mesh Form in a Circular Slab or Dome</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karam%20Chand%20Gupta">Karam Chand Gupta </a> </p> <p class="card-text"><strong>Abstract:</strong></p> When steel reinforcement is placed in mesh form in circular concrete slab at base or domes at top in case of over head service reservoir or any other structure, it is difficult to estimate/measure the total quantity of steel that would be needed or placed. For the purpose of calculating the total length of the steel bars, at present, the practice is – the length of each bar is measured and then added up. This is tiresome and time consuming process. I have derived a mathematics formula with the help of which we can calculate in one line the quantity of total steel that will be needed. This will not only make it easy and time saving but also avoids any error in making entries and calculations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dome" title="dome">dome</a>, <a href="https://publications.waset.org/abstracts/search?q=mesh" title=" mesh"> mesh</a>, <a href="https://publications.waset.org/abstracts/search?q=slab" title=" slab"> slab</a>, <a href="https://publications.waset.org/abstracts/search?q=steel" title=" steel"> steel</a> </p> <a href="https://publications.waset.org/abstracts/30699/calculating-quantity-of-steel-bar-placed-in-mesh-form-in-a-circular-slab-or-dome" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30699.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">681</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1789</span> Seismic Response of Braced Steel Frames with Shape Memory Alloy and Mega Bracing Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Omar">Mohamed Omar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Steel bracing members are widely used in steel structures to reduce lateral displacement and dissipate energy during earthquake motions. Concentric steel bracing provide an excellent approach for strengthening and stiffening steel buildings. Using these braces the designer can hardly adjust the stiffness together with ductility as needed because of buckling of braces in compression. In this study the use of SMA bracing and steel bracing (Mega) utilized in steel frames are investigated. The effectiveness of these two systems in rehabilitating a mid-rise eight-storey steel frames were examined using time-history nonlinear analysis utilizing Seismo-Struct software. Results show that both systems improve the strength and stiffness of the original structure but due to excellent behavior of SMA in nonlinear phase and under compressive forces this system shows much better performance than the rehabilitation system of Mega bracing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title="finite element analysis">finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20response" title=" seismic response"> seismic response</a>, <a href="https://publications.waset.org/abstracts/search?q=shapes%20memory%20alloy" title=" shapes memory alloy"> shapes memory alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20frame" title=" steel frame"> steel frame</a>, <a href="https://publications.waset.org/abstracts/search?q=mega%20bracing" title=" mega bracing"> mega bracing</a> </p> <a href="https://publications.waset.org/abstracts/4180/seismic-response-of-braced-steel-frames-with-shape-memory-alloy-and-mega-bracing-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4180.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nanostructure%20bainitic%20steel&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nanostructure%20bainitic%20steel&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nanostructure%20bainitic%20steel&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nanostructure%20bainitic%20steel&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nanostructure%20bainitic%20steel&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nanostructure%20bainitic%20steel&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nanostructure%20bainitic%20steel&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nanostructure%20bainitic%20steel&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nanostructure%20bainitic%20steel&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nanostructure%20bainitic%20steel&page=60">60</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nanostructure%20bainitic%20steel&page=61">61</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nanostructure%20bainitic%20steel&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>