CINXE.COM
Search results for: nucleic acids
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: nucleic acids</title> <meta name="description" content="Search results for: nucleic acids"> <meta name="keywords" content="nucleic acids"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="nucleic acids" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="nucleic acids"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 885</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: nucleic acids</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">765</span> Aza-Flavanones as Small Molecule Inhibitors of MicroRNA-10b in MDA-MB-231 Breast Cancer Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Debasmita%20Mukhopadhyay">Debasmita Mukhopadhyay</a>, <a href="https://publications.waset.org/abstracts/search?q=Manika%20Pal%20Bhadra"> Manika Pal Bhadra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> MiRNAs contribute to oncogenesis either as tumor suppressors or oncogenes. Hence, discovery of miRNA-based therapeutics are imperative to ameliorate cancer. Modulation of miRNA maturation is accomplished via several therapeutic agents, including small molecules and oligonucleotides. Due to the attractive pharmacokinetic properties of small molecules over oligonucleotides, we set to identify small molecule inhibitors of a metastasis-inducing microRNA. Cytotoxicity profile of aza-flavanone C1 was analyzed in a panel of breast cancer cells employing the NCI-60 screen protocols. Flow cytometry, immunofluorescence and western blotting of apoptotic or EMT markers were performed to analyze the effect of C1. A dual luciferase assay unequivocally suggested that C1 repressed endogenous miR-10b in MDA-MB-231 cells. A derivative of aza-flavanone C1 is shown as a strong inhibitor miR-10b. Blockade of miR-10b by C1 resulted in decreased expression of miR-10b targets in an aggressive breast cancer cell line model, MDA-MB-231. Abrogation of TWIST1, an EMT-inducing transcription factor also contributed to C1 mediated apoptosis. Moreover C1 exhibited a specific and selective down-regulation of miR-10b and did not function as a general inhibitor of miRNA biogenesis or other oncomiRs of breast carcinoma. Aza-flavanone congener C1 functions as a potent inhibitor of the metastasis-inducing microRNA, miR-10b. Our present study provides evidence for targeting metastasis-inducing microRNA, miR-10b with a derivative of Aza-flavanone. Better pharmacokinetic properties of small molecules place them as attractive agents compared to nucleic acids based therapies to target miRNA. Further work, in generating analogues based on aza-flavanone moieties will significantly improve the affinity of the small molecules to bind miR-10b. Finally, it is imperative to develop small molecules as novel miRNA-therapeutics in the fight against cancer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title="breast cancer">breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=microRNA" title=" microRNA"> microRNA</a>, <a href="https://publications.waset.org/abstracts/search?q=metastasis" title=" metastasis"> metastasis</a>, <a href="https://publications.waset.org/abstracts/search?q=EMT" title=" EMT "> EMT </a> </p> <a href="https://publications.waset.org/abstracts/23183/aza-flavanones-as-small-molecule-inhibitors-of-microrna-10b-in-mda-mb-231-breast-cancer-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">564</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">764</span> Effect of Nitrogen Source on Production of CMCase by Bacillus megaterium 1295S Isolated from Sewage Treatment Plants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adel%20A.%20S.%20Al-Gheethi">Adel A. S. Al-Gheethi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20O.%20Abdul-Monem"> M. O. Abdul-Monem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cellulase-producing bacteria were isolated from wastewater and sludge, and identified as Bacillus megaterium 1295S, Sporosarcina pasteurii 586S, Bacillus subtilis 117S, Burkholderia cepacia 120S and Staphylococcus xylosus 222W. Among bacteria, B. megaterium 1295S was the best cellulase producer under the catabolic repression and was therefore selected to study the factors affecting cellulase production. The optimum conditions for cellulase production were observed in CMC-Yeast Extract (CYE) agar medium (pH 6.5) inoculated with 0.4 mL of bacterial culture and incubated at 45˚C for 72 h. Twenty amino acids were introduced into the production medium as nitrogen source to investigate the production of cellulase in presence of amino acids in comparison to peptone (as an organic source) and sodium nitrate (as an inorganic source). The results found that the maximum production of cellulase was recorded at 50 ppm when L-hydroxy proline, L-arginine, glycine, L-histidine, L-leucine, DL-isoleucine, DL-β-phenylalanine were used as sole nitrogen sources and at 100 ppm when DL-threonine, L-ornithine 12.29, L-proline were used as sole nitrogen sources. The highest biomass yield was found when glycine 5 ppm and DL-serine 100 ppm used as a nitrogen source. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CMCase" title="CMCase">CMCase</a>, <a href="https://publications.waset.org/abstracts/search?q=Bacillus%20megaterium%201295S" title=" Bacillus megaterium 1295S"> Bacillus megaterium 1295S</a>, <a href="https://publications.waset.org/abstracts/search?q=factors" title=" factors"> factors</a>, <a href="https://publications.waset.org/abstracts/search?q=amino%20acids" title=" amino acids "> amino acids </a> </p> <a href="https://publications.waset.org/abstracts/5628/effect-of-nitrogen-source-on-production-of-cmcase-by-bacillus-megaterium-1295s-isolated-from-sewage-treatment-plants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5628.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">763</span> An Evaluation of the Impact of Epoxidized Neem Seed Azadirachta indica Oil on the Mechanical Properties of Polystyrene</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salihu%20Takuma">Salihu Takuma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Neem seed oil has high contents of unsaturated fatty acids which can be converted to epoxy fatty acids. The vegetable oil – based epoxy material are sustainable, renewable and biodegradable materials replacing petrochemical – based epoxy materials in some applications. Polystyrene is highly brittle with limited mechanical applications. Raw neem seed oil was obtained from National Research Institute for Chemical Technology (NARICT), Zaria, Nigeria. The oil was epoxidized at 60 0C for three (3) hours using formic acid generated in situ. The epoxidized oil was characterized using Fourier Transform Infrared spectroscopy (FTIR). The disappearance of C = C stretching peak around 3011.7 cm-1and formation of a new absorption peak around 943 cm-1 indicate the success of epoxidation. The epoxidized oil was blended with pure polystyrene in different weight percent compositions using solution casting in chloroform. The tensile properties of the blends demonstrated that the addition of 5 wt % ENO to PS led to an increase in elongation at break, but a decrease in tensile strength and modulus. This is in accordance with the common rule that plasticizers can decrease the tensile strength of the polymer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodegradable" title="biodegradable">biodegradable</a>, <a href="https://publications.waset.org/abstracts/search?q=elongation%20at%20break" title=" elongation at break"> elongation at break</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxidation" title=" epoxidation"> epoxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy%20fatty%20acids" title=" epoxy fatty acids"> epoxy fatty acids</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable" title=" sustainable"> sustainable</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength%20and%20modulus" title=" tensile strength and modulus"> tensile strength and modulus</a> </p> <a href="https://publications.waset.org/abstracts/70061/an-evaluation-of-the-impact-of-epoxidized-neem-seed-azadirachta-indica-oil-on-the-mechanical-properties-of-polystyrene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70061.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">762</span> Metagenomics-Based Molecular Epidemiology of Viral Diseases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vyacheslav%20Furtak">Vyacheslav Furtak</a>, <a href="https://publications.waset.org/abstracts/search?q=Merja%20Roivainen"> Merja Roivainen</a>, <a href="https://publications.waset.org/abstracts/search?q=Olga%20Mirochnichenko"> Olga Mirochnichenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Laassri"> Majid Laassri</a>, <a href="https://publications.waset.org/abstracts/search?q=Bella%20Bidzhieva"> Bella Bidzhieva</a>, <a href="https://publications.waset.org/abstracts/search?q=Tatiana%20Zagorodnyaya"> Tatiana Zagorodnyaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Chizhikov"> Vladimir Chizhikov</a>, <a href="https://publications.waset.org/abstracts/search?q=Konstantin%20Chumakov"> Konstantin Chumakov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Molecular epidemiology and environmental surveillance are parts of a rational strategy to control infectious diseases. They have been widely used in the worldwide campaign to eradicate poliomyelitis, which otherwise would be complicated by the inability to rapidly respond to outbreaks and determine sources of the infection. The conventional scheme involves isolation of viruses from patients and the environment, followed by their identification by nucleotide sequences analysis to determine phylogenetic relationships. This is a tedious and time-consuming process that yields definitive results when it may be too late to implement countermeasures. Because of the difficulty of high-throughput full-genome sequencing, most such studies are conducted by sequencing only capsid genes or their parts. Therefore the important information about the contribution of other parts of the genome and inter- and intra-species recombination to viral evolution is not captured. Here we propose a new approach based on the rapid concentration of sewage samples with tangential flow filtration followed by deep sequencing and reconstruction of nucleotide sequences of viruses present in the samples. The entire nucleic acids content of each sample is sequenced, thus preserving in digital format the complete spectrum of viruses. A set of rapid algorithms was developed to separate deep sequence reads into discrete populations corresponding to each virus and assemble them into full-length consensus contigs, as well as to generate a complete profile of sequence heterogeneities in each of them. This provides an effective approach to study molecular epidemiology and evolution of natural viral populations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=poliovirus" title="poliovirus">poliovirus</a>, <a href="https://publications.waset.org/abstracts/search?q=eradication" title=" eradication"> eradication</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20surveillance" title=" environmental surveillance"> environmental surveillance</a>, <a href="https://publications.waset.org/abstracts/search?q=laboratory%20diagnosis" title=" laboratory diagnosis"> laboratory diagnosis</a> </p> <a href="https://publications.waset.org/abstracts/37436/metagenomics-based-molecular-epidemiology-of-viral-diseases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">761</span> Quantification and Identification of the Main Components of the Biomass of the Microalgae Scenedesmus SP. – Prospection of Molecules of Commercial Interest</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carolina%20V.%20Viegas">Carolina V. Viegas</a>, <a href="https://publications.waset.org/abstracts/search?q=Monique%20Gon%C3%A7alves"> Monique Gonçalves</a>, <a href="https://publications.waset.org/abstracts/search?q=Gisel%20Chenard%20Diaz"> Gisel Chenard Diaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Yordanka%20Reyes%20Cruz"> Yordanka Reyes Cruz</a>, <a href="https://publications.waset.org/abstracts/search?q=Donato%20Alexandre%20Gomes%20Aranda"> Donato Alexandre Gomes Aranda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To develop the massive cultivation of microalgae, it is necessary to isolate and characterize the species, improving genetic tools in search of specific characteristics. Therefore, the detection, identification and quantification of the compounds that compose the Scenedesmus sp. were prerequisites to verify the potential of these microalgae. The main objective of this work was to carry out the characterization of Scenedesmus sp. as to the content of ash, carbohydrates, proteins and lipids as well as the determination of the composition of their lipid classes and main fatty acids. The biomass of Scenedesmus sp, showed 15,29 ± 0,23 % of ash and CaO (36,17 %) was the main component of this fraction, The total protein and carbohydrate content of the biomass was 40,74 ± 1,01 % and 23,37 ± 0,95 %, respectively, proving to be a potential source of proteins as well as carbohydrates for the production of ethanol via fermentation, The lipid contents extracted via Bligh & Dyer and in situ saponification were 8,18 ± 0,13 % and 4,11 ± 0,11 %, respectively. In the lipid extracts obtained via Bligh & Dyer, approximately 50 % of the composition of this fraction consists of fatty compounds, while the other half is composed of an unsaponifiable fraction composed mainly of chlorophylls, phytosterols and carotenes. From the lowest yield, it was possible to obtain a selectivity of 92,14 % for fatty components (fatty acids and fatty esters) confirmed through the infrared spectroscopy technique. The presence of polyunsaturated acids (~45 %) in the lipid extracts indicated the potential of this fraction as a source of nutraceuticals. The results indicate that the biomass of Scenedesmus sp, can become a promising potential source for obtaining polyunsaturated fatty acids, carotenoids and proteins as well as the simultaneous obtainment of different compounds of high commercial value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microalgae" title="microalgae">microalgae</a>, <a href="https://publications.waset.org/abstracts/search?q=Desmodesmus" title=" Desmodesmus"> Desmodesmus</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid%20classes" title=" lipid classes"> lipid classes</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acid%20profile" title=" fatty acid profile"> fatty acid profile</a>, <a href="https://publications.waset.org/abstracts/search?q=proteins" title=" proteins"> proteins</a>, <a href="https://publications.waset.org/abstracts/search?q=carbohydrates" title=" carbohydrates"> carbohydrates</a> </p> <a href="https://publications.waset.org/abstracts/170923/quantification-and-identification-of-the-main-components-of-the-biomass-of-the-microalgae-scenedesmus-sp-prospection-of-molecules-of-commercial-interest" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">760</span> Synthesis, Electrochemical and Fluorimetric Analysis of Caffeic Cinnamic and Acid-Conjugated Hemorphin Derivatives Designed as Potential Anticonvulsant Agents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jana%20Tchekalarova">Jana Tchekalarova</a>, <a href="https://publications.waset.org/abstracts/search?q=Stela%20Georgieva"> Stela Georgieva</a>, <a href="https://publications.waset.org/abstracts/search?q=Petia%20Peneva"> Petia Peneva</a>, <a href="https://publications.waset.org/abstracts/search?q=Petar%20Todorov"> Petar Todorov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, a series of bioconjugates of N-modified hemorphine analogs containing second pharmacophore cinnamic acids (CA) or caffeic (KA) were synthesized by a traditional solid-phase Fmoc chemistry method for peptide synthesis. Electrochemical and fluorimetrical analysis and in vivo anticonvulsant activity in mice were conducted on the compounds. The three CA acids (H4-CA, H5-CA, and H7-CA) and three KA acids (H4-KA, H5-KA, and H7-KA)-conjugated hemorphine derivatives showed dose-dependent anticonvulsant activity in the maximal electroshock test (MES) in mice. The KA-conjugated H5-KA derivate was the only compound that suppressed clonic seizures at the lowest dose of 0.5 µg/mouse in the scPTZ test. The activity against the psychomotor seizures in the 6-Hz test was detected only for the H4-CA (0.5 µg) and H4-KA (0.5 µg and 1 µg), respectively. The peptide derivates did not exhibit neurotoxicity in the rotarod test. Our findings suggest that conjugated CA and KA hemorphine peptides can be used as a background for developing hemorphin-related analogs with anticonvulsant activity. Acknowledgements: This study is funded by the European Union-NextGenerationEU, through the National Recovery and Resilience Plan of the Republic of Bulgaria, project № BG-RRP-2.004-0002, "BiOrgaMCT". <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hemorphins" title="hemorphins">hemorphins</a>, <a href="https://publications.waset.org/abstracts/search?q=caffeic%2Fcinnamic%20acid" title=" caffeic/cinnamic acid"> caffeic/cinnamic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=anticonvulsant%20activity" title=" anticonvulsant activity"> anticonvulsant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemistry" title=" electrochemistry"> electrochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorimetry" title=" fluorimetry"> fluorimetry</a> </p> <a href="https://publications.waset.org/abstracts/164003/synthesis-electrochemical-and-fluorimetric-analysis-of-caffeic-cinnamic-and-acid-conjugated-hemorphin-derivatives-designed-as-potential-anticonvulsant-agents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164003.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">759</span> Influence of Fermentation Conditions on Humic Acids Production by Trichoderma viride Using an Oil Palm Empty Fruit Bunch as the Substrate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20L.%20Motta">F. L. Motta</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20A.%20Santana"> M. H. A. Santana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Humic Acids (HA) were produced by a Trichoderma viride strain under submerged fermentation in a medium based on the oil palm Empty Fruit Bunch (EFB) and the main variables of the process were optimized by using response surface methodology. A temperature of 40°C and concentrations of 50g/L EFB, 5.7g/L potato peptone and 0.11g/L (NH4)2SO4 were the optimum levels of the variables that maximize the HA production, within the physicochemical and biological limits of the process. The optimized conditions led to an experimental HA concentration of 428.4±17.5 mg/L, which validated the prediction from the statistical model of 412.0mg/L. This optimization increased about 7–fold the HA production previously reported in the literature. Additionally, the time profiles of HA production and fungal growth confirmed our previous findings that HA production preferably occurs during fungal sporulation. The present study demonstrated that T. viride successfully produced HA via the submerged fermentation of EFB and the process parameters were successfully optimized using a statistics-based response surface model. To the best of our knowledge, the present work is the first report on the optimization of HA production from EFB by a biotechnological process, whose feasibility was only pointed out in previous works. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=empty%20fruit%20bunch" title="empty fruit bunch">empty fruit bunch</a>, <a href="https://publications.waset.org/abstracts/search?q=humic%20acids" title=" humic acids"> humic acids</a>, <a href="https://publications.waset.org/abstracts/search?q=submerged%20fermentation" title=" submerged fermentation"> submerged fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=Trichoderma%20viride" title=" Trichoderma viride"> Trichoderma viride</a> </p> <a href="https://publications.waset.org/abstracts/8280/influence-of-fermentation-conditions-on-humic-acids-production-by-trichoderma-viride-using-an-oil-palm-empty-fruit-bunch-as-the-substrate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8280.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">758</span> Effects of Hydroxysafflor Yellow a (HSYA) on UVA-Induced Damage in HaCaT Keratinocytes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Szu-Chieh%20Yu">Szu-Chieh Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Pei-Chin%20Chiand"> Pei-Chin Chiand</a>, <a href="https://publications.waset.org/abstracts/search?q=Chih-Yi%20Lin"> Chih-Yi Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Wen%20Chien"> Yi-Wen Chien</a> </p> <p class="card-text"><strong>Abstract:</strong></p> UV radiation from sunlight cause numbers of acute and chronic skin damage which can result in inflammation, immune changes, physical changes and DNA damage that facilitates skin aging and the development of skin carcinogenesis. Reactive oxygen species (ROS) are generated by excessive solar UV radiation, resulting in oxidative damage to cellar components, proteins, lipids, and nucleic acids. Thus, antioxidation plays an important role that protects skin against ROS-induced injury. Safflower (Carthamus tinctorius L.) is an important Chinese medicine contained abundance flavones and hydroxysafflor yellow A (HSYA) which is main active ingredient. HSYA is part of quinochalcone and has unique structures of hydroxy groups that provided the antioxidant effect. In this study, the aim was to investigate the protective role of HYSA in human keratinocytes (HaCaT) against UVA-induced oxidative damage and the possible mechanism. The HaCaT cells were UVA-irradiated and the effects of HYSA on cell viability, reactive oxygen species generation, DNA fragmentation and lipid peroxidation were measured. The mRNA expression of matrix metalloproteinase Ι (MMP Ι), cyclooxygenase-2 (COX-2) were determined by RT-PCR. In this study, UVA exposure lead to decrease in cell viability and increase in reactive oxygen species generation in HaCaT cells. HYSA could effectively increase the viability of HaCaT cells after UVA exposure and protect them from UVA-induced oxidative stress. Moreover, HYSA can reduce inflammation through inhibition the mRNA expression of MMP Ι and COX-2. Our results suggest that HSYA can act as a free radical scavenger while keratinocytes were photodamaged. HYSA could be a useful natural medicine for the protection of epidermal cells from UVA-induced damage and will be developed into products for skin care. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HaCaT%20keratinocytes" title="HaCaT keratinocytes">HaCaT keratinocytes</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxysafflor%20yellow%20A%20%28HSYA%29" title=" hydroxysafflor yellow A (HSYA)"> hydroxysafflor yellow A (HSYA)</a>, <a href="https://publications.waset.org/abstracts/search?q=MMP%20%CE%99" title=" MMP Ι"> MMP Ι</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress "> oxidative stress </a> </p> <a href="https://publications.waset.org/abstracts/23657/effects-of-hydroxysafflor-yellow-a-hsya-on-uva-induced-damage-in-hacat-keratinocytes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23657.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">757</span> Biological Activity of Bilberry Pomace</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gordana%20S.%20%C4%86etkovi%C4%87">Gordana S. Ćetković</a>, <a href="https://publications.waset.org/abstracts/search?q=Vesna%20T.%20Tumbas%20%C5%A0aponjac"> Vesna T. Tumbas Šaponjac</a>, <a href="https://publications.waset.org/abstracts/search?q=Sonja%20M.%20Djilas"> Sonja M. Djilas</a>, <a href="https://publications.waset.org/abstracts/search?q=Jasna%20M.%20%C4%8Canadanovi%C4%87-Brunet"> Jasna M. Čanadanović-Brunet</a>, <a href="https://publications.waset.org/abstracts/search?q=Sladjana%20M.%20Staj%C4%8Di%C4%87"> Sladjana M. Stajčić</a>, <a href="https://publications.waset.org/abstracts/search?q=Jelena%20J.%20Vuli%C4%87"> Jelena J. Vulić</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bilberry is one of the most important dietary sources of phenolic compounds, including anthocyanins, phenolic acids, flavonol glycosides and flavan-3-ols. These phytochemicals have different biological activities and therefore may improve our health condition. Also, anthocyanins are interesting to the food industry as colourants. In the present study, bilberry pomace, a by-product of juice processing, was used as a potential source of bioactive compounds. The contents of total phenolic acids, flavonoids and anthocyanins in bilberry pomace were determined by HPLC/UV-Vis. The biological activities of bilberry pomace were evaluated by reducing power (RP) and α-glucosidase inhibitory potential (α-GIP), and expressed as RP0.5 value (the effective concentration of bilberry pomace extract assigned at 0.5 value of absorption) and IC50 value (the concentration of bilberry pomace extract necessary to inhibit 50% of α-glucosidase enzyme activity). Total phenolic acids content was 807.12 ± 25.16 mg/100 g pomace, flavonoids 54.36 ± 1.83mg/100 g pomace and anthocyanins 3426.18 ± 112.09 mg/100 g pomace. The RP0.5 value of bilberry pomace was 0.38 ± 0.02 mg/ml, while IC50 value was 1.82 ± 0.11 mg/ml. These results have revealed the potential for valorization of bilberry juice production by-products for further industrial use as a rich source of bioactive compounds and natural colourants (mainly anthocyanins). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bilberry%20pomace" title="bilberry pomace">bilberry pomace</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolics" title=" phenolics"> phenolics</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=reducing%20power" title=" reducing power"> reducing power</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B1-glucosidase%20enzyme%20activity" title=" α-glucosidase enzyme activity"> α-glucosidase enzyme activity</a> </p> <a href="https://publications.waset.org/abstracts/21890/biological-activity-of-bilberry-pomace" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21890.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">599</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">756</span> Carbon Based Classification of Aquaporin Proteins: A New Proposal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parul%20Johri">Parul Johri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mala%20Trivedi"> Mala Trivedi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Major Intrinsic proteins (MIPs), actively involved in the passive transport of small polar molecules across the membranes of almost all living organisms. MIPs that specifically transport water molecules are named aquaporins (AQPs). The permeability of membranes is actively controlled by the regulation of the amount of different MIPs present but also in some cases by phosphorylation and dephosphorylation of the channel. Based on sequence similarity, MIPs have been classified into many categories. All of the proteins are made up of the 20 amino acids, the only difference is there in their orientations. Again all the 20 amino acids are made up of the basic five elements namely: carbon, hydrogen, oxygen, sulphur and nitrogen. These elements are responsible for giving the amino acids the properties of hydrophilicity/hydrophobicity which play an important role in protein interactions. The hydrophobic amino acids characteristically have greater number of carbon atoms as carbon is the main element which contributes to hydrophobic interactions in proteins. It is observed that the carbon level of proteins in different species is different. In the present work, we have taken a sample set of 150 aquaporins proteins from Uniprot database and a dynamic programming code was written to calculate the carbon percentage for each sequence. This carbon percentage was further used to barcode the aqauporins of animals and plants. The protein taken from Oryza sativa, Zea mays and Arabidopsis thaliana preferred to have carbon percentage of 31.8 to 35, whereas on the other hand sequences taken from Mus musculus, Saccharomyces cerevisiae, Homo sapiens, Bos Taurus, and Rattus norvegicus preferred to have carbon percentage of 31 to 33.7. This clearly demarks the carbon range in the aquaporin proteins from plant and animal origin. Hence the atom level analysis of protein sequences can provide us with better results as compared to the residue level comparison. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aquaporins" title="aquaporins">aquaporins</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon" title=" carbon"> carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20prgramming" title=" dynamic prgramming"> dynamic prgramming</a>, <a href="https://publications.waset.org/abstracts/search?q=MIPs" title=" MIPs"> MIPs</a> </p> <a href="https://publications.waset.org/abstracts/23189/carbon-based-classification-of-aquaporin-proteins-a-new-proposal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23189.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">755</span> Nutritional Value of Rabbit Meat after Contamination with 1,1-Dimethylhydrazine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Balgabay%20Sadepovich%20Maikanov">Balgabay Sadepovich Maikanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Laura%20Tyulegenovna%20Auteleyeva"> Laura Tyulegenovna Auteleyeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Seidenova%20Simbat%20Polatbekovna"> Seidenova Simbat Polatbekovna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article reduced nutritional value of the rabbits’ meat at 1, 1 dimethylhydrazine experimental toxicosis is shown. The assay was performed on liquid chromatograph SHIMADZU LC-20 Prominence (Japan) with fluorometric and spectrophotometric detector. This research has revealed that samples of rabbit meat of the experimental group had significant differences from the control group:in amino acids concentration from 1.2% to 9.1%; vitamin concentration from 11.2% to 60.5%, macro – minerals concentration from 17.4% to 78.1% and saturated fatty acids concentration from 17,1% to 34.5%, respectively. The decrease in the chemical composition of rabbits’ meat at 1,1 dimethylhydrazine toxicosis may be due to changes in the internal processes associated with impaired metabolic homeostasis of animals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=1" title="1">1</a>, <a href="https://publications.waset.org/abstracts/search?q=1-dimethylhydrazine" title="1-dimethylhydrazine">1-dimethylhydrazine</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolic%20homeostasis" title=" metabolic homeostasis"> metabolic homeostasis</a>, <a href="https://publications.waset.org/abstracts/search?q=nutritional%20value" title=" nutritional value"> nutritional value</a>, <a href="https://publications.waset.org/abstracts/search?q=rabbit%20meat" title=" rabbit meat"> rabbit meat</a> </p> <a href="https://publications.waset.org/abstracts/71264/nutritional-value-of-rabbit-meat-after-contamination-with-11-dimethylhydrazine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71264.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">754</span> Candida antartica Lipase Assisted Enrichment of n-3 PUFA in Indian Sardine Oil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prasanna%20Belur">Prasanna Belur</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20R.%20Ashwini"> P. R. Ashwini</a>, <a href="https://publications.waset.org/abstracts/search?q=Sampath%20Charanyaa"> Sampath Charanyaa</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Regupathi"> I. Regupathi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Indian oil sardine (Sardinella longiceps) are one of the richest and cheapest sources of n-3 polyunsaturated fatty acids (n-3 PUFA) such as Eicosapentaenoic acid (EPA) and Docosahexaenoic acid (DHA). The health benefits conferred by n-3 PUFA upon consumption, in the prevention and treatment of coronary, neuromuscular, immunological disorders and allergic conditions are well documented. Natural refined Indian Sardine oil generally contain about 25% (w/w) n-3 PUFA along with various unsaturated and saturated fatty acids in the form of mono, di, and triglycerides. Having high concentration of n-3 PUFA content in the glyceride form is most desirable for human consumption to avail maximum health benefits. Thus, enhancing the n-3 PUFA content while retaining it in the glyceride form with green technology is the need of the hour. In this study, refined Indian Sardine oil was subjected to selective hydrolysis by Candida antartica lipase to enhance n-3 PUFA content. The degree of hydrolysis and enhancement of n-3 PUFA content was estimated by determining acid value, Iodine value, EPA and DHA content (by Gas Chromatographic methods after derivitization) before and after hydrolysis. Various reaction parameters such as pH, temperature, enzyme load, lipid to aqueous phase volume ratio and incubation time were optimized by conducting trials with one parameter at a time approach. Incubating enzyme solution with refined sardine oil with a volume ratio of 1:1, at pH 7.0, for 60 minutes at 50 °C, with an enzyme load of 60 mg/ml was found to be optimum. After enzymatic treatment, the oil was subjected to refining to remove free fatty acids and moisture content using previously optimized refining technology. Enzymatic treatment at the optimal conditions resulted in 12.11 % enhancement in Degree of hydrolysis. Iodine number had increased by 9.7 % and n-3 PUFA content was enhanced by 112 % (w/w). Selective enhancement of n-3 PUFA glycerides, eliminating saturated and unsaturated fatty acids from the oil using enzyme is an interesting preposition as this technique is environment-friendly, cost effective and provide natural source of n-3 PUFA rich oil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Candida%20antartica" title="Candida antartica">Candida antartica</a>, <a href="https://publications.waset.org/abstracts/search?q=lipase" title=" lipase"> lipase</a>, <a href="https://publications.waset.org/abstracts/search?q=n-3%20polyunsaturated%20fatty%20acids" title=" n-3 polyunsaturated fatty acids"> n-3 polyunsaturated fatty acids</a>, <a href="https://publications.waset.org/abstracts/search?q=sardine%20oil" title=" sardine oil"> sardine oil</a> </p> <a href="https://publications.waset.org/abstracts/67470/candida-antartica-lipase-assisted-enrichment-of-n-3-pufa-in-indian-sardine-oil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67470.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">753</span> Chemical Profile of Extra Virgin Olive Oil from Frantoio Cultivar Growing in Calabria, Italy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monica%20Rosa%20Loizzo">Monica Rosa Loizzo</a>, <a href="https://publications.waset.org/abstracts/search?q=Tiziana%20Falco"> Tiziana Falco</a>, <a href="https://publications.waset.org/abstracts/search?q=Marco%20Bonesi"> Marco Bonesi</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Concetta%20Tenuta"> Maria Concetta Tenuta</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariarosaria%20Leporini"> Mariarosaria Leporini</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosa%20Tundis"> Rosa Tundis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Extra Virgin Olive Oil (EVOO) is a major source of fat in the Mediterranean diet and its nutritional properties are the main reason for the increment of its consumption all over the world in recent years. In terms of olive oil production, Italy ranks the second in the world. EVOO is obtained exclusively by physical methods from the fruit of Olea europea L. Frantoio cv is spread in all the Italian territory. The aim of this work is to identify the phenolic and fatty acids profile of EVOO from Frantoio cv growing in different area of Calabria (Italy). The phenolic profile was obtained by HPLC coupled to a diode array detector and mass spectrometry. Analyses revealed the presence of phenolic alcohols, phenolic acid, several secoiridoids, and two flavones as main components. Hydroxytyrosol and tyrosol are present in reasonable content. Fatty acids were monitored by gas chromatography. Oleic acid was the most abundant compounds. A moderate level of linoleic acid, in accordance with the general observations for oils derived from Mediterranean countries, was also found. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extra%20virgin%20olive%20oils" title="extra virgin olive oils">extra virgin olive oils</a>, <a href="https://publications.waset.org/abstracts/search?q=frantoio%20cv" title=" frantoio cv"> frantoio cv</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acids" title=" fatty acids"> fatty acids</a> </p> <a href="https://publications.waset.org/abstracts/41749/chemical-profile-of-extra-virgin-olive-oil-from-frantoio-cultivar-growing-in-calabria-italy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41749.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">752</span> Milk Production and Milk Composition of Dairy Cows in Response to Calcium Salt of Palm Oil Fatty Acids Supplementation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wisitiporn%20Suksombat">Wisitiporn Suksombat</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanawat%20Phonkert"> Tanawat Phonkert</a>, <a href="https://publications.waset.org/abstracts/search?q=Chayapol%20Meeprom"> Chayapol Meeprom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this experiment was to investigate the effect of calcium salt of palm oil fatty acids (Ca-POFA) supplementation on milk production and milk composition of dairy cows. Twenty-four early lactating crossbred Holstein Friesian 87.5% cows (15.4 ± 3.75 kg of milk/d; 93 ± 27 DIM; 369 ± 6 kg of BW), were assigned into 3 treatments in an RCBD. All dairy cows were fed 15.4% CP total mixed ration (TMR). The first group (control) received a basal diet and no supplement. The second group was fed the basal diet supplemented with 150 g/d calcium salt of palm oil fatty acids (Ca-POFA), and the last group was fed the basal diet supplemented with 300 g/d Ca-POFA. The experiment lasted 40 days with the first 10 days is an adaptation period, and measurements were made during the last 30 days in 6 periods with 5-days in each period for milk sample collection. The results found that supplemented calcium salt of palm oil fatty acid had no effect on milk yield, milk composition, milk composition yield, live weight and live weight change. However, Ca-POFA decreased milk protein percentage (P < 0.05). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calcium%20salt%20of%20palm%20oil%20fatty%20acid" title="calcium salt of palm oil fatty acid">calcium salt of palm oil fatty acid</a>, <a href="https://publications.waset.org/abstracts/search?q=dairy%20cow" title=" dairy cow"> dairy cow</a>, <a href="https://publications.waset.org/abstracts/search?q=milk%20composition" title=" milk composition"> milk composition</a>, <a href="https://publications.waset.org/abstracts/search?q=milk%20production" title=" milk production"> milk production</a> </p> <a href="https://publications.waset.org/abstracts/72476/milk-production-and-milk-composition-of-dairy-cows-in-response-to-calcium-salt-of-palm-oil-fatty-acids-supplementation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72476.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">751</span> Eggshell Waste Bioprocessing for Sustainable Acid Phosphatase Production and Minimizing Environmental Hazards</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soad%20Abubakr%20Abdelgalil">Soad Abubakr Abdelgalil</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaber%20Attia%20Abo-Zaid"> Gaber Attia Abo-Zaid</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Mohamed%20Yousri%20Kaddah"> Mohamed Mohamed Yousri Kaddah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: The Environmental Protection Agency has listed eggshell waste as the 15th most significant food industry pollution hazard. The utilization of eggshell waste as a source of renewable energy has been a hot topic in recent years. Therefore, finding a sustainable solution for the recycling and valorization of eggshell waste by investigating its potential to produce acid phosphatase (ACP) and organic acids by the newly-discovered B. sonorensis was the target of the current investigation. Results: The most potent ACP-producing B. sonorensis strain ACP2 was identified as a local bacterial strain obtained from the effluent of paper and pulp industries on basis of molecular and morphological characterization. The use of consecutive statistical experimental approaches of Plackett-Burman Design (PBD), and Orthogonal Central Composite Design (OCCD), followed by pH-uncontrolled cultivation conditions in a 7 L bench-top bioreactor, revealed an innovative medium formulation that substantially improved ACP production, reaching 216 U L⁻¹ with ACP yield coefficient Yp/x of 18.2 and a specific growth rate (µ) of 0.1 h⁻¹. The metals Ag+, Sn+, and Cr+ were the most efficiently released from eggshells during the solubilization process by B. sonorensis. The uncontrolled pH culture condition is the most suited and favored setting for improving the ACP and organic acids production simultaneously. Quantitative and qualitative analyses of produced organic acids were carried out using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Lactic acid, citric acid, and hydroxybenzoic acid isomer were the most common organic acids produced throughout the cultivation process. The findings of thermogravimetric analysis (TGA), differential scan calorimeter (DSC), scanning electron microscope (SEM), energy-dispersive spectroscopy (EDS), Fourier-Transform Infrared Spectroscopy (FTIR), and X-Ray Diffraction (XRD) analysis emphasize the significant influence of organic acids and ACP activity on the solubilization of eggshells particles. Conclusions: This study emphasized robust microbial engineering approaches for the large-scale production of a newly discovered acid phosphatase accompanied by organic acids production from B. sonorensis. The biovalorization of the eggshell waste and the production of cost-effective ACP and organic acids were integrated into the current study, and this was done through the implementation of a unique and innovative medium formulation design for eggshell waste management, as well as scaling up ACP production on a bench-top scale. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chicken%20eggshells%20waste" title="chicken eggshells waste">chicken eggshells waste</a>, <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title=" bioremediation"> bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20experimental%20design" title=" statistical experimental design"> statistical experimental design</a>, <a href="https://publications.waset.org/abstracts/search?q=batch%20fermentation" title=" batch fermentation"> batch fermentation</a> </p> <a href="https://publications.waset.org/abstracts/159622/eggshell-waste-bioprocessing-for-sustainable-acid-phosphatase-production-and-minimizing-environmental-hazards" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">750</span> Effect of Dose-Dependent Gamma Irradiation on the Fatty Acid Profile of Mud Crab, Scylla Serrata: A GC-FID Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Keethadath%20Arshad">Keethadath Arshad</a>, <a href="https://publications.waset.org/abstracts/search?q=Kappalli%20Sudha"> Kappalli Sudha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mud crab, Scylla Serrata, a commercially important shellfish with high global demand appears to be the rich source of dietary fatty acids. Its increased production through aquaculture and highly perishable nature would necessitate improved techniques for their proper preservation. Optimized irradiation has been identified as an effective method to facilitate safety and extended shelf life for a broad range of the perishable food items including finfishes and shellfishes. The present study analyzed the effects of dose-dependent gamma irradiation on the fatty acid profile of the muscle derived from the candidate species (S. serrata) at both qualitative and quantitative levels. Wild grown, average sized, intermolt male S. Serrata were gamma irradiated (^60C, 3.8kGy/ hour) at the dosage of 0.5kGy, 1.0kGy and 2.0kGy using gamma chamber. Total lipid extracted by Folch method, after methylation, were analyzed for the presence fatty acids adopting Gas Chromatograph equipped with flame ionization detector by comparing with the authentic FAME reference standards. The tissue from non-irradiated S. serrata showed the presence of 12 SFA, 6 MUFA, 8PUFA and 2 TF; PUFA includes medicinally important ω-3 FA such as C18:3, C20:5 and C22:6 and ω-6 FA such as γ- C18:3 and C20:2. Dose-dependent gamma irradiation reduced the number of detectable fatty acids (10, 8 and 8 SFA, 6, 6 and 5MUFA, 7, 7, and 6 PUFA and 1, 1, and 0 TF in 0.5kGy, 1.0kGy and 2kGy irradiated samples respectively). Major fatty acids detected in both irradiated and non-irradiated samples were as follows: SFA- C16:0, C18:0, C22:0 and C14:0; MUFA - C18:1 and C16:1and PUFA- C18:2, C20:5, C20:2 and C22:6. Irradiation doses ranging from 1-2kGy substantially reduced the ω-6 C18:3 and ω-3 C18:3. However, the omega fatty acids such as C20:5, C22:6 and C20:2 could survive even after 2kGy irradiation. Significantly, trans fat like C18:2T and C18:1T were completely disappeared upon 2kGy irradiation. From the overall observations made from the present study, it is suggested that irradiation dose up to 1kGy is optimum to maintain the fatty acid profile and eradicate the trans fat of the muscle derived from S. serrata. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fatty%20acid%20profile" title="fatty acid profile">fatty acid profile</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20preservation" title=" food preservation"> food preservation</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20irradiation" title=" gamma irradiation"> gamma irradiation</a>, <a href="https://publications.waset.org/abstracts/search?q=scylla%20serrata" title=" scylla serrata"> scylla serrata</a> </p> <a href="https://publications.waset.org/abstracts/22523/effect-of-dose-dependent-gamma-irradiation-on-the-fatty-acid-profile-of-mud-crab-scylla-serrata-a-gc-fid-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22523.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">749</span> Green Catalytic Conversion of Some Aromatic Alcohols to Acids by NiO₂ Nanoparticles (NPNPs) in Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdel%20Ghany%20F.%20Shoair">Abdel Ghany F. Shoair</a>, <a href="https://publications.waset.org/abstracts/search?q=Mai%20M.%20A.%20H.%20Shanab"> Mai M. A. H. Shanab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The basic aqueous systems NiSO4.6H₂O / K₂S₂O₈ (PH= 14) or NiSO₄.6H₂O / KBrO₃ (PH = 11.5) were investigated for the catalytic conversion benzyl alcohol and some para-substituted benzyl alcohols to their corresponding acids in 75-97 % yield at room temperature. The active species was isolated and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction, EDX and FT-IR techniques and identified as NiO₂ nanoparticles (NPNPs). The SEM and TEM images of nickel peroxide samples show a fine spherical-like aggregation of NiO₂ molecules with a nearly homogeneous partial size and confirm the aggregation's size to be in the range of 2-3 nm. The yields, turnover (TO) and turn over frequencies (TOF) were calculated. It was noticed that the aromatic alcohols containing para-substituted electron donation groups gave better yields than those having electron-withdrawing groups. The optimum conditions for this catalytic reaction were studied using benzyl alcohol as a model. The mechanism of the catalytic conversion reaction was suggested, in which the produced (NPNPs) convert alcohols to acids in two steps through the formation of the corresponding aldehyde. The produced NiO, because of this conversion, is converted again to (NPNPs) by an excess of K₂S₂O₈ or KBrO₃. This catalytic cycle continues until all the substrate is oxidized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nickel" title="Nickel">Nickel</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation" title=" oxidation"> oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=catalysts" title=" catalysts"> catalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=benzyl%20alcohol" title=" benzyl alcohol"> benzyl alcohol</a> </p> <a href="https://publications.waset.org/abstracts/163860/green-catalytic-conversion-of-some-aromatic-alcohols-to-acids-by-nio2-nanoparticles-npnps-in-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163860.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">748</span> Influence of Lecithin from Different Sources on Crystallization Properties of Non-Trans Fat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ivana%20Lon%C4%8Darevi%C4%87">Ivana Lončarević</a>, <a href="https://publications.waset.org/abstracts/search?q=Biljana%20Pajin"> Biljana Pajin</a>, <a href="https://publications.waset.org/abstracts/search?q=Radovan%20Omorjan"> Radovan Omorjan</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksandra%20Torbica"> Aleksandra Torbica</a>, <a href="https://publications.waset.org/abstracts/search?q=Danica%20Zari%C4%87"> Danica Zarić</a>, <a href="https://publications.waset.org/abstracts/search?q=Jovana%20Maksimovi%C4%87"> Jovana Maksimović</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soybean seeds are the main source of lecithin in confectionery industry in Serbia and elsewhere. The extensive production of sunflower and rapeseed oil opens the possibility of using lecithin from these sources, as an alternative. Also, the development of functional foods dictates the use of edible fats with no undesirable trans fatty acids, obtained by fractionation and transesterification instead of common hydrogenation process. Crystallization properties of nontrans vegetable fat with the addition of soybean, sunflower and rapeseed lecithin were investigated in this paper. NMR technique was used for measuring the solid fat content (SFC) of fats at different temperatures, as well as for crystallization rate under static conditions. Also, the possibility of applying Gompertz function to define kinetics of crystallization was investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-trans%20fat" title="non-trans fat">non-trans fat</a>, <a href="https://publications.waset.org/abstracts/search?q=lecithin" title=" lecithin"> lecithin</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acids" title=" fatty acids"> fatty acids</a>, <a href="https://publications.waset.org/abstracts/search?q=SFC" title=" SFC"> SFC</a> </p> <a href="https://publications.waset.org/abstracts/9047/influence-of-lecithin-from-different-sources-on-crystallization-properties-of-non-trans-fat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9047.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">747</span> The Interplay of Dietary Fibers and Intestinal Microbiota Affects Type 2 Diabetes by Generating Short-Chain Fatty Acids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Mazhar">Muhammad Mazhar</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Zhu"> Yong Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Likang%20Qin"> Likang Qin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Foods contain endogenous components known as dietary fibers, which are classified into soluble and insoluble forms. Dietary fibers are resistant to gut digestive enzymes, modulating anaerobic intestinal microbiota (AIM) and fabricating short-chain fatty acids (SCFAs). Acetate, butyrate, and propionate dominate in the gut, and different pathways, including Wood-Ljungdahl and acrylate pathways, generate these SCFAs. In pancreatic dysfunction, the release of insulin/glucagon is impaired, which leads to hyperglycemia. SCFAs enhance insulin sensitivity or secretion, beta-cell functions, leptin release, mitochondrial functions, and intestinal gluconeogenesis in human organs, which positively affect type 2 diabetes (T2D). Research models presented that SCFAs either enhance the release of peptide YY (PYY) and glucagon-like peptide-1 (GLP-1) from L-cells (entero-endocrine) or promote the release of leptin hormone satiation in adipose tissues through G-protein receptors, i.e., GPR-41/GPR-43. Dietary fibers are the components of foods that influence AIM and produce SCFAs, which may be offering beneficial effects on T2D. This review addresses the effectiveness of SCFAs in modulating gut AIM in the fermentation of dietary fiber and their worth against T2D. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dietary%20fibers" title="dietary fibers">dietary fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=intestinal%20microbiota" title=" intestinal microbiota"> intestinal microbiota</a>, <a href="https://publications.waset.org/abstracts/search?q=short-chain%20fatty%20acids" title=" short-chain fatty acids"> short-chain fatty acids</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=type%202%20diabetes" title=" type 2 diabetes"> type 2 diabetes</a> </p> <a href="https://publications.waset.org/abstracts/174081/the-interplay-of-dietary-fibers-and-intestinal-microbiota-affects-type-2-diabetes-by-generating-short-chain-fatty-acids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174081.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">746</span> Chemical Constituents of Matthiola Longipetala Extracts: In Vivo Antioxidant and Antidiabetic Effects in Alloxan Induced Diabetes Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mona%20Marzouk">Mona Marzouk</a>, <a href="https://publications.waset.org/abstracts/search?q=Nesrine%20Hegazi"> Nesrine Hegazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Aliaa%20Ragheb"> Aliaa Ragheb</a>, <a href="https://publications.waset.org/abstracts/search?q=Mona%20El%20Shabrawy"> Mona El Shabrawy</a>, <a href="https://publications.waset.org/abstracts/search?q=Salwa%20Kawashty"> Salwa Kawashty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The whole plant of Matthiola longipetala (Brassicaceae) was extracted by 70% methanol to give the total aqueous methanol extract (AME), which was defatted by hexane yielded hexane extract (HE) and defatted AME (DAME). HE was analyzed through GC/MS assay and revealed the detection of 28 non-polar compounds. In addition, the chemical investigation of DAME led to the isolation and purification of twelve flavonoids and three chlorogenic acids. Their structures were interpreted through chemical (complete and partial acid hydrolysis) and spectroscopic analysis (MS, UV, 1D and 2D NMR). Among them, nine compounds have been isolated for the first time from M. longipetala. Moreover, LC-ESI-MS analysis of DAME was achieved to detect additional 46 metabolites, including phospholipids, organic acids, phenolic acids and flavonoids. The biological activity of AME, HE and DAME against alloxan inducing oxidative stress and diabetes in male rats was investigated. Diabetes was induced using a single dose of Alloxan (150 mg/kg b.wt.). HE and DAME significantly increased serum GSH content in rats (37.3±0.7 and 35.9±0.6 mmol/l) compared to diabetic rats (21.8±0.3) and vitamin E (36.2±1.1) at P<0.01. Also, HE, DAME and AME revealed a significant acute anti-hyperglycemic effect potentiated after four weeks of treatment with blood glucose levels of 96.2±5.4, 98.7±6.1 and 98.9±8.6 mg/dl, respectively, compared to diabetic rats (263.4±7.8) and metaformin group (81.9±2.4) at P<0.01. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brassicaceae" title="Brassicaceae">Brassicaceae</a>, <a href="https://publications.waset.org/abstracts/search?q=Flavonoid" title=" Flavonoid"> Flavonoid</a>, <a href="https://publications.waset.org/abstracts/search?q=LCMS%2FMS" title=" LCMS/MS"> LCMS/MS</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthiola" title=" Matthiola"> Matthiola</a> </p> <a href="https://publications.waset.org/abstracts/131597/chemical-constituents-of-matthiola-longipetala-extracts-in-vivo-antioxidant-and-antidiabetic-effects-in-alloxan-induced-diabetes-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131597.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">745</span> Mesquite (Prosopis juliflora) Pods as a Local Alternative to Feed Poultry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20Al-Soqeer">Abdulrahman Al-Soqeer</a>, <a href="https://publications.waset.org/abstracts/search?q=Osamah%20Fahmy"> Osamah Fahmy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research was aimed to investigate the possibility of using Prosopis juliflora pods as a fodder source for poultry. The study have shown that the inclusion of ground Prosopis pods in a broiler diet added some positive effects on broiler performance such as improving carcasses weight and reducing the weights of the inedible parts. The obtained results encourage repeating the experiment with an increased percentage of Prosopis supplementation in the broiler diets, using some treatments on the Prosopis pods to reduce the undesirable effects of the antinutritional factors in the pods and to increase the percentage of the essential amino acids present in the pods (lysine, methionine, arginine, histidine, isoleucine, leucine and phenylealanine) up to the limits recommended for broilers by NRC 1990. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amino%20acids" title="amino acids">amino acids</a>, <a href="https://publications.waset.org/abstracts/search?q=arginine" title=" arginine"> arginine</a>, <a href="https://publications.waset.org/abstracts/search?q=broilers" title=" broilers"> broilers</a>, <a href="https://publications.waset.org/abstracts/search?q=lysine" title=" lysine"> lysine</a>, <a href="https://publications.waset.org/abstracts/search?q=methionine" title=" methionine"> methionine</a> </p> <a href="https://publications.waset.org/abstracts/30561/mesquite-prosopis-juliflora-pods-as-a-local-alternative-to-feed-poultry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30561.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">744</span> Characterisation of the H-ZSM-5 Zeolite Samples Synthesized in Wide Range of Si/Al Ratios and with H₂SO₄ and CH₃COOH Acids Used for Transformation to H-Form</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mladen%20Jankovic">Mladen Jankovic</a>, <a href="https://publications.waset.org/abstracts/search?q=Biljana%20Djuric"> Biljana Djuric</a>, <a href="https://publications.waset.org/abstracts/search?q=Djurdja%20Oljaca"> Djurdja Oljaca</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Damjanovic"> Vladimir Damjanovic</a>, <a href="https://publications.waset.org/abstracts/search?q=Radislav%20Filipovic"> Radislav Filipovic</a>, <a href="https://publications.waset.org/abstracts/search?q=Zoran%20Obrenovic"> Zoran Obrenovic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the key characteristics of zeolites with ZSM-5 crystalline form is the possibility of synthesis in a wide range of molar ratios, from the relatively low ratio of about 20 to highly silicate forms with a Si/Al ratio over 1000. For industrial production and commercial use of this type of zeolite, it is very important to know the influence of the molar Si/Al ratio on the characteristics of zeolite powders. In this paper, the influence of the Si/Al ratio on the characteristics of H-ZSM-5 zeolites synthesized in the presence of tetrapropylammonium bromide is questioned, including the possibility of conversion to the H-form using different acids. The quality of the samples is characterized in terms of crystallinity, chemical composition, morphology, granulometry, specific surface area (BET), pore size and acidity. XRD, FT-IR, EDX, ICP, SEM and TPD instrumental techniques were used to characterize the samples. In most of the performed syntheses, zeolite has been obtained with very good properties. It was shown that the examined conditions have a significant influence on the characteristics of the synthesized powders. The different chemical composition of the starting mixture, ie. the Si/Al ratio, has a very significant influence on the crystal structure of the synthesized powders, and thus on the other tested characteristics. It has been observed that optimal ion exchange results for powders of different Si/Al ratios are achieved by using different acids. Also, the dependence of the specific surface on the concentration of H+ or Na+ ions was confirmed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Characterisation" title="Characterisation">Characterisation</a>, <a href="https://publications.waset.org/abstracts/search?q=H-ZSM-5" title=" H-ZSM-5"> H-ZSM-5</a>, <a href="https://publications.waset.org/abstracts/search?q=molar%20ratio" title=" molar ratio"> molar ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis" title=" synthesis"> synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=tetrapropylammonium%20bromide" title=" tetrapropylammonium bromide"> tetrapropylammonium bromide</a> </p> <a href="https://publications.waset.org/abstracts/139530/characterisation-of-the-h-zsm-5-zeolite-samples-synthesized-in-wide-range-of-sial-ratios-and-with-h2so4-and-ch3cooh-acids-used-for-transformation-to-h-form" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139530.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">743</span> Fatty Acid Composition and Therapeutic Effects of Beebread</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sibel%20Silici">Sibel Silici</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Palynological spectrum, proximate and fatty acids composition of eight beebread samples obtained from different geographical origins were determined. Beebread moisture contents varied between 11.4-15.9 %, ash 1.9-2.54 %, fat 5.9-11.5 %, and protein between 14.8-24.3 %. To our knowledge, this is the first study investigating fatty acids (FAs) composition of the selected monofloral beebreads. A total of thirty-seven FAs were identified. Of these (9Z, 12Z, 15Z)-octadeca-9, 12, 15-trienoic acid, (9Z, 12Z)-octadeca-9, 12-dienoic acid, hexadecanoic acid, (Z)-octadec-9-enoic acid, (Z)-icos-11-enoic acid and octadecanoic acid were the most abundant in all the samples. Cotton beebread contained the highest level of ω-3 FAs, 41.3 %. Unsaturated/saturated FAs ratios ranged between 1.38 and 2.39 indicating that beebread is a good source of unsaturated FAs. The pollen, proximate and FAs composition of beebread samples of different botanical and geographical origins varied significantly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bee%20bread" title="bee bread">bee bread</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acid%20composition" title=" fatty acid composition"> fatty acid composition</a>, <a href="https://publications.waset.org/abstracts/search?q=proximate%20composition" title=" proximate composition"> proximate composition</a>, <a href="https://publications.waset.org/abstracts/search?q=pollen%20analysis" title=" pollen analysis"> pollen analysis</a> </p> <a href="https://publications.waset.org/abstracts/52901/fatty-acid-composition-and-therapeutic-effects-of-beebread" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52901.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">742</span> Nutritional Value Determination of Different Varieties of Oats and Barley Using Near-Infrared Spectroscopy Method for the Horses Nutrition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Viliene">V. Viliene</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Sasyte"> V. Sasyte</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Raceviciute-Stupeliene"> A. Raceviciute-Stupeliene</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Gruzauskas"> R. Gruzauskas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In horse nutrition, the most suitable cereal for their rations composition could be defined as oats and barley. Oats have high nutritive value because it provides more protein, fiber, iron and zinc than other whole grains, has good taste, and an activity of stimulating metabolic changes in the body. Another cereal – barley is very similar to oats as a feed except for some characteristics that affect how it is used; however, barley is lower in fiber than oats and is classified as a "heavy" feed. The value of oats and barley grain, first of all is dependent on its composition. Near-infrared spectroscopy (NIRS) has long been considered and used as a significant method in component and quality analysis and as an emerging technology for authenticity applications for cereal quality control. This paper presents the chemical and amino acid composition of different varieties of barley and oats, also digestible energy of different cereals for horses. Ten different spring barley (n = 5) and oats (n = 5) varieties, grown in one location in Lithuania, were assayed for their chemical composition (dry matter, crude protein, crude fat, crude ash, crude fiber, starch) and amino acids content, digestible amino acids and amino acids digestibility. Also, the grains digestible energy for horses was calculated. The oats and barley samples reflectance spectra were measured by means of NIRS using Foss-Tecator DS2500 equipment. The chemical components: fat, crude protein, starch and fiber differed statistically (P<0.05) between the oats and barley varieties. The highest total amino acid content between oats was determined in variety Flamingsprofi (4.56 g/kg) and the lowest – variety Circle (3.57 g/kg), and between barley - respectively in varieties Publican (3.50 g/kg) and Sebastian (3.11 g/kg). The different varieties of oats digestible amino acid content varied from 3.11 g/kg to 4.07 g/kg; barley different varieties varied from 2.59 g/kg to 2.94 g/kg. The average amino acids digestibility of oats varied from 74.4% (Liz) to 95.6% (Fen) and in barley - from 75.8 % (Tre) to 89.6% (Fen). The amount of digestible energy in the analyzed varieties of oats and barley was an average compound 13.74 MJ/kg DM and 14.85 MJ/kg DM, respectively. An analysis of the results showed that different varieties of oats compared with barley are preferable for horse nutrition according to the crude fat, crude fiber, ash and separate amino acids content, but the analyzed barley varieties dominated the higher amounts of crude protein, the digestible Liz amount and higher DE content, and thus, could be recommended for making feed formulation for horses combining oats and barley, taking into account the chemical composition of using cereal varieties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=barley" title="barley">barley</a>, <a href="https://publications.waset.org/abstracts/search?q=digestive%20energy" title=" digestive energy"> digestive energy</a>, <a href="https://publications.waset.org/abstracts/search?q=horses" title=" horses"> horses</a>, <a href="https://publications.waset.org/abstracts/search?q=nutritional%20value" title=" nutritional value"> nutritional value</a>, <a href="https://publications.waset.org/abstracts/search?q=oats" title=" oats"> oats</a> </p> <a href="https://publications.waset.org/abstracts/58639/nutritional-value-determination-of-different-varieties-of-oats-and-barley-using-near-infrared-spectroscopy-method-for-the-horses-nutrition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58639.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">741</span> Characterization of Fatty Acid Glucose Esters as Os9BGlu31 Transglucosidase Substrates in Rice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juthamath%20Komvongsa">Juthamath Komvongsa</a>, <a href="https://publications.waset.org/abstracts/search?q=Bancha%20Mahong"> Bancha Mahong</a>, <a href="https://publications.waset.org/abstracts/search?q=Kannika%20Phasai"> Kannika Phasai</a>, <a href="https://publications.waset.org/abstracts/search?q=Sukanya%20Luang"> Sukanya Luang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong-Seong%20Jeon"> Jong-Seong Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20Ketudat-Cairns"> James Ketudat-Cairns</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Os9BGlu31 is a rice transglucosidase that transfers glucosyl moieties to various acceptors such as carboxylic acids and alcohols, including phenolic acids and flavonoids, in vitro. The role of Os9BGlu31 transglucosidase in rice plant metabolism has not been reported to date. Methanolic extracts of rice bran and flag leaves were found to contain substrates to which Os9BGlu31 could transfer glucose from 4-nitrophenyl β -D-glucopyranoside donor. The semi-purified substrate from rice bran was found to contain oleic acid and linoleic acid and the pure fatty acids were found to act as acceptor substrates for Os9BGlu31 transglucosidase to form 1-O-acyl glucose esters. Os9BGlu31 showed higher activity with oleic acid (18:1) and linoleic acid (18:2) than stearic acid (18:0), and had both higher kcat and higher Km for linoleic than oleic acid in the presence of 8 mM 4NPGlc donor. This transglucosidase reaction is reversible, Os9bglu31 knockout rice lines of flag leaves were found to have higher amounts of fatty acid glucose esters than wild type control lines, these data conclude that fatty acid glucose esters act as glucosyl donor substrates for Os9BGlu31 transglucosidase in rice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fatty%20acid" title="fatty acid">fatty acid</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acid%20glucose%20ester" title=" fatty acid glucose ester"> fatty acid glucose ester</a>, <a href="https://publications.waset.org/abstracts/search?q=transglucosidase" title=" transglucosidase"> transglucosidase</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20flag%20leaf" title=" rice flag leaf"> rice flag leaf</a>, <a href="https://publications.waset.org/abstracts/search?q=homologous%20knockout%20lines" title=" homologous knockout lines"> homologous knockout lines</a>, <a href="https://publications.waset.org/abstracts/search?q=tandam%20mass%20spectrometry" title=" tandam mass spectrometry"> tandam mass spectrometry</a> </p> <a href="https://publications.waset.org/abstracts/42160/characterization-of-fatty-acid-glucose-esters-as-os9bglu31-transglucosidase-substrates-in-rice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42160.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">740</span> Thermochemical and Biological Pretreatment Study for Efficient Sugar Release from Lignocellulosic Biomass (Deodar and Sal Wood Residues)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neelu%20Raina">Neelu Raina</a>, <a href="https://publications.waset.org/abstracts/search?q=Parvez%20Singh%20Slathia"> Parvez Singh Slathia</a>, <a href="https://publications.waset.org/abstracts/search?q=Deepali%20Bhagat"> Deepali Bhagat</a>, <a href="https://publications.waset.org/abstracts/search?q=Preeti%20Sharma"> Preeti Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pretreatment of lignocellulosic biomass for generating suitable substrates (starch/ sugars) for conversion to bioethanol is the most crucial step. In present study waste from furniture industry i.e sawdust from softwood Cedrus deodara (deodar) and hardwood Shorea robusta (sal) was used as lignocellulosic biomass. Thermochemical pretreatment was given by autoclaving at 121°C temperature and 15 psi pressure. Acids (H2SO4,HCl,HNO3,H3PO4), alkali (NaOH,NH4OH,KOH,Ca(OH)2) and organic acids (C6H8O7,C2H2O4,C4H4O4) were used at 0.1%, 0.5% and 1% concentration without giving any residence time. 1% HCl gave maximum sugar yield of 3.6587g/L in deodar and 6.1539 g/L in sal. For biological pretreatment a fungi isolated from decaying wood was used , sawdust from deodar tree species was used as a lignocellulosic substrate and before thermochemical pretreatment sawdust was treated with fungal culture at 37°C under submerged conditions with a residence time of one week followed by a thermochemical pretreatment methodology. Higher sugar yields were obtained with sal tree species followed by deodar tree species, i.e., 6.0334g/L in deodar and 8.3605g/L in sal was obtained by a combined biological and thermochemical pretreatment. Use of acids along with biological pretreatment is a favourable factor for breaking the lignin seal and thus increasing the sugar yield. Sugar estimation was done using Dinitrosalicyclic assay method. Result validation is being done by statistical analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lignocellulosic%20biomass" title="lignocellulosic biomass">lignocellulosic biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=bioethanol" title=" bioethanol"> bioethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=pretreatment" title=" pretreatment"> pretreatment</a>, <a href="https://publications.waset.org/abstracts/search?q=sawdust" title=" sawdust"> sawdust</a> </p> <a href="https://publications.waset.org/abstracts/61752/thermochemical-and-biological-pretreatment-study-for-efficient-sugar-release-from-lignocellulosic-biomass-deodar-and-sal-wood-residues" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61752.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">739</span> The Effect of Different Extraction Techniques on the Yield and the Composition of Oil (Laurus Nobilis L.) Fruits Widespread in Syria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Mawardi">Khaled Mawardi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bay laurel (Laurus nobilis L.) is an evergreen of the Laurus genus of the Lauraceae Family. It is a plant native to the southern Mediterranean and widespread in Syria. It is a plant with enormous industrial applications. For instance, they are used as platform chemicals in food, pharmaceutical and cosmetic applications. Herein, we report an efficient extraction of Bay laurel oil from Bay laurel fruits via a comparative investigation of boiled water conventional extraction technique and microwave-assisted extraction (MAE) by microwave heating at atmospheric pressure. In order to optimize the extraction efficiency, we investigated several extraction parameters, such as extraction time and microwave power. In addition, to demonstrate the feasibility of the method, oil obtained under optimal conditions by method (MAE) was compared quantitatively and qualitatively with that obtained by the conventional method. After 1h of microwave-assisted extraction (power of 600W), an oil yield of 9.8% with identified lauric acid content of 22.7%. In comparison, an extended extraction of up to 4h was required to obtain a 9.7% yield of oil extraction with 21.2% of lauric acid content. The change in microwave power impacts the fatty acids profile and also the quality parameters of Laurel Oil. It was found that the profile of fatty acids changed with the power, where the lauric acid content increased from 22.7% at 600W to 30.5% at 1200W owing to a decrease of oleic acid content from 32.8% at 600W to 28.3% at 1200W and linoleic acid content from 22.3% at 600W to 20.6% at 1200W. In addition, we observed a decrease in oil yield from 9.8% at 600W to 5.1% at 1200W. Summarily, the overall results indicated that the extraction of laurel fruit oils could be successfully performed using (MAE) at a short extraction time and lower energy compared with the fixed oil obtained by conventional processes of extraction. Microwave heating exerted more aggressive effects on the oil. Indeed, microwave heating inflicted changes in the fatty acids profile of oil; the most affected fraction was the unsaturated fatty acids, with higher susceptibility to oxidation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microwaves" title="microwaves">microwaves</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=Laurel%20oil" title=" Laurel oil"> Laurel oil</a>, <a href="https://publications.waset.org/abstracts/search?q=solvent-free" title=" solvent-free"> solvent-free</a> </p> <a href="https://publications.waset.org/abstracts/163430/the-effect-of-different-extraction-techniques-on-the-yield-and-the-composition-of-oil-laurus-nobilis-l-fruits-widespread-in-syria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163430.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">738</span> H₆P₂W₁₈O₆₂.14H₂O Catalyzed Synthesis of α-Aminophosphonates from Amino Acids Esters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarra%20Boughaba">Sarra Boughaba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> α-aminophosphonates have found a wide range of applications in organic and medicinal chemistry; they are considered as pharmacological agents, anti-inflammatory antitumor agents, and antibiotics. A number of procedures have been developed for their synthesis. However, many of these methods suffer from some disadvantages such as long reaction times, environmental pollution, utilization of organic solvents, and expensive catalysts. In the past few years, heteropolyacids have received great attention as environmentally benign catalysts for organic synthetic processes, they possess unique physicochemical properties, such as super-acidity, high thermal and chemical stability, ability to accept and release electrons and high proton mobility, and the possibility of varying their acidity and oxidizing potential. In this context, an efficient and eco-friendly protocol has been described for the synthesis of α-aminophosphonates via one pot, three component reaction catalyzed by H₆P₂W₁₈O₆₂.14H₂O as reusable catalyst, by condensation of amino acids esters, various aromatic aldehydes and triethylphosphite under solvent-free conditions, the corresponding α-aminophosphonates were formed in good yields as racemic or diastereomericmixture. All the new products were systematically characterized by IR, MS, and ¹H, ¹³C-³¹P-NMR analyses. This method offers advantages such as simplicity workup with the green aspects by avoiding expensive catalysts and toxic solvents, good yields, short reaction times. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amino%20acids%20esters" title="amino acids esters">amino acids esters</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B1-aminophosphonates" title=" α-aminophosphonates"> α-aminophosphonates</a>, <a href="https://publications.waset.org/abstracts/search?q=H%E2%82%86P%E2%82%82W%E2%82%81%E2%82%88O%E2%82%86%E2%82%82.14H%E2%82%82O%20catalyst" title=" H₆P₂W₁₈O₆₂.14H₂O catalyst"> H₆P₂W₁₈O₆₂.14H₂O catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20chemistry" title=" green chemistry"> green chemistry</a> </p> <a href="https://publications.waset.org/abstracts/114386/h6p2w18o6214h2o-catalyzed-synthesis-of-a-aminophosphonates-from-amino-acids-esters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114386.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">737</span> The Effect of Substitution Concentrate with Leguminose Indigofera Zollingeriana in Lactation Goat Ration of Dry Matter, Organic Matter Intake, Milk Production, PUFA and CLA Content of Milk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mardiati%20Zain">Mardiati Zain</a>, <a href="https://publications.waset.org/abstracts/search?q=Elihasridas"> Elihasridas</a>, <a href="https://publications.waset.org/abstracts/search?q=Yolani%20Utami"> Yolani Utami</a>, <a href="https://publications.waset.org/abstracts/search?q=Bima%20Bagaskara"> Bima Bagaskara</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Taufic"> Muhammad Taufic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to formulated a ration that can increased concentration of bioactive compounds in the form of conjugated linoleic acid (CLA) and polyunsaturated fatty acids acid (PUFA) in milk to produce functional milk that is beneficial for health. It has been proven that forage-based feeds (grass and legumes) are able to increased the presence of polyunsaturated fatty acids and in particular conjugated linoleic acid CLA in milk. Presence of bioactive compounds in product fat of ruminant origin these have generated great interest because they are associated with their potential as anti carcinogenic, anti diabetogenic and stimulant of the immune response. PUFA and CLA and especially n-3 fatty acids, only 4% of the fatty acids present in milk. For that, efforts need to be made to change the fatty acid composition of milk to increase the nutritional value for consumers through increasing the concentration of PUFA and CLA This is very important in the midst of the covid pandemic 19 which is increasing, it is necessary to drink and food that can improve the system body immunity. . The study was conducted in vivo using a randomized block design with 4 treatments and 4 replications. This experiment used 16 heads of 40-55 kg lactating goats. Goat were fed a basal diet containing (dry matter basis) 60% native grass and 40% concentrate. The treatment was A. 60% native grass + 40% concentrate, B. 60% native grass + 30% concentrate + 10% I. zollengeriana C. 60% native grass + 20% concentrate + 20% I. zollengeriana, D, 60% native grass + 10% concentrate + 30% I. zollengeriana.The results showed that the using of I. zollengeriana until 30% in ration gave the same result with using concentrate of nutrien intake, and milk production but increased the CLA dan PUFA content in milk. The results of this study concluded that I. zollengeriana can increased the content of CLA and PUFA at the use of 75% substitute concentrate in the diet of lactating goats. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Indigofera%20zollengeriana" title="Indigofera zollengeriana">Indigofera zollengeriana</a>, <a href="https://publications.waset.org/abstracts/search?q=lactation%20goat" title=" lactation goat"> lactation goat</a>, <a href="https://publications.waset.org/abstracts/search?q=milk%20production" title=" milk production"> milk production</a>, <a href="https://publications.waset.org/abstracts/search?q=CLA" title=" CLA"> CLA</a>, <a href="https://publications.waset.org/abstracts/search?q=PUFA" title=" PUFA"> PUFA</a> </p> <a href="https://publications.waset.org/abstracts/141155/the-effect-of-substitution-concentrate-with-leguminose-indigofera-zollingeriana-in-lactation-goat-ration-of-dry-matter-organic-matter-intake-milk-production-pufa-and-cla-content-of-milk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141155.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">736</span> Feasibility of Phenolic Acids Rich Fraction from Gynura procumbens as Potential Antihyperlipidemic Agent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vikneswaran%20Murugaiyah">Vikneswaran Murugaiyah</a>, <a href="https://publications.waset.org/abstracts/search?q=Sultan%20Ayesh%20Mohammed%20Saghir"> Sultan Ayesh Mohammed Saghir</a>, <a href="https://publications.waset.org/abstracts/search?q=Kisantini%20Murugesu"> Kisantini Murugesu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd.%20Zaini%20Asmawi"> Mohd. Zaini Asmawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Amirin%20Sadikun"> Amirin Sadikun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gynura procumbens is a popular medicinal plant used as a folk medicine in Southeast Asia to treat kidney diseases, diabetes mellitus and hyperlipidemia. The present study aims to investigate the antihyperlipidemic potential of phenolic acids rich fraction (PARF) from G. procumbens in chemically-induced acute and high fat diet-induced chronic hyperlipidemic rats. Ethanolic extract of G. procumbens leaves exhibited significant reductions in total cholesterol (TC) and triglycerides (TG) levels (P < 0.01 and P < 0.001, respectively) of poloxamer 407-induced rats compared to hyperlipidemic control after 58 h of treatment. Upon bioactivity guided fractionation the antihyperlipidemic activity was found to be concentrated in the PARF, which significantly reduced the TC and TG levels (P < 0.001). HPLC analysis revealed that 3,5-dicaffeoylquinic acid; 4,5-dicaffeoylquinic acid and chlorogenic acid are the major compounds in the PARF. Likewise, chlorogenic acid (60 mg/kg) exhibited significant reductions in TC and TG levels of hyperlipidemic rats (P < 0.001). Both chlorogenic acid and PARF significantly reduced LDL, VLDL and atherogenic index (P<0.01), while PARF increased the HDL (P < 0.01) compared to hyperlipidemic control. Both were found to be not cytotoxic against normal and cancer cell lines. In addition, LD50 of orally administered PARF was more than 5,000 mg/kg. Further investigation in high fat diet-induced chronic hyperlipidemic rats revealed that chronic administration of PARF dose-dependently restored the increase in lipids parameters. In summary, the phenolic acids rich fraction of G. procumbens leaves showed promising antihyperlipidemic effect in both chemically- and diet-induced hyperlipidemic rats that warrants further elucidation on its mechanisms of action. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Antihyperlipidemic" title="Antihyperlipidemic">Antihyperlipidemic</a>, <a href="https://publications.waset.org/abstracts/search?q=Gynura%20procumbens" title=" Gynura procumbens"> Gynura procumbens</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20acids" title=" phenolic acids"> phenolic acids</a>, <a href="https://publications.waset.org/abstracts/search?q=chlorogenic%20acid" title=" chlorogenic acid"> chlorogenic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=poloxamer-407" title=" poloxamer-407"> poloxamer-407</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20fat%20diet" title=" high fat diet"> high fat diet</a> </p> <a href="https://publications.waset.org/abstracts/61349/feasibility-of-phenolic-acids-rich-fraction-from-gynura-procumbens-as-potential-antihyperlipidemic-agent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61349.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nucleic%20acids&page=4" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nucleic%20acids&page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nucleic%20acids&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nucleic%20acids&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nucleic%20acids&page=4">4</a></li> <li class="page-item active"><span class="page-link">5</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nucleic%20acids&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nucleic%20acids&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nucleic%20acids&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nucleic%20acids&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nucleic%20acids&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nucleic%20acids&page=29">29</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nucleic%20acids&page=30">30</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nucleic%20acids&page=6" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>