CINXE.COM
Search results for: measuring precision
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: measuring precision</title> <meta name="description" content="Search results for: measuring precision"> <meta name="keywords" content="measuring precision"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="measuring precision" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="measuring precision"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2579</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: measuring precision</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2579</span> Approach of Measuring System Analyses for Automotive Part Manufacturing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Homrossukon">S. Homrossukon</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sansureerungsigun"> S. Sansureerungsigun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work aims to introduce an efficient and to standardize the measuring system analyses for automotive industrial. The study started by literature reviewing about the management and analyses measurement system. The approach of measuring system management, then, was constructed. Such approach was validated by collecting the current measuring system data using the equipments of interest including vernier caliper and micrometer. Their accuracy and precision of measurements were analyzed. Finally, the measuring system was improved and evaluated. The study showed that vernier did not meet its measuring characteristics based on the linearity whereas all equipment were lacking of the measuring precision characteristics. Consequently, the causes of measuring variation via the equipment of interest were declared. After the improvement, it was found that their measuring performance could be accepted as the standard required. Finally, the standardized approach for analyzing the measuring system of automotive was concluded. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automotive%20part%20manufacturing%20measurement" title="automotive part manufacturing measurement">automotive part manufacturing measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=measuring%20accuracy" title=" measuring accuracy"> measuring accuracy</a>, <a href="https://publications.waset.org/abstracts/search?q=measuring%20precision" title=" measuring precision"> measuring precision</a>, <a href="https://publications.waset.org/abstracts/search?q=measurement%20system%20analyses" title=" measurement system analyses"> measurement system analyses</a> </p> <a href="https://publications.waset.org/abstracts/2058/approach-of-measuring-system-analyses-for-automotive-part-manufacturing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2058.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2578</span> Axle Load Estimation of Moving Vehicles Using BWIM Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Changgil%20Lee">Changgil Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Seunghee%20Park"> Seunghee Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although vehicle driving test for the development of BWIM system is necessary, but it needs much cost and time in addition application of various driving condition. Thus, we need the numerical-simulation method resolving the cost and time problems of vehicle driving test and the way of measuring response of bridge according to the various driving condition. Using the precision analysis model reflecting the dynamic characteristic is contributed to increase accuracy in numerical simulation. In this paper, we conduct a numerical simulation to apply precision analysis model, which reflects the dynamic characteristic of bridge using Bridge Weigh-in-Motion technique and suggest overload vehicle enforcement technology using precision analysis model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridge%20weigh-in-motion%28BWIM%29%20system" title="bridge weigh-in-motion(BWIM) system">bridge weigh-in-motion(BWIM) system</a>, <a href="https://publications.waset.org/abstracts/search?q=precision%20analysis%20model" title=" precision analysis model"> precision analysis model</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20characteristic%20of%20bridge" title=" dynamic characteristic of bridge"> dynamic characteristic of bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a> </p> <a href="https://publications.waset.org/abstracts/49092/axle-load-estimation-of-moving-vehicles-using-bwim-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49092.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2577</span> Improvement of Camera Calibration Based on the Relationship between Focal Length and Aberration Coefficient</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guorong%20Sui">Guorong Sui</a>, <a href="https://publications.waset.org/abstracts/search?q=Xingwei%20Jia"> Xingwei Jia</a>, <a href="https://publications.waset.org/abstracts/search?q=Chenhui%20Yin"> Chenhui Yin</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiumin%20Gao"> Xiumin Gao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the processing of camera-based high precision and non-contact measurement, the geometric-optical aberration is always inevitably disturbing the measuring system. Moreover, the aberration is different with the different focal length, which will increase the difficulties of the system’s calibration. Therefore, to understand the relationship between the focal length as a function of aberration properties is a very important issue to the calibration of the measuring systems. In this study, we propose a new mathematics model, which is based on the plane calibration method by Zhang Zhengyou, and establish a relationship between the focal length and aberration coefficient. By using the mathematics model and carefully modified compensation templates, the calibration precision of the system can be dramatically improved. The experiment results show that the relative error is less than 1%. It is important for optoelectronic imaging systems that apply to measure, track and position by changing the camera’s focal length. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=camera%20calibration" title="camera calibration">camera calibration</a>, <a href="https://publications.waset.org/abstracts/search?q=aberration%20coefficient" title=" aberration coefficient"> aberration coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=vision%20measurement" title=" vision measurement"> vision measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=focal%20length" title=" focal length"> focal length</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematics%20model" title=" mathematics model"> mathematics model</a> </p> <a href="https://publications.waset.org/abstracts/77749/improvement-of-camera-calibration-based-on-the-relationship-between-focal-length-and-aberration-coefficient" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77749.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2576</span> A Review Paper on Data Security in Precision Agriculture Using Internet of Things</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tonderai%20Muchenje">Tonderai Muchenje</a>, <a href="https://publications.waset.org/abstracts/search?q=Xolani%20Mkhwanazi"> Xolani Mkhwanazi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Precision agriculture uses a number of technologies, devices, protocols, and computing paradigms to optimize agricultural processes. Big data, artificial intelligence, cloud computing, and edge computing are all used to handle the huge amounts of data generated by precision agriculture. However, precision agriculture is still emerging and has a low level of security features. Furthermore, future solutions will demand data availability and accuracy as key points to help farmers, and security is important to build robust and efficient systems. Since precision agriculture comprises a wide variety and quantity of resources, security addresses issues such as compatibility, constrained resources, and massive data. Moreover, conventional protection schemes used in the traditional internet may not be useful for agricultural systems, creating extra demands and opportunities. Therefore, this paper aims at reviewing state of the art of precision agriculture security, particularly in open field agriculture, discussing its architecture, describing security issues, and presenting the major challenges and future directions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=precision%20agriculture" title="precision agriculture">precision agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=security" title=" security"> security</a>, <a href="https://publications.waset.org/abstracts/search?q=IoT" title=" IoT"> IoT</a>, <a href="https://publications.waset.org/abstracts/search?q=EIDE" title=" EIDE"> EIDE</a> </p> <a href="https://publications.waset.org/abstracts/153861/a-review-paper-on-data-security-in-precision-agriculture-using-internet-of-things" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153861.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2575</span> Effect of Segregation on the Reaction Rate of Sewage Sludge Pyrolysis in a Bubbling Fluidized Bed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Soria-Verdugo">A. Soria-Verdugo</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Morato-Godino"> A. Morato-Godino</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20M.%20Garc%C3%ADa-Guti%C3%A9rrez"> L. M. García-Gutiérrez</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Garc%C3%ADa-Hernando"> N. García-Hernando</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The evolution of the pyrolysis of sewage sludge in a fixed and a fluidized bed was analyzed using a novel measuring technique. This original measuring technique consists of installing the whole reactor over a precision scale, capable of measuring the mass of the complete reactor with enough precision to detect the mass released by the sewage sludge sample during its pyrolysis. The inert conditions required for the pyrolysis process were obtained supplying the bed with a nitrogen flowrate, and the bed temperature was adjusted to either 500 ºC or 600 ºC using a group of three electric resistors. The sewage sludge sample was supplied through the top of the bed in a batch of 10 g. The measurement of the mass released by the sewage sludge sample was employed to determine the evolution of the reaction rate during the pyrolysis, the total amount of volatile matter released, and the pyrolysis time. The pyrolysis tests of sewage sludge in the fluidized bed were conducted using two different bed materials of the same size but different densities: silica sand and sepiolite particles. The higher density of silica sand particles induces a flotsam behavior for the sewage sludge particles which move close to the bed surface. In contrast, the lower density of sepiolite produces a neutrally-buoyant behavior for the sewage sludge particles, which shows a proper circulation throughout the whole bed in this case. The analysis of the evolution of the pyrolysis process in both fluidized beds show that the pyrolysis is faster when buoyancy effects are negligible, i.e. in the bed conformed by sepiolite particles. Moreover, sepiolite was found to show an absorbent capability for the volatile matter released during the pyrolysis of sewage sludge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bubbling%20fluidized%20bed" title="bubbling fluidized bed">bubbling fluidized bed</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrolysis" title=" pyrolysis"> pyrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=reaction%20rate" title=" reaction rate"> reaction rate</a>, <a href="https://publications.waset.org/abstracts/search?q=segregation%20effects" title=" segregation effects"> segregation effects</a>, <a href="https://publications.waset.org/abstracts/search?q=sewage%20sludge" title=" sewage sludge"> sewage sludge</a> </p> <a href="https://publications.waset.org/abstracts/63611/effect-of-segregation-on-the-reaction-rate-of-sewage-sludge-pyrolysis-in-a-bubbling-fluidized-bed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63611.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2574</span> Development of Visual Working Memory Precision: A Cross-Sectional Study of Simultaneously Delayed Responses Paradigm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yao%20Fu">Yao Fu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xingli%20Zhang"> Xingli Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiannong%20Shi"> Jiannong Shi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Visual working memory (VWM) capacity is the ability to maintain and manipulate short-term information which is not currently available. It is well known for its significance to form the basis of numerous cognitive abilities and its limitation in holding information. VWM span, the most popular measurable indicator, is found to reach the adult level (3-4 items) around 12-13 years’ old, while less is known about the precision development of the VWM capacity. By using simultaneously delayed responses paradigm, the present study investigates the development of VWM precision among 6-18-year-old children and young adults, besides its possible relationships with fluid intelligence and span. Results showed that precision and span both increased with age, and precision reached the maximum in 16-17 age-range. Moreover, when remembering 3 simultaneously presented items, the probability of remembering target item correlated with fluid intelligence and the probability of wrap errors (misbinding target and non-target items) correlated with age. When remembering more items, children had worse performance than adults due to their wrap errors. Compared to span, VWM precision was effective predictor of intelligence even after controlling for age. These results suggest that unlike VWM span, precision developed in a slow, yet longer fashion. Moreover, decreasing probability of wrap errors might be the main reason for the development of precision. Last, precision correlated more closely with intelligence than span in childhood and adolescence, which might be caused by the probability of remembering target item. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluid%20intelligence" title="fluid intelligence">fluid intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=precision" title=" precision"> precision</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20working%20memory" title=" visual working memory"> visual working memory</a>, <a href="https://publications.waset.org/abstracts/search?q=wrap%20errors" title=" wrap errors"> wrap errors</a> </p> <a href="https://publications.waset.org/abstracts/72654/development-of-visual-working-memory-precision-a-cross-sectional-study-of-simultaneously-delayed-responses-paradigm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72654.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2573</span> An Absolute Femtosecond Rangefinder for Metrological Support in Coordinate Measurements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Denis%20A.%20Sokolov">Denis A. Sokolov</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrey%20V.%20Mazurkevich"> Andrey V. Mazurkevich</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the modern world, there is an increasing demand for highly precise measurements in various fields, such as aircraft, shipbuilding, and rocket engineering. This has resulted in the development of appropriate measuring instruments that are capable of measuring the coordinates of objects within a range of up to 100 meters, with an accuracy of up to one micron. The calibration process for such optoelectronic measuring devices (trackers and total stations) involves comparing the measurement results from these devices to a reference measurement based on a linear or spatial basis. The reference used in such measurements could be a reference base or a reference range finder with the capability to measure angle increments (EDM). The base would serve as a set of reference points for this purpose. The concept of the EDM for replicating the unit of measurement has been implemented on a mobile platform, which allows for angular changes in the direction of laser radiation in two planes. To determine the distance to an object, a high-precision interferometer with its own design is employed. The laser radiation travels to the corner reflectors, which form a spatial reference with precisely known positions. When the femtosecond pulses from the reference arm and the measuring arm coincide, an interference signal is created, repeating at the frequency of the laser pulses. The distance between reference points determined by interference signals is calculated in accordance with recommendations from the International Bureau of Weights and Measures for the indirect measurement of time of light passage according to the definition of a meter. This distance is D/2 = c/2nF, approximately 2.5 meters, where c is the speed of light in a vacuum, n is the refractive index of a medium, and F is the frequency of femtosecond pulse repetition. The achieved uncertainty of type A measurement of the distance to reflectors 64 m (N•D/2, where N is an integer) away and spaced apart relative to each other at a distance of 1 m does not exceed 5 microns. The angular uncertainty is calculated theoretically since standard high-precision ring encoders will be used and are not a focus of research in this study. The Type B uncertainty components are not taken into account either, as the components that contribute most do not depend on the selected coordinate measuring method. This technology is being explored in the context of laboratory applications under controlled environmental conditions, where it is possible to achieve an advantage in terms of accuracy. In general, the EDM tests showed high accuracy, and theoretical calculations and experimental studies on an EDM prototype have shown that the uncertainty type A of distance measurements to reflectors can be less than 1 micrometer. The results of this research will be utilized to develop a highly accurate mobile absolute range finder designed for the calibration of high-precision laser trackers and laser rangefinders, as well as other equipment, using a 64 meter laboratory comparator as a reference. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=femtosecond%20laser" title="femtosecond laser">femtosecond laser</a>, <a href="https://publications.waset.org/abstracts/search?q=pulse%20correlation" title=" pulse correlation"> pulse correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=interferometer" title=" interferometer"> interferometer</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20absolute%20range%20finder" title=" laser absolute range finder"> laser absolute range finder</a>, <a href="https://publications.waset.org/abstracts/search?q=coordinate%20measurement" title=" coordinate measurement"> coordinate measurement</a> </p> <a href="https://publications.waset.org/abstracts/183368/an-absolute-femtosecond-rangefinder-for-metrological-support-in-coordinate-measurements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2572</span> Extended Arithmetic Precision in Meshfree Calculations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Edward%20J.%20Kansa">Edward J. Kansa</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavel%20Holoborodko"> Pavel Holoborodko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Continuously differentiable radial basis functions (RBFs) are meshfree, converge faster as the dimensionality increases, and is theoretically spectrally convergent. When implemented on current single and double precision computers, such RBFs can suffer from ill-conditioning because the systems of equations needed to be solved to find the expansion coefficients are full. However, the Advanpix extended precision software package allows computer mathematics to resemble asymptotically ideal Platonic mathematics. Additionally, full systems with extended precision execute faster graphical processors units and field-programmable gate arrays because no branching is needed. Sparse equation systems are fast for iterative solvers in a very limited number of cases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=partial%20differential%20equations" title="partial differential equations">partial differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=Meshfree%20radial%20basis%20functions" title=" Meshfree radial basis functions"> Meshfree radial basis functions</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=""></a>, <a href="https://publications.waset.org/abstracts/search?q=no%20restrictions%20on%20spatial%20dimensions" title=" no restrictions on spatial dimensions"> no restrictions on spatial dimensions</a>, <a href="https://publications.waset.org/abstracts/search?q=Extended%20arithmetic%20precision." title=" Extended arithmetic precision."> Extended arithmetic precision.</a> </p> <a href="https://publications.waset.org/abstracts/117617/extended-arithmetic-precision-in-meshfree-calculations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117617.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2571</span> Comparative Evaluation of EBT3 Film Dosimetry Using Flat Bad Scanner, Densitometer and Spectrophotometer Methods and Its Applications in Radiotherapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Khaerunnisa">K. Khaerunnisa</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Ryangga"> D. Ryangga</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Pawiro"> S. A. Pawiro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the past few decades, film dosimetry has become a tool which is used in various radiotherapy modalities, either for clinical quality assurance (QA) or dose verification. The response of the film to irradiation is usually expressed in optical density (OD) or net optical density (netOD). While the film's response to radiation is not linear, then the use of film as a dosimeter must go through a calibration process. This study aimed to compare the function of the calibration curve of various measurement methods with various densitometer, using a flat bad scanner, point densitometer and spectrophotometer. For every response function, a radichromic film calibration curve is generated from each method by performing accuracy, precision and sensitivity analysis. netOD is obtained by measuring changes in the optical density (OD) of the film before irradiation and after irradiation when using a film scanner if it uses ImageJ to extract the pixel value of the film on the red channel of three channels (RGB), calculate the change in OD before and after irradiation when using a point densitometer, and calculate changes in absorbance before and after irradiation when using a spectrophotometer. the results showed that the three calibration methods gave readings with a netOD precision of doses below 3% for the uncertainty value of 1σ (one sigma). while the sensitivity of all three methods has the same trend in responding to film readings against radiation, it has a different magnitude of sensitivity. while the accuracy of the three methods provides readings below 3% for doses above 100 cGy and 200 cGy, but for doses below 100 cGy found above 3% when using point densitometers and spectrophotometers. when all three methods are used for clinical implementation, the results of the study show accuracy and precision below 2% for the use of scanners and spectrophotometers and above 3% for precision and accuracy when using point densitometers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Callibration%20Methods" title="Callibration Methods">Callibration Methods</a>, <a href="https://publications.waset.org/abstracts/search?q=Film%20Dosimetry%20EBT3" title=" Film Dosimetry EBT3"> Film Dosimetry EBT3</a>, <a href="https://publications.waset.org/abstracts/search?q=Flat%20Bad%20Scanner" title=" Flat Bad Scanner"> Flat Bad Scanner</a>, <a href="https://publications.waset.org/abstracts/search?q=Densitomete" title=" Densitomete"> Densitomete</a>, <a href="https://publications.waset.org/abstracts/search?q=Spectrophotometer" title=" Spectrophotometer"> Spectrophotometer</a> </p> <a href="https://publications.waset.org/abstracts/119234/comparative-evaluation-of-ebt3-film-dosimetry-using-flat-bad-scanner-densitometer-and-spectrophotometer-methods-and-its-applications-in-radiotherapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119234.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2570</span> Evaluating the Tracking Abilities of Microsoft HoloLens-1 for Small-Scale Industrial Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kuhelee%20Chandel">Kuhelee Chandel</a>, <a href="https://publications.waset.org/abstracts/search?q=Julia%20%C3%85hl%C3%A9n"> Julia Åhlén</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefan%20Seipel"> Stefan Seipel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study evaluates the accuracy of Microsoft HoloLens (Version 1) for small-scale industrial activities, comparing its measurements to ground truth data from a Kuka Robotics arm. Two experiments were conducted to assess its position-tracking capabilities, revealing that the HoloLens device is effective for measuring the position of dynamic objects with small dimensions. However, its precision is affected by the velocity of the trajectory and its position within the device's field of view. While the HoloLens device may be suitable for small-scale tasks, its limitations for more complex and demanding applications requiring high precision and accuracy must be considered. The findings can guide the use of HoloLens devices in industrial applications and contribute to the development of more effective and reliable position-tracking systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=augmented%20reality%20%28AR%29" title="augmented reality (AR)">augmented reality (AR)</a>, <a href="https://publications.waset.org/abstracts/search?q=Microsoft%20HoloLens" title=" Microsoft HoloLens"> Microsoft HoloLens</a>, <a href="https://publications.waset.org/abstracts/search?q=object%20tracking" title=" object tracking"> object tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20processes" title=" industrial processes"> industrial processes</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20processes" title=" manufacturing processes"> manufacturing processes</a> </p> <a href="https://publications.waset.org/abstracts/166490/evaluating-the-tracking-abilities-of-microsoft-hololens-1-for-small-scale-industrial-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166490.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2569</span> Opportunities for Precision Feed in Apiculture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=John%20Michael%20Russo">John Michael Russo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Honeybees are important to our food system and continue to suffer from high rates of colony loss. Precision feed has brought many benefits to livestock cultivation and these should transfer to apiculture. However, apiculture has unique challenges. The objective of this research is to understand how principles of precision agriculture, applied to apiculture and feed specifically, might effectively improve state-of-the-art cultivation. The methodology surveys apicultural practice to build a model for assessment. First, a review of apicultural motivators is made. Feed method is then evaluated. Finally, precision feed methods are examined as accelerants with potential to advance the effectiveness of feed practice. Six important motivators emerge: colony loss, disease, climate change, site variance, operational costs, and competition. Feed practice itself is used to compensate for environmental variables. The research finds that the current state-of-the-art in apiculture feed focuses on critical challenges in the management of feed schedules which satisfy requirements of the bees, preserve potency, optimize environmental variables, and manage costs. Many of the challenges are most acute when feed is used to dispense medication. Technology such as RNA treatments have even more rigorous demands. Precision feed solutions focus on strategies which accommodate specific needs of individual livestock. A major component is data; they integrate precise data with methods that respond to individual needs. There is enormous opportunity for precision feed to improve apiculture through the integration of precision data with policies to translate data into optimized action in the apiary, particularly through automation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=precision%20agriculture" title="precision agriculture">precision agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=precision%20feed" title=" precision feed"> precision feed</a>, <a href="https://publications.waset.org/abstracts/search?q=apiculture" title=" apiculture"> apiculture</a>, <a href="https://publications.waset.org/abstracts/search?q=honeybees" title=" honeybees"> honeybees</a> </p> <a href="https://publications.waset.org/abstracts/154810/opportunities-for-precision-feed-in-apiculture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154810.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2568</span> Accuracy/Precision Evaluation of Excalibur I: A Neurosurgery-Specific Haptic Hand Controller</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamidreza%20Hoshyarmanesh">Hamidreza Hoshyarmanesh</a>, <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20Durante"> Benjamin Durante</a>, <a href="https://publications.waset.org/abstracts/search?q=Alex%20Irwin"> Alex Irwin</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanju%20Lama"> Sanju Lama</a>, <a href="https://publications.waset.org/abstracts/search?q=Kourosh%20Zareinia"> Kourosh Zareinia</a>, <a href="https://publications.waset.org/abstracts/search?q=Garnette%20R.%20Sutherland"> Garnette R. Sutherland</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study reports on a proposed method to evaluate the accuracy and precision of Excalibur I, a neurosurgery-specific haptic hand controller, designed and developed at Project neuroArm. Having an efficient and successful robot-assisted telesurgery is considerably contingent on how accurate and precise a haptic hand controller (master/local robot) would be able to interpret the kinematic indices of motion, i.e., position and orientation, from the surgeon’s upper limp to the slave/remote robot. A proposed test rig is designed and manufactured according to standard ASTM F2554-10 to determine the accuracy and precision range of Excalibur I at four different locations within its workspace: central workspace, extreme forward, far left and far right. The test rig is metrologically characterized by a coordinate measuring machine (accuracy and repeatability < ± 5 µm). Only the serial linkage of the haptic device is examined due to the use of the Structural Length Index (SLI). The results indicate that accuracy decreases by moving from the workspace central area towards the borders of the workspace. In a comparative study, Excalibur I performs on par with the PHANToM PremiumTM 3.0 and more accurate/precise than the PHANToM PremiumTM 1.5. The error in Cartesian coordinate system shows a dominant component in one direction (δx, δy or δz) for the movements on horizontal, vertical and inclined surfaces. The average error magnitude of three attempts is recorded, considering all three error components. This research is the first promising step to quantify the kinematic performance of Excalibur I. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accuracy" title="accuracy">accuracy</a>, <a href="https://publications.waset.org/abstracts/search?q=advanced%20metrology" title=" advanced metrology"> advanced metrology</a>, <a href="https://publications.waset.org/abstracts/search?q=hand%20controller" title=" hand controller"> hand controller</a>, <a href="https://publications.waset.org/abstracts/search?q=precision" title=" precision"> precision</a>, <a href="https://publications.waset.org/abstracts/search?q=robot-assisted%20surgery" title=" robot-assisted surgery"> robot-assisted surgery</a>, <a href="https://publications.waset.org/abstracts/search?q=tele-operation" title=" tele-operation"> tele-operation</a>, <a href="https://publications.waset.org/abstracts/search?q=workspace" title=" workspace"> workspace</a> </p> <a href="https://publications.waset.org/abstracts/86416/accuracyprecision-evaluation-of-excalibur-i-a-neurosurgery-specific-haptic-hand-controller" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86416.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2567</span> MIM and Experimental Studies of the Thermal Drift in an Ultra-High Precision Instrument for Dimensional Metrology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kam%C3%A9lia%20Bouderbala">Kamélia Bouderbala</a>, <a href="https://publications.waset.org/abstracts/search?q=Hichem%20Nouira"> Hichem Nouira</a>, <a href="https://publications.waset.org/abstracts/search?q=Etienne%20Videcoq"> Etienne Videcoq</a>, <a href="https://publications.waset.org/abstracts/search?q=Manuel%20Girault"> Manuel Girault</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Petit"> Daniel Petit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermal drifts caused by the power dissipated by the mechanical guiding systems constitute the main limit to enhance the accuracy of an ultra-high precision cylindricity measuring machine. For this reason, a high precision compact prototype has been designed to simulate the behaviour of the instrument. It ensures in situ calibration of four capacitive displacement probes by comparison with four laser interferometers. The set-up includes three heating wires for simulating the powers dissipated by the mechanical guiding systems, four additional heating wires located between each laser interferometer head and its respective holder, 19 Platinum resistance thermometers (Pt100) to observe the temperature evolution inside the set-up and four Pt100 sensors to monitor the ambient temperature. Both a Reduced Model (RM), based on the Modal Identification Method (MIM) was developed and optimized by comparison with the experimental results. Thereafter, time dependent tests were performed under several conditions to measure the temperature variation at 19 fixed positions in the system and compared to the calculated RM results. The RM results show good agreement with experiment and reproduce as well the temperature variations, revealing the importance of the RM proposed for the evaluation of the thermal behaviour of the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modal%20identification%20method%20%28MIM%29" title="modal identification method (MIM)">modal identification method (MIM)</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20behavior%20and%20drift" title=" thermal behavior and drift"> thermal behavior and drift</a>, <a href="https://publications.waset.org/abstracts/search?q=dimensional%20metrology" title=" dimensional metrology"> dimensional metrology</a>, <a href="https://publications.waset.org/abstracts/search?q=measurement" title=" measurement"> measurement</a> </p> <a href="https://publications.waset.org/abstracts/36571/mim-and-experimental-studies-of-the-thermal-drift-in-an-ultra-high-precision-instrument-for-dimensional-metrology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36571.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2566</span> Measuring the Cavitation Cloud by Electrical Impedance Tomography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michal%20Malik">Michal Malik</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiri%20Primas"> Jiri Primas</a>, <a href="https://publications.waset.org/abstracts/search?q=Darina%20Jasikova"> Darina Jasikova</a>, <a href="https://publications.waset.org/abstracts/search?q=Michal%20Kotek"> Michal Kotek</a>, <a href="https://publications.waset.org/abstracts/search?q=Vaclav%20Kopecky"> Vaclav Kopecky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is a case study dealing with the viability of using Electrical Impedance Tomography for measuring cavitation clouds in a pipe setup. The authors used a simple passive cavitation generator to cause a cavitation cloud, which was then recorded for multiple flow rates using electrodes in two measuring planes. The paper presents the results of the experiment, showing the used industrial grade tomography system ITS p2+ is able to measure the cavitation cloud and may be particularly useful for identifying the inception of cavitation in setups where other measuring tools may not be viable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cavitation%20cloud" title="cavitation cloud">cavitation cloud</a>, <a href="https://publications.waset.org/abstracts/search?q=conductivity%20measurement" title=" conductivity measurement"> conductivity measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20impedance%20tomography" title=" electrical impedance tomography"> electrical impedance tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanically%20induced%20cavitation" title=" mechanically induced cavitation"> mechanically induced cavitation</a> </p> <a href="https://publications.waset.org/abstracts/84715/measuring-the-cavitation-cloud-by-electrical-impedance-tomography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84715.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2565</span> Innovation and Technologies Synthesis of Various Components: A Contribution to the New Precision Irrigation Development for Open-Field Fruit Orchards</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pipop%20Chatrabhuti">Pipop Chatrabhuti</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Visessri"> S. Visessri</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Charinpanitkul"> T. Charinpanitkul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Precision irrigation (PI) technology has emerged as a solution to optimize water usage in agriculture, aiming to maximize crop yields while minimizing water waste. Developing a new PI for commercialization requires developers to research, synthesize, evaluate, and select appropriate technologies and make use of such information to produce innovative products. The objective of this review is to facilitate innovators by providing them with a summary of existing knowledge and the identification of gaps in research linking to the innovative development of PI. This paper reviews and synthesizes technologies and components relevant to precision irrigation, highlighting its potential benefits and challenges. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) framework is used for the review. The study is intended to contribute to innovators who apply for collaborative approach to problem-solving and idea generation that involves seeking external input and resources from a diverse range of individuals and organizations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=innovation%20synthesis" title="innovation synthesis">innovation synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=technology%20assessment" title=" technology assessment"> technology assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=precision%20irrigation%20technologies" title=" precision irrigation technologies"> precision irrigation technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=precision%20irrigation%20components" title=" precision irrigation components"> precision irrigation components</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20product%20development" title=" new product development"> new product development</a> </p> <a href="https://publications.waset.org/abstracts/174499/innovation-and-technologies-synthesis-of-various-components-a-contribution-to-the-new-precision-irrigation-development-for-open-field-fruit-orchards" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174499.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2564</span> Feasibility Study of Measurement of Turning Based-Surfaces Using Perthometer, Optical Profiler and Confocal Sensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khavieya%20Anandhan">Khavieya Anandhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Soundarapandian%20Santhanakrishnan"> Soundarapandian Santhanakrishnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Vijayaraghavan%20Laxmanan"> Vijayaraghavan Laxmanan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In general, measurement of surfaces is carried out by using traditional methods such as contact type stylus instruments. This prevalent approach is challenged by using non-contact instruments such as optical profiler, co-ordinate measuring machine, laser triangulation sensors, machine vision system, etc. Recently, confocal sensor is trying to be used in the surface metrology field. This sensor, such as a confocal sensor, is explored in this study to determine the surface roughness value for various turned surfaces. Turning is a crucial machining process to manufacture products such as grooves, tapered domes, threads, tapers, etc. The roughness value of turned surfaces are in the range of range 0.4-12.5 µm, were taken for analysis. Three instruments were used, namely, perthometer, optical profiler, and confocal sensor. Among these, in fact, a confocal sensor is least explored, despite its good resolution about 5 nm. Thus, such a high-precision sensor was used in this study to explore the possibility of measuring turned surfaces. Further, using this data, measurement uncertainty was also studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=confocal%20sensor" title="confocal sensor">confocal sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20profiler" title=" optical profiler"> optical profiler</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=turned%20surfaces" title=" turned surfaces"> turned surfaces</a> </p> <a href="https://publications.waset.org/abstracts/116230/feasibility-study-of-measurement-of-turning-based-surfaces-using-perthometer-optical-profiler-and-confocal-sensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116230.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2563</span> Architecture for Multi-Unmanned Aerial Vehicles Based Autonomous Precision Agriculture Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ebasa%20Girma">Ebasa Girma</a>, <a href="https://publications.waset.org/abstracts/search?q=Nathnael%20Minyelshowa"> Nathnael Minyelshowa</a>, <a href="https://publications.waset.org/abstracts/search?q=Lebsework%20Negash"> Lebsework Negash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of unmanned aerial vehicles (UAVs) in precision agriculture has seen a huge increase recently. As such, systems that aim to apply various algorithms on the field need a structured framework of abstractions. This paper defines the various tasks of the UAVs in precision agriculture and models them into an architectural framework. The presented architecture is built on the context that there will be minimal physical intervention to do the tasks defined with multiple coordinated and cooperative UAVs. Various tasks such as image processing, path planning, communication, data acquisition, and field mapping are employed in the architecture to provide an efficient system. Besides, different limitation for applying Multi-UAVs in precision agriculture has been considered in designing the architecture. The architecture provides an autonomous end-to-end solution, starting from mission planning, data acquisition, and image processing framework that is highly efficient and can enable farmers to comprehensively deploy UAVs onto their lands. Simulation and field tests show that the architecture offers a number of advantages that include fault-tolerance, robustness, developer, and user-friendliness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title="deep learning">deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-UAVs" title=" multi-UAVs"> multi-UAVs</a>, <a href="https://publications.waset.org/abstracts/search?q=precision%20agriculture" title=" precision agriculture"> precision agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=UAVs%20architecture" title=" UAVs architecture"> UAVs architecture</a> </p> <a href="https://publications.waset.org/abstracts/134133/architecture-for-multi-unmanned-aerial-vehicles-based-autonomous-precision-agriculture-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134133.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2562</span> Heat-Induced Uncertainty of Industrial Computed Tomography Measuring a Stainless Steel Cylinder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Verena%20M.%20Moock">Verena M. Moock</a>, <a href="https://publications.waset.org/abstracts/search?q=Darien%20E.%20Arce%20Ch%C3%A1vez"> Darien E. Arce Chávez</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariana%20M.%20Espejel%20Gonz%C3%A1lez"> Mariana M. Espejel González</a>, <a href="https://publications.waset.org/abstracts/search?q=Leopoldo%20Ru%C3%ADz-Huerta"> Leopoldo Ruíz-Huerta</a>, <a href="https://publications.waset.org/abstracts/search?q=Crescencio%20Garc%C3%ADa-Segundo"> Crescencio García-Segundo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Uncertainty analysis in industrial computed tomography is commonly related to metrological trace tools, which offer precision measurements of external part features. Unfortunately, there is no such reference tool for internal measurements to profit from the unique imaging potential of X-rays. Uncertainty approximations for computed tomography are still based on general aspects of the industrial machine and do not adapt to acquisition parameters or part characteristics. The present study investigates the impact of the acquisition time on the dimensional uncertainty measuring a stainless steel cylinder with a circular tomography scan. The authors develop the figure difference method for X-ray radiography to evaluate the volumetric differences introduced within the projected absorption maps of the metal workpiece. The dimensional uncertainty is dominantly influenced by photon energy dissipated as heat causing the thermal expansion of the metal, as monitored by an infrared camera within the industrial tomograph. With the proposed methodology, we are able to show evolving temperature differences throughout the tomography acquisition. This is an early study showing that the number of projections in computer tomography induces dimensional error due to energy absorption. The error magnitude would depend on the thermal properties of the sample and the acquisition parameters by placing apparent non-uniform unwanted volumetric expansion. We introduce infrared imaging for the experimental display of metrological uncertainty in a particular metal part of symmetric geometry. We assess that the current results are of fundamental value to reach the balance between the number of projections and uncertainty tolerance when performing analysis with X-ray dimensional exploration in precision measurements with industrial tomography. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computed%20tomography" title="computed tomography">computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20metrology" title=" digital metrology"> digital metrology</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared%20imaging" title=" infrared imaging"> infrared imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20expansion" title=" thermal expansion"> thermal expansion</a> </p> <a href="https://publications.waset.org/abstracts/157387/heat-induced-uncertainty-of-industrial-computed-tomography-measuring-a-stainless-steel-cylinder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157387.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2561</span> Dispersion-Less All Reflective Split and Delay Unit for Ultrafast Metrology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akansha%20Tyagi">Akansha Tyagi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehar%20S.%20Sidhu"> Mehar S. Sidhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ankur%20Mandal"> Ankur Mandal</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20Kapoor"> Sanjay Kapoor</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunil%20Dahiya"> Sunil Dahiya</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20M.%20Rost"> Jan M. Rost</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Pfeifer"> Thomas Pfeifer</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamal%20P.%20Singh"> Kamal P. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An all-reflective split and delay unit is designed for dispersion free measurement of broadband ultrashort pulses using a pair of reflective knife edge prism for splitting and recombining of the measuring pulse. It is based on symmetrical wavefront splitting of the measuring pulse having two separate arms to independently shape both split parts. We have validated our delay line with NIR –femtosecond pulse measurement centered at 800 nm using second harmonic-Interferometric frequency resolved optical gating (SH-IFROG). The delay line is compact, easy to align and provides attosecond stability and precision and thus make it more versatile for wide range of applications in ultrafast measurements. We envision that the present delay line will find applications in IR-IR controlling for high harmonic generation (HHG) and attosecond IR-XUV pump-probe measurements with solids and gases providing attosecond resolution and wide delay range. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HHG" title="HHG">HHG</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20optics" title=" nonlinear optics"> nonlinear optics</a>, <a href="https://publications.waset.org/abstracts/search?q=pump-probe%20spectroscopy" title=" pump-probe spectroscopy"> pump-probe spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrafast%20metrology" title=" ultrafast metrology"> ultrafast metrology</a> </p> <a href="https://publications.waset.org/abstracts/147793/dispersion-less-all-reflective-split-and-delay-unit-for-ultrafast-metrology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147793.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2560</span> Acoustic Emission Monitoring of Surface Roughness in Ultra High Precision Grinding of Borosilicate-Crown Glass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Goodness%20Onwuka">Goodness Onwuka</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Abou-El-Hossein"> Khaled Abou-El-Hossein</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increase in the demand for precision optics, coupled with the absence of much research output in the ultra high precision grinding of precision optics as compared to the ultrahigh precision diamond turning of optical metals has fostered the need for more research in the ultra high precision grinding of an optical lens. Furthermore, the increase in the stringent demands for nanometric surface finishes through lapping, polishing and grinding processes necessary for the use of borosilicate-crown glass in the automotive and optics industries has created the demand to effectively monitor the surface roughness during the production process. Acoustic emission phenomenon has been proven as useful monitoring technique in several manufacturing processes ranging from monitoring of bearing production to tool wear estimation. This paper introduces a rare and unique approach with the application of acoustic emission technique to monitor the surface roughness of borosilicate-crown glass during an ultra high precision grinding process. This research was carried out on a 4-axes Nanoform 250 ultrahigh precision lathe machine using an ultra high precision grinding spindle to machine the flat surface of the borosilicate-crown glass with the tip of the grinding wheel. A careful selection of parameters and design of experiment was implemented using Box-Behnken method to vary the wheel speed, feed rate and depth of cut at three levels with a 3-center point design. Furthermore, the average surface roughness was measured using Taylor Hobson PGI Dimension XL optical profilometer, and an acoustic emission data acquisition device from National Instruments was utilized to acquire the signals while the data acquisition codes were designed with National Instrument LabVIEW software for acquisition at a sampling rate of 2 million samples per second. The results show that the raw and root mean square amplitude values of the acoustic signals increased with a corresponding increase in the measured average surface roughness values for the different parameter combinations. Therefore, this research concludes that acoustic emission monitoring technique is a potential technique for monitoring the surface roughness in the ultra high precision grinding of borosilicate-crown glass. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20emission" title="acoustic emission">acoustic emission</a>, <a href="https://publications.waset.org/abstracts/search?q=borosilicate-crown%20glass" title=" borosilicate-crown glass"> borosilicate-crown glass</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=ultra%20high%20precision%20grinding" title=" ultra high precision grinding"> ultra high precision grinding</a> </p> <a href="https://publications.waset.org/abstracts/71595/acoustic-emission-monitoring-of-surface-roughness-in-ultra-high-precision-grinding-of-borosilicate-crown-glass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71595.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2559</span> Intelligent Diagnostic System of the Onboard Measuring Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyaw%20Zin%20Htut">Kyaw Zin Htut</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, the synthesis of the efficiency of intelligent diagnostic system in the aircraft measuring devices is described. The technology developments of the diagnostic system are considered based on the model errors of the gyro instruments, which are used to measure the parameters of the aircraft. The synthesis of the diagnostic intelligent system is considered on the example of the problem of assessment and forecasting errors of the gyroscope devices on the onboard aircraft. The result of the system is to detect of faults of the aircraft measuring devices as well as the analysis of the measuring equipment to improve the efficiency of its work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diagnostic" title="diagnostic">diagnostic</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20system" title=" dynamic system"> dynamic system</a>, <a href="https://publications.waset.org/abstracts/search?q=errors%20of%20gyro%20instruments" title=" errors of gyro instruments"> errors of gyro instruments</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20errors" title=" model errors"> model errors</a>, <a href="https://publications.waset.org/abstracts/search?q=assessment" title=" assessment"> assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=prognosis" title=" prognosis"> prognosis</a> </p> <a href="https://publications.waset.org/abstracts/47000/intelligent-diagnostic-system-of-the-onboard-measuring-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2558</span> Artificial Neural Network in Ultra-High Precision Grinding of Borosilicate-Crown Glass </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Goodness%20Onwuka">Goodness Onwuka</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Abou-El-Hossein"> Khaled Abou-El-Hossein</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Borosilicate-crown (BK7) glass has found broad application in the optic and automotive industries and the growing demands for nanometric surface finishes is becoming a necessity in such applications. Thus, it has become paramount to optimize the parameters influencing the surface roughness of this precision lens. The research was carried out on a 4-axes Nanoform 250 precision lathe machine with an ultra-high precision grinding spindle. The experiment varied the machining parameters of feed rate, wheel speed and depth of cut at three levels for different combinations using Box Behnken design of experiment and the resulting surface roughness values were measured using a Taylor Hobson Dimension XL optical profiler. Acoustic emission monitoring technique was applied at a high sampling rate to monitor the machining process while further signal processing and feature extraction methods were implemented to generate the input to a neural network algorithm. This paper highlights the training and development of a back propagation neural network prediction algorithm through careful selection of parameters and the result show a better classification accuracy when compared to a previously developed response surface model with very similar machining parameters. Hence artificial neural network algorithms provide better surface roughness prediction accuracy in the ultra-high precision grinding of BK7 glass. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20emission%20technique" title="acoustic emission technique">acoustic emission technique</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title=" artificial neural network"> artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=ultra-high%20precision%20grinding" title=" ultra-high precision grinding"> ultra-high precision grinding</a> </p> <a href="https://publications.waset.org/abstracts/71649/artificial-neural-network-in-ultra-high-precision-grinding-of-borosilicate-crown-glass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2557</span> An Experimental Modeling of Steel Surfaces Wear in Injection of Plastic Materials with SGF</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Capitanu">L. Capitanu</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Floresci"> V. Floresci</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20L.%20Badita"> L. L. Badita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Starting from the idea that the greatest pressure and velocity of composite melted is in the die nozzle, was an experimental nozzle with wear samples of sizes and weights which can be measured with precision as good. For a larger accuracy of measurements, we used a method for radiometric measuring, extremely accurate. Different nitriding steels have been studied as nitriding treatments, as well as some special steels and alloyed steels. Besides these, there have been preliminary attempts made to describe and checking corrosive action of thermoplastics on metals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plastics" title="plastics">plastics</a>, <a href="https://publications.waset.org/abstracts/search?q=composites%20with%20short%20glass%20fibres" title=" composites with short glass fibres"> composites with short glass fibres</a>, <a href="https://publications.waset.org/abstracts/search?q=moulding" title=" moulding"> moulding</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20modelling" title=" experimental modelling"> experimental modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20fibres%20content%20influence" title=" glass fibres content influence"> glass fibres content influence</a> </p> <a href="https://publications.waset.org/abstracts/47299/an-experimental-modeling-of-steel-surfaces-wear-in-injection-of-plastic-materials-with-sgf" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47299.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2556</span> Motor Gear Fault Diagnosis by Measurement of Current, Noise and Vibration on AC Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sun-Ki%20Hong">Sun-Ki Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Ki-Seok%20Kim"> Ki-Seok Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong-Ho%20Jo"> Yong-Ho Jo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lots of motors have been being used in industry. Therefore many researchers have studied about the failure diagnosis of motors. In this paper, the effect of measuring environment for diagnosis of gear fault connected to a motor shaft is studied. The fault diagnosis is executed through the comparison of normal gear and abnormal gear. The measured FFT data are compared with the normal data and analyzed for q-axis current, noise and vibration. For bad and good environment, the diagnosis results are compared. From these, it is shown that the bad measuring environment may not be able to detect exactly the motor gear fault. Therefore it is emphasized that the measuring environment should be carefully prepared. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=motor%20fault" title="motor fault">motor fault</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnosis" title=" diagnosis"> diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=FFT" title=" FFT"> FFT</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration" title=" vibration"> vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=noise" title=" noise"> noise</a>, <a href="https://publications.waset.org/abstracts/search?q=q-axis%20current" title=" q-axis current"> q-axis current</a>, <a href="https://publications.waset.org/abstracts/search?q=measuring%20environment" title=" measuring environment"> measuring environment</a> </p> <a href="https://publications.waset.org/abstracts/32684/motor-gear-fault-diagnosis-by-measurement-of-current-noise-and-vibration-on-ac-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32684.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">558</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2555</span> Calibration of Syringe Pumps Using Interferometry and Optical Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Batista">E. Batista</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Mendes"> R. Mendes</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Furtado"> A. Furtado</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20C.%20Ferreira"> M. C. Ferreira</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Godinho"> I. Godinho</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20A.%20Sousa"> J. A. Sousa</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Alvares"> M. Alvares</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Martins"> R. Martins</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Syringe pumps are commonly used for drug delivery in hospitals and clinical environments. These instruments are critical in neonatology and oncology, where any variation in the flow rate and drug dosing quantity can lead to severe incidents and even death of the patient. Therefore it is very important to determine the accuracy and precision of these devices using the suitable calibration methods. The Volume Laboratory of the Portuguese Institute for Quality (LVC/IPQ) uses two different methods to calibrate syringe pumps from 16 nL/min up to 20 mL/min. The Interferometric method uses an interferometer to monitor the distance travelled by a pusher block of the syringe pump in order to determine the flow rate. Therefore, knowing the internal diameter of the syringe with very high precision, the travelled distance, and the time needed for that travelled distance, it was possible to calculate the flow rate of the fluid inside the syringe and its uncertainty. As an alternative to the gravimetric and the interferometric method, a methodology based on the application of optical technology was also developed to measure flow rates. Mainly this method relies on measuring the increase of volume of a drop over time. The objective of this work is to compare the results of the calibration of two syringe pumps using the different methodologies described above. The obtained results were consistent for the three methods used. The uncertainties values were very similar for all the three methods, being higher for the optical drop method due to setup limitations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calibration" title="calibration">calibration</a>, <a href="https://publications.waset.org/abstracts/search?q=flow" title=" flow"> flow</a>, <a href="https://publications.waset.org/abstracts/search?q=interferometry" title=" interferometry"> interferometry</a>, <a href="https://publications.waset.org/abstracts/search?q=syringe%20pump" title=" syringe pump"> syringe pump</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty" title=" uncertainty"> uncertainty</a> </p> <a href="https://publications.waset.org/abstracts/124348/calibration-of-syringe-pumps-using-interferometry-and-optical-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124348.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2554</span> Inertial Motion Capture System for Biomechanical Analysis in Rehabilitation and Sports</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mario%20Sandro%20F.%20Rocha">Mario Sandro F. Rocha</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20S.%20Ande"> Carlos S. Ande</a>, <a href="https://publications.waset.org/abstracts/search?q=Anderson%20A.%20Oliveira"> Anderson A. Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Felipe%20M.%20Bersotti"> Felipe M. Bersotti</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucas%20O.%20Venzel"> Lucas O. Venzel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The inertial motion capture systems (mocap) are among the most suitable tools for quantitative clinical analysis in rehabilitation and sports medicine. The inertial measuring units (IMUs), composed by accelerometers, gyroscopes, and magnetometers, are able to measure spatial orientations and calculate displacements with sufficient precision for applications in biomechanical analysis of movement. Furthermore, this type of system is relatively affordable and has the advantages of portability and independence from external references. In this work, we present the last version of our inertial motion capture system, based on the foregoing technology, with a unity interface designed for rehabilitation and sports. In our hardware architecture, only one serial port is required. First, the board client must be connected to the computer by a USB cable. Next, an available serial port is configured and opened to establish the communication between the client and the application, and then the client starts scanning for the active MOCAP_S servers around. The servers play the role of the inertial measuring units that capture the movements of the body and send the data to the client, which in turn create a package composed by the ID of the server, the current timestamp, and the motion capture data defined in the client pre-configuration of the capture session. In the current version, we can measure the game rotation vector (grv) and linear acceleration (lacc), and we also have a step detector that can be abled or disabled. The grv data are processed and directly linked to the bones of the 3D model, and, along with the data of lacc and step detector, they are also used to perform the calculations of displacements and other variables shown on the graphical user interface. Our user interface was designed to calculate and present variables that are important for rehabilitation and sports, such as cadence, speed, total gait cycle, gait cycle length, obliquity and rotation, and center of gravity displacement. Our goal is to present a low-cost portable and wearable system with a friendly interface for application in biomechanics and sports, which also performs as a product of high precision and low consumption of energy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomechanics" title="biomechanics">biomechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=inertial%20sensors" title=" inertial sensors"> inertial sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=motion%20capture" title=" motion capture"> motion capture</a>, <a href="https://publications.waset.org/abstracts/search?q=rehabilitation" title=" rehabilitation"> rehabilitation</a> </p> <a href="https://publications.waset.org/abstracts/112465/inertial-motion-capture-system-for-biomechanical-analysis-in-rehabilitation-and-sports" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112465.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2553</span> Precision Pest Management by the Use of Pheromone Traps and Forecasting Module in Mobile App</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Saad%20Aslam">Muhammad Saad Aslam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In 2021, our organization has launched our proprietary mobile App i.e. Farm Intelligence platform, an industrial-first precision agriculture solution, to Pakistan. It was piloted at 47 locations (spanning around 1,200 hectares of land), addressing growers’ pain points by bringing the benefits of precision agriculture to their doorsteps. This year, we have extended its reach by more than 10 times (nearly 130,000 hectares of land) in almost 600 locations across the country. The project team selected highly infested areas to set up traps, which then enabled the sales team to initiate evidence-based conversations with the grower community about preventive crop protection products that includes pesticides and insecticides. Mega farmer meeting field visits and demonstrations plots coupled with extensive marketing activities, were setup to include farmer community. With the help of App real-time pest monitoring (using heat maps and infestation prediction through predictive analytics) we have equipped our growers with on spot insights that will help them optimize pesticide applications. Heat maps allow growers to identify infestation hot spots to fine-tune pesticide delivery, while predictive analytics enable preventive application of pesticides before the situation escalates. Ultimately, they empower growers to keep their crops safe for a healthy harvest. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=precision%20pest%20management" title="precision pest management">precision pest management</a>, <a href="https://publications.waset.org/abstracts/search?q=precision%20agriculture" title=" precision agriculture"> precision agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=real%20time%20pest%20tracking" title=" real time pest tracking"> real time pest tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=pest%20forecasting" title=" pest forecasting"> pest forecasting</a> </p> <a href="https://publications.waset.org/abstracts/165671/precision-pest-management-by-the-use-of-pheromone-traps-and-forecasting-module-in-mobile-app" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165671.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2552</span> Enhanced Calibration Map for a Four-Hole Probe for Measuring High Flow Angles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jafar%20Mortadha">Jafar Mortadha</a>, <a href="https://publications.waset.org/abstracts/search?q=Imran%20Qureshi"> Imran Qureshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research explains and compares the modern techniques used for measuring the flow angles of a flowing fluid with the traditional technique of using multi-hole pressure probes. In particular, the focus of the study is on four-hole probes, which offer great reliability and benefits in several applications where the use of modern measurement techniques is either inconvenient or impractical. Due to modern advancements in manufacturing, small multi-hole pressure probes can be made with high precision, which eliminates the need for calibrating every manufactured probe. This study aims to improve the range of calibration maps for a four-hole probe to allow high flow angles to be measured accurately. The research methodology comprises a literature review of the successful calibration definitions that have been implemented on five-hole probes. These definitions are then adapted and applied on a four-hole probe using a set of raw pressures data. A comparison of the different definitions will be carried out in Matlab and the results will be analyzed to determine the best calibration definition. Taking simplicity of implementation into account as well as the reliability of flow angles estimation, an adapted technique from a research paper written in 2002 offered the most promising outcome. Consequently, the method is seen as a good enhancement for four-hole probes and it can substitute for the existing calibration definitions that offer less accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calibration%20definitions" title="calibration definitions">calibration definitions</a>, <a href="https://publications.waset.org/abstracts/search?q=calibration%20maps" title=" calibration maps"> calibration maps</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20measurement%20techniques" title=" flow measurement techniques"> flow measurement techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=four-hole%20probes" title=" four-hole probes"> four-hole probes</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-hole%20pressure%20probes" title=" multi-hole pressure probes"> multi-hole pressure probes</a> </p> <a href="https://publications.waset.org/abstracts/92402/enhanced-calibration-map-for-a-four-hole-probe-for-measuring-high-flow-angles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92402.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2551</span> Faster Pedestrian Recognition Using Deformable Part Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alessandro%20Preziosi">Alessandro Preziosi</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Prioletti"> Antonio Prioletti</a>, <a href="https://publications.waset.org/abstracts/search?q=Luca%20Castangia"> Luca Castangia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Deformable part models achieve high precision in pedestrian recognition, but all publicly available implementations are too slow for real-time applications. We implemented a deformable part model algorithm fast enough for real-time use by exploiting information about the camera position and orientation. This implementation is both faster and more precise than alternative DPM implementations. These results are obtained by computing convolutions in the frequency domain and using lookup tables to speed up feature computation. This approach is almost an order of magnitude faster than the reference DPM implementation, with no loss in precision. Knowing the position of the camera with respect to horizon it is also possible prune many hypotheses based on their size and location. The range of acceptable sizes and positions is set by looking at the statistical distribution of bounding boxes in labelled images. With this approach it is not needed to compute the entire feature pyramid: for example higher resolution features are only needed near the horizon. This results in an increase in mean average precision of 5% and an increase in speed by a factor of two. Furthermore, to reduce misdetections involving small pedestrians near the horizon, input images are supersampled near the horizon. Supersampling the image at 1.5 times the original scale, results in an increase in precision of about 4%. The implementation was tested against the public KITTI dataset, obtaining an 8% improvement in mean average precision over the best performing DPM-based method. By allowing for a small loss in precision computational time can be easily brought down to our target of 100ms per image, reaching a solution that is faster and still more precise than all publicly available DPM implementations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autonomous%20vehicles" title="autonomous vehicles">autonomous vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=deformable%20part%20model" title=" deformable part model"> deformable part model</a>, <a href="https://publications.waset.org/abstracts/search?q=dpm" title=" dpm"> dpm</a>, <a href="https://publications.waset.org/abstracts/search?q=pedestrian%20detection" title=" pedestrian detection"> pedestrian detection</a>, <a href="https://publications.waset.org/abstracts/search?q=real%20time" title=" real time"> real time</a> </p> <a href="https://publications.waset.org/abstracts/51665/faster-pedestrian-recognition-using-deformable-part-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51665.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2550</span> Biomimetic Adhesive Pads for Precision Manufacturing Robots</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hoon%20Yi">Hoon Yi</a>, <a href="https://publications.waset.org/abstracts/search?q=Minho%20Sung"> Minho Sung</a>, <a href="https://publications.waset.org/abstracts/search?q=Hangil%20Ko"> Hangil Ko</a>, <a href="https://publications.waset.org/abstracts/search?q=Moon%20Kyu%20Kwak"> Moon Kyu Kwak</a>, <a href="https://publications.waset.org/abstracts/search?q=Hoon%20Eui%20Jeong"> Hoon Eui Jeong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inspired by the remarkable adhesion properties of gecko lizards, bio-inspired dry adhesives with smart adhesion properties have been developed in the last decade. Compared to earlier dry adhesives, the recently developed ones exhibit excellent adhesion strength, smart directional adhesion, and structural robustness. With these unique adhesion properties, bio-inspired dry adhesive pads have strong potential for use in precision industries such as semiconductor or display manufacturing. In this communication, we present a new manufacturing technology based on advanced dry adhesive systems that enable precise manipulation of large-area substrates over repeating cycles without any requirement for external force application. This new manufacturing technique is also highly accurate and environment-friendly, and thus has strong potential as a next-generation clean manufacturing technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gecko" title="gecko">gecko</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20robot" title=" manufacturing robot"> manufacturing robot</a>, <a href="https://publications.waset.org/abstracts/search?q=precision%20manufacturing" title=" precision manufacturing"> precision manufacturing</a> </p> <a href="https://publications.waset.org/abstracts/38058/biomimetic-adhesive-pads-for-precision-manufacturing-robots" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38058.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">505</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=measuring%20precision&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=measuring%20precision&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=measuring%20precision&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=measuring%20precision&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=measuring%20precision&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=measuring%20precision&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=measuring%20precision&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=measuring%20precision&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=measuring%20precision&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=measuring%20precision&page=85">85</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=measuring%20precision&page=86">86</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=measuring%20precision&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>