CINXE.COM
Search results for: motility analysis of human spermatozoa
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: motility analysis of human spermatozoa</title> <meta name="description" content="Search results for: motility analysis of human spermatozoa"> <meta name="keywords" content="motility analysis of human spermatozoa"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="motility analysis of human spermatozoa" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="motility analysis of human spermatozoa"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 33489</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: motility analysis of human spermatozoa</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33489</span> Investigation of Some Sperm Quality Parameters of Farmed and Wild-Caught Meagre (Argyrosomus regius Asso, 1801)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C5%9Eefik%20Surhan%20Tabako%C4%9Flu">Şefik Surhan Tabakoğlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hipolito%20Fern%C3%A1ndez-Palacios"> Hipolito Fernández-Palacios</a>, <a href="https://publications.waset.org/abstracts/search?q=Dominique%20Schuchardt"> Dominique Schuchardt</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmut%20Ali%20G%C3%B6k%C3%A7e"> Mahmut Ali Gökçe</a>, <a href="https://publications.waset.org/abstracts/search?q=Celal%20Erba%C5%9F"> Celal Erbaş</a>, <a href="https://publications.waset.org/abstracts/search?q=O%C4%9Fuz%20Ta%C5%9Fbozan"> Oğuz Taşbozan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to clarify some sperm quality parameters such as volumetric sperm quantity, motility, motility duration, sperm density, total number of spermatozoa and pH of meagre (Argyrosomus regius ASSO, 1801) individuals kept in farming conditions and caught from wild (las palmas, gran canary). The sperm was collected in glass tubes graded in millimetres and sperm volume registered immediately following collection by abdominal massage. The sperm quality parameters including motility, total number of spermatozoa and spermatozoa density were determined with computer assisted sperm analysis (CASA) program. The duration of spermatozoa movement was assessed using a sensitive chronometer (1/100s) that was started simultaneously with the addition of activation solution into the sample. Sperm pH was measured with standard pH electrodes within five minutes of sampling. At the end of the study, while amount of sperm (5.20±0.33 ml), duration of motility (7.23±0.7 m) and total number of spermatozoa (131.40±12.22 x10^9) were different statistically (p < 0,05), motility (% 81.03±6.59), pH (7.30±0.08), sperm density (25.27±9.42 x10^9/ml) and morphologic parameters were not significantly different between the two groups. According to our results, amount of sperm, duration of motility and total number of spermatozoa were better in farmed group than that of the other group. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seriola%20rivoliana" title="Seriola rivoliana">Seriola rivoliana</a>, <a href="https://publications.waset.org/abstracts/search?q=meagre" title=" meagre"> meagre</a>, <a href="https://publications.waset.org/abstracts/search?q=sperm%20quality" title=" sperm quality"> sperm quality</a>, <a href="https://publications.waset.org/abstracts/search?q=motility" title=" motility"> motility</a>, <a href="https://publications.waset.org/abstracts/search?q=motility%20duration" title=" motility duration"> motility duration</a> </p> <a href="https://publications.waset.org/abstracts/67842/investigation-of-some-sperm-quality-parameters-of-farmed-and-wild-caught-meagre-argyrosomus-regius-asso-1801" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67842.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33488</span> DEEPMOTILE: Motility Analysis of Human Spermatozoa Using Deep Learning in Sri Lankan Population</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chamika%20Chiran%20Perera">Chamika Chiran Perera</a>, <a href="https://publications.waset.org/abstracts/search?q=Dananjaya%20Perera"> Dananjaya Perera</a>, <a href="https://publications.waset.org/abstracts/search?q=Chirath%20Dasanayake"> Chirath Dasanayake</a>, <a href="https://publications.waset.org/abstracts/search?q=Banuka%20Athuraliya"> Banuka Athuraliya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Male infertility is a major problem in the world, and it is a neglected and sensitive health issue in Sri Lanka. It can be determined by analyzing human semen samples. Sperm motility is one of many factors that can evaluate male’s fertility potential. In Sri Lanka, this analysis is performed manually. Manual methods are time consuming and depend on the person, but they are reliable and it can depend on the expert. Machine learning and deep learning technologies are currently being investigated to automate the spermatozoa motility analysis, and these methods are unreliable. These automatic methods tend to produce false positive results and false detection. Current automatic methods support different techniques, and some of them are very expensive. Due to the geographical variance in spermatozoa characteristics, current automatic methods are not reliable for motility analysis in Sri Lanka. The suggested system, DeepMotile, is to explore a method to analyze motility of human spermatozoa automatically and present it to the andrology laboratories to overcome current issues. DeepMotile is a novel deep learning method for analyzing spermatozoa motility parameters in the Sri Lankan population. To implement the current approach, Sri Lanka patient data were collected anonymously as a dataset, and glass slides were used as a low-cost technique to analyze semen samples. Current problem was identified as microscopic object detection and tackling the problem. YOLOv5 was customized and used as the object detector, and it achieved 94 % mAP (mean average precision), 86% Precision, and 90% Recall with the gathered dataset. StrongSORT was used as the object tracker, and it was validated with andrology experts due to the unavailability of annotated ground truth data. Furthermore, this research has identified many potential ways for further investigation, and andrology experts can use this system to analyze motility parameters with realistic accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer%20vision" title="computer vision">computer vision</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20networks" title=" convolutional neural networks"> convolutional neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-target%20tracking" title=" multi-target tracking"> multi-target tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=microscopic%20object%20detection%20and%20tracking" title=" microscopic object detection and tracking"> microscopic object detection and tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=male%20infertility%20detection" title=" male infertility detection"> male infertility detection</a>, <a href="https://publications.waset.org/abstracts/search?q=motility%20analysis%20of%20human%20spermatozoa" title=" motility analysis of human spermatozoa"> motility analysis of human spermatozoa</a> </p> <a href="https://publications.waset.org/abstracts/153934/deepmotile-motility-analysis-of-human-spermatozoa-using-deep-learning-in-sri-lankan-population" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153934.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33487</span> Crude Glycerol Affects Canine Spermatoa Motility: Computer Assister Semen Analysis in Vitro</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Massanyi">P. Massanyi</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Kichi"> L. Kichi</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Slanina"> T. Slanina</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Kolesar"> E. Kolesar</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Danko"> J. Danko</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Lukac"> N. Lukac</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Tvrda"> E. Tvrda</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Stawarz"> R. Stawarz</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kolesarova"> A. Kolesarova </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Target of this study was the analysis of the impact of crude glycerol on canine spermatozoa motility, morphology, viability, and membrane integrity. Experiments were realized in vitro. In the study, semen from 5 large dog breeds was used. They were typical representatives of large breeds, coming from healthy rearing, regularly vaccinated and integrated to the further breeding. Semen collections were realized at the owners of animals and in the veterinary clinic. Subsequently the experiments were realized at the Department of Animal Physiology of the SUA in Nitra. The spermatozoa motility was evaluated using CASA analyzer (SpermVisionTM, Minitub, Germany) at the temperature 5 and 37°C for 5 hours. In the study, 13 motility parameters were evaluated. Generally, crude glycerol has generally negative effect on spermatozoa motility. Morphological analysis was realized using Hancock staining and the preparations were evaluated at magnification 1000x using classification tables of morphologically changed spermatozoa. Data clearly detected the highest number of morphologically changed spermatozoa in the experimental groups (know twisted tails, tail torso and tail coiling). For acrosome alterations swelled acrosomes, removed acrosomes and acrosomes with undulated membrane were detected. In this study also the effect of crude glycerol on spermatozoa membrane integrity were analyzed. The highest crude glycerol concentration significantly affects spermatozoa integrity. Results of this study show that crude glycerol has effect of spermatozoa motility, viability, and membrane integrity. Detected changes are related to crude glycerol concentration, temperature, as well as time of incubation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dog" title="dog">dog</a>, <a href="https://publications.waset.org/abstracts/search?q=semen" title=" semen"> semen</a>, <a href="https://publications.waset.org/abstracts/search?q=spermatozoa" title=" spermatozoa"> spermatozoa</a>, <a href="https://publications.waset.org/abstracts/search?q=acrosome" title=" acrosome"> acrosome</a>, <a href="https://publications.waset.org/abstracts/search?q=glycerol" title=" glycerol"> glycerol</a>, <a href="https://publications.waset.org/abstracts/search?q=CASA" title=" CASA"> CASA</a>, <a href="https://publications.waset.org/abstracts/search?q=viability" title=" viability"> viability</a> </p> <a href="https://publications.waset.org/abstracts/35012/crude-glycerol-affects-canine-spermatoa-motility-computer-assister-semen-analysis-in-vitro" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35012.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33486</span> In vitro Effects of Berberine on the Vitality and Oxidative Profile of Bovine Spermatozoa </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eva%20Tvrd%C3%A1">Eva Tvrdá</a>, <a href="https://publications.waset.org/abstracts/search?q=Hana%20Greifov%C3%A1"> Hana Greifová</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Ivani%C4%8D"> Peter Ivanič</a>, <a href="https://publications.waset.org/abstracts/search?q=Norbert%20Luk%C3%A1%C4%8D"> Norbert Lukáč </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to evaluate the dose- and time-dependent <em>in vitro</em> effects of berberine (BER), a natural alkaloid with numerous biological properties on bovine spermatozoa during three time periods (0 h, 2 h, 24 h). Bovine semen samples were diluted and cultivated in physiological saline solution containing 0.5% DMSO together with 200, 100, 50, 10, 5, and 1 μmol/L BER. Spermatozoa motility was assessed using the computer assisted semen analyzer. The viability of spermatozoa was assessed by the metabolic (MTT) assay, production of superoxide radicals was quantified using the nitroblue tetrazolium (NBT) test, and chemiluminescence was used to evaluate the generation of reactive oxygen species (ROS). Cell lysates were prepared and the extent of lipid peroxidation (LPO) was evaluated using the TBARS assay. The results of the movement activity showed a significant increase in the motility during long term cultivation in case of concentrations ranging between 1 and 10 μmol/L BER (P < 0.01; P < 0.001; 24 h). At the same time, supplementation of 1, 5 and 10 μmol/L BER led to a significant preservation of the cell viability (P < 0.001; 24 h). BER addition at a range of 1-50 μmol/L also provided a significantly higher protection against superoxide (P < 0.05) and ROS (P < 0.001; P < 0.01) overgeneration as well as LPO (P < 0.01; P<0.05) after a 24 h cultivation. We may suggest that supplementation of BER to bovine spermatozoa, particularly at concentrations ranging between 1 and 50 μmol/L, may offer protection to the motility, viability and oxidative status of the spermatozoa, particularly notable at 24 h. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=berberine" title="berberine">berberine</a>, <a href="https://publications.waset.org/abstracts/search?q=bulls" title=" bulls"> bulls</a>, <a href="https://publications.waset.org/abstracts/search?q=motility" title=" motility"> motility</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20profile" title=" oxidative profile"> oxidative profile</a>, <a href="https://publications.waset.org/abstracts/search?q=spermatozoa" title=" spermatozoa"> spermatozoa</a>, <a href="https://publications.waset.org/abstracts/search?q=viability" title=" viability"> viability</a> </p> <a href="https://publications.waset.org/abstracts/108980/in-vitro-effects-of-berberine-on-the-vitality-and-oxidative-profile-of-bovine-spermatozoa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108980.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33485</span> In vitro Effects of Viscum album on the Functionality of Rabbit Spermatozoa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marek%20Halen%C3%A1r">Marek Halenár</a>, <a href="https://publications.waset.org/abstracts/search?q=Eva%20Tvrd%C3%A1"> Eva Tvrdá</a>, <a href="https://publications.waset.org/abstracts/search?q=Simona%20Baldovsk%C3%A1"> Simona Baldovská</a>, <a href="https://publications.waset.org/abstracts/search?q=%C4%BDubom%C3%ADr%20Ondru%C5%A1ka"> Ľubomír Ondruška</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Mass%C3%A1nyi"> Peter Massányi</a>, <a href="https://publications.waset.org/abstracts/search?q=Adriana%20Koles%C3%A1rov%C3%A1"> Adriana Kolesárová</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to assess the <em>in vitro </em>effects of different concentrations of the <em>Viscum album </em>extract on the motility, viability, and reactive oxygen species (ROS) production by rabbit spermatozoa during different time periods (0, 2, and 8h). Spermatozoa motility was assessed by using the CASA (Computer aided sperm analysis) system. Cell viability was evaluated by using the metabolic activity MTT assay, and the luminol-based luminometry was applied to quantify the ROS formation. The CASA analysis revealed that low <em>Viscum</em> concentrations were able to prevent a rapid decline of spermatozoa motility, especially in the case of concentrations ranging between 1 and 5 µg/mL (P<0.05 with respect to time 8h). At the same time, concentrations ranging between 1 and 100 µg/mL of the extract led to a significant preservation of the cell viability (P<0.05 in case of 5, 50 and 100 µg/mL; P<0.01 with respect to 1 and 10 µg/mL, time 8h). 1 and 5 µg/mL of the extract exhibited antioxidant characteristics, translated into a significant reduction of the ROS production, particularly notable at time 8h (P<0.01). The results indicate that the <em>Viscum</em> extract is capable of delaying the damage inflicted to the spermatozoon by the <em>in vitro</em> environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CASA" title="CASA">CASA</a>, <a href="https://publications.waset.org/abstracts/search?q=mistletoe" title=" mistletoe"> mistletoe</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondrial%20activity" title=" mitochondrial activity"> mitochondrial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=motility" title=" motility"> motility</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20oxygen%20species" title=" reactive oxygen species"> reactive oxygen species</a>, <a href="https://publications.waset.org/abstracts/search?q=rabbits" title=" rabbits"> rabbits</a>, <a href="https://publications.waset.org/abstracts/search?q=spermatozoa" title=" spermatozoa"> spermatozoa</a>, <a href="https://publications.waset.org/abstracts/search?q=Viscum%20album" title=" Viscum album"> Viscum album</a> </p> <a href="https://publications.waset.org/abstracts/56563/in-vitro-effects-of-viscum-album-on-the-functionality-of-rabbit-spermatozoa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56563.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33484</span> In vitro Effects of Amygdalin on the Functional Competence of Rabbit Spermatozoa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marek%20Halen%C3%A1r">Marek Halenár</a>, <a href="https://publications.waset.org/abstracts/search?q=Eva%20Tvrd%C3%A1"> Eva Tvrdá</a>, <a href="https://publications.waset.org/abstracts/search?q=Tom%C3%A1%C5%A1%20Slanina"> Tomáš Slanina</a>, <a href="https://publications.waset.org/abstracts/search?q=%C4%BDubom%C3%ADr%20Ondru%C5%A1ka"> Ľubomír Ondruška</a>, <a href="https://publications.waset.org/abstracts/search?q=Eduard%20Koles%C3%A1r"> Eduard Kolesár</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Mass%C3%A1nyi"> Peter Massányi</a>, <a href="https://publications.waset.org/abstracts/search?q=Adriana%20Koles%C3%A1rov%C3%A1"> Adriana Kolesárová </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present <em>in vitro</em> study was designed to reveal whether amygdalin (AMG) is able to cause changes to the motility, viability and mitochondrial activity of rabbit spermatozoa. New Zealand White rabbits (n = 10) aged four months were used in the study. Semen samples were collected from each animal and used for the <em>in vitro </em>incubation. The samples were divided into five equal parts and diluted with saline supplemented with 0, 0.5, 1, 2.5 and 5 mg/mL AMG. At times 0h, 3h and 5h spermatozoa motion parameters were assessed using the SpermVision™ computer-aided sperm analysis (CASA) system, cell viability was examined with the metabolic activity (MTT) assay, and the eosin-nigrosin staining technique was used to evaluate the viability of rabbit spermatozoa. All AMG concentrations exhibited stimulating effects on the spermatozoa activity, as shown by a significant preservation of the motility (P<0.05 with respect to 0.5 mg/mL and 1 mg/mL AMG; Time 5 h) and mitochondrial activity (P< 0.05 in case of 0.5 mg/mL AMG; P< 0.01 in case of 1 mg/mL AMG; P < 0.001 with respect to 2.5 mg/mL and 5 mg/mL AMG; Time 5 h). None of the AMG doses supplemented had any significant impact of the spermatozoa viability. In conclusion, the data revealed that short-term co-incubation of spermatozoa with AMG may result in a higher preservation of the sperm structural integrity and functional activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amygdalin" title="amygdalin">amygdalin</a>, <a href="https://publications.waset.org/abstracts/search?q=CASA" title=" CASA"> CASA</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondrial%20activity" title=" mitochondrial activity"> mitochondrial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=motility" title=" motility"> motility</a>, <a href="https://publications.waset.org/abstracts/search?q=rabbits" title=" rabbits"> rabbits</a>, <a href="https://publications.waset.org/abstracts/search?q=spermatozoa" title=" spermatozoa"> spermatozoa</a>, <a href="https://publications.waset.org/abstracts/search?q=viability" title=" viability"> viability</a> </p> <a href="https://publications.waset.org/abstracts/55018/in-vitro-effects-of-amygdalin-on-the-functional-competence-of-rabbit-spermatozoa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33483</span> In vitro Effects of Salvia officinalis on Bovine Spermatozoa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eva%20Tvrd%C3%A1">Eva Tvrdá</a>, <a href="https://publications.waset.org/abstracts/search?q=Boris%20Botman"> Boris Botman</a>, <a href="https://publications.waset.org/abstracts/search?q=Marek%20Halen%C3%A1r"> Marek Halenár</a>, <a href="https://publications.waset.org/abstracts/search?q=Tom%C3%A1%C5%A1%20Slanina"> Tomáš Slanina</a>, <a href="https://publications.waset.org/abstracts/search?q=Norbert%20Luk%C3%A1%C4%8D"> Norbert Lukáč</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <em>In vitro</em> storage and processing of animal semen represents a risk factor to spermatozoa vitality, potentially leading to reduced fertility. A variety of substances isolated from natural sources may exhibit protective or antioxidant properties on the spermatozoon, thus extending the lifespan of stored ejaculates. This study compared the ability of different concentrations of the <em>Salvia officinalis</em> extract on the motility, mitochondrial activity, viability and reactive oxygen species (ROS) production by bovine spermatozoa during different time periods (0, 2, 6 and 24 h) of <em>in vitro</em> culture. Spermatozoa motility was assessed using the Computer-assisted sperm analysis (CASA) system. Cell viability was examined using the metabolic activity MTT assay, the eosin-nigrosin staining technique was used to evaluate the sperm viability and ROS generation was quantified using luminometry. The CASA analysis revealed that the motility in the experimental groups supplemented with 0.5-2 µg/mL <em>Salvia</em> extract was significantly lower in comparison with the control (P<0.05; Time 24 h). At the same time, a long-term exposure of spermatozoa to concentrations ranging between 0.05 µg/mL and 2 µg/mL had a negative impact on the mitochondrial metabolism (P<0.05; Time 24 h). The viability staining revealed that 0.001-1 µg/mL <em>Salvia</em> extract had no effects on bovine male gametes, however 2 µg/mL <em>Salvia</em> had a persisting negative effect on spermatozoa (P<0.05). Furthermore 0.05-2 µg/mL <em>Salvia</em> exhibited an immediate ROS-promoting effect on the sperm culture (P>0.05; Time 0 h and 2 h), which remained significant throughout the entire <em>in vitro</em> culture (P<0.05; Time 24 h). Our results point out to the necessity to examine specific effects the biomolecules present in <em>Salvia officinalis</em> may have individually or collectively on the <em>in vitro</em> sperm vitality and oxidative profile. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bulls" title="bulls">bulls</a>, <a href="https://publications.waset.org/abstracts/search?q=CASA" title=" CASA"> CASA</a>, <a href="https://publications.waset.org/abstracts/search?q=MTT%20test" title=" MTT test"> MTT test</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20oxygen%20species" title=" reactive oxygen species"> reactive oxygen species</a>, <a href="https://publications.waset.org/abstracts/search?q=sage" title=" sage"> sage</a>, <a href="https://publications.waset.org/abstracts/search?q=Salvia%20officinalis" title=" Salvia officinalis"> Salvia officinalis</a>, <a href="https://publications.waset.org/abstracts/search?q=spermatozoa" title=" spermatozoa"> spermatozoa</a> </p> <a href="https://publications.waset.org/abstracts/56562/in-vitro-effects-of-salvia-officinalis-on-bovine-spermatozoa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56562.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33482</span> TiO₂ Nanoparticles Induce DNA Damage and Expression of Biomarker of Oxidative Stress on Human Spermatozoa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elena%20Maria%20Scalisi">Elena Maria Scalisi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increasing production and the use of TiO₂ nanoparticles (NPs) have inevitably led to their release into the environment, thereby posing a threat to organisms and also for human. Human exposure to TiO₂-NPs may occur during both manufacturing and use. TiO₂-NPs are common in consumer products for dermal application, toothpaste, food colorants, and nutritional supplements, then oral exposure may occur during use of such products. Into the body, TiO₂-NPs thanks to their small size (<100 nm), can, through testicular blood barrier inducing effect on testis and then on male reproductive health. The nanoscale size of TiO₂ increase the surface-to-volume ratio making them more reactive in a cell, then TiO₂ NPs increase their ability to produce reactive oxygen species (ROS). In male germ cells, ROS may have important implications in maintaining the normal functions of mature spermatozoa at physiological levels, moreover, in spermatozoa they are important signaling molecules for their hyperactivation and acrosome reaction. Nevertheless, an excess of ROS by external inputs such as NPs can increased the oxidative stress (OS), which results in damage DNA and apoptosis. The aim of our study has been investigate the impact of TiO₂ NPs on human spermatozoa, evaluating DNA damage and the expression of proteins involved in cell stress. According WHO guidelines 2021, we have exposed human spermatozoa in vitro to TiO₂ NP at concentrations 50 ppm, 100 ppm, 250 ppm, and 500 ppm for 1 hour (at 37°C and CO₂ at 5%). DNA damage was evaluated by Sperm Chromatin Dispersion Test (SCD) and TUNEL assay; moreover, we have evaluated the expression of biomarkers of oxidative stress like Heat Shock Protein 70 (HSP70) and Metallothioneins (MTs). Also, sperm parameters as motility viability have been evaluated. Our results not report a significant reduction in motility of spermatozoa at the end of the exposure. On the contrary, the progressive motility was increased at the highest concentration (500 ppm) and was statistically significant compared to control (p <0.05). Also, viability was not changed by exposure to TiO₂-NPs (p <0.05). However, increased DNA damage was observed at all concentrations, and the TUNEL assay highlighted the presence of single strand breaks in the DNA. The spermatozoa responded to the presence of TiO₂-NPs with the expression of Hsp70, which have a protective function because they allow the maintenance of cellular homeostasis in stressful/ lethal conditions. A positivity for MTs was observed mainly for the concentration of 4 mg/L. Although the biological and physiological function of the metallothionein (MTs) in the male genital organs is unclear, our results highlighted that the MTs expressed by spermatozoa maintain their biological role of detoxification from metals. Our results can give additional information to the data in the literature on the toxicity of TiO₂-NPs and reproduction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=human%20spermatozoa" title="human spermatozoa">human spermatozoa</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20damage" title=" DNA damage"> DNA damage</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO%E2%82%82-NPs" title=" TiO₂-NPs"> TiO₂-NPs</a>, <a href="https://publications.waset.org/abstracts/search?q=biomarkers" title=" biomarkers"> biomarkers</a> </p> <a href="https://publications.waset.org/abstracts/146194/tio2-nanoparticles-induce-dna-damage-and-expression-of-biomarker-of-oxidative-stress-on-human-spermatozoa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33481</span> Impact of Propolis on Cryopreservation of Arctic Charr (Salvelinus alpinus) Sperm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20A.%20El-Battawy">K. A. El-Battawy</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Brannas"> E. Brannas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cryopreservation of sperm causes damages and adversely affected sperm motility and viability resulting in lower hatching rates. The aim of this study is to determine whether propolis has potential protective effect on cryopreservation and fertilization ability of spermatozoa of Salvelinusalpinus. The extenders were prepared by using simple glucose solution (0.3 M glucose) to which 10% Me2SO added with different levels of propolis (0.4, 0.8 and 1 mg/ ml) and 10% egg yolk (as a control without propolis). The pooled semen samples diluted at the ratio of 1:3 by the extenders were subjected to cryopreservation. The percentage and duration of motility and fertilization tests of cryopreserved sperm samples have been done immediately after thawing and compared with control and fresh semen. The extenders containing propolis showed higher percentage motility and motility duration than control group (P < 0.05). Especially the group II (0.8 mg/ ml propolis) and the group III (1 mg/ ml propolis) showed significant positive effects on both post thaw motility and hatching ability. In conclusion, this study confirms that the propolis is an appropriate cryoptrotective agent in fish semen and it maintained the integrity of the spermatozoa during the cryopreservation process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=propolis" title="propolis">propolis</a>, <a href="https://publications.waset.org/abstracts/search?q=arctic%20charr" title=" arctic charr"> arctic charr</a>, <a href="https://publications.waset.org/abstracts/search?q=semen" title=" semen"> semen</a>, <a href="https://publications.waset.org/abstracts/search?q=cryopreservation" title=" cryopreservation"> cryopreservation</a> </p> <a href="https://publications.waset.org/abstracts/41789/impact-of-propolis-on-cryopreservation-of-arctic-charr-salvelinus-alpinus-sperm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41789.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33480</span> Effect of Season on Semen Production of Nubian and Saanen Bucks in Sudan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20A.%20Babiker">E. A. Babiker</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Makawi"> S. A. Makawi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The influence of the season (autumn, winter, and summer) on semen production in Nubian and Saanen bucks was studied. Seven mature bucks (4 Nubian and 3 Saanen) were used in this study to prepare semen samples which were collected with an artificial vagina. The samples were extended in Tris-egg yolk-glycerol-glucose extender, frozen, and stored in liquid nitrogen at –196 0C for 48 hours. Straws were thawed in water at –37 0C for 15 seconds before sperm evaluation (post-thaw sperm motility). There was a significant seasonal variation in both semen quantity (volume, concentration, and the total number of spermatozoa per ejaculate) and quality (percentage of sperm motility, percentage of post-thaw sperm motility, and dead spermatozoa). Greater ejaculate volumes were observed during summer and autumn in comparison to winter. Higher values of sperms concentration were observed during autumn, while the lowest sperm concentration values were observed during summer. Higher values of sperm motility were observed during autumn in comparison to summer. Lower values of dead spermatozoa were recorded during autumn, while the highest percentages of dead spermatozoa were observed during summer for the two breeds of bucks. The influence of season on post-thaw sperm motility was significant. Semen frozen during autumn and winter had the highest values, while during summer, lower mean values were observed. The best semen was produced during autumn and winter, while during summer, poor semen quality was recorded. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=season" title="season">season</a>, <a href="https://publications.waset.org/abstracts/search?q=Nubian" title=" Nubian"> Nubian</a>, <a href="https://publications.waset.org/abstracts/search?q=Saanen" title=" Saanen"> Saanen</a>, <a href="https://publications.waset.org/abstracts/search?q=semen%20production" title=" semen production"> semen production</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudan" title=" Sudan"> Sudan</a> </p> <a href="https://publications.waset.org/abstracts/149810/effect-of-season-on-semen-production-of-nubian-and-saanen-bucks-in-sudan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149810.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33479</span> Effect of Scrotal Circumference on Freezability of Bangladeshi Crossbred Bulls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ajeet%20K.%20Jha">Ajeet K. Jha</a>, <a href="https://publications.waset.org/abstracts/search?q=Pankaj%20K.%20Jha"> Pankaj K. Jha</a>, <a href="https://publications.waset.org/abstracts/search?q=Pravin%20Mishra"> Pravin Mishra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study was conducted to evaluate the freezability of crossbred bulls’ semen at early age. Semen of three consecutive collections at 7 days interval from 12 crossbred bulls 17 was evaluated. The age at first collection was 15 to 20 months. Evaluation of semen was done soon after collection. Triladyl, Minitub, Germany was used as extender and was frozen using standard semen freezing protocol. Post-thaw sperm motility was evaluated. Morphology of paraformaldehyde fixed spermatozoa was evaluated under differential interference phase contrast microscopy and the viability of spermatozoa was evaluated by using stain SYBR-14 (1 mM/ml) and propidium iodide (2.41 mM/ml) under an epifluorescent microscopy. Scrotal circumference was correlated with all possible measures in all groups of crossbred bulls. Volume of semen, sperm concentration, total number of spermatozoa, initial sperm motility, post-thaw sperm motility, proportion of normal spermatozoa and proportion of live spermatozoa were compared among individual bull within and between two groups of crossbred bulls. A significant positive correlation was observed between scrotal circumference and volume of semen and between scrotal circumference and the total number of sperm production per ejaculate (r = 0.72, p < 0.04). Significant variation was observed in different semen parameters among individual bulls within the same group (p < 0.05) but no significant variation was found between two groups of crossbred bulls. Out of 12 bulls, semen freezability of 10 bulls was found satisfactory while semen of 2 bulls (Local × Friesian) was unsatisfactory. In conclusion, crossbred bulls aged 18 months having scrotal circumference > 30 cm produce freezable quality semen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bangladesh" title="Bangladesh">Bangladesh</a>, <a href="https://publications.waset.org/abstracts/search?q=crossbred%20bull" title=" crossbred bull"> crossbred bull</a>, <a href="https://publications.waset.org/abstracts/search?q=scrotal%20circumference" title=" scrotal circumference"> scrotal circumference</a>, <a href="https://publications.waset.org/abstracts/search?q=semen%20freezability" title=" semen freezability"> semen freezability</a> </p> <a href="https://publications.waset.org/abstracts/96039/effect-of-scrotal-circumference-on-freezability-of-bangladeshi-crossbred-bulls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96039.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33478</span> The Potency of Sandfish (Holothuria scraba) Flesh Powder to Improve Reproduction Quality of Man</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Riani">E. Riani</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20T.%20Irawadi"> T. T. Irawadi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Nurjanah"> S. Nurjanah</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Syamsu"> K. Syamsu</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20G.%20Said"> E. G. Said</a>, <a href="https://publications.waset.org/abstracts/search?q=Suprihatin"> Suprihatin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Cordova"> M. R. Cordova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Especially coastal, Indonesian and Chinese communities have utilized sandfish to improve reproduction quality of men. This study aimed to examine the nutrition on sandfish flesh that has the potency to improve reproduction quality of men. The materials used were sandfish with weight of 200-500 g, and then analysis of proximate, analysis of amino acid, analysis of fatty acid and analysis of mineral contained in the sandfish were performed. The results showed that protein content (39.96%) was the main component of the flesh; the carbohydrate and fat were 25.43% and 4.18%, respectively. Sandfish powder contains several essential amino acids and nonessential amino acids. Nine of ten amino acids needed by human body are contained in sandfish powder, i.e. arginine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, tryptophan, threonine and valine; only tryptophan that are not contained in sandfish powder. Sandfish powder contains saturated fatty acid kaproat, kaprilat, kaprat, laurat, miristat, stearat, arakhidat and behenat; monosaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA). MUFA is composed of fatty acid oleat, while PUFA is composed fatty acid omega 3 (linonenat, eicosapentaenoic acid and docosahexaenoic acid) and omega 6 (linoleat and arakhidonat). The minerals contained in sandfish powder are macrominerals and microminerals. Based on the findings, the nutrition in sandfish powder has a good potency to improve reproduction of men, especially PUFA for the maturation of spermatozoa, zinc for production function and spermatogenesis, motility of spermatozoa, acromoson reaction; Mg for transformation of genetic information and motility of spermatozoa; calcium for spermatogenesis, capacity and fertilization of spermatozoa. Thus, sandfish flesh powder has the potency to improve reproduction quality of men. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sandfish%20flesh%20powder" title="sandfish flesh powder">sandfish flesh powder</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrition" title=" nutrition"> nutrition</a>, <a href="https://publications.waset.org/abstracts/search?q=reproduction%20quality" title=" reproduction quality"> reproduction quality</a>, <a href="https://publications.waset.org/abstracts/search?q=men" title=" men"> men</a> </p> <a href="https://publications.waset.org/abstracts/11006/the-potency-of-sandfish-holothuria-scraba-flesh-powder-to-improve-reproduction-quality-of-man" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11006.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33477</span> The Effect of Curcumin on Cryopreserved Bovine Semen</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eva%20Tvrd%C3%A1">Eva Tvrdá</a>, <a href="https://publications.waset.org/abstracts/search?q=Marek%20Halen%C3%A1r"> Marek Halenár</a>, <a href="https://publications.waset.org/abstracts/search?q=Hana%20Greifov%C3%A1"> Hana Greifová</a>, <a href="https://publications.waset.org/abstracts/search?q=Alica%20Mackovich"> Alica Mackovich</a>, <a href="https://publications.waset.org/abstracts/search?q=Faridullah%20Hashim"> Faridullah Hashim</a>, <a href="https://publications.waset.org/abstracts/search?q=Norbert%20Luk%C3%A1%C4%8D"> Norbert Lukáč </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oxidative stress associated with semen cryopreservation may result in lipid peroxidation (LPO), DNA damage and apoptosis, leading to decreased sperm motility and fertilization ability. Curcumin (CUR), a natural phenol isolated from <em>Curcuma longa </em>Linn. has been presented as a possible supplement for a more effective semen cryopreservation because of its antioxidant properties. This study focused to evaluate the effects of CUR on selected oxidative stress parameters in cryopreserved bovine semen. 20 bovine ejaculates were split into two aliquots and diluted with a commercial semen extender containing CUR (50 μmol/L) or no supplement (control), cooled to 4 °C, frozen and kept in liquid nitrogen. Frozen straws were thawed in a water bath for subsequent experiments. Computer assisted semen analysis was used to evaluate spermatozoa motility, and reactive oxygen species (ROS) generation was quantified by using luminometry. Superoxide generation was evaluated with the NBT test, and LPO was assessed via the TBARS assay. CUR supplementation significantly (P<0.001) increased the spermatozoa motility and provided a significantly higher protection against ROS (P<0.001) or superoxide (P<0.01) overgeneration caused by semen freezing and thawing. Furthermore, CUR administration resulted in a significantly (P<0.01) lower LPO of the experimental semen samples. In conclusion, CUR exhibits significant ROS-scavenging activities which may prevent oxidative insults to cryopreserved spermatozoa and thus may enhance the post-thaw functional activity of male gametes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bulls" title="bulls">bulls</a>, <a href="https://publications.waset.org/abstracts/search?q=cryopreservation" title=" cryopreservation"> cryopreservation</a>, <a href="https://publications.waset.org/abstracts/search?q=curcumin" title=" curcumin"> curcumin</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid%20peroxidation" title=" lipid peroxidation"> lipid peroxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20oxygen%20species" title=" reactive oxygen species"> reactive oxygen species</a>, <a href="https://publications.waset.org/abstracts/search?q=spermatozoa" title=" spermatozoa"> spermatozoa</a> </p> <a href="https://publications.waset.org/abstracts/55015/the-effect-of-curcumin-on-cryopreserved-bovine-semen" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55015.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33476</span> Semen Characteristics of Ram Semen Frozen in Straw and Pellet in Three Type of Cold Plates </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdurzag%20Kerban">Abdurzag Kerban</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Preservation of semen had a major impact on sheep genetic breeding. The aim of this study was to evaluate the viability of ram spermatozoa after freezing pellet using cold surfaces made from cattle fat and paraffin wax. A pool of three to four ejaculates were pooled from six rams within a period of ten weeks. Semen was diluted in egg yolk-Tris diluent and processed in 0.25 ml straw and 0.1 ml pellets. Motility was evaluated after dilution, before freezing and post-thawing at 0, 1, 2 and 3 hour incubation. Viability index, acrosome integrity and leakage of intracellular enzymes (aspartat aminotransferase and alkline phosphatase) were also evaluated. Spermatozoa exhibited highly significant percentages of motility at 0, 1, 2 and 3 hours incubation after thawing and viability index in 0.25 ml straw and 0.1 ml pellets on cattle fat plate as compared to ram spermatozoa frozen on paraffin wax. In conclusion, cattle fat plate could be used as the cold surface of choice for freezing ram semen in form of pellets. Such form of frozen semen could be used as efficiently as semen frozen in straws. This simple method is economical with little expensive equipment or supplies, and may provide an efficient technique to cryopreserve ram spermatozoa in developing countries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ram%20semen" title="ram semen">ram semen</a>, <a href="https://publications.waset.org/abstracts/search?q=freezing" title=" freezing"> freezing</a>, <a href="https://publications.waset.org/abstracts/search?q=straw" title=" straw"> straw</a>, <a href="https://publications.waset.org/abstracts/search?q=pellet" title=" pellet"> pellet</a> </p> <a href="https://publications.waset.org/abstracts/11298/semen-characteristics-of-ram-semen-frozen-in-straw-and-pellet-in-three-type-of-cold-plates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11298.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">592</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33475</span> Effects of SNP in Semen Diluents on Motility, Viability and Lipid Peroxidation of Sperm of Bulls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Reza%20Khodaei">Hamid Reza Khodaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Behnaz%20Mahdavi"> Behnaz Mahdavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Banitaba"> Alireza Banitaba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nitric oxide (NO) plays an important role in all sexual activities of animals. It is made in body from NO syntheses enzyme and L-arginin molecule. NO can make band with sulfur-iron complexes and due to production of steroid sexual hormones related to enzymes which have this complex, NO can change the activity of these enzymes. NO affects many cells including endothelial cells of veins, macrophages and mast cells. These cells are found in testis leydig cells and therefore are important source of NO in testis tissue. Minimizing damages to sperm at the time of sperm freezing and thawing is really important. The goal of this study was to determine the function of NO before freezing and its effects on quality and viability of sperms after thawing and incubation. 4 Holstein bulls were selected from the age of 4, and artificial insemination was done for 3 weeks (2 times a week). Treatments were 0, 10, 50 and 100 nm of sodium nitroprusside (SNP). Data analysis was performed by SAS98 program. Also, mean comparison was done using Duncan's multiple ranges test (P<0.05). Concentrations used were found to increase motility and viability of spermatozoa at 1, 2 and 3 hours after thawing significantly (P<0.05) but there was no significant difference at zero time. SNP levels reduced the amount of lipid peroxidation in sperm membrane, increased acrosome health and improved samples membranes especially in 50 and 100 nm treatments. According to results, adding SNP to semen diluents increases motility and viability of spermatozoa. Also, it reduces lipid peroxidation in sperm membrane and improves sperm function. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sperm%20motility" title="sperm motility">sperm motility</a>, <a href="https://publications.waset.org/abstracts/search?q=nitric%20oxide" title=" nitric oxide"> nitric oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid%20peroxidation" title=" lipid peroxidation"> lipid peroxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=spermatozoa" title=" spermatozoa"> spermatozoa</a> </p> <a href="https://publications.waset.org/abstracts/15112/effects-of-snp-in-semen-diluents-on-motility-viability-and-lipid-peroxidation-of-sperm-of-bulls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15112.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">657</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33474</span> Effects of Adding Sodium Nitroprusside in Semen Diluents on Motility, Viability and Lipid Peroxidation of Sperm of Holstein Bulls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leila%20Karshenas">Leila Karshenas</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Reza%20Khodaei"> Hamid Reza Khodaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Behnaz%20Mahdavi"> Behnaz Mahdavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We know that nitric oxide (NO) plays an important role in all sexual activities of animals. It is made in body from NO synthase enzyme and L-arginin molecule. NO can bound with sulfur-iron complexes and because production of steroid sexual hormones is related to enzymes which have this complex, NO can change the activity of these enzymes. NO affects many cells including endothelial cells of veins, macrophages and mast cells. These cells are found in testis leydig cells and therefore are important source of NO in testis tissue. Minimizing damages to sperm at the time of sperm freezing and thawing is really important. The goal of this study was to determine the function of NO before freezing and its effects on quality and viability of sperms after thawing and incubation. 4 Holstein bulls were selected from the age of 4, and artificial insemination was done for 3 weeks (2 times a week). Treatments were 0, 10, 50 and 100 nm of sodium nitroprusside (SNP). Data analysis was performed by SAS98 program. Also, mean comparison was done using Duncan's multiple ranges test (P<0.05). Concentrations used was found to increase motility and viability of spermatozoa at 1, 2 and 3 hours after thawing significantly (P<0.05), but there was no significant difference at zero time. SNP levels reduced the amount of lipid peroxidation in sperm membrane, increased acrosome health and improved sample membranes especially in 50 and 100 nm treatments. According to results, adding SNP to semen diluents increases motility and viability of spermatozoa. Also, it reduces lipid peroxidation in sperm membrane and improves sperm function. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sperm%20motility" title="sperm motility">sperm motility</a>, <a href="https://publications.waset.org/abstracts/search?q=nitric%20oxide" title=" nitric oxide"> nitric oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid%20peroxidation" title=" lipid peroxidation"> lipid peroxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=spermatozoa" title=" spermatozoa"> spermatozoa</a> </p> <a href="https://publications.waset.org/abstracts/12296/effects-of-adding-sodium-nitroprusside-in-semen-diluents-on-motility-viability-and-lipid-peroxidation-of-sperm-of-holstein-bulls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12296.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33473</span> Physiological Roles of Relaxin on Prefertilizing Activities of Spermatozoa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20G.%20Miah">A. G. Miah</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20Salma"> U. Salma</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Schellander"> K. Schellander</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Relaxin was first described in 1926 by Frederick Hisaw. Previously it was considered as only the hormone of pregnant mammals due to its important roles in pregnancy and parturition. From the last decade, the physiological role of relaxin in male reproduction has been given experimental attention, and the results have made it clear that relaxin can no longer be considered strictly as only the hormone of female reproduction. The accessory glands (specially, the prostate glands) of the male reproductive system are the source of seminal relaxin, which is secreted into the seminal plasma and saturated with spermatozoa just after ejaculation. Several studies have reported that relaxin has important roles in improving motility in human sperm. Thereafter, the growing interest on relaxin has intensified efforts to investigate the role of relaxin in other sperm physiological phenomena like, capacitation, acrosome reaction, and their mediating factors associated with successful fertilization. Therefore, this review aims to provide up-to-date information about the physiological roles of relaxin in sperm motility, capacitation, acrosome reaction, and their mediating factors, such as, utilization of glucose, cholesterol efflux, Ca2+-influx, intracellular cAMP and protein tyrosine phosphorylation. Some studies have shown relaxin to increase the percentage of progressive motility and induce capacitation and acrosome reaction through increasing the utilization of glucose and mediating the cholesterol efflux, Ca2+-influx, intracellular cAMP and protein tyrosine phosphorylation. Thus, the review suggests that the supplementation of relaxin into the capacitating medium may contribute the possible beneficial roles in fresh and cryopreserved spermatozoal prefertilization events. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=relaxin" title="relaxin">relaxin</a>, <a href="https://publications.waset.org/abstracts/search?q=physiological%20roles" title=" physiological roles"> physiological roles</a>, <a href="https://publications.waset.org/abstracts/search?q=prefertilizing%20activities" title=" prefertilizing activities"> prefertilizing activities</a>, <a href="https://publications.waset.org/abstracts/search?q=spermatozoa" title=" spermatozoa"> spermatozoa</a> </p> <a href="https://publications.waset.org/abstracts/24124/physiological-roles-of-relaxin-on-prefertilizing-activities-of-spermatozoa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24124.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">568</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33472</span> Cissampelos capensis Rhizome Extract Induces Intracellular ROS Production, Capacitation, and DNA Fragmentation in Human Spermatozoa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Shalaweh">S. Shalaweh</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Bouic"> P. Bouic</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Weitz"> F. Weitz</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Henkel"> R. Henkel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> More than 3000 plants of notable phyto-therapeutic value grow in South Africa; these include Cissampelos capensis, commonly known in Afrikaans as dawidjie or dawidjiewortel. C. capensis is the most significant and popular medicinal plant used by the Khoisan as well as other rural groups in the Western region of South Africa. Its rhizomes are traditionally used to treat male fertility problems. Yet, no studies have investigated the effects of this plant or its extracts on human spermatozoa. Therefore, this study aimed at investigating the effects of C. capensis rhizome extract (CRE) fractions on ejaculated human spermatozoa in vitro. Spermatozoa from a total of 77 semen samples were washed with human tubular fluid medium supplemented with bovine serum albumin (HTF-BSA) and incubated for 2 hourswith 20 µg/ml progesterone (P4) followed by incubation with different concentrations (0, 0.05, 0.5, 5, 50, 200 µg/ml) of fractionated CRE (F1=0% MeOH, F2=30% MeOH, F3=60% MeOH and F4=100% MeOH) for 1.5 hours at 37°C. A sample without addition of CRE fractions served as control. Samples were analyzed for sperm motility, reactive oxygen species (ROS), DNA-fragmentation, acrosome reaction and capacitation. Results showed that F1 resulted in significantly higher values for ROS, capacitation and hyper-activation compared to F2, F3, and F4 with P4-stimulated samples generally having higher values. No significant effect was found for the other parameters. In conclusion, alkaloids present in F1 of CRE appear to have triggered sperm intrinsic ROS production leading to sperm capacitation and acrosome reaction induced by P4. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capacitaion" title="capacitaion">capacitaion</a>, <a href="https://publications.waset.org/abstracts/search?q=acrosome%20reaction" title=" acrosome reaction"> acrosome reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20fragmentation" title=" DNA fragmentation"> DNA fragmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=ROS" title=" ROS"> ROS</a> </p> <a href="https://publications.waset.org/abstracts/28992/cissampelos-capensis-rhizome-extract-induces-intracellular-ros-production-capacitation-and-dna-fragmentation-in-human-spermatozoa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28992.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33471</span> Influence of Bacterial Motility on Biofilm Formation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li%20Cheng">Li Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Yilei"> Zhang Yilei</a>, <a href="https://publications.waset.org/abstracts/search?q=Cohen%20Yehuda"> Cohen Yehuda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two motility mechanisms were introduced into iDynoMiCs software, which adopts an individual-based modeling method. Based on the new capabilities, along with the pressure motility developed before, influence of bacterial motility on biofilm formation was studied. Simulation results were evaluated both qualitatively through 3D structure inspections and quantitatively by parameter characterizations. It was showed that twitching motility increased the biofilm surface irregularity probably due to movement of cells towards higher nutrient concentration location whereas free motility, on the other hand, could make biofilms flatter and smoother relatively. Pressure motility showed no significant influence in this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=iDynoMics" title="iDynoMics">iDynoMics</a>, <a href="https://publications.waset.org/abstracts/search?q=biofilm%20structure" title=" biofilm structure"> biofilm structure</a>, <a href="https://publications.waset.org/abstracts/search?q=bacterial%20motility" title=" bacterial motility"> bacterial motility</a>, <a href="https://publications.waset.org/abstracts/search?q=motility%20mechanisms" title=" motility mechanisms"> motility mechanisms</a> </p> <a href="https://publications.waset.org/abstracts/12773/influence-of-bacterial-motility-on-biofilm-formation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12773.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33470</span> Comparative Study of Gonadotropin Hormones and Sperm Parameters in Two Age Groups</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Murtaza">G. Murtaza</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Faiza"> H. Faiza</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Rafiq"> M. Rafiq</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Gul"> S. Gul</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Raza"> F. Raza</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarwat%20Anjum"> Sarwat Anjum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Our objective was to investigate whether and how extensively there is a correlation between aging in men, gonadotropin hormone regulation, and a decline in sperm parameters and whether it is possible to identify an age limit beyond which the decrease in sperm feature and hormonal regulation reaches statistical significance. A total of one hundred and twenty men (age: 20–50 years) were divided into two groups; each group contained 60 males (Group A with a young age of 20–35 years and Group B with an older age of 36–50 years) who visited the Center for Reproductive Medicine (CRM) in Peshawar General Hospital (PGH) Peshawar, Pakistan. Clinical assessment and sperm analysis were investigated. Hormone testing and semen analysis were carried out in accordance with World Health Organization (WHO) guidelines. Hormone tests, sperm morphology, and the total motile spermatozoa count (TMS) were computed. SPSS 20.0 (SPSS Inc., Chicago, IL, USA) was used for the statistical analysis. It was observed that the testosterone levels in Group A (mean = 3.770) and Group B (mean = 3.995) were comparable, with a significant P-value <0.005 in both age groups. Furthermore, similar levels are shown by follicle-stimulating hormone (FSH) (Group A mean = 19.73, Group B mean = 15.64) and luteinizing hormone (LH) (Group A mean = 12.25, Group B mean = 11.93) in both groups, with a significant P = <0.005. Sperm concentrations were most similar in Group A, with a mean of 4.44, and in Group B, with a mean of 4.42 and a significant P value of 0.005 in both groups. Additionally, it was discovered that sperm motility was higher in Group A, with a mean of 22.40 and a P-value of 0.052, which was non-significant when compared to Group B. Morphological differences were also observed in both age groups. This research found that advancing in male age does not affect sex hormone regulation; in contrast, the fraction of motile and morphologically normal spermatozoa decreases as male age increases, with the strongest evidence being when the age exceeds 40 years. To clarify the causes and clinical implications of these correlations, more research is necessary. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gonadotropins" title="gonadotropins">gonadotropins</a>, <a href="https://publications.waset.org/abstracts/search?q=motility" title=" motility"> motility</a>, <a href="https://publications.waset.org/abstracts/search?q=spermatozoa" title=" spermatozoa"> spermatozoa</a>, <a href="https://publications.waset.org/abstracts/search?q=testosterone" title=" testosterone"> testosterone</a> </p> <a href="https://publications.waset.org/abstracts/188991/comparative-study-of-gonadotropin-hormones-and-sperm-parameters-in-two-age-groups" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188991.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">32</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33469</span> Effect of Electromagnetic Fields at 27 GHz on Sperm Quality of Mytilus galloprovincialis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carmen%20Sica">Carmen Sica</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20M.%20Scalisi"> Elena M. Scalisi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Ignoto"> Sara Ignoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Ludovica%20Palmeri"> Ludovica Palmeri</a>, <a href="https://publications.waset.org/abstracts/search?q=Martina%20Contino"> Martina Contino</a>, <a href="https://publications.waset.org/abstracts/search?q=Greta%20Ferruggia"> Greta Ferruggia</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Salvaggio"> Antonio Salvaggio</a>, <a href="https://publications.waset.org/abstracts/search?q=Santi%20C.%20Pavone">Santi C. Pavone</a>, <a href="https://publications.waset.org/abstracts/search?q=Gino%20Sorbello"> Gino Sorbello</a>, <a href="https://publications.waset.org/abstracts/search?q=Loreto%20Di%20Donato"> Loreto Di Donato</a>, <a href="https://publications.waset.org/abstracts/search?q=Roberta%20Pecoraro"> Roberta Pecoraro</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20V.%20Brundo"> Maria V. Brundo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, a rise in the use of wireless internet technologies such as Wi-Fi and 5G routers/modems have been demonstrated. These devices emit a considerable amount of electromagnetic radiation (EMR), which could interact with the male reproductive system either by thermal or non-thermal mechanisms. The aim of this study was to investigate the direct in vitro influence of 5G radiation on sperm quality in Mytilus galloprovincialis, considered an excellent model for reproduction studies. The experiments at 27 GHz were conducted by using a no commercial high gain pyramidal horn antenna. To evaluate the specific absorption rate (SAR), a numerical simulation has been performed. The resulting incident power density was significantly lower than the power density limit of 10 mW/cm2 set by the international guidelines as a limit for nonthermal effects above 6 GHz. However, regarding temperature measurements of the aqueous sample, it has been verified an increase of 0.2°C, compared to the control samples. This very low-temperature increase couldn’t interfere with experiments. For experiments, sperm samples taken from sexually mature males of Mytilus galloprovincialis were placed in artificial seawater, salinity 30 + 1% and pH 8.3 filtered with a 0.2 m filter. After evaluating the number and quality of spermatozoa, sperm cells were exposed to electromagnetic fields a 27GHz. The effect of exposure on sperm motility and quality was evaluated after 10, 20, 30 and 40 minutes with a light microscope and also using the Eosin test to verify the vitality of the gametes. All the samples were performed in triplicate and statistical analysis was carried out using one-way analysis of variance (ANOVA) with Turkey test for multiple comparations of means to determine differences of sperm motility. A significant decrease (30%) in sperm motility was observed after 10 minutes of exposure and after 30 minutes, all sperms were immobile and not vital. Due to little literature data about this topic, these results could be useful for further studies concerning a great diffusion of these new technologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mussel" title="mussel">mussel</a>, <a href="https://publications.waset.org/abstracts/search?q=spermatozoa" title=" spermatozoa"> spermatozoa</a>, <a href="https://publications.waset.org/abstracts/search?q=sperm%20motility" title=" sperm motility"> sperm motility</a>, <a href="https://publications.waset.org/abstracts/search?q=millimeter%20waves" title=" millimeter waves"> millimeter waves</a> </p> <a href="https://publications.waset.org/abstracts/144210/effect-of-electromagnetic-fields-at-27-ghz-on-sperm-quality-of-mytilus-galloprovincialis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144210.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33468</span> Comparative Evaluation of Different Extenders and Sperm Protectors to Keep the Spermatozoa Viable for More than 24 Hours</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Raseona">A. M. Raseona</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20M.%20Barry"> D. M. Barry</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20L.%20Nedambale"> T. L. Nedambale</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Preservation of semen is an important process to ensure that semen quality is sufficient for assisted reproductive technology. This study evaluated the effectiveness of different extenders to preserve Nguni bull semen stored at controlled room temperature 24 °C for three days, as an alternative to frozen-thawed semen straws used for artificial insemination. Semen samples were collected from two Nguni bulls using an electro-ejaculator and transported to the laboratory for evaluation. Pooled semen was aliquot into three extenders Triladyl, Ham’s F10 and M199 at a dilution ratio of 1:4 then stored at controlled room temperature 24 °C. Sperm motility was analysed after 0, 24, 48 and 72 hours. Morphology and viability were analysed after 72 hours. The study was replicated four times and data was analysed by analysis of variance (ANOVA). Triladyl showed higher viability percentage and consistent total motility for three days. Ham’s F10 showed higher progressive motility compared to the other extenders. There was no significant difference in viability between Ham’s F10 and M199. No significant difference was also observed in total abnormality between the two Nguni bulls. In conclusion, Nguni semen can be preserved in Triladyl or Ham’s F10 and M199 culture media stored at 24 °C and stay alive for three days. Triladyl proved to be the best extender showing high viability and consistency in total motility as compared to Ham’s F10 and M199. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bull%20semen" title="bull semen">bull semen</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20insemination" title=" artificial insemination"> artificial insemination</a>, <a href="https://publications.waset.org/abstracts/search?q=Triladyl" title=" Triladyl"> Triladyl</a>, <a href="https://publications.waset.org/abstracts/search?q=Ham%E2%80%99s%20F10" title=" Ham’s F10"> Ham’s F10</a>, <a href="https://publications.waset.org/abstracts/search?q=M199" title=" M199"> M199</a>, <a href="https://publications.waset.org/abstracts/search?q=viability" title=" viability"> viability</a> </p> <a href="https://publications.waset.org/abstracts/28623/comparative-evaluation-of-different-extenders-and-sperm-protectors-to-keep-the-spermatozoa-viable-for-more-than-24-hours" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28623.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">500</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33467</span> The Effect of Mist Cooling on Sexual Behavior and Semen Quality of Sahiwal Bulls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khalid%20Ahmed%20Elrabie%20Abdelrasoul">Khalid Ahmed Elrabie Abdelrasoul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was carried out on Sahiwal cattle bulls maintained at the Artificial Breeding Complex, NDRI, Karnal, Hayana, India, to assess the effect of cooling using mist cooling and fanning on Sahiwal bulls in the dry hot summer season. Fourteen Sahiwal bulls were divided into two groups of seven each. Sexual behavior and semen quality traits considered were: Reaction time (RT), Dismounting time (DMT), Total time taken in mounts (TTTM), Flehmen response (FR), Erection Score (ES), Protrusion Score (PS), Intensity of thrust (ITS), Temperament Score (TS), Libido Score (LS), Semen volume, Physical appearance, Mass activity, Initial progressive motility, Non-eosinophilic spermatozoa count (NESC) and post thaw motility percent. Data were analyzed by least squares technique. Group-1 was the control, whereas group-2 (treatment group) bulls were exposed to mist cooling and fanning (thrice a day 15 min each) in the dry hot summer season. Group-2 showed significantly (p < 0.01) higher value in DMT (sec), ES, PS, ITS, LS, semen volume (ml), semen color density, mass activity, initial motility, progressive motility and live sperm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mist%20cooling" title="mist cooling">mist cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahiwal%20bulls" title=" Sahiwal bulls"> Sahiwal bulls</a>, <a href="https://publications.waset.org/abstracts/search?q=semen%20quality" title=" semen quality"> semen quality</a>, <a href="https://publications.waset.org/abstracts/search?q=sexual%20behavior" title=" sexual behavior"> sexual behavior</a> </p> <a href="https://publications.waset.org/abstracts/75302/the-effect-of-mist-cooling-on-sexual-behavior-and-semen-quality-of-sahiwal-bulls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75302.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33466</span> Supplementation of Fig Fruit (Ficus carica linn.) Extract in Extender on Sperm Motility and Viability of Native Chicken Semen after Cooling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Isnaini">N. Isnaini</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Wahjuningsih"> S. Wahjuningsih</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fig fruit is the fruit of a tropical plant with content of flavanoids, vitamins A, C, and E which are antioxidants that effectively prevent and neutralize free radicals. This study was conducted to evaluate the supplementation of fig fruit extract in a physiological NaCl-based diluent on sperm motility and viability of native chicken semen after cooling. Semen was collected from 4 male mature chocks using massage method. Fresh semen evaluated for colour, pH, volume, concentration, mass motility, individual motility, life sperm and sperm abnormality. Semen was diluted with physiological NaCl-based extender supplemented with different levels of fig fruit extract (0, 10, 20 and 30 %) v/v with the ratio of 1 semen: 4 diluter. Semen used had mass motility of 2+ and motility of 70%. Immediately after dilution semen was stored in 3-5 °C and sperm motility and viability percentage were observed at 0, 12 and 24 h. The obtained data were analyze with Analysis of Variant (ANOVA) and Least Significant Difference were determined. The experiment was designed using completely random design (4 treatments and 10 replications). The results showed that the level of fig fruit extract had very significant effect (P < 0,01) on sperm motility and viability percentage in 0, 12 and 24 h of cooling. It can be concluded that the best fig fruit extract level for resulting optimal sperm motility and viability was 10%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chock" title="chock">chock</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=fig%20fruit%20extract" title=" fig fruit extract"> fig fruit extract</a>, <a href="https://publications.waset.org/abstracts/search?q=sperm" title=" sperm"> sperm</a> </p> <a href="https://publications.waset.org/abstracts/39274/supplementation-of-fig-fruit-ficus-carica-linn-extract-in-extender-on-sperm-motility-and-viability-of-native-chicken-semen-after-cooling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39274.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33465</span> Collection, Cryopreservation, and Fertilizing Potential of Bovine Spermatozoa Collected from the Epididymis Evaluated by Conventional Techniques and by Flow Cytometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Moreira%20da%20Silva">M. H. Moreira da Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Valadao"> L. Valadao</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Moreira%20da%20Silva"> F. Moreira da Silva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, the fertilizing capacity of bovine spermatozoa was evaluated before and after its cryopreservation. For this, the testicles of 100 bulls slaughtered on Terceira Island were dissected, the epididymal tails were separated, and semen was recovered by the flotation method and then evaluated by phase contrast microscopy and by flow cytometry. For phase contrast microscopy, a drop of semen was used to evaluate the percentage of motile spermatozoa (from 0 to 100%) and motility (from 0 to 5). After determining the concentration and the abnormal forms, semen was diluted to a final concentration of 50 x 106 spz/ml and evaluated by flow cytometer for membrane and acrosome integrity using the conjugation of fluorescent probes propidium iodide (PI) and Arachis hypogea agglutinin (FITC-PNA). Freezing was carried out in a programmable semen freezer, using 0.25 ml straws, in a total of 20 x 106 viable sperm per straw with glycerol as a cryoprotectant in a final concentration of 0.58 M. It was observed that, on average, a total of 7.25 ml of semen was collected from each bull. The viability and vitality rates were respectively 83.22 ± 7.52% and 3.8 ± 0.4 before freezing, decreasing to 58.81 ± 11.99% and 3.6 ± 0.6, respectively, after thawing. Regarding cytoplasmic droplets, it was observed that a high percentage of spermatozoa had medial cytoplasmic droplets (38.47%), with only 3.32% and 0.15% presenting proximal and distal cytoplasmic drops, respectively. By flow cytometry, it was observed that before freezing, the percentage of sperm with the damaged plasma membrane and intact acrosome was 3.61 ± 0.99%, increasing slightly to 4.21 ± 1.86% after cryopreservation (p<0.05). Regarding spermatozoa with damaged plasma membrane and acrosome, the percentage before freezing was 3.37±1.87%, increasing to 4.34 ±1.16% after thawing, and no significant differences were observed between these two values. For the percentage of sperm with the intact plasma membrane and damaged acrosome, this value was 2.04 ± 2.34% before freezing, decreasing to 0.89 ± 0.48% after thawing (p<0.05). The percentage of sperm with the intact plasma membrane and acrosome before freezing was 90.99±2.75%, with a slight decrease to 90.57±3.15% after thawing (p<0.05). From this study, it can be clearly concluded that, after the slaughtering of bulls, the spermatozoa can be recovered from the epididymis and cryopreserved, maintaining an excellent rate of sperm viability and quality after thawing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bovine%20semen" title="bovine semen">bovine semen</a>, <a href="https://publications.waset.org/abstracts/search?q=epididymis" title=" epididymis"> epididymis</a>, <a href="https://publications.waset.org/abstracts/search?q=cryopreservation" title=" cryopreservation"> cryopreservation</a>, <a href="https://publications.waset.org/abstracts/search?q=fertility%20assessment" title=" fertility assessment"> fertility assessment</a> </p> <a href="https://publications.waset.org/abstracts/158029/collection-cryopreservation-and-fertilizing-potential-of-bovine-spermatozoa-collected-from-the-epididymis-evaluated-by-conventional-techniques-and-by-flow-cytometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158029.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33464</span> Cryoinjuries in Sperm Cells: Effect of Adaptation of Steps in Cryopreservation Protocol for Boar Semen upon Post-Thaw Sperm Quality</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aftab%20Ali">Aftab Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cryopreservation of semen is one of the key factors for a successful breeding business along with other factors. To achieve high fertility in boar, one should know about spermatozoa response to different treatments proceeds during cryopreservation. The running project is highly focused on cryopreservation and its effects on sperm quality parameters in both boar and bull semen. Semen sample from A, B, C, and D, were subjected to different thawing conditions and were analyzed upon different treatments in the study. Parameters like sperm cell motility, viability, acrosome, DNA integrity, and phospholipase C zeta were detected by different established methods. Different techniques were used to assess different parameters. Motility was detected using computer assisted sperm analysis, phospholipase C zeta using luminometry while viability, acrosome integrity, and DNA integrity were analyzed using flow cytometry. Thawing conditions were noted to have an effect on sperm quality parameters with motility being the most critical parameter. The results further indicated that the most critical step during cryopreservation of boar semen is when sperm cells are subjected to freezing and thawing. The findings of the present study provide insight that; boar semen cryopreservation is still suboptimal in comparison to bull semen cryopreservation. Thus, there is a need to conduct more research to improve the fertilizing potential of cryopreserved boar semen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cryopreservation" title="cryopreservation">cryopreservation</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20assisted%20sperm" title=" computer assisted sperm"> computer assisted sperm</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20cytometry" title=" flow cytometry"> flow cytometry</a>, <a href="https://publications.waset.org/abstracts/search?q=luminometry" title=" luminometry"> luminometry</a> </p> <a href="https://publications.waset.org/abstracts/104731/cryoinjuries-in-sperm-cells-effect-of-adaptation-of-steps-in-cryopreservation-protocol-for-boar-semen-upon-post-thaw-sperm-quality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104731.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33463</span> Changes in Secretory Products and Lipid Profile in the Epididymis and Spermatozoa of Rats Induced by Aluminium Chloride</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramalingam%20Venugopal">Ramalingam Venugopal</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalaiselvi%20Arumugam"> Kalaiselvi Arumugam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Environmental exposure to heavy metals is associated with a wide range of toxic effects. It is evident that heavy metals released in the environment affect the reproductive processes and fertility of animals. Toxic metals affect the male and female reproductive system directly or indirectly. Considering the toxic nature of aluminium and also the major role of secretory products and lipids in sperm maturation, the present study was planned to investigate the effect of aluminium chloride on secretory products like glyceryl phosphoryl choline (GPC), sialic acid, carnitine and acetyl carnitine content and also lipid profiles in the epididymis and spermatozoa of adult rats. Aluminium chloride, 50 mg/kg body weight was administered orally daily for 60 days. 24 hours after the last dose the rats were sacrificed and immediately epididymis was dissected out and spermatozoa was isolated. The weight of the epididymis decreased significantly. GPC and sialic acid content was significantly reduced in the epididymis and not much altered in spermatozoa. Carnitine and acetyl carnitine contents were markedly decreased in the spermatozoa as well as in the epididymis. Aluminium chloride administration caused a marked reduction in total lipid, cholesterol, phospholipids and cholesterol content in epididymis and no significant changes in spermatozoa. Several changes take place in the spermatozoa as they pass through the epididymis. These changes are directly related to the acquisition of fertilizing ability of spermatozoa. From the results, it is evident that aluminium chloride has definite influence on secretory products and lipid profiles in the epididymis. This may eventually have an adverse impact on the fertility of the animal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminium%20chloride" title="aluminium chloride">aluminium chloride</a>, <a href="https://publications.waset.org/abstracts/search?q=rat" title=" rat"> rat</a>, <a href="https://publications.waset.org/abstracts/search?q=carnitine" title=" carnitine"> carnitine</a>, <a href="https://publications.waset.org/abstracts/search?q=GPC" title=" GPC"> GPC</a>, <a href="https://publications.waset.org/abstracts/search?q=sialic%20acid" title=" sialic acid"> sialic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=epididymis" title=" epididymis"> epididymis</a>, <a href="https://publications.waset.org/abstracts/search?q=spermatozoa" title=" spermatozoa"> spermatozoa</a> </p> <a href="https://publications.waset.org/abstracts/10221/changes-in-secretory-products-and-lipid-profile-in-the-epididymis-and-spermatozoa-of-rats-induced-by-aluminium-chloride" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33462</span> Spermiogram Values of Fertile Men in Malatya Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aliseydi%20Bozkurt">Aliseydi Bozkurt</a>, <a href="https://publications.waset.org/abstracts/search?q=Ugur%20Y%C4%B1lmaz"> Ugur Yılmaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: It was aimed to evaluate the current status of semen parameters in fertile males with one or more children and whose wife having a pregnancy for the last 1-12 months in Malatya region. Methods: Sperm samples were obtained from 131 voluntary fertile men. In each analysis, sperm volume (ml), number of sperm (sperm/ml), sperm motility and sperm viscosity were examined with Makler device. Classification was made according to World Health Organization (WHO) criteria. Results: Mean ejaculate volume ranged from 1.5 ml to 5.5 ml, sperm count ranged from 27 to 180 million/ml and motility ranged from 35 to 90%. Sperm motility was found to be on average; 69.9% in A, 7.6% in B, 8.7% in C, 13.3% in D category. Conclusion: The mean spermiogram values of fertile males in Malatya region were found to be similar to those in fertile males determined by the WHO. This study has a regional classification value in terms of spermiogram values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fertile%20men" title="fertile men">fertile men</a>, <a href="https://publications.waset.org/abstracts/search?q=infertility" title=" infertility"> infertility</a>, <a href="https://publications.waset.org/abstracts/search?q=spermiogram" title=" spermiogram"> spermiogram</a>, <a href="https://publications.waset.org/abstracts/search?q=sperm%20motility" title=" sperm motility"> sperm motility</a> </p> <a href="https://publications.waset.org/abstracts/96646/spermiogram-values-of-fertile-men-in-malatya-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33461</span> High Throughput LC-MS/MS Studies on Sperm Proteome of Malnad Gidda (Bos Indicus) Cattle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kerekoppa%20Puttaiah%20Bhatta%20Ramesha">Kerekoppa Puttaiah Bhatta Ramesha</a>, <a href="https://publications.waset.org/abstracts/search?q=Uday%20Kannegundla"> Uday Kannegundla</a>, <a href="https://publications.waset.org/abstracts/search?q=Praseeda%20Mol"> Praseeda Mol</a>, <a href="https://publications.waset.org/abstracts/search?q=Lathika%20Gopalakrishnan"> Lathika Gopalakrishnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jagish%20Kour%20Reen"> Jagish Kour Reen</a>, <a href="https://publications.waset.org/abstracts/search?q=Gourav%20Dey"> Gourav Dey</a>, <a href="https://publications.waset.org/abstracts/search?q=Manish%20Kumar"> Manish Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sakthivel%20Jeyakumar"> Sakthivel Jeyakumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Arumugam%20Kumaresan"> Arumugam Kumaresan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kiran%20Kumar%20M."> Kiran Kumar M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Thottethodi%20Subrahmanya%20Keshava%20Prasad"> Thottethodi Subrahmanya Keshava Prasad </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spermatozoa are the highly specialized transcriptionally and translationally inactive haploid male gamete. The understanding of proteome of sperm is indispensable to explore the mechanism of sperm motility and fertility. Though there is a large number of human sperm proteomic studies, in-depth proteomic information on Bos indicus spermatozoa is not well established yet. Therefore, we illustrated the profile of sperm proteome in indigenous cattle, Malnad gidda (Bos Indicus), using high-resolution mass spectrometry. In the current study, two semen ejaculates from 3 breeding bulls were collected employing the artificial vaginal method. Using 45% percoll purification, spermatozoa cells were isolated. Protein was extracted using lysis buffer containing 2% Sodium Dodecyl Sulphate (SDS) and protein concentration was estimated. Fifty micrograms of protein from each individual were pooled for further downstream processing. Pooled sample was fractionated using SDS-Poly Acrylamide Gel Electrophoresis, which is followed by in-gel digestion. The peptides were subjected to C18 Stage Tip clean-up and analyzed in Orbitrap Fusion Tribrid mass spectrometer interfaced with Proxeon Easy-nano LC II system (Thermo Scientific, Bremen, Germany). We identified a total of 6773 peptides with 28426 peptide spectral matches, which belonged to 1081 proteins. Gene ontology analysis has been carried out to determine the biological processes, molecular functions and cellular components associated with sperm protein. The biological process chiefly represented our data is an oxidation-reduction process (5%), spermatogenesis (2.5%) and spermatid development (1.4%). The highlighted molecular functions are ATP, and GTP binding (14%) and the prominent cellular components most observed in our data were nuclear membrane (1.5%), acrosomal vesicle (1.4%), and motile cilium (1.3%). Seventeen percent of sperm proteins identified in this study were involved in metabolic pathways. To the best of our knowledge, this data represents the first total sperm proteome from indigenous cattle, Malnad Gidda. We believe that our preliminary findings could provide a strong base for the future understanding of bovine sperm proteomics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bos%20indicus" title="Bos indicus">Bos indicus</a>, <a href="https://publications.waset.org/abstracts/search?q=Malnad%20Gidda" title=" Malnad Gidda"> Malnad Gidda</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20spectrometry" title=" mass spectrometry"> mass spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=spermatozoa" title=" spermatozoa"> spermatozoa</a> </p> <a href="https://publications.waset.org/abstracts/84954/high-throughput-lc-msms-studies-on-sperm-proteome-of-malnad-gidda-bos-indicus-cattle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84954.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33460</span> Effect of Exercise on Sexual Behavior and Semen Quality of Sahiwal Bulls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelrasoul">Abdelrasoul</a>, <a href="https://publications.waset.org/abstracts/search?q=Khalid%20Ahmed%20Elrabie"> Khalid Ahmed Elrabie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study was conducted on Sahiwal cattle bulls maintained at the Artificial Breeding Complex, NDRI, Karnal, Hayana, India, to determine the effect of exercise on the sexual behavior and semen quality. Fourteen Sahiwal bulls were classified into two groups of seven each. Group-1, bulls were exercised by walking in a bull exerciser once a week one hour before semen collection, whereas bulls in group-2 were exercised daily. Sexual behavior and semen quality traits studied were: Reaction time (RT), Dismounting time (DMT), Total time taken in mounts (TTTM), Flehmen response (FR), Erection Score (ES), Protrusion Score (PS), Intensity of thrust (ITS), Temperament Score (TS), Libido Score (LS), Semen volume, Physical appearance, Mass activity, Initial progressive motility, Non-eosinophilic spermatozoa count (NESC) and post thaw motility percent. Data were analyzed by least squares technique. Group-2 showed significantly (p < 0.01) higher value in RT (sec), DMT (sec), TTTM (sec), ES, PS, ITS, LS, semen volume, semen color density and mass activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exercise" title="exercise">exercise</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahiwal%20bulls" title=" Sahiwal bulls"> Sahiwal bulls</a>, <a href="https://publications.waset.org/abstracts/search?q=semen%20quality" title=" semen quality"> semen quality</a>, <a href="https://publications.waset.org/abstracts/search?q=sexual%20behavior" title=" sexual behavior"> sexual behavior</a> </p> <a href="https://publications.waset.org/abstracts/75301/effect-of-exercise-on-sexual-behavior-and-semen-quality-of-sahiwal-bulls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75301.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=motility%20analysis%20of%20human%20spermatozoa&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=motility%20analysis%20of%20human%20spermatozoa&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=motility%20analysis%20of%20human%20spermatozoa&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=motility%20analysis%20of%20human%20spermatozoa&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=motility%20analysis%20of%20human%20spermatozoa&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=motility%20analysis%20of%20human%20spermatozoa&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=motility%20analysis%20of%20human%20spermatozoa&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=motility%20analysis%20of%20human%20spermatozoa&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=motility%20analysis%20of%20human%20spermatozoa&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=motility%20analysis%20of%20human%20spermatozoa&page=1116">1116</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=motility%20analysis%20of%20human%20spermatozoa&page=1117">1117</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=motility%20analysis%20of%20human%20spermatozoa&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>