CINXE.COM
Search results for: host defense peptides
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: host defense peptides</title> <meta name="description" content="Search results for: host defense peptides"> <meta name="keywords" content="host defense peptides"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="host defense peptides" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="host defense peptides"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1476</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: host defense peptides</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1476</span> Early Diagnosis and Treatment of Cancer Using Synthetic Cationic Peptide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20J.%20Kalita">D. J. Kalita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cancer is one of the prime causes of early death worldwide. Mutation of the gene involve in DNA repair and damage, like BRCA2 (Breast cancer gene two) genes, can be detected efficiently by PCR-RFLP to early breast cancer diagnosis and adopt the suitable method of treatment. Host Defense Peptide can be used as blueprint for the design and synthesis of novel anticancer drugs to avoid the side effect of conventional chemotherapy and chemo resistance. The change at nucleotide position 392 of a -› c in the cancer sample of dog mammary tumour at BRCA2 (exon 7) gene lead the creation of a new restriction site for SsiI restriction enzyme. This SNP may be a marker for detection of canine mammary tumour. Support vector machine (SVM) algorithm was used to design and predict the anticancer peptide from the mature functional peptide. MTT assay of MCF-7 cell line after 48 hours of post treatment showed an increase in the number of rounded cells when compared with untreated control cells. The ability of the synthesized peptide to induce apoptosis in MCF-7 cells was further investigated by staining the cells with the fluorescent dye Hoechst stain solution, which allows the evaluation of the nuclear morphology. Numerous cells with dense, pyknotic nuclei (the brighter fluorescence) were observed in treated but not in control MCF-7 cells when viewed using an inverted phase-contrast microscope. Thus, PCR-RFLP is one of the attractive approach for early diagnosis, and synthetic cationic peptide can be used for the treatment of canine mammary tumour. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cancer" title="cancer">cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=cationic%20peptide" title=" cationic peptide"> cationic peptide</a>, <a href="https://publications.waset.org/abstracts/search?q=host%20defense%20peptides" title=" host defense peptides"> host defense peptides</a>, <a href="https://publications.waset.org/abstracts/search?q=Breast%20cancer%20genes" title=" Breast cancer genes"> Breast cancer genes</a> </p> <a href="https://publications.waset.org/abstracts/159574/early-diagnosis-and-treatment-of-cancer-using-synthetic-cationic-peptide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159574.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1475</span> Targeting Peptide Based Therapeutics: Integrated Computational and Experimental Studies of Autophagic Regulation in Host-Parasite Interaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vrushali%20Guhe">Vrushali Guhe</a>, <a href="https://publications.waset.org/abstracts/search?q=Shailza%20Singh"> Shailza Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cutaneous leishmaniasis is neglected tropical disease present worldwide caused by the protozoan parasite Leishmania major, the therapeutic armamentarium for leishmaniasis are showing several limitations as drugs are showing toxic effects with increasing resistance by a parasite. Thus identification of novel therapeutic targets is of paramount importance. Previous studies have shown that autophagy, a cellular process, can either facilitate infection or aid in the elimination of the parasite, depending on the specific parasite species and host background in leishmaniasis. In the present study, our objective was to target the essential autophagy protein ATG8, which plays a crucial role in the survival, infection dynamics, and differentiation of the Leishmania parasite. ATG8 in Leishmania major and its homologue, LC3, in Homo sapiens, act as autophagic markers. Present study manifested the crucial role of ATG8 protein as a potential target for combating Leishmania major infection. Through bioinformatics analysis, we identified non-conserved motifs within the ATG8 protein of Leishmania major, which are not present in LC3 of Homo sapiens. Against these two non-conserved motifs, we generated a peptide library of 60 peptides on the basis of physicochemical properties. These peptides underwent a filtering process based on various parameters, including feasibility of synthesis and purification, compatibility with Selective Reaction Monitoring (SRM)/Multiple reaction monitoring (MRM), hydrophobicity, hydropathy index, average molecular weight (Mw average), monoisotopic molecular weight (Mw monoisotopic), theoretical isoelectric point (pI), and half-life. Further filtering criterion shortlisted three peptides by using molecular docking and molecular dynamics simulations. The direct interaction between ATG8 and the shortlisted peptides was confirmed through Surface Plasmon Resonance (SPR) experiments. Notably, these peptides exhibited the remarkable ability to penetrate the parasite membrane and exert profound effects on Leishmania major. The treatment with these peptides significantly impacted parasite survival, leading to alterations in the cell cycle and morphology. Furthermore, the peptides were found to modulate autophagosome formation, particularly under starved conditions, suggesting their involvement in disrupting the regulation of autophagy within Leishmania major. In vitro, studies demonstrated that the selected peptides effectively reduced the parasite load within infected host cells. Encouragingly, these findings were corroborated by in vivo experiments, which showed a reduction in parasite burden upon peptide administration. Additionally, the peptides were observed to affect the levels of LC3II within host cells. In conclusion, our findings highlight the efficacy of these novel peptides in targeting Leishmania major’s ATG8 and disrupting parasite survival. These results provide valuable insights into the development of innovative therapeutic strategies against leishmaniasis via targeting autophagy protein ATG8 of Leishmania major. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ATG8" title="ATG8">ATG8</a>, <a href="https://publications.waset.org/abstracts/search?q=leishmaniasis" title=" leishmaniasis"> leishmaniasis</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20plasmon%20resonance" title=" surface plasmon resonance"> surface plasmon resonance</a>, <a href="https://publications.waset.org/abstracts/search?q=MD%20simulation" title=" MD simulation"> MD simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20docking" title=" molecular docking"> molecular docking</a>, <a href="https://publications.waset.org/abstracts/search?q=peptide%20designing" title=" peptide designing"> peptide designing</a>, <a href="https://publications.waset.org/abstracts/search?q=therapeutics" title=" therapeutics"> therapeutics</a> </p> <a href="https://publications.waset.org/abstracts/169688/targeting-peptide-based-therapeutics-integrated-computational-and-experimental-studies-of-autophagic-regulation-in-host-parasite-interaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169688.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1474</span> Waste Egg Albumin Derived Small Peptides Stimulate Photosynthetic Electron Transport</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seungwon%20Han">Seungwon Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung%20young%20Yoo"> Sung young Yoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Wan%20Kim"> Tae Wan Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to measure the changes in the photochemical response in the leaves of red pepper (Capsium annuum L.) after foliar fertilization of amino acid and small peptides derived from the waste egg. As a nitrogen fertilizer, waste eggs were incubated over one 1week and then degraded as amino acids and small peptides. The smaller peptides less than 20 kDa were identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS). MALDI-TOF-MS as a rapid analysis method was to show the molecular mass of degraded egg protein. The sequences of peptides were identified as follows; γ-Glu- Cys-γ-Glu-Cys-γ-Glu-Cys)-Ser and γ-Glu-Cys-γ-Glu-Cys-γ-Glu- Cys)-Gly. It was clearly illuminated that the parameters related to quantum yields for PSI electron transport (ΦRE1O, ΨRE1O, δRE1O) and RC/ABS have increased tendency by small peptide application. On the other hand, phenomenological energy fluxes (ABSO/CSM, TRO/CSM, ET2O/CSM, RE1O/CSM, DIO/CSM) have considerably fluctuated with foliar fertilization of small peptides. In conclusion, the small peptides can enhance the photochemical activities from photosystem II to photosystem I. This study was financially supported by RDA Agenda Project PJ 016196012022. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electron%20transport" title="electron transport">electron transport</a>, <a href="https://publications.waset.org/abstracts/search?q=foliar%20fertilization" title=" foliar fertilization"> foliar fertilization</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20peptide" title=" small peptide"> small peptide</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20egg" title=" waste egg"> waste egg</a> </p> <a href="https://publications.waset.org/abstracts/143256/waste-egg-albumin-derived-small-peptides-stimulate-photosynthetic-electron-transport" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143256.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1473</span> A Framework for Embedding Industry 4.0 in the UAE Defence Manufacturing Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khalifa%20Al%20Baloushi">Khalifa Al Baloushi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongwei%20Zhang"> Hongwei Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Terrence%20Perera"> Terrence Perera</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the last few decades, the government of the UAE has been taking actions to consolidate defense manufacturing entities with the view to build a coherent and modern defense manufacturing base. Whilst these actions have significantly improved the overall capabilities of defense manufacturing; further opportunities exist to radically transform the sector. A comprehensive literature review and data collected from a survey identified three potential areas of improvements, (a) integration of Industry 4.0 technologies and other smart technologies, (b) stronger engagement of small and Medium-sized defense manufacturing companies and (c) Enhancing the national defense policies by embedding best practices from other nations. This research paper presents the design and development of a conceptual framework for the UAE defense industrial ecosystem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=industry%204.0" title="industry 4.0">industry 4.0</a>, <a href="https://publications.waset.org/abstracts/search?q=defense%20manufacturing" title=" defense manufacturing"> defense manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=eco-systems" title=" eco-systems"> eco-systems</a>, <a href="https://publications.waset.org/abstracts/search?q=integration" title=" integration"> integration</a> </p> <a href="https://publications.waset.org/abstracts/145808/a-framework-for-embedding-industry-40-in-the-uae-defence-manufacturing-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1472</span> The Effect of Artesunate on Myeloperoxidase Activity of Human Polymorphonuclear Neutrophil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20B.%20Minari">J. B. Minari</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20B.%20Oloyede"> O. B. Oloyede</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Odutuga"> A. A. Odutuga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Myeloperoxidase is the most abundant enzyme found in the polymorphonuclear neutrophil and is known to play a central role in the host defense system of the leukocyte. The enzyme has been reported to interact with some drugs to generate free radical which inhibits its activity. This study investigated the effects of artesunate on the activity of the enzyme and the subsequent effect on the host immune system. In investigating the effects of the drugs on myeloperoxidase, the influence of concentration, pH, partition ratio estimation and kinetics of inhibition were studied. This study showed that artesunate is concentration-dependent inhibitor of myeloperoxidase with an IC50 of 0.078mM. Partition ratio estimation showed that 60 enzymatic turnover cycles are required for complete inhibition of myeloperoxidase in the presence of artesunate. The influence of pH on the effect of artesunate on the enzyme showed least activity of myeloperoxidase at physiological pH. The kinetic inhibition studies showed that artesunate caused a competitive inhibition with an increase in the Km value from 0.12mM to 0.26mM and no effect on the Vmax value. The Ki value was estimated to be 2.5mM. The results obtained from this study show that artesunate is a potent inhibitor of myeloperoxidase and it is capable of inactivating the enzyme. It is considered that the inhibition of myeloperoxidase in the presence of artesunate as revealed in this study may partly explain the impairment of polymorphonuclear neutrophil and consequent reduction of the strength of the host defense system against secondary infections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=myeloperoxidase" title="myeloperoxidase">myeloperoxidase</a>, <a href="https://publications.waset.org/abstracts/search?q=artesunate" title=" artesunate"> artesunate</a>, <a href="https://publications.waset.org/abstracts/search?q=inhibition" title=" inhibition"> inhibition</a>, <a href="https://publications.waset.org/abstracts/search?q=nuetrophill" title=" nuetrophill "> nuetrophill </a> </p> <a href="https://publications.waset.org/abstracts/17692/the-effect-of-artesunate-on-myeloperoxidase-activity-of-human-polymorphonuclear-neutrophil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17692.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1471</span> Antibody Reactivity of Synthetic Peptides Belonging to Proteins Encoded by Genes Located in Mycobacterium tuberculosis-Specific Genomic Regions of Differences</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abu%20Salim%20Mustafa">Abu Salim Mustafa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The comparisons of mycobacterial genomes have identified several <em>Mycobacterium tuberculosis</em>-specific genomic regions that are absent in other mycobacteria and are known as regions of differences. Due to <em>M. tuberculosis</em>-specificity, the peptides encoded by these regions could be useful in the specific diagnosis of tuberculosis. To explore this possibility, overlapping synthetic peptides corresponding to 39 proteins predicted to be encoded by genes present in regions of differences were tested for antibody-reactivity with sera from tuberculosis patients and healthy subjects. The results identified four immunodominant peptides corresponding to four different proteins, with three of the peptides showing significantly stronger antibody reactivity and rate of positivity with sera from tuberculosis patients than healthy subjects. The fourth peptide was recognized equally well by the sera of tuberculosis patients as well as healthy subjects. Predication of antibody epitopes by bioinformatics analyses using ABCpred server predicted multiple linear epitopes in each peptide. Furthermore, peptide sequence analysis for sequence identity using BLAST suggested <em>M. tuberculosis</em>-specificity for the three peptides that had preferential reactivity with sera from tuberculosis patients, but the peptide with equal reactivity with sera of TB patients and healthy subjects showed significant identity with sequences present in nob-tuberculous mycobacteria. The three identified <em>M. tuberculosis</em>-specific immunodominant peptides may be useful in the serological diagnosis of tuberculosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genomic%20regions%20of%20differences" title="genomic regions of differences">genomic regions of differences</a>, <a href="https://publications.waset.org/abstracts/search?q=Mycobacterium%20tuberculossis" title=" Mycobacterium tuberculossis"> Mycobacterium tuberculossis</a>, <a href="https://publications.waset.org/abstracts/search?q=peptides" title=" peptides"> peptides</a>, <a href="https://publications.waset.org/abstracts/search?q=serodiagnosis" title=" serodiagnosis"> serodiagnosis</a> </p> <a href="https://publications.waset.org/abstracts/83354/antibody-reactivity-of-synthetic-peptides-belonging-to-proteins-encoded-by-genes-located-in-mycobacterium-tuberculosis-specific-genomic-regions-of-differences" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1470</span> DNAJB6 Chaperone Prevents the Aggregation of Intracellular but not Extracellular Aβ Peptides Associated with Alzheimer’s Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rasha%20M.%20Hussein">Rasha M. Hussein</a>, <a href="https://publications.waset.org/abstracts/search?q=Reem%20M.%20Hashem"> Reem M. Hashem</a>, <a href="https://publications.waset.org/abstracts/search?q=Laila%20A.%20Rashed"> Laila A. Rashed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alzheimer’s disease is the most common dementia disease in the elderly. It is characterized by the accumulation of extracellular amyloid β (Aβ) peptides and intracellular hyper-phosphorylated tau protein. In addition, recent evidence indicates that accumulation of intracellular amyloid β peptides may play a role in Alzheimer’s disease pathogenesis. This suggests that intracellular Heat Shock Proteins (HSP) that maintain the protein quality control in the cell might be potential candidates for disease amelioration. DNAJB6, a member of DNAJ family of HSP, effectively prevented the aggregation of poly glutamines stretches associated with Huntington’s disease both in vitro and in cells. In addition, DNAJB6 was found recently to delay the aggregation of Aβ42 peptides in vitro. In the present study, we investigated the ability of DNAJB6 to prevent the aggregation of both intracellular and extracellular Aβ peptides using transfection of HEK293 cells with Aβ-GFP and recombinant Aβ42 peptides respectively. We performed western blotting and immunofluorescence techniques. We found that DNAJB6 can prevent Aβ-GFP aggregation, but not the seeded aggregation initiated by extracellular Aβ peptides. Moreover, DNAJB6 required interaction with HSP70 to prevent the aggregation of Aβ-GFP protein and its J-domain was essential for this anti-aggregation activity. Interestingly, overexpression of other DNAJ proteins as well as HSPB1 suppressed Aβ-GFP aggregation efficiently. Our findings suggest that DNAJB6 is a promising candidate for the inhibition of Aβ-GFP mediated aggregation through a canonical HSP70 dependent mechanism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=A%CE%B2" title="Aβ">Aβ</a>, <a href="https://publications.waset.org/abstracts/search?q=Alzheimer%E2%80%99s%20disease" title=" Alzheimer’s disease"> Alzheimer’s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=chaperone" title=" chaperone"> chaperone</a>, <a href="https://publications.waset.org/abstracts/search?q=DNAJB6" title=" DNAJB6"> DNAJB6</a>, <a href="https://publications.waset.org/abstracts/search?q=aggregation" title=" aggregation"> aggregation</a> </p> <a href="https://publications.waset.org/abstracts/35650/dnajb6-chaperone-prevents-the-aggregation-of-intracellular-but-not-extracellular-av-peptides-associated-with-alzheimers-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35650.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1469</span> Prediction of Antibacterial Peptides against Propionibacterium acnes from the Peptidomes of Achatina fulica Mucus Fractions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suwapitch%20Chalongkulasak">Suwapitch Chalongkulasak</a>, <a href="https://publications.waset.org/abstracts/search?q=Teerasak%20E-Kobon"> Teerasak E-Kobon</a>, <a href="https://publications.waset.org/abstracts/search?q=Pramote%20Chumnanpuen"> Pramote Chumnanpuen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Acne vulgaris is a common skin disease mainly caused by the Gram–positive pathogenic bacterium, Propionibacterium acnes. This bacterium stimulates inflammation process in human sebaceous glands. Giant African snail (Achatina fulica) is alien species that rapidly reproduces and seriously damages agricultural products in Thailand. There were several research reports on the medical and pharmaceutical benefits of this snail mucus peptides and proteins. This study aimed to in silico predict multifunctional bioactive peptides from A. fulica mucus peptidome using several bioinformatic tools for determination of antimicrobial (iAMPpred), anti–biofilm (dPABBs), cytotoxic (Toxinpred), cell membrane penetrating (CPPpred) and anti–quorum sensing (QSPpred) peptides. Three candidate peptides with the highest predictive score were selected and re-designed/modified to improve the required activities. Structural and physicochemical properties of six anti–P. acnes (APA) peptide candidates were performed by PEP–FOLD3 program and the five aforementioned tools. All candidates had random coiled structure and were named as APA1–ori, APA2–ori, APA3–ori, APA1–mod, APA2–mod and APA3–mod. To validate the APA activity, these peptide candidates were synthesized and tested against six isolates of P. acnes. The modified APA peptides showed high APA activity on some isolates. Therefore, our biomimetic mucus peptides could be useful for preventing acne vulgaris and further examined on other activities important to medical and pharmaceutical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Propionibacterium%20acnes" title="Propionibacterium acnes">Propionibacterium acnes</a>, <a href="https://publications.waset.org/abstracts/search?q=Achatina%20fulica" title=" Achatina fulica"> Achatina fulica</a>, <a href="https://publications.waset.org/abstracts/search?q=peptidomes" title=" peptidomes"> peptidomes</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20peptides" title=" antibacterial peptides"> antibacterial peptides</a>, <a href="https://publications.waset.org/abstracts/search?q=snail%20mucus" title=" snail mucus"> snail mucus</a> </p> <a href="https://publications.waset.org/abstracts/118518/prediction-of-antibacterial-peptides-against-propionibacterium-acnes-from-the-peptidomes-of-achatina-fulica-mucus-fractions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118518.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1468</span> Molecular Characterization of Arginine Sensing Response in Unravelling Host-Pathogen Interactions in Leishmania</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Evanka%20Madan">Evanka Madan</a>, <a href="https://publications.waset.org/abstracts/search?q=Madhu%20Puri"> Madhu Puri</a>, <a href="https://publications.waset.org/abstracts/search?q=Dan%20Zilberstein"> Dan Zilberstein</a>, <a href="https://publications.waset.org/abstracts/search?q=Rohini%20Muthuswami"> Rohini Muthuswami</a>, <a href="https://publications.waset.org/abstracts/search?q=Rentala%20Madhubala"> Rentala Madhubala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The extensive interaction between the host and pathogen metabolic networks decidedly shapes the outcome of infection. Utilization of arginine by the host and pathogen is critical for determining the outcome of pathogenic infection. Infections with L. donovani, an intracellular parasite, will lead to an extensive competition of arginine between the host and the parasite donovani infection. One of the major amino acid (AA) sensing signaling pathways in mammalian cells are the mammalian target of rapamycin complex I (mTORC1) pathway. mTORC1, as a sensor of nutrient, controls numerous metabolic pathways. Arginine is critical for mTORC1 activation. SLC38A9 is the arginine sensor for the mTORC1, being activated during arginine sufficiency. L. donovani transport arginine via a high-affinity transporter (LdAAP3) that is rapidly up-regulated by arginine deficiency response (ADR) in intracellular amastigotes. This study, to author’s best knowledge, investigates the interaction between two arginine sensing systems that act in the same compartment, the lysosome. One is important for macrophage defense, and the other is essential for pathogen virulence. We hypothesize that the latter modulates lysosome arginine to prevent host defense response. The work presented here identifies an upstream regulatory role of LdAAP3 in regulating the expression of SLC38A9-mTORC1 pathway, and consequently, their function in L. donovani infected THP-1 cells cultured in 0.1 mM and 1.5 mM arginine. It was found that in physiological levels of arginine (0.1 mM), infecting THP-1 with Leishmania leads to increased levels of SLC38A9 and mTORC1 via an increase in the expression of RagA. However, the reversal was observed with LdAAP3 mutants, reflecting the positive regulatory role of LdAAP3 on the host SLC38A9. At the molecular level, upon infection, mTORC1 and RagA were found to be activated at the surface of phagolysosomes which was found to form a complex with phagolysosomal localized SLC38A9. To reveal the relevance of SLC38A9 under physiological levels of arginine, endogenous SLC38A9 was depleted and a substantial reduction in the expression of host mTORC1, its downstream active substrate, p-P70S6K1 and parasite LdAAP3, was observed, thereby showing that silencing SLC38A9 suppresses ADR. In brief, to author’s best knowledge, these results reveal an upstream regulatory role of LdAAP3 in manipulating SLC38A9 arginine sensing in host macrophages. Our study indicates that intra-macrophage survival of L. donovani depends on the availability and transport of extracellular arginine. An understanding of the sensing pathway of both parasite and host will open a new perspective on the molecular mechanism of host-parasite interaction and consequently, as a treatment for Leishmaniasis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arginine%20sensing" title="arginine sensing">arginine sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=LdAAP3" title=" LdAAP3"> LdAAP3</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20donovani" title=" L. donovani"> L. donovani</a>, <a href="https://publications.waset.org/abstracts/search?q=mTORC1" title=" mTORC1"> mTORC1</a>, <a href="https://publications.waset.org/abstracts/search?q=SLC38A9" title=" SLC38A9"> SLC38A9</a>, <a href="https://publications.waset.org/abstracts/search?q=THP-1" title=" THP-1"> THP-1</a> </p> <a href="https://publications.waset.org/abstracts/109998/molecular-characterization-of-arginine-sensing-response-in-unravelling-host-pathogen-interactions-in-leishmania" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1467</span> Molecular Characterization and Identification of C-Type Lectin in Red Palm Weevil, Rhynchophorus ferrugineus Oliver</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hafiza%20Javaria%20Ashraf">Hafiza Javaria Ashraf</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinghong%20Wang"> Xinghong Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhanghong%20Shi"> Zhanghong Shi</a>, <a href="https://publications.waset.org/abstracts/search?q=Youming%20Hou"> Youming Hou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Insect’s innate immunity depends on a variety of defense responses for the recognition of invading pathogens. Pathogen recognition involves particular proteins known as pattern recognition receptors (PRRs). These PRRs interact with pathogen-associated molecular patterns (PAMPs) present on the surface of pathogens to distinguish between self and non-self. C-type lectins (CTLs) belong to a superfamily of PPRs which involved in insect immunity and defense mechanism. Rhynchophorus ferrugineus Olivier is a devastating pest of Palm cultivations in China. Although studies on R. ferrugineus immune mechanism and host defense have conducted, however, the role of CTL in immune responses of R. ferrugineus remains elusive. Here, we report RfCTL, which is a secreted protein containing a single-CRD domain. The open reading frame (ORF) of CTL is 226 bp, which encodes a putative protein of 168 amino acids. Transcript expression analysis revealed that RfCTL highly expressed in immune-related tissues, i.e., hemolymph and fat body. The abundance of RfCTL in the gut and fat body dramatically increased upon Staphylococcus aureus and Escherichia coli bacterial challenges, suggesting a role in defense against gram-positive and gram-negative bacterial infection. Taken together, we inferred that RfCTL might be involved in the immune defense of R. ferrugineus and established a solid foundation for future studies on R. ferrugineus CTL domain proteins for better understanding of insect immunity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biological%20invasion" title="biological invasion">biological invasion</a>, <a href="https://publications.waset.org/abstracts/search?q=c-type%20lectin" title=" c-type lectin"> c-type lectin</a>, <a href="https://publications.waset.org/abstracts/search?q=insect%20immunity" title=" insect immunity"> insect immunity</a>, <a href="https://publications.waset.org/abstracts/search?q=Rhynchophorus%20ferrugineus%20Oliver" title=" Rhynchophorus ferrugineus Oliver"> Rhynchophorus ferrugineus Oliver</a> </p> <a href="https://publications.waset.org/abstracts/118350/molecular-characterization-and-identification-of-c-type-lectin-in-red-palm-weevil-rhynchophorus-ferrugineus-oliver" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118350.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1466</span> Bioactivity of Peptides from Two Mushrooms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parisa%20Farzaneh">Parisa Farzaneh</a>, <a href="https://publications.waset.org/abstracts/search?q=Azade%20Harati"> Azade Harati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mushrooms, or macro-fungi, as an important superfood, contain many bioactive compounds, particularly bio-peptides. In this research, mushroom proteins were extracted by buffer or buffer plus salt (0.15 M), along with an ultrasound bath to extract the intercellular protein. As a result, the highest amount of proteins in mushrooms were categorized into albumin. Proteins were also hydrolyzed and changed into peptides through endogenous and exogenous proteases, including gastrointestinal enzymes. The potency of endogenous proteases was also higher in Agaricus bisporus than Terfezia claveryi, as their activity ended at 75 for 15 min. The blanching process, endogenous enzymes, the mixture of gastrointestinal enzymes (pepsin-trypsin-α-chymotrypsin or trypsin- α-chymotrypsin) produced the different antioxidant and antibacterial hydrolysates. The peptide fractions produced with different cut-off ultrafilters also had various levels of radical scavenging, lipid peroxidation inhibition, and antibacterial activities. The bio-peptides with superior bioactivities (less than 3 kD of T. claveryi) were resistant to various environmental conditions (pH and temperatures). Therefore, they are good options to be added to nutraceutical and pharmaceutical preparations or functional foods, even during processing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-peptide" title="bio-peptide">bio-peptide</a>, <a href="https://publications.waset.org/abstracts/search?q=mushrooms" title=" mushrooms"> mushrooms</a>, <a href="https://publications.waset.org/abstracts/search?q=gastrointestinal%20enzymes" title=" gastrointestinal enzymes"> gastrointestinal enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactivity" title=" bioactivity"> bioactivity</a> </p> <a href="https://publications.waset.org/abstracts/183239/bioactivity-of-peptides-from-two-mushrooms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183239.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1465</span> Research on Load Balancing Technology for Web Service Mobile Host</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yao%20Lu">Yao Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiuguo%20Zhang"> Xiuguo Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhiying%20Cao"> Zhiying Cao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, Load Balancing idea is used in the Web service mobile host. The main idea of Load Balancing is to establish a one-to-many mapping mechanism: An entrance-mapping request to plurality of processing node in order to realize the dividing and assignment processing. Because the mobile host is a resource constrained environment, there are some Web services which cannot be completed on the mobile host. When the mobile host resource is not enough to complete the request, Load Balancing scheduler will divide the request into a plurality of sub-requests and transfer them to different auxiliary mobile hosts. Auxiliary mobile host executes sub-requests, and then, the results will be returned to the mobile host. Service request integrator receives results of sub-requests from the auxiliary mobile host, and integrates the sub-requests. In the end, the complete request is returned to the client. Experimental results show that this technology adopted in this paper can complete requests and have a higher efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dinic" title="Dinic">Dinic</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20balancing" title=" load balancing"> load balancing</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20host" title=" mobile host"> mobile host</a>, <a href="https://publications.waset.org/abstracts/search?q=web%20service" title=" web service"> web service</a> </p> <a href="https://publications.waset.org/abstracts/63208/research-on-load-balancing-technology-for-web-service-mobile-host" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63208.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1464</span> Fluorescence Resonance Energy Transfer in a Supramolecular Assembly of Luminescent Silver Nanoclusters and Cucurbit[8]uril Based Host-Guest System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Srikrishna%20Pramanik">Srikrishna Pramanik</a>, <a href="https://publications.waset.org/abstracts/search?q=Sree%20Chithra"> Sree Chithra</a>, <a href="https://publications.waset.org/abstracts/search?q=Saurabh%20Rai"> Saurabh Rai</a>, <a href="https://publications.waset.org/abstracts/search?q=Sameeksha%20Agrawal"> Sameeksha Agrawal</a>, <a href="https://publications.waset.org/abstracts/search?q=Debanggana%20Shil"> Debanggana Shil</a>, <a href="https://publications.waset.org/abstracts/search?q=Saptarshi%20Mukherjee"> Saptarshi Mukherjee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The understanding of interactions between organic chromophores and biologically useful luminescent noble metal nanoclusters (NCs) leading to an energy transfer process that has applications in light-harvesting materials is still in its nascent stage. This work describes a photoluminescent supramolecular assembly, made in two stages, employing an energy transfer process between silver (Ag) NCs as the donor and a host-guest system as the acceptor that can find potential applications in diverse fields. Initially, we explored the host-guest chemistry between a cationic guest, Ethidium Bromide and the anionic host Cucurbit[8]uril using spectroscopic and calorimetric techniques to decipher their interaction mechanism in modulating photophysical properties of the chromophore. Next, we synthesized a series of blue-emitting AgNCs using different templates such as protein, peptides, and cyclodextrin. The as-prepared AgNCs were characterized by various spectroscopic techniques. We have established that these AgNCs can be employed as donors in the FRET process with the above acceptor for FRET-based emission color tuning. Our in-depth studies revealed that surface ligands play a key role in modulating FRET efficiency. Overall, by employing a non-covalent strategy, we have tried to develop FRET pairs using blue-emitting NCs and a host-guest complex, which could find potential applications in constructing advanced white light-emitting, anti-counterfeiting materials, and developing biosensors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorption%20spectroscopy" title="absorption spectroscopy">absorption spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=cavities" title=" cavities"> cavities</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20transfer" title=" energy transfer"> energy transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescence" title=" fluorescence"> fluorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescence%20resonance%20energy%20transfer" title=" fluorescence resonance energy transfer"> fluorescence resonance energy transfer</a> </p> <a href="https://publications.waset.org/abstracts/185919/fluorescence-resonance-energy-transfer-in-a-supramolecular-assembly-of-luminescent-silver-nanoclusters-and-cucurbit8uril-based-host-guest-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185919.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">46</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1463</span> Literature Review: Adversarial Machine Learning Defense in Malware Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leidy%20M.%20Aldana">Leidy M. Aldana</a>, <a href="https://publications.waset.org/abstracts/search?q=Jorge%20E.%20Camargo"> Jorge E. Camargo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Adversarial Machine Learning has gained importance in recent years as Cybersecurity has gained too, especially malware, it has affected different entities and people in recent years. This paper shows a literature review about defense methods created to prevent adversarial machine learning attacks, firstable it shows an introduction about the context and the description of some terms, in the results section some of the attacks are described, focusing on detecting adversarial examples before coming to the machine learning algorithm and showing other categories that exist in defense. A method with five steps is proposed in the method section in order to define a way to make the literature review; in addition, this paper summarizes the contributions in this research field in the last seven years to identify research directions in this area. About the findings, the category with least quantity of challenges in defense is the Detection of adversarial examples being this one a viable research route with the adaptive approach in attack and defense. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malware" title="Malware">Malware</a>, <a href="https://publications.waset.org/abstracts/search?q=adversarial" title=" adversarial"> adversarial</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=defense" title=" defense"> defense</a>, <a href="https://publications.waset.org/abstracts/search?q=attack" title=" attack"> attack</a> </p> <a href="https://publications.waset.org/abstracts/177946/literature-review-adversarial-machine-learning-defense-in-malware-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1462</span> Design, Synthesis, and Evaluation of Small Peptides for Managing Inflammation: Inhibition to Substrate Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Palwinder%20Singh">Palwinder Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Baljit%20Kaur"> Baljit Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Sukhmeet%20Kaur"> Sukhmeet Kaur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Amongst a library of rationally designed small peptides, (H)Gly-Gly-Phe-Leu(OMe) was identified, reducing prostaglandin production of COX-2 with IC50 60 nM vs. 6000 nM for COX-1. The 5 mg Kg-1 dose of this compound rescued albino mice by 80% from capsaicin-induced paw licking and recovered it by 60% from carrageenan-induced inflammation. The mode of action of the compound for targeting COX-2, iNOS, and VGSC was investigated by using substances P, L-arginine, and veratrine, respectively, as the biomarkers. The interactions of the potent compound with COX-2 were supported by the isothermal calorimetry experiments showing Ka 6.10±1.10x104 mol-1 and ΔG -100.3 k J mol-1 in comparison to Ka 0.41x103 ±0.09 mol-1 and ΔG -19.2±0.06 k J mol-1 for COX-1. This compound did not show toxicity up to 2000 mg Kg-1 dose. Furthermore, beyond the conventional mode of working with anti-inflammatory agents through enzyme inhibition, COX-2 was provided with a peptide-based alternate substrate. Proline-centered pentapeptide iso-conformational to arachidonic acid exhibited appreciable selectivity for COX-2 overcoming acetic acid and formalin-induced pain in rats to almost 80% and was treated as a substrate by the enzyme. Hence, we suggest small peptides as highly potent and promising candidates for their further development into an anti-inflammatory drug. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=small%20peptides" title="small peptides">small peptides</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclooxygenase" title=" cyclooxygenase"> cyclooxygenase</a>, <a href="https://publications.waset.org/abstracts/search?q=inflammation" title=" inflammation"> inflammation</a>, <a href="https://publications.waset.org/abstracts/search?q=substrate" title=" substrate"> substrate</a> </p> <a href="https://publications.waset.org/abstracts/160257/design-synthesis-and-evaluation-of-small-peptides-for-managing-inflammation-inhibition-to-substrate-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160257.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1461</span> Investigations of Protein Aggregation Using Sequence and Structure Based Features</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Michael%20Gromiha">M. Michael Gromiha</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mary%20Thangakani"> A. Mary Thangakani</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20Kumar"> Sandeep Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Velmurugan"> D. Velmurugan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main cause of several neurodegenerative diseases such as Alzhemier, Parkinson, and spongiform encephalopathies is formation of amyloid fibrils and plaques in proteins. We have analyzed different sets of proteins and peptides to understand the influence of sequence-based features on protein aggregation process. The comparison of 373 pairs of homologous mesophilic and thermophilic proteins showed that aggregation-prone regions (APRs) are present in both. But, the thermophilic protein monomers show greater ability to ‘stow away’ the APRs in their hydrophobic cores and protect them from solvent exposure. The comparison of amyloid forming and amorphous b-aggregating hexapeptides suggested distinct preferences for specific residues at the six positions as well as all possible combinations of nine residue pairs. The compositions of residues at different positions and residue pairs have been converted into energy potentials and utilized for distinguishing between amyloid forming and amorphous b-aggregating peptides. Our method could correctly identify the amyloid forming peptides at an accuracy of 95-100% in different datasets of peptides. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aggregation" title="aggregation">aggregation</a>, <a href="https://publications.waset.org/abstracts/search?q=amyloids" title=" amyloids"> amyloids</a>, <a href="https://publications.waset.org/abstracts/search?q=thermophilic%20proteins" title=" thermophilic proteins"> thermophilic proteins</a>, <a href="https://publications.waset.org/abstracts/search?q=amino%20acid%20residues" title=" amino acid residues"> amino acid residues</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning%20techniques" title=" machine learning techniques"> machine learning techniques</a> </p> <a href="https://publications.waset.org/abstracts/20424/investigations-of-protein-aggregation-using-sequence-and-structure-based-features" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20424.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">614</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1460</span> Performance Based Logistics and Applications in Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ferhat%20Yilmaz">Ferhat Yilmaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Defense sector is one of the most important areas where logistics is used extensively. Nations give importance to their defense spending in order to survive in their geography. Parallel to the rising crises around the world, governments increase their defense spending; however, resources are limited while the needs are infinite. Therefore, countries try to develop a more effective use of their defense budget. In order to make logistics more effective and efficient, performance- based logistical system was developed. This article tries to explain the Performance-based Logistical System, its employment process, employment areas, and how it will be used along with other main systems in the Turkey. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=performance" title="performance">performance</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20based%20logistics%20applications" title=" performance based logistics applications"> performance based logistics applications</a>, <a href="https://publications.waset.org/abstracts/search?q=logistical%20system" title=" logistical system"> logistical system</a>, <a href="https://publications.waset.org/abstracts/search?q=Turkey" title=" Turkey"> Turkey</a> </p> <a href="https://publications.waset.org/abstracts/31834/performance-based-logistics-and-applications-in-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31834.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1459</span> Design and Development of Small Peptides as Anti-inflammatory Agents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Palwinder%20Singh">Palwinder Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Beyond the conventional mode of working with anti-inflammatory agents through enzyme inhibition, herein, an alternate substrate of cyclooxygenase-2 was developed. Proline centered pentapeptide iso-conformational to arachidonic acid exhibited appreciable selectivity for COX-2 overcoming acetic acid and formalin induced pain in rats to almost 80% and was treated as a substrate by the enzyme. Remarkably, COX-2 metabolized the pentapeptide into small fragments consisting mainly of di- and tri-peptides that ensured the safe breakdown of the peptide under in-vivo conditions. The kinetic parameter Kcat/Km for COX-2 mediated metabolism of peptide 6.3 x 105 M-1 s-1 was quite similar to 9.5 x 105 M-1 s-1 for arachidonic acid. Evidenced by the dynamic molecular studies and the use of Y385F COX-2, it was observed that the breakage of the pentapeptide has probably taken place through H-bond activation of the peptide bond by the side chains of Y385 and S530. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=small%20peptides" title="small peptides">small peptides</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-inflammatory%20agents" title=" anti-inflammatory agents"> anti-inflammatory agents</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclooxygenase-2" title=" cyclooxygenase-2"> cyclooxygenase-2</a>, <a href="https://publications.waset.org/abstracts/search?q=unnatural%20substrates" title=" unnatural substrates"> unnatural substrates</a> </p> <a href="https://publications.waset.org/abstracts/163697/design-and-development-of-small-peptides-as-anti-inflammatory-agents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163697.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1458</span> Total Synthesis of Natural Cyclic Depsi Peptides by Convergent SPPS and Macrolactonization Strategy for Anti-Tb Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Katharigatta%20N.%20Venugopala">Katharigatta N. Venugopala</a>, <a href="https://publications.waset.org/abstracts/search?q=Fernando%20Albericio"> Fernando Albericio</a>, <a href="https://publications.waset.org/abstracts/search?q=Bander%20E.%20Al-Dhubiab"> Bander E. Al-Dhubiab</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Govender"> T. Govender </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent years have witnessed a renaissance in the field of peptides that are obtained from various natural sources such as many bacteria, fungi, plants, seaweeds, vertebrates, invertebrates and have been reported for various pharmacological properties such as anti-TB, anticancer, antimalarial, anti-inflammatory, anti-HIV, antibacterial, antifungal, and antidiabetic, activities. In view of the pharmacological significance of natural peptides, serious research efforts of many scientific groups and pharmaceutical companies have consequently focused on them to explore the possibility of developing their potential analogues as therapeutic agents. Solid phase and solution phase peptide synthesis are the two methodologies currently available for the synthesis of natural or synthetic linear or cyclic depsi-peptides. From a synthetic point of view, there is no doubt that the solid-phase methodology gained added advantages over solution phase methodology in terms of simplicity, purity of the compound and the speed with which peptides can be synthesised. In the present study total synthesis, purification and structural elucidation of analogues of natural anti-TB cyclic depsi-peptides such as depsidomycin, massetolides and viscosin has been attempted by solid phase method using standard Fmoc protocols and finally off resin cyclization in solution phase method. In case of depsidomycin, synthesis of linear peptide on solid phase could not be achieved because of two turn inducing amino acids in the peptide sequence, but total synthesis was achieved by convergent solid phase peptide synthesis followed by cyclization in solution phase method. The title compounds obtained were in good yields and characterized by NMR and HRMS. Anti-TB results revealed that the potential title compound exhibited promising activity at 4 µg/mL against H37Rv and 16 µg/mL against MDR strains of tuberculosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=total%20synthesis" title="total synthesis">total synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20depsi-peptides" title=" cyclic depsi-peptides"> cyclic depsi-peptides</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-TB%20activity" title=" anti-TB activity"> anti-TB activity</a>, <a href="https://publications.waset.org/abstracts/search?q=tuberculosis" title=" tuberculosis"> tuberculosis</a> </p> <a href="https://publications.waset.org/abstracts/16893/total-synthesis-of-natural-cyclic-depsi-peptides-by-convergent-spps-and-macrolactonization-strategy-for-anti-tb-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16893.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">623</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1457</span> The Effect of Taking Heavy Metal on Gastrointestinal Peptides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nurgul%20Senol">Nurgul Senol</a>, <a href="https://publications.waset.org/abstracts/search?q=Melda%20Azman"> Melda Azman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the rate of release of gastrointestinal peptides heavy metal compounds applied to a certain extent (gastrin/CCK) on immunohistochemical aimed to determine the effect. This study was supported by TÜBİTAK. Subjects were randomly grouped into three. Group I; iron (Fe), Group II; zinc (Zn), Group III; control; gavage technique was applied to each group once a day throughout 30 days. At the end of the experiment, rats were decapitated and their stomach-intestine tissues removed, Peroxidase anti peroxidase method was applied following the routine histological follow-ups. According to the control group, in the stomach, had more positive cell density of gastrin in Fe groups, it was observed that group followed by Zn. It was found between the groups in the stomach and intestinal gastrin, gastrin-positive cell density decreases towards the intestines from the stomach. Although CCK differences in staining were observed in the control group, the intensity of staining intensity between the two groups in positive cells was determined to be more than the stomach. The group in the intestines, there is no change in terms of positivity CCK. Consequently, there is no significant effect on gastrointestinal peptides in Zn application. It has been identified Fe application has a significant effect on the releasing of CCK/gastrin peptides. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alimentary%20canal" title="alimentary canal">alimentary canal</a>, <a href="https://publications.waset.org/abstracts/search?q=CCK" title=" CCK"> CCK</a>, <a href="https://publications.waset.org/abstracts/search?q=iron" title=" iron"> iron</a>, <a href="https://publications.waset.org/abstracts/search?q=gastrin" title=" gastrin"> gastrin</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc" title=" zinc"> zinc</a> </p> <a href="https://publications.waset.org/abstracts/51179/the-effect-of-taking-heavy-metal-on-gastrointestinal-peptides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51179.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1456</span> Self-denigration in Doctoral Defense Sessions: Scale Development and Validation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Jalilifar">Alireza Jalilifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadia%20Mayahi"> Nadia Mayahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The dissertation defense as a complicated conflict-prone context entails the adoption of elegant interactional strategies, one of which is self-denigration. This study aimed to develop and validate a self-denigration model that fits the context of doctoral defense sessions in applied linguistics. Two focus group discussions provided the basis for developing this conceptual model, which assumed 10 functions for self-denigration, namely good manners, modesty, affability, altruism, assertiveness, diffidence, coercive self-deprecation, evasion, diplomacy, and flamboyance. These functions were used to design a 40-item questionnaire on the attitudes of applied linguists concerning self-denigration in defense sessions. The confirmatory factor analysis of the questionnaire indicated the predictive ability of the measurement model. The findings of this study suggest that self-denigration in doctoral defense sessions is the social representation of the participants’ values, ideas and practices adopted as a negotiation strategy and a conflict management policy for the purpose of establishing harmony and maintaining resilience. This study has implications for doctoral students and academics and illuminates further research on self-denigration in other contexts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=academic%20discourse" title="academic discourse">academic discourse</a>, <a href="https://publications.waset.org/abstracts/search?q=politeness" title=" politeness"> politeness</a>, <a href="https://publications.waset.org/abstracts/search?q=self-denigration" title=" self-denigration"> self-denigration</a>, <a href="https://publications.waset.org/abstracts/search?q=grounded%20theory" title=" grounded theory"> grounded theory</a>, <a href="https://publications.waset.org/abstracts/search?q=dissertation%20defense" title=" dissertation defense"> dissertation defense</a> </p> <a href="https://publications.waset.org/abstracts/143887/self-denigration-in-doctoral-defense-sessions-scale-development-and-validation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1455</span> Defense Mechanism Maturity and the Severity of Mood Disorder Symptoms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maja%20Pand%C5%BEa">Maja Pandža</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjin%20Lovri%C4%87"> Sanjin Lovrić</a>, <a href="https://publications.waset.org/abstracts/search?q=Iva%20%C4%8Colak"> Iva Čolak</a>, <a href="https://publications.waset.org/abstracts/search?q=Josipa%20Mandari%C4%87"> Josipa Mandarić</a>, <a href="https://publications.waset.org/abstracts/search?q=Miro%20Klari%C4%87"> Miro Klarić</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study explores the role of symptoms related to mood disorders salience on different types of defense mechanisms (mature, neurotic, immature) predominance. Total of 177 both clinical and non-clinical participants in Mostar, Bosnia & Herzegovina, completed a battery of questionnaires associated with defense mechanisms and self-reported depression and anxiety symptoms. The sample was additionally divided into four groups, given the level of symptoms experienced: 1. minimal, 2. mild, 3. moderate, 4. severe depression/anxiety. Participants with minimal anxiety and depression symptoms use mature defense mechanisms more often than other three groups. Immature mechanisms are most commonly used by the group with severe depression/anxiety levels in comparison with other groups. These differences are discussed on the dynamic level of analysis to have a better understanding of the relationship between defense mechanisms' maturity and degree of mood disorders' symptom severity. Also, results given could serve as an implication for the psychotherapeutic treatment plans. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anxiety%2Fdepression%20symptoms" title="anxiety/depression symptoms">anxiety/depression symptoms</a>, <a href="https://publications.waset.org/abstracts/search?q=clinical%2Fnon-clinical%20sample" title=" clinical/non-clinical sample"> clinical/non-clinical sample</a>, <a href="https://publications.waset.org/abstracts/search?q=defense%20mechanism%20maturity" title=" defense mechanism maturity"> defense mechanism maturity</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20approach" title=" dynamic approach"> dynamic approach</a> </p> <a href="https://publications.waset.org/abstracts/34314/defense-mechanism-maturity-and-the-severity-of-mood-disorder-symptoms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34314.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1454</span> A Macroeconomic Analysis of Defense Industry: Comparisons, Trends and Improvements in Brazil and in the World</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Fajardo">J. Fajardo</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Guerra"> J. Guerra</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Gonzales"> E. Gonzales</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper will outline a study of Brazil's industrial base of defense (IDB), through a bibliographic research method, combined with an analysis of macroeconomic data from several available public data platforms. This paper begins with a brief study about Brazilian national industry, including analyzes of productivity, income, outcome and jobs. Next, the research presents a study on the defense industry in Brazil, presenting the main national companies that operate in the aeronautical, army and naval branches. After knowing the main points of the Brazilian defense industry, data on the productivity of the defense industry of the main countries and competing companies of the Brazilian industry were analyzed, in order to summarize big cases in Brazil with a comparative analysis. Concerned the methodology, were used bibliographic research and the exploration of historical data series, in order to analyze information, to get trends and to make comparisons along the time. The research is finished with the main trends for the development of the Brazilian defense industry, comparing the current situation with the point of view of several countries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=economics%20of%20defence" title="economics of defence">economics of defence</a>, <a href="https://publications.waset.org/abstracts/search?q=industry" title=" industry"> industry</a>, <a href="https://publications.waset.org/abstracts/search?q=trends" title=" trends"> trends</a>, <a href="https://publications.waset.org/abstracts/search?q=market" title=" market"> market</a> </p> <a href="https://publications.waset.org/abstracts/99239/a-macroeconomic-analysis-of-defense-industry-comparisons-trends-and-improvements-in-brazil-and-in-the-world" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99239.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1453</span> Implementation of Gender Policy in the Georgian National Defence: Key Issues and Challenges</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vephkhvia%20Grigalashvili">Vephkhvia Grigalashvili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The defense of Georgia is every citizen’s duty. The present article reviews the principles and standards of gender policy in the Georgian national defense sector. In addition, it looks at mechanisms for ensuring gender equality, going through the relevant Georgian legislation. Furthermore, this work aims to conduct a comparative analysis of defense models of Georgia, Finland, and the Baltic States in order to identify core institutional challenges. The study produced the following findings:(a) The national defense planning is based on the Total Defense approach, which implies a wide involvement of the country`s population in state defense. (b) This political act does not specify gender equality aspects of the Total Defense strategy; (c) According to the Constitution of Georgia, irrespective of gender factors, every citizen of Georgia is legally obliged to participate in state security activities. However, the state has an authority (power of choice) to decide which gender group (male or/and female citizen) must fulfill above mentioned their constitutional commitment. For instance, completion of compulsory military and reserve military services is a male citizen’s duty, whereas professional military service is equally accessible to both genders. The study concludes that effective implementation of the Total Defense concept largely depends on how Georgia uses its capabilities and human resources. Based on the statistical fact that more than 50% of the country’s population are women, Georgia has to elaborate on relevant institutional mechanisms for implementation of gender equality in the national defense organization. In this regard, it would be advisable: (i) to give the legal opportunity to women to serve in compulsory military service, and (ii) to develop labor reserve service as a part of the anti-crisis management system of Georgia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gender%20in%20defense%20organisation" title="gender in defense organisation">gender in defense organisation</a>, <a href="https://publications.waset.org/abstracts/search?q=gender%20mechanisms" title=" gender mechanisms"> gender mechanisms</a>, <a href="https://publications.waset.org/abstracts/search?q=gender%20in%20defense%20policy" title=" gender in defense policy"> gender in defense policy</a>, <a href="https://publications.waset.org/abstracts/search?q=gender%20policy" title=" gender policy"> gender policy</a> </p> <a href="https://publications.waset.org/abstracts/111949/implementation-of-gender-policy-in-the-georgian-national-defence-key-issues-and-challenges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111949.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1452</span> CCK/Gastrin Immunoreactivity in Gastrointestinal Tract of Vimba vimba</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nurg%C3%BCl%20%C5%9Eenol">Nurgül Şenol</a>, <a href="https://publications.waset.org/abstracts/search?q=Melda%20Azman"> Melda Azman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, gastrointestinal immunohistochemistry in the Vimba vimba and the localization of CCK/gastrin were determined. Although there are a number of studies which relate to the gastrointestinal histochemistry and the localization of the peptides, a literature research in this field revealed that no histochemical or immunohistochemical study covering also the species had been found in our country. In this research, species will be provided from Vimba vimba located in Eğirdir lake. Stomach samples and intestinal samples of these fish will be exposed to routine histological tissue process, embedded in paraffin blocks, and 5-6 μ -thick sections will be taken. Using the PAP (Peroxidase anti-peroxidase) method, localization of the peptides CCK/gastrin was to be found. The densities of peptides of this species were compared, and then the findings obtained were to be evaluated through the statistical analysis methods (SPSS). Endocrine cells reactive to gastrin/CCK antiserum were demonstrated in the stomach and intestinal mucosa. There is a significant difference between gastrin and CCK when compared to regions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CCK" title="CCK">CCK</a>, <a href="https://publications.waset.org/abstracts/search?q=gastrin" title=" gastrin"> gastrin</a>, <a href="https://publications.waset.org/abstracts/search?q=immunoreactivity" title=" immunoreactivity"> immunoreactivity</a>, <a href="https://publications.waset.org/abstracts/search?q=vimba%20vimba" title=" vimba vimba"> vimba vimba</a> </p> <a href="https://publications.waset.org/abstracts/44274/cckgastrin-immunoreactivity-in-gastrointestinal-tract-of-vimba-vimba" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44274.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1451</span> The Limits to Self-Defense Claims in Case of Domestic Violence Homicides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20Elisabete%20Costa%20Ferreira">Maria Elisabete Costa Ferreira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Domestic violence is a serious social issue in which victims are mostly women. Domestic violence develops in cycles, starting with the building of tension, passing through the incident of abuse and ending with reconciliation, also known as honeymoon. As time goes by, the shorter these phases become, and the greater and more severe the attacks, rarely leading to the death of the victim of abuse. Sometimes, the victim stops the abuse by killing the aggressor, usually after the immediate aggression has taken place. This poses an important obstacle to the claim of self-defense by the victim of domestic violence pending trial for the homicide of her long-time abuser. The main problem with self-defense claims in such cases is that the law requires the act of aggression to be present or imminent (imminent threat or immediate danger) so that it permits the victim to take her defense into her own hands. If the episode of aggression has already taken place, this general requirement for the admissibility of self-defense is not satisfied. This paper sheds new light on the concept of the actuality of the aggression, understanding that, since domestic violence is a permanent offense, for as long as the victim stays under the domain of the aggressor, imminent threat will be present, allowing the self-defense claim of a woman who kills her abuser in such circumstances to be admissible. An actualist interpretation of the requirement of the necessity of the means used in self-defense will be satisfied when evaluated from the subjective perspective of the intimate partner victim. Necessity will be satisfied if it is reasonable for the victim to perceive the use of lethal force as the only means to release herself from the abuser. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=domestic%20violence" title="domestic violence">domestic violence</a>, <a href="https://publications.waset.org/abstracts/search?q=homicide" title=" homicide"> homicide</a>, <a href="https://publications.waset.org/abstracts/search?q=self-defense" title=" self-defense"> self-defense</a>, <a href="https://publications.waset.org/abstracts/search?q=imminent%20threat" title=" imminent threat"> imminent threat</a>, <a href="https://publications.waset.org/abstracts/search?q=necessity%20of%20lethal%20force" title=" necessity of lethal force"> necessity of lethal force</a> </p> <a href="https://publications.waset.org/abstracts/171695/the-limits-to-self-defense-claims-in-case-of-domestic-violence-homicides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171695.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1450</span> Predicting the Relationship Between Childhood Trauma on the Formation of Defense Mechanisms with the Mediating Role of Object Relations in Traders</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmadreza%20Jabalameli">Ahmadreza Jabalameli</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Ebrahimpour%20Borujeni"> Mohammad Ebrahimpour Borujeni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> According to psychodynamic theories, the major personality structure of individuals is formed in the first years of life. Trauma is an inseparable and undeniable part of everyone's life and they inevitably struggle with many traumas that can have a very significant impact on their lives. The present study deals with the relationship between childhood trauma on the formation of defense mechanisms and the role of object relations. The present descriptive study is a correlation with structural equation modeling (SEM). Sample selection is available and consists of 200 knowledgeable traders in Jabalameli Information Technology Company. The results indicate that the experience of childhood trauma with a demographic moderating effect, through the mediating role of object relations can lead to vulnerability to ego reality functionality and immature and psychically disturbed defense mechanisms. In this regard, there is a significant negative relationship between childhood trauma and object relations with mature defense mechanisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=childhood%20trauma" title="childhood trauma">childhood trauma</a>, <a href="https://publications.waset.org/abstracts/search?q=defense%20mechanisms" title=" defense mechanisms"> defense mechanisms</a>, <a href="https://publications.waset.org/abstracts/search?q=object%20relations" title=" object relations"> object relations</a>, <a href="https://publications.waset.org/abstracts/search?q=trade" title=" trade"> trade</a> </p> <a href="https://publications.waset.org/abstracts/148276/predicting-the-relationship-between-childhood-trauma-on-the-formation-of-defense-mechanisms-with-the-mediating-role-of-object-relations-in-traders" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148276.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1449</span> Enhancing the Effectiveness of Air Defense Systems through Simulation Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Felipe">F. Felipe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Air Defense Systems contain high-value assets that are expected to fulfill their mission for several years - in many cases, even decades - while operating in a fast-changing, technology-driven environment. Thus, it is paramount that decision-makers can assess how effective an Air Defense System is in the face of new developing threats, as well as to identify the bottlenecks that could jeopardize the security of the airspace of a country. Given the broad extent of activities and the great variety of assets necessary to achieve the strategic objectives, a systems approach was taken in order to delineate the core requirements and the physical architecture of an Air Defense System. Then, value-focused thinking helped in the definition of the measures of effectiveness. Furthermore, analytical methods were applied to create a formal structure that preliminarily assesses such measures. To validate the proposed methodology, a powerful simulation was also used to determine the measures of effectiveness, now in more complex environments that incorporate both uncertainty and multiple interactions of the entities. The results regarding the validity of this methodology suggest that the approach can support decisions aimed at enhancing the capabilities of Air Defense Systems. In conclusion, this paper sheds some light on how consolidated approaches of Systems Engineering and Operations Research can be used as valid techniques for solving problems regarding a complex and yet vital matter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20defense" title="air defense">air defense</a>, <a href="https://publications.waset.org/abstracts/search?q=effectiveness" title=" effectiveness"> effectiveness</a>, <a href="https://publications.waset.org/abstracts/search?q=system" title=" system"> system</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=decision-support" title=" decision-support"> decision-support</a> </p> <a href="https://publications.waset.org/abstracts/125149/enhancing-the-effectiveness-of-air-defense-systems-through-simulation-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125149.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1448</span> Bioengineering of a Plant System to Sustainably Remove Heavy Metals and to Harvest Rare Earth Elements (REEs) from Industrial Wastes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Edmaritz%20Hernandez-Pagan">Edmaritz Hernandez-Pagan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kanjana%20Laosuntisuk"> Kanjana Laosuntisuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Alex%20Harris"> Alex Harris</a>, <a href="https://publications.waset.org/abstracts/search?q=Allison%20Haynes"> Allison Haynes</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Buitrago"> David Buitrago</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Kudenov"> Michael Kudenov</a>, <a href="https://publications.waset.org/abstracts/search?q=Colleen%20Doherty"> Colleen Doherty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rare Earth Elements (REEs) are critical metals for modern electronics, green technologies, and defense systems. However, due to their dispersed nature in the Earth’s crust, frequent co-occurrence with radioactive materials, and similar chemical properties, acquiring and purifying REEs is costly and environmentally damaging, restricting access to these metals. Plants could serve as resources for bioengineering REE mining systems. Although there is limited information on how REEs affect plants at a cellular and molecular level, plants with high REE tolerance and hyperaccumulation have been identified. This dissertation aims to develop a plant-based system for harvesting REEs from industrial waste material with a focus on Acid Mine Drainage (AMD), a toxic coal mining product. The objectives are 1) to develop a non-destructive, in vivo detection method for REE detection in Phytolacca plants (REE hyperaccumulator) plants utilizing fluorescence spectroscopy and with a primary focus on dysprosium, 2) to characterize the uptake of REE and Heavy Metals in Phytolacca americana and Phytolacca acinosa (REE hyperaccumulator) in AMD for potential implementation in the plant-based system, 3) to implement the REE detection method to identify REE-binding proteins and peptides for potential enhancement of uptake and selectivity for targeted REEs in the plants implemented in the plant-based system. The candidates are known REE-binding peptides or proteins, orthologs of known metal-binding proteins from REE hyperaccumulator plants, and novel proteins and peptides identified by comparative plant transcriptomics. Lanmodulin, a high-affinity REE-binding protein from methylotrophic bacteria, is used as a benchmark for the REE-protein binding fluorescence assays and expression in A. thaliana to test for changes in REE plant tolerance and uptake. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phytomining" title="phytomining">phytomining</a>, <a href="https://publications.waset.org/abstracts/search?q=agromining" title=" agromining"> agromining</a>, <a href="https://publications.waset.org/abstracts/search?q=rare%20earth%20elements" title=" rare earth elements"> rare earth elements</a>, <a href="https://publications.waset.org/abstracts/search?q=pokeweed" title=" pokeweed"> pokeweed</a>, <a href="https://publications.waset.org/abstracts/search?q=phytolacca" title=" phytolacca"> phytolacca</a> </p> <a href="https://publications.waset.org/abstracts/193568/bioengineering-of-a-plant-system-to-sustainably-remove-heavy-metals-and-to-harvest-rare-earth-elements-rees-from-industrial-wastes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193568.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">15</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1447</span> Leptospira Lipl32-Specific Antibodies: Therapeutic Property, Epitopes Characterization and Molecular Mechanisms of Neutralization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Santi%20Maneewatchararangsri">Santi Maneewatchararangsri</a>, <a href="https://publications.waset.org/abstracts/search?q=Wanpen%20Chaicumpa"> Wanpen Chaicumpa</a>, <a href="https://publications.waset.org/abstracts/search?q=Patcharin%20Saengjaruk"> Patcharin Saengjaruk</a>, <a href="https://publications.waset.org/abstracts/search?q=Urai%20Chaisri"> Urai Chaisri </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Leptospirosis is a globally neglected disease that continues to be a significant public health and veterinary burden, with millions of cases reported each year. Early and accurate differential diagnosis of leptospirosis from other febrile illnesses and the development of a broad spectrum of leptospirosis vaccines are needed. The LipL32 outer membrane lipoprotein is a member of Leptospira adhesive matrices and has been found to exert hemolytic activity to erythrocytes in vitro. Therefore, LipL32 is regarded as a potential target for diagnosis, broad-spectrum leptospirosis vaccines, and for passive immunotherapy. In this study, we established LipL32-specific mouse monoclonal antibodies, mAbLPF1 and mAbLPF2, and their respective mouse- and humanized-engineered single chain variable fragment (ScFv). Their antibodies’ neutralizing activities against Leptospira-mediated hemolysis in vitro, and the therapeutic efficacy of mAbs against heterologous Leptospira infected hamsters were demonstrated. The epitope peptide of mAb LPF1 was mapped to a non-contiguous carboxy-terminal β-turn and amphipathic α-helix of LipL32 structure contributing to phospholipid/host cell adhesion and membrane insertion. We found that the mAbLPF2 epitope was located on the interacting loop of peptide binding groove of the LipL32 molecule responsible for interactions with host constituents. Epitope sequences are highly conserved among Leptospira spp. and are absent from the LipL32 superfamily of other microorganisms. Both epitopes are surface-exposed, readily accessible by mAbs, and immunogenic. However, they are less dominant when revealed by LipL32-specific immunoglobulins from leptospirosis-patient sera and rabbit hyperimmune serum raised by whole Leptospira. Our study also demonstrated an adhesion inhibitory activity of LipL32 protein to host membrane components and cells mediated by mAbs as well as an anti-hemolytic activity of the respective antibodies. The therapeutic antibodies, particularly the humanized-ScFv, have a potential for further development as non-drug therapeutic agent for human leptospirosis, especially in subjects allergic to antibiotics. The epitope peptides recognized by two therapeutic mAbs have potential use as tools for structure-function studies. Finally, protective peptides may be used as a target for epitope-based vaccines for control of leptospirosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=leptospira%20lipl32-specific%20antibodies" title="leptospira lipl32-specific antibodies">leptospira lipl32-specific antibodies</a>, <a href="https://publications.waset.org/abstracts/search?q=therapeutic%20epitopes" title=" therapeutic epitopes"> therapeutic epitopes</a>, <a href="https://publications.waset.org/abstracts/search?q=epitopes%20characterization" title=" epitopes characterization"> epitopes characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=immunotherapy" title=" immunotherapy"> immunotherapy</a> </p> <a href="https://publications.waset.org/abstracts/31247/leptospira-lipl32-specific-antibodies-therapeutic-property-epitopes-characterization-and-molecular-mechanisms-of-neutralization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31247.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=host%20defense%20peptides&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=host%20defense%20peptides&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=host%20defense%20peptides&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=host%20defense%20peptides&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=host%20defense%20peptides&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=host%20defense%20peptides&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=host%20defense%20peptides&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=host%20defense%20peptides&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=host%20defense%20peptides&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=host%20defense%20peptides&page=49">49</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=host%20defense%20peptides&page=50">50</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=host%20defense%20peptides&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>