CINXE.COM
Search results for: conventional magnet
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: conventional magnet</title> <meta name="description" content="Search results for: conventional magnet"> <meta name="keywords" content="conventional magnet"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="conventional magnet" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="conventional magnet"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3744</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: conventional magnet</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3744</span> Comparison of Different Electrical Machines with Permanent Magnets in the Stator for Use as an Industrial Drive</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcel%20Lehr">Marcel Lehr</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Binder"> Andreas Binder</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper compares three different permanent magnet synchronous machines (Doubly-Salient-Permanent-Magnet-Machine (DSPM), Flux-Reversal-Permanent-Magnet-Machine (FRPM), Flux-Switching-Permanent-Magnet-Machine (FSPM)) with the permanent magnets in the stator of the machine for use as an industrial drive for 400 V Y, 45 kW and 1000 ... 3000 min-1. The machines are compared based on the magnetic co-energy and Finite-Element-Method-Simulations regarding the torque density. The results show that the FSPM provides the highest torque density of the three machines. Therefore, an FSPM prototype was built, tested on a test bench and finally compared with an already built conventional permanent magnet synchronous machine (PMSM) of the same size (stator outer diameter dso = 314 mm, axial length lFe = 180 mm) and rating with surface-mounted rotor magnets. These measurements show that the conventional PMSM and the FSPM machine are roughly equivalent in their electrical behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=doubly-salient-permanent-magnet-machine" title="doubly-salient-permanent-magnet-machine">doubly-salient-permanent-magnet-machine</a>, <a href="https://publications.waset.org/abstracts/search?q=flux-reversal-permanent-magnet-machine" title=" flux-reversal-permanent-magnet-machine"> flux-reversal-permanent-magnet-machine</a>, <a href="https://publications.waset.org/abstracts/search?q=flux-switching-permanent-magnet-machine" title=" flux-switching-permanent-magnet-machine"> flux-switching-permanent-magnet-machine</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20drive" title=" industrial drive"> industrial drive</a> </p> <a href="https://publications.waset.org/abstracts/61399/comparison-of-different-electrical-machines-with-permanent-magnets-in-the-stator-for-use-as-an-industrial-drive" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61399.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3743</span> Iron Yoke Dipole with High Quality Field for Collector Ring FAIR</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tatyana%20Rybitskaya">Tatyana Rybitskaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandr%20Starostenko"> Alexandr Starostenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Kseniya%20Ryabchenko"> Kseniya Ryabchenko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Collector ring (CR) of FAIR project is a large acceptance storage ring and field quality plays a major role in the magnet design. The CR will use normal conducting dipole magnets. There will be 24 H-type sector magnets with a maximum field value of 1.6 T. The integrated over the length of the magnet field quality as a function of radius is ∆B.l/B.l = ±1x10⁻⁴. Below 1.6 T the value ∆B.l/B.l can be higher with a linear approximation up to ±2.5x10⁻⁴ at the field level of 0.8 T. An iron-dominated magnet with required field quality is produced with standard technology as the quality is dominated by the yoke geometry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conventional%20magnet" title="conventional magnet">conventional magnet</a>, <a href="https://publications.waset.org/abstracts/search?q=iron%20yoke%20dipole" title=" iron yoke dipole"> iron yoke dipole</a>, <a href="https://publications.waset.org/abstracts/search?q=harmonic%20terms" title=" harmonic terms"> harmonic terms</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20accelerators" title=" particle accelerators"> particle accelerators</a> </p> <a href="https://publications.waset.org/abstracts/109830/iron-yoke-dipole-with-high-quality-field-for-collector-ring-fair" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3742</span> Optimization of High Flux Density Design for Permanent Magnet Motor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dong-Woo%20Kang">Dong-Woo Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an optimal magnet shape of a spoke-shaped interior permanent magnet synchronous motor by using ferrite magnets. Generally, the permanent magnet motor used the ferrite magnets has lower output power and efficiency than a rare-earth magnet motor, because the ferrite magnet has lower magnetic energy than the rare-earth magnet. Nevertheless, the ferrite magnet motor is used to many industrial products owing to cost effectiveness. In this paper, the authors propose a high power density design of the ferrite permanent magnet synchronous motor. Furthermore, because the motor design has to be taken a manufacturing process into account, the design is simulated by using the finite element method for analyzing the demagnetization, the magnetizing, and the structure stiffness. Especially, the magnet shape and dimensions are decided for satisfying these properties. Finally, the authors design an optimal motor for applying our system. That final design is manufactured and evaluated from experimentations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=demagnetization" title="demagnetization">demagnetization</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20optimization" title=" design optimization"> design optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20analysis" title=" magnetic analysis"> magnetic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20motors" title=" permanent magnet motors"> permanent magnet motors</a> </p> <a href="https://publications.waset.org/abstracts/51581/optimization-of-high-flux-density-design-for-permanent-magnet-motor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51581.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3741</span> Novel Spoke-Type BLDC Motor Design for Cost Effective and High Power Density</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suyong%20Kim">Suyong Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently because of the rise in the price of rare earth magnet, interest of non-rare earth or less-rare earth motor is growing. Especially to achieve the high power density, Spoke-Type BLDC (Brushless Permanent Magnet) Motor with ferrite permanent magnet are spotlighted. But Spoke-Type Ferrite BLDC Motor has much of magnetic flux leakage in the direction of rotor shaft. In order to solve this problem, there are two conventional ways. But conventional ways bring the increases of product cost or the decreases of the power density. Therefore, this paper proposes new Spoke-Type BLDC Rotor shape that has the advantages of both conventional methods. The new shape is consists of a one-piece core. The inside and the outside of the rotor are open alternately. So it can take reduced production cost and high power density. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=motor" title="motor">motor</a>, <a href="https://publications.waset.org/abstracts/search?q=BLDC" title=" BLDC"> BLDC</a>, <a href="https://publications.waset.org/abstracts/search?q=spoke" title=" spoke"> spoke</a>, <a href="https://publications.waset.org/abstracts/search?q=ferrite" title=" ferrite"> ferrite</a> </p> <a href="https://publications.waset.org/abstracts/26835/novel-spoke-type-bldc-motor-design-for-cost-effective-and-high-power-density" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26835.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">573</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3740</span> Separation of Rare-Earth Metals from E-Wastes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gulsara%20%20Akanova">Gulsara Akanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Akmaral%20Ismailova"> Akmaral Ismailova</a>, <a href="https://publications.waset.org/abstracts/search?q=Duisek%20Kamysbayev"> Duisek Kamysbayev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The separation of rare earth metals (REM) from a neodymium magnet has been widely studied in the last year. The waste of computer hard disk contains 25.41 % neodymium, 64.09 % iron, and <<1 % boron. To further the separation of rare-earth metals, the magnet dissolved in open and closed systems with nitric acid. In the closed system, the magnet was dissolved in a microwave sample preparation system at different temperatures and pressures and the dissolution process lasted 1 hour. In the open system, the acid dissolution of the magnet was conducted at room temperature and the process lasted 30-40 minutes. To remove the iron in the magnet, oxalic acid was used and precipitated as oxalates under both conditions. For separation of rare earth metals (Nd, Pr and Dy) from magnet waste is used sorption method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dissolution%20of%20the%20magnet" title="dissolution of the magnet">dissolution of the magnet</a>, <a href="https://publications.waset.org/abstracts/search?q=Neodymium%20magnet" title=" Neodymium magnet"> Neodymium magnet</a>, <a href="https://publications.waset.org/abstracts/search?q=rare%20earth%20metals" title=" rare earth metals"> rare earth metals</a>, <a href="https://publications.waset.org/abstracts/search?q=separation" title=" separation"> separation</a>, <a href="https://publications.waset.org/abstracts/search?q=Sorption" title=" Sorption"> Sorption</a> </p> <a href="https://publications.waset.org/abstracts/138763/separation-of-rare-earth-metals-from-e-wastes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138763.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3739</span> Study of Magnetic Properties on the Corrosion Behavior and Influence of Temperature in Permanent Magnet (Nd-Fe-B) Used in PMSM</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Yogal">N. Yogal</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Lehrmann"> C. Lehrmann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of Permanent magnet (PM) is increasing in the Permanent magnet synchronous machines (PMSM) to fulfill the requirement of high efficiency machines in modern industry. PMSM is widely used in industrial application, wind power plant and automotive industry. Since the PMSM are used in different environment condition, the long-term effect of NdFeB-based magnets at high temperatures and corrosion behavior has to be studied due to irreversible loss of magnetic properties. In this paper, the effect of magnetic properties due to corrosion and increasing temperature in the climatic chamber has been presented. The magnetic moment and magnetic field of the magnet were studied experimentally. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20%28PM%29" title="permanent magnet (PM)">permanent magnet (PM)</a>, <a href="https://publications.waset.org/abstracts/search?q=NdFeB" title=" NdFeB"> NdFeB</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20behavior" title=" corrosion behavior"> corrosion behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20effect" title=" temperature effect"> temperature effect</a>, <a href="https://publications.waset.org/abstracts/search?q=Permanent%20magnet%20synchronous%20machine%20%28PMSM%29" title=" Permanent magnet synchronous machine (PMSM)"> Permanent magnet synchronous machine (PMSM)</a> </p> <a href="https://publications.waset.org/abstracts/16482/study-of-magnetic-properties-on-the-corrosion-behavior-and-influence-of-temperature-in-permanent-magnet-nd-fe-b-used-in-pmsm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16482.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3738</span> Magnetic Lines of Force and Diamagnetism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Angel%20P%C3%A9rez%20S%C3%A1nchez">Angel Pérez Sánchez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnet attraction or repulsion is not a product of a strange force from afar but comes from anchored lines of force inside the magnet as if it were reinforced concrete since you can move a small block by taking the steel rods that protrude from its interior. This approach serves as a basis for studying the behavior of diamagnetic materials. The significance of this study is to unify all diamagnetic phenomena: Movement of grapes, cooper approaching a magnet, Magnet levitation, etc., with a single explanation for all these phenomena. The method followed has consisted of observation of hundreds of diamagnetism experiments (in copper, aluminum, grapes, tomatoes, and bismuth), including the creation of own and new experiments and application of logical deduction product of these observations. Approaching a magnet to a hanging grape, Diamagnetism seems to consist not only of a slight repulsion but also of a slight attraction at a small distance. Replacing the grapes with a copper sphere, it behaves like the grape, pushing and pulling a nearby magnet. Diamagnetism could be redefined in the following way: There are materials that don't magnetize their internal structure when approaching a magnet, as ferromagnetic materials do. But they do allow magnetic lines of force to run through its interior, enhancing them without creating their own lines of force. Magnet levitates on superconducting ceramics because magnet gives lines near poles a force superior to what a superconductor can enhance these lines. Little further from the magnet, enhancing of lines by the superconductor is greater than the strength provided by the magnet due to the distance from the magnet's pole. It is this point that defines the magnet's levitation band. The anchoring effect of lines is what ultimately keeps the magnet and superconductor at a certain distance. The magnet seeks to levitate the area in which magnetic lines are stronger near de magnet's poles. Pouring ferrofluid into a magnet, lines of force are observed coming out of the poles. On other occasions, diamagnetic materials simply enhance the lines they receive without moving their position since their own weight is greater than the strength of the enhanced lines. (This is the case with grapes and copper). Magnet and diamagnetic materials look for a place where the lines of force are most enhanced, and this is at a small distance. Once the ideal distance is established, they tend to keep it by pushing or pulling on each other. At a certain distance from the magnet: the power exerted by diamagnetic materials is greater than the force of lines in the vicinity of the magnet's poles. All Diamagnetism phenomena: copper, aluminum, grapes, tomatoes, bismuth levitation, and magnet levitation on superconducting ceramics can now be explained with the support of magnetic lines of force. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diamagnetism" title="diamagnetism">diamagnetism</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20levitation" title=" magnetic levitation"> magnetic levitation</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20lines%20of%20force" title=" magnetic lines of force"> magnetic lines of force</a>, <a href="https://publications.waset.org/abstracts/search?q=enhancing%20magnetic%20lines" title=" enhancing magnetic lines"> enhancing magnetic lines</a> </p> <a href="https://publications.waset.org/abstracts/163614/magnetic-lines-of-force-and-diamagnetism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163614.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3737</span> Comparison of Instantaneous Short Circuit versus Step DC Voltage to Determine PMG Inductances</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Walter%20Evaldo%20Kuchenbecker">Walter Evaldo Kuchenbecker</a>, <a href="https://publications.waset.org/abstracts/search?q=Julio%20Carlos%20Teixeira"> Julio Carlos Teixeira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since efficiency became a challenge to reduce energy consumption of all electrical machines applications, the permanent magnet machine raises up as a better option, because its performance, robustness and simple control. Even though, the electrical machine was developed through analyses of magnetism effect, permanent magnet machines still not well dominated. As permanent magnet machines are becoming popular in most applications, the pressure to standardize this type of electrical machine increases. However, due limited domain, it is still nowadays without any standard to manufacture, test and application. In order to determine an inductance of the machine, a new method is proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20generators%20%28pmg%29" title="permanent magnet generators (pmg)">permanent magnet generators (pmg)</a>, <a href="https://publications.waset.org/abstracts/search?q=synchronous%20machine%20parameters" title=" synchronous machine parameters"> synchronous machine parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20procedures" title=" test procedures"> test procedures</a>, <a href="https://publications.waset.org/abstracts/search?q=inductances" title=" inductances"> inductances</a> </p> <a href="https://publications.waset.org/abstracts/53174/comparison-of-instantaneous-short-circuit-versus-step-dc-voltage-to-determine-pmg-inductances" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3736</span> Sliding Mode Position Control for Permanent Magnet Synchronous Motors Based on Passivity Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jenn-Yih%20Chen">Jenn-Yih Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Bean-Yin%20Lee"> Bean-Yin Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuan-Chuan%20Hsu"> Yuan-Chuan Hsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jui-Cheng%20Lin"> Jui-Cheng Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuang-Chyi%20Lee"> Kuang-Chyi Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a sliding mode control method based on the passivity approach is proposed to control the position of surface-mounted permanent magnet synchronous motors (PMSMs). Firstly, the dynamics of a PMSM was proved to be strictly passive. The position controller with an adaptive law was used to estimate the load torque to eliminate the chattering effects associated with the conventional sliding mode controller. The stability analysis of the overall position control system was carried out by adopting the passivity theorem instead of Lyapunov-type arguments. Finally, experimental results were provided to show that the good position tracking can be obtained, and exhibit robustness in the variations of the motor parameters and load torque disturbances. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20law" title="adaptive law">adaptive law</a>, <a href="https://publications.waset.org/abstracts/search?q=passivity%20theorem" title=" passivity theorem"> passivity theorem</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20synchronous%20motor" title=" permanent magnet synchronous motor"> permanent magnet synchronous motor</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20mode%20control" title=" sliding mode control"> sliding mode control</a> </p> <a href="https://publications.waset.org/abstracts/10734/sliding-mode-position-control-for-permanent-magnet-synchronous-motors-based-on-passivity-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10734.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3735</span> Comparison of the Thermal Characteristics of Induction Motor, Switched Reluctance Motor and Inset Permanent Magnet Motor for Electric Vehicle Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sadeep%20Sasidharan">Sadeep Sasidharan</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20B.%20Isha"> T. B. Isha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modern day electric vehicles require compact high torque/power density motors for electric propulsion. This necessitates proper thermal management of the electric motors. The main focus of this paper is to compare the steady state thermal analysis of a conventional 20 kW 8/6 Switched Reluctance Motor (SRM) with that of an Induction Motor and Inset Permanent Magnet (IPM) motor of the same rating. The goal is to develop a proper thermal model of the three types of models for Finite Element Thermal Analysis. JMAG software is used for the development and simulation of the thermal models. The results show that the induction motor is subjected to more heating when used for electric vehicle application constantly, compared to the SRM and IPM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicles" title="electric vehicles">electric vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=induction%20motor" title=" induction motor"> induction motor</a>, <a href="https://publications.waset.org/abstracts/search?q=inset%20permanent%20magnet%20motor" title=" inset permanent magnet motor"> inset permanent magnet motor</a>, <a href="https://publications.waset.org/abstracts/search?q=loss%20models" title=" loss models"> loss models</a>, <a href="https://publications.waset.org/abstracts/search?q=switched%20reluctance%20motor" title=" switched reluctance motor"> switched reluctance motor</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20analysis" title=" thermal analysis"> thermal analysis</a> </p> <a href="https://publications.waset.org/abstracts/99775/comparison-of-the-thermal-characteristics-of-induction-motor-switched-reluctance-motor-and-inset-permanent-magnet-motor-for-electric-vehicle-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99775.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3734</span> The Design, Control and Dynamic Performance of an Interior Permanent Magnet Synchronous Generator for Wind Power System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olusegun%20Solomon">Olusegun Solomon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes the concept for the design and maximum power point tracking control for an interior permanent magnet synchronous generator wind turbine system. Two design concepts are compared to outline the effect of magnet design on the performance of the interior permanent magnet synchronous generator. An approximate model that includes the effect of core losses has been developed for the machine to simulate the dynamic performance of the wind energy system. An algorithm for Maximum Power Point Tracking control is included to describe the process for maximum power extraction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20synchronous%20generator" title="permanent magnet synchronous generator">permanent magnet synchronous generator</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20power%20system" title=" wind power system"> wind power system</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine" title=" wind turbine"> wind turbine</a> </p> <a href="https://publications.waset.org/abstracts/65956/the-design-control-and-dynamic-performance-of-an-interior-permanent-magnet-synchronous-generator-for-wind-power-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3733</span> Magnet Position Variation of the Electromagnetic Actuation System in a Torsional Scanner</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Loke%20Kean%20Koay">Loke Kean Koay</a>, <a href="https://publications.waset.org/abstracts/search?q=Mani%20Maran%20Ratnam"> Mani Maran Ratnam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A mechanically-resonant torsional spring scanner was developed in a recent study. Various methods were developed to improve the angular displacement of the scanner while maintaining the scanner frequency. However, the effects of rotor magnet radial position on scanner characteristics were not well investigated. In this study, the relationships between the magnet position and the scanner characteristics such as natural frequency, angular displacement and stress level were studied. A finite element model was created and an average deviation of 3.18% was found between the simulation and experimental results, qualifying the simulation results as a guide for further investigations. Three magnet positions on the transverse oscillating suspended plate were investigated by finite element analysis (FEA) and one of the positions were selected as the design position. The magnet position with the longest distance from the twist axis of the mirror was selected since it attains minimum stress level while exceeding the minimum critical flicker frequency and delivering the targeted angular displacement to the scanner. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=torsional%20scanner" title="torsional scanner">torsional scanner</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20optimization" title=" design optimization"> design optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=computer-aided%20design" title=" computer-aided design"> computer-aided design</a>, <a href="https://publications.waset.org/abstracts/search?q=magnet%20position%20variation" title=" magnet position variation"> magnet position variation</a> </p> <a href="https://publications.waset.org/abstracts/10094/magnet-position-variation-of-the-electromagnetic-actuation-system-in-a-torsional-scanner" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10094.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3732</span> Auricular-Magnet Therapy for Treating Diabetes Mellitus, Food Craving, Insomnia, Nausea and Bell’s Palsy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu%20Chen">Yu Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Auricular-magnet therapy is the development of auricular acupuncture. It is a powerful, convenient, and quick result-achieving therapeutic method. This therapy works by using magnetic discs to be placed on acupuncture points on the ears to treat diseases and improve health. In this study, the fundamental principles, indications, and contraindications of this therapy are discussed. Five examples, including reducing blood glucose levels, healing gangrene for diabetes patients, and treating Bell's palsy, are presented. Auricular-magnet therapy is a powerful development in acupuncture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=auricular-magnet%20therapy" title="auricular-magnet therapy">auricular-magnet therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=Bell%E2%80%99s%20palsy" title=" Bell’s palsy"> Bell’s palsy</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes%20mellitus" title=" diabetes mellitus"> diabetes mellitus</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20craving" title=" food craving"> food craving</a>, <a href="https://publications.waset.org/abstracts/search?q=insomnia" title=" insomnia"> insomnia</a>, <a href="https://publications.waset.org/abstracts/search?q=nausea" title=" nausea"> nausea</a>, <a href="https://publications.waset.org/abstracts/search?q=obesity" title=" obesity"> obesity</a> </p> <a href="https://publications.waset.org/abstracts/157155/auricular-magnet-therapy-for-treating-diabetes-mellitus-food-craving-insomnia-nausea-and-bells-palsy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157155.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3731</span> Chaotic Search Optimal Design and Modeling of Permanent Magnet Synchronous Linear Motor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yang%20Yi-Fei">Yang Yi-Fei</a>, <a href="https://publications.waset.org/abstracts/search?q=Luo%20Min-Zhou"> Luo Min-Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Fu-Chun"> Zhang Fu-Chun</a>, <a href="https://publications.waset.org/abstracts/search?q=He%20Nai-Bao"> He Nai-Bao</a>, <a href="https://publications.waset.org/abstracts/search?q=Xing%20Shao-Bang"> Xing Shao-Bang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an electromagnetic finite element model of permanent magnet synchronous linear motor and distortion rate of the air gap flux density waveform is analyzed in detail. By designing the sample space of the parameters, nonlinear regression modeling of the orthogonal experimental design is introduced. We put forward for possible air gap flux density waveform sine electromagnetic scheme. Parameters optimization of the permanent magnet synchronous linear motor is also introduced which is based on chaotic search and adaptation function. Simulation results prove that the pole shifting does not affect the motor back electromotive symmetry based on the structural parameters, it provides a novel way for the optimum design of permanent magnet synchronous linear motor and other engineering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20synchronous%20linear%20motor" title="permanent magnet synchronous linear motor">permanent magnet synchronous linear motor</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=chaotic%20search" title=" chaotic search"> chaotic search</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization%20design" title=" optimization design"> optimization design</a> </p> <a href="https://publications.waset.org/abstracts/48599/chaotic-search-optimal-design-and-modeling-of-permanent-magnet-synchronous-linear-motor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48599.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3730</span> Development of an Analytical Model for a Synchronous Permanent Magnet Generator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Sahbani">T. Sahbani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bouteraa"> M. Bouteraa</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Wamkeue"> R. Wamkeue</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wind Turbine are considered to be one of the more efficient system of energy production nowadays, a reason that leads the main industrial companies in wind turbine construction and researchers in over the world to look for better performance and one of the ways for that is the use of the synchronous permanent magnet generator. In this context, this work is about developing an analytical model that could simulate different situation in which the synchronous generator may go through, and of course this model match perfectly with the numerical and experimental model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MATLAB" title="MATLAB">MATLAB</a>, <a href="https://publications.waset.org/abstracts/search?q=synchronous%20permanent%20magnet%20generator" title=" synchronous permanent magnet generator"> synchronous permanent magnet generator</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine" title=" wind turbine"> wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=analytical%20model" title=" analytical model"> analytical model</a> </p> <a href="https://publications.waset.org/abstracts/23479/development-of-an-analytical-model-for-a-synchronous-permanent-magnet-generator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23479.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">549</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3729</span> Modelling and Detecting the Demagnetization Fault in the Permanent Magnet Synchronous Machine Using the Current Signature Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yassa%20Nacera">Yassa Nacera</a>, <a href="https://publications.waset.org/abstracts/search?q=Badji%20Abderrezak"> Badji Abderrezak</a>, <a href="https://publications.waset.org/abstracts/search?q=Saidoune%20Abdelmalek"> Saidoune Abdelmalek</a>, <a href="https://publications.waset.org/abstracts/search?q=Houassine%20Hamza"> Houassine Hamza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several kinds of faults can occur in a permanent magnet synchronous machine (PMSM) systems: bearing faults, electrically short/open faults, eccentricity faults, and demagnetization faults. Demagnetization fault means that the strengths of permanent magnets (PM) in PMSM decrease, and it causes low output torque, which is undesirable for EVs. The fault is caused by physical damage, high-temperature stress, inverse magnetic field, and aging. Motor current signature analysis (MCSA) is a conventional motor fault detection method based on the extraction of signal features from stator current. a simulation model of the PMSM under partial demagnetization and uniform demagnetization fault was established, and different degrees of demagnetization fault were simulated. The harmonic analyses using the Fast Fourier Transform (FFT) show that the fault diagnosis method based on the harmonic wave analysis is only suitable for partial demagnetization fault of the PMSM and does not apply to uniform demagnetization fault of the PMSM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet" title="permanent magnet">permanent magnet</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnosis" title=" diagnosis"> diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=demagnetization" title=" demagnetization"> demagnetization</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a> </p> <a href="https://publications.waset.org/abstracts/182275/modelling-and-detecting-the-demagnetization-fault-in-the-permanent-magnet-synchronous-machine-using-the-current-signature-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182275.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3728</span> Novel Stator Structure Switching Flux Permanent Magnet Motor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mengjie%20Shen">Mengjie Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianhua%20Wu"> Jianhua Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun%20Gan"> Chun Gan</a>, <a href="https://publications.waset.org/abstracts/search?q=Lifeng%20Zhang"> Lifeng Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Qingguo%20Sun"> Qingguo Sun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Switching flux permanent magnet (SFPM) motor has doubly salient structure which lead to high torque ripple, and also has cogging torque as a permanent magnet motor. Torque ripple and cogging torque have impact on the motor performance. A novel stator structure SFPM motor is presented in this paper. A triangular shape silicon steel sheet is put in the stator slot to reduce the torque ripple, which will not deteriorate the cogging torque. The simulation of proposed motor is analyzed using 2-D finite element method (FEM) based on Ansoft and Simplorer software, and the result show a good performance of the proposed SFPM motor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=switching%20flux%20permanent%20magnet%20%28SFPM%29%20motor" title="switching flux permanent magnet (SFPM) motor">switching flux permanent magnet (SFPM) motor</a>, <a href="https://publications.waset.org/abstracts/search?q=torque%20ripple" title=" torque ripple"> torque ripple</a>, <a href="https://publications.waset.org/abstracts/search?q=Ansoft" title=" Ansoft"> Ansoft</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a> </p> <a href="https://publications.waset.org/abstracts/20010/novel-stator-structure-switching-flux-permanent-magnet-motor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20010.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">570</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3727</span> Experimental Implementation of Model Predictive Control for Permanent Magnet Synchronous Motor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelsalam%20A.%20Ahmed">Abdelsalam A. Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fast speed drives for Permanent Magnet Synchronous Motor (PMSM) is a crucial performance for the electric traction systems. In this paper, PMSM is drived with a Model-based Predictive Control (MPC) technique. Fast speed tracking is achieved through optimization of the DC source utilization using MPC. The technique is based on predicting the optimum voltage vector applied to the driver. Control technique is investigated by comparing to the cascaded PI control based on Space Vector Pulse Width Modulation (SVPWM). MPC and SVPWM-based FOC are implemented with the TMS320F2812 DSP and its power driver circuits. The designed MPC for a PMSM drive is experimentally validated on a laboratory test bench. The performances are compared with those obtained by a conventional PI-based system in order to highlight the improvements, especially regarding speed tracking response. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20synchronous%20motor" title="permanent magnet synchronous motor">permanent magnet synchronous motor</a>, <a href="https://publications.waset.org/abstracts/search?q=model-based%20predictive%20control" title=" model-based predictive control"> model-based predictive control</a>, <a href="https://publications.waset.org/abstracts/search?q=DC%20source%20utilization" title=" DC source utilization"> DC source utilization</a>, <a href="https://publications.waset.org/abstracts/search?q=cascaded%20PI%20control" title=" cascaded PI control"> cascaded PI control</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20vector%20pulse%20width%20modulation" title=" space vector pulse width modulation"> space vector pulse width modulation</a>, <a href="https://publications.waset.org/abstracts/search?q=TMS320F2812%20DSP" title=" TMS320F2812 DSP"> TMS320F2812 DSP</a> </p> <a href="https://publications.waset.org/abstracts/26429/experimental-implementation-of-model-predictive-control-for-permanent-magnet-synchronous-motor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26429.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">644</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3726</span> Performance Assessment of a Variable-Flux Permanent-Magnet Memory Motor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michel%20Han">Michel Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Christophe%20Besson"> Christophe Besson</a>, <a href="https://publications.waset.org/abstracts/search?q=Alain%20Savary"> Alain Savary</a>, <a href="https://publications.waset.org/abstracts/search?q=Yvan%20Becher"> Yvan Becher</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The variable flux permanent magnet synchronous motor (VF-PMSM), also called "Memory Motor", is a new generation of motor capable of modifying the magnetization state with short pulses of current during operation or standstill. The impact of such operation is the expansion of the operating range in the torque-speed characteristic and an improvement in energy efficiency at high-speed in comparison to conventional permanent magnet synchronous machines (PMSMs). This paper reviews the operating principle and the unique features of the proposed memory motor. The benefits of this concept are highlighted by comparing the performance of the rotor of the VF-PMSM to that of two PM rotors that are typically found in the industry. The investigation emphasizes the properties of the variable magnetization and presents the comparison of the torque-speed characteristic with the capability of loss reduction in a VF-PMSM by means of experimental results, especially when tests are conducted under identical conditions for each rotor (same stator, same inverter and same experimental setup). The experimental results demonstrated that the VF-PMSM gives an additional degree of freedom to optimize the efficiency over a wide speed range. Thus, with a design easy to manufacture and with the possibility of controlling the magnetization and the demagnetization of the magnets during operations, the VF-PMSM can be interesting for various applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=efficiency" title="efficiency">efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetization%20state" title=" magnetization state"> magnetization state</a>, <a href="https://publications.waset.org/abstracts/search?q=memory%20motors" title=" memory motors"> memory motors</a>, <a href="https://publications.waset.org/abstracts/search?q=performances" title=" performances"> performances</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent-magnet" title=" permanent-magnet"> permanent-magnet</a>, <a href="https://publications.waset.org/abstracts/search?q=synchronous%20machine" title=" synchronous machine"> synchronous machine</a>, <a href="https://publications.waset.org/abstracts/search?q=variable-flux" title=" variable-flux"> variable-flux</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20magnetization" title=" variable magnetization"> variable magnetization</a>, <a href="https://publications.waset.org/abstracts/search?q=wide%20speed%20application" title=" wide speed application"> wide speed application</a> </p> <a href="https://publications.waset.org/abstracts/100729/performance-assessment-of-a-variable-flux-permanent-magnet-memory-motor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100729.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3725</span> Temperature Rises Characteristics of Distinct Double-Sided Flat Permanent Magnet Linear Generator for Free Piston Engines for Hybrid Vehicles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Rahama%20Adam%20Hamid">Ismail Rahama Adam Hamid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the development of a thermal model for a flat, double-sided linear generator designed for use in free-piston engines. The study conducted in this paper examines the influence of temperature on the performance of the permeant magnet linear generator, an integral and pivotal component within the system. This research places particular emphasis on the Neodymium Iron Boron (NdFeB) permanent magnet, which serves as a source of magnetic field for the linear generator. In this study, an internal combustion engine that tends to produce heat is connected to a generator. Considering the temperatures rise from both the combustion process and the thermal contributions of current-carrying conductors and frictional forces. Utilizing Computational Fluid Dynamics (CFD) method, a thermal model of the (NdFeB) magnet within the linear generator is constructed and analyzed. Furthermore, the temperature field is examined to ensure that the linear generator operates under stable conditions without the risk of demagnetization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=free%20piston%20engine" title="free piston engine">free piston engine</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet" title=" permanent magnet"> permanent magnet</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20generator" title=" linear generator"> linear generator</a>, <a href="https://publications.waset.org/abstracts/search?q=demagnetization" title=" demagnetization"> demagnetization</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/185409/temperature-rises-characteristics-of-distinct-double-sided-flat-permanent-magnet-linear-generator-for-free-piston-engines-for-hybrid-vehicles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">56</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3724</span> CFD-Parametric Study in Stator Heat Transfer of an Axial Flux Permanent Magnet Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Rasekh">Alireza Rasekh</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Sergeant"> Peter Sergeant</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Vierendeels"> Jan Vierendeels</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper copes with the numerical simulation for convective heat transfer in the stator disk of an axial flux permanent magnet (AFPM) electrical machine. Overheating is one of the main issues in the design of AFMPs, which mainly occurs in the stator disk, so that it needs to be prevented. A rotor-stator configuration with 16 magnets at the periphery of the rotor is considered. Air is allowed to flow through openings in the rotor disk and channels being formed between the magnets and in the gap region between the magnets and the stator surface. The rotating channels between the magnets act as a driving force for the air flow. The significant non-dimensional parameters are the rotational Reynolds number, the gap size ratio, the magnet thickness ratio, and the magnet angle ratio. The goal is to find correlations for the Nusselt number on the stator disk according to these non-dimensional numbers. Therefore, CFD simulations have been performed with the multiple reference frame (MRF) technique to model the rotary motion of the rotor and the flow around and inside the machine. A minimization method is introduced by a pattern-search algorithm to find the appropriate values of the reference temperature. It is found that the correlations are fast, robust and is capable of predicting the stator heat transfer with a good accuracy. The results reveal that the magnet angle ratio diminishes the stator heat transfer, whereas the rotational Reynolds number and the magnet thickness ratio improve the convective heat transfer. On the other hand, there a certain gap size ratio at which the stator heat transfer reaches a maximum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AFPM" title="AFPM">AFPM</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=magnet%20parameters" title=" magnet parameters"> magnet parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=stator%20heat%20transfer" title=" stator heat transfer"> stator heat transfer</a> </p> <a href="https://publications.waset.org/abstracts/56746/cfd-parametric-study-in-stator-heat-transfer-of-an-axial-flux-permanent-magnet-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3723</span> Analysis of Effects of Magnetic Slot Wedges on Characteristics of Permanent Magnet Synchronous Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Ladghem%20Chikouche">B. Ladghem Chikouche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The influence of slot wedges permeability on the electromagnetic performance of three-phase permanent magnet synchronous machine is investigated in this paper. It is shown that the back-EMF waveform, electromagnetic torque and electromagnetic torque ripple are all significantly affected by slot wedges permeability. The paper presents an accurate analytical subdomain model and confirmed by finite-element analyses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exact%20analytical%20calculation" title="exact analytical calculation">exact analytical calculation</a>, <a href="https://publications.waset.org/abstracts/search?q=finite-element%20method" title=" finite-element method"> finite-element method</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field%20distribution" title=" magnetic field distribution"> magnetic field distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20machines%20performance" title=" permanent magnet machines performance"> permanent magnet machines performance</a>, <a href="https://publications.waset.org/abstracts/search?q=stator%20slot%20wedges%20permeability" title=" stator slot wedges permeability"> stator slot wedges permeability</a> </p> <a href="https://publications.waset.org/abstracts/43206/analysis-of-effects-of-magnetic-slot-wedges-on-characteristics-of-permanent-magnet-synchronous-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43206.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3722</span> Reliability Enhancement by Parameter Design in Ferrite Magnet Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Won%20Jung">Won Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Wan%20Emri"> Wan Emri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ferrite magnet is widely used in many automotive components such as motors and alternators. Magnets used inside the components must be in good quality to ensure the high level of performance. The purpose of this study is to design input parameters that optimize the ferrite magnet production process to ensure the quality and reliability of manufactured products. Design of Experiments (DOE) and Statistical Process Control (SPC) are used as mutual supplementations to optimize the process. DOE and SPC are quality tools being used in the industry to monitor and improve the manufacturing process condition. These tools are practically used to maintain the process on target and within the limits of natural variation. A mixed Taguchi method is utilized for optimization purpose as a part of DOE analysis. SPC with proportion data is applied to assess the output parameters to determine the optimal operating conditions. An example of case involving the monitoring and optimization of ferrite magnet process was presented to demonstrate the effectiveness of this approach. Through the utilization of these tools, reliable magnets can be produced by following the step by step procedures of proposed framework. One of the main contributions of this study was producing the crack free magnets by applying the proposed parameter design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ferrite%20magnet" title="ferrite magnet">ferrite magnet</a>, <a href="https://publications.waset.org/abstracts/search?q=crack" title=" crack"> crack</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20optimization" title=" process optimization"> process optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a> </p> <a href="https://publications.waset.org/abstracts/14217/reliability-enhancement-by-parameter-design-in-ferrite-magnet-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14217.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">517</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3721</span> Sensitivity Analysis of External-Rotor Permanent Magnet Assisted Synchronous Reluctance Motor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hadi%20Aghazadeh">Hadi Aghazadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Ebrahim%20Afjei"> Seyed Ebrahim Afjei</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Siadatan"> Alireza Siadatan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a proper approach is taken to assess a set of the most effective rotor design parameters for an external-rotor permanent magnet assisted synchronous reluctance motor (PMaSynRM) and therefore to tackle the design complexity of the rotor structure. There are different advantages for introducing permanent magnets into the rotor flux barriers, some of which are to saturate the rotor iron ribs, to increase the motor torque density and to improve the power factor. Moreover, the d-axis and q-axis inductances are of great importance to simultaneously achieve maximum developed torque and low torque ripple. Therefore, sensitivity analysis of the rotor geometry of an 8-pole external-rotor permanent magnet assisted synchronous reluctance motor is performed. Several magnetically accurate finite element analyses (FEA) are conducted to characterize the electromagnetic performance of the motor. The analyses validate torque and power factor equations for the proposed external-rotor motor. Based upon the obtained results and due to an additional term, permanent magnet torque, added to the reluctance torque, the electromagnetic torque of the PMaSynRM increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20assisted%20synchronous%20reluctance%20motor" title="permanent magnet assisted synchronous reluctance motor">permanent magnet assisted synchronous reluctance motor</a>, <a href="https://publications.waset.org/abstracts/search?q=flux%20barrier" title=" flux barrier"> flux barrier</a>, <a href="https://publications.waset.org/abstracts/search?q=flux%20carrier" title=" flux carrier"> flux carrier</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20torque" title=" electromagnetic torque"> electromagnetic torque</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20power%20factor" title=" and power factor"> and power factor</a> </p> <a href="https://publications.waset.org/abstracts/85367/sensitivity-analysis-of-external-rotor-permanent-magnet-assisted-synchronous-reluctance-motor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85367.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3720</span> The Effect of Simultaneous Application of Laser Beam and Magnet in Treatment of Intervertebral Disc Herniation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Moghtaderi">Alireza Moghtaderi</a>, <a href="https://publications.waset.org/abstracts/search?q=Negin%20Khakpour"> Negin Khakpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Disc Herniation is a common complication in the society and it is one of the main reasons for referring to physical medicine and rehabilitation clinics. Despite of various methods proposed for treatingthis disease, still there is disagreement on success of these methods especially in non-surgical methods, and thus current study aims at determining effect of laser beam and magnet on treatment of Intervertebral Disc Herniation. During a clinical trial study, 80 patients with Intervertebral Disc Herniation underwent a combined package of treatment including magnet, laser beam, PRP and Prolotherapy during 6 months. Average age of patients was 51.25 ± 10.7 with range of 25 – 71 years. 30 men (37.5%) and 50 women (62.5%) took part in the study. average weight of patients was 64.3 ± 7.2 with range of 49 – 79 kg. highest level of Disc Herniation was L5 – S1 with frequency of 17 cases (21.3%). Disc Herniation was severe in 30 cases before treatment, but it reduced to 3 casesafter treatment. This study indicates effect of combined treatment using non-invasive laser beam and magnet therapy on disco genic diseases and mechanical pains of spine is highly effective. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hallux" title="hallux">hallux</a>, <a href="https://publications.waset.org/abstracts/search?q=valgus" title=" valgus"> valgus</a>, <a href="https://publications.waset.org/abstracts/search?q=botulinum%20toxin%20a" title=" botulinum toxin a"> botulinum toxin a</a>, <a href="https://publications.waset.org/abstracts/search?q=pain" title=" pain"> pain</a> </p> <a href="https://publications.waset.org/abstracts/149944/the-effect-of-simultaneous-application-of-laser-beam-and-magnet-in-treatment-of-intervertebral-disc-herniation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149944.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3719</span> Static Eccentricity Fault Diagnosis in Synchronous Reluctance Motor and Permanent Magnet Assisted Synchronous Reluctance Motor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Naeimi">M. Naeimi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Aghazadeh"> H. Aghazadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Afjei"> E. Afjei</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Siadatan"> A. Siadatan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a novel view of air gap magnetic field analysis of synchronous reluctance motor and permanent magnet assisted synchronous reluctance motor under static eccentricity to provide the precise fault diagnosis based on three-dimensional finite element method is presented. Analytical nature of this method makes it possible to simulate reliable and precise model by considering the end effects and axial fringing effects. The results of the three-dimensional finite element analysis of synchronous reluctance motor and permanent magnet synchronous reluctance motor such as flux linkage, flux density, and compression both of SynRM and PM-SynRM for various eccentric motor conditions are obtained and analyzed. These results present useful information regarding to the detection of static eccentricity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=synchronous%20reluctance%20motor%20%28SynRM%29" title="synchronous reluctance motor (SynRM)">synchronous reluctance motor (SynRM)</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20assisted%20synchronous%20reluctance%20motor%20%28PMaSynRM%29" title=" permanent magnet assisted synchronous reluctance motor (PMaSynRM)"> permanent magnet assisted synchronous reluctance motor (PMaSynRM)</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20eccentricity" title=" static eccentricity"> static eccentricity</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20analysis" title=" fault analysis"> fault analysis</a> </p> <a href="https://publications.waset.org/abstracts/87636/static-eccentricity-fault-diagnosis-in-synchronous-reluctance-motor-and-permanent-magnet-assisted-synchronous-reluctance-motor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87636.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3718</span> Diagnosis Of Static, Dynamic, And Mixed Eccentricity In Line Start Permanent Magnet Synchronous Motor By Using FEM </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Moustafa%20Mahmoud%20Sedky">Mohamed Moustafa Mahmoud Sedky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In line start permanent magnet synchronous motor, eccentricity is a common fault that can make it necessary to remove the motor from the production line. However, because the motor may be inaccessible, diagnosing the fault is not easy. This paper presents an FEM that identifies different models, static eccentricity, dynamic eccentricity, and mixed eccentricity, at no load and full load. The method overcomes the difficulty of applying FEMs to transient behavior. It simulates motor speed, torque and flux density distribution along the air gap for SE, DE, and ME. This paper represents the various effects of different eccentricities types on the transient performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=line%20start%20permanent%20magnet" title="line start permanent magnet">line start permanent magnet</a>, <a href="https://publications.waset.org/abstracts/search?q=synchronous%20machine" title=" synchronous machine"> synchronous machine</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20eccentricity" title=" static eccentricity"> static eccentricity</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20eccentricity" title=" dynamic eccentricity"> dynamic eccentricity</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20eccentricity" title=" mixed eccentricity"> mixed eccentricity</a> </p> <a href="https://publications.waset.org/abstracts/4065/diagnosis-of-static-dynamic-and-mixed-eccentricity-in-line-start-permanent-magnet-synchronous-motor-by-using-fem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4065.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3717</span> A Strategy of Direct Power Control for PWM Rectifier Reducing Ripple in Instantaneous Power</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Mohammed%20Chikouche">T. Mohammed Chikouche</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Hartani"> K. Hartani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Based on the analysis of basic direct torque control, a parallel master slave for four in-wheel permanent magnet synchronous motors (PMSM) fed by two three phase inverters used in electric vehicle is proposed in this paper. A conventional system with multi-inverter and multi-machine comprises a three phase inverter for each machine to be controlled. Another approach consists in using only one three-phase inverter to supply several permanent magnet synchronous machines. A modified direct torque control (DTC) algorithm is used for the control of the bi-machine traction system. Simulation results show that the proposed control strategy is well adapted for the synchronism of this system and provide good speed tracking performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle" title="electric vehicle">electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-machine%20single-inverter%20system" title=" multi-machine single-inverter system"> multi-machine single-inverter system</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-machine%20multi-inverter%20control" title=" multi-machine multi-inverter control"> multi-machine multi-inverter control</a>, <a href="https://publications.waset.org/abstracts/search?q=in-wheel%20motor" title=" in-wheel motor"> in-wheel motor</a>, <a href="https://publications.waset.org/abstracts/search?q=master-slave%20control" title=" master-slave control"> master-slave control</a> </p> <a href="https://publications.waset.org/abstracts/87696/a-strategy-of-direct-power-control-for-pwm-rectifier-reducing-ripple-in-instantaneous-power" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87696.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3716</span> Magnetic Field Analysis of External Rotor Permanent-Magnet Synchronous Motors with Non Magnetic Rotor Core</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mabrak%20Samir">Mabrak Samir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The motor performance created by permanent magnetic in a slotless air-gap of a surface mounted permanent-magnet synchronous motor with non magnetic rotor and either sinusoidal or mixed (quasi-Halbatch) magnetization is presented in this paper using polar coordinates. The analysis works for both internal and external rotor motor topologies, The effect of stator slots is introduced by modulating the magnetic field distribution in the slotless stator by the complex relative air-gap permeance, calculated from the conformal transformation of the slot geometry. We compare predicted results of flux density distribution and cogging torque with those obtained by finite-element analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air-cored" title="air-cored">air-cored</a>, <a href="https://publications.waset.org/abstracts/search?q=cogging%20torque" title=" cogging torque"> cogging torque</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20magnetic%20field" title=" finite element magnetic field"> finite element magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent-magnet" title=" permanent-magnet"> permanent-magnet</a> </p> <a href="https://publications.waset.org/abstracts/43476/magnetic-field-analysis-of-external-rotor-permanent-magnet-synchronous-motors-with-non-magnetic-rotor-core" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43476.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3715</span> Magnetic End Leakage Flux in a Spoke Type Rotor Permanent Magnet Synchronous Generator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Petter%20Eklund">Petter Eklund</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonathan%20Sj%C3%B6lund"> Jonathan Sjölund</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandra%20Eriksson"> Sandra Eriksson</a>, <a href="https://publications.waset.org/abstracts/search?q=Mats%20Leijon"> Mats Leijon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The spoke type rotor can be used to obtain magnetic flux concentration in permanent magnet machines. This allows the air gap magnetic flux density to exceed the remanent flux density of the permanent magnets but gives problems with leakage fluxes in the magnetic circuit. The end leakage flux of one spoke type permanent magnet rotor design is studied through measurements and finite element simulations. The measurements are performed in the end regions of a 12 kW prototype generator for a vertical axis wind turbine. The simulations are made using three dimensional finite elements to calculate the magnetic field distribution in the end regions of the machine. Also two dimensional finite element simulations are performed and the impact of the two dimensional approximation is studied. It is found that the magnetic leakage flux in the end regions of the machine is equal to about 20% of the flux in the permanent magnets. The overestimation of the performance by the two dimensional approximation is quantified and a curve-fitted expression for its behavior is suggested. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=end%20effects" title="end effects">end effects</a>, <a href="https://publications.waset.org/abstracts/search?q=end%20leakage%20flux" title=" end leakage flux"> end leakage flux</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20machine" title=" permanent magnet machine"> permanent magnet machine</a>, <a href="https://publications.waset.org/abstracts/search?q=spoke%20type%20rotor" title=" spoke type rotor"> spoke type rotor</a> </p> <a href="https://publications.waset.org/abstracts/65632/magnetic-end-leakage-flux-in-a-spoke-type-rotor-permanent-magnet-synchronous-generator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=conventional%20magnet&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=conventional%20magnet&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=conventional%20magnet&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=conventional%20magnet&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=conventional%20magnet&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=conventional%20magnet&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=conventional%20magnet&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=conventional%20magnet&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=conventional%20magnet&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=conventional%20magnet&page=124">124</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=conventional%20magnet&page=125">125</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=conventional%20magnet&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>