CINXE.COM

Search results for: stem cells

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: stem cells</title> <meta name="description" content="Search results for: stem cells"> <meta name="keywords" content="stem cells"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="stem cells" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="stem cells"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3705</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: stem cells</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3525</span> Properties of Adipose Tissue Derived Mesenchymal Stem Cells with Long-Term Cryopreservation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jienny%20Lee"> Jienny Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=In-Soo%20Cho"> In-Soo Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang-Ho%20Cha"> Sang-Ho Cha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Adult mesenchymal stem cells (MSCs) have been investigated using preclinical approaches for tissue regeneration. Porcine MSCs (pMSCs) are capable of growing and attaching to plastic with a fibroblast-like morphology and then differentiating into bone, adipose, and cartilage tissues <em>in vitro</em>. This study was conducted to investigate the proliferating abilities, differentiation potentials, and multipotency of miniature pig adipose tissue-derived MSCs (mpAD-MSCs) with or without long-term cryopreservation, considering that cryostorage has the potential for use in clinical applications. After confirming the characteristics of the mpAD-MSCs, we examined the effect of long-term cryopreservation (&gt; 2 years) on expression of cell surface markers (CD34, CD90 and CD105), proliferating abilities (cumulative population doubling level, doubling time, colony-forming unit, and MTT assay) and differentiation potentials into mesodermal cell lineages. As a result, the expression of cell surface markers is similar between thawed and fresh mpAD-MSCs. However, long-term cryopreservation significantly lowered the differentiation potentials (adipogenic, chondrogenic, and osteogenic) of mpAD-MSCs. When compared with fresh mpAD-MSCs, thawed mpAD-MSCs exhibited lower expression of mesodermal cell lineage-related genes such as peroxisome proliferator-activated receptor-g2, lipoprotein lipase, collagen Type II alpha 1, osteonectin, and osteocalcin. Interestingly, long-term cryostoraged mpAD-MSCs exhibited significantly higher cell viability than the fresh mpAD-MSCs. Long-term cryopreservation induced a 30% increase in the cell viability of mpAD-MSCs when compared with the fresh mpAD-MSCs at 5 days after thawing. However, long-term cryopreservation significantly lowered expression of stemness markers such as Oct3/4, Sox2, and Nanog. Furthermore, long-term cryopreservation negatively affected expression of senescence-associated genes such as telomerase reverse transcriptase and heat shock protein 90 of mpAD-MSCs when compared with the fresh mpAD-MSCs. The results from this study might be important for the successful application of MSCs in clinical trials after long-term cryopreservation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mesenchymal%20stem%20cells" title="mesenchymal stem cells">mesenchymal stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=cryopreservation" title=" cryopreservation"> cryopreservation</a>, <a href="https://publications.waset.org/abstracts/search?q=stemness" title=" stemness"> stemness</a>, <a href="https://publications.waset.org/abstracts/search?q=senescence" title=" senescence"> senescence</a> </p> <a href="https://publications.waset.org/abstracts/45070/properties-of-adipose-tissue-derived-mesenchymal-stem-cells-with-long-term-cryopreservation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45070.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3524</span> Using Systems Theory and Collective Impact Approaches to Increase the Retention and Success of University Student Stem Majors </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Araceli%20Mart%C3%ADnez%20Ortiz">Araceli Martínez Ortiz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An educational research effort is analyzed using systems theory to document the power of collective impact when addressing multiple factors contributing towards the retention of students majoring in science, technology, engineering and mathematics (STEM) academic programs. This research promotes understanding on how networked communities may work effectively toward a shared vision and mutually aligned activities that result in sustained, large scale change. The actions of a team of researchers in their third year of collaboration are presented to describe a model that positively aligns work efforts resulting in greater total gains. The goals of the multiple programs managed by the funded program team are to: 1) expand the number of students who choose to study a STEM field of study; 2) promote student collaborative learning; 3) support faculty understanding of the funds of knowledge of diverse students and 4) establish innovative and robust STEM education research that will lead to the development of nationally replicable, scalable models for broadening participation in STEM. The impacts of this research effort are measured through quantitative statistical analysis of the changes in second-year STEM undergraduate student retention rates and representation rates of women, Hispanics and African American STEM majors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=collaborative%20impact" title="collaborative impact">collaborative impact</a>, <a href="https://publications.waset.org/abstracts/search?q=diversity" title=" diversity"> diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=student%20retention" title=" student retention"> student retention</a>, <a href="https://publications.waset.org/abstracts/search?q=systems%20theory" title=" systems theory"> systems theory</a>, <a href="https://publications.waset.org/abstracts/search?q=STEM%20education" title=" STEM education"> STEM education</a> </p> <a href="https://publications.waset.org/abstracts/71203/using-systems-theory-and-collective-impact-approaches-to-increase-the-retention-and-success-of-university-student-stem-majors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71203.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3523</span> Comparative Study between Mesenchymal Stem Cells and Regulatory T-Cells in Macrophage Polarization for Organ Transplant Tolerance: In Vitro Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vijaya%20Madhuri%20Devraj">Vijaya Madhuri Devraj</a>, <a href="https://publications.waset.org/abstracts/search?q=Swarnalatha%20Guditi"> Swarnalatha Guditi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kiran%20Kumar%20Bokara"> Kiran Kumar Bokara</a>, <a href="https://publications.waset.org/abstracts/search?q=Gangadhar%20Taduri"> Gangadhar Taduri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cell-based strategies may open therapeutic approaches that promote tolerance through manipulation of macrophages to increase long-term transplant survival rates and minimize side effects of the current immune suppressive regimens. The aim of the present study was, therefore, to test and compare the therapeutic potential of MSC and Tregs on macrophage polarization to develop an alternate cell-based treatment option in kidney transplantation. In the current protocol, macrophages from kidney transplant recipients with graft dysfunction were co-cultured with MSCs and Treg cells with and without cell-cell contact on transwell plates, further to quantitatively assess macrophage polarization in response to MSC and Treg treatment over time, M1 and M2 cell surface markers were used. Additionally, multiple soluble analytes were analyzed in cell supernatant by using bead-based immunoassays. Furthermore, to confirm our findings, gene expression analysis was done. MSCs induced the formation of M2 macrophages more than Tregs when macrophages M0 were cultured in transwell without cell contact. From this, we deduced the mechanism that soluble factors present in the MSCs condition media are involved in skewing of macrophages towards type 2 macrophages; similarly, in co-culture with cell-cell contact, MSCs resulted in more M2 type macrophages than Tregs. And an important finding of this study is the combination of both MSC-Treg showed significantly effective and consistent results in both with and without cell contact setups. Hence, it is suggestive to prefer MSCs over Tregs for secretome-based therapy and a combination of both for either therapy for effective transplantation outcomes. Our findings underline a key role of Tregs and MSCs in promoting macrophage polarization towards anti-inflammatory type. The study has great importance in prolongation of allograft and patient survival without any rejection by cell-based therapy, which induce self-tolerance and controlling infection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graft%20rejection" title="graft rejection">graft rejection</a>, <a href="https://publications.waset.org/abstracts/search?q=graft%20tolerance" title=" graft tolerance"> graft tolerance</a>, <a href="https://publications.waset.org/abstracts/search?q=macrophage%20polarization" title=" macrophage polarization"> macrophage polarization</a>, <a href="https://publications.waset.org/abstracts/search?q=mesenchymal%20stem%20cells" title=" mesenchymal stem cells"> mesenchymal stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=regulatory%20T%20cells" title=" regulatory T cells"> regulatory T cells</a>, <a href="https://publications.waset.org/abstracts/search?q=transplant%20immunology" title=" transplant immunology"> transplant immunology</a> </p> <a href="https://publications.waset.org/abstracts/155631/comparative-study-between-mesenchymal-stem-cells-and-regulatory-t-cells-in-macrophage-polarization-for-organ-transplant-tolerance-in-vitro-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155631.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3522</span> Electrospinning of Nanofibrous Meshes and Surface-Modification for Biomedical Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyuk%20Sang%20Yoo">Hyuk Sang Yoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%20Ju%20Son"> Young Ju Son</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Mao"> Wei Mao</a>, <a href="https://publications.waset.org/abstracts/search?q=Myung%20Gu%20Kang"> Myung Gu Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sol%20Lee"> Sol Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biomedical applications of electrospun nanofibrous meshes have been received tremendous attentions because of their unique structures and versatilities as biomaterials. Incorporation of growth factors in fibrous meshes can be performed by surface-modification and encapsulation. Those growth factors stimulate differentiation and proliferation of specific types of cells and thus lead tissue regenerations of specific cell types. Topographical cues of electrospun nanofibrous meshes also increase differentiation of specific cell types according to alignments of fibrous structures. Wound healing treatments of diabetic ulcers were performed using nanofibrous meshes encapsulating multiple growth factors. Aligned nanofibrous meshes and those with random configuration were compared for differentiating mesenchymal stem cells into neuronal cells. Thus, nanofibrous meshes can be applied to drug delivery carriers and matrix for promoting cellular proliferation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanofiber" title="nanofiber">nanofiber</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue" title=" tissue"> tissue</a>, <a href="https://publications.waset.org/abstracts/search?q=mesh" title=" mesh"> mesh</a>, <a href="https://publications.waset.org/abstracts/search?q=drug" title=" drug"> drug</a> </p> <a href="https://publications.waset.org/abstracts/65023/electrospinning-of-nanofibrous-meshes-and-surface-modification-for-biomedical-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65023.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3521</span> Epigenetics Regulation Play Role in the Pathogenesis of Adipose Tissue Disorder, Lipedema</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Musarat%20Ishaq">Musarat Ishaq</a>, <a href="https://publications.waset.org/abstracts/search?q=Tara%20Karnezis"> Tara Karnezis</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramin%20Shayan"> Ramin Shayan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lipedema, a poorly understood chronic disease of adipose hyper-deposition, is often mistaken for obesity and causes significant impairment to mobility and quality-of-life. To identify molecular mechanisms underpinning lipedema, we employed comprehensive omics-based comparative analyses of whole tissue, adipocyte precursors (adipose-derived stem cells (ADSCs)), and adipocytes from patients with or without lipedema. Transcriptional profiling revealed significant differences in lipedema tissue, adipocytes, and ADSCs, with altered levels of mRNAs involved inproliferation and cell adhesion. One highly up-regulated gene in lipedema adipose tissue, adipocytes and ADSCs, ZIC4, encodes Zinc Finger Protein ZIC 4, a class of transcription factor which may be involved in regulating metabolism and adipogenesis. ZIC4 inhibition impaired the adipogenesis of ADSCs into mature adipocytes. Epigenetic regulation study revealed overexpression of ZIC4 is involved in decreased promoter DNA methylation and subsequent decrease in adipogenesis. These epigenetic modifications can alter adipocytes microenvironment and adipocytes differentiation. Our study show that epigenetic events regulate the ability of ADSCs to commit and differentiate into mature adipocytes by modulating ZIC4. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lipedema" title="lipedema">lipedema</a>, <a href="https://publications.waset.org/abstracts/search?q=adipose-derived%20stem%20cells" title=" adipose-derived stem cells"> adipose-derived stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=adipose%20tisue" title=" adipose tisue"> adipose tisue</a>, <a href="https://publications.waset.org/abstracts/search?q=adipocytes" title=" adipocytes"> adipocytes</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20finger%20protein" title=" zinc finger protein"> zinc finger protein</a>, <a href="https://publications.waset.org/abstracts/search?q=epigenetic" title=" epigenetic"> epigenetic</a> </p> <a href="https://publications.waset.org/abstracts/143812/epigenetics-regulation-play-role-in-the-pathogenesis-of-adipose-tissue-disorder-lipedema" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143812.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3520</span> Targeting Glucocorticoid Receptor Eliminate Dormant Chemoresistant Cancer Stem Cells in Glioblastoma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aoxue%20Yang">Aoxue Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Weili%20Tian"> Weili Tian</a>, <a href="https://publications.waset.org/abstracts/search?q=Haikun%20Liu"> Haikun Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Brain tumor stem cells (BTSCs) are resistant to therapy and give rise to recurrent tumors. These rare and elusive cells are likely to disseminate during cancer progression, and some may enter dormancy, remaining viable but not increasing. The identification of dormant BTSCs is thus necessary to design effective therapies for glioblastoma (GBM) patients. Glucocorticoids (GCs) are used to treat GBM-associated edema. However, glucocorticoids participate in the physiological response to psychosocial stress, linked to poor cancer prognosis. This raises concern that glucocorticoids affect the tumor and BTSCs. Identifying markers specifically expressed by brain tumor stem cells (BTSCs) may enable specific therapies that spare their regular tissue-resident counterparts. By ribosome profiling analysis, we have identified that glycerol-3-phosphate dehydrogenase 1 (GPD1) is expressed by dormant BTSCs but not by NSCs. Through different stress-induced experiments in vitro, we found that only dexamethasone (DEXA) can significantly increase the expression of GPD1 in NSCs. Adversely, mifepristone (MIFE) which is classified as glucocorticoid receptors antagonists, could decrease GPD1 protein level and weaken the proliferation and stemness in BTSCs. Furthermore, DEXA can induce GPD1 expression in tumor-bearing mice brains and shorten animal survival, whereas MIFE has a distinct adverse effect that prolonged mice lifespan. Knocking out GR in NSC can block the upregulation of GPD1 inducing by DEXA, and we find the specific sequences on GPD1 promotor combined with GR, thus improving the efficiency of GPD1 transcription from CHIP-Seq. Moreover, GR and GPD1 are highly co-stained on GBM sections obtained from patients and mice. All these findings confirmed that GR could regulate GPD1 and loss of GPD1 Impairs Multiple Pathways Important for BTSCs Maintenance GPD1 is also a critical enzyme regulating glycolysis and lipid synthesis. We observed that DEXA and MIFE could change the metabolic profiles of BTSCs by regulating GPD1 to shift the transition of cell dormancy. Our transcriptome and lipidomics analysis demonstrated that cell cycle signaling and phosphoglycerides synthesis pathways contributed a lot to the inhibition of GPD1 caused by MIFE. In conclusion, our findings raise concern that treatment of GBM with GCs may compromise the efficacy of chemotherapy and contribute to BTSC dormancy. Inhibition of GR can dramatically reduce GPD1 and extend the survival duration of GBM-bearing mice. The molecular link between GPD1 and GR may give us an attractive therapeutic target for glioblastoma. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cancer%20stem%20cell" title="cancer stem cell">cancer stem cell</a>, <a href="https://publications.waset.org/abstracts/search?q=dormancy" title=" dormancy"> dormancy</a>, <a href="https://publications.waset.org/abstracts/search?q=glioblastoma" title=" glioblastoma"> glioblastoma</a>, <a href="https://publications.waset.org/abstracts/search?q=glycerol-3-phosphate%20dehydrogenase%201" title=" glycerol-3-phosphate dehydrogenase 1"> glycerol-3-phosphate dehydrogenase 1</a>, <a href="https://publications.waset.org/abstracts/search?q=glucocorticoid%20receptor" title=" glucocorticoid receptor"> glucocorticoid receptor</a>, <a href="https://publications.waset.org/abstracts/search?q=dexamethasone" title=" dexamethasone"> dexamethasone</a>, <a href="https://publications.waset.org/abstracts/search?q=RNA-sequencing" title=" RNA-sequencing"> RNA-sequencing</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphoglycerides" title=" phosphoglycerides"> phosphoglycerides</a> </p> <a href="https://publications.waset.org/abstracts/146108/targeting-glucocorticoid-receptor-eliminate-dormant-chemoresistant-cancer-stem-cells-in-glioblastoma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146108.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3519</span> Treatment of Full-Thickness Rotator Cuff Tendon Tear Using Umbilical Cord Blood-Derived Mesenchymal Stem Cells and Polydeoxyribonucleotides in a Rabbit Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sang%20Chul%20Lee">Sang Chul Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Gi-Young%20Park"> Gi-Young Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong%20Rak%20Kwon"> Dong Rak Kwon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: The aim of this study was to investigate regenerative effects of ultrasound (US)-guided injection with human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) and/or polydeoxyribonucleotide (PDRN) injection in a chronic traumatic full-thickness rotator cuff tendon tear (FTRCTT) in a rabbit model. Material and Methods: Rabbits (n = 32) were allocated into 4 groups. After a 5-mm sized FTRCTT just proximal to the insertion site on the subscapularis tendon was created by excision, the wound was immediately covered by silicone tube to prevent natural healing. After 6 weeks, 4 injections (0.2 mL normal saline, G1; 0.2 mL PDRN, G2; 0.2 mL UCB-MSCs, G3; and 0.2 mL UCB-MSCs with 0.2ml PDRN, G4) were injected into FTRCTT under US guidance. We evaluated gross morphologic changes on all rabbits after sacrifice. Masson’s trichrome, anti-type 1 collagen antibody, bromodeoxyuridine, proliferating cell nuclear antigen, vascular endothelial growth factor and platelet endothelial cell adhesion molecule stain were performed to evaluate histological changes. Motion analysis was also performed. Results: The gross morphologic mean tendon tear size in G3 and 4 was significantly smaller than that of G1 and 2 (p < .05). However, there were no significant differences in tendon tear size between G3 and 4. In G4, newly regenerated collagen type 1 fibers, proliferating cells activity, angiogenesis, walking distance, fast walking time, and mean walking speed were greater than in the other three groups on histological examination and motion analysis. Conclusion: Co-injection of UCB-MSCs and PDRN was more effective than UCB-MSCs injection alone in histological and motion analysis in a rabbit model of chronic traumatic FTRCTT. However, there was no significant difference in gross morphologic change of tendon tear between UCB-MSCs with/without PDRN injection. The results of this study regarding the combination of UCB-MSCs and PDRN are worth additional investigations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mesenchymal%20stem%20cell" title="mesenchymal stem cell">mesenchymal stem cell</a>, <a href="https://publications.waset.org/abstracts/search?q=umbilical%20cord" title=" umbilical cord"> umbilical cord</a>, <a href="https://publications.waset.org/abstracts/search?q=polydeoxyribonucleotides" title=" polydeoxyribonucleotides"> polydeoxyribonucleotides</a>, <a href="https://publications.waset.org/abstracts/search?q=shoulder" title=" shoulder"> shoulder</a>, <a href="https://publications.waset.org/abstracts/search?q=rotator%20cuff" title=" rotator cuff"> rotator cuff</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonography" title=" ultrasonography"> ultrasonography</a>, <a href="https://publications.waset.org/abstracts/search?q=injections" title=" injections"> injections</a> </p> <a href="https://publications.waset.org/abstracts/88770/treatment-of-full-thickness-rotator-cuff-tendon-tear-using-umbilical-cord-blood-derived-mesenchymal-stem-cells-and-polydeoxyribonucleotides-in-a-rabbit-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88770.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3518</span> Integrative Biology Teaching and Learning Model Based on STEM Education</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Narupot%20Putwattana">Narupot Putwattana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Changes in global situation such as environmental and economic crisis brought the new perspective for science education called integrative biology. STEM has been increasingly mentioned for several educational researches as the approach which combines the concept in Science (S), Technology (T), Engineering (E) and Mathematics (M) to apply in teaching and learning process so as to strengthen the 21st-century skills such as creativity and critical thinking. Recent studies demonstrated STEM as the pedagogy which described the engineering process along with the science classroom activities. So far, pedagogical contents for STEM explaining the content in biology have been scarce. A qualitative literature review was conducted so as to gather the articles based on electronic databases (google scholar). STEM education, engineering design, teaching and learning of biology were used as main keywords to find out researches involving with the application of STEM in biology teaching and learning process. All articles were analyzed to obtain appropriate teaching and learning model that unify the core concept of biology. The synthesized model comprised of engineering design, inquiry-based learning, biological prototype and biologically-inspired design (BID). STEM content and context integration were used as the theoretical framework to create the integrative biology instructional model for STEM education. Several disciplines contents such as biology, engineering, and technology were regarded for inquiry-based learning to build biological prototype. Direct and indirect integrations were used to provide the knowledge into the biology related STEM strategy. Meanwhile, engineering design and BID showed the occupational context for engineer and biologist. Technological and mathematical aspects were required to be inspected in terms of co-teaching method. Lastly, other variables such as critical thinking and problem-solving skills should be more considered in the further researches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomimicry" title="biomimicry">biomimicry</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering%20approach" title=" engineering approach"> engineering approach</a>, <a href="https://publications.waset.org/abstracts/search?q=STEM%20education" title=" STEM education"> STEM education</a>, <a href="https://publications.waset.org/abstracts/search?q=teaching%20and%20learning%20model" title=" teaching and learning model"> teaching and learning model</a> </p> <a href="https://publications.waset.org/abstracts/79439/integrative-biology-teaching-and-learning-model-based-on-stem-education" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79439.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3517</span> Machine Learning and Metaheuristic Algorithms in Short Femoral Stem Custom Design to Reduce Stress Shielding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isabel%20Moscol">Isabel Moscol</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20J.%20D%C3%ADaz"> Carlos J. Díaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ciro%20Rodr%C3%ADguez"> Ciro Rodríguez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hip replacement becomes necessary when a person suffers severe pain or considerable functional limitations and the best option to enhance their quality of life is through the replacement of the damaged joint. One of the main components in femoral prostheses is the stem which distributes the loads from the joint to the proximal femur. To preserve more bone stock and avoid weakening of the diaphysis, a short starting stem was selected, generated from the intramedullary morphology of the patient's femur. It ensures the implantability of the design and leads to geometric delimitation for personalized optimization with machine learning (ML) and metaheuristic algorithms. The present study attempts to design a cementless short stem to make the strain deviation before and after implantation close to zero, promoting its fixation and durability. Regression models developed to estimate the percentage change of maximum principal stresses were used as objective optimization functions by the metaheuristic algorithm. The latter evaluated different geometries of the short stem with the modification of certain parameters in oblique sections from the osteotomy plane. The optimized geometry reached a global stress shielding (SS) of 18.37% with a determination factor (R²) of 0.667. The predicted results favour implantability integration in the short stem optimization to effectively reduce SS in the proximal femur. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machine%20learning%20techniques" title="machine learning techniques">machine learning techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=metaheuristic%20algorithms" title=" metaheuristic algorithms"> metaheuristic algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=short-stem%20design" title=" short-stem design"> short-stem design</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20shielding" title=" stress shielding"> stress shielding</a>, <a href="https://publications.waset.org/abstracts/search?q=hip%20replacement" title=" hip replacement"> hip replacement</a> </p> <a href="https://publications.waset.org/abstracts/138706/machine-learning-and-metaheuristic-algorithms-in-short-femoral-stem-custom-design-to-reduce-stress-shielding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138706.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3516</span> Reconstruction of Alveolar Bone Defects Using Bone Morphogenetic Protein 2 Mediated Rabbit Dental Pulp Stem Cells Seeded on Nano-Hydroxyapatite/Collagen/Poly(L-Lactide)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ling-Ling%20E.">Ling-Ling E.</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong-Chen%20Liu"> Hong-Chen Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Sheng%20Wang"> Dong-Sheng Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Fang%20Su"> Fang Su</a>, <a href="https://publications.waset.org/abstracts/search?q=Xia%20Wu"> Xia Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhan-Ping%20Shi"> Zhan-Ping Shi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20Lv"> Yan Lv</a>, <a href="https://publications.waset.org/abstracts/search?q=Jia-Zhu%20Wang"> Jia-Zhu Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: The objective of the present study is to evaluate the capacity of a tissue-engineered bone complex of recombinant human bone morphogenetic protein 2 (rhBMP-2) mediated dental pulp stem cells (DPSCs) and nano-hydroxyapatite/collagen/poly(L-lactide)(nHAC/PLA) to reconstruct critical-size alveolar bone defects in New Zealand rabbit. Methods: Autologous DPSCs were isolated from rabbit dental pulp tissue and expanded ex vivo to enrich DPSCs numbers, and then their attachment and differentiation capability were evaluated when cultured on the culture plate or nHAC/PLA. The alveolar bone defects were treated with nHAC/PLA, nHAC/PLA+rhBMP-2, nHAC/PLA+DPSCs, nHAC/PLA+DPSCs+rhBMP-2, and autogenous bone (AB) obtained from iliac bone or were left untreated as a control. X-ray and a polychrome sequential fluorescent labeling were performed post-operatively and the animals were sacrificed 12 weeks after operation for histological observation and histomorphometric analysis. Results: Our results showed that DPSCs expressed STRO-1 and vementin, and favoured osteogenesis and adipogenesis in conditioned media. DPSCs attached and spread well, and retained their osteogenic phenotypes on nHAC/PLA. The rhBMP-2 could significantly increase protein content, alkaline phosphatase (ALP) activity/protein, osteocalcin (OCN) content, and mineral formation of DPSCs cultured on nHAC/PLA. The X-ray graph, the fluorescent, histological observation and histomorphometric analysis showed that the nHAC/PLA+DPSCs+rhBMP-2 tissue-engineered bone complex had an earlier mineralization and more bone formation inside the scaffold than nHAC/PLA, nHAC/PLA+rhBMP-2 and nHAC/PLA+DPSCs, or even autologous bone. Implanted DPSCs contribution to new bone were detected through transfected eGFP genes. Conclutions: Our findings indicated that stem cells existed in adult rabbit dental pulp tissue. The rhBMP-2 promoted osteogenic capability of DPSCs as a potential cell source for periodontal bone regeneration. The nHAC/PLA could serve as a good scaffold for autologous DPSCs seeding, proliferation and differentiation. The tissue-engineered bone complex with nHAC/PLA, rhBMP-2, and autologous DPSCs might be a better alternative to autologous bone for the clinical reconstruction of periodontal bone defects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nano-hydroxyapatite%2Fcollagen%2Fpoly%20%28L-lactide%29" title="nano-hydroxyapatite/collagen/poly (L-lactide)">nano-hydroxyapatite/collagen/poly (L-lactide)</a>, <a href="https://publications.waset.org/abstracts/search?q=dental%20pulp%20stem%20cell" title=" dental pulp stem cell"> dental pulp stem cell</a>, <a href="https://publications.waset.org/abstracts/search?q=recombinant%20human%20bone%20morphogenetic%20protein" title=" recombinant human bone morphogenetic protein"> recombinant human bone morphogenetic protein</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20tissue%20engineering" title=" bone tissue engineering"> bone tissue engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=alveolar%20bone" title=" alveolar bone"> alveolar bone</a> </p> <a href="https://publications.waset.org/abstracts/21179/reconstruction-of-alveolar-bone-defects-using-bone-morphogenetic-protein-2-mediated-rabbit-dental-pulp-stem-cells-seeded-on-nano-hydroxyapatitecollagenpolyl-lactide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21179.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3515</span> Hydrogel Based on Cellulose Acetate Used as Scaffold for Cell Growth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Maria%20G.%20Melero">A. Maria G. Melero</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Senna"> A. M. Senna</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20A.%20Domingues"> J. A. Domingues</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Hausen"> M. A. Hausen</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Aparecida%20R.%20Duek"> E. Aparecida R. Duek</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20R.%20Botaro"> V. R. Botaro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A hydrogel from cellulose acetate cross linked with ethylenediaminetetraacetic dianhydride (HAC-EDTA) was synthesized by our research group, and submitted to characterization and biological tests. Cytocompatibility analysis was performed by confocal microscopy using human adipocyte derived stem cells (ASCs). The FTIR analysis showed characteristic bands of cellulose acetate and hydroxyl groups and the tensile tests evidence that HAC-EDTA present a Young&rsquo;s modulus of 643.7 MPa. The confocal analysis revealed that there was cell growth at the surface of HAC-EDTA. After one day of culture the cells presented spherical morphology, which may be caused by stress of the sequestration of Ca<sup>2+</sup> and Mg<sup>2+</sup> ions at the cell medium by HAC-EDTA, as demonstrated by ICP-MS. However, after seven days and 14 days of culture, the cells present fibroblastoid morphology, phenotype expected by this cellular type. The results give efforts to indicate this new material as a potential biomaterial for tissue engineering, in the future in vivo approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellulose%20acetate" title="cellulose acetate">cellulose acetate</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogel" title=" hydrogel"> hydrogel</a>, <a href="https://publications.waset.org/abstracts/search?q=biomaterial" title=" biomaterial"> biomaterial</a>, <a href="https://publications.waset.org/abstracts/search?q=cellular%20growth" title=" cellular growth"> cellular growth</a> </p> <a href="https://publications.waset.org/abstracts/81520/hydrogel-based-on-cellulose-acetate-used-as-scaffold-for-cell-growth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3514</span> Chemotactic Behaviour of Human Mesenchymal Stem Cells in Response to Silicate Substituted Hydroxyapatite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dinara%20Ikramova">Dinara Ikramova</a>, <a href="https://publications.waset.org/abstracts/search?q=Karin%20A.%20Hing"> Karin A. Hing</a>, <a href="https://publications.waset.org/abstracts/search?q=Simon%20C.%20F.%20Rawlinson"> Simon C. F. Rawlinson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Silicate-substituted hydroxyapatite (SiHA) has been shown to enhance bone regeneration in vivo compared with phase pure stoichiometric hydroxyapatite. Evidence suggests that substrate chemistry dependent formation of a permissive protein layer on the surface of synthetic bone graft substitute materials is key for bioactivity and cell attachment. However, little information is available on whether the substrate chemistry may affect cell migration and recruitment. The aim of this study is to investigate whether or not human Mesenchymal Stem Cells (hMSCs) exhibit a chemotactic response to SiHA porous granules and if it can be linked to either the ion exchange or protein sequestering and enrichment on the surface of the material. 150mg of SiHA granules with 80% total porosity and 20% strut porosity were incubated in 1ml of either Serum Free Media (SFM) or 10% Serum Containing Media (SCM) under static cell culture conditions (37°C, 5% CO2) in absence of cells. Protein sequestering and exchange of calcium, phosphate and silicate ions were analysed at 0.5, 1, 2, 4, 8, 16 and 24 hours with n=12 per time point. Migration of hMSCs in the presence of 150mg of SiHA granules was assessed over 24 hours using a modified transwell migration system in either SFM or SCM (n=6) with 30% serum containing media acting as a positive control. At 24 hours protein sequestering and ionic exchange were analysed, and the number of cells was quantified using a high throughput confocal microscope (IN Cell Analyser 6000). In acellular condition, both calcium and phosphate ion concentrations in media showed a decrease at 24 hours which was greater in SFM than in SCM. This suggests possible formation and precipitation of a bone like apatite on the surface of SiHA. Reduction in this activity observed in SCM indicates that the presence of serum proteins is interfering with the ion exchange at the material and media interface. Adsorbed protein levels showed fluctuation over time followed by sharp decrease at 24 hours, suggesting a possible protein rearrangement on the surface of the material. The ion analysis performed on SFM and SCM after 24-hour incubation with cells in the presence of granules showed a greater reduction in phosphate concentration in both SFM and SCM compared to phosphate levels in acellular condition. Silicate concentration in SCM increased from 1.6mM (absence of cells) to 5.1mM (presence of cells). This indicates that the cells are promoting the uptake of phosphate and release of silicate ions. No significant change was seen in levels of adsorbed proteins in the presence and absence of cells. Further analysis is required to determine whether the species of these proteins change over time. The analysis of cell migration after 24-hour incubation showed more cells migrating towards the granules, 12.7% in SFM and 8.3% in SCM, than in positive control, 4.5% in SFM and 3.6% in SCM respectively. These results suggest that SiHA has a chemotactic activity independent of serum proteins. A property which has not previously been demonstrated for a synthetic bone graft material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell%20migration" title="cell migration">cell migration</a>, <a href="https://publications.waset.org/abstracts/search?q=hMSCs" title=" hMSCs"> hMSCs</a>, <a href="https://publications.waset.org/abstracts/search?q=SiHA" title=" SiHA"> SiHA</a>, <a href="https://publications.waset.org/abstracts/search?q=transwell%20migration%20system" title=" transwell migration system"> transwell migration system</a> </p> <a href="https://publications.waset.org/abstracts/84858/chemotactic-behaviour-of-human-mesenchymal-stem-cells-in-response-to-silicate-substituted-hydroxyapatite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84858.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3513</span> Novel Steviosides Analogs Induced Apoptosis in Breast Cancers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Malki">Ahmed Malki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Breast cancer has been identified as the most lethal form of cancer today. In our study, we designed and screened 16 steviosides derivatives for their cytotoxic activities in MCF-7human breast cancer cells and normal MCF-12a cells. Our data indicated that steviosides derivatives 9 and 15 decreased cell proliferation and induced apoptosis in MCF-7 breast cancer cells more thannormal breast cells epithelial cells. Flow cytometric analysis showed that both steviosides, derivatives 9 and 15 arrested the MCF-7 cells in G1 phase, which is further confirmed by the increased expression level of p21. Moreover, both steviosides derivatives increased caspase-9 activity, and the induction of apoptosis was significantly reduced after treating cells with caspase-9 inhibitor LEHD-CHO. Both steviosides derivatives increased Caspase 3 activities and induced Parp-1 cleavage in H1299 cells. Based on previous results, we have identified two novel steviosides derivatives which provoked apoptosis in breast cancer cells by arresting cells in G1 phase and increasing caspase-9 and caspase-3 activities which merits further development and investigations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=steviosides" title="steviosides">steviosides</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title=" breast cancer"> breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=p53" title=" p53"> p53</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20cycle" title=" cell cycle"> cell cycle</a> </p> <a href="https://publications.waset.org/abstracts/149701/novel-steviosides-analogs-induced-apoptosis-in-breast-cancers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149701.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3512</span> Comparison of the Performance of GaInAsSb and GaSb Cells under Different Temperature Blackbody Radiations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liangliang%20Tang">Liangliang Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang%20Xu"> Chang Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xingying%20Chen"> Xingying Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> GaInAsSb cells probably show better performance than GaSb cells in low-temperature thermophotovoltaic systems due to lower bandgap; however, few experiments proved this phenomenon so far. In this paper, numerical simulation is used to evaluate GaInAsSb and GaSb cells with similar structures under different radiation temperatures. We found that GaInAsSb cells with n-type emitters show slightly higher output power densities compared with that of GaSb cells with n-type emitters below 1,550 K-blackbody radiation, and the power density of the later cells will suppress the formers above this temperature point. During the temperature range of 1,000~2,000 K, the efficiencies of GaSb cells are about twice of GaInAsSb cells if perfect filters are used to prevent the emission of the non-absorbed long wavelength photons. Several parameters that affect the GaInAsSb cell were analyzed, such as doping profiles, thicknesses of GaInAsSb epitaxial layer and surface recombination velocity. The non-p junctions, i.e., n-type emitters are better for GaInAsSb cell fabrication, which is similar to that of GaSb cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermophotovoltaic%20cell" title="thermophotovoltaic cell">thermophotovoltaic cell</a>, <a href="https://publications.waset.org/abstracts/search?q=GaSb" title=" GaSb"> GaSb</a>, <a href="https://publications.waset.org/abstracts/search?q=GaInAsSb" title=" GaInAsSb"> GaInAsSb</a>, <a href="https://publications.waset.org/abstracts/search?q=diffused%20emitters" title=" diffused emitters"> diffused emitters</a> </p> <a href="https://publications.waset.org/abstracts/50509/comparison-of-the-performance-of-gainassb-and-gasb-cells-under-different-temperature-blackbody-radiations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50509.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3511</span> Integration of STEM Education in Quebec, Canada – Challenges and Opportunities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20El%20Fadil">B. El Fadil</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Najar"> R. Najar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> STEM education is promoted by many scholars and curricula around the world, but it is not yet well established in the province of Quebec in Canada. In addition, effective instructional STEM activities and design methods are required to ensure that students and teachers' needs are being met. One potential method is the Engineering Design Process (EDP), a methodology that emphasizes the importance of creativity and collaboration in problem-solving strategies. This article reports on a case study that focused on using the EDP to develop instructional materials by means of making a technological artifact to teach mathematical variables and functions at the secondary level. The five iterative stages of the EDP (design, make, test, infer, and iterate) were integrated into the development of the course materials. Data was collected from different sources: pre- and post-questionnaires, as well as a working document dealing with pupils' understanding based on designing, making, testing, and simulating. Twenty-four grade seven (13 years old) students in Northern Quebec participated in the study. The findings of this study indicate that STEM activities have a positive impact not only on students' engagement in classroom activities but also on learning new mathematical concepts. Furthermore, STEM-focused activities have a significant effect on problem-solving skills development in an interdisciplinary approach. Based on the study's results, we can conclude, inter alia, that teachers should integrate STEM activities into their teaching practices to increase learning outcomes and attach more importance to STEM-focused activities to develop students' reflective thinking and hands-on skills. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=engineering%20design%20process" title="engineering design process">engineering design process</a>, <a href="https://publications.waset.org/abstracts/search?q=motivation" title=" motivation"> motivation</a>, <a href="https://publications.waset.org/abstracts/search?q=stem" title=" stem"> stem</a>, <a href="https://publications.waset.org/abstracts/search?q=integration" title=" integration"> integration</a>, <a href="https://publications.waset.org/abstracts/search?q=variables" title=" variables"> variables</a>, <a href="https://publications.waset.org/abstracts/search?q=functions" title=" functions"> functions</a> </p> <a href="https://publications.waset.org/abstracts/157356/integration-of-stem-education-in-quebec-canada-challenges-and-opportunities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3510</span> Summer STEM Institute in Environmental Science and Data Sciencefor Middle and High School Students at Pace University</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lauren%20B.%20Birney">Lauren B. Birney</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Summer STEM Institute for Middle and High School Students at Pace University The STEM Collaboratory NYC® Summer Fellows Institute takes place on Pace University’s New York City campus during July and provides the following key features for all participants: (i) individual meetings with Pace faculty to discuss and refine future educational goals; (ii) mentorship, guidance, and new friendships with program leaders; and (iii) guest lectures from professionals in STEM disciplines and businesses. The Summer STEM Institute allows middle school and high school students to work in teams to conceptualize, develop, and build native mobile applications that teach and reinforce skills in the sciences and mathematics. These workshops enhance students’STEM problem solving techniques and teach advanced methods of computer science and engineering. Topics include: big data and analytics at the Big Data lab at Seidenberg, Data Science focused on social and environmental advancement and betterment; Natural Disasters and their Societal Influences; Algal Blooms and Environmental Impacts; Green CitiesNYC; STEM jobs and growth opportunities for the future; renew able energy and sustainable infrastructure; and climate and the economy. In order to better align the existing Summer STEM, Institute with the CCERS model and expand the overall network, Pace is actively recruiting new content area specialists from STEM industries and private sector enterprises to participate in an enhanced summer institute in order to1) nurture student progress and connect summer learning to school year curriculum, 2) increase peer-to-peer collaboration amongst STEM professionals and private sector technologists, and 3) develop long term funding and sponsorship opportunities for corporate sector partners to support CCERS schools and programs directly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental%20restoration%20science" title="environmental restoration science">environmental restoration science</a>, <a href="https://publications.waset.org/abstracts/search?q=citizen%20science" title=" citizen science"> citizen science</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20science" title=" data science"> data science</a>, <a href="https://publications.waset.org/abstracts/search?q=STEM" title=" STEM"> STEM</a> </p> <a href="https://publications.waset.org/abstracts/151679/summer-stem-institute-in-environmental-science-and-data-sciencefor-middle-and-high-school-students-at-pace-university" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151679.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3509</span> Studying the Anti-Cancer Effects of Thymoquinone on Tumor Cells Through Natural Killer Cells Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nouf%20A.%20Aldarmahi">Nouf A. Aldarmahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nesrin%20I.%20Tarbiah"> Nesrin I. Tarbiah</a>, <a href="https://publications.waset.org/abstracts/search?q=Nuha%20A.%20Alkhattabi"> Nuha A. Alkhattabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Huda%20F.%20Alshaibi"> Huda F. Alshaibi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nigella sativa which is known as dark cumin is a well-known example for a widely applicable herbal medicine. Nigella sativa can be effective in a variety of diseases such as hypertension, diabetes, bronchitis, gastrointestinal upset, and cancer. The anticancer effect of Nigella sativa appeared to be mediated by immune-modulatory effect through stimulating human natural killer (NK) cells. This is a type of lymphocytes which is part of the innate immunity, also known as the first line of defense in the body against pathogens. This study investigated the effect of thymoquinone as a major component of Nigella sativa on the molecular cytotoxic pathway of NK cell and the role of thymoquinone therapeutic effect on NK cells. NK cells were cultured with breast tumor cells in different ways and cultured media was collected and the concentration of perforin, granzyme B and interferon-α were measured by ELISA. The cytotoxic effect of NK cells on breast tumor cells was enhanced in the presence of thymoquinone, with increased activity of perforin in NK cells. This improved anticancer effect of thymoquinone on breast cancer cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title="breast cancer">breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer%20cells" title=" cancer cells"> cancer cells</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20killer%20cells" title=" natural killer cells"> natural killer cells</a>, <a href="https://publications.waset.org/abstracts/search?q=thymoquinone" title=" thymoquinone"> thymoquinone</a> </p> <a href="https://publications.waset.org/abstracts/149104/studying-the-anti-cancer-effects-of-thymoquinone-on-tumor-cells-through-natural-killer-cells-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149104.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3508</span> Determination of Agricultural Characteristics of Smooth Bromegrass (Bromus inermis Leyss) Lines under Konya Regional Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20%C3%96zk%C3%B6se">Abdullah Özköse</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Tamko%C3%A7"> Ahmet Tamkoç</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was conducted to determine the yield and yield components of smooth bromegrass lines under the environmental conditions of the Konya region during the growing seasons between 2011 and 2013. The experiment was performed in the randomized complete block design (RCBD) with four replications. It was found that the selected lines had a statistically significant effect on all the investigated traits, except for the main stem length and the number of nodes in the main stem. According to the two-year average calculated for various parameters checked in the smooth bromegrass lines, the main stem length ranged from 71.6 cm to 79.1 cm, the main stem diameter from 2.12 mm from 2.70 mm, the number of nodes in the main stem from 3.2 to 3.7, the internode length from 11.6 cm to 18.9 cm, flag leaf length from 9.7 cm to 12.7 cm, flag leaf width from 3.58 cm to 6.04 mm, herbage yield from 221.3 kg da<sup>&ndash;1</sup> to 354.7 kg da<sup>&ndash;1</sup> and hay yield from 100.4 kg da<sup>&ndash;1</sup> to 190.1 kg da<sup>&ndash;1</sup>. The study concluded that the smooth bromegrass lines differ in terms of yield and yield components. Therefore, it is very crucial to select suitable varieties of smooth bromegrass to obtain optimum yield. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=semiarid%20region" title="semiarid region">semiarid region</a>, <a href="https://publications.waset.org/abstracts/search?q=smooth%20bromegrass" title=" smooth bromegrass"> smooth bromegrass</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20components" title=" yield components"> yield components</a> </p> <a href="https://publications.waset.org/abstracts/56865/determination-of-agricultural-characteristics-of-smooth-bromegrass-bromus-inermis-leyss-lines-under-konya-regional-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56865.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3507</span> Hydroxyapatite Based Porous Scaffold for Tooth Tissue Engineering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pakize%20Neslihan%20Tasl%C4%B1">Pakize Neslihan Taslı</a>, <a href="https://publications.waset.org/abstracts/search?q=Alev%20Cumbul"> Alev Cumbul</a>, <a href="https://publications.waset.org/abstracts/search?q=Gul%20Merve%20Yalc%C4%B1n"> Gul Merve Yalcın</a>, <a href="https://publications.waset.org/abstracts/search?q=Fikrettin%20Sahin"> Fikrettin Sahin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A key experimental trial in the regeneration of large oral and craniofacial defects is the neogenesis of osseous and ligamentous interfacial structures. Currently, oral regenerative medicine strategies are unpredictable for repair of tooth supporting tissues destroyed as a consequence of trauma, chronic infection or surgical resection. A different approach combining the gel-casting method with Hydroxy Apatite HA-based scaffold and different cell lineages as a hybrid system leads to successively mimic the early stage of tooth development, in vitro. HA is widely accepted as a bioactive material for guided bone and tooth regeneration. In this study, it was reported that, HA porous scaffold preparation, characterization and evaluation of structural and chemical properties. HA is the main factor that exists in tooth and it is in harmony with structural, biological, and mechanical characteristics. Here, this study shows mimicking immature tooth at the late bell stage design and construction of HA scaffolds for cell transplantation of human Adipose Stem Cells (hASCs), human Bone Marrow Stem Cells (hBMSCs) and Gingival Epitelial cells for the formation of human tooth dentin-pulp-enamel complexes in vitro. Scaffold characterization was demonstrated by SEM, FTIR and pore size and density measurements. The biological contraction of dental tissues against each other was demonstrated by mRNA gene expressions, histopatologic observations and protein release profile by ELISA tecnique. The tooth shaped constructs with a pore size ranging from 150 to 300 µm arranged by gathering right amounts of materials provide interconnected macro-porous structure. The newly formed tissue like structures that grow and integrate within the HA designed constructs forming tooth cementum like tissue, pulp and bone structures. These findings are important as they emphasize the potential biological effect of the hybrid scaffold system. In conclusion, this in vitro study clearly demonstrates that designed 3D scaffolds shaped as a immature tooth at the late bell stage were essential to form enamel-dentin-pulp interfaces with an appropriate cell and biodegradable material combination. The biomimetic architecture achieved here is providing a promising platform for dental tissue engineering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tooth%20regeneration" title="tooth regeneration">tooth regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20engineering" title=" tissue engineering"> tissue engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=adipose%20stem%20cells" title=" adipose stem cells"> adipose stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxyapatite%20tooth%20engineering" title=" hydroxyapatite tooth engineering"> hydroxyapatite tooth engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20scaffold" title=" porous scaffold"> porous scaffold</a> </p> <a href="https://publications.waset.org/abstracts/54703/hydroxyapatite-based-porous-scaffold-for-tooth-tissue-engineering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54703.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3506</span> Prospects of Regenerative Medicine with Human Allogeneic Adipose Tissue-Derived Mesenchymal Stem Cell Sheets: Achievements and Future Outlook in Clinical Trials for Myopic Chorioretinal Atrophy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Norimichi%20Nagano">Norimichi Nagano</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoshio%20Hirano"> Yoshio Hirano</a>, <a href="https://publications.waset.org/abstracts/search?q=Tsutomu%20Yasukawa"> Tsutomu Yasukawa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mesenchymal stem cells are thought to confer neuroprotection, facilitate tissue regeneration and exert their effects on retinal degenerative diseases, however, adverse events such as proliferative vitreoretinopathy and preretinal membrane disease associated with cell suspension transplantation have also been reported. We have recently developed human (allogeneic) adipose tissue-derived mesenchymal stem cell (adMSC) sheets through our proprietary sheet transformation technique, which could potentially mitigate these adverse events. To clarify the properties of our adMSC sheets named PAL-222, we performed in vitro studies such as viability testing, cytokine secretions by ELISA, immunohistochemical study, and migration assay. The viability of the cells exceeded 70%. Vascular Endothelial Growth Factor (VEGF) and Pigment Epithelium-Derived Factor (PEDF), which are quite important cytokines for the retinal area, were observed. PAL-222 expressed type I collagen, a strength marker, type IV collagen, a marker of the basement membrane, and elastin, an elasticity marker. Finally, the migration assay was performed and showed negative, which means that PAL-222 is stably kept in the topical area and does not come to pieces. Next, to evaluate the efficacy in vivo, we transplanted PAL-222 into the subretinal space of the eye of Royal College of Surgeons rats with congenital retinal degeneration and assessed it for three weeks after transplantation. We confirmed that PAL-222 suppressed the decrease in the thickness of the outer nuclear layer, which means that the photoreceptor protective effect treated with PAL-222 was significantly higher than that in the sham group. (p < 0.01). This finding demonstrates that PAL-222 showed their retinoprotective effect in a model of congenital retinal degeneration. As the study suggested the efficacy of PAL-222 in both in vitro and in vivo studies, we are presently engaged in clinical trials of PAL-222 for myopic chorioretinal atrophy, which is one of the retinal degenerative diseases, for the purpose of regenerative medicine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell%20sheet" title="cell sheet">cell sheet</a>, <a href="https://publications.waset.org/abstracts/search?q=clinical%20trial" title=" clinical trial"> clinical trial</a>, <a href="https://publications.waset.org/abstracts/search?q=mesenchymal%20stem%20cell" title=" mesenchymal stem cell"> mesenchymal stem cell</a>, <a href="https://publications.waset.org/abstracts/search?q=myopic%20chorioretinal%20atrophy" title=" myopic chorioretinal atrophy"> myopic chorioretinal atrophy</a> </p> <a href="https://publications.waset.org/abstracts/173831/prospects-of-regenerative-medicine-with-human-allogeneic-adipose-tissue-derived-mesenchymal-stem-cell-sheets-achievements-and-future-outlook-in-clinical-trials-for-myopic-chorioretinal-atrophy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173831.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3505</span> ALDH1A1 as a Cancer Stem Cell Marker: Value of Immunohistochemical Expression in Benign Prostatic Hyperplasia, Prostatic Intraepithelial Neoplasia, and Prostatic Adenocarcinoma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Abdelmoneim">H. M. Abdelmoneim</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20A.%20Babtain"> N. A. Babtain</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Barhamain"> A. S. Barhamain</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Z.%20Kufiah"> A. Z. Kufiah</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Malibari"> A. S. Malibari</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20F.%20Munassar"> S. F. Munassar</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20S.%20Rawa"> R. S. Rawa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Prostate cancer is one of the most common causes of morbidity and mortality in men in developed countries. Cancer Stem Cells (CSCs) could be responsible for the progression and relapse of cancer. Therefore, CSCs markers could provide a prognostic strategy for human malignancies. Aldehyde dehydrogenase 1A1 (ALDH1A1) activity has been shown to be associated with tumorigenesis and proposed to represent a functional marker for tumor initiating cells in various tumor types including prostate cancer. Material & Methods: We analyzed the immunohistochemical expression of ALDH1A1 in benign prostatic hyperplasia (BPH), prostatic intraepithelial neoplasia (PIN) and prostatic adenocarcinoma and assessed their significant correlations in 50 TURP sections. They were microscopically interpreted and the results were correlated with histopathological types and tumor grade. Results: In different prostatic histopathological lesions we found that ALDH1A1 expression was low in BPH (13.3%) and PIN (6.7%) and then its expression increased with prostatic adenocarcinoma (40%), and this was statistically highly significant (P value = 0.02). However, in different grades of prostatic adenocarcinoma we found that the higher the Gleason grade the higher the expression for ALDH1A1 and this was statistically significant (P value = 0.02). We compared the expression of ALDH1A1 in PIN and prostatic adenocarcinoma. ALDH1A1 expression was decreased in PIN and highly expressed in prostatic adenocarcinoma and this was statistically significant (P value = 0.04). Conclusion: Increasing ALDH1A1 expression is correlated with aggressive behavior of the tumor. Immunohistochemical expression of ALDH1A1 might provide a potential approach to study tumorigenesis and progression of primary prostate carcinoma. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ALDH1A1" title="ALDH1A1">ALDH1A1</a>, <a href="https://publications.waset.org/abstracts/search?q=BPH" title=" BPH"> BPH</a>, <a href="https://publications.waset.org/abstracts/search?q=PIN" title=" PIN"> PIN</a>, <a href="https://publications.waset.org/abstracts/search?q=prostatic%20adenocarcinoma" title=" prostatic adenocarcinoma"> prostatic adenocarcinoma</a> </p> <a href="https://publications.waset.org/abstracts/43391/aldh1a1-as-a-cancer-stem-cell-marker-value-of-immunohistochemical-expression-in-benign-prostatic-hyperplasia-prostatic-intraepithelial-neoplasia-and-prostatic-adenocarcinoma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43391.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3504</span> Conserved Stem-Loop Structure at the End of Short Interspersed Nuclear Elements (SINE) and Long Interspersed Nuclear Elements (LINE) Pairs of Different Species</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daria%20Grechishnikova">Daria Grechishnikova</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Poptsova"> Maria Poptsova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transposable elements play an important role in the evolution of various species from bacteria to human. Long Interspersed Nuclear Elements (LINEs) and Short Interspersed Nuclear Elements (SINEs) are two major classes of retrotransposons that occupy a considerable part of any genome and their copy numbers can range form several hundreds to a million. Both LINEs and SINEs multiply through a copy-and-paste mechanism. LINEs encode proteins, which make them capable of self-propagation while SINEs are parasitic and require the machinery of LINEs to multiply. The mechanisms how LINE and SINE RNA is recognized by the LINE-encoded reverse transcriptase (RT) remain unclear. For some SINE-LINE pairs, it was shown that they share a common 3’-end with a stem-loop structure. Majority of the SINE-LINE pairs do not have a common 3’-end. Recently we have shown that in the human genome Alu-L1 pairs have structurally similar stem-loop structure at the 3’-end. Here we extended our analysis to a wide range of species and analyzed LINEs from 161 different species from Repbase and 217 SINE sequences from SINEBase. It appeared that all of the analyzed sequences contained stem-loop structures at the 3’-end. Here we conclude that it is very likely that a common evolutionary mechanism of transposon RNA recognition requires the presence of stem-loop structures at their 3’-end. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LINE" title="LINE">LINE</a>, <a href="https://publications.waset.org/abstracts/search?q=SINE" title=" SINE"> SINE</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanisms%20of%20retrotransposition" title=" mechanisms of retrotransposition"> mechanisms of retrotransposition</a>, <a href="https://publications.waset.org/abstracts/search?q=retrotransposons" title=" retrotransposons"> retrotransposons</a>, <a href="https://publications.waset.org/abstracts/search?q=stem-loop" title=" stem-loop"> stem-loop</a>, <a href="https://publications.waset.org/abstracts/search?q=stem-loop%20structures" title=" stem-loop structures"> stem-loop structures</a>, <a href="https://publications.waset.org/abstracts/search?q=transposons" title=" transposons"> transposons</a> </p> <a href="https://publications.waset.org/abstracts/68915/conserved-stem-loop-structure-at-the-end-of-short-interspersed-nuclear-elements-sine-and-long-interspersed-nuclear-elements-line-pairs-of-different-species" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68915.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3503</span> Role of Micro-Patterning on Stem Cell-Material Interaction Modulation and Cell Fate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lay%20Poh%20Tan">Lay Poh Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=Chor%20Yong%20Tay"> Chor Yong Tay</a>, <a href="https://publications.waset.org/abstracts/search?q=Haiyang%20Yu"> Haiyang Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Micro-contact printing is a form of soft lithography that uses the relief patterns on a master polydimethylsiloxane (PDMS) stamp to form patterns of self-assembled monolayers (SAMs) of ink on the surface of a substrate through conformal contact technique. Here, we adopt this method to print proteins of different dimensions on our biodegradable polymer substrates. We started off with printing 20-500 μm scale lanes of fibronectin to engineer the shape of bone marrow derived human mesenchymal stem cell (hMSCs). After 8 hours of culture, the hMSCs adopted elongated shapes, and upon analysis of the gene expressions, genes commonly associated with myogenesis (GATA-4, MyoD1, cTnT and β-MHC) and neurogenesis (NeuroD, Nestin, GFAP, and MAP2) were up-regulated but gene expression associated to osteogenesis (ALPL, RUNX2, and SPARC) were either down modulated or remained at the nominal level. This is the first evidence that cellular morphology control via micropatterning could be used to modulate stem cell fate without external biochemical stimuli. We further our studies to modulate the focal adhesion (FA) instead of the macro shape of cells. Micro-contact printed islands of different smaller dimensions were investigated. We successfully regulated the FAs into dense FAs and elongated FAs by micropatterning. Additionally, the combined effects of hard (40.4 kPa), and intermediate (10.6 kPa) PA gel and FAs patterning on hMSCs differentiation were studied. Results showed that FA and matrix compliance plays an important role in hMSCs differentiation, and there is a cross-talk between different physical stimulants and the significance of these stimuli can only be realized if they are combined at the optimum level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=micro-contact%20printing" title="micro-contact printing">micro-contact printing</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20substrate" title=" polymer substrate"> polymer substrate</a>, <a href="https://publications.waset.org/abstracts/search?q=cell-material%20interaction" title=" cell-material interaction"> cell-material interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=stem%20cell%20differentiation" title=" stem cell differentiation"> stem cell differentiation</a> </p> <a href="https://publications.waset.org/abstracts/92615/role-of-micro-patterning-on-stem-cell-material-interaction-modulation-and-cell-fate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92615.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3502</span> Phytochemical Screening and Toxicological Studies of Aqueous Stem Bark Extract of Boswellia papyrifera (DEL) in Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Abdulmumin">Y. Abdulmumin</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20I.%20Matazu"> K. I. Matazu</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Wudil"> A. M. Wudil</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20J.%20Alhassan"> A. J. Alhassan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Imam"> A. A. Imam </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phytochemical analysis of Boswellia papryfera confirms the presence of various phytochemicals such as alkaloids, flavonoids, tannins, saponins and cardiac glycosides in its aqueous stem bark extract at different concentration, with tannins being the highest (0.611 ± 0.002 g %). Acute toxicity test (LD50, oral, rat) of the extract showed no mortality at up to 5000 mg/kg and the animals were found active and healthy. The extract was declared as practically non-toxic, this suggest the safety of the extract in traditional medicine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acute%20toxicity" title="acute toxicity">acute toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=aqueous%20extract" title=" aqueous extract"> aqueous extract</a>, <a href="https://publications.waset.org/abstracts/search?q=boswellia%20papryfera" title=" boswellia papryfera"> boswellia papryfera</a>, <a href="https://publications.waset.org/abstracts/search?q=phytochemicals%20and%20stem%20bark" title=" phytochemicals and stem bark"> phytochemicals and stem bark</a> </p> <a href="https://publications.waset.org/abstracts/34095/phytochemical-screening-and-toxicological-studies-of-aqueous-stem-bark-extract-of-boswellia-papyrifera-del-in-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3501</span> The Effect of Calcium Phosphate Composite Scaffolds on the Osteogenic Differentiation of Rabbit Dental Pulp Stem Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ling-Ling%20E">Ling-Ling E</a>, <a href="https://publications.waset.org/abstracts/search?q=Lin%20Feng"> Lin Feng</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong-Chen%20Liu"> Hong-Chen Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Sheng%20Wang"> Dong-Sheng Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhanping%20Shi"> Zhanping Shi</a>, <a href="https://publications.waset.org/abstracts/search?q=Juncheng%20Wang"> Juncheng Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Luo"> Wei Luo</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20Lv"> Yan Lv</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to compare the effects of the two calcium phosphate composite scaffolds on the attachment, proliferation and osteogenic differentiation of rabbit dental pulp stem cells (DPSCs). One nano-hydroxyapatite/collagen/poly (L-lactide) (nHAC/PLA), imitating the composition and the micro-structure characteristics of the natural bone, was made by Beijing Allgens Medical Science & Technology Co., Ltd. (China). The other beta-tricalcium phosphate (β-TCP), being fully interoperability globular pore structure, was provided by Shanghai Bio-lu Biomaterials Co, Ltd. (China). We compared the absorption water rate and the protein adsorption rate of two scaffolds and the characterization of DPSCs cultured on the culture plate and both scaffolds under osteogenic differentiation media (ODM) treatment. The constructs were then implanted subcutaneously into the back of severe combined immunodeficient (SCID) mice for 8 and 12 weeks to compare their bone formation capacity. The results showed that the ODM-treated DPSCs expressed osteocalcin (OCN), bone sialoprotein (BSP), type I collagen (COLI) and osteopontin (OPN) by immunofluorescence staining. Positive alkaline phosphatase (ALP) staining, calcium deposition and calcium nodules were also observed on the ODM-treated DPSCs. The nHAC/PLA had significantly higher absorption water rate and protein adsorption rate than ß-TCP. The initial attachment of DPSCs seeded onto nHAC/PLA was significantly higher than that onto ß-TCP; and the proliferation rate of the cells was significantly higher than that of ß-TCP on 1, 3 and 7 days of cell culture. DPSCs+ß-TCP had significantly higher ALP activity, calcium/phosphorus content and mineral formation than DPSCs+nHAC/PLA. When implanted into the back of SCID mice, nHAC/PLA alone had no new bone formation, newly formed mature bone and osteoid were only observed in β-TCP alone, DPSCs+nHAC/PLA and DPSCs+β-TCP, and this three groups displayed increased bone formation over the 12-week period. The percentage of total bone formation area had no difference between DPSCs+β-TCP and DPSCs+nHAC/PLA at each time point,but the percentage of mature bone formation area of DPSCs+β-TCP was significantly higher than that of DPSCs+nHAC/PLA. Our results demonstrated that the DPSCs on nHAC/PLA had a better proliferation and that the DPSCs on β-TCP had a more mineralization in vitro, much more newly formed mature bones in vivo were presented in DPSCs+β-TCP group. These findings have provided a further knowledge that scaffold architecture has a different influence on the attachment, proliferation and differentiation of cells. This study may provide insight into the clinical periodontal bone tissue repair with DPSCs+β-TCP construct. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dental%20pulp%20stem%20cells" title="dental pulp stem cells">dental pulp stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-hydroxyapatite%2Fcollagen%2Fpoly%28L-lactide%29" title=" nano-hydroxyapatite/collagen/poly(L-lactide)"> nano-hydroxyapatite/collagen/poly(L-lactide)</a>, <a href="https://publications.waset.org/abstracts/search?q=beta-tricalcium%20phosphate" title=" beta-tricalcium phosphate"> beta-tricalcium phosphate</a>, <a href="https://publications.waset.org/abstracts/search?q=periodontal%20tissue%20engineering" title=" periodontal tissue engineering"> periodontal tissue engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20regeneration" title=" bone regeneration"> bone regeneration</a> </p> <a href="https://publications.waset.org/abstracts/27970/the-effect-of-calcium-phosphate-composite-scaffolds-on-the-osteogenic-differentiation-of-rabbit-dental-pulp-stem-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27970.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3500</span> A Proposal for Professional Development of Mathematics Teachers in the Kingdom of Saudi Arabia According to the Orientation of Science, Technology, Engineering and Mathematics (STEM)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Taher%20Othman%20Ali">Ali Taher Othman Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this research is to provide a draft proposal for the professional development of mathematics teachers in accordance with the orientation of science, technology, engineering and mathematics which is known by the abbreviation STEM, as a modern and contemporary orientation in the teaching and learning of mathematics and in order to achieve the objective of the research, the researcher used the theoretical descriptive method through the induction of the literature of education and the previous studies and experiments related to the topic. The researcher concluded by providing the proposal according to five basic axes, the first axe: professional development as a system, and its requirements include: development of educational systems, and allocate sufficient budgets to support the requirements of teaching STEM, identifying mechanisms for incentives and rewards for teachers attending professional development programs based on STEM; the second: development of in-depth knowledge content and its requirements include: basic sciences content development for STEM, linking the scientific understanding of teachers with real-world issues and problems, to provide the necessary resources to expand teachers' knowledge in this area; the third: the necessary pedagogical skills of teachers in the field of STEM, and its requirements include: identification of the required training and development needs and the mechanism of determining these needs, the types of professional development programs and the mechanism of designing it, the mechanisms and places of execution, evaluation and follow-up; the fourth: professional development strategies and mechanisms in the field of STEM, and its requirements include: using a variety of strategies to enable teachers to design and transfer effective educational experiences which reflect their scientific mastery in the fields of STEM, provide learning opportunities, and developing the skills of procedural research to generate new knowledge about the STEM; the fifth: to support professional development in the area of STEM, and its requirements include: support leadership within the school, provide a clear and appropriate opportunities for professional development for teachers within the school through professional learning communities, building partnerships between the Ministry of education and the local and international community institutions. The proposal includes other factors that should be considered when implementing professional development programs for mathematics teachers in the field of STEM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=professional%20development" title="professional development">professional development</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematics%20teachers" title=" mathematics teachers"> mathematics teachers</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20orientation%20of%20science" title=" the orientation of science"> the orientation of science</a>, <a href="https://publications.waset.org/abstracts/search?q=technology" title=" technology"> technology</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering%20and%20mathematics%20%28STEM%29" title=" engineering and mathematics (STEM)"> engineering and mathematics (STEM)</a> </p> <a href="https://publications.waset.org/abstracts/42303/a-proposal-for-professional-development-of-mathematics-teachers-in-the-kingdom-of-saudi-arabia-according-to-the-orientation-of-science-technology-engineering-and-mathematics-stem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42303.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3499</span> Phytochemical Screening and Toxicological Studies of Aqueous Stem Bark Extract of Boswellia papyrifera (DEL) in Albino Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Abdulmumin">Y. Abdulmumin</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20I.%20Matazu"> K. I. Matazu</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Wudil"> A. M. Wudil</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20J.%20Alhassan"> A. J. Alhassan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Imam"> A. A. Imam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phytochemical analysis of Boswellia papryfera confirms the presence of various phytochemicals such as alkaloids, flavonoids, tannins, saponins and cardiac glycosides in its aqueous stem bark extract at different concentration, with tannins being the highest (0.611 ± 0.002 g %). Acute toxicity test (LD50,oral, rat) of the extract showed no mortality at up to 5000 mg/kg and the animals were found active and healthy. The extract was declared as practically non-toxic, this suggest the safety of the extract in traditional medicine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acute%20toxicity" title="acute toxicity">acute toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=aqueous%20extract" title=" aqueous extract"> aqueous extract</a>, <a href="https://publications.waset.org/abstracts/search?q=boswellia%20papryfera" title=" boswellia papryfera"> boswellia papryfera</a>, <a href="https://publications.waset.org/abstracts/search?q=phytochemicals" title=" phytochemicals"> phytochemicals</a>, <a href="https://publications.waset.org/abstracts/search?q=stem%20bark%20extract" title=" stem bark extract"> stem bark extract</a> </p> <a href="https://publications.waset.org/abstracts/34096/phytochemical-screening-and-toxicological-studies-of-aqueous-stem-bark-extract-of-boswellia-papyrifera-del-in-albino-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34096.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3498</span> A 3D Bioprinting System for Engineering Cell-Embedded Hydrogels by Digital Light Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jimmy%20Jiun-Ming%20Su">Jimmy Jiun-Ming Su</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuan-Min%20Lin"> Yuan-Min Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bioprinting has been applied to produce 3D cellular constructs for tissue engineering. Microextrusion printing is the most common used method. However, printing low viscosity bioink is a challenge for this method. Herein, we developed a new 3D printing system to fabricate cell-laden hydrogels via a DLP-based projector. The bioprinter is assembled from affordable equipment including a stepper motor, screw, LED-based DLP projector, open source computer hardware and software. The system can use low viscosity and photo-polymerized bioink to fabricate 3D tissue mimics in a layer-by-layer manner. In this study, we used gelatin methylacrylate (GelMA) as bioink for stem cell encapsulation. In order to reinforce the printed construct, surface modified hydroxyapatite has been added in the bioink. We demonstrated the silanization of hydroxyapatite could improve the crosslinking between the interface of hydroxyapatite and GelMA. The results showed that the incorporation of silanized hydroxyapatite into the bioink had an enhancing effect on the mechanical properties of printed hydrogel, in addition, the hydrogel had low cytotoxicity and promoted the differentiation of embedded human bone marrow stem cells (hBMSCs) and retinal pigment epithelium (RPE) cells. Moreover, this bioprinting system has the ability to generate microchannels inside the engineered tissues to facilitate diffusion of nutrients. We believe this 3D bioprinting system has potential to fabricate various tissues for clinical applications and regenerative medicine in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioprinting" title="bioprinting">bioprinting</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20encapsulation" title=" cell encapsulation"> cell encapsulation</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20light%20processing" title=" digital light processing"> digital light processing</a>, <a href="https://publications.waset.org/abstracts/search?q=GelMA%20hydrogel" title=" GelMA hydrogel"> GelMA hydrogel</a> </p> <a href="https://publications.waset.org/abstracts/90711/a-3d-bioprinting-system-for-engineering-cell-embedded-hydrogels-by-digital-light-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90711.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3497</span> Update on Epithelial Ovarian Cancer (EOC), Types, Origin, Molecular Pathogenesis, and Biomarkers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salina%20Yahya%20Saddick">Salina Yahya Saddick</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ovarian cancer remains the most lethal gynecological malignancy due to the lack of highly sensitive and specific screening tools for detection of early-stage disease. The OSE provides the progenitor cells for 90% of human ovarian cancers. Recent morphologic, immunohistochemical and molecular genetic studies have led to the development of a new paradigm for the pathogenesis and origin of epithelial ovarian cancer (EOC) based on a ualistic model of carcinogenesis that divides EOC into two broad categories designated Types I and II which are characterized by specific mutations, including KRAS, BRAF, ERBB2, CTNNB1, PTEN PIK3CA, ARID1A, and PPPR1A, which target specific cell signaling pathways. Type 1 tumors rarely harbor TP53. type I tumors are relatively genetically stable and typically display a variety of somatic sequence mutations that include KRAS, BRAF, PTEN, PIK3CA CTNNB1 (the gene encoding beta catenin), ARID1A and PPP2R1A but very rarely TP53 . The cancer stem cell (CSC) hypothesis postulates that the tumorigenic potential of CSCs is confined to a very small subset of tumor cells and is defined by their ability to self-renew and differentiate leading to the formation of a tumor mass. Potential protein biomarker miRNA, are promising biomarkers as they are remarkably stable to allow isolation and analysis from tissues and from blood in which they can be found as free circulating nucleic acids and in mononuclear cells. Recently, genomic anaylsis have identified biomarkers and potential therapeutic targets for ovarian cancer namely, FGF18 which plays an active role in controlling migration, invasion, and tumorigenicity of ovarian cancer cells through NF-κB activation, which increased the production of oncogenic cytokines and chemokines. This review summarizes update information on epithelial ovarian cancers and point out to the most recent ongoing research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epithelial%20ovarian%20cancers" title="epithelial ovarian cancers">epithelial ovarian cancers</a>, <a href="https://publications.waset.org/abstracts/search?q=somatic%20sequence%20mutations" title=" somatic sequence mutations"> somatic sequence mutations</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer%20stem%20cell%20%28CSC%29" title=" cancer stem cell (CSC)"> cancer stem cell (CSC)</a>, <a href="https://publications.waset.org/abstracts/search?q=potential%20protein" title=" potential protein"> potential protein</a>, <a href="https://publications.waset.org/abstracts/search?q=biomarker" title=" biomarker"> biomarker</a>, <a href="https://publications.waset.org/abstracts/search?q=genomic%20analysis" title=" genomic analysis"> genomic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=FGF18%20biomarker" title=" FGF18 biomarker"> FGF18 biomarker</a> </p> <a href="https://publications.waset.org/abstracts/25939/update-on-epithelial-ovarian-cancer-eoc-types-origin-molecular-pathogenesis-and-biomarkers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25939.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3496</span> Expression of Fibrogenesis Markers after Mesenchymal Stem Cells Therapy for Experimental Liver Cirrhosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tatsiana%20Ihnatovich">Tatsiana Ihnatovich</a>, <a href="https://publications.waset.org/abstracts/search?q=Darya%20Nizheharodava"> Darya Nizheharodava</a>, <a href="https://publications.waset.org/abstracts/search?q=Mikalai%20Halabarodzka"> Mikalai Halabarodzka</a>, <a href="https://publications.waset.org/abstracts/search?q=Tatsiana%20Savitskaya"> Tatsiana Savitskaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Marina%20Zafranskaya"> Marina Zafranskaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Liver fibrosis is a complex of histological changes resulting from chronic liver disease accompanied by an excessive production and deposition of extracellular matrix components in the hepatic parenchyma. Liver fibrosis is a serious medical and social problem. Hepatic stellate cells (HSCs) make a significant contribution to the extracellular matrix deposition due to liver injury. Mesenchymal stem cells (MSCs) have a pronounced anti-inflammatory, regenerative and immunomodulatory effect; they are able to differentiate into hepatocytes and induce apoptosis of activated HSCs that opens the prospect of their use for preventing the excessive fibro-formation and the development of liver cirrhosis. The aim of the study is to evaluate the effect of MSCs therapy on the expression of fibrogenesis markers genes in liver tissue and HSCs cultures of rats with experimental liver cirrhosis (ELC). Materials and methods: ELC was induced by the common bile duct ligation (CBDL) in female Wistar rats (n = 19) with an average body weight of 250 (220 ÷ 270) g. Animals from the control group (n = 10) were sham-operated. On the 56th day after the CBDL, the rats of the experimental (n = 12) and the control (n = 5) groups received intraportal MSCs in concentration of 1×106 cells/animal (previously obtained from rat’s bone marrow) or saline, respectively. The animals were taken out of the experiment on the 21st day. HSCs were isolated by sequential liver perfusion in situ with following disaggregation, enzymatic treatment and centrifugation of cell suspension on a two-stage density gradient. The expression of collagen type I (Col1a1) and type III (Col3a1), matrix metalloproteinase type 2 (MMP2) and type 9 (MMP9), tissue inhibitor of matrix metalloproteinases type 1 (TIMP1), transforming growth factor β type 1 (TGFβ1) and type 3 (TGFβ3) was determined by real-time polymerase chain reaction. Statistical analysis was performed using Statistica 10.0. Results: In ELC rats compared to sham-operated animals, a significant increase of all studied markers expression was observed. The administration of MSCs led to a significant decrease of all detectable markers in the experimental group compared to rats without cell therapy. In ELC rats, an increased MMP9/TIMP1 ratio after cell therapy was also detected. The infusion of MSCs in the sham-operated animals did not lead to any changes. In the HSCs from ELC animals, the expression of Col1a1 and Col3a1 exceeded the similar parameters of the control group (p <0.05) and statistically decreased after the MSCs administration. The correlation between Col3a1 (Rs = 0.51, p <0.05), TGFβ1 (Rs = 0.6, p <0.01), and TGFβ3 (Rs = 0.75, p <0.001) expression in HSCs cultures and liver tissue has been found. Conclusion: Intraportal administration of MSCs to rats with ELC leads to a decreased Col1a1 and Col3a1, MMP2 and MMP9, TIMP1, TGFβ1 and TGFβ3 expression. The correlation between the expression of Col3a1, TGFβ1 and TGFβ3 in liver tissue and in HSCs cultures indicates the involvement of activated HSCs in the fibrogenesis that allows considering HSCs to be the main cell therapy target in ELC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell%20therapy" title="cell therapy">cell therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20liver%20cirrhosis" title=" experimental liver cirrhosis"> experimental liver cirrhosis</a>, <a href="https://publications.waset.org/abstracts/search?q=hepatic%20stellate%20cells" title=" hepatic stellate cells"> hepatic stellate cells</a>, <a href="https://publications.waset.org/abstracts/search?q=mesenchymal%20stem%20cells" title=" mesenchymal stem cells"> mesenchymal stem cells</a> </p> <a href="https://publications.waset.org/abstracts/84845/expression-of-fibrogenesis-markers-after-mesenchymal-stem-cells-therapy-for-experimental-liver-cirrhosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84845.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stem%20cells&amp;page=6" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stem%20cells&amp;page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stem%20cells&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stem%20cells&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stem%20cells&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stem%20cells&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stem%20cells&amp;page=6">6</a></li> <li class="page-item active"><span class="page-link">7</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stem%20cells&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stem%20cells&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stem%20cells&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stem%20cells&amp;page=123">123</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stem%20cells&amp;page=124">124</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stem%20cells&amp;page=8" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10