CINXE.COM

Search results for: RF power coupling

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: RF power coupling</title> <meta name="description" content="Search results for: RF power coupling"> <meta name="keywords" content="RF power coupling"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="RF power coupling" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="RF power coupling"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 6857</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: RF power coupling</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6857</span> Capacitive Coupling Wireless Power Transfer System with 6.78 MHz Class D Inverter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kang%20Hyun%20Yi">Kang Hyun Yi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wireless power transfer technologies are inductive coupling, magnetic resonance, and capacitive coupling methods, typically. Among them, the capacitive coupling wireless power transfer, also named Capacitive Coupling Wireless Power Transfer (CCWPT), has been researched to overcome the drawbacks of other approaches. The CCWPT has many advantages such as a simple structure, low standing power loss, reduced Electromagnetic Interference (EMI) and the ability to transfer power through metal barriers. In this paper, the CCWPT system with 6.78MHz class D inverter is proposed and analyzed. The proposed system is consisted of the 6.78MHz class D inverter with the LC low pass filter, the capacitor between a transmitter and a receiver and impedance transformers. The system is verified with a prototype for charging mobile devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wireless%20power%20transfer" title="wireless power transfer">wireless power transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=capacitive%20coupling%20power%20transfer" title=" capacitive coupling power transfer"> capacitive coupling power transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=class%20D%20inverter" title=" class D inverter"> class D inverter</a>, <a href="https://publications.waset.org/abstracts/search?q=6.78MHz" title=" 6.78MHz"> 6.78MHz</a> </p> <a href="https://publications.waset.org/abstracts/14367/capacitive-coupling-wireless-power-transfer-system-with-678-mhz-class-d-inverter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14367.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">650</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6856</span> QI Wireless Charging a Scope of Magnetic Inductive Coupling </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sreenesh%20Shashidharan">Sreenesh Shashidharan</a>, <a href="https://publications.waset.org/abstracts/search?q=Umesh%20Gaikwad"> Umesh Gaikwad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> QI or 'Chee' which is an interface standard for inductive electrical power transfer over distances of up to 4 cm (1.6 inches). The Qi system comprises a power transmission pad and a compatible receiver in a portable device which is placed on top of the power transmission pad, which charges using the principle of electromagnetic induction. An alternating current is passed through the transmitter coil, generating a magnetic field. This, in turn, induces a voltage in the receiver coil; this can be used to power a mobile device or charge a battery. The efficiency of the power transfer depends on the coupling (k) between the inductors and their quality (Q) The coupling is determined by the distance between the inductors (z) and the relative size (D2 /D). The coupling is further determined by the shape of the coils and the angle between them. If the receiver coil is at a certain distance to the transmitter coil, only a fraction of the magnetic flux, which is generated by the transmitter coil, penetrates the receiver coil and contributes to the power transmission. The more flux reaches the receiver, the better the coils are coupled. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inductive%20electric%20power" title="inductive electric power">inductive electric power</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20induction" title=" electromagnetic induction"> electromagnetic induction</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20flux" title=" magnetic flux"> magnetic flux</a>, <a href="https://publications.waset.org/abstracts/search?q=coupling" title=" coupling"> coupling</a> </p> <a href="https://publications.waset.org/abstracts/20622/qi-wireless-charging-a-scope-of-magnetic-inductive-coupling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">732</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6855</span> Power Integrity Analysis of Power Delivery System in High Speed Digital FPGA Board</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anil%20Kumar%20Pandey">Anil Kumar Pandey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Power plane noise is the most significant source of signal integrity (SI) issues in a high-speed digital design. In this paper, power integrity (PI) analysis of multiple power planes in a power delivery system of a 12-layer high-speed FPGA board is presented. All 10 power planes of HSD board are analyzed separately by using 3D Electromagnetic based PI solver, then the transient simulation is performed on combined PI data of all planes along with voltage regulator modules (VRMs) and 70 current drawing chips to get the board level power noise coupling on different high-speed signals. De-coupling capacitors are placed between power planes and ground to reduce power noise coupling with signals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20integrity" title="power integrity">power integrity</a>, <a href="https://publications.waset.org/abstracts/search?q=power-aware%20signal%20integrity%20analysis" title=" power-aware signal integrity analysis"> power-aware signal integrity analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20simulation" title=" electromagnetic simulation"> electromagnetic simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=channel%20simulation" title=" channel simulation"> channel simulation</a> </p> <a href="https://publications.waset.org/abstracts/48620/power-integrity-analysis-of-power-delivery-system-in-high-speed-digital-fpga-board" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48620.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6854</span> Volume Density of Power of Multivector Electric Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aldan%20A.%20Sapargaliyev">Aldan A. Sapargaliyev</a>, <a href="https://publications.waset.org/abstracts/search?q=Yerbol%20A.%20Sapargaliyev"> Yerbol A. Sapargaliyev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since the invention, the electric machine (EM) can be defined as oEM &ndash; one-vector electric machine, as it works due to one-vector inductive coupling with use of one-vector electromagnet. The disadvantages of oEM are large size and limited efficiency at low and medium power applications. This paper describes multi-vector electric machine (mEM) based on multi-vector inductive coupling, which is characterized by the increased surface area of ​​the inductive coupling per EM volume, with a reduced share of inefficient and energy-consuming part of the winding, in comparison with oEM&rsquo;s. Particularly, it is considered, calculated and compared the performance of three different electrical motors and their power at the same volumes and rotor frequencies. It is also presented the result of calculation of correlation between power density and volume for oEM and mEM. The method of multi-vector inductive coupling enables mEM to possess 1.5-4.0 greater density of power per volume and significantly higher efficiency, in comparison with today&rsquo;s oEM, especially in low and medium power applications. mEM has distinct advantages, when used in transport vehicles such as electric cars and aircrafts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20machine" title="electric machine">electric machine</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20motor" title=" electric motor"> electric motor</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnet" title=" electromagnet"> electromagnet</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency%20of%20electric%20motor" title=" efficiency of electric motor"> efficiency of electric motor</a> </p> <a href="https://publications.waset.org/abstracts/67282/volume-density-of-power-of-multivector-electric-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67282.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6853</span> Optimum Tuning Capacitors for Wireless Charging of Electric Vehicles Considering Variation in Coil Distances</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Abdullah%20Arafat">Muhammad Abdullah Arafat</a>, <a href="https://publications.waset.org/abstracts/search?q=Nahrin%20Nowrose"> Nahrin Nowrose</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wireless charging of electric vehicles is becoming more and more attractive as large amount of power can now be transferred to a reasonable distance using magnetic resonance coupling method. However, proper tuning of the compensation network is required to achieve maximum power transmission. Due to the variation of coil distance from the nominal value as a result of change in tire condition, change in weight or uneven road condition, the tuning of the compensation network has become challenging. In this paper, a tuning method has been described to determine the optimum values of the compensation network in order to maximize the average output power. The simulation results show that 5.2 percent increase in average output power is obtained for 10 percent variation in coupling coefficient using the optimum values without the need of additional space and electro-mechanical components. The proposed method is applicable to both static and dynamic charging of electric vehicles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coupling%20coefficient" title="coupling coefficient">coupling coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicles" title=" electric vehicles"> electric vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20resonance%20coupling" title=" magnetic resonance coupling"> magnetic resonance coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=tuning%20capacitor" title=" tuning capacitor"> tuning capacitor</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20power%20transfer" title=" wireless power transfer"> wireless power transfer</a> </p> <a href="https://publications.waset.org/abstracts/149064/optimum-tuning-capacitors-for-wireless-charging-of-electric-vehicles-considering-variation-in-coil-distances" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6852</span> Exciting Voltage Control for Efficiency Maximization for 2-D Omni-Directional Wireless Power Transfer Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masato%20Sasaki">Masato Sasaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Masayoshi%20Yamamoto"> Masayoshi Yamamoto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The majority of wireless power transfer (WPT) systems transfer power in a directional manner. This paper describes a discrete exciting voltage control technique for WPT via magnetic resonant coupling with two orthogonal transmitter coils (2D omni-directional WPT system) which can maximize the power transfer efficiency in response to the change of coupling status. The theory allows the equations of the efficiency of the system to be determined at all the rate of the mutual inductance. The calculated results are included to confirm the advantage to one directional WPT system and the validity of the theory and the equations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wireless%20power%20transfer" title="wireless power transfer">wireless power transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=omni-directional" title=" omni-directional"> omni-directional</a>, <a href="https://publications.waset.org/abstracts/search?q=orthogonal" title=" orthogonal"> orthogonal</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a> </p> <a href="https://publications.waset.org/abstracts/61604/exciting-voltage-control-for-efficiency-maximization-for-2-d-omni-directional-wireless-power-transfer-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61604.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6851</span> Study of Fork Marks on Sapphire Wafers in Plasma Enhanced Chemical Vapor Deposition Tool</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qiao%20Pei%20Wen">Qiao Pei Wen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ng%20Seng%20Lee"> Ng Seng Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Sae%20Tae%20Veera"> Sae Tae Veera</a>, <a href="https://publications.waset.org/abstracts/search?q=Chiu%20Ah%20Fong"> Chiu Ah Fong</a>, <a href="https://publications.waset.org/abstracts/search?q=Loke%20Weng%20Onn"> Loke Weng Onn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thin film thickness uniformity is crucial to get consistent film etch rate and device yield across the wafer. In the capacitive-coupled parallel plate PECVD system; the film thickness uniformity can be affected by many factors such as the heater temperature uniformity, the spacing between top and bottom electrode, RF power, pressure, gas flows and etc. In this paper, we studied how the PECVD SiN film thickness uniformity is affected by the substrate electrical conductivity and the RF power coupling efficiency. PECVD SiN film was deposited on 150-mm sapphire wafers in 200-mm Lam Sequel tool, fork marks were observed on the wafers. On the fork marks area SiN film thickness is thinner than that on the non-fork area. The forks are the wafer handler inside the process chamber to move the wafers from one station to another. The sapphire wafers and the ceramic forks both are insulator. The high resistivity of the sapphire wafers and the forks inhibits the RF power coupling efficiency during PECVD deposition, thereby reducing the deposition rate. Comparing between the high frequency and low frequency RF power (HFRF and LFRF respectively), the LFRF power coupling effect on the sapphire wafers is more dominant than the HFRF power on the film thickness. This paper demonstrated that the SiN thickness uniformity on sapphire wafers can be improved by depositing a thin TiW layer on the wafer before the SiN deposition. The TiW layer can be on the wafer surface, bottom or any layer before SiN deposition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PECVD%20SiN%20deposition" title="PECVD SiN deposition">PECVD SiN deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=sapphire%20wafer" title=" sapphire wafer"> sapphire wafer</a>, <a href="https://publications.waset.org/abstracts/search?q=substrate%20electrical%20conductivity" title=" substrate electrical conductivity"> substrate electrical conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=RF%20power%20coupling" title=" RF power coupling"> RF power coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20frequency%20RF%20power" title=" high frequency RF power"> high frequency RF power</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20frequency%20RF%20power" title=" low frequency RF power"> low frequency RF power</a>, <a href="https://publications.waset.org/abstracts/search?q=film%20deposition%20rate" title=" film deposition rate"> film deposition rate</a>, <a href="https://publications.waset.org/abstracts/search?q=thickness%20uniformity" title=" thickness uniformity"> thickness uniformity</a> </p> <a href="https://publications.waset.org/abstracts/36353/study-of-fork-marks-on-sapphire-wafers-in-plasma-enhanced-chemical-vapor-deposition-tool" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36353.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6850</span> Role of Interlayer Coupling for the Power Factor of CuSbS2 and CuSbSe2</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Najebah%20Alsaleh">Najebah Alsaleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Nirpendra%20Singh"> Nirpendra Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Udo%20Schwingenschlogl"> Udo Schwingenschlogl</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The electronic and transport properties of bulk and monolayer CuSbS2 and CuSbSe2 are determined by using density functional theory and semiclassical Boltzmann transport theory, in order to investigate the role of interlayer coupling for the thermoelectric properties. The calculated band gaps of the bulk compounds are in agreement with experiments and significantly higher than those of the monolayers, which thus show lower Seebeck coefficients. Since also the electrical conductivity is lower, the monolayers are characterized by lower power factors. Therefore, interlayer coupling is found to be essential for the excellent thermoelectric response of CuSbS2 and CuSbSe2, even though it is weak. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=density%20functional%20theory" title="density functional theory">density functional theory</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoelectric" title=" thermoelectric"> thermoelectric</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20properties" title=" electronic properties"> electronic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=monolayer" title=" monolayer"> monolayer</a> </p> <a href="https://publications.waset.org/abstracts/60142/role-of-interlayer-coupling-for-the-power-factor-of-cusbs2-and-cusbse2" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60142.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6849</span> Coils and Antennas Fabricated with Sewing Litz Wire for Wireless Power Transfer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hikari%20Ryu">Hikari Ryu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuki%20Fukuda"> Yuki Fukuda</a>, <a href="https://publications.waset.org/abstracts/search?q=Kento%20Oishi"> Kento Oishi</a>, <a href="https://publications.waset.org/abstracts/search?q=Chiharu%20Igarashi"> Chiharu Igarashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shogo%20Kiryu"> Shogo Kiryu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, wireless power transfer has been developed in various fields. Magnetic coupling is popular for feeding power at a relatively short distance and at a lower frequency. Electro-magnetic wave coupling at a high frequency is used for long-distance power transfer. The wireless power transfer has attracted attention in e-textile fields. Rigid batteries are required for many body-worn electric systems at the present time. The technology enables such batteries to be removed from the systems. Flexible coils have been studied for such applications. Coils with a high Q factor are required in the magnetic-coupling power transfer. Antennas with low return loss are needed for the electro-magnetic coupling. Litz wire is so flexible to fabricate coils and antennas sewn on fabric and has low resistivity. In this study, the electric characteristics of some coils and antennas fabricated with the Litz wire by using two sewing techniques are investigated. As examples, a coil and an antenna are described. Both were fabricated with 330/0.04 mm Litz wire. The coil was a planar coil with a square shape. The outer side was 150 mm, the number of turns was 15, and the pitch interval between each turn was 5 mm. The Litz wire of the coil was overstitched with a sewing machine. The coil was fabricated as a receiver coil for a magnetic coupled wireless power transfer. The Q factor was 200 at a frequency of 800 kHz. A wireless power system was constructed by using the coil. A power oscillator was used in the system. The resonant frequency of the circuit was set to 123 kHz, where the switching loss of power FETs was small. The power efficiencies were 0.44 – 0.99, depending on the distance between the transmitter and receiver coils. As an example of an antenna with a sewing technique, a fractal pattern antenna was stitched on a 500 mm x 500 mm fabric by using a needle punch method. The pattern was the 2nd-oder Vicsec fractal. The return loss of the antenna was -28 dB at a frequency of 144 MHz. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=e-textile" title="e-textile">e-textile</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20coils%20and%20antennas" title=" flexible coils and antennas"> flexible coils and antennas</a>, <a href="https://publications.waset.org/abstracts/search?q=Litz%20wire" title=" Litz wire"> Litz wire</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20power%20transfer" title=" wireless power transfer"> wireless power transfer</a> </p> <a href="https://publications.waset.org/abstracts/152708/coils-and-antennas-fabricated-with-sewing-litz-wire-for-wireless-power-transfer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152708.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6848</span> Ultrastrong Coupling of CdZnS/ZnS Quantum Dots and Breathing Plasmons in Aluminum Metal-Insulator-Metal Nanocavities in Near-Ultraviolet Spectrum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li%20Li">Li Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Lei%20Wang"> Lei Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chenglin%20Du"> Chenglin Du</a>, <a href="https://publications.waset.org/abstracts/search?q=Mengxin%20Ren"> Mengxin Ren</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinzheng%20Zhang"> Xinzheng Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Cai"> Wei Cai</a>, <a href="https://publications.waset.org/abstracts/search?q=Jingjun%20Xu"> Jingjun Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Strong coupling between excitons of quantum dots and plasmons in nanocavites can be realized at room temperature due to the strong confinement of the plasmon fields, which offers building blocks for quantum information systems or ultralow-power switches and lasers. In this work, by using cathodoluminescence, ultrastrong coupling with Rabi splitting above 1 eV between breathing plasmons in Aluminum metal-insulator-metal (MIM) cavity and excited state of CdZnS/ZnS quantum dots was reported in near-UV spectrum. Analytic analysis and full-wave electromagnetic simulations provide the evidence for the strong coupling and confirm the hybridization of the QDs exciton and LSP breathing mode. This study opens the way for new emerging applications based on strongly coupled light-matter states all over the visible region down to ultra-violet frequencies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breathing%20mode" title="breathing mode">breathing mode</a>, <a href="https://publications.waset.org/abstracts/search?q=plasmonics" title=" plasmonics"> plasmonics</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20dot" title=" quantum dot"> quantum dot</a>, <a href="https://publications.waset.org/abstracts/search?q=strong%20coupling" title=" strong coupling"> strong coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=ultraviolet" title=" ultraviolet"> ultraviolet</a> </p> <a href="https://publications.waset.org/abstracts/105253/ultrastrong-coupling-of-cdznszns-quantum-dots-and-breathing-plasmons-in-aluminum-metal-insulator-metal-nanocavities-in-near-ultraviolet-spectrum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105253.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6847</span> Investigation of Magnetic Resonance Wireless Charger Efficiency for Mobile Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=SeungHee%20Ryu">SeungHee Ryu</a>, <a href="https://publications.waset.org/abstracts/search?q=Junil%20Moon"> Junil Moon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The magnetic resonance wireless power transfer system is widely researched due to its benefits such as spatial freedom. In this paper, power transmitting unit and power receiving unit of wireless battery charger for mobile devices is presented. Power transmitting unit efficiency is measured under different test conditions with power receiving units. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20resonance%20coupling" title="magnetic resonance coupling">magnetic resonance coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20power%20transfer" title=" wireless power transfer"> wireless power transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20transfer%20efficiency." title=" power transfer efficiency."> power transfer efficiency.</a> </p> <a href="https://publications.waset.org/abstracts/32012/investigation-of-magnetic-resonance-wireless-charger-efficiency-for-mobile-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32012.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">511</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6846</span> Investigation on the Behavior of Conventional Reinforced Coupling Beams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akash%20K.%20Walunj">Akash K. Walunj</a>, <a href="https://publications.waset.org/abstracts/search?q=Dipendu%20Bhunia"> Dipendu Bhunia</a>, <a href="https://publications.waset.org/abstracts/search?q=Samarth%20Gupta"> Samarth Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Prabhat%20Gupta"> Prabhat Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coupled shear walls consist of two shear walls connected intermittently by beams along the height. The behavior of coupled shear walls is mainly governed by the coupling beams. The coupling beams are designed for ductile inelastic behavior in order to dissipate energy. The base of the shear walls may be designed for elastic or ductile inelastic behavior. The amount of energy dissipation depends on the yield moment capacity and plastic rotation capacity of the coupling beams. In this paper, an analytical model of coupling beam was developed to calculate the rotations and moment capacities of coupling beam with conventional reinforcement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design%20studies" title="design studies">design studies</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20model%28s%29" title=" computational model(s)"> computational model(s)</a>, <a href="https://publications.waset.org/abstracts/search?q=case%20study%2Fstudies" title=" case study/studies"> case study/studies</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=coupling%20beam" title=" coupling beam"> coupling beam</a> </p> <a href="https://publications.waset.org/abstracts/3310/investigation-on-the-behavior-of-conventional-reinforced-coupling-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3310.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">476</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6845</span> Empirical Investigation for the Correlation between Object-Oriented Class Lack of Cohesion and Coupling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jehad%20Al%20Dallal">Jehad Al Dallal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The design of the internal relationships among object-oriented class members (i.e., attributes and methods) and the external relationships among classes affects the overall quality of the object-oriented software. The degree of relatedness among class members is referred to as class cohesion and the degree to which a class is related to other classes is called class coupling. Well designed classes are expected to exhibit high cohesion and low coupling values. In this paper, using classes of three open-source Java systems, we empirically investigate the relation between class cohesion and coupling. In the empirical study, five lack-of-cohesion metrics and eight coupling metrics are considered. The empirical study results show that class cohesion and coupling internal quality attributes are inversely correlated. The strength of the correlation highly depends on the cohesion and coupling measurement approaches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=class%20cohesion%20measure" title="class cohesion measure">class cohesion measure</a>, <a href="https://publications.waset.org/abstracts/search?q=class%20coupling%20measure" title=" class coupling measure"> class coupling measure</a>, <a href="https://publications.waset.org/abstracts/search?q=object-oriented%20class" title=" object-oriented class"> object-oriented class</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20quality" title=" software quality"> software quality</a> </p> <a href="https://publications.waset.org/abstracts/45455/empirical-investigation-for-the-correlation-between-object-oriented-class-lack-of-cohesion-and-coupling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6844</span> Empirical Exploration for the Correlation between Class Object-Oriented Connectivity-Based Cohesion and Coupling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jehad%20Al%20Dallal">Jehad Al Dallal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Attributes and methods are the basic contents of an object-oriented class. The connectivity among these class members and the relationship between the class and other classes play an important role in determining the quality of an object-oriented system. Class cohesion evaluates the degree of relatedness of class attributes and methods, whereas class coupling refers to the degree to which a class is related to other classes. Researchers have proposed several class cohesion and class coupling measures. However, the correlation between class coupling and class cohesion measures have not been thoroughly studied. In this paper, using classes of three open-source Java systems, we empirically investigate the correlation between several measures of connectivity-based class cohesion and coupling. Four connectivity-based cohesion measures and eight coupling measures are considered in the empirical study. The empirical study results show that class connectivity-based cohesion and coupling internal quality attributes are inversely correlated. The strength of the correlation depends highly on the cohesion and coupling measurement approaches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=object-oriented%20class" title="object-oriented class">object-oriented class</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20quality" title=" software quality"> software quality</a>, <a href="https://publications.waset.org/abstracts/search?q=class%20cohesion%20measure" title=" class cohesion measure"> class cohesion measure</a>, <a href="https://publications.waset.org/abstracts/search?q=class%20coupling%20measure" title=" class coupling measure"> class coupling measure</a> </p> <a href="https://publications.waset.org/abstracts/18331/empirical-exploration-for-the-correlation-between-class-object-oriented-connectivity-based-cohesion-and-coupling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18331.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6843</span> Energy Self-Sufficiency Through Smart Micro-Grids and Decentralised Sector-Coupling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Trapp">C. Trapp</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Vijay"> A. Vijay</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Khorasani"> M. Khorasani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Decentralised micro-grids with sector coupling can combat the spatial and temporal intermittence of renewable energy by combining power, transportation and infrastructure sectors. Intelligent energy conversion concepts such as electrolysers, hydrogen engines and fuel cells combined with energy storage using intelligent batteries and hydrogen storage form the back-bone of such a system. This paper describes a micro-grid based on Photo-Voltaic cells, battery storage, innovative modular and scalable Anion Exchange Membrane (AEM) electrolyzer with an efficiency of up to 73%, high-pressure hydrogen storage as well as cutting-edge combustion-engine based Combined Heat and Power (CHP) plant with more than 85% efficiency at the university campus to address the challenges of decarbonization whilst eliminating the necessity for expensive high-voltage infrastructure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sector%20coupling" title="sector coupling">sector coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-grids" title=" micro-grids"> micro-grids</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20self-sufficiency" title=" energy self-sufficiency"> energy self-sufficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=decarbonization" title=" decarbonization"> decarbonization</a>, <a href="https://publications.waset.org/abstracts/search?q=AEM%20electrolysis" title=" AEM electrolysis"> AEM electrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20CHP" title=" hydrogen CHP"> hydrogen CHP</a> </p> <a href="https://publications.waset.org/abstracts/144154/energy-self-sufficiency-through-smart-micro-grids-and-decentralised-sector-coupling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144154.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6842</span> An Ultra-Low Output Impedance Power Amplifier for Tx Array in 7-Tesla Magnetic Resonance Imaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashraf%20Abuelhaija">Ashraf Abuelhaija</a>, <a href="https://publications.waset.org/abstracts/search?q=Klaus%20Solbach"> Klaus Solbach</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Ultra high-field MRI scanners (3T and higher), parallel RF transmission techniques using multiple RF chains with multiple transmit elements are a promising approach to overcome the high-field MRI challenges in terms of inhomogeneity in the RF magnetic field and SAR. However, mutual coupling between the transmit array elements disturbs the desirable independent control of the RF waveforms for each element. This contribution demonstrates a 18 dB improvement of decoupling (isolation) performance due to the very low output impedance of our 1 kW power amplifier. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EM%20coupling" title="EM coupling">EM coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=inter-element%20isolation" title=" inter-element isolation"> inter-element isolation</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20resonance%20imaging%20%28mri%29" title=" magnetic resonance imaging (mri)"> magnetic resonance imaging (mri)</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20transmit" title=" parallel transmit"> parallel transmit</a> </p> <a href="https://publications.waset.org/abstracts/31126/an-ultra-low-output-impedance-power-amplifier-for-tx-array-in-7-tesla-magnetic-resonance-imaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31126.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">495</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6841</span> Anti-Phase Synchronization of Complex Delayed Networks with Output Coupling via Pinning Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chanyuan%20Gu">Chanyuan Gu</a>, <a href="https://publications.waset.org/abstracts/search?q=Shouming%20Zhong"> Shouming Zhong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Synchronization is a fundamental phenomenon that enables coherent behavior in networks as a result of interactions. The purpose of this research had been to investigate the problem of anti-phase synchronization for complex delayed dynamical networks with output coupling. The coupling configuration is general, with the coupling matrix not assumed to be symmetric or irreducible. The amount of the coupling variables between two connected nodes is flexible, the nodes in the drive and response systems need not to be identical and there is not any extra constraint on the coupling matrix. Some pinning controllers are designed to make the drive-response system achieve the anti-phase synchronization. For the convenience of description, we applied the matrix Kronecker product. Some new criteria are proposed based on the Lyapunov stability theory, linear matrix inequalities (LMI) and Schur complement. Lastly, some simulation examples are provided to illustrate the effectiveness of our proposed conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-phase%20synchronization" title="anti-phase synchronization">anti-phase synchronization</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20networks" title=" complex networks"> complex networks</a>, <a href="https://publications.waset.org/abstracts/search?q=output%20coupling" title=" output coupling"> output coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=pinning%20control" title=" pinning control"> pinning control</a> </p> <a href="https://publications.waset.org/abstracts/38055/anti-phase-synchronization-of-complex-delayed-networks-with-output-coupling-via-pinning-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38055.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6840</span> Substrate Coupling in Millimeter Wave Frequencies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vasileios%20Gerakis">Vasileios Gerakis</a>, <a href="https://publications.waset.org/abstracts/search?q=Fontounasios%20Christos"> Fontounasios Christos</a>, <a href="https://publications.waset.org/abstracts/search?q=Alkis%20Hatzopoulos"> Alkis Hatzopoulos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A study of the impact of metal guard rings on the coupling between two square metal pads is presented. The structure is designed over a bulk silicon substrate with epitaxial layer, so the coupling through the substrate is also involved. A lightly doped profile is adopted and is simulated by means of an electromagnetic simulator for various pad distances and different metal layers, assuming a 65 nm bulk CMOS technology. The impact of various guard ring design (geometrical) parameters is examined. Furthermore, the increase of isolation (resulting in reduction of the noise coupling) between the pads by cutting the ring, or by using multiple rings, is also analyzed. S parameters are used to compare the various structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=guard%20rings" title="guard rings">guard rings</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20pad%20coupling" title=" metal pad coupling"> metal pad coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=millimeter%20wave%20frequencies" title=" millimeter wave frequencies"> millimeter wave frequencies</a>, <a href="https://publications.waset.org/abstracts/search?q=substrate%20noise" title=" substrate noise"> substrate noise</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=" "> </a> </p> <a href="https://publications.waset.org/abstracts/26875/substrate-coupling-in-millimeter-wave-frequencies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26875.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">539</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6839</span> Comparison Analysis of CFD Turbulence Fluid Numerical Study for Quick Coupling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=JoonHo%20Lee">JoonHo Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=KyoJin%20An"> KyoJin An</a>, <a href="https://publications.waset.org/abstracts/search?q=JunSu%20Kim"> JunSu Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Young-Chul%20Park"> Young-Chul Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the fluid flow characteristics and performance numerical study through CFD model of the Non-split quick coupling for flow control in hydraulic system equipment for the aerospace business group focused to predict. In this study, we considered turbulence models for the application of Computational Fluid Dynamics for the CFD model of the Non-split Quick Coupling for aerospace business. In addition to this, the adequacy of the CFD model were verified by comparing with standard value. Based on this analysis, accurate the fluid flow characteristics can be predicted. It is, therefore, the design of the fluid flow characteristic contribute the reliability for the Quick Coupling which is required in industries on the basis of research results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=quick%20coupling" title=" quick coupling"> quick coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence" title=" turbulence"> turbulence</a> </p> <a href="https://publications.waset.org/abstracts/31538/comparison-analysis-of-cfd-turbulence-fluid-numerical-study-for-quick-coupling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6838</span> Detection of Coupling Misalignment in a Rotor System Using Wavelet Transforms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prabhakar%20Sathujoda">Prabhakar Sathujoda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vibration analysis of a misaligned rotor coupling bearing system has been carried out while decelerating through its critical speed. The finite element method (FEM) is used to model the rotor system and simulate flexural vibrations. A flexible coupling with a frictionless joint is considered in the present work. The continuous wavelet transform is used to extract the misalignment features from the simulated time response. Subcritical speeds at one-half, one-third, and one-fourth the critical speed have appeared in the wavelet transformed vibration response of a misaligned rotor coupling bearing system. These features are also verified through a parametric study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Continuous%20Wavelet%20Transform" title="Continuous Wavelet Transform">Continuous Wavelet Transform</a>, <a href="https://publications.waset.org/abstracts/search?q=Flexible%20Coupling" title=" Flexible Coupling"> Flexible Coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=Rotor%20System" title=" Rotor System"> Rotor System</a>, <a href="https://publications.waset.org/abstracts/search?q=Sub%20Critical%20Speed" title=" Sub Critical Speed"> Sub Critical Speed</a> </p> <a href="https://publications.waset.org/abstracts/123448/detection-of-coupling-misalignment-in-a-rotor-system-using-wavelet-transforms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123448.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6837</span> Understanding the Conflict Between Ecological Environment and Human Activities in the Process of Urbanization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yazhou%20Zhou">Yazhou Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Huang"> Yong Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Guoqin%20Ge"> Guoqin Ge</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the process of human social development, the coupling and coordinated development among the ecological environment(E), production(P), and living functions(L) is of great significance for sustainable development. This study uses an improved coupling coordination degree model (CCDM) to discover the coordination conflict between E and human settlement environment. The main work of this study is as follows: (1) It is found that in the process of urbanization development of Ya 'an city from 2014 to 2018, the degree of coupling (DOC) value between E, P, and L is high, but the coupling coordination degree (CCD) of the three is low, especially the DOC value of E and the other two has the biggest decline. (2) A more objective weight value is obtained, which can avoid the analysis error caused by subjective judgment weight value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ecological%20environment" title="ecological environment">ecological environment</a>, <a href="https://publications.waset.org/abstracts/search?q=coupling%20coordination%20degree" title=" coupling coordination degree"> coupling coordination degree</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a> </p> <a href="https://publications.waset.org/abstracts/179164/understanding-the-conflict-between-ecological-environment-and-human-activities-in-the-process-of-urbanization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179164.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6836</span> Introduction of the Fluid-Structure Coupling into the Force Analysis Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oc%C3%A9ane%20Grosset">Océane Grosset</a>, <a href="https://publications.waset.org/abstracts/search?q=Charles%20P%C3%A9zerat"> Charles Pézerat</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Hugh%20Thomas"> Jean-Hugh Thomas</a>, <a href="https://publications.waset.org/abstracts/search?q=Fr%C3%A9d%C3%A9ric%20Ablitzer"> Frédéric Ablitzer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a method to take into account the fluid-structure coupling into an inverse method, the Force Analysis Technique (FAT). The FAT method, also called RIFF method (Filtered Windowed Inverse Resolution), allows to identify the force distribution from local vibration field. In order to only identify the external force applied on a structure, it is necessary to quantify the fluid-structure coupling, especially in naval application, where the fluid is heavy. This method can be decomposed in two parts, the first one consists in identifying the fluid-structure coupling and the second one to introduced it in the FAT method to reconstruct the external force. Results of simulations on a plate coupled with a cavity filled with water are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aeroacoustics" title="aeroacoustics">aeroacoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid-structure%20coupling" title=" fluid-structure coupling"> fluid-structure coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20methods" title=" inverse methods"> inverse methods</a>, <a href="https://publications.waset.org/abstracts/search?q=naval" title=" naval"> naval</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20flow" title=" turbulent flow"> turbulent flow</a> </p> <a href="https://publications.waset.org/abstracts/58380/introduction-of-the-fluid-structure-coupling-into-the-force-analysis-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58380.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">519</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6835</span> UEMG-FHR Coupling Analysis in Pregnancies Complicated by Pre-Eclampsia and Small for Gestational Age</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kun%20Chen">Kun Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20Wang"> Yan Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yangyu%20Zhao"> Yangyu Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Shufang%20Li"> Shufang Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Lian%20Chen"> Lian Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoyue%20Guo"> Xiaoyue Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jue%20Zhang"> Jue Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jing%20Fang"> Jing Fang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The coupling strength between uterine electromyography (UEMG) and Fetal heart rate (FHR) signals during peripartum reflects the fetal biophysical activities. Therefore, UEMG-FHR coupling characterization is instructive in assessing placenta function. This study introduced a physiological marker named elevated frequency of UEMG-FHR coupling (E-UFC) and explored its predictive value for pregnancies complicated by pre-eclampsia and small for gestational age (SGA). Placental insufficiency patients (n=12) and healthy volunteers (n=24) were recruited and participated. UEMG and FHR were recorded non-invasively by a trans-abdominal device in women at term with singleton pregnancy (32-37 weeks) from 10:00 pm to 8:00 am. The product of the wavelet coherence and the wavelet cross-spectral power between UEMG and FHR was used to weight these two effects in order to quantify the degree of the UEMG-FHR coupling. E-UFC was exacted from the resultant spectrogram by calculating the mean value of the high-coherence (r > 0.5) frequency band. Results showed the high-coherence between UEMG and FHR was observed in the frequency band (1/512-1/16Hz). In addition, E-UFC in placental insufficiency patients was weaker compared to healthy controls (p < 0.001) at group level. These findings suggested the proposed approach could be used to quantitatively characterize the fetal biophysical activities, which is beneficial for early detection of placental insufficiency and reduces the occurrence of adverse pregnancy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=uterine%20electromyography" title="uterine electromyography">uterine electromyography</a>, <a href="https://publications.waset.org/abstracts/search?q=fetal%20heart%20rate" title=" fetal heart rate"> fetal heart rate</a>, <a href="https://publications.waset.org/abstracts/search?q=coupling%20analysis" title=" coupling analysis"> coupling analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelet%20analysis" title=" wavelet analysis"> wavelet analysis</a> </p> <a href="https://publications.waset.org/abstracts/95342/uemg-fhr-coupling-analysis-in-pregnancies-complicated-by-pre-eclampsia-and-small-for-gestational-age" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95342.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6834</span> Mutual Coupling Reduction between Patch Antenna Array Elements Using Metamaterial Z Shaped Resonators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oossama%20Tabbabi">Oossama Tabbabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mondher%20Labidi"> Mondher Labidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Fethi%20Choubani"> Fethi Choubani</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20David"> J. David</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modern wireless communication systems require compact design, low cost and simple structure antennas to insure reliability, agility, and high efficiency characteristics. This paper presents a microstrip antenna array designed for 8 GHz applications. To reduce the mutual coupling effects, a Z shape metamaterial structure was imprinted in the microstrip antenna array composed of two elements. Simulation results show the improvement of mutual coupling by adding Z shape metamaterial structure to the antenna substrate. The proposed structure reduces mutual coupling by 19 dB. The simulation has been performed by using HFSS simulator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antenna%20array" title="antenna array">antenna array</a>, <a href="https://publications.waset.org/abstracts/search?q=compact%20design" title=" compact design"> compact design</a>, <a href="https://publications.waset.org/abstracts/search?q=modern%20wireless%20communication" title=" modern wireless communication"> modern wireless communication</a>, <a href="https://publications.waset.org/abstracts/search?q=mutual%20coupling%20effects" title=" mutual coupling effects"> mutual coupling effects</a> </p> <a href="https://publications.waset.org/abstracts/42228/mutual-coupling-reduction-between-patch-antenna-array-elements-using-metamaterial-z-shaped-resonators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42228.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6833</span> Wave Interaction with Defects in Pressurized Composite Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20K.%20Apalowo">R. K. Apalowo</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Chronopoulos"> D. Chronopoulos</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Thierry"> V. Thierry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A wave finite element (WFE) and finite element (FE) based computational method is presented by which the dispersion properties as well as the wave interaction coefficients for one-dimensional structural system can be predicted. The structural system is discretized as a system comprising a number of waveguides connected by a coupling joint. Uniform nodes are ensured at the interfaces of the coupling element with each waveguide. Then, equilibrium and continuity conditions are enforced at the interfaces. Wave propagation properties of each waveguide are calculated using the WFE method and the coupling element is modelled using the FE method. The scattering of waves through the coupling element, on which damage is modelled, is determined by coupling the FE and WFE models. Furthermore, the central aim is to evaluate the effect of pressurization on the wave dispersion and scattering characteristics of the prestressed structural system compared to that which is not prestressed. Numerical case studies are exhibited for two waveguides coupled through a coupling joint. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Finite%20Element" title="Finite Element">Finite Element</a>, <a href="https://publications.waset.org/abstracts/search?q=Prestressed%20Structures" title=" Prestressed Structures"> Prestressed Structures</a>, <a href="https://publications.waset.org/abstracts/search?q=Wave%20Finite%20Element" title="Wave Finite Element">Wave Finite Element</a>, <a href="https://publications.waset.org/abstracts/search?q=Wave%20Propagation%20Properties" title=" Wave Propagation Properties"> Wave Propagation Properties</a>, <a href="https://publications.waset.org/abstracts/search?q=Wave%20Scattering%20Coefficients." title=" Wave Scattering Coefficients."> Wave Scattering Coefficients.</a> </p> <a href="https://publications.waset.org/abstracts/58482/wave-interaction-with-defects-in-pressurized-composite-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58482.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6832</span> 2 Stage CMOS Regulated Cascode Distributed Amplifier Design Based On Inductive Coupling Technique in Submicron CMOS Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kittipong%20Tripetch">Kittipong Tripetch</a>, <a href="https://publications.waset.org/abstracts/search?q=Nobuhiko%20Nakano"> Nobuhiko Nakano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes one stage and two stage CMOS Complementary Regulated Cascode Distributed Amplifier (CRCDA) design based on Inductive and Transformer coupling techniques. Usually, Distributed amplifier is based on inductor coupling between gate and gate of MOSFET and between drain and drain of MOSFET. But this paper propose some new idea, by coupling with differential primary windings of transformer between gate and gate of MOSFET first stage and second stage of regulated cascade amplifier and by coupling with differential secondary windings transformer of MOSFET between drain and drain of MOSFET first stage and second stage of regulated cascade amplifier. This paper also proposes polynomial modeling of Silicon Transformer passive equivalent circuit from Nanyang Technological University which is used to extract frequency response of transformer. Cadence simulation results are used to verify validity of transformer polynomial modeling which can be used to design distributed amplifier without Cadence. 4 parameters of scattering matrix of 2 port of the propose circuit is derived as a function of 4 parameters of impedance matrix. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CMOS%20regulated%20cascode%20distributed%20amplifier" title="CMOS regulated cascode distributed amplifier">CMOS regulated cascode distributed amplifier</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20transformer%20modeling%20with%20polynomial" title=" silicon transformer modeling with polynomial"> silicon transformer modeling with polynomial</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20power%20consumption" title=" low power consumption"> low power consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=distribute%20amplification%20technique" title=" distribute amplification technique"> distribute amplification technique</a> </p> <a href="https://publications.waset.org/abstracts/24466/2-stage-cmos-regulated-cascode-distributed-amplifier-design-based-on-inductive-coupling-technique-in-submicron-cmos-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24466.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6831</span> Improving the Optoacoustic Signal by Monitoring the Changes of Coupling Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Prasannakumar">P. Prasannakumar</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Myoung%20Young"> L. Myoung Young</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Seung%20Kye"> G. Seung Kye</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Sang%20Hun"> P. Sang Hun</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Chul%20Gyu"> S. Chul Gyu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we discussed the coupling medium in the optoacoustic imaging. The coupling medium is placed between the scanned object and the ultrasound transducers. Water with varying temperature was used as the coupling medium. The water temperature is gradually varied between 25 to 40 degrees. This heating process is taken with care in order to avoid the bubble formation. Rise in the photoacoustic signal is noted through an unfocused transducer with frequency of 2.25 MHz as the temperature increases. The temperature rise is monitored using a NTC thermistor and the values in degrees are calculated using an embedded evaluation kit. Also the temperature is transmitted to PC through a serial communication. All these processes are synchronized using a trigger signal from the laser source. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=embedded" title="embedded">embedded</a>, <a href="https://publications.waset.org/abstracts/search?q=optoacoustic" title=" optoacoustic"> optoacoustic</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound "> ultrasound </a>, <a href="https://publications.waset.org/abstracts/search?q=unfocused%20transducer" title=" unfocused transducer"> unfocused transducer</a> </p> <a href="https://publications.waset.org/abstracts/72669/improving-the-optoacoustic-signal-by-monitoring-the-changes-of-coupling-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72669.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6830</span> Carbonylative Cross Coupling of 2-Bromopyridine with Different Boronic Acids under Carbon Monoxide Atmosphere </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Touj">N. Touj</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sauthier"> M. Sauthier</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Mansour"> L. Mansour</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Hamdi"> N. Hamdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The palladium NHC complexes are one of the most interesting and widely investigated complexes in different catalytic transformations, especially C–C bond. Thus, the use of N-heterocyclic carbenes associated with palladium has been reported as efficient catalysts for the carbonyl coupling under mild and varied conditions. Herein, we report the synthesis, characterization, and cytotoxic activities of two new families of benzimidazolium salts. Then we studied the use of this class of benzimidazolium salts as a ligand in the carbonylative cross-coupling of 2-bromopyridine with different boronic acids under CO atmosphere to form unsymmetrical arylpyridine ketones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NHC-Pd%28II%29%20catalysts" title="NHC-Pd(II) catalysts">NHC-Pd(II) catalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=carbonylative%20Suzuki%20cross-coupling%20reaction" title=" carbonylative Suzuki cross-coupling reaction"> carbonylative Suzuki cross-coupling reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=arylboronic%20acids" title=" arylboronic acids"> arylboronic acids</a>, <a href="https://publications.waset.org/abstracts/search?q=2-bromopyridine" title=" 2-bromopyridine"> 2-bromopyridine</a>, <a href="https://publications.waset.org/abstracts/search?q=unsymmetrical%20arylpyridine%20ketones" title=" unsymmetrical arylpyridine ketones"> unsymmetrical arylpyridine ketones</a> </p> <a href="https://publications.waset.org/abstracts/131435/carbonylative-cross-coupling-of-2-bromopyridine-with-different-boronic-acids-under-carbon-monoxide-atmosphere" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6829</span> Effect of Coupling Media on Ultrasonic Pulse Velocity in Concrete: A Preliminary Investigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sura%20Al-Khafaji">Sura Al-Khafaji</a>, <a href="https://publications.waset.org/abstracts/search?q=Phil%20Purnell"> Phil Purnell</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Measurement of the ultrasonic pulse velocity (UPV) is an important tool in diagnostic examination of concrete. In this method piezoelectric transducers are normally held in direct contact with the concrete surface. The current study aims to test the hypothesis that a preferential coupling effect might exist i.e. that the speed of sound measured depends on the couplant used. In this study, different coupling media of varying acoustic impedance were placed between the transducers and concrete samples made with constant aggregate content but with different compressive strengths. The preliminary results show that using coupling materials (both solid and a range of liquid substances) has an effect on the pulse velocity measured in a given concrete. The effect varies depending on the material used. The UPV measurements with solid coupling were higher than these from the liquid coupling at all strength levels. The tests using couplants generally recorded lower UPV values than the conventional test, except when carbon fiber composite was used, which retuned higher values. Analysis of variances (ANOVA) was performed to confirm that there are statistically significant differences between the measurements recorded using a conventional system and a coupled system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title="compressive strength">compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=coupling%20effect" title=" coupling effect"> coupling effect</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20analysis" title=" statistical analysis"> statistical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic" title=" ultrasonic"> ultrasonic</a> </p> <a href="https://publications.waset.org/abstracts/40930/effect-of-coupling-media-on-ultrasonic-pulse-velocity-in-concrete-a-preliminary-investigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40930.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6828</span> Cross Coupling Sliding Mode Synchronization Control of Dual-Driving Feed System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hong%20Lu">Hong Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Fan"> Wei Fan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongquan%20Zhang"> Yongquan Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Junbo%20Zhang"> Junbo Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A cross coupling sliding synchronization control strategy is proposed for the dual-driving feed system. This technology will minimize the position error oscillation and achieve the precise synchronization performance in the high speed and high precision drive system, especially some high speed and high precision machine. Moreover, a cross coupling compensation matrix is provided to offset the mismatched disturbance and the disturbance observer is established to eliminate the chattering phenomenon. Performance comparisons of proposed dual-driving cross coupling sliding mode control (CCSMC), normal cross coupling control (CCC) strategy with PID control, and electronic virtual main shaft control (EVMSC) strategy with SMC control are investigated by simulation and a dual-driving control system; the results show the effectiveness of the proposed control scheme. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cross%20coupling%20matrix" title="cross coupling matrix">cross coupling matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=dual%20motors" title=" dual motors"> dual motors</a>, <a href="https://publications.waset.org/abstracts/search?q=synchronization%20control" title=" synchronization control"> synchronization control</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20mode%20control" title=" sliding mode control"> sliding mode control</a> </p> <a href="https://publications.waset.org/abstracts/40647/cross-coupling-sliding-mode-synchronization-control-of-dual-driving-feed-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40647.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=RF%20power%20coupling&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=RF%20power%20coupling&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=RF%20power%20coupling&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=RF%20power%20coupling&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=RF%20power%20coupling&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=RF%20power%20coupling&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=RF%20power%20coupling&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=RF%20power%20coupling&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=RF%20power%20coupling&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=RF%20power%20coupling&amp;page=228">228</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=RF%20power%20coupling&amp;page=229">229</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=RF%20power%20coupling&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10