CINXE.COM

Joel Tetreault - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Joel Tetreault - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="lhgqm+wCfPT/ox9k2nTA8CAwhKEvXXnMhoKCvRFFIRjFJwnHkS6CZYS3Gm4821/XTQl472umDhUX+kdVNJuzuw==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-1c712297ae3ac71207193b1bae0ecf1aae125886850f62c9c0139dd867630797.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="joel tetreault" /> <meta name="description" content="Joel Tetreault: 20 Followers, 2 Following, 119 Research papers. Research interests: Speech Processing, Speech Recognition, and Speech-Language Pathology/…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '49879c2402910372f4abc62630a427bbe033d190'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15276,"monthly_visitors":"112 million","monthly_visitor_count":112794806,"monthly_visitor_count_in_millions":112,"user_count":277191769,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1732468121000); window.Aedu.timeDifference = new Date().getTime() - 1732468121000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-296162c7af6fd81dcdd76f1a94f1fad04fb5f647401337d136fe8b68742170b1.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-8d53a22151f33ab413d88fa1c02f979c3f8706d470fc1bced09852c72a9f3454.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-f8fe82512740391f81c9e8cc48220144024b425b359b08194e316f4de070b9e8.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://independent.academia.edu/JoelTetreault" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-9601d1cc3d68aa07c0a9901d03d3611aec04cc07d2a2039718ebef4ad4d148ca.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":50446196,"first_name":"Joel","middle_initials":null,"last_name":"Tetreault","page_name":"JoelTetreault","domain_name":"independent","created_at":"2016-06-25T07:02:03.031-07:00","display_name":"Joel Tetreault","url":"https://independent.academia.edu/JoelTetreault","photo":"/images/s65_no_pic.png","has_photo":false,"is_analytics_public":false,"interests":[{"id":36835,"name":"Speech Processing","url":"https://www.academia.edu/Documents/in/Speech_Processing"},{"id":11984,"name":"Speech Recognition","url":"https://www.academia.edu/Documents/in/Speech_Recognition"},{"id":2447,"name":"Speech-Language Pathology/ Communication Disorders","url":"https://www.academia.edu/Documents/in/Speech-Language_Pathology_Communication_Disorders"},{"id":5109,"name":"Pattern Recognition","url":"https://www.academia.edu/Documents/in/Pattern_Recognition"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://independent.academia.edu/JoelTetreault&quot;,&quot;location&quot;:&quot;/JoelTetreault&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;independent.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/JoelTetreault&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-e78f18d5-716e-42af-b07e-9b47bbd83c85"></div> <div id="ProfileCheckPaperUpdate-react-component-e78f18d5-716e-42af-b07e-9b47bbd83c85"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Joel Tetreault</h1><div class="affiliations-container fake-truncate js-profile-affiliations"></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Joel" data-follow-user-id="50446196" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="50446196"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">20</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">2</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">2</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="50446196" href="https://www.academia.edu/Documents/in/Speech_Processing"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://independent.academia.edu/JoelTetreault&quot;,&quot;location&quot;:&quot;/JoelTetreault&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;independent.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/JoelTetreault&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Speech Processing&quot;]}" data-trace="false" data-dom-id="Pill-react-component-73c84cb7-1bde-4688-b512-7391a4bc0cbc"></div> <div id="Pill-react-component-73c84cb7-1bde-4688-b512-7391a4bc0cbc"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="50446196" href="https://www.academia.edu/Documents/in/Speech_Recognition"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Speech Recognition&quot;]}" data-trace="false" data-dom-id="Pill-react-component-095efaaf-e10e-4aed-aaa1-90fda6d14db3"></div> <div id="Pill-react-component-095efaaf-e10e-4aed-aaa1-90fda6d14db3"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="50446196" href="https://www.academia.edu/Documents/in/Speech-Language_Pathology_Communication_Disorders"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Speech-Language Pathology/ Communication Disorders&quot;]}" data-trace="false" data-dom-id="Pill-react-component-baae3405-b80f-4b61-8759-c9d842612f10"></div> <div id="Pill-react-component-baae3405-b80f-4b61-8759-c9d842612f10"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="50446196" href="https://www.academia.edu/Documents/in/Pattern_Recognition"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Pattern Recognition&quot;]}" data-trace="false" data-dom-id="Pill-react-component-89d261a2-1505-4bfc-aece-44abc6c31c1f"></div> <div id="Pill-react-component-89d261a2-1505-4bfc-aece-44abc6c31c1f"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="50446196" href="https://www.academia.edu/Documents/in/Computer_Science"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Computer Science&quot;]}" data-trace="false" data-dom-id="Pill-react-component-2d842afb-2076-41d9-9dd1-2d94f22f0102"></div> <div id="Pill-react-component-2d842afb-2076-41d9-9dd1-2d94f22f0102"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Joel Tetreault</h3></div><div class="js-work-strip profile--work_container" data-work-id="26513540"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/26513540/Re_examining_machine_translation_metrics_for_paraphrase_identification"><img alt="Research paper thumbnail of Re-examining machine translation metrics for paraphrase identification" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/26513540/Re_examining_machine_translation_metrics_for_paraphrase_identification">Re-examining machine translation metrics for paraphrase identification</a></div><div class="wp-workCard_item"><span>Proceedings of the 2012 Conference of the North American Chapter of the Association For Computational Linguistics Human Language Technologies</span><span>, Jun 3, 2012</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract We propose to re-examine the hypothesis that automated metrics developed for MT evaluati...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract We propose to re-examine the hypothesis that automated metrics developed for MT evaluation can prove useful for paraphrase identification in light of the significant work on the development of new MT metrics over the last 4 years. We show that a meta-classifier trained using nothing but recent MT metrics outperforms all previous paraphrase identification approaches on the Microsoft Research Paraphrase corpus. In addition, we apply our system to a second corpus developed for the task of plagiarism detection and ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="26513540"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="26513540"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 26513540; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=26513540]").text(description); $(".js-view-count[data-work-id=26513540]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 26513540; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='26513540']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 26513540, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=26513540]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":26513540,"title":"Re-examining machine translation metrics for paraphrase identification","translated_title":"","metadata":{"abstract":"Abstract We propose to re-examine the hypothesis that automated metrics developed for MT evaluation can prove useful for paraphrase identification in light of the significant work on the development of new MT metrics over the last 4 years. We show that a meta-classifier trained using nothing but recent MT metrics outperforms all previous paraphrase identification approaches on the Microsoft Research Paraphrase corpus. In addition, we apply our system to a second corpus developed for the task of plagiarism detection and ...","publication_date":{"day":3,"month":6,"year":2012,"errors":{}},"publication_name":"Proceedings of the 2012 Conference of the North American Chapter of the Association For Computational Linguistics Human Language Technologies"},"translated_abstract":"Abstract We propose to re-examine the hypothesis that automated metrics developed for MT evaluation can prove useful for paraphrase identification in light of the significant work on the development of new MT metrics over the last 4 years. We show that a meta-classifier trained using nothing but recent MT metrics outperforms all previous paraphrase identification approaches on the Microsoft Research Paraphrase corpus. In addition, we apply our system to a second corpus developed for the task of plagiarism detection and ...","internal_url":"https://www.academia.edu/26513540/Re_examining_machine_translation_metrics_for_paraphrase_identification","translated_internal_url":"","created_at":"2016-06-26T11:24:37.496-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":50446196,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Re_examining_machine_translation_metrics_for_paraphrase_identification","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":50446196,"first_name":"Joel","middle_initials":null,"last_name":"Tetreault","page_name":"JoelTetreault","domain_name":"independent","created_at":"2016-06-25T07:02:03.031-07:00","display_name":"Joel Tetreault","url":"https://independent.academia.edu/JoelTetreault"},"attachments":[],"research_interests":[{"id":4696,"name":"Machine Translation","url":"https://www.academia.edu/Documents/in/Machine_Translation"}],"urls":[{"id":7253734,"url":"http://dl.acm.org/citation.cfm?id=2382055"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="26513539"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/26513539/Rethinking_grammatical_error_annotation_and_evaluation_with_the_Amazon_Mechanical_Turk"><img alt="Research paper thumbnail of Rethinking grammatical error annotation and evaluation with the Amazon Mechanical Turk" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/26513539/Rethinking_grammatical_error_annotation_and_evaluation_with_the_Amazon_Mechanical_Turk">Rethinking grammatical error annotation and evaluation with the Amazon Mechanical Turk</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract In this paper we present results from two pilot studies which show that using the Amazon...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract In this paper we present results from two pilot studies which show that using the Amazon Mechanical Turk for preposition error annotation is as effective as using trained raters, but at a fraction of the time and cost. Based on these results, we propose a new evaluation method which makes it feasible to compare two error detection systems tested on different learner data sets.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="26513539"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="26513539"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 26513539; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=26513539]").text(description); $(".js-view-count[data-work-id=26513539]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 26513539; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='26513539']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 26513539, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=26513539]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":26513539,"title":"Rethinking grammatical error annotation and evaluation with the Amazon Mechanical Turk","translated_title":"","metadata":{"abstract":"Abstract In this paper we present results from two pilot studies which show that using the Amazon Mechanical Turk for preposition error annotation is as effective as using trained raters, but at a fraction of the time and cost. Based on these results, we propose a new evaluation method which makes it feasible to compare two error detection systems tested on different learner data sets.","publication_date":{"day":null,"month":null,"year":2010,"errors":{}}},"translated_abstract":"Abstract In this paper we present results from two pilot studies which show that using the Amazon Mechanical Turk for preposition error annotation is as effective as using trained raters, but at a fraction of the time and cost. Based on these results, we propose a new evaluation method which makes it feasible to compare two error detection systems tested on different learner data sets.","internal_url":"https://www.academia.edu/26513539/Rethinking_grammatical_error_annotation_and_evaluation_with_the_Amazon_Mechanical_Turk","translated_internal_url":"","created_at":"2016-06-26T11:24:37.289-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":50446196,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Rethinking_grammatical_error_annotation_and_evaluation_with_the_Amazon_Mechanical_Turk","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":50446196,"first_name":"Joel","middle_initials":null,"last_name":"Tetreault","page_name":"JoelTetreault","domain_name":"independent","created_at":"2016-06-25T07:02:03.031-07:00","display_name":"Joel Tetreault","url":"https://independent.academia.edu/JoelTetreault"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="26513538"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/26513538/Towards_using_structural_events_to_assess_non_native_speech"><img alt="Research paper thumbnail of Towards using structural events to assess non-native speech" class="work-thumbnail" src="https://attachments.academia-assets.com/46809878/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/26513538/Towards_using_structural_events_to_assess_non_native_speech">Towards using structural events to assess non-native speech</a></div><div class="wp-workCard_item"><span>Proceedings of the Naacl Hlt 2010 Fifth Workshop on Innovative Use of Nlp For Building Educational Applications</span><span>, Jun 5, 2010</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c4cbee7c5d2a9b0929bcd9d8948fd0ad" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:46809878,&quot;asset_id&quot;:26513538,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/46809878/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="26513538"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="26513538"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 26513538; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=26513538]").text(description); $(".js-view-count[data-work-id=26513538]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 26513538; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='26513538']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 26513538, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c4cbee7c5d2a9b0929bcd9d8948fd0ad" } } $('.js-work-strip[data-work-id=26513538]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":26513538,"title":"Towards using structural events to assess non-native speech","translated_title":"","metadata":{"grobid_abstract":"We investigated using structural events, e.g., clause and disfluency structure, from transcriptions of spontaneous non-native speech, to compute features for measuring speaking proficiency. Using a set of transcribed audio files collected from the TOEFL Practice Test Online (TPO), we conducted a sophisticated annotation of structural events, including clause boundaries and types, as well as disfluencies. Based on words and the annotated structural events, we extracted features related to syntactic complexity, e.g., the mean length of clause (MLC) and dependent clause frequency (DEPC), and a feature related to disfluencies, the interruption point frequency per clause (IPC). Among these features, the IPC shows the highest correlation with holistic scores (r = −0.344). Furthermore, we increased the correlation with human scores by normalizing IPC by (1) MLC (r = −0.386), (2) DEPC (r = −0.429), and (3) both (r = −0.462). In this research, the features derived from structural events of speech transcriptions are found to predict holistic scores measuring speaking proficiency. This suggests that structural events estimated on speech word strings provide a potential way for assessing nonnative speech.","publication_date":{"day":5,"month":6,"year":2010,"errors":{}},"publication_name":"Proceedings of the Naacl Hlt 2010 Fifth Workshop on Innovative Use of Nlp For Building Educational Applications","grobid_abstract_attachment_id":46809878},"translated_abstract":null,"internal_url":"https://www.academia.edu/26513538/Towards_using_structural_events_to_assess_non_native_speech","translated_internal_url":"","created_at":"2016-06-26T11:24:36.993-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":50446196,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":46809878,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809878/thumbnails/1.jpg","file_name":"Towards_using_structural_events_to_asses20160626-13920-1obzq3h.pdf","download_url":"https://www.academia.edu/attachments/46809878/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Towards_using_structural_events_to_asses.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809878/Towards_using_structural_events_to_asses20160626-13920-1obzq3h-libre.pdf?1466965839=\u0026response-content-disposition=attachment%3B+filename%3DTowards_using_structural_events_to_asses.pdf\u0026Expires=1732459637\u0026Signature=OS-2e3sajNzmYIo0QuqgIbsSRLHxmo1odWzYWsUB-wVvfwfGq8Hv4NNCjzSwC46fEUxX5uCrVJZmTj1gx3I6SDfprjMx~lr1b1qELFWkSG8YG2D-JRan-AczpVxegkDqiHulS7vi22mjeEOC3J51p6ThGIPzt0zm-Aqp4oMC5r-YRMwx9TAKsETmLVEZVqshg-qRY~CZ4y6PPoFES2YBHZTnsJJEb9Jgxf9E6dgdIPQEVdMJlUkS0e5oaij4Wcg4~dIFA7-LYJofFBOAm9UzlP92X76OUtYjbpGvN~V-gaj8fPxigi0Am~bRJPgzG1baCMelnIDAADVJbEiklPevcA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Towards_using_structural_events_to_assess_non_native_speech","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":50446196,"first_name":"Joel","middle_initials":null,"last_name":"Tetreault","page_name":"JoelTetreault","domain_name":"independent","created_at":"2016-06-25T07:02:03.031-07:00","display_name":"Joel Tetreault","url":"https://independent.academia.edu/JoelTetreault"},"attachments":[{"id":46809878,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809878/thumbnails/1.jpg","file_name":"Towards_using_structural_events_to_asses20160626-13920-1obzq3h.pdf","download_url":"https://www.academia.edu/attachments/46809878/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Towards_using_structural_events_to_asses.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809878/Towards_using_structural_events_to_asses20160626-13920-1obzq3h-libre.pdf?1466965839=\u0026response-content-disposition=attachment%3B+filename%3DTowards_using_structural_events_to_asses.pdf\u0026Expires=1732459637\u0026Signature=OS-2e3sajNzmYIo0QuqgIbsSRLHxmo1odWzYWsUB-wVvfwfGq8Hv4NNCjzSwC46fEUxX5uCrVJZmTj1gx3I6SDfprjMx~lr1b1qELFWkSG8YG2D-JRan-AczpVxegkDqiHulS7vi22mjeEOC3J51p6ThGIPzt0zm-Aqp4oMC5r-YRMwx9TAKsETmLVEZVqshg-qRY~CZ4y6PPoFES2YBHZTnsJJEb9Jgxf9E6dgdIPQEVdMJlUkS0e5oaij4Wcg4~dIFA7-LYJofFBOAm9UzlP92X76OUtYjbpGvN~V-gaj8fPxigi0Am~bRJPgzG1baCMelnIDAADVJbEiklPevcA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":7253733,"url":"http://dl.acm.org/citation.cfm?id=1866805"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="26513537"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/26513537/Exploring_grammatical_error_correction_with_not_so_crummy_machine_translation"><img alt="Research paper thumbnail of Exploring grammatical error correction with not-so-crummy machine translation" class="work-thumbnail" src="https://attachments.academia-assets.com/46809877/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/26513537/Exploring_grammatical_error_correction_with_not_so_crummy_machine_translation">Exploring grammatical error correction with not-so-crummy machine translation</a></div><div class="wp-workCard_item"><span>Proceedings of the Seventh Workshop on Building Educational Applications Using Nlp</span><span>, Jun 7, 2012</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9f055bfc4cf0befc7c8dac070a6dba27" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:46809877,&quot;asset_id&quot;:26513537,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/46809877/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="26513537"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="26513537"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 26513537; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=26513537]").text(description); $(".js-view-count[data-work-id=26513537]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 26513537; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='26513537']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 26513537, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9f055bfc4cf0befc7c8dac070a6dba27" } } $('.js-work-strip[data-work-id=26513537]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":26513537,"title":"Exploring grammatical error correction with not-so-crummy machine translation","translated_title":"","metadata":{"grobid_abstract":"To date, most work in grammatical error correction has focused on targeting specific error types. We present a probe study into whether we can use round-trip translations obtained from Google Translate via 8 different pivot languages for whole-sentence grammatical error correction. We develop a novel alignment algorithm for combining multiple round-trip translations into a lattice using the TERp machine translation metric. We further implement six different methods for extracting whole-sentence corrections from the lattice. Our preliminary experiments yield fairly satisfactory results but leave significant room for improvement. Most importantly, though, they make it clear the methods we propose have strong potential and require further study.","publication_date":{"day":7,"month":6,"year":2012,"errors":{}},"publication_name":"Proceedings of the Seventh Workshop on Building Educational Applications Using Nlp","grobid_abstract_attachment_id":46809877},"translated_abstract":null,"internal_url":"https://www.academia.edu/26513537/Exploring_grammatical_error_correction_with_not_so_crummy_machine_translation","translated_internal_url":"","created_at":"2016-06-26T11:24:36.702-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":50446196,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":46809877,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809877/thumbnails/1.jpg","file_name":"Exploring_Grammatical_Error_Correction_w20160626-24799-1mp2chk.pdf","download_url":"https://www.academia.edu/attachments/46809877/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Exploring_grammatical_error_correction_w.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809877/Exploring_Grammatical_Error_Correction_w20160626-24799-1mp2chk-libre.pdf?1466965841=\u0026response-content-disposition=attachment%3B+filename%3DExploring_grammatical_error_correction_w.pdf\u0026Expires=1732459637\u0026Signature=BBwK1Wf6lhPE9Fnn1Aab3ZUeLprlKpyT96KtOkNRXlgQAvsEJX6iAEhbJ2oXKoAhsAFLsNmfaAO-BlNVuo1fxpqyvD-D4vlA-bbshAk758CvhmUByXrmRpj0qXsBq-V0K-hZp6Ofh5080FfE271SDXHpFXVXD6UIUriZuShBG0dB8hoJUzERB~Yz-~XYaO~sUIAQkmjPIs~aT5K0XK47ID6ncPPA3tT40UAWYXm6gCRX7N5LuobZzsVc2YnCuXOkz731OnniIybznOyDzMD6x1U~r5-bwph3iiYsQwkpAjoTbsdU333ldvMY3Wu7PXIEnzg~aUEUshJKcAbHYLGdIg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Exploring_grammatical_error_correction_with_not_so_crummy_machine_translation","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":50446196,"first_name":"Joel","middle_initials":null,"last_name":"Tetreault","page_name":"JoelTetreault","domain_name":"independent","created_at":"2016-06-25T07:02:03.031-07:00","display_name":"Joel Tetreault","url":"https://independent.academia.edu/JoelTetreault"},"attachments":[{"id":46809877,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809877/thumbnails/1.jpg","file_name":"Exploring_Grammatical_Error_Correction_w20160626-24799-1mp2chk.pdf","download_url":"https://www.academia.edu/attachments/46809877/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Exploring_grammatical_error_correction_w.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809877/Exploring_Grammatical_Error_Correction_w20160626-24799-1mp2chk-libre.pdf?1466965841=\u0026response-content-disposition=attachment%3B+filename%3DExploring_grammatical_error_correction_w.pdf\u0026Expires=1732459637\u0026Signature=BBwK1Wf6lhPE9Fnn1Aab3ZUeLprlKpyT96KtOkNRXlgQAvsEJX6iAEhbJ2oXKoAhsAFLsNmfaAO-BlNVuo1fxpqyvD-D4vlA-bbshAk758CvhmUByXrmRpj0qXsBq-V0K-hZp6Ofh5080FfE271SDXHpFXVXD6UIUriZuShBG0dB8hoJUzERB~Yz-~XYaO~sUIAQkmjPIs~aT5K0XK47ID6ncPPA3tT40UAWYXm6gCRX7N5LuobZzsVc2YnCuXOkz731OnniIybznOyDzMD6x1U~r5-bwph3iiYsQwkpAjoTbsdU333ldvMY3Wu7PXIEnzg~aUEUshJKcAbHYLGdIg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":4696,"name":"Machine Translation","url":"https://www.academia.edu/Documents/in/Machine_Translation"},{"id":182415,"name":"Error Correction","url":"https://www.academia.edu/Documents/in/Error_Correction"}],"urls":[{"id":7253732,"url":"http://dl.acm.org/citation.cfm?id=2390389"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="26513536"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/26513536/Human_Evaluation_of_Article_and_Noun_Number_Usage_Influences_of_Context_and_Construction_Variability"><img alt="Research paper thumbnail of Human Evaluation of Article and Noun Number Usage: Influences of Context and Construction Variability" class="work-thumbnail" src="https://attachments.academia-assets.com/46809886/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/26513536/Human_Evaluation_of_Article_and_Noun_Number_Usage_Influences_of_Context_and_Construction_Variability">Human Evaluation of Article and Noun Number Usage: Influences of Context and Construction Variability</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ef18e493d33d72faf8fee65ba2c20de5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:46809886,&quot;asset_id&quot;:26513536,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/46809886/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="26513536"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="26513536"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 26513536; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=26513536]").text(description); $(".js-view-count[data-work-id=26513536]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 26513536; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='26513536']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 26513536, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ef18e493d33d72faf8fee65ba2c20de5" } } $('.js-work-strip[data-work-id=26513536]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":26513536,"title":"Human Evaluation of Article and Noun Number Usage: Influences of Context and Construction Variability","translated_title":"","metadata":{"grobid_abstract":"Evaluating systems that correct errors in non-native writing is difficult because of the possibility of multiple correct answers and the variability in human agreement. This paper seeks to improve the best practice of such evaluation by analyzing the frequency of multiple correct answers and identifying factors that influence agreement levels in judging the usage of articles and noun number.","publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"grobid_abstract_attachment_id":46809886},"translated_abstract":null,"internal_url":"https://www.academia.edu/26513536/Human_Evaluation_of_Article_and_Noun_Number_Usage_Influences_of_Context_and_Construction_Variability","translated_internal_url":"","created_at":"2016-06-26T11:24:36.415-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":50446196,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":46809886,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809886/thumbnails/1.jpg","file_name":"W09-3010.pdf","download_url":"https://www.academia.edu/attachments/46809886/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Human_Evaluation_of_Article_and_Noun_Num.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809886/W09-3010-libre.pdf?1466965839=\u0026response-content-disposition=attachment%3B+filename%3DHuman_Evaluation_of_Article_and_Noun_Num.pdf\u0026Expires=1732459637\u0026Signature=YMzCfxW3q-rY5QbgSRuY9M0Sk~Fyw~VyMoOfsKyE6sH1e7ADGwZI5xJsxoiWsoptWeRQdlJ4E-mV6Jb3oU1eE6AplPwfSw6oHes7IfQYpCwXsfpP3Q-HtBvYe2ojpM-sVKdDu2wMG7FbUI4gmxA-stIZHamKNM6u4Tz2kcFfQjVIEEaUgcbZoQdhAlQPUnTOCWmsPHjzP18n-KkVWnOqiCjj8kWXtoeOzOtMVzUazAk9yAFgWHlJPzG0uvXfajwTSItaew2pfRCvraYvyI5p4L3edux85oOkCCtxgW7FGDZpIfQzOURPTKcko3hE24CbZjB4QxoPpX2PhUbyULyCrg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Human_Evaluation_of_Article_and_Noun_Number_Usage_Influences_of_Context_and_Construction_Variability","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":50446196,"first_name":"Joel","middle_initials":null,"last_name":"Tetreault","page_name":"JoelTetreault","domain_name":"independent","created_at":"2016-06-25T07:02:03.031-07:00","display_name":"Joel Tetreault","url":"https://independent.academia.edu/JoelTetreault"},"attachments":[{"id":46809886,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809886/thumbnails/1.jpg","file_name":"W09-3010.pdf","download_url":"https://www.academia.edu/attachments/46809886/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Human_Evaluation_of_Article_and_Noun_Num.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809886/W09-3010-libre.pdf?1466965839=\u0026response-content-disposition=attachment%3B+filename%3DHuman_Evaluation_of_Article_and_Noun_Num.pdf\u0026Expires=1732459637\u0026Signature=YMzCfxW3q-rY5QbgSRuY9M0Sk~Fyw~VyMoOfsKyE6sH1e7ADGwZI5xJsxoiWsoptWeRQdlJ4E-mV6Jb3oU1eE6AplPwfSw6oHes7IfQYpCwXsfpP3Q-HtBvYe2ojpM-sVKdDu2wMG7FbUI4gmxA-stIZHamKNM6u4Tz2kcFfQjVIEEaUgcbZoQdhAlQPUnTOCWmsPHjzP18n-KkVWnOqiCjj8kWXtoeOzOtMVzUazAk9yAFgWHlJPzG0uvXfajwTSItaew2pfRCvraYvyI5p4L3edux85oOkCCtxgW7FGDZpIfQzOURPTKcko3hE24CbZjB4QxoPpX2PhUbyULyCrg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":154527,"name":"Noun","url":"https://www.academia.edu/Documents/in/Noun"}],"urls":[{"id":7253731,"url":"http://aclweb.org/anthology-new/w/w09/w09-3010.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="26513535"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/26513535/System_and_Method_for_Identifying_Organizational_Elements_in_Argumentative_or_Persuasive_Discourse"><img alt="Research paper thumbnail of System and Method for Identifying Organizational Elements in Argumentative or Persuasive Discourse" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/26513535/System_and_Method_for_Identifying_Organizational_Elements_in_Argumentative_or_Persuasive_Discourse">System and Method for Identifying Organizational Elements in Argumentative or Persuasive Discourse</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="26513535"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="26513535"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 26513535; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=26513535]").text(description); $(".js-view-count[data-work-id=26513535]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 26513535; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='26513535']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 26513535, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=26513535]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":26513535,"title":"System and Method for Identifying Organizational Elements in Argumentative or Persuasive Discourse","translated_title":"","metadata":{"publication_date":{"day":11,"month":7,"year":2013,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/26513535/System_and_Method_for_Identifying_Organizational_Elements_in_Argumentative_or_Persuasive_Discourse","translated_internal_url":"","created_at":"2016-06-26T11:24:36.064-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":50446196,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"System_and_Method_for_Identifying_Organizational_Elements_in_Argumentative_or_Persuasive_Discourse","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":50446196,"first_name":"Joel","middle_initials":null,"last_name":"Tetreault","page_name":"JoelTetreault","domain_name":"independent","created_at":"2016-06-25T07:02:03.031-07:00","display_name":"Joel Tetreault","url":"https://independent.academia.edu/JoelTetreault"},"attachments":[],"research_interests":[],"urls":[{"id":7253730,"url":"http://www.freepatentsonline.com/y2013/0179766.html"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="26513534"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/26513534/Correcting_comma_errors_in_learner_essays_and_restoring_commas_in_newswire_text"><img alt="Research paper thumbnail of Correcting comma errors in learner essays, and restoring commas in newswire text" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/26513534/Correcting_comma_errors_in_learner_essays_and_restoring_commas_in_newswire_text">Correcting comma errors in learner essays, and restoring commas in newswire text</a></div><div class="wp-workCard_item"><span>Proceedings of the 2012 Conference of the North American Chapter of the Association For Computational Linguistics Human Language Technologies</span><span>, 2012</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract While the field of grammatical error detection has progressed over the past few years, o...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract While the field of grammatical error detection has progressed over the past few years, one area of particular difficulty for both native and non-native learners of English, comma placement, has been largely ignored. We present a system for comma error correction in English that achieves an average of 89% precision and 25% recall on two corpora of unedited student essays. This system also achieves state-of-theart performance in the sister task of restoring commas in well-formed text. For both tasks, we show that the ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="26513534"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="26513534"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 26513534; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=26513534]").text(description); $(".js-view-count[data-work-id=26513534]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 26513534; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='26513534']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 26513534, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=26513534]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":26513534,"title":"Correcting comma errors in learner essays, and restoring commas in newswire text","translated_title":"","metadata":{"abstract":"Abstract While the field of grammatical error detection has progressed over the past few years, one area of particular difficulty for both native and non-native learners of English, comma placement, has been largely ignored. We present a system for comma error correction in English that achieves an average of 89% precision and 25% recall on two corpora of unedited student essays. This system also achieves state-of-theart performance in the sister task of restoring commas in well-formed text. For both tasks, we show that the ...","publication_date":{"day":null,"month":null,"year":2012,"errors":{}},"publication_name":"Proceedings of the 2012 Conference of the North American Chapter of the Association For Computational Linguistics Human Language Technologies"},"translated_abstract":"Abstract While the field of grammatical error detection has progressed over the past few years, one area of particular difficulty for both native and non-native learners of English, comma placement, has been largely ignored. We present a system for comma error correction in English that achieves an average of 89% precision and 25% recall on two corpora of unedited student essays. This system also achieves state-of-theart performance in the sister task of restoring commas in well-formed text. For both tasks, we show that the ...","internal_url":"https://www.academia.edu/26513534/Correcting_comma_errors_in_learner_essays_and_restoring_commas_in_newswire_text","translated_internal_url":"","created_at":"2016-06-26T11:24:35.759-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":50446196,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Correcting_comma_errors_in_learner_essays_and_restoring_commas_in_newswire_text","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":50446196,"first_name":"Joel","middle_initials":null,"last_name":"Tetreault","page_name":"JoelTetreault","domain_name":"independent","created_at":"2016-06-25T07:02:03.031-07:00","display_name":"Joel Tetreault","url":"https://independent.academia.edu/JoelTetreault"},"attachments":[],"research_interests":[],"urls":[{"id":7253729,"url":"http://dl.acm.org/citation.cfm?id=2382065"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="26513533"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/26513533/Yara_Parser_A_Fast_and_Accurate_Dependency_Parser"><img alt="Research paper thumbnail of Yara Parser: A Fast and Accurate Dependency Parser" class="work-thumbnail" src="https://attachments.academia-assets.com/46809821/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/26513533/Yara_Parser_A_Fast_and_Accurate_Dependency_Parser">Yara Parser: A Fast and Accurate Dependency Parser</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="96ef13417d2030185771743f78211e89" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:46809821,&quot;asset_id&quot;:26513533,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/46809821/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="26513533"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="26513533"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 26513533; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=26513533]").text(description); $(".js-view-count[data-work-id=26513533]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 26513533; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='26513533']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 26513533, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "96ef13417d2030185771743f78211e89" } } $('.js-work-strip[data-work-id=26513533]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":26513533,"title":"Yara Parser: A Fast and Accurate Dependency Parser","translated_title":"","metadata":{"grobid_abstract":"Dependency parsers are among the most crucial tools in natural language processing as they have many important applications in downstream tasks such as information retrieval, machine translation and knowledge acquisition. We introduce the Yara Parser, a fast and accurate open-source dependency parser based on the arc-eager algorithm and beam search. It achieves an unlabeled accuracy of 93.32 on the standard WSJ test set which ranks it among the top dependency parsers. At its fastest, Yara can parse about 4000 sentences per second when in greedy mode (1 beam). When optimizing for accuracy (using 64 beams and Brown cluster features), Yara can parse 45 sentences per second. The parser can be trained on any syntactic dependency treebank and different options are provided in order to make it more flexible and tunable for specific tasks. It is released with the Apache version 2.0 license and can be used for both commercial and academic purposes. The parser can be found at https: //github.com/yahoo/YaraParser.","publication_date":{"day":23,"month":3,"year":2015,"errors":{}},"grobid_abstract_attachment_id":46809821},"translated_abstract":null,"internal_url":"https://www.academia.edu/26513533/Yara_Parser_A_Fast_and_Accurate_Dependency_Parser","translated_internal_url":"","created_at":"2016-06-26T11:24:35.460-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":50446196,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":46809821,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809821/thumbnails/1.jpg","file_name":"1503.06733.pdf","download_url":"https://www.academia.edu/attachments/46809821/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Yara_Parser_A_Fast_and_Accurate_Dependen.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809821/1503.06733-libre.pdf?1466965845=\u0026response-content-disposition=attachment%3B+filename%3DYara_Parser_A_Fast_and_Accurate_Dependen.pdf\u0026Expires=1732459637\u0026Signature=MYDAW2vvWwZMPcQREo7U~QIWEzDLn0uaYxuRiwq4JRn4CcFtXqrHcuPgT776LMEcwrpPA~qeX67KFd57wy0FNGx577ART1QCZMkmb3n2TIlbhPNxfFkvxs07A7qUckiT8RzJoOLY5gFFGT8o4wZiwLOj~CKOZFk4iBsQbo3~T9FOYE9vUz7JMhop6owWtXENqOjrL5N~8cBEC06Pm-RYtPlN1~A-QLLurAHnYIB4uEogOE-7Orp8AfaLJyTE7fS4GL1ux1hTreZTqChajJvj-ilHMlF4KK9MgZgVtLnHw5pwMg1vQE-00dU0eEtOIxH9Qhir6jo1dv0PWMyN9he3GQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Yara_Parser_A_Fast_and_Accurate_Dependency_Parser","translated_slug":"","page_count":14,"language":"en","content_type":"Work","owner":{"id":50446196,"first_name":"Joel","middle_initials":null,"last_name":"Tetreault","page_name":"JoelTetreault","domain_name":"independent","created_at":"2016-06-25T07:02:03.031-07:00","display_name":"Joel Tetreault","url":"https://independent.academia.edu/JoelTetreault"},"attachments":[{"id":46809821,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809821/thumbnails/1.jpg","file_name":"1503.06733.pdf","download_url":"https://www.academia.edu/attachments/46809821/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Yara_Parser_A_Fast_and_Accurate_Dependen.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809821/1503.06733-libre.pdf?1466965845=\u0026response-content-disposition=attachment%3B+filename%3DYara_Parser_A_Fast_and_Accurate_Dependen.pdf\u0026Expires=1732459638\u0026Signature=axcw0--Zz2mY0sW-hF-eRHfOuj8s-wI2TZXwD71Jf0XO4RICrIILkveW2GUnEKo2tV4ArzfKHNriehGRjktV-bSmbhh5PKtNMfJ0QA9FX0-oC38~23Agq96FkqZf8FlJUx9gFRn-8cbaLMM-cN~VfDD1WaXAgGgmVMoXpICsGUSasOzSnIECRT1ZehV8v972S0PnleVZtZFsBV8~SGbdigWvZYVTVMOj3n1TftxEAkPlL1FTt9RUwu~kc5Ml7KMPhuTg8B2m9QbY0P1UggI2HJZCVtA-d4qjhHpkL4fXRVmSL-bW5CBvMPBZmF~XLiDoRl1cT-lEvodj0xqwH30G1A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":7253728,"url":"http://arxiv.org/abs/1503.06733"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="26513532"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/26513532/Exploiting_syntactic_and_distributional_information_for_spelling_correction_with_web_scale_n_gram_models"><img alt="Research paper thumbnail of Exploiting syntactic and distributional information for spelling correction with web-scale n-gram models" class="work-thumbnail" src="https://attachments.academia-assets.com/46809875/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/26513532/Exploiting_syntactic_and_distributional_information_for_spelling_correction_with_web_scale_n_gram_models">Exploiting syntactic and distributional information for spelling correction with web-scale n-gram models</a></div><div class="wp-workCard_item"><span>Proceedings of the Conference on Empirical Methods in Natural Language Processing</span><span>, 2011</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="cc2cb6ca11b1775818791e4ff9074e99" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:46809875,&quot;asset_id&quot;:26513532,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/46809875/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="26513532"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="26513532"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 26513532; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=26513532]").text(description); $(".js-view-count[data-work-id=26513532]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 26513532; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='26513532']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 26513532, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "cc2cb6ca11b1775818791e4ff9074e99" } } $('.js-work-strip[data-work-id=26513532]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":26513532,"title":"Exploiting syntactic and distributional information for spelling correction with web-scale n-gram models","translated_title":"","metadata":{"grobid_abstract":"We propose a novel way of incorporating dependency parse and word co-occurrence information into a state-of-the-art web-scale ngram model for spelling correction. The syntactic and distributional information provides extra evidence in addition to that provided by a web-scale n-gram corpus and especially helps with data sparsity problems. Experimental results show that introducing syntactic features into n-gram based models significantly reduces errors by up to 12.4% over the current state-of-the-art. The word co-occurrence information shows potential but only improves overall accuracy slightly.","publication_date":{"day":null,"month":null,"year":2011,"errors":{}},"publication_name":"Proceedings of the Conference on Empirical Methods in Natural Language Processing","grobid_abstract_attachment_id":46809875},"translated_abstract":null,"internal_url":"https://www.academia.edu/26513532/Exploiting_syntactic_and_distributional_information_for_spelling_correction_with_web_scale_n_gram_models","translated_internal_url":"","created_at":"2016-06-26T11:24:35.107-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":50446196,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":46809875,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809875/thumbnails/1.jpg","file_name":"D11-1119.pdf","download_url":"https://www.academia.edu/attachments/46809875/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Exploiting_syntactic_and_distributional.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809875/D11-1119-libre.pdf?1466965840=\u0026response-content-disposition=attachment%3B+filename%3DExploiting_syntactic_and_distributional.pdf\u0026Expires=1732459638\u0026Signature=eKXsOgZ8RlYrpG~PhOAXvF7u9Tb3H1AV1yJseaV08a2PdT~N6hmfzh9Xntf8Ih2LqOQ4U4Mi~pLIq~rmKnJy~g2j34bG8U~9umcO8dZ5Tkdm8JMvxBSbu6mKWPUfrTUxkPl7XZPmIE0r8VEvyMVjNmIa9o8F7LJCUcyMOPOp-gpT5rdTPe5ZoFX0OwYv9txQpfcjSbw45uoWsv3j0Qp2bk11nYGEvRESxbA-yirI~6~5ZvcTkKJxSvHp5anND86p6vwCpH2heQoohE-kK3dYgxr6wzz31nn7QzC7XyIyktAnw13rJKN6vEYpO6REAWBW7UvxZZRlKSvWFiAzus07LA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Exploiting_syntactic_and_distributional_information_for_spelling_correction_with_web_scale_n_gram_models","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":50446196,"first_name":"Joel","middle_initials":null,"last_name":"Tetreault","page_name":"JoelTetreault","domain_name":"independent","created_at":"2016-06-25T07:02:03.031-07:00","display_name":"Joel Tetreault","url":"https://independent.academia.edu/JoelTetreault"},"attachments":[{"id":46809875,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809875/thumbnails/1.jpg","file_name":"D11-1119.pdf","download_url":"https://www.academia.edu/attachments/46809875/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Exploiting_syntactic_and_distributional.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809875/D11-1119-libre.pdf?1466965840=\u0026response-content-disposition=attachment%3B+filename%3DExploiting_syntactic_and_distributional.pdf\u0026Expires=1732459638\u0026Signature=eKXsOgZ8RlYrpG~PhOAXvF7u9Tb3H1AV1yJseaV08a2PdT~N6hmfzh9Xntf8Ih2LqOQ4U4Mi~pLIq~rmKnJy~g2j34bG8U~9umcO8dZ5Tkdm8JMvxBSbu6mKWPUfrTUxkPl7XZPmIE0r8VEvyMVjNmIa9o8F7LJCUcyMOPOp-gpT5rdTPe5ZoFX0OwYv9txQpfcjSbw45uoWsv3j0Qp2bk11nYGEvRESxbA-yirI~6~5ZvcTkKJxSvHp5anND86p6vwCpH2heQoohE-kK3dYgxr6wzz31nn7QzC7XyIyktAnw13rJKN6vEYpO6REAWBW7UvxZZRlKSvWFiAzus07LA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":7253727,"url":"http://dl.acm.org/citation.cfm?id=2145567"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="26513531"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/26513531/Estimating_the_Reliability_of_MDP_Policies_a_Confidence_Interval_Approach"><img alt="Research paper thumbnail of Estimating the Reliability of MDP Policies: a Confidence Interval Approach" class="work-thumbnail" src="https://attachments.academia-assets.com/46809876/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/26513531/Estimating_the_Reliability_of_MDP_Policies_a_Confidence_Interval_Approach">Estimating the Reliability of MDP Policies: a Confidence Interval Approach</a></div><div class="wp-workCard_item"><span>Naacl</span><span>, 2007</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7b27d2027a4b304ca98e72627acd6b0e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:46809876,&quot;asset_id&quot;:26513531,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/46809876/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="26513531"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="26513531"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 26513531; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=26513531]").text(description); $(".js-view-count[data-work-id=26513531]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 26513531; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='26513531']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 26513531, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7b27d2027a4b304ca98e72627acd6b0e" } } $('.js-work-strip[data-work-id=26513531]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":26513531,"title":"Estimating the Reliability of MDP Policies: a Confidence Interval Approach","translated_title":"","metadata":{"grobid_abstract":"Past approaches for using reinforcement learning to derive dialog control policies have assumed that there was enough collected data to derive a reliable policy. In this paper we present a methodology for numerically constructing confidence intervals for the expected cumulative reward for a learned policy. These intervals are used to (1) better assess the reliability of the expected cumulative reward, and (2) perform a refined comparison between policies derived from different Markov Decision Processes (MDP) models. We applied this methodology to a prior experiment where the goal was to select the best features to include in the MDP statespace. Our results show that while some of the policies developed in the prior work exhibited very large confidence intervals, the policy developed from the best feature set had a much smaller confidence interval and thus showed very high reliability.","publication_date":{"day":null,"month":null,"year":2007,"errors":{}},"publication_name":"Naacl","grobid_abstract_attachment_id":46809876},"translated_abstract":null,"internal_url":"https://www.academia.edu/26513531/Estimating_the_Reliability_of_MDP_Policies_a_Confidence_Interval_Approach","translated_internal_url":"","created_at":"2016-06-26T11:24:34.773-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":50446196,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":46809876,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809876/thumbnails/1.jpg","file_name":"naacl07-confidence.pdf","download_url":"https://www.academia.edu/attachments/46809876/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Estimating_the_Reliability_of_MDP_Polici.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809876/naacl07-confidence-libre.pdf?1466965840=\u0026response-content-disposition=attachment%3B+filename%3DEstimating_the_Reliability_of_MDP_Polici.pdf\u0026Expires=1732459638\u0026Signature=f0XK7MwljXvZRmhHNfT1VraXpB5lu3Swg5B-K57mU0inNdn-46NjxC6traougCD9iFgMNTQSL-JCvHoQB1o73tfVAvZ6nN4YxPO8yNeTrbjcrKmCvGgyUa9bZx835WLa4XBZzNetw4ZaPrLC-LItxzY6qhtH8r3VxLlUQ~QIWlZNfMf51b4YJSM~5ykRxbHijBwvgm2vTj6bCuDOARBba7Fg5PoLZJHCjpv30gggjk76WlC0LfW-WUJ-km972UGx-K3uM3ZwphsPUxfI5j53mlFzu5hzaecgh3fUuezgsUS3HPulv5egvhmxdeWt6OE2H6XyzAUfWBW2BlOp6Y2G7g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Estimating_the_Reliability_of_MDP_Policies_a_Confidence_Interval_Approach","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":50446196,"first_name":"Joel","middle_initials":null,"last_name":"Tetreault","page_name":"JoelTetreault","domain_name":"independent","created_at":"2016-06-25T07:02:03.031-07:00","display_name":"Joel Tetreault","url":"https://independent.academia.edu/JoelTetreault"},"attachments":[{"id":46809876,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809876/thumbnails/1.jpg","file_name":"naacl07-confidence.pdf","download_url":"https://www.academia.edu/attachments/46809876/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Estimating_the_Reliability_of_MDP_Polici.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809876/naacl07-confidence-libre.pdf?1466965840=\u0026response-content-disposition=attachment%3B+filename%3DEstimating_the_Reliability_of_MDP_Polici.pdf\u0026Expires=1732459638\u0026Signature=f0XK7MwljXvZRmhHNfT1VraXpB5lu3Swg5B-K57mU0inNdn-46NjxC6traougCD9iFgMNTQSL-JCvHoQB1o73tfVAvZ6nN4YxPO8yNeTrbjcrKmCvGgyUa9bZx835WLa4XBZzNetw4ZaPrLC-LItxzY6qhtH8r3VxLlUQ~QIWlZNfMf51b4YJSM~5ykRxbHijBwvgm2vTj6bCuDOARBba7Fg5PoLZJHCjpv30gggjk76WlC0LfW-WUJ-km972UGx-K3uM3ZwphsPUxfI5j53mlFzu5hzaecgh3fUuezgsUS3HPulv5egvhmxdeWt6OE2H6XyzAUfWBW2BlOp6Y2G7g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":1688,"name":"Reinforcement Learning","url":"https://www.academia.edu/Documents/in/Reinforcement_Learning"},{"id":10722,"name":"Policy Development","url":"https://www.academia.edu/Documents/in/Policy_Development"},{"id":10919,"name":"Markov Decision Process","url":"https://www.academia.edu/Documents/in/Markov_Decision_Process"},{"id":135913,"name":"State Space","url":"https://www.academia.edu/Documents/in/State_Space"},{"id":1587858,"name":"Confidence Interval","url":"https://www.academia.edu/Documents/in/Confidence_Interval"},{"id":1731323,"name":"COL","url":"https://www.academia.edu/Documents/in/COL-2000"},{"id":1993786,"name":"Cumulant","url":"https://www.academia.edu/Documents/in/Cumulant"}],"urls":[{"id":7253726,"url":"http://acl.ldc.upenn.edu/n/n07/n07-1035.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="26513529"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/26513529/E_Rating_Machine_Translation"><img alt="Research paper thumbnail of E-Rating Machine Translation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/26513529/E_Rating_Machine_Translation">E-Rating Machine Translation</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="61c2f170ffb0863d5b5889b859e5644f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:46809874,&quot;asset_id&quot;:26513529,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/46809874/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="26513529"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="26513529"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 26513529; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=26513529]").text(description); $(".js-view-count[data-work-id=26513529]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 26513529; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='26513529']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 26513529, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "61c2f170ffb0863d5b5889b859e5644f" } } $('.js-work-strip[data-work-id=26513529]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":26513529,"title":"E-Rating Machine Translation","translated_title":"","metadata":{"grobid_abstract":"We describe our submissions to the WMT11 shared MT evaluation task: MTeRater and MTeRater-Plus. Both are machine-learned metrics that use features from e-rater R , an automated essay scoring engine designed to assess writing proficiency. Despite using only features from e-rater and without comparing to translations, MTeRater achieves a sentencelevel correlation with human rankings equivalent to BLEU. Since MTeRater only assesses fluency, we build a meta-metric, MTeRater-Plus, that incorporates adequacy by combining MTeRater with other MT evaluation metrics and heuristics. This meta-metric has a higher correlation with human rankings than either MTeRater or individual MT metrics alone. However, we also find that e-rater features may not have significant impact on correlation in every case. build a classifier to distinguish machine-generated translations from human","publication_date":{"day":30,"month":7,"year":2011,"errors":{}},"grobid_abstract_attachment_id":46809874},"translated_abstract":null,"internal_url":"https://www.academia.edu/26513529/E_Rating_Machine_Translation","translated_internal_url":"","created_at":"2016-06-26T11:24:34.370-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":50446196,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":46809874,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":".pdf","download_url":"https://www.academia.edu/attachments/46809874/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"E_Rating_Machine_Translation.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809874/.pdf-libre?1466965840=\u0026response-content-disposition=attachment%3B+filename%3DE_Rating_Machine_Translation.pdf\u0026Expires=1732459638\u0026Signature=NgsBNR7gN7iRBfBsX7tGqv1jOD~vizoy-aThzTEx2SNKBRqxjDK9HA8QYf-mAWG4oUgkNfHQTAFPQmXKgNfdRSSRzr0hVuuWRGjT6lmROHnRS8jA0bS044H-XcdCfhs60b0ZLuQAQAWMtkalUv3ocPGEFCa6jePAPpCsR9Ket55uey7qNKJq5kWv3nBN2G-6AdChZcWzumOYI7RKSY4DmbAtrMYBA9kcGFfaV7K~ZPKED0pCml1mbrTWaMrrmjLpkoP38lWinc5w28L6cuC1zCBmfp8-sDphqUIVQ4O6x5CU7XyYKpL7UViS8Kj4UGkoXTep2je6ETokNtOsRVcNQQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"E_Rating_Machine_Translation","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":50446196,"first_name":"Joel","middle_initials":null,"last_name":"Tetreault","page_name":"JoelTetreault","domain_name":"independent","created_at":"2016-06-25T07:02:03.031-07:00","display_name":"Joel Tetreault","url":"https://independent.academia.edu/JoelTetreault"},"attachments":[{"id":46809874,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":".pdf","download_url":"https://www.academia.edu/attachments/46809874/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"E_Rating_Machine_Translation.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809874/.pdf-libre?1466965840=\u0026response-content-disposition=attachment%3B+filename%3DE_Rating_Machine_Translation.pdf\u0026Expires=1732459638\u0026Signature=NgsBNR7gN7iRBfBsX7tGqv1jOD~vizoy-aThzTEx2SNKBRqxjDK9HA8QYf-mAWG4oUgkNfHQTAFPQmXKgNfdRSSRzr0hVuuWRGjT6lmROHnRS8jA0bS044H-XcdCfhs60b0ZLuQAQAWMtkalUv3ocPGEFCa6jePAPpCsR9Ket55uey7qNKJq5kWv3nBN2G-6AdChZcWzumOYI7RKSY4DmbAtrMYBA9kcGFfaV7K~ZPKED0pCml1mbrTWaMrrmjLpkoP38lWinc5w28L6cuC1zCBmfp8-sDphqUIVQ4O6x5CU7XyYKpL7UViS8Kj4UGkoXTep2je6ETokNtOsRVcNQQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"}],"urls":[{"id":7253725,"url":"http://academiccommons.columbia.edu/catalog/ac:159838"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="26513528"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/26513528/Using_Parse_Features_for_Preposition_Selection_and_Error_Detection"><img alt="Research paper thumbnail of Using Parse Features for Preposition Selection and Error Detection" class="work-thumbnail" src="https://attachments.academia-assets.com/46809820/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/26513528/Using_Parse_Features_for_Preposition_Selection_and_Error_Detection">Using Parse Features for Preposition Selection and Error Detection</a></div><div class="wp-workCard_item"><span>Meeting of the Association for Computational Linguistics</span><span>, 2010</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We evaluate the effect of adding parse fea- tures to a leading model of preposition us- age. Resu...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We evaluate the effect of adding parse fea- tures to a leading model of preposition us- age. Results show a significant improve- ment in the preposition selection task on native speaker text and a modest increment in precision and recall in an ESL error de- tection task. Analysis of the parser output indicates that it is robust enough in the</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b943153eaac658dd14cfc81c1db847a2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:46809820,&quot;asset_id&quot;:26513528,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/46809820/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="26513528"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="26513528"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 26513528; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=26513528]").text(description); $(".js-view-count[data-work-id=26513528]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 26513528; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='26513528']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 26513528, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b943153eaac658dd14cfc81c1db847a2" } } $('.js-work-strip[data-work-id=26513528]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":26513528,"title":"Using Parse Features for Preposition Selection and Error Detection","translated_title":"","metadata":{"abstract":"We evaluate the effect of adding parse fea- tures to a leading model of preposition us- age. Results show a significant improve- ment in the preposition selection task on native speaker text and a modest increment in precision and recall in an ESL error de- tection task. Analysis of the parser output indicates that it is robust enough in the","publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"publication_name":"Meeting of the Association for Computational Linguistics"},"translated_abstract":"We evaluate the effect of adding parse fea- tures to a leading model of preposition us- age. Results show a significant improve- ment in the preposition selection task on native speaker text and a modest increment in precision and recall in an ESL error de- tection task. Analysis of the parser output indicates that it is robust enough in the","internal_url":"https://www.academia.edu/26513528/Using_Parse_Features_for_Preposition_Selection_and_Error_Detection","translated_internal_url":"","created_at":"2016-06-26T11:24:33.981-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":50446196,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":46809820,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809820/thumbnails/1.jpg","file_name":"P10-2065.pdf","download_url":"https://www.academia.edu/attachments/46809820/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Using_Parse_Features_for_Preposition_Sel.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809820/P10-2065-libre.pdf?1466965842=\u0026response-content-disposition=attachment%3B+filename%3DUsing_Parse_Features_for_Preposition_Sel.pdf\u0026Expires=1732459638\u0026Signature=DzQbzDoxUH5kWnLsQ1xZJXOwdpJRmNP4Rum7ajoTS-uQkhdEB7MZxJyCmM-1jBmpvSNyoXBuxQcWEn1nE7CZh-ppURUd-QV36pvZ-7xWszg~7pqxriGiZpWPXRxPCkQ3DVga1XIW65z06tRTJ7iJLOuVahTBaBpCmyWYNNuNawi1ut4SHJBOFISRT3oBwaBxsI7-aWBCQSrOMdVZKsfOGcp73LtxBDh-IDWPmO8i0PCGdAOoEu7oTwlikDjmkn0kLlgPy94r-1NZ-whR4Ic8rxZT92JisEbLNpA-~cquoRrx6wPbL9yhhSyAECJKZMNUK3G8NMF9YB0nVVmOnqiFDg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Using_Parse_Features_for_Preposition_Selection_and_Error_Detection","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":50446196,"first_name":"Joel","middle_initials":null,"last_name":"Tetreault","page_name":"JoelTetreault","domain_name":"independent","created_at":"2016-06-25T07:02:03.031-07:00","display_name":"Joel Tetreault","url":"https://independent.academia.edu/JoelTetreault"},"attachments":[{"id":46809820,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809820/thumbnails/1.jpg","file_name":"P10-2065.pdf","download_url":"https://www.academia.edu/attachments/46809820/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Using_Parse_Features_for_Preposition_Sel.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809820/P10-2065-libre.pdf?1466965842=\u0026response-content-disposition=attachment%3B+filename%3DUsing_Parse_Features_for_Preposition_Sel.pdf\u0026Expires=1732459638\u0026Signature=DzQbzDoxUH5kWnLsQ1xZJXOwdpJRmNP4Rum7ajoTS-uQkhdEB7MZxJyCmM-1jBmpvSNyoXBuxQcWEn1nE7CZh-ppURUd-QV36pvZ-7xWszg~7pqxriGiZpWPXRxPCkQ3DVga1XIW65z06tRTJ7iJLOuVahTBaBpCmyWYNNuNawi1ut4SHJBOFISRT3oBwaBxsI7-aWBCQSrOMdVZKsfOGcp73LtxBDh-IDWPmO8i0PCGdAOoEu7oTwlikDjmkn0kLlgPy94r-1NZ-whR4Ic8rxZT92JisEbLNpA-~cquoRrx6wPbL9yhhSyAECJKZMNUK3G8NMF9YB0nVVmOnqiFDg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":46809819,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809819/thumbnails/1.jpg","file_name":"P10-2065.pdf","download_url":"https://www.academia.edu/attachments/46809819/download_file","bulk_download_file_name":"Using_Parse_Features_for_Preposition_Sel.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809819/P10-2065-libre.pdf?1466965842=\u0026response-content-disposition=attachment%3B+filename%3DUsing_Parse_Features_for_Preposition_Sel.pdf\u0026Expires=1732459638\u0026Signature=geeEDT2fXCPAA1Rj4iPwnFwiFa2xdSGzLDOMIue6RBoeXdc1dTa7kpnEbX5ERhiK4tADa9u9967DgaO~uGU4G-NyIcQfKgdc4q71qttK27SOvmBoqt29T-T7xSKwct7rV31b8e3-zrOUAPUjgXW3ZL7ltdbzv9g-xFnyijISnOZExfTu7uEHnnlmtNsfxrTfKj6y2xfDXHLVxtGVYH11Vq40A-joeBCmbzP78sf-NCqAG0TSXXMLaohKN53YWe5GEXftsp4azwOdfJUvC2ZQVdKT3ej-JS77B7~ZwOk2ardo~6xksagyDL3qoHMBTwst7yv8-w-b4I~Re~Bhzi9t2w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":3268,"name":"Computational Linguistics","url":"https://www.academia.edu/Documents/in/Computational_Linguistics"},{"id":192697,"name":"Task analysis","url":"https://www.academia.edu/Documents/in/Task_analysis"},{"id":999795,"name":"Native Speaker","url":"https://www.academia.edu/Documents/in/Native_Speaker"},{"id":2150075,"name":"Error Detection","url":"https://www.academia.edu/Documents/in/Error_Detection"}],"urls":[{"id":7253724,"url":"http://www.aclweb.org/anthology/P10-2065"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="26513527"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/26513527/Using_an_Error_Annotated_Learner_Corpus_to_Develop_an_ESL_EFL_Error_Correction_System"><img alt="Research paper thumbnail of Using an Error-Annotated Learner Corpus to Develop an ESL/EFL Error Correction System" class="work-thumbnail" src="https://attachments.academia-assets.com/46809872/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/26513527/Using_an_Error_Annotated_Learner_Corpus_to_Develop_an_ESL_EFL_Error_Correction_System">Using an Error-Annotated Learner Corpus to Develop an ESL/EFL Error Correction System</a></div><div class="wp-workCard_item"><span>Language Resources and Evaluation</span><span>, 2010</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper presents research on building a model of grammatical error correction, for preposition...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper presents research on building a model of grammatical error correction, for preposition errors in particular , in English text produced by language learners. Unlike most previous work which trains a statistical classifier exclusively on well-for med text written by native speakers, we train a classifier on a large-scale, error-tagged corpus of English essays written by EFL learners, relying</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="99c4b529c4fbcb51a3fa3b2bbef93c3d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:46809872,&quot;asset_id&quot;:26513527,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/46809872/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="26513527"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="26513527"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 26513527; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=26513527]").text(description); $(".js-view-count[data-work-id=26513527]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 26513527; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='26513527']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 26513527, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "99c4b529c4fbcb51a3fa3b2bbef93c3d" } } $('.js-work-strip[data-work-id=26513527]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":26513527,"title":"Using an Error-Annotated Learner Corpus to Develop an ESL/EFL Error Correction System","translated_title":"","metadata":{"abstract":"This paper presents research on building a model of grammatical error correction, for preposition errors in particular , in English text produced by language learners. Unlike most previous work which trains a statistical classifier exclusively on well-for med text written by native speakers, we train a classifier on a large-scale, error-tagged corpus of English essays written by EFL learners, relying","publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"publication_name":"Language Resources and Evaluation"},"translated_abstract":"This paper presents research on building a model of grammatical error correction, for preposition errors in particular , in English text produced by language learners. Unlike most previous work which trains a statistical classifier exclusively on well-for med text written by native speakers, we train a classifier on a large-scale, error-tagged corpus of English essays written by EFL learners, relying","internal_url":"https://www.academia.edu/26513527/Using_an_Error_Annotated_Learner_Corpus_to_Develop_an_ESL_EFL_Error_Correction_System","translated_internal_url":"","created_at":"2016-06-26T11:24:33.631-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":50446196,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":46809872,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809872/thumbnails/1.jpg","file_name":"han-lrec10-final.pdf","download_url":"https://www.academia.edu/attachments/46809872/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Using_an_Error_Annotated_Learner_Corpus.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809872/han-lrec10-final-libre.pdf?1466965840=\u0026response-content-disposition=attachment%3B+filename%3DUsing_an_Error_Annotated_Learner_Corpus.pdf\u0026Expires=1732459638\u0026Signature=EK3jO-fzAdRD91IiyI7M9FZtFJACltJTZXI9FSe3aSwWr9BAxOJHYpgxlteUAH9P8~~QMqIGBuhCo3HG9Ktoa31OP43HB4ZEiLFk0Jnz9eSs0WbAuIo5mDnP7GfbpV3T-baO6WMy3OgNn02hsTZa4B7xin7DpO9yVBpU22BsEyn8k6LGGMAyvHP6GgtIt6qdffMiYET39iXQZznAXlCguVR8U2gf9u~KYrvhnnKO~ZobV~zDSfn7mEzndjih8TC3~N9be2BXMqDqVMhsncH0~8vBSAXXQQcGO8JbL8riyFZRw4vhIyFt0iKGdW938UTWP1FDsiug6pBwRC-1ZTzkmw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Using_an_Error_Annotated_Learner_Corpus_to_Develop_an_ESL_EFL_Error_Correction_System","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":50446196,"first_name":"Joel","middle_initials":null,"last_name":"Tetreault","page_name":"JoelTetreault","domain_name":"independent","created_at":"2016-06-25T07:02:03.031-07:00","display_name":"Joel Tetreault","url":"https://independent.academia.edu/JoelTetreault"},"attachments":[{"id":46809872,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809872/thumbnails/1.jpg","file_name":"han-lrec10-final.pdf","download_url":"https://www.academia.edu/attachments/46809872/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Using_an_Error_Annotated_Learner_Corpus.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809872/han-lrec10-final-libre.pdf?1466965840=\u0026response-content-disposition=attachment%3B+filename%3DUsing_an_Error_Annotated_Learner_Corpus.pdf\u0026Expires=1732459638\u0026Signature=EK3jO-fzAdRD91IiyI7M9FZtFJACltJTZXI9FSe3aSwWr9BAxOJHYpgxlteUAH9P8~~QMqIGBuhCo3HG9Ktoa31OP43HB4ZEiLFk0Jnz9eSs0WbAuIo5mDnP7GfbpV3T-baO6WMy3OgNn02hsTZa4B7xin7DpO9yVBpU22BsEyn8k6LGGMAyvHP6GgtIt6qdffMiYET39iXQZznAXlCguVR8U2gf9u~KYrvhnnKO~ZobV~zDSfn7mEzndjih8TC3~N9be2BXMqDqVMhsncH0~8vBSAXXQQcGO8JbL8riyFZRw4vhIyFt0iKGdW938UTWP1FDsiug6pBwRC-1ZTzkmw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":182415,"name":"Error Correction","url":"https://www.academia.edu/Documents/in/Error_Correction"},{"id":297691,"name":"High performance","url":"https://www.academia.edu/Documents/in/High_performance"},{"id":758278,"name":"Large Scale","url":"https://www.academia.edu/Documents/in/Large_Scale"},{"id":873536,"name":"Error Detection and Correction","url":"https://www.academia.edu/Documents/in/Error_Detection_and_Correction"},{"id":999795,"name":"Native Speaker","url":"https://www.academia.edu/Documents/in/Native_Speaker"}],"urls":[{"id":7253723,"url":"http://www.lrec-conf.org/proceedings/lrec2010/summaries/821.html"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="26513526"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/26513526/Dialogue_Structure_and_Pronoun_Resolution"><img alt="Research paper thumbnail of Dialogue Structure and Pronoun Resolution" class="work-thumbnail" src="https://attachments.academia-assets.com/46809818/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/26513526/Dialogue_Structure_and_Pronoun_Resolution">Dialogue Structure and Pronoun Resolution</a></div><div class="wp-workCard_item"><span>Discourse Anaphora and Anaphor Resolution Colloquium</span><span>, 2004</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper presents an empirical evaluation of a pronoun resolution algorithm augmented with disc...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper presents an empirical evaluation of a pronoun resolution algorithm augmented with discourse segmentation information. Past work has shown that segmenting discourse can aid in pronoun resolution by making potentially erroneous candidates inaccessible to a pronoun&amp;#39;s search. However, implementing this in practice has been difficult given the complexities associated with deciding on a useful scheme and then generating the</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2c84d0e15d2332eb951c5e76ec066be1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:46809818,&quot;asset_id&quot;:26513526,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/46809818/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="26513526"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="26513526"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 26513526; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=26513526]").text(description); $(".js-view-count[data-work-id=26513526]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 26513526; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='26513526']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 26513526, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2c84d0e15d2332eb951c5e76ec066be1" } } $('.js-work-strip[data-work-id=26513526]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":26513526,"title":"Dialogue Structure and Pronoun Resolution","translated_title":"","metadata":{"abstract":"This paper presents an empirical evaluation of a pronoun resolution algorithm augmented with discourse segmentation information. Past work has shown that segmenting discourse can aid in pronoun resolution by making potentially erroneous candidates inaccessible to a pronoun\u0026#39;s search. However, implementing this in practice has been difficult given the complexities associated with deciding on a useful scheme and then generating the","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"Discourse Anaphora and Anaphor Resolution Colloquium"},"translated_abstract":"This paper presents an empirical evaluation of a pronoun resolution algorithm augmented with discourse segmentation information. Past work has shown that segmenting discourse can aid in pronoun resolution by making potentially erroneous candidates inaccessible to a pronoun\u0026#39;s search. However, implementing this in practice has been difficult given the complexities associated with deciding on a useful scheme and then generating the","internal_url":"https://www.academia.edu/26513526/Dialogue_Structure_and_Pronoun_Resolution","translated_internal_url":"","created_at":"2016-06-26T11:24:33.286-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":50446196,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":46809818,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809818/thumbnails/1.jpg","file_name":"daarc04.pdf","download_url":"https://www.academia.edu/attachments/46809818/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Dialogue_Structure_and_Pronoun_Resolutio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809818/daarc04-libre.pdf?1466965842=\u0026response-content-disposition=attachment%3B+filename%3DDialogue_Structure_and_Pronoun_Resolutio.pdf\u0026Expires=1732459638\u0026Signature=BLIW-4588P3OLc-Rjy7zhQ7fKGGro~ToHcLp2QI~fG3O58CwxwEgH0g-024Fhx32-iRvBUT~VR6rW9fZRtQ6Y4oCHZlECmYSCmNAhBL4y7KfiqWdy14QX7-4zOqALt9GSWpvZZHfL2mN6q~WGN6Kjavvb8mZFv8APvidCZy2M04512aAg1e~jWfCUVKi-F1~tKisFPv95ZnclMEhj4gdCWfYulhATV207ZH2G-0zyDNZ7YPvC1pn6gnEWCogrvWZ5DfOfU~Hm27w0uTSJCvKiRf3thxe2j4D~oAoLSPHqcisDKT8TeWwyaqyUd5DnYUy9wzWrfj68FFi0ddaBxi4CQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Dialogue_Structure_and_Pronoun_Resolution","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":50446196,"first_name":"Joel","middle_initials":null,"last_name":"Tetreault","page_name":"JoelTetreault","domain_name":"independent","created_at":"2016-06-25T07:02:03.031-07:00","display_name":"Joel Tetreault","url":"https://independent.academia.edu/JoelTetreault"},"attachments":[{"id":46809818,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809818/thumbnails/1.jpg","file_name":"daarc04.pdf","download_url":"https://www.academia.edu/attachments/46809818/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Dialogue_Structure_and_Pronoun_Resolutio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809818/daarc04-libre.pdf?1466965842=\u0026response-content-disposition=attachment%3B+filename%3DDialogue_Structure_and_Pronoun_Resolutio.pdf\u0026Expires=1732459638\u0026Signature=BLIW-4588P3OLc-Rjy7zhQ7fKGGro~ToHcLp2QI~fG3O58CwxwEgH0g-024Fhx32-iRvBUT~VR6rW9fZRtQ6Y4oCHZlECmYSCmNAhBL4y7KfiqWdy14QX7-4zOqALt9GSWpvZZHfL2mN6q~WGN6Kjavvb8mZFv8APvidCZy2M04512aAg1e~jWfCUVKi-F1~tKisFPv95ZnclMEhj4gdCWfYulhATV207ZH2G-0zyDNZ7YPvC1pn6gnEWCogrvWZ5DfOfU~Hm27w0uTSJCvKiRf3thxe2j4D~oAoLSPHqcisDKT8TeWwyaqyUd5DnYUy9wzWrfj68FFi0ddaBxi4CQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":46809817,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809817/thumbnails/1.jpg","file_name":"daarc04.pdf","download_url":"https://www.academia.edu/attachments/46809817/download_file","bulk_download_file_name":"Dialogue_Structure_and_Pronoun_Resolutio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809817/daarc04-libre.pdf?1466965842=\u0026response-content-disposition=attachment%3B+filename%3DDialogue_Structure_and_Pronoun_Resolutio.pdf\u0026Expires=1732459638\u0026Signature=GREzlAPpcmLOW1BC5jKVQ4NgnUHVfhPz9S5Kv0KXOM0xHBrkNuKCSmDL7NmBi9ZmPKgtocFC-1ZYIGthLy1koBKUGaVH1t95tIifoFA--ZQ4oMKf4ADuR2JoEHtI77t1KjufGihv1cAQyLOCpxnRWeAUV9TWXQHLk89DW2z~2SstNgsXW~15F8ZVNqQ9-WczE8kS3kC5-WAWT6ae9DTxuIR536PzaIXqmn~11tIvHzSRlWn78F7lf537CQ1SI9ev9uf2yFS7FzJ5GuomogG-iq4Y7Xt4cx5cW1AlRP4r7ePkhU-iOjAIE2tfRjlwZgMfDwaD1SvlmKY9MENgRc60NQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":428,"name":"Algorithms","url":"https://www.academia.edu/Documents/in/Algorithms"},{"id":15674,"name":"Linguistics","url":"https://www.academia.edu/Documents/in/Linguistics"},{"id":214529,"name":"Resolution","url":"https://www.academia.edu/Documents/in/Resolution"},{"id":408793,"name":"Empirical Evaluation","url":"https://www.academia.edu/Documents/in/Empirical_Evaluation"},{"id":956261,"name":"Augmentation","url":"https://www.academia.edu/Documents/in/Augmentation"}],"urls":[{"id":7253722,"url":"http://www.cs.rochester.edu/u/www/u/tetreaul/daarc04.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="26513525"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/26513525/An_Empirical_Evaluation_of_Pronoun_Resolution_and_Clausal_Structure"><img alt="Research paper thumbnail of An Empirical Evaluation of Pronoun Resolution and Clausal Structure" class="work-thumbnail" src="https://attachments.academia-assets.com/46809816/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/26513525/An_Empirical_Evaluation_of_Pronoun_Resolution_and_Clausal_Structure">An Empirical Evaluation of Pronoun Resolution and Clausal Structure</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper presents an automated empiri- cal evaluation of the relationship between clausal struc...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper presents an automated empiri- cal evaluation of the relationship between clausal structure and pronominal refer- ence. Past work has theorized that in- corporating discourse structure can con- strain the search space in the resolution of pronouns since discourse segments, and thus potential antecedents, can be made inaccessible as the discourse pro- gresses and the focus changes. How- ever,</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8340f9bbec4491ca0620fcd041be748a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:46809816,&quot;asset_id&quot;:26513525,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/46809816/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="26513525"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="26513525"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 26513525; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=26513525]").text(description); $(".js-view-count[data-work-id=26513525]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 26513525; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='26513525']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 26513525, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8340f9bbec4491ca0620fcd041be748a" } } $('.js-work-strip[data-work-id=26513525]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":26513525,"title":"An Empirical Evaluation of Pronoun Resolution and Clausal Structure","translated_title":"","metadata":{"abstract":"This paper presents an automated empiri- cal evaluation of the relationship between clausal structure and pronominal refer- ence. Past work has theorized that in- corporating discourse structure can con- strain the search space in the resolution of pronouns since discourse segments, and thus potential antecedents, can be made inaccessible as the discourse pro- gresses and the focus changes. How- ever,","publication_date":{"day":null,"month":null,"year":2000,"errors":{}}},"translated_abstract":"This paper presents an automated empiri- cal evaluation of the relationship between clausal structure and pronominal refer- ence. Past work has theorized that in- corporating discourse structure can con- strain the search space in the resolution of pronouns since discourse segments, and thus potential antecedents, can be made inaccessible as the discourse pro- gresses and the focus changes. How- ever,","internal_url":"https://www.academia.edu/26513525/An_Empirical_Evaluation_of_Pronoun_Resolution_and_Clausal_Structure","translated_internal_url":"","created_at":"2016-06-26T11:24:32.969-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":50446196,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":46809816,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809816/thumbnails/1.jpg","file_name":"clause.pdf","download_url":"https://www.academia.edu/attachments/46809816/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_Empirical_Evaluation_of_Pronoun_Resol.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809816/clause-libre.pdf?1466965842=\u0026response-content-disposition=attachment%3B+filename%3DAn_Empirical_Evaluation_of_Pronoun_Resol.pdf\u0026Expires=1732459638\u0026Signature=VUf3gh~7RvAS3tlttTyKF9J0DB86PDBxHCV1qTzKCBxCes7ipLZWAvt8Ra54RitkwM17Rwtq-LwNMxp6N5K2Srgvu7xpM9y5hSL1ZW3t6080HTsx4SsB46nOdHYNjeF-~ERzn71IGKsl5d560Jdic9OyhIuCXXVIZlnU6NUgUGQxqH6AU5KfmCuHHgAygzrzKoOwI5UAQ82IjjG~vGlibq9dTZRc8DZQZP2rarFOAxcJwr8rvFrphvyjT1YtUMYph1CugbipKM61MWec47V9gUONyNYfhoITKbmUfJsXjECJOJ0ckK1J-uYLIbNed8hOMTPA3nF~1hjtp6WBFyaglQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"An_Empirical_Evaluation_of_Pronoun_Resolution_and_Clausal_Structure","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":50446196,"first_name":"Joel","middle_initials":null,"last_name":"Tetreault","page_name":"JoelTetreault","domain_name":"independent","created_at":"2016-06-25T07:02:03.031-07:00","display_name":"Joel Tetreault","url":"https://independent.academia.edu/JoelTetreault"},"attachments":[{"id":46809816,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809816/thumbnails/1.jpg","file_name":"clause.pdf","download_url":"https://www.academia.edu/attachments/46809816/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_Empirical_Evaluation_of_Pronoun_Resol.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809816/clause-libre.pdf?1466965842=\u0026response-content-disposition=attachment%3B+filename%3DAn_Empirical_Evaluation_of_Pronoun_Resol.pdf\u0026Expires=1732459638\u0026Signature=VUf3gh~7RvAS3tlttTyKF9J0DB86PDBxHCV1qTzKCBxCes7ipLZWAvt8Ra54RitkwM17Rwtq-LwNMxp6N5K2Srgvu7xpM9y5hSL1ZW3t6080HTsx4SsB46nOdHYNjeF-~ERzn71IGKsl5d560Jdic9OyhIuCXXVIZlnU6NUgUGQxqH6AU5KfmCuHHgAygzrzKoOwI5UAQ82IjjG~vGlibq9dTZRc8DZQZP2rarFOAxcJwr8rvFrphvyjT1YtUMYph1CugbipKM61MWec47V9gUONyNYfhoITKbmUfJsXjECJOJ0ckK1J-uYLIbNed8hOMTPA3nF~1hjtp6WBFyaglQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":46809815,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809815/thumbnails/1.jpg","file_name":"clause.pdf","download_url":"https://www.academia.edu/attachments/46809815/download_file","bulk_download_file_name":"An_Empirical_Evaluation_of_Pronoun_Resol.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809815/clause-libre.pdf?1466965842=\u0026response-content-disposition=attachment%3B+filename%3DAn_Empirical_Evaluation_of_Pronoun_Resol.pdf\u0026Expires=1732459638\u0026Signature=dXUa9bk4Om5HGniOW8Cl8djHuopSCQFhExEcNmNABG~0dyRwRuK5~iTSw8WfUmzW~twezl4Ai72A8ZVMjry9mD2ZP8PP~7OehDDi4H8rtgWDE3FkcAkrbOzAMht1bbzVyxcyQMv4gDxoJAFUviob7UJWqqNywGVPU3SKrH0xbY8ddO2NoY1kDrddWbZCH6QJkEVH3wfT0EimojfqomhweFZR65QZc5Av1k419H618Lzgq8d850VK1wnezXi9fbHnJcL56cjF~A0qmvV6g0NG5ir0Y3Egy5TyVEuiMPc-hpRgZ8rRdV0u475bQwmvIuuKJnNJWk-NMTo8WT0SCgblzw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":234790,"name":"Corpus Annotation","url":"https://www.academia.edu/Documents/in/Corpus_Annotation"},{"id":408793,"name":"Empirical Evaluation","url":"https://www.academia.edu/Documents/in/Empirical_Evaluation"},{"id":413301,"name":"Perforation","url":"https://www.academia.edu/Documents/in/Perforation"},{"id":469944,"name":"Search Space","url":"https://www.academia.edu/Documents/in/Search_Space"},{"id":881432,"name":"Discourse Structure","url":"https://www.academia.edu/Documents/in/Discourse_Structure"}],"urls":[{"id":7253721,"url":"http://www.cs.rochester.edu/u/tetreaul/clause.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="26513524"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/26513524/Incremental_Parsing_with_Reference_Interaction"><img alt="Research paper thumbnail of Incremental Parsing with Reference Interaction" class="work-thumbnail" src="https://attachments.academia-assets.com/46809870/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/26513524/Incremental_Parsing_with_Reference_Interaction">Incremental Parsing with Reference Interaction</a></div><div class="wp-workCard_item"><span>Meeting of the Association for Computational Linguistics</span><span>, 2000</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We present a general architecture for incremen- tal interaction between modules in a speech-to- i...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We present a general architecture for incremen- tal interaction between modules in a speech-to- intention continuous understanding dialogue sys- tem. This architecture is then instantiated in the form of an incremental parser which receives suit- ability feedback on NP constituents from a refer- ence resolution module. Oracle results indicate that perfect NP suitability judgments can provide a labelled-bracket error reduction</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="66e074e002357ba21b1893416c758c5f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:46809870,&quot;asset_id&quot;:26513524,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/46809870/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="26513524"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="26513524"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 26513524; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=26513524]").text(description); $(".js-view-count[data-work-id=26513524]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 26513524; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='26513524']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 26513524, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "66e074e002357ba21b1893416c758c5f" } } $('.js-work-strip[data-work-id=26513524]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":26513524,"title":"Incremental Parsing with Reference Interaction","translated_title":"","metadata":{"abstract":"We present a general architecture for incremen- tal interaction between modules in a speech-to- intention continuous understanding dialogue sys- tem. This architecture is then instantiated in the form of an incremental parser which receives suit- ability feedback on NP constituents from a refer- ence resolution module. Oracle results indicate that perfect NP suitability judgments can provide a labelled-bracket error reduction","publication_date":{"day":null,"month":null,"year":2000,"errors":{}},"publication_name":"Meeting of the Association for Computational Linguistics"},"translated_abstract":"We present a general architecture for incremen- tal interaction between modules in a speech-to- intention continuous understanding dialogue sys- tem. This architecture is then instantiated in the form of an incremental parser which receives suit- ability feedback on NP constituents from a refer- ence resolution module. Oracle results indicate that perfect NP suitability judgments can provide a labelled-bracket error reduction","internal_url":"https://www.academia.edu/26513524/Incremental_Parsing_with_Reference_Interaction","translated_internal_url":"","created_at":"2016-06-26T11:24:32.650-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":50446196,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":46809870,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809870/thumbnails/1.jpg","file_name":"W04-0304.pdf","download_url":"https://www.academia.edu/attachments/46809870/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Incremental_Parsing_with_Reference_Inter.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809870/W04-0304-libre.pdf?1466965840=\u0026response-content-disposition=attachment%3B+filename%3DIncremental_Parsing_with_Reference_Inter.pdf\u0026Expires=1732459638\u0026Signature=IB62D~un9KajG9wdCecwOEqTmdgZKg06UVJqbfGjVqmqknDjWtOj7i6j-eld4rnUvruiLoRRPeTRA0LhPOLVtepc7XhzxaPhb5Y3if5Ix-ONl5qlnNNRhvcTjiCksRpuFku6jWn2~BQmx4A3YrcFiICYNfP77b~ORy1djuogjzm07~4n0WwCKbzkw32FPdk~UlHqYK0KHwX7Sn2iqp8llgn-tpkA1i1eU61sIwOakss-A0wKRA45~S~2lk6WyKtEnl05g7mtnmeR14QBTm-Hix4Vyd-VypnXJsFCNG39Guh0d7Y2ngsSQ-sit0ZpRYJcDUrKHg5ttUSGcDlxIB~v8w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Incremental_Parsing_with_Reference_Interaction","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":50446196,"first_name":"Joel","middle_initials":null,"last_name":"Tetreault","page_name":"JoelTetreault","domain_name":"independent","created_at":"2016-06-25T07:02:03.031-07:00","display_name":"Joel Tetreault","url":"https://independent.academia.edu/JoelTetreault"},"attachments":[{"id":46809870,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809870/thumbnails/1.jpg","file_name":"W04-0304.pdf","download_url":"https://www.academia.edu/attachments/46809870/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Incremental_Parsing_with_Reference_Inter.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809870/W04-0304-libre.pdf?1466965840=\u0026response-content-disposition=attachment%3B+filename%3DIncremental_Parsing_with_Reference_Inter.pdf\u0026Expires=1732459638\u0026Signature=IB62D~un9KajG9wdCecwOEqTmdgZKg06UVJqbfGjVqmqknDjWtOj7i6j-eld4rnUvruiLoRRPeTRA0LhPOLVtepc7XhzxaPhb5Y3if5Ix-ONl5qlnNNRhvcTjiCksRpuFku6jWn2~BQmx4A3YrcFiICYNfP77b~ORy1djuogjzm07~4n0WwCKbzkw32FPdk~UlHqYK0KHwX7Sn2iqp8llgn-tpkA1i1eU61sIwOakss-A0wKRA45~S~2lk6WyKtEnl05g7mtnmeR14QBTm-Hix4Vyd-VypnXJsFCNG39Guh0d7Y2ngsSQ-sit0ZpRYJcDUrKHg5ttUSGcDlxIB~v8w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":7253720,"url":"http://www.aclweb.org/anthology-new/W/W04/W04-0304.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="26513523"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/26513523/Comparing_the_Utility_of_State_Features_in_Spoken_Dialogue_Using_Reinforcement_Learning"><img alt="Research paper thumbnail of Comparing the Utility of State Features in Spoken Dialogue Using Reinforcement Learning" class="work-thumbnail" src="https://attachments.academia-assets.com/46809873/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/26513523/Comparing_the_Utility_of_State_Features_in_Spoken_Dialogue_Using_Reinforcement_Learning">Comparing the Utility of State Features in Spoken Dialogue Using Reinforcement Learning</a></div><div class="wp-workCard_item"><span>North American Chapter of the Association for Computational Linguistics</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Recent work in designing spoken dialogue systems has focused on using Reinforce- ment Learning to...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Recent work in designing spoken dialogue systems has focused on using Reinforce- ment Learning to automatically learn the best action for a system to take at any point in the dialogue to maximize dia- logue success. While policy development is very important, choosing the best fea- tures to model the user state is equally im- portant since it impacts the</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c21b766579194477b99e9a22a5e5f153" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:46809873,&quot;asset_id&quot;:26513523,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/46809873/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="26513523"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="26513523"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 26513523; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=26513523]").text(description); $(".js-view-count[data-work-id=26513523]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 26513523; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='26513523']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 26513523, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c21b766579194477b99e9a22a5e5f153" } } $('.js-work-strip[data-work-id=26513523]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":26513523,"title":"Comparing the Utility of State Features in Spoken Dialogue Using Reinforcement Learning","translated_title":"","metadata":{"abstract":"Recent work in designing spoken dialogue systems has focused on using Reinforce- ment Learning to automatically learn the best action for a system to take at any point in the dialogue to maximize dia- logue success. While policy development is very important, choosing the best fea- tures to model the user state is equally im- portant since it impacts the","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"North American Chapter of the Association for Computational Linguistics"},"translated_abstract":"Recent work in designing spoken dialogue systems has focused on using Reinforce- ment Learning to automatically learn the best action for a system to take at any point in the dialogue to maximize dia- logue success. While policy development is very important, choosing the best fea- tures to model the user state is equally im- portant since it impacts the","internal_url":"https://www.academia.edu/26513523/Comparing_the_Utility_of_State_Features_in_Spoken_Dialogue_Using_Reinforcement_Learning","translated_internal_url":"","created_at":"2016-06-26T11:24:32.328-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":50446196,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":46809873,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809873/thumbnails/1.jpg","file_name":"Comparing_the_Utility_of_State_Features_20160626-22732-1v2m3pg.pdf","download_url":"https://www.academia.edu/attachments/46809873/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Comparing_the_Utility_of_State_Features.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809873/Comparing_the_Utility_of_State_Features_20160626-22732-1v2m3pg-libre.pdf?1466965840=\u0026response-content-disposition=attachment%3B+filename%3DComparing_the_Utility_of_State_Features.pdf\u0026Expires=1732459638\u0026Signature=H3JRzib6kuoYnYoIsfOQ8G52aYYuCATnLeCdGYb4QmfN0SqTM1USVuj0J9rBtP3CyjEgTM-3H35j6X1eXFRZaGIZDQ0OdHjup0PwgO-iazBLvWCbNeoakQ7JIi4jld0FvJ9picmXNeDiqPByr812ATie6iAt6MCmR4Rgl~DZTpjAwoYb9KAtCDGiVglWYbcXaSrp5nPF0eYZTYVbSln7HzqQ3VjnJlh4BZrkppfDTWI40WGcj1x0HAFajnSFo3wNmZqv00d5VVLvh1c075p~UHJVfM0YZVW-aiG0W8Q5JO8tdcVypNm~DCHR1RT1yRR-6nV-8VRQPAi8TTGxPfH3yw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Comparing_the_Utility_of_State_Features_in_Spoken_Dialogue_Using_Reinforcement_Learning","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":50446196,"first_name":"Joel","middle_initials":null,"last_name":"Tetreault","page_name":"JoelTetreault","domain_name":"independent","created_at":"2016-06-25T07:02:03.031-07:00","display_name":"Joel Tetreault","url":"https://independent.academia.edu/JoelTetreault"},"attachments":[{"id":46809873,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809873/thumbnails/1.jpg","file_name":"Comparing_the_Utility_of_State_Features_20160626-22732-1v2m3pg.pdf","download_url":"https://www.academia.edu/attachments/46809873/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Comparing_the_Utility_of_State_Features.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809873/Comparing_the_Utility_of_State_Features_20160626-22732-1v2m3pg-libre.pdf?1466965840=\u0026response-content-disposition=attachment%3B+filename%3DComparing_the_Utility_of_State_Features.pdf\u0026Expires=1732459638\u0026Signature=H3JRzib6kuoYnYoIsfOQ8G52aYYuCATnLeCdGYb4QmfN0SqTM1USVuj0J9rBtP3CyjEgTM-3H35j6X1eXFRZaGIZDQ0OdHjup0PwgO-iazBLvWCbNeoakQ7JIi4jld0FvJ9picmXNeDiqPByr812ATie6iAt6MCmR4Rgl~DZTpjAwoYb9KAtCDGiVglWYbcXaSrp5nPF0eYZTYVbSln7HzqQ3VjnJlh4BZrkppfDTWI40WGcj1x0HAFajnSFo3wNmZqv00d5VVLvh1c075p~UHJVfM0YZVW-aiG0W8Q5JO8tdcVypNm~DCHR1RT1yRR-6nV-8VRQPAi8TTGxPfH3yw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":1688,"name":"Reinforcement Learning","url":"https://www.academia.edu/Documents/in/Reinforcement_Learning"},{"id":10722,"name":"Policy Development","url":"https://www.academia.edu/Documents/in/Policy_Development"},{"id":97847,"name":"Spoken Dialogue System","url":"https://www.academia.edu/Documents/in/Spoken_Dialogue_System"},{"id":201147,"name":"Tutoring System","url":"https://www.academia.edu/Documents/in/Tutoring_System"}],"urls":[{"id":7253719,"url":"http://www.informatik.uni-trier.de/~ley/db/conf/naacl/naacl2006.html#TetreaultL06"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="26513522"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/26513522/Using_Reinforcement_Learning_to_Build_a_Better_Model_of_Dialogue_State"><img alt="Research paper thumbnail of Using Reinforcement Learning to Build a Better Model of Dialogue State" class="work-thumbnail" src="https://attachments.academia-assets.com/46809869/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/26513522/Using_Reinforcement_Learning_to_Build_a_Better_Model_of_Dialogue_State">Using Reinforcement Learning to Build a Better Model of Dialogue State</a></div><div class="wp-workCard_item"><span>Eacl</span><span>, 2006</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="67bdf3e0baed6f4d0aa1f4506860fd98" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:46809869,&quot;asset_id&quot;:26513522,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/46809869/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="26513522"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="26513522"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 26513522; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=26513522]").text(description); $(".js-view-count[data-work-id=26513522]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 26513522; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='26513522']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 26513522, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "67bdf3e0baed6f4d0aa1f4506860fd98" } } $('.js-work-strip[data-work-id=26513522]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":26513522,"title":"Using Reinforcement Learning to Build a Better Model of Dialogue State","translated_title":"","metadata":{"grobid_abstract":"Given the growing complexity of tasks that spoken dialogue systems are trying to handle, Reinforcement Learning (RL) has been increasingly used as a way of automatically learning the best policy for a system to make. While most work has focused on generating better policies for a dialogue manager, very little work has been done in using RL to construct a better dialogue state. This paper presents a RL approach for determining what dialogue features are important to a spoken dialogue tutoring system. Our experiments show that incorporating dialogue factors such as dialogue acts, emotion, repeated concepts and performance play a significant role in tutoring and should be taken into account when designing dialogue systems.","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"Eacl","grobid_abstract_attachment_id":46809869},"translated_abstract":null,"internal_url":"https://www.academia.edu/26513522/Using_Reinforcement_Learning_to_Build_a_Better_Model_of_Dialogue_State","translated_internal_url":"","created_at":"2016-06-26T11:24:31.960-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":50446196,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":46809869,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809869/thumbnails/1.jpg","file_name":"eacl06-2.pdf","download_url":"https://www.academia.edu/attachments/46809869/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Using_Reinforcement_Learning_to_Build_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809869/eacl06-2-libre.pdf?1466965840=\u0026response-content-disposition=attachment%3B+filename%3DUsing_Reinforcement_Learning_to_Build_a.pdf\u0026Expires=1732459638\u0026Signature=XrR83wvOBactYSv7jZDbig9TRu4HiAYR9VCbv0mzW4wNT6grdDISJE0LDMeuZphhpppA5grzuwbxI9CnmUYDZmDQs1ex4LvKnGAn2EvoH7wuQFTmPOopaUB1whirfvLRX0zTixqdIzY6fRsCn6-NNa~0b3ReYAbJzRiHgmwmdBts1Z2670sdIE8HHhIQi74ONEWPeZNFxMyNsA05oTgzUEo3Ouf3hlpPlqvfFh5Ll7dJes5YID5RjMb-9g3-5Gb4zdFZ7uZph5xOvqiyA7bzx-5QZ15r4eDbYnl2qqjvDi4GS4QRXBkdtRZm4pTHOALdWx2fj-FQN74YmGubsgEVUQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Using_Reinforcement_Learning_to_Build_a_Better_Model_of_Dialogue_State","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":50446196,"first_name":"Joel","middle_initials":null,"last_name":"Tetreault","page_name":"JoelTetreault","domain_name":"independent","created_at":"2016-06-25T07:02:03.031-07:00","display_name":"Joel Tetreault","url":"https://independent.academia.edu/JoelTetreault"},"attachments":[{"id":46809869,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809869/thumbnails/1.jpg","file_name":"eacl06-2.pdf","download_url":"https://www.academia.edu/attachments/46809869/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Using_Reinforcement_Learning_to_Build_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809869/eacl06-2-libre.pdf?1466965840=\u0026response-content-disposition=attachment%3B+filename%3DUsing_Reinforcement_Learning_to_Build_a.pdf\u0026Expires=1732459638\u0026Signature=XrR83wvOBactYSv7jZDbig9TRu4HiAYR9VCbv0mzW4wNT6grdDISJE0LDMeuZphhpppA5grzuwbxI9CnmUYDZmDQs1ex4LvKnGAn2EvoH7wuQFTmPOopaUB1whirfvLRX0zTixqdIzY6fRsCn6-NNa~0b3ReYAbJzRiHgmwmdBts1Z2670sdIE8HHhIQi74ONEWPeZNFxMyNsA05oTgzUEo3Ouf3hlpPlqvfFh5Ll7dJes5YID5RjMb-9g3-5Gb4zdFZ7uZph5xOvqiyA7bzx-5QZ15r4eDbYnl2qqjvDi4GS4QRXBkdtRZm4pTHOALdWx2fj-FQN74YmGubsgEVUQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":1688,"name":"Reinforcement Learning","url":"https://www.academia.edu/Documents/in/Reinforcement_Learning"},{"id":97847,"name":"Spoken Dialogue System","url":"https://www.academia.edu/Documents/in/Spoken_Dialogue_System"},{"id":201147,"name":"Tutoring System","url":"https://www.academia.edu/Documents/in/Tutoring_System"}],"urls":[{"id":7253718,"url":"http://acl.ldc.upenn.edu/e/e06/e06-1037.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="26513521"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/26513521/Using_Entity_Based_Features_to_Model_Coherence_in_Student_Essays"><img alt="Research paper thumbnail of Using Entity-Based Features to Model Coherence in Student Essays" class="work-thumbnail" src="https://attachments.academia-assets.com/46809871/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/26513521/Using_Entity_Based_Features_to_Model_Coherence_in_Student_Essays">Using Entity-Based Features to Model Coherence in Student Essays</a></div><div class="wp-workCard_item"><span>Naacl</span><span>, 2010</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2f10efe27cedf9ffe88cd4e969a87c64" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:46809871,&quot;asset_id&quot;:26513521,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/46809871/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="26513521"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="26513521"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 26513521; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=26513521]").text(description); $(".js-view-count[data-work-id=26513521]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 26513521; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='26513521']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 26513521, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2f10efe27cedf9ffe88cd4e969a87c64" } } $('.js-work-strip[data-work-id=26513521]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":26513521,"title":"Using Entity-Based Features to Model Coherence in Student Essays","translated_title":"","metadata":{"grobid_abstract":"We show how the Barzilay and Lapata entitybased coherence algorithm (2008) can be applied to a new, noisy data domainstudent essays. We demonstrate that by combining Barzilay and Lapata's entity-based features with novel features related to grammar errors and word usage, one can greatly improve the performance of automated coherence prediction for student essays for different populations.","publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"publication_name":"Naacl","grobid_abstract_attachment_id":46809871},"translated_abstract":null,"internal_url":"https://www.academia.edu/26513521/Using_Entity_Based_Features_to_Model_Coherence_in_Student_Essays","translated_internal_url":"","created_at":"2016-06-26T11:24:31.491-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":50446196,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":46809871,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809871/thumbnails/1.jpg","file_name":"BTA-naacl10-final-submission.pdf","download_url":"https://www.academia.edu/attachments/46809871/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Using_Entity_Based_Features_to_Model_Coh.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809871/BTA-naacl10-final-submission-libre.pdf?1466965841=\u0026response-content-disposition=attachment%3B+filename%3DUsing_Entity_Based_Features_to_Model_Coh.pdf\u0026Expires=1732459638\u0026Signature=Ye7maygYclIaaCnXZDmGj7NrEfzSeKKslkxhW5mkqA3aE910-OAL1q9R~GQs~FT1xmG3fglu4y7zdxsRa69LciVYAGN~vTJt6Z2r-3uyGNNQfPCfch8JCM316C8Mf1RBPkv-VaurSWEYCH0wuV8dLXm0ykKJeruQZ8xlUtTeEahPhJdCqCDvjziEEz~YbW0REIfNzMX-IgVkOdlityCZHp5d4~jEbD-J7pLSbipSnTqhyz2b4K6E~vdf8B0AA1tK-zD3gBRHh27t0d5LRbR7YaM0wApFLMzZF1aUkHJtrPFvqSlpF9GUu3jTD5X8CS9DEJm3JLDVrBhxvCe9DTmRuw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Using_Entity_Based_Features_to_Model_Coherence_in_Student_Essays","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":50446196,"first_name":"Joel","middle_initials":null,"last_name":"Tetreault","page_name":"JoelTetreault","domain_name":"independent","created_at":"2016-06-25T07:02:03.031-07:00","display_name":"Joel Tetreault","url":"https://independent.academia.edu/JoelTetreault"},"attachments":[{"id":46809871,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809871/thumbnails/1.jpg","file_name":"BTA-naacl10-final-submission.pdf","download_url":"https://www.academia.edu/attachments/46809871/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Using_Entity_Based_Features_to_Model_Coh.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809871/BTA-naacl10-final-submission-libre.pdf?1466965841=\u0026response-content-disposition=attachment%3B+filename%3DUsing_Entity_Based_Features_to_Model_Coh.pdf\u0026Expires=1732459638\u0026Signature=Ye7maygYclIaaCnXZDmGj7NrEfzSeKKslkxhW5mkqA3aE910-OAL1q9R~GQs~FT1xmG3fglu4y7zdxsRa69LciVYAGN~vTJt6Z2r-3uyGNNQfPCfch8JCM316C8Mf1RBPkv-VaurSWEYCH0wuV8dLXm0ykKJeruQZ8xlUtTeEahPhJdCqCDvjziEEz~YbW0REIfNzMX-IgVkOdlityCZHp5d4~jEbD-J7pLSbipSnTqhyz2b4K6E~vdf8B0AA1tK-zD3gBRHh27t0d5LRbR7YaM0wApFLMzZF1aUkHJtrPFvqSlpF9GUu3jTD5X8CS9DEJm3JLDVrBhxvCe9DTmRuw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":7253717,"url":"http://aclweb.org/anthology/n10-1099"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="26513520"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/26513520/Computer_Implemented_Systems_and_Methods_for_Detection_of_Sentiment_in_Writing"><img alt="Research paper thumbnail of Computer-Implemented Systems and Methods for Detection of Sentiment in Writing" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/26513520/Computer_Implemented_Systems_and_Methods_for_Detection_of_Sentiment_in_Writing">Computer-Implemented Systems and Methods for Detection of Sentiment in Writing</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="26513520"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="26513520"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 26513520; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=26513520]").text(description); $(".js-view-count[data-work-id=26513520]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 26513520; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='26513520']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 26513520, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=26513520]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":26513520,"title":"Computer-Implemented Systems and Methods for Detection of Sentiment in Writing","translated_title":"","metadata":{"publication_date":{"day":25,"month":4,"year":2013,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/26513520/Computer_Implemented_Systems_and_Methods_for_Detection_of_Sentiment_in_Writing","translated_internal_url":"","created_at":"2016-06-26T11:24:31.066-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":50446196,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Computer_Implemented_Systems_and_Methods_for_Detection_of_Sentiment_in_Writing","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":50446196,"first_name":"Joel","middle_initials":null,"last_name":"Tetreault","page_name":"JoelTetreault","domain_name":"independent","created_at":"2016-06-25T07:02:03.031-07:00","display_name":"Joel Tetreault","url":"https://independent.academia.edu/JoelTetreault"},"attachments":[],"research_interests":[],"urls":[{"id":7253716,"url":"http://www.freepatentsonline.com/y2013/0103623.html"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="5428461" id="papers"><div class="js-work-strip profile--work_container" data-work-id="26513540"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/26513540/Re_examining_machine_translation_metrics_for_paraphrase_identification"><img alt="Research paper thumbnail of Re-examining machine translation metrics for paraphrase identification" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/26513540/Re_examining_machine_translation_metrics_for_paraphrase_identification">Re-examining machine translation metrics for paraphrase identification</a></div><div class="wp-workCard_item"><span>Proceedings of the 2012 Conference of the North American Chapter of the Association For Computational Linguistics Human Language Technologies</span><span>, Jun 3, 2012</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract We propose to re-examine the hypothesis that automated metrics developed for MT evaluati...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract We propose to re-examine the hypothesis that automated metrics developed for MT evaluation can prove useful for paraphrase identification in light of the significant work on the development of new MT metrics over the last 4 years. We show that a meta-classifier trained using nothing but recent MT metrics outperforms all previous paraphrase identification approaches on the Microsoft Research Paraphrase corpus. In addition, we apply our system to a second corpus developed for the task of plagiarism detection and ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="26513540"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="26513540"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 26513540; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=26513540]").text(description); $(".js-view-count[data-work-id=26513540]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 26513540; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='26513540']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 26513540, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=26513540]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":26513540,"title":"Re-examining machine translation metrics for paraphrase identification","translated_title":"","metadata":{"abstract":"Abstract We propose to re-examine the hypothesis that automated metrics developed for MT evaluation can prove useful for paraphrase identification in light of the significant work on the development of new MT metrics over the last 4 years. We show that a meta-classifier trained using nothing but recent MT metrics outperforms all previous paraphrase identification approaches on the Microsoft Research Paraphrase corpus. In addition, we apply our system to a second corpus developed for the task of plagiarism detection and ...","publication_date":{"day":3,"month":6,"year":2012,"errors":{}},"publication_name":"Proceedings of the 2012 Conference of the North American Chapter of the Association For Computational Linguistics Human Language Technologies"},"translated_abstract":"Abstract We propose to re-examine the hypothesis that automated metrics developed for MT evaluation can prove useful for paraphrase identification in light of the significant work on the development of new MT metrics over the last 4 years. We show that a meta-classifier trained using nothing but recent MT metrics outperforms all previous paraphrase identification approaches on the Microsoft Research Paraphrase corpus. In addition, we apply our system to a second corpus developed for the task of plagiarism detection and ...","internal_url":"https://www.academia.edu/26513540/Re_examining_machine_translation_metrics_for_paraphrase_identification","translated_internal_url":"","created_at":"2016-06-26T11:24:37.496-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":50446196,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Re_examining_machine_translation_metrics_for_paraphrase_identification","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":50446196,"first_name":"Joel","middle_initials":null,"last_name":"Tetreault","page_name":"JoelTetreault","domain_name":"independent","created_at":"2016-06-25T07:02:03.031-07:00","display_name":"Joel Tetreault","url":"https://independent.academia.edu/JoelTetreault"},"attachments":[],"research_interests":[{"id":4696,"name":"Machine Translation","url":"https://www.academia.edu/Documents/in/Machine_Translation"}],"urls":[{"id":7253734,"url":"http://dl.acm.org/citation.cfm?id=2382055"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="26513539"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/26513539/Rethinking_grammatical_error_annotation_and_evaluation_with_the_Amazon_Mechanical_Turk"><img alt="Research paper thumbnail of Rethinking grammatical error annotation and evaluation with the Amazon Mechanical Turk" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/26513539/Rethinking_grammatical_error_annotation_and_evaluation_with_the_Amazon_Mechanical_Turk">Rethinking grammatical error annotation and evaluation with the Amazon Mechanical Turk</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract In this paper we present results from two pilot studies which show that using the Amazon...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract In this paper we present results from two pilot studies which show that using the Amazon Mechanical Turk for preposition error annotation is as effective as using trained raters, but at a fraction of the time and cost. Based on these results, we propose a new evaluation method which makes it feasible to compare two error detection systems tested on different learner data sets.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="26513539"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="26513539"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 26513539; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=26513539]").text(description); $(".js-view-count[data-work-id=26513539]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 26513539; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='26513539']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 26513539, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=26513539]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":26513539,"title":"Rethinking grammatical error annotation and evaluation with the Amazon Mechanical Turk","translated_title":"","metadata":{"abstract":"Abstract In this paper we present results from two pilot studies which show that using the Amazon Mechanical Turk for preposition error annotation is as effective as using trained raters, but at a fraction of the time and cost. Based on these results, we propose a new evaluation method which makes it feasible to compare two error detection systems tested on different learner data sets.","publication_date":{"day":null,"month":null,"year":2010,"errors":{}}},"translated_abstract":"Abstract In this paper we present results from two pilot studies which show that using the Amazon Mechanical Turk for preposition error annotation is as effective as using trained raters, but at a fraction of the time and cost. Based on these results, we propose a new evaluation method which makes it feasible to compare two error detection systems tested on different learner data sets.","internal_url":"https://www.academia.edu/26513539/Rethinking_grammatical_error_annotation_and_evaluation_with_the_Amazon_Mechanical_Turk","translated_internal_url":"","created_at":"2016-06-26T11:24:37.289-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":50446196,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Rethinking_grammatical_error_annotation_and_evaluation_with_the_Amazon_Mechanical_Turk","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":50446196,"first_name":"Joel","middle_initials":null,"last_name":"Tetreault","page_name":"JoelTetreault","domain_name":"independent","created_at":"2016-06-25T07:02:03.031-07:00","display_name":"Joel Tetreault","url":"https://independent.academia.edu/JoelTetreault"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="26513538"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/26513538/Towards_using_structural_events_to_assess_non_native_speech"><img alt="Research paper thumbnail of Towards using structural events to assess non-native speech" class="work-thumbnail" src="https://attachments.academia-assets.com/46809878/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/26513538/Towards_using_structural_events_to_assess_non_native_speech">Towards using structural events to assess non-native speech</a></div><div class="wp-workCard_item"><span>Proceedings of the Naacl Hlt 2010 Fifth Workshop on Innovative Use of Nlp For Building Educational Applications</span><span>, Jun 5, 2010</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c4cbee7c5d2a9b0929bcd9d8948fd0ad" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:46809878,&quot;asset_id&quot;:26513538,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/46809878/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="26513538"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="26513538"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 26513538; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=26513538]").text(description); $(".js-view-count[data-work-id=26513538]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 26513538; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='26513538']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 26513538, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c4cbee7c5d2a9b0929bcd9d8948fd0ad" } } $('.js-work-strip[data-work-id=26513538]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":26513538,"title":"Towards using structural events to assess non-native speech","translated_title":"","metadata":{"grobid_abstract":"We investigated using structural events, e.g., clause and disfluency structure, from transcriptions of spontaneous non-native speech, to compute features for measuring speaking proficiency. Using a set of transcribed audio files collected from the TOEFL Practice Test Online (TPO), we conducted a sophisticated annotation of structural events, including clause boundaries and types, as well as disfluencies. Based on words and the annotated structural events, we extracted features related to syntactic complexity, e.g., the mean length of clause (MLC) and dependent clause frequency (DEPC), and a feature related to disfluencies, the interruption point frequency per clause (IPC). Among these features, the IPC shows the highest correlation with holistic scores (r = −0.344). Furthermore, we increased the correlation with human scores by normalizing IPC by (1) MLC (r = −0.386), (2) DEPC (r = −0.429), and (3) both (r = −0.462). In this research, the features derived from structural events of speech transcriptions are found to predict holistic scores measuring speaking proficiency. This suggests that structural events estimated on speech word strings provide a potential way for assessing nonnative speech.","publication_date":{"day":5,"month":6,"year":2010,"errors":{}},"publication_name":"Proceedings of the Naacl Hlt 2010 Fifth Workshop on Innovative Use of Nlp For Building Educational Applications","grobid_abstract_attachment_id":46809878},"translated_abstract":null,"internal_url":"https://www.academia.edu/26513538/Towards_using_structural_events_to_assess_non_native_speech","translated_internal_url":"","created_at":"2016-06-26T11:24:36.993-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":50446196,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":46809878,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809878/thumbnails/1.jpg","file_name":"Towards_using_structural_events_to_asses20160626-13920-1obzq3h.pdf","download_url":"https://www.academia.edu/attachments/46809878/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Towards_using_structural_events_to_asses.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809878/Towards_using_structural_events_to_asses20160626-13920-1obzq3h-libre.pdf?1466965839=\u0026response-content-disposition=attachment%3B+filename%3DTowards_using_structural_events_to_asses.pdf\u0026Expires=1732459637\u0026Signature=OS-2e3sajNzmYIo0QuqgIbsSRLHxmo1odWzYWsUB-wVvfwfGq8Hv4NNCjzSwC46fEUxX5uCrVJZmTj1gx3I6SDfprjMx~lr1b1qELFWkSG8YG2D-JRan-AczpVxegkDqiHulS7vi22mjeEOC3J51p6ThGIPzt0zm-Aqp4oMC5r-YRMwx9TAKsETmLVEZVqshg-qRY~CZ4y6PPoFES2YBHZTnsJJEb9Jgxf9E6dgdIPQEVdMJlUkS0e5oaij4Wcg4~dIFA7-LYJofFBOAm9UzlP92X76OUtYjbpGvN~V-gaj8fPxigi0Am~bRJPgzG1baCMelnIDAADVJbEiklPevcA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Towards_using_structural_events_to_assess_non_native_speech","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":50446196,"first_name":"Joel","middle_initials":null,"last_name":"Tetreault","page_name":"JoelTetreault","domain_name":"independent","created_at":"2016-06-25T07:02:03.031-07:00","display_name":"Joel Tetreault","url":"https://independent.academia.edu/JoelTetreault"},"attachments":[{"id":46809878,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809878/thumbnails/1.jpg","file_name":"Towards_using_structural_events_to_asses20160626-13920-1obzq3h.pdf","download_url":"https://www.academia.edu/attachments/46809878/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Towards_using_structural_events_to_asses.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809878/Towards_using_structural_events_to_asses20160626-13920-1obzq3h-libre.pdf?1466965839=\u0026response-content-disposition=attachment%3B+filename%3DTowards_using_structural_events_to_asses.pdf\u0026Expires=1732459637\u0026Signature=OS-2e3sajNzmYIo0QuqgIbsSRLHxmo1odWzYWsUB-wVvfwfGq8Hv4NNCjzSwC46fEUxX5uCrVJZmTj1gx3I6SDfprjMx~lr1b1qELFWkSG8YG2D-JRan-AczpVxegkDqiHulS7vi22mjeEOC3J51p6ThGIPzt0zm-Aqp4oMC5r-YRMwx9TAKsETmLVEZVqshg-qRY~CZ4y6PPoFES2YBHZTnsJJEb9Jgxf9E6dgdIPQEVdMJlUkS0e5oaij4Wcg4~dIFA7-LYJofFBOAm9UzlP92X76OUtYjbpGvN~V-gaj8fPxigi0Am~bRJPgzG1baCMelnIDAADVJbEiklPevcA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":7253733,"url":"http://dl.acm.org/citation.cfm?id=1866805"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="26513537"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/26513537/Exploring_grammatical_error_correction_with_not_so_crummy_machine_translation"><img alt="Research paper thumbnail of Exploring grammatical error correction with not-so-crummy machine translation" class="work-thumbnail" src="https://attachments.academia-assets.com/46809877/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/26513537/Exploring_grammatical_error_correction_with_not_so_crummy_machine_translation">Exploring grammatical error correction with not-so-crummy machine translation</a></div><div class="wp-workCard_item"><span>Proceedings of the Seventh Workshop on Building Educational Applications Using Nlp</span><span>, Jun 7, 2012</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9f055bfc4cf0befc7c8dac070a6dba27" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:46809877,&quot;asset_id&quot;:26513537,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/46809877/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="26513537"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="26513537"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 26513537; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=26513537]").text(description); $(".js-view-count[data-work-id=26513537]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 26513537; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='26513537']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 26513537, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9f055bfc4cf0befc7c8dac070a6dba27" } } $('.js-work-strip[data-work-id=26513537]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":26513537,"title":"Exploring grammatical error correction with not-so-crummy machine translation","translated_title":"","metadata":{"grobid_abstract":"To date, most work in grammatical error correction has focused on targeting specific error types. We present a probe study into whether we can use round-trip translations obtained from Google Translate via 8 different pivot languages for whole-sentence grammatical error correction. We develop a novel alignment algorithm for combining multiple round-trip translations into a lattice using the TERp machine translation metric. We further implement six different methods for extracting whole-sentence corrections from the lattice. Our preliminary experiments yield fairly satisfactory results but leave significant room for improvement. Most importantly, though, they make it clear the methods we propose have strong potential and require further study.","publication_date":{"day":7,"month":6,"year":2012,"errors":{}},"publication_name":"Proceedings of the Seventh Workshop on Building Educational Applications Using Nlp","grobid_abstract_attachment_id":46809877},"translated_abstract":null,"internal_url":"https://www.academia.edu/26513537/Exploring_grammatical_error_correction_with_not_so_crummy_machine_translation","translated_internal_url":"","created_at":"2016-06-26T11:24:36.702-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":50446196,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":46809877,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809877/thumbnails/1.jpg","file_name":"Exploring_Grammatical_Error_Correction_w20160626-24799-1mp2chk.pdf","download_url":"https://www.academia.edu/attachments/46809877/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Exploring_grammatical_error_correction_w.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809877/Exploring_Grammatical_Error_Correction_w20160626-24799-1mp2chk-libre.pdf?1466965841=\u0026response-content-disposition=attachment%3B+filename%3DExploring_grammatical_error_correction_w.pdf\u0026Expires=1732459637\u0026Signature=BBwK1Wf6lhPE9Fnn1Aab3ZUeLprlKpyT96KtOkNRXlgQAvsEJX6iAEhbJ2oXKoAhsAFLsNmfaAO-BlNVuo1fxpqyvD-D4vlA-bbshAk758CvhmUByXrmRpj0qXsBq-V0K-hZp6Ofh5080FfE271SDXHpFXVXD6UIUriZuShBG0dB8hoJUzERB~Yz-~XYaO~sUIAQkmjPIs~aT5K0XK47ID6ncPPA3tT40UAWYXm6gCRX7N5LuobZzsVc2YnCuXOkz731OnniIybznOyDzMD6x1U~r5-bwph3iiYsQwkpAjoTbsdU333ldvMY3Wu7PXIEnzg~aUEUshJKcAbHYLGdIg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Exploring_grammatical_error_correction_with_not_so_crummy_machine_translation","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":50446196,"first_name":"Joel","middle_initials":null,"last_name":"Tetreault","page_name":"JoelTetreault","domain_name":"independent","created_at":"2016-06-25T07:02:03.031-07:00","display_name":"Joel Tetreault","url":"https://independent.academia.edu/JoelTetreault"},"attachments":[{"id":46809877,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809877/thumbnails/1.jpg","file_name":"Exploring_Grammatical_Error_Correction_w20160626-24799-1mp2chk.pdf","download_url":"https://www.academia.edu/attachments/46809877/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Exploring_grammatical_error_correction_w.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809877/Exploring_Grammatical_Error_Correction_w20160626-24799-1mp2chk-libre.pdf?1466965841=\u0026response-content-disposition=attachment%3B+filename%3DExploring_grammatical_error_correction_w.pdf\u0026Expires=1732459637\u0026Signature=BBwK1Wf6lhPE9Fnn1Aab3ZUeLprlKpyT96KtOkNRXlgQAvsEJX6iAEhbJ2oXKoAhsAFLsNmfaAO-BlNVuo1fxpqyvD-D4vlA-bbshAk758CvhmUByXrmRpj0qXsBq-V0K-hZp6Ofh5080FfE271SDXHpFXVXD6UIUriZuShBG0dB8hoJUzERB~Yz-~XYaO~sUIAQkmjPIs~aT5K0XK47ID6ncPPA3tT40UAWYXm6gCRX7N5LuobZzsVc2YnCuXOkz731OnniIybznOyDzMD6x1U~r5-bwph3iiYsQwkpAjoTbsdU333ldvMY3Wu7PXIEnzg~aUEUshJKcAbHYLGdIg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":4696,"name":"Machine Translation","url":"https://www.academia.edu/Documents/in/Machine_Translation"},{"id":182415,"name":"Error Correction","url":"https://www.academia.edu/Documents/in/Error_Correction"}],"urls":[{"id":7253732,"url":"http://dl.acm.org/citation.cfm?id=2390389"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="26513536"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/26513536/Human_Evaluation_of_Article_and_Noun_Number_Usage_Influences_of_Context_and_Construction_Variability"><img alt="Research paper thumbnail of Human Evaluation of Article and Noun Number Usage: Influences of Context and Construction Variability" class="work-thumbnail" src="https://attachments.academia-assets.com/46809886/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/26513536/Human_Evaluation_of_Article_and_Noun_Number_Usage_Influences_of_Context_and_Construction_Variability">Human Evaluation of Article and Noun Number Usage: Influences of Context and Construction Variability</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ef18e493d33d72faf8fee65ba2c20de5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:46809886,&quot;asset_id&quot;:26513536,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/46809886/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="26513536"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="26513536"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 26513536; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=26513536]").text(description); $(".js-view-count[data-work-id=26513536]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 26513536; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='26513536']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 26513536, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ef18e493d33d72faf8fee65ba2c20de5" } } $('.js-work-strip[data-work-id=26513536]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":26513536,"title":"Human Evaluation of Article and Noun Number Usage: Influences of Context and Construction Variability","translated_title":"","metadata":{"grobid_abstract":"Evaluating systems that correct errors in non-native writing is difficult because of the possibility of multiple correct answers and the variability in human agreement. This paper seeks to improve the best practice of such evaluation by analyzing the frequency of multiple correct answers and identifying factors that influence agreement levels in judging the usage of articles and noun number.","publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"grobid_abstract_attachment_id":46809886},"translated_abstract":null,"internal_url":"https://www.academia.edu/26513536/Human_Evaluation_of_Article_and_Noun_Number_Usage_Influences_of_Context_and_Construction_Variability","translated_internal_url":"","created_at":"2016-06-26T11:24:36.415-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":50446196,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":46809886,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809886/thumbnails/1.jpg","file_name":"W09-3010.pdf","download_url":"https://www.academia.edu/attachments/46809886/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Human_Evaluation_of_Article_and_Noun_Num.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809886/W09-3010-libre.pdf?1466965839=\u0026response-content-disposition=attachment%3B+filename%3DHuman_Evaluation_of_Article_and_Noun_Num.pdf\u0026Expires=1732459637\u0026Signature=YMzCfxW3q-rY5QbgSRuY9M0Sk~Fyw~VyMoOfsKyE6sH1e7ADGwZI5xJsxoiWsoptWeRQdlJ4E-mV6Jb3oU1eE6AplPwfSw6oHes7IfQYpCwXsfpP3Q-HtBvYe2ojpM-sVKdDu2wMG7FbUI4gmxA-stIZHamKNM6u4Tz2kcFfQjVIEEaUgcbZoQdhAlQPUnTOCWmsPHjzP18n-KkVWnOqiCjj8kWXtoeOzOtMVzUazAk9yAFgWHlJPzG0uvXfajwTSItaew2pfRCvraYvyI5p4L3edux85oOkCCtxgW7FGDZpIfQzOURPTKcko3hE24CbZjB4QxoPpX2PhUbyULyCrg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Human_Evaluation_of_Article_and_Noun_Number_Usage_Influences_of_Context_and_Construction_Variability","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":50446196,"first_name":"Joel","middle_initials":null,"last_name":"Tetreault","page_name":"JoelTetreault","domain_name":"independent","created_at":"2016-06-25T07:02:03.031-07:00","display_name":"Joel Tetreault","url":"https://independent.academia.edu/JoelTetreault"},"attachments":[{"id":46809886,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809886/thumbnails/1.jpg","file_name":"W09-3010.pdf","download_url":"https://www.academia.edu/attachments/46809886/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Human_Evaluation_of_Article_and_Noun_Num.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809886/W09-3010-libre.pdf?1466965839=\u0026response-content-disposition=attachment%3B+filename%3DHuman_Evaluation_of_Article_and_Noun_Num.pdf\u0026Expires=1732459637\u0026Signature=YMzCfxW3q-rY5QbgSRuY9M0Sk~Fyw~VyMoOfsKyE6sH1e7ADGwZI5xJsxoiWsoptWeRQdlJ4E-mV6Jb3oU1eE6AplPwfSw6oHes7IfQYpCwXsfpP3Q-HtBvYe2ojpM-sVKdDu2wMG7FbUI4gmxA-stIZHamKNM6u4Tz2kcFfQjVIEEaUgcbZoQdhAlQPUnTOCWmsPHjzP18n-KkVWnOqiCjj8kWXtoeOzOtMVzUazAk9yAFgWHlJPzG0uvXfajwTSItaew2pfRCvraYvyI5p4L3edux85oOkCCtxgW7FGDZpIfQzOURPTKcko3hE24CbZjB4QxoPpX2PhUbyULyCrg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":154527,"name":"Noun","url":"https://www.academia.edu/Documents/in/Noun"}],"urls":[{"id":7253731,"url":"http://aclweb.org/anthology-new/w/w09/w09-3010.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="26513535"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/26513535/System_and_Method_for_Identifying_Organizational_Elements_in_Argumentative_or_Persuasive_Discourse"><img alt="Research paper thumbnail of System and Method for Identifying Organizational Elements in Argumentative or Persuasive Discourse" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/26513535/System_and_Method_for_Identifying_Organizational_Elements_in_Argumentative_or_Persuasive_Discourse">System and Method for Identifying Organizational Elements in Argumentative or Persuasive Discourse</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="26513535"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="26513535"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 26513535; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=26513535]").text(description); $(".js-view-count[data-work-id=26513535]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 26513535; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='26513535']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 26513535, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=26513535]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":26513535,"title":"System and Method for Identifying Organizational Elements in Argumentative or Persuasive Discourse","translated_title":"","metadata":{"publication_date":{"day":11,"month":7,"year":2013,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/26513535/System_and_Method_for_Identifying_Organizational_Elements_in_Argumentative_or_Persuasive_Discourse","translated_internal_url":"","created_at":"2016-06-26T11:24:36.064-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":50446196,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"System_and_Method_for_Identifying_Organizational_Elements_in_Argumentative_or_Persuasive_Discourse","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":50446196,"first_name":"Joel","middle_initials":null,"last_name":"Tetreault","page_name":"JoelTetreault","domain_name":"independent","created_at":"2016-06-25T07:02:03.031-07:00","display_name":"Joel Tetreault","url":"https://independent.academia.edu/JoelTetreault"},"attachments":[],"research_interests":[],"urls":[{"id":7253730,"url":"http://www.freepatentsonline.com/y2013/0179766.html"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="26513534"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/26513534/Correcting_comma_errors_in_learner_essays_and_restoring_commas_in_newswire_text"><img alt="Research paper thumbnail of Correcting comma errors in learner essays, and restoring commas in newswire text" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/26513534/Correcting_comma_errors_in_learner_essays_and_restoring_commas_in_newswire_text">Correcting comma errors in learner essays, and restoring commas in newswire text</a></div><div class="wp-workCard_item"><span>Proceedings of the 2012 Conference of the North American Chapter of the Association For Computational Linguistics Human Language Technologies</span><span>, 2012</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract While the field of grammatical error detection has progressed over the past few years, o...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract While the field of grammatical error detection has progressed over the past few years, one area of particular difficulty for both native and non-native learners of English, comma placement, has been largely ignored. We present a system for comma error correction in English that achieves an average of 89% precision and 25% recall on two corpora of unedited student essays. This system also achieves state-of-theart performance in the sister task of restoring commas in well-formed text. For both tasks, we show that the ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="26513534"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="26513534"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 26513534; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=26513534]").text(description); $(".js-view-count[data-work-id=26513534]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 26513534; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='26513534']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 26513534, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=26513534]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":26513534,"title":"Correcting comma errors in learner essays, and restoring commas in newswire text","translated_title":"","metadata":{"abstract":"Abstract While the field of grammatical error detection has progressed over the past few years, one area of particular difficulty for both native and non-native learners of English, comma placement, has been largely ignored. We present a system for comma error correction in English that achieves an average of 89% precision and 25% recall on two corpora of unedited student essays. This system also achieves state-of-theart performance in the sister task of restoring commas in well-formed text. For both tasks, we show that the ...","publication_date":{"day":null,"month":null,"year":2012,"errors":{}},"publication_name":"Proceedings of the 2012 Conference of the North American Chapter of the Association For Computational Linguistics Human Language Technologies"},"translated_abstract":"Abstract While the field of grammatical error detection has progressed over the past few years, one area of particular difficulty for both native and non-native learners of English, comma placement, has been largely ignored. We present a system for comma error correction in English that achieves an average of 89% precision and 25% recall on two corpora of unedited student essays. This system also achieves state-of-theart performance in the sister task of restoring commas in well-formed text. For both tasks, we show that the ...","internal_url":"https://www.academia.edu/26513534/Correcting_comma_errors_in_learner_essays_and_restoring_commas_in_newswire_text","translated_internal_url":"","created_at":"2016-06-26T11:24:35.759-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":50446196,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Correcting_comma_errors_in_learner_essays_and_restoring_commas_in_newswire_text","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":50446196,"first_name":"Joel","middle_initials":null,"last_name":"Tetreault","page_name":"JoelTetreault","domain_name":"independent","created_at":"2016-06-25T07:02:03.031-07:00","display_name":"Joel Tetreault","url":"https://independent.academia.edu/JoelTetreault"},"attachments":[],"research_interests":[],"urls":[{"id":7253729,"url":"http://dl.acm.org/citation.cfm?id=2382065"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="26513533"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/26513533/Yara_Parser_A_Fast_and_Accurate_Dependency_Parser"><img alt="Research paper thumbnail of Yara Parser: A Fast and Accurate Dependency Parser" class="work-thumbnail" src="https://attachments.academia-assets.com/46809821/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/26513533/Yara_Parser_A_Fast_and_Accurate_Dependency_Parser">Yara Parser: A Fast and Accurate Dependency Parser</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="96ef13417d2030185771743f78211e89" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:46809821,&quot;asset_id&quot;:26513533,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/46809821/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="26513533"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="26513533"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 26513533; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=26513533]").text(description); $(".js-view-count[data-work-id=26513533]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 26513533; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='26513533']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 26513533, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "96ef13417d2030185771743f78211e89" } } $('.js-work-strip[data-work-id=26513533]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":26513533,"title":"Yara Parser: A Fast and Accurate Dependency Parser","translated_title":"","metadata":{"grobid_abstract":"Dependency parsers are among the most crucial tools in natural language processing as they have many important applications in downstream tasks such as information retrieval, machine translation and knowledge acquisition. We introduce the Yara Parser, a fast and accurate open-source dependency parser based on the arc-eager algorithm and beam search. It achieves an unlabeled accuracy of 93.32 on the standard WSJ test set which ranks it among the top dependency parsers. At its fastest, Yara can parse about 4000 sentences per second when in greedy mode (1 beam). When optimizing for accuracy (using 64 beams and Brown cluster features), Yara can parse 45 sentences per second. The parser can be trained on any syntactic dependency treebank and different options are provided in order to make it more flexible and tunable for specific tasks. It is released with the Apache version 2.0 license and can be used for both commercial and academic purposes. The parser can be found at https: //github.com/yahoo/YaraParser.","publication_date":{"day":23,"month":3,"year":2015,"errors":{}},"grobid_abstract_attachment_id":46809821},"translated_abstract":null,"internal_url":"https://www.academia.edu/26513533/Yara_Parser_A_Fast_and_Accurate_Dependency_Parser","translated_internal_url":"","created_at":"2016-06-26T11:24:35.460-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":50446196,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":46809821,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809821/thumbnails/1.jpg","file_name":"1503.06733.pdf","download_url":"https://www.academia.edu/attachments/46809821/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Yara_Parser_A_Fast_and_Accurate_Dependen.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809821/1503.06733-libre.pdf?1466965845=\u0026response-content-disposition=attachment%3B+filename%3DYara_Parser_A_Fast_and_Accurate_Dependen.pdf\u0026Expires=1732459637\u0026Signature=MYDAW2vvWwZMPcQREo7U~QIWEzDLn0uaYxuRiwq4JRn4CcFtXqrHcuPgT776LMEcwrpPA~qeX67KFd57wy0FNGx577ART1QCZMkmb3n2TIlbhPNxfFkvxs07A7qUckiT8RzJoOLY5gFFGT8o4wZiwLOj~CKOZFk4iBsQbo3~T9FOYE9vUz7JMhop6owWtXENqOjrL5N~8cBEC06Pm-RYtPlN1~A-QLLurAHnYIB4uEogOE-7Orp8AfaLJyTE7fS4GL1ux1hTreZTqChajJvj-ilHMlF4KK9MgZgVtLnHw5pwMg1vQE-00dU0eEtOIxH9Qhir6jo1dv0PWMyN9he3GQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Yara_Parser_A_Fast_and_Accurate_Dependency_Parser","translated_slug":"","page_count":14,"language":"en","content_type":"Work","owner":{"id":50446196,"first_name":"Joel","middle_initials":null,"last_name":"Tetreault","page_name":"JoelTetreault","domain_name":"independent","created_at":"2016-06-25T07:02:03.031-07:00","display_name":"Joel Tetreault","url":"https://independent.academia.edu/JoelTetreault"},"attachments":[{"id":46809821,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809821/thumbnails/1.jpg","file_name":"1503.06733.pdf","download_url":"https://www.academia.edu/attachments/46809821/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Yara_Parser_A_Fast_and_Accurate_Dependen.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809821/1503.06733-libre.pdf?1466965845=\u0026response-content-disposition=attachment%3B+filename%3DYara_Parser_A_Fast_and_Accurate_Dependen.pdf\u0026Expires=1732459638\u0026Signature=axcw0--Zz2mY0sW-hF-eRHfOuj8s-wI2TZXwD71Jf0XO4RICrIILkveW2GUnEKo2tV4ArzfKHNriehGRjktV-bSmbhh5PKtNMfJ0QA9FX0-oC38~23Agq96FkqZf8FlJUx9gFRn-8cbaLMM-cN~VfDD1WaXAgGgmVMoXpICsGUSasOzSnIECRT1ZehV8v972S0PnleVZtZFsBV8~SGbdigWvZYVTVMOj3n1TftxEAkPlL1FTt9RUwu~kc5Ml7KMPhuTg8B2m9QbY0P1UggI2HJZCVtA-d4qjhHpkL4fXRVmSL-bW5CBvMPBZmF~XLiDoRl1cT-lEvodj0xqwH30G1A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":7253728,"url":"http://arxiv.org/abs/1503.06733"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="26513532"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/26513532/Exploiting_syntactic_and_distributional_information_for_spelling_correction_with_web_scale_n_gram_models"><img alt="Research paper thumbnail of Exploiting syntactic and distributional information for spelling correction with web-scale n-gram models" class="work-thumbnail" src="https://attachments.academia-assets.com/46809875/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/26513532/Exploiting_syntactic_and_distributional_information_for_spelling_correction_with_web_scale_n_gram_models">Exploiting syntactic and distributional information for spelling correction with web-scale n-gram models</a></div><div class="wp-workCard_item"><span>Proceedings of the Conference on Empirical Methods in Natural Language Processing</span><span>, 2011</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="cc2cb6ca11b1775818791e4ff9074e99" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:46809875,&quot;asset_id&quot;:26513532,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/46809875/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="26513532"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="26513532"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 26513532; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=26513532]").text(description); $(".js-view-count[data-work-id=26513532]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 26513532; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='26513532']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 26513532, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "cc2cb6ca11b1775818791e4ff9074e99" } } $('.js-work-strip[data-work-id=26513532]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":26513532,"title":"Exploiting syntactic and distributional information for spelling correction with web-scale n-gram models","translated_title":"","metadata":{"grobid_abstract":"We propose a novel way of incorporating dependency parse and word co-occurrence information into a state-of-the-art web-scale ngram model for spelling correction. The syntactic and distributional information provides extra evidence in addition to that provided by a web-scale n-gram corpus and especially helps with data sparsity problems. Experimental results show that introducing syntactic features into n-gram based models significantly reduces errors by up to 12.4% over the current state-of-the-art. The word co-occurrence information shows potential but only improves overall accuracy slightly.","publication_date":{"day":null,"month":null,"year":2011,"errors":{}},"publication_name":"Proceedings of the Conference on Empirical Methods in Natural Language Processing","grobid_abstract_attachment_id":46809875},"translated_abstract":null,"internal_url":"https://www.academia.edu/26513532/Exploiting_syntactic_and_distributional_information_for_spelling_correction_with_web_scale_n_gram_models","translated_internal_url":"","created_at":"2016-06-26T11:24:35.107-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":50446196,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":46809875,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809875/thumbnails/1.jpg","file_name":"D11-1119.pdf","download_url":"https://www.academia.edu/attachments/46809875/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Exploiting_syntactic_and_distributional.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809875/D11-1119-libre.pdf?1466965840=\u0026response-content-disposition=attachment%3B+filename%3DExploiting_syntactic_and_distributional.pdf\u0026Expires=1732459638\u0026Signature=eKXsOgZ8RlYrpG~PhOAXvF7u9Tb3H1AV1yJseaV08a2PdT~N6hmfzh9Xntf8Ih2LqOQ4U4Mi~pLIq~rmKnJy~g2j34bG8U~9umcO8dZ5Tkdm8JMvxBSbu6mKWPUfrTUxkPl7XZPmIE0r8VEvyMVjNmIa9o8F7LJCUcyMOPOp-gpT5rdTPe5ZoFX0OwYv9txQpfcjSbw45uoWsv3j0Qp2bk11nYGEvRESxbA-yirI~6~5ZvcTkKJxSvHp5anND86p6vwCpH2heQoohE-kK3dYgxr6wzz31nn7QzC7XyIyktAnw13rJKN6vEYpO6REAWBW7UvxZZRlKSvWFiAzus07LA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Exploiting_syntactic_and_distributional_information_for_spelling_correction_with_web_scale_n_gram_models","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":50446196,"first_name":"Joel","middle_initials":null,"last_name":"Tetreault","page_name":"JoelTetreault","domain_name":"independent","created_at":"2016-06-25T07:02:03.031-07:00","display_name":"Joel Tetreault","url":"https://independent.academia.edu/JoelTetreault"},"attachments":[{"id":46809875,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809875/thumbnails/1.jpg","file_name":"D11-1119.pdf","download_url":"https://www.academia.edu/attachments/46809875/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Exploiting_syntactic_and_distributional.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809875/D11-1119-libre.pdf?1466965840=\u0026response-content-disposition=attachment%3B+filename%3DExploiting_syntactic_and_distributional.pdf\u0026Expires=1732459638\u0026Signature=eKXsOgZ8RlYrpG~PhOAXvF7u9Tb3H1AV1yJseaV08a2PdT~N6hmfzh9Xntf8Ih2LqOQ4U4Mi~pLIq~rmKnJy~g2j34bG8U~9umcO8dZ5Tkdm8JMvxBSbu6mKWPUfrTUxkPl7XZPmIE0r8VEvyMVjNmIa9o8F7LJCUcyMOPOp-gpT5rdTPe5ZoFX0OwYv9txQpfcjSbw45uoWsv3j0Qp2bk11nYGEvRESxbA-yirI~6~5ZvcTkKJxSvHp5anND86p6vwCpH2heQoohE-kK3dYgxr6wzz31nn7QzC7XyIyktAnw13rJKN6vEYpO6REAWBW7UvxZZRlKSvWFiAzus07LA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":7253727,"url":"http://dl.acm.org/citation.cfm?id=2145567"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="26513531"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/26513531/Estimating_the_Reliability_of_MDP_Policies_a_Confidence_Interval_Approach"><img alt="Research paper thumbnail of Estimating the Reliability of MDP Policies: a Confidence Interval Approach" class="work-thumbnail" src="https://attachments.academia-assets.com/46809876/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/26513531/Estimating_the_Reliability_of_MDP_Policies_a_Confidence_Interval_Approach">Estimating the Reliability of MDP Policies: a Confidence Interval Approach</a></div><div class="wp-workCard_item"><span>Naacl</span><span>, 2007</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7b27d2027a4b304ca98e72627acd6b0e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:46809876,&quot;asset_id&quot;:26513531,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/46809876/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="26513531"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="26513531"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 26513531; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=26513531]").text(description); $(".js-view-count[data-work-id=26513531]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 26513531; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='26513531']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 26513531, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7b27d2027a4b304ca98e72627acd6b0e" } } $('.js-work-strip[data-work-id=26513531]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":26513531,"title":"Estimating the Reliability of MDP Policies: a Confidence Interval Approach","translated_title":"","metadata":{"grobid_abstract":"Past approaches for using reinforcement learning to derive dialog control policies have assumed that there was enough collected data to derive a reliable policy. In this paper we present a methodology for numerically constructing confidence intervals for the expected cumulative reward for a learned policy. These intervals are used to (1) better assess the reliability of the expected cumulative reward, and (2) perform a refined comparison between policies derived from different Markov Decision Processes (MDP) models. We applied this methodology to a prior experiment where the goal was to select the best features to include in the MDP statespace. Our results show that while some of the policies developed in the prior work exhibited very large confidence intervals, the policy developed from the best feature set had a much smaller confidence interval and thus showed very high reliability.","publication_date":{"day":null,"month":null,"year":2007,"errors":{}},"publication_name":"Naacl","grobid_abstract_attachment_id":46809876},"translated_abstract":null,"internal_url":"https://www.academia.edu/26513531/Estimating_the_Reliability_of_MDP_Policies_a_Confidence_Interval_Approach","translated_internal_url":"","created_at":"2016-06-26T11:24:34.773-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":50446196,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":46809876,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809876/thumbnails/1.jpg","file_name":"naacl07-confidence.pdf","download_url":"https://www.academia.edu/attachments/46809876/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Estimating_the_Reliability_of_MDP_Polici.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809876/naacl07-confidence-libre.pdf?1466965840=\u0026response-content-disposition=attachment%3B+filename%3DEstimating_the_Reliability_of_MDP_Polici.pdf\u0026Expires=1732459638\u0026Signature=f0XK7MwljXvZRmhHNfT1VraXpB5lu3Swg5B-K57mU0inNdn-46NjxC6traougCD9iFgMNTQSL-JCvHoQB1o73tfVAvZ6nN4YxPO8yNeTrbjcrKmCvGgyUa9bZx835WLa4XBZzNetw4ZaPrLC-LItxzY6qhtH8r3VxLlUQ~QIWlZNfMf51b4YJSM~5ykRxbHijBwvgm2vTj6bCuDOARBba7Fg5PoLZJHCjpv30gggjk76WlC0LfW-WUJ-km972UGx-K3uM3ZwphsPUxfI5j53mlFzu5hzaecgh3fUuezgsUS3HPulv5egvhmxdeWt6OE2H6XyzAUfWBW2BlOp6Y2G7g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Estimating_the_Reliability_of_MDP_Policies_a_Confidence_Interval_Approach","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":50446196,"first_name":"Joel","middle_initials":null,"last_name":"Tetreault","page_name":"JoelTetreault","domain_name":"independent","created_at":"2016-06-25T07:02:03.031-07:00","display_name":"Joel Tetreault","url":"https://independent.academia.edu/JoelTetreault"},"attachments":[{"id":46809876,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809876/thumbnails/1.jpg","file_name":"naacl07-confidence.pdf","download_url":"https://www.academia.edu/attachments/46809876/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Estimating_the_Reliability_of_MDP_Polici.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809876/naacl07-confidence-libre.pdf?1466965840=\u0026response-content-disposition=attachment%3B+filename%3DEstimating_the_Reliability_of_MDP_Polici.pdf\u0026Expires=1732459638\u0026Signature=f0XK7MwljXvZRmhHNfT1VraXpB5lu3Swg5B-K57mU0inNdn-46NjxC6traougCD9iFgMNTQSL-JCvHoQB1o73tfVAvZ6nN4YxPO8yNeTrbjcrKmCvGgyUa9bZx835WLa4XBZzNetw4ZaPrLC-LItxzY6qhtH8r3VxLlUQ~QIWlZNfMf51b4YJSM~5ykRxbHijBwvgm2vTj6bCuDOARBba7Fg5PoLZJHCjpv30gggjk76WlC0LfW-WUJ-km972UGx-K3uM3ZwphsPUxfI5j53mlFzu5hzaecgh3fUuezgsUS3HPulv5egvhmxdeWt6OE2H6XyzAUfWBW2BlOp6Y2G7g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":1688,"name":"Reinforcement Learning","url":"https://www.academia.edu/Documents/in/Reinforcement_Learning"},{"id":10722,"name":"Policy Development","url":"https://www.academia.edu/Documents/in/Policy_Development"},{"id":10919,"name":"Markov Decision Process","url":"https://www.academia.edu/Documents/in/Markov_Decision_Process"},{"id":135913,"name":"State Space","url":"https://www.academia.edu/Documents/in/State_Space"},{"id":1587858,"name":"Confidence Interval","url":"https://www.academia.edu/Documents/in/Confidence_Interval"},{"id":1731323,"name":"COL","url":"https://www.academia.edu/Documents/in/COL-2000"},{"id":1993786,"name":"Cumulant","url":"https://www.academia.edu/Documents/in/Cumulant"}],"urls":[{"id":7253726,"url":"http://acl.ldc.upenn.edu/n/n07/n07-1035.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="26513529"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/26513529/E_Rating_Machine_Translation"><img alt="Research paper thumbnail of E-Rating Machine Translation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/26513529/E_Rating_Machine_Translation">E-Rating Machine Translation</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="61c2f170ffb0863d5b5889b859e5644f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:46809874,&quot;asset_id&quot;:26513529,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/46809874/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="26513529"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="26513529"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 26513529; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=26513529]").text(description); $(".js-view-count[data-work-id=26513529]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 26513529; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='26513529']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 26513529, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "61c2f170ffb0863d5b5889b859e5644f" } } $('.js-work-strip[data-work-id=26513529]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":26513529,"title":"E-Rating Machine Translation","translated_title":"","metadata":{"grobid_abstract":"We describe our submissions to the WMT11 shared MT evaluation task: MTeRater and MTeRater-Plus. Both are machine-learned metrics that use features from e-rater R , an automated essay scoring engine designed to assess writing proficiency. Despite using only features from e-rater and without comparing to translations, MTeRater achieves a sentencelevel correlation with human rankings equivalent to BLEU. Since MTeRater only assesses fluency, we build a meta-metric, MTeRater-Plus, that incorporates adequacy by combining MTeRater with other MT evaluation metrics and heuristics. This meta-metric has a higher correlation with human rankings than either MTeRater or individual MT metrics alone. However, we also find that e-rater features may not have significant impact on correlation in every case. build a classifier to distinguish machine-generated translations from human","publication_date":{"day":30,"month":7,"year":2011,"errors":{}},"grobid_abstract_attachment_id":46809874},"translated_abstract":null,"internal_url":"https://www.academia.edu/26513529/E_Rating_Machine_Translation","translated_internal_url":"","created_at":"2016-06-26T11:24:34.370-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":50446196,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":46809874,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":".pdf","download_url":"https://www.academia.edu/attachments/46809874/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"E_Rating_Machine_Translation.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809874/.pdf-libre?1466965840=\u0026response-content-disposition=attachment%3B+filename%3DE_Rating_Machine_Translation.pdf\u0026Expires=1732459638\u0026Signature=NgsBNR7gN7iRBfBsX7tGqv1jOD~vizoy-aThzTEx2SNKBRqxjDK9HA8QYf-mAWG4oUgkNfHQTAFPQmXKgNfdRSSRzr0hVuuWRGjT6lmROHnRS8jA0bS044H-XcdCfhs60b0ZLuQAQAWMtkalUv3ocPGEFCa6jePAPpCsR9Ket55uey7qNKJq5kWv3nBN2G-6AdChZcWzumOYI7RKSY4DmbAtrMYBA9kcGFfaV7K~ZPKED0pCml1mbrTWaMrrmjLpkoP38lWinc5w28L6cuC1zCBmfp8-sDphqUIVQ4O6x5CU7XyYKpL7UViS8Kj4UGkoXTep2je6ETokNtOsRVcNQQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"E_Rating_Machine_Translation","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":50446196,"first_name":"Joel","middle_initials":null,"last_name":"Tetreault","page_name":"JoelTetreault","domain_name":"independent","created_at":"2016-06-25T07:02:03.031-07:00","display_name":"Joel Tetreault","url":"https://independent.academia.edu/JoelTetreault"},"attachments":[{"id":46809874,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":".pdf","download_url":"https://www.academia.edu/attachments/46809874/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"E_Rating_Machine_Translation.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809874/.pdf-libre?1466965840=\u0026response-content-disposition=attachment%3B+filename%3DE_Rating_Machine_Translation.pdf\u0026Expires=1732459638\u0026Signature=NgsBNR7gN7iRBfBsX7tGqv1jOD~vizoy-aThzTEx2SNKBRqxjDK9HA8QYf-mAWG4oUgkNfHQTAFPQmXKgNfdRSSRzr0hVuuWRGjT6lmROHnRS8jA0bS044H-XcdCfhs60b0ZLuQAQAWMtkalUv3ocPGEFCa6jePAPpCsR9Ket55uey7qNKJq5kWv3nBN2G-6AdChZcWzumOYI7RKSY4DmbAtrMYBA9kcGFfaV7K~ZPKED0pCml1mbrTWaMrrmjLpkoP38lWinc5w28L6cuC1zCBmfp8-sDphqUIVQ4O6x5CU7XyYKpL7UViS8Kj4UGkoXTep2je6ETokNtOsRVcNQQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"}],"urls":[{"id":7253725,"url":"http://academiccommons.columbia.edu/catalog/ac:159838"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="26513528"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/26513528/Using_Parse_Features_for_Preposition_Selection_and_Error_Detection"><img alt="Research paper thumbnail of Using Parse Features for Preposition Selection and Error Detection" class="work-thumbnail" src="https://attachments.academia-assets.com/46809820/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/26513528/Using_Parse_Features_for_Preposition_Selection_and_Error_Detection">Using Parse Features for Preposition Selection and Error Detection</a></div><div class="wp-workCard_item"><span>Meeting of the Association for Computational Linguistics</span><span>, 2010</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We evaluate the effect of adding parse fea- tures to a leading model of preposition us- age. Resu...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We evaluate the effect of adding parse fea- tures to a leading model of preposition us- age. Results show a significant improve- ment in the preposition selection task on native speaker text and a modest increment in precision and recall in an ESL error de- tection task. Analysis of the parser output indicates that it is robust enough in the</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b943153eaac658dd14cfc81c1db847a2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:46809820,&quot;asset_id&quot;:26513528,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/46809820/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="26513528"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="26513528"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 26513528; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=26513528]").text(description); $(".js-view-count[data-work-id=26513528]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 26513528; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='26513528']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 26513528, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b943153eaac658dd14cfc81c1db847a2" } } $('.js-work-strip[data-work-id=26513528]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":26513528,"title":"Using Parse Features for Preposition Selection and Error Detection","translated_title":"","metadata":{"abstract":"We evaluate the effect of adding parse fea- tures to a leading model of preposition us- age. Results show a significant improve- ment in the preposition selection task on native speaker text and a modest increment in precision and recall in an ESL error de- tection task. Analysis of the parser output indicates that it is robust enough in the","publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"publication_name":"Meeting of the Association for Computational Linguistics"},"translated_abstract":"We evaluate the effect of adding parse fea- tures to a leading model of preposition us- age. Results show a significant improve- ment in the preposition selection task on native speaker text and a modest increment in precision and recall in an ESL error de- tection task. Analysis of the parser output indicates that it is robust enough in the","internal_url":"https://www.academia.edu/26513528/Using_Parse_Features_for_Preposition_Selection_and_Error_Detection","translated_internal_url":"","created_at":"2016-06-26T11:24:33.981-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":50446196,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":46809820,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809820/thumbnails/1.jpg","file_name":"P10-2065.pdf","download_url":"https://www.academia.edu/attachments/46809820/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Using_Parse_Features_for_Preposition_Sel.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809820/P10-2065-libre.pdf?1466965842=\u0026response-content-disposition=attachment%3B+filename%3DUsing_Parse_Features_for_Preposition_Sel.pdf\u0026Expires=1732459638\u0026Signature=DzQbzDoxUH5kWnLsQ1xZJXOwdpJRmNP4Rum7ajoTS-uQkhdEB7MZxJyCmM-1jBmpvSNyoXBuxQcWEn1nE7CZh-ppURUd-QV36pvZ-7xWszg~7pqxriGiZpWPXRxPCkQ3DVga1XIW65z06tRTJ7iJLOuVahTBaBpCmyWYNNuNawi1ut4SHJBOFISRT3oBwaBxsI7-aWBCQSrOMdVZKsfOGcp73LtxBDh-IDWPmO8i0PCGdAOoEu7oTwlikDjmkn0kLlgPy94r-1NZ-whR4Ic8rxZT92JisEbLNpA-~cquoRrx6wPbL9yhhSyAECJKZMNUK3G8NMF9YB0nVVmOnqiFDg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Using_Parse_Features_for_Preposition_Selection_and_Error_Detection","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":50446196,"first_name":"Joel","middle_initials":null,"last_name":"Tetreault","page_name":"JoelTetreault","domain_name":"independent","created_at":"2016-06-25T07:02:03.031-07:00","display_name":"Joel Tetreault","url":"https://independent.academia.edu/JoelTetreault"},"attachments":[{"id":46809820,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809820/thumbnails/1.jpg","file_name":"P10-2065.pdf","download_url":"https://www.academia.edu/attachments/46809820/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Using_Parse_Features_for_Preposition_Sel.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809820/P10-2065-libre.pdf?1466965842=\u0026response-content-disposition=attachment%3B+filename%3DUsing_Parse_Features_for_Preposition_Sel.pdf\u0026Expires=1732459638\u0026Signature=DzQbzDoxUH5kWnLsQ1xZJXOwdpJRmNP4Rum7ajoTS-uQkhdEB7MZxJyCmM-1jBmpvSNyoXBuxQcWEn1nE7CZh-ppURUd-QV36pvZ-7xWszg~7pqxriGiZpWPXRxPCkQ3DVga1XIW65z06tRTJ7iJLOuVahTBaBpCmyWYNNuNawi1ut4SHJBOFISRT3oBwaBxsI7-aWBCQSrOMdVZKsfOGcp73LtxBDh-IDWPmO8i0PCGdAOoEu7oTwlikDjmkn0kLlgPy94r-1NZ-whR4Ic8rxZT92JisEbLNpA-~cquoRrx6wPbL9yhhSyAECJKZMNUK3G8NMF9YB0nVVmOnqiFDg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":46809819,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809819/thumbnails/1.jpg","file_name":"P10-2065.pdf","download_url":"https://www.academia.edu/attachments/46809819/download_file","bulk_download_file_name":"Using_Parse_Features_for_Preposition_Sel.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809819/P10-2065-libre.pdf?1466965842=\u0026response-content-disposition=attachment%3B+filename%3DUsing_Parse_Features_for_Preposition_Sel.pdf\u0026Expires=1732459638\u0026Signature=geeEDT2fXCPAA1Rj4iPwnFwiFa2xdSGzLDOMIue6RBoeXdc1dTa7kpnEbX5ERhiK4tADa9u9967DgaO~uGU4G-NyIcQfKgdc4q71qttK27SOvmBoqt29T-T7xSKwct7rV31b8e3-zrOUAPUjgXW3ZL7ltdbzv9g-xFnyijISnOZExfTu7uEHnnlmtNsfxrTfKj6y2xfDXHLVxtGVYH11Vq40A-joeBCmbzP78sf-NCqAG0TSXXMLaohKN53YWe5GEXftsp4azwOdfJUvC2ZQVdKT3ej-JS77B7~ZwOk2ardo~6xksagyDL3qoHMBTwst7yv8-w-b4I~Re~Bhzi9t2w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":3268,"name":"Computational Linguistics","url":"https://www.academia.edu/Documents/in/Computational_Linguistics"},{"id":192697,"name":"Task analysis","url":"https://www.academia.edu/Documents/in/Task_analysis"},{"id":999795,"name":"Native Speaker","url":"https://www.academia.edu/Documents/in/Native_Speaker"},{"id":2150075,"name":"Error Detection","url":"https://www.academia.edu/Documents/in/Error_Detection"}],"urls":[{"id":7253724,"url":"http://www.aclweb.org/anthology/P10-2065"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="26513527"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/26513527/Using_an_Error_Annotated_Learner_Corpus_to_Develop_an_ESL_EFL_Error_Correction_System"><img alt="Research paper thumbnail of Using an Error-Annotated Learner Corpus to Develop an ESL/EFL Error Correction System" class="work-thumbnail" src="https://attachments.academia-assets.com/46809872/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/26513527/Using_an_Error_Annotated_Learner_Corpus_to_Develop_an_ESL_EFL_Error_Correction_System">Using an Error-Annotated Learner Corpus to Develop an ESL/EFL Error Correction System</a></div><div class="wp-workCard_item"><span>Language Resources and Evaluation</span><span>, 2010</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper presents research on building a model of grammatical error correction, for preposition...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper presents research on building a model of grammatical error correction, for preposition errors in particular , in English text produced by language learners. Unlike most previous work which trains a statistical classifier exclusively on well-for med text written by native speakers, we train a classifier on a large-scale, error-tagged corpus of English essays written by EFL learners, relying</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="99c4b529c4fbcb51a3fa3b2bbef93c3d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:46809872,&quot;asset_id&quot;:26513527,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/46809872/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="26513527"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="26513527"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 26513527; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=26513527]").text(description); $(".js-view-count[data-work-id=26513527]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 26513527; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='26513527']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 26513527, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "99c4b529c4fbcb51a3fa3b2bbef93c3d" } } $('.js-work-strip[data-work-id=26513527]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":26513527,"title":"Using an Error-Annotated Learner Corpus to Develop an ESL/EFL Error Correction System","translated_title":"","metadata":{"abstract":"This paper presents research on building a model of grammatical error correction, for preposition errors in particular , in English text produced by language learners. Unlike most previous work which trains a statistical classifier exclusively on well-for med text written by native speakers, we train a classifier on a large-scale, error-tagged corpus of English essays written by EFL learners, relying","publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"publication_name":"Language Resources and Evaluation"},"translated_abstract":"This paper presents research on building a model of grammatical error correction, for preposition errors in particular , in English text produced by language learners. Unlike most previous work which trains a statistical classifier exclusively on well-for med text written by native speakers, we train a classifier on a large-scale, error-tagged corpus of English essays written by EFL learners, relying","internal_url":"https://www.academia.edu/26513527/Using_an_Error_Annotated_Learner_Corpus_to_Develop_an_ESL_EFL_Error_Correction_System","translated_internal_url":"","created_at":"2016-06-26T11:24:33.631-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":50446196,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":46809872,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809872/thumbnails/1.jpg","file_name":"han-lrec10-final.pdf","download_url":"https://www.academia.edu/attachments/46809872/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Using_an_Error_Annotated_Learner_Corpus.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809872/han-lrec10-final-libre.pdf?1466965840=\u0026response-content-disposition=attachment%3B+filename%3DUsing_an_Error_Annotated_Learner_Corpus.pdf\u0026Expires=1732459638\u0026Signature=EK3jO-fzAdRD91IiyI7M9FZtFJACltJTZXI9FSe3aSwWr9BAxOJHYpgxlteUAH9P8~~QMqIGBuhCo3HG9Ktoa31OP43HB4ZEiLFk0Jnz9eSs0WbAuIo5mDnP7GfbpV3T-baO6WMy3OgNn02hsTZa4B7xin7DpO9yVBpU22BsEyn8k6LGGMAyvHP6GgtIt6qdffMiYET39iXQZznAXlCguVR8U2gf9u~KYrvhnnKO~ZobV~zDSfn7mEzndjih8TC3~N9be2BXMqDqVMhsncH0~8vBSAXXQQcGO8JbL8riyFZRw4vhIyFt0iKGdW938UTWP1FDsiug6pBwRC-1ZTzkmw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Using_an_Error_Annotated_Learner_Corpus_to_Develop_an_ESL_EFL_Error_Correction_System","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":50446196,"first_name":"Joel","middle_initials":null,"last_name":"Tetreault","page_name":"JoelTetreault","domain_name":"independent","created_at":"2016-06-25T07:02:03.031-07:00","display_name":"Joel Tetreault","url":"https://independent.academia.edu/JoelTetreault"},"attachments":[{"id":46809872,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809872/thumbnails/1.jpg","file_name":"han-lrec10-final.pdf","download_url":"https://www.academia.edu/attachments/46809872/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Using_an_Error_Annotated_Learner_Corpus.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809872/han-lrec10-final-libre.pdf?1466965840=\u0026response-content-disposition=attachment%3B+filename%3DUsing_an_Error_Annotated_Learner_Corpus.pdf\u0026Expires=1732459638\u0026Signature=EK3jO-fzAdRD91IiyI7M9FZtFJACltJTZXI9FSe3aSwWr9BAxOJHYpgxlteUAH9P8~~QMqIGBuhCo3HG9Ktoa31OP43HB4ZEiLFk0Jnz9eSs0WbAuIo5mDnP7GfbpV3T-baO6WMy3OgNn02hsTZa4B7xin7DpO9yVBpU22BsEyn8k6LGGMAyvHP6GgtIt6qdffMiYET39iXQZznAXlCguVR8U2gf9u~KYrvhnnKO~ZobV~zDSfn7mEzndjih8TC3~N9be2BXMqDqVMhsncH0~8vBSAXXQQcGO8JbL8riyFZRw4vhIyFt0iKGdW938UTWP1FDsiug6pBwRC-1ZTzkmw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":182415,"name":"Error Correction","url":"https://www.academia.edu/Documents/in/Error_Correction"},{"id":297691,"name":"High performance","url":"https://www.academia.edu/Documents/in/High_performance"},{"id":758278,"name":"Large Scale","url":"https://www.academia.edu/Documents/in/Large_Scale"},{"id":873536,"name":"Error Detection and Correction","url":"https://www.academia.edu/Documents/in/Error_Detection_and_Correction"},{"id":999795,"name":"Native Speaker","url":"https://www.academia.edu/Documents/in/Native_Speaker"}],"urls":[{"id":7253723,"url":"http://www.lrec-conf.org/proceedings/lrec2010/summaries/821.html"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="26513526"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/26513526/Dialogue_Structure_and_Pronoun_Resolution"><img alt="Research paper thumbnail of Dialogue Structure and Pronoun Resolution" class="work-thumbnail" src="https://attachments.academia-assets.com/46809818/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/26513526/Dialogue_Structure_and_Pronoun_Resolution">Dialogue Structure and Pronoun Resolution</a></div><div class="wp-workCard_item"><span>Discourse Anaphora and Anaphor Resolution Colloquium</span><span>, 2004</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper presents an empirical evaluation of a pronoun resolution algorithm augmented with disc...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper presents an empirical evaluation of a pronoun resolution algorithm augmented with discourse segmentation information. Past work has shown that segmenting discourse can aid in pronoun resolution by making potentially erroneous candidates inaccessible to a pronoun&amp;#39;s search. However, implementing this in practice has been difficult given the complexities associated with deciding on a useful scheme and then generating the</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2c84d0e15d2332eb951c5e76ec066be1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:46809818,&quot;asset_id&quot;:26513526,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/46809818/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="26513526"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="26513526"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 26513526; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=26513526]").text(description); $(".js-view-count[data-work-id=26513526]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 26513526; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='26513526']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 26513526, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2c84d0e15d2332eb951c5e76ec066be1" } } $('.js-work-strip[data-work-id=26513526]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":26513526,"title":"Dialogue Structure and Pronoun Resolution","translated_title":"","metadata":{"abstract":"This paper presents an empirical evaluation of a pronoun resolution algorithm augmented with discourse segmentation information. Past work has shown that segmenting discourse can aid in pronoun resolution by making potentially erroneous candidates inaccessible to a pronoun\u0026#39;s search. However, implementing this in practice has been difficult given the complexities associated with deciding on a useful scheme and then generating the","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"Discourse Anaphora and Anaphor Resolution Colloquium"},"translated_abstract":"This paper presents an empirical evaluation of a pronoun resolution algorithm augmented with discourse segmentation information. Past work has shown that segmenting discourse can aid in pronoun resolution by making potentially erroneous candidates inaccessible to a pronoun\u0026#39;s search. However, implementing this in practice has been difficult given the complexities associated with deciding on a useful scheme and then generating the","internal_url":"https://www.academia.edu/26513526/Dialogue_Structure_and_Pronoun_Resolution","translated_internal_url":"","created_at":"2016-06-26T11:24:33.286-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":50446196,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":46809818,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809818/thumbnails/1.jpg","file_name":"daarc04.pdf","download_url":"https://www.academia.edu/attachments/46809818/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Dialogue_Structure_and_Pronoun_Resolutio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809818/daarc04-libre.pdf?1466965842=\u0026response-content-disposition=attachment%3B+filename%3DDialogue_Structure_and_Pronoun_Resolutio.pdf\u0026Expires=1732459638\u0026Signature=BLIW-4588P3OLc-Rjy7zhQ7fKGGro~ToHcLp2QI~fG3O58CwxwEgH0g-024Fhx32-iRvBUT~VR6rW9fZRtQ6Y4oCHZlECmYSCmNAhBL4y7KfiqWdy14QX7-4zOqALt9GSWpvZZHfL2mN6q~WGN6Kjavvb8mZFv8APvidCZy2M04512aAg1e~jWfCUVKi-F1~tKisFPv95ZnclMEhj4gdCWfYulhATV207ZH2G-0zyDNZ7YPvC1pn6gnEWCogrvWZ5DfOfU~Hm27w0uTSJCvKiRf3thxe2j4D~oAoLSPHqcisDKT8TeWwyaqyUd5DnYUy9wzWrfj68FFi0ddaBxi4CQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Dialogue_Structure_and_Pronoun_Resolution","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":50446196,"first_name":"Joel","middle_initials":null,"last_name":"Tetreault","page_name":"JoelTetreault","domain_name":"independent","created_at":"2016-06-25T07:02:03.031-07:00","display_name":"Joel Tetreault","url":"https://independent.academia.edu/JoelTetreault"},"attachments":[{"id":46809818,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809818/thumbnails/1.jpg","file_name":"daarc04.pdf","download_url":"https://www.academia.edu/attachments/46809818/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Dialogue_Structure_and_Pronoun_Resolutio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809818/daarc04-libre.pdf?1466965842=\u0026response-content-disposition=attachment%3B+filename%3DDialogue_Structure_and_Pronoun_Resolutio.pdf\u0026Expires=1732459638\u0026Signature=BLIW-4588P3OLc-Rjy7zhQ7fKGGro~ToHcLp2QI~fG3O58CwxwEgH0g-024Fhx32-iRvBUT~VR6rW9fZRtQ6Y4oCHZlECmYSCmNAhBL4y7KfiqWdy14QX7-4zOqALt9GSWpvZZHfL2mN6q~WGN6Kjavvb8mZFv8APvidCZy2M04512aAg1e~jWfCUVKi-F1~tKisFPv95ZnclMEhj4gdCWfYulhATV207ZH2G-0zyDNZ7YPvC1pn6gnEWCogrvWZ5DfOfU~Hm27w0uTSJCvKiRf3thxe2j4D~oAoLSPHqcisDKT8TeWwyaqyUd5DnYUy9wzWrfj68FFi0ddaBxi4CQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":46809817,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809817/thumbnails/1.jpg","file_name":"daarc04.pdf","download_url":"https://www.academia.edu/attachments/46809817/download_file","bulk_download_file_name":"Dialogue_Structure_and_Pronoun_Resolutio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809817/daarc04-libre.pdf?1466965842=\u0026response-content-disposition=attachment%3B+filename%3DDialogue_Structure_and_Pronoun_Resolutio.pdf\u0026Expires=1732459638\u0026Signature=GREzlAPpcmLOW1BC5jKVQ4NgnUHVfhPz9S5Kv0KXOM0xHBrkNuKCSmDL7NmBi9ZmPKgtocFC-1ZYIGthLy1koBKUGaVH1t95tIifoFA--ZQ4oMKf4ADuR2JoEHtI77t1KjufGihv1cAQyLOCpxnRWeAUV9TWXQHLk89DW2z~2SstNgsXW~15F8ZVNqQ9-WczE8kS3kC5-WAWT6ae9DTxuIR536PzaIXqmn~11tIvHzSRlWn78F7lf537CQ1SI9ev9uf2yFS7FzJ5GuomogG-iq4Y7Xt4cx5cW1AlRP4r7ePkhU-iOjAIE2tfRjlwZgMfDwaD1SvlmKY9MENgRc60NQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":428,"name":"Algorithms","url":"https://www.academia.edu/Documents/in/Algorithms"},{"id":15674,"name":"Linguistics","url":"https://www.academia.edu/Documents/in/Linguistics"},{"id":214529,"name":"Resolution","url":"https://www.academia.edu/Documents/in/Resolution"},{"id":408793,"name":"Empirical Evaluation","url":"https://www.academia.edu/Documents/in/Empirical_Evaluation"},{"id":956261,"name":"Augmentation","url":"https://www.academia.edu/Documents/in/Augmentation"}],"urls":[{"id":7253722,"url":"http://www.cs.rochester.edu/u/www/u/tetreaul/daarc04.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="26513525"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/26513525/An_Empirical_Evaluation_of_Pronoun_Resolution_and_Clausal_Structure"><img alt="Research paper thumbnail of An Empirical Evaluation of Pronoun Resolution and Clausal Structure" class="work-thumbnail" src="https://attachments.academia-assets.com/46809816/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/26513525/An_Empirical_Evaluation_of_Pronoun_Resolution_and_Clausal_Structure">An Empirical Evaluation of Pronoun Resolution and Clausal Structure</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper presents an automated empiri- cal evaluation of the relationship between clausal struc...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper presents an automated empiri- cal evaluation of the relationship between clausal structure and pronominal refer- ence. Past work has theorized that in- corporating discourse structure can con- strain the search space in the resolution of pronouns since discourse segments, and thus potential antecedents, can be made inaccessible as the discourse pro- gresses and the focus changes. How- ever,</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8340f9bbec4491ca0620fcd041be748a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:46809816,&quot;asset_id&quot;:26513525,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/46809816/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="26513525"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="26513525"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 26513525; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=26513525]").text(description); $(".js-view-count[data-work-id=26513525]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 26513525; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='26513525']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 26513525, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8340f9bbec4491ca0620fcd041be748a" } } $('.js-work-strip[data-work-id=26513525]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":26513525,"title":"An Empirical Evaluation of Pronoun Resolution and Clausal Structure","translated_title":"","metadata":{"abstract":"This paper presents an automated empiri- cal evaluation of the relationship between clausal structure and pronominal refer- ence. Past work has theorized that in- corporating discourse structure can con- strain the search space in the resolution of pronouns since discourse segments, and thus potential antecedents, can be made inaccessible as the discourse pro- gresses and the focus changes. How- ever,","publication_date":{"day":null,"month":null,"year":2000,"errors":{}}},"translated_abstract":"This paper presents an automated empiri- cal evaluation of the relationship between clausal structure and pronominal refer- ence. Past work has theorized that in- corporating discourse structure can con- strain the search space in the resolution of pronouns since discourse segments, and thus potential antecedents, can be made inaccessible as the discourse pro- gresses and the focus changes. How- ever,","internal_url":"https://www.academia.edu/26513525/An_Empirical_Evaluation_of_Pronoun_Resolution_and_Clausal_Structure","translated_internal_url":"","created_at":"2016-06-26T11:24:32.969-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":50446196,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":46809816,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809816/thumbnails/1.jpg","file_name":"clause.pdf","download_url":"https://www.academia.edu/attachments/46809816/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_Empirical_Evaluation_of_Pronoun_Resol.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809816/clause-libre.pdf?1466965842=\u0026response-content-disposition=attachment%3B+filename%3DAn_Empirical_Evaluation_of_Pronoun_Resol.pdf\u0026Expires=1732459638\u0026Signature=VUf3gh~7RvAS3tlttTyKF9J0DB86PDBxHCV1qTzKCBxCes7ipLZWAvt8Ra54RitkwM17Rwtq-LwNMxp6N5K2Srgvu7xpM9y5hSL1ZW3t6080HTsx4SsB46nOdHYNjeF-~ERzn71IGKsl5d560Jdic9OyhIuCXXVIZlnU6NUgUGQxqH6AU5KfmCuHHgAygzrzKoOwI5UAQ82IjjG~vGlibq9dTZRc8DZQZP2rarFOAxcJwr8rvFrphvyjT1YtUMYph1CugbipKM61MWec47V9gUONyNYfhoITKbmUfJsXjECJOJ0ckK1J-uYLIbNed8hOMTPA3nF~1hjtp6WBFyaglQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"An_Empirical_Evaluation_of_Pronoun_Resolution_and_Clausal_Structure","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":50446196,"first_name":"Joel","middle_initials":null,"last_name":"Tetreault","page_name":"JoelTetreault","domain_name":"independent","created_at":"2016-06-25T07:02:03.031-07:00","display_name":"Joel Tetreault","url":"https://independent.academia.edu/JoelTetreault"},"attachments":[{"id":46809816,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809816/thumbnails/1.jpg","file_name":"clause.pdf","download_url":"https://www.academia.edu/attachments/46809816/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_Empirical_Evaluation_of_Pronoun_Resol.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809816/clause-libre.pdf?1466965842=\u0026response-content-disposition=attachment%3B+filename%3DAn_Empirical_Evaluation_of_Pronoun_Resol.pdf\u0026Expires=1732459638\u0026Signature=VUf3gh~7RvAS3tlttTyKF9J0DB86PDBxHCV1qTzKCBxCes7ipLZWAvt8Ra54RitkwM17Rwtq-LwNMxp6N5K2Srgvu7xpM9y5hSL1ZW3t6080HTsx4SsB46nOdHYNjeF-~ERzn71IGKsl5d560Jdic9OyhIuCXXVIZlnU6NUgUGQxqH6AU5KfmCuHHgAygzrzKoOwI5UAQ82IjjG~vGlibq9dTZRc8DZQZP2rarFOAxcJwr8rvFrphvyjT1YtUMYph1CugbipKM61MWec47V9gUONyNYfhoITKbmUfJsXjECJOJ0ckK1J-uYLIbNed8hOMTPA3nF~1hjtp6WBFyaglQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":46809815,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809815/thumbnails/1.jpg","file_name":"clause.pdf","download_url":"https://www.academia.edu/attachments/46809815/download_file","bulk_download_file_name":"An_Empirical_Evaluation_of_Pronoun_Resol.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809815/clause-libre.pdf?1466965842=\u0026response-content-disposition=attachment%3B+filename%3DAn_Empirical_Evaluation_of_Pronoun_Resol.pdf\u0026Expires=1732459638\u0026Signature=dXUa9bk4Om5HGniOW8Cl8djHuopSCQFhExEcNmNABG~0dyRwRuK5~iTSw8WfUmzW~twezl4Ai72A8ZVMjry9mD2ZP8PP~7OehDDi4H8rtgWDE3FkcAkrbOzAMht1bbzVyxcyQMv4gDxoJAFUviob7UJWqqNywGVPU3SKrH0xbY8ddO2NoY1kDrddWbZCH6QJkEVH3wfT0EimojfqomhweFZR65QZc5Av1k419H618Lzgq8d850VK1wnezXi9fbHnJcL56cjF~A0qmvV6g0NG5ir0Y3Egy5TyVEuiMPc-hpRgZ8rRdV0u475bQwmvIuuKJnNJWk-NMTo8WT0SCgblzw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":234790,"name":"Corpus Annotation","url":"https://www.academia.edu/Documents/in/Corpus_Annotation"},{"id":408793,"name":"Empirical Evaluation","url":"https://www.academia.edu/Documents/in/Empirical_Evaluation"},{"id":413301,"name":"Perforation","url":"https://www.academia.edu/Documents/in/Perforation"},{"id":469944,"name":"Search Space","url":"https://www.academia.edu/Documents/in/Search_Space"},{"id":881432,"name":"Discourse Structure","url":"https://www.academia.edu/Documents/in/Discourse_Structure"}],"urls":[{"id":7253721,"url":"http://www.cs.rochester.edu/u/tetreaul/clause.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="26513524"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/26513524/Incremental_Parsing_with_Reference_Interaction"><img alt="Research paper thumbnail of Incremental Parsing with Reference Interaction" class="work-thumbnail" src="https://attachments.academia-assets.com/46809870/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/26513524/Incremental_Parsing_with_Reference_Interaction">Incremental Parsing with Reference Interaction</a></div><div class="wp-workCard_item"><span>Meeting of the Association for Computational Linguistics</span><span>, 2000</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We present a general architecture for incremen- tal interaction between modules in a speech-to- i...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We present a general architecture for incremen- tal interaction between modules in a speech-to- intention continuous understanding dialogue sys- tem. This architecture is then instantiated in the form of an incremental parser which receives suit- ability feedback on NP constituents from a refer- ence resolution module. Oracle results indicate that perfect NP suitability judgments can provide a labelled-bracket error reduction</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="66e074e002357ba21b1893416c758c5f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:46809870,&quot;asset_id&quot;:26513524,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/46809870/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="26513524"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="26513524"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 26513524; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=26513524]").text(description); $(".js-view-count[data-work-id=26513524]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 26513524; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='26513524']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 26513524, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "66e074e002357ba21b1893416c758c5f" } } $('.js-work-strip[data-work-id=26513524]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":26513524,"title":"Incremental Parsing with Reference Interaction","translated_title":"","metadata":{"abstract":"We present a general architecture for incremen- tal interaction between modules in a speech-to- intention continuous understanding dialogue sys- tem. This architecture is then instantiated in the form of an incremental parser which receives suit- ability feedback on NP constituents from a refer- ence resolution module. Oracle results indicate that perfect NP suitability judgments can provide a labelled-bracket error reduction","publication_date":{"day":null,"month":null,"year":2000,"errors":{}},"publication_name":"Meeting of the Association for Computational Linguistics"},"translated_abstract":"We present a general architecture for incremen- tal interaction between modules in a speech-to- intention continuous understanding dialogue sys- tem. This architecture is then instantiated in the form of an incremental parser which receives suit- ability feedback on NP constituents from a refer- ence resolution module. Oracle results indicate that perfect NP suitability judgments can provide a labelled-bracket error reduction","internal_url":"https://www.academia.edu/26513524/Incremental_Parsing_with_Reference_Interaction","translated_internal_url":"","created_at":"2016-06-26T11:24:32.650-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":50446196,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":46809870,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809870/thumbnails/1.jpg","file_name":"W04-0304.pdf","download_url":"https://www.academia.edu/attachments/46809870/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Incremental_Parsing_with_Reference_Inter.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809870/W04-0304-libre.pdf?1466965840=\u0026response-content-disposition=attachment%3B+filename%3DIncremental_Parsing_with_Reference_Inter.pdf\u0026Expires=1732459638\u0026Signature=IB62D~un9KajG9wdCecwOEqTmdgZKg06UVJqbfGjVqmqknDjWtOj7i6j-eld4rnUvruiLoRRPeTRA0LhPOLVtepc7XhzxaPhb5Y3if5Ix-ONl5qlnNNRhvcTjiCksRpuFku6jWn2~BQmx4A3YrcFiICYNfP77b~ORy1djuogjzm07~4n0WwCKbzkw32FPdk~UlHqYK0KHwX7Sn2iqp8llgn-tpkA1i1eU61sIwOakss-A0wKRA45~S~2lk6WyKtEnl05g7mtnmeR14QBTm-Hix4Vyd-VypnXJsFCNG39Guh0d7Y2ngsSQ-sit0ZpRYJcDUrKHg5ttUSGcDlxIB~v8w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Incremental_Parsing_with_Reference_Interaction","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":50446196,"first_name":"Joel","middle_initials":null,"last_name":"Tetreault","page_name":"JoelTetreault","domain_name":"independent","created_at":"2016-06-25T07:02:03.031-07:00","display_name":"Joel Tetreault","url":"https://independent.academia.edu/JoelTetreault"},"attachments":[{"id":46809870,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809870/thumbnails/1.jpg","file_name":"W04-0304.pdf","download_url":"https://www.academia.edu/attachments/46809870/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Incremental_Parsing_with_Reference_Inter.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809870/W04-0304-libre.pdf?1466965840=\u0026response-content-disposition=attachment%3B+filename%3DIncremental_Parsing_with_Reference_Inter.pdf\u0026Expires=1732459638\u0026Signature=IB62D~un9KajG9wdCecwOEqTmdgZKg06UVJqbfGjVqmqknDjWtOj7i6j-eld4rnUvruiLoRRPeTRA0LhPOLVtepc7XhzxaPhb5Y3if5Ix-ONl5qlnNNRhvcTjiCksRpuFku6jWn2~BQmx4A3YrcFiICYNfP77b~ORy1djuogjzm07~4n0WwCKbzkw32FPdk~UlHqYK0KHwX7Sn2iqp8llgn-tpkA1i1eU61sIwOakss-A0wKRA45~S~2lk6WyKtEnl05g7mtnmeR14QBTm-Hix4Vyd-VypnXJsFCNG39Guh0d7Y2ngsSQ-sit0ZpRYJcDUrKHg5ttUSGcDlxIB~v8w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":7253720,"url":"http://www.aclweb.org/anthology-new/W/W04/W04-0304.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="26513523"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/26513523/Comparing_the_Utility_of_State_Features_in_Spoken_Dialogue_Using_Reinforcement_Learning"><img alt="Research paper thumbnail of Comparing the Utility of State Features in Spoken Dialogue Using Reinforcement Learning" class="work-thumbnail" src="https://attachments.academia-assets.com/46809873/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/26513523/Comparing_the_Utility_of_State_Features_in_Spoken_Dialogue_Using_Reinforcement_Learning">Comparing the Utility of State Features in Spoken Dialogue Using Reinforcement Learning</a></div><div class="wp-workCard_item"><span>North American Chapter of the Association for Computational Linguistics</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Recent work in designing spoken dialogue systems has focused on using Reinforce- ment Learning to...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Recent work in designing spoken dialogue systems has focused on using Reinforce- ment Learning to automatically learn the best action for a system to take at any point in the dialogue to maximize dia- logue success. While policy development is very important, choosing the best fea- tures to model the user state is equally im- portant since it impacts the</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c21b766579194477b99e9a22a5e5f153" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:46809873,&quot;asset_id&quot;:26513523,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/46809873/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="26513523"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="26513523"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 26513523; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=26513523]").text(description); $(".js-view-count[data-work-id=26513523]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 26513523; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='26513523']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 26513523, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c21b766579194477b99e9a22a5e5f153" } } $('.js-work-strip[data-work-id=26513523]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":26513523,"title":"Comparing the Utility of State Features in Spoken Dialogue Using Reinforcement Learning","translated_title":"","metadata":{"abstract":"Recent work in designing spoken dialogue systems has focused on using Reinforce- ment Learning to automatically learn the best action for a system to take at any point in the dialogue to maximize dia- logue success. While policy development is very important, choosing the best fea- tures to model the user state is equally im- portant since it impacts the","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"North American Chapter of the Association for Computational Linguistics"},"translated_abstract":"Recent work in designing spoken dialogue systems has focused on using Reinforce- ment Learning to automatically learn the best action for a system to take at any point in the dialogue to maximize dia- logue success. While policy development is very important, choosing the best fea- tures to model the user state is equally im- portant since it impacts the","internal_url":"https://www.academia.edu/26513523/Comparing_the_Utility_of_State_Features_in_Spoken_Dialogue_Using_Reinforcement_Learning","translated_internal_url":"","created_at":"2016-06-26T11:24:32.328-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":50446196,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":46809873,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809873/thumbnails/1.jpg","file_name":"Comparing_the_Utility_of_State_Features_20160626-22732-1v2m3pg.pdf","download_url":"https://www.academia.edu/attachments/46809873/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Comparing_the_Utility_of_State_Features.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809873/Comparing_the_Utility_of_State_Features_20160626-22732-1v2m3pg-libre.pdf?1466965840=\u0026response-content-disposition=attachment%3B+filename%3DComparing_the_Utility_of_State_Features.pdf\u0026Expires=1732459638\u0026Signature=H3JRzib6kuoYnYoIsfOQ8G52aYYuCATnLeCdGYb4QmfN0SqTM1USVuj0J9rBtP3CyjEgTM-3H35j6X1eXFRZaGIZDQ0OdHjup0PwgO-iazBLvWCbNeoakQ7JIi4jld0FvJ9picmXNeDiqPByr812ATie6iAt6MCmR4Rgl~DZTpjAwoYb9KAtCDGiVglWYbcXaSrp5nPF0eYZTYVbSln7HzqQ3VjnJlh4BZrkppfDTWI40WGcj1x0HAFajnSFo3wNmZqv00d5VVLvh1c075p~UHJVfM0YZVW-aiG0W8Q5JO8tdcVypNm~DCHR1RT1yRR-6nV-8VRQPAi8TTGxPfH3yw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Comparing_the_Utility_of_State_Features_in_Spoken_Dialogue_Using_Reinforcement_Learning","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":50446196,"first_name":"Joel","middle_initials":null,"last_name":"Tetreault","page_name":"JoelTetreault","domain_name":"independent","created_at":"2016-06-25T07:02:03.031-07:00","display_name":"Joel Tetreault","url":"https://independent.academia.edu/JoelTetreault"},"attachments":[{"id":46809873,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809873/thumbnails/1.jpg","file_name":"Comparing_the_Utility_of_State_Features_20160626-22732-1v2m3pg.pdf","download_url":"https://www.academia.edu/attachments/46809873/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Comparing_the_Utility_of_State_Features.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809873/Comparing_the_Utility_of_State_Features_20160626-22732-1v2m3pg-libre.pdf?1466965840=\u0026response-content-disposition=attachment%3B+filename%3DComparing_the_Utility_of_State_Features.pdf\u0026Expires=1732459638\u0026Signature=H3JRzib6kuoYnYoIsfOQ8G52aYYuCATnLeCdGYb4QmfN0SqTM1USVuj0J9rBtP3CyjEgTM-3H35j6X1eXFRZaGIZDQ0OdHjup0PwgO-iazBLvWCbNeoakQ7JIi4jld0FvJ9picmXNeDiqPByr812ATie6iAt6MCmR4Rgl~DZTpjAwoYb9KAtCDGiVglWYbcXaSrp5nPF0eYZTYVbSln7HzqQ3VjnJlh4BZrkppfDTWI40WGcj1x0HAFajnSFo3wNmZqv00d5VVLvh1c075p~UHJVfM0YZVW-aiG0W8Q5JO8tdcVypNm~DCHR1RT1yRR-6nV-8VRQPAi8TTGxPfH3yw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":1688,"name":"Reinforcement Learning","url":"https://www.academia.edu/Documents/in/Reinforcement_Learning"},{"id":10722,"name":"Policy Development","url":"https://www.academia.edu/Documents/in/Policy_Development"},{"id":97847,"name":"Spoken Dialogue System","url":"https://www.academia.edu/Documents/in/Spoken_Dialogue_System"},{"id":201147,"name":"Tutoring System","url":"https://www.academia.edu/Documents/in/Tutoring_System"}],"urls":[{"id":7253719,"url":"http://www.informatik.uni-trier.de/~ley/db/conf/naacl/naacl2006.html#TetreaultL06"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="26513522"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/26513522/Using_Reinforcement_Learning_to_Build_a_Better_Model_of_Dialogue_State"><img alt="Research paper thumbnail of Using Reinforcement Learning to Build a Better Model of Dialogue State" class="work-thumbnail" src="https://attachments.academia-assets.com/46809869/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/26513522/Using_Reinforcement_Learning_to_Build_a_Better_Model_of_Dialogue_State">Using Reinforcement Learning to Build a Better Model of Dialogue State</a></div><div class="wp-workCard_item"><span>Eacl</span><span>, 2006</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="67bdf3e0baed6f4d0aa1f4506860fd98" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:46809869,&quot;asset_id&quot;:26513522,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/46809869/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="26513522"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="26513522"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 26513522; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=26513522]").text(description); $(".js-view-count[data-work-id=26513522]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 26513522; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='26513522']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 26513522, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "67bdf3e0baed6f4d0aa1f4506860fd98" } } $('.js-work-strip[data-work-id=26513522]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":26513522,"title":"Using Reinforcement Learning to Build a Better Model of Dialogue State","translated_title":"","metadata":{"grobid_abstract":"Given the growing complexity of tasks that spoken dialogue systems are trying to handle, Reinforcement Learning (RL) has been increasingly used as a way of automatically learning the best policy for a system to make. While most work has focused on generating better policies for a dialogue manager, very little work has been done in using RL to construct a better dialogue state. This paper presents a RL approach for determining what dialogue features are important to a spoken dialogue tutoring system. Our experiments show that incorporating dialogue factors such as dialogue acts, emotion, repeated concepts and performance play a significant role in tutoring and should be taken into account when designing dialogue systems.","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"Eacl","grobid_abstract_attachment_id":46809869},"translated_abstract":null,"internal_url":"https://www.academia.edu/26513522/Using_Reinforcement_Learning_to_Build_a_Better_Model_of_Dialogue_State","translated_internal_url":"","created_at":"2016-06-26T11:24:31.960-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":50446196,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":46809869,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809869/thumbnails/1.jpg","file_name":"eacl06-2.pdf","download_url":"https://www.academia.edu/attachments/46809869/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Using_Reinforcement_Learning_to_Build_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809869/eacl06-2-libre.pdf?1466965840=\u0026response-content-disposition=attachment%3B+filename%3DUsing_Reinforcement_Learning_to_Build_a.pdf\u0026Expires=1732459638\u0026Signature=XrR83wvOBactYSv7jZDbig9TRu4HiAYR9VCbv0mzW4wNT6grdDISJE0LDMeuZphhpppA5grzuwbxI9CnmUYDZmDQs1ex4LvKnGAn2EvoH7wuQFTmPOopaUB1whirfvLRX0zTixqdIzY6fRsCn6-NNa~0b3ReYAbJzRiHgmwmdBts1Z2670sdIE8HHhIQi74ONEWPeZNFxMyNsA05oTgzUEo3Ouf3hlpPlqvfFh5Ll7dJes5YID5RjMb-9g3-5Gb4zdFZ7uZph5xOvqiyA7bzx-5QZ15r4eDbYnl2qqjvDi4GS4QRXBkdtRZm4pTHOALdWx2fj-FQN74YmGubsgEVUQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Using_Reinforcement_Learning_to_Build_a_Better_Model_of_Dialogue_State","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":50446196,"first_name":"Joel","middle_initials":null,"last_name":"Tetreault","page_name":"JoelTetreault","domain_name":"independent","created_at":"2016-06-25T07:02:03.031-07:00","display_name":"Joel Tetreault","url":"https://independent.academia.edu/JoelTetreault"},"attachments":[{"id":46809869,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809869/thumbnails/1.jpg","file_name":"eacl06-2.pdf","download_url":"https://www.academia.edu/attachments/46809869/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Using_Reinforcement_Learning_to_Build_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809869/eacl06-2-libre.pdf?1466965840=\u0026response-content-disposition=attachment%3B+filename%3DUsing_Reinforcement_Learning_to_Build_a.pdf\u0026Expires=1732459638\u0026Signature=XrR83wvOBactYSv7jZDbig9TRu4HiAYR9VCbv0mzW4wNT6grdDISJE0LDMeuZphhpppA5grzuwbxI9CnmUYDZmDQs1ex4LvKnGAn2EvoH7wuQFTmPOopaUB1whirfvLRX0zTixqdIzY6fRsCn6-NNa~0b3ReYAbJzRiHgmwmdBts1Z2670sdIE8HHhIQi74ONEWPeZNFxMyNsA05oTgzUEo3Ouf3hlpPlqvfFh5Ll7dJes5YID5RjMb-9g3-5Gb4zdFZ7uZph5xOvqiyA7bzx-5QZ15r4eDbYnl2qqjvDi4GS4QRXBkdtRZm4pTHOALdWx2fj-FQN74YmGubsgEVUQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":1688,"name":"Reinforcement Learning","url":"https://www.academia.edu/Documents/in/Reinforcement_Learning"},{"id":97847,"name":"Spoken Dialogue System","url":"https://www.academia.edu/Documents/in/Spoken_Dialogue_System"},{"id":201147,"name":"Tutoring System","url":"https://www.academia.edu/Documents/in/Tutoring_System"}],"urls":[{"id":7253718,"url":"http://acl.ldc.upenn.edu/e/e06/e06-1037.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="26513521"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/26513521/Using_Entity_Based_Features_to_Model_Coherence_in_Student_Essays"><img alt="Research paper thumbnail of Using Entity-Based Features to Model Coherence in Student Essays" class="work-thumbnail" src="https://attachments.academia-assets.com/46809871/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/26513521/Using_Entity_Based_Features_to_Model_Coherence_in_Student_Essays">Using Entity-Based Features to Model Coherence in Student Essays</a></div><div class="wp-workCard_item"><span>Naacl</span><span>, 2010</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2f10efe27cedf9ffe88cd4e969a87c64" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:46809871,&quot;asset_id&quot;:26513521,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/46809871/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="26513521"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="26513521"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 26513521; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=26513521]").text(description); $(".js-view-count[data-work-id=26513521]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 26513521; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='26513521']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 26513521, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2f10efe27cedf9ffe88cd4e969a87c64" } } $('.js-work-strip[data-work-id=26513521]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":26513521,"title":"Using Entity-Based Features to Model Coherence in Student Essays","translated_title":"","metadata":{"grobid_abstract":"We show how the Barzilay and Lapata entitybased coherence algorithm (2008) can be applied to a new, noisy data domainstudent essays. We demonstrate that by combining Barzilay and Lapata's entity-based features with novel features related to grammar errors and word usage, one can greatly improve the performance of automated coherence prediction for student essays for different populations.","publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"publication_name":"Naacl","grobid_abstract_attachment_id":46809871},"translated_abstract":null,"internal_url":"https://www.academia.edu/26513521/Using_Entity_Based_Features_to_Model_Coherence_in_Student_Essays","translated_internal_url":"","created_at":"2016-06-26T11:24:31.491-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":50446196,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":46809871,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809871/thumbnails/1.jpg","file_name":"BTA-naacl10-final-submission.pdf","download_url":"https://www.academia.edu/attachments/46809871/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Using_Entity_Based_Features_to_Model_Coh.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809871/BTA-naacl10-final-submission-libre.pdf?1466965841=\u0026response-content-disposition=attachment%3B+filename%3DUsing_Entity_Based_Features_to_Model_Coh.pdf\u0026Expires=1732459638\u0026Signature=Ye7maygYclIaaCnXZDmGj7NrEfzSeKKslkxhW5mkqA3aE910-OAL1q9R~GQs~FT1xmG3fglu4y7zdxsRa69LciVYAGN~vTJt6Z2r-3uyGNNQfPCfch8JCM316C8Mf1RBPkv-VaurSWEYCH0wuV8dLXm0ykKJeruQZ8xlUtTeEahPhJdCqCDvjziEEz~YbW0REIfNzMX-IgVkOdlityCZHp5d4~jEbD-J7pLSbipSnTqhyz2b4K6E~vdf8B0AA1tK-zD3gBRHh27t0d5LRbR7YaM0wApFLMzZF1aUkHJtrPFvqSlpF9GUu3jTD5X8CS9DEJm3JLDVrBhxvCe9DTmRuw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Using_Entity_Based_Features_to_Model_Coherence_in_Student_Essays","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":50446196,"first_name":"Joel","middle_initials":null,"last_name":"Tetreault","page_name":"JoelTetreault","domain_name":"independent","created_at":"2016-06-25T07:02:03.031-07:00","display_name":"Joel Tetreault","url":"https://independent.academia.edu/JoelTetreault"},"attachments":[{"id":46809871,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46809871/thumbnails/1.jpg","file_name":"BTA-naacl10-final-submission.pdf","download_url":"https://www.academia.edu/attachments/46809871/download_file?st=MTczMjQ2ODEyMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Using_Entity_Based_Features_to_Model_Coh.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46809871/BTA-naacl10-final-submission-libre.pdf?1466965841=\u0026response-content-disposition=attachment%3B+filename%3DUsing_Entity_Based_Features_to_Model_Coh.pdf\u0026Expires=1732459638\u0026Signature=Ye7maygYclIaaCnXZDmGj7NrEfzSeKKslkxhW5mkqA3aE910-OAL1q9R~GQs~FT1xmG3fglu4y7zdxsRa69LciVYAGN~vTJt6Z2r-3uyGNNQfPCfch8JCM316C8Mf1RBPkv-VaurSWEYCH0wuV8dLXm0ykKJeruQZ8xlUtTeEahPhJdCqCDvjziEEz~YbW0REIfNzMX-IgVkOdlityCZHp5d4~jEbD-J7pLSbipSnTqhyz2b4K6E~vdf8B0AA1tK-zD3gBRHh27t0d5LRbR7YaM0wApFLMzZF1aUkHJtrPFvqSlpF9GUu3jTD5X8CS9DEJm3JLDVrBhxvCe9DTmRuw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":7253717,"url":"http://aclweb.org/anthology/n10-1099"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="26513520"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/26513520/Computer_Implemented_Systems_and_Methods_for_Detection_of_Sentiment_in_Writing"><img alt="Research paper thumbnail of Computer-Implemented Systems and Methods for Detection of Sentiment in Writing" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/26513520/Computer_Implemented_Systems_and_Methods_for_Detection_of_Sentiment_in_Writing">Computer-Implemented Systems and Methods for Detection of Sentiment in Writing</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="26513520"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="26513520"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 26513520; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=26513520]").text(description); $(".js-view-count[data-work-id=26513520]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 26513520; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='26513520']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 26513520, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=26513520]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":26513520,"title":"Computer-Implemented Systems and Methods for Detection of Sentiment in Writing","translated_title":"","metadata":{"publication_date":{"day":25,"month":4,"year":2013,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/26513520/Computer_Implemented_Systems_and_Methods_for_Detection_of_Sentiment_in_Writing","translated_internal_url":"","created_at":"2016-06-26T11:24:31.066-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":50446196,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Computer_Implemented_Systems_and_Methods_for_Detection_of_Sentiment_in_Writing","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":50446196,"first_name":"Joel","middle_initials":null,"last_name":"Tetreault","page_name":"JoelTetreault","domain_name":"independent","created_at":"2016-06-25T07:02:03.031-07:00","display_name":"Joel Tetreault","url":"https://independent.academia.edu/JoelTetreault"},"attachments":[],"research_interests":[],"urls":[{"id":7253716,"url":"http://www.freepatentsonline.com/y2013/0103623.html"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "cc47b80955657752a45de09c57a766c461397ea0c59a744ecb2364753a0ed45d", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="llLCNaLwjgyO2jpJtWRjLDo4KhVAwIz9II6X8zRjjkLFbeFp39xwnfXOP0NTy/wLVwHWWwQ7+ySx9lIbEb0c4Q==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://independent.academia.edu/JoelTetreault" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="LAJJzReJWIH5zmes1wb3dJd0DAXwZ+p5/d5zG3BtiUp/PWqRaqWmEILaYqYxqWhT+k3wS7ScnaBsprbzVbMb6Q==" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10