CINXE.COM
Ai4Truth: An In-depth Analysis on Misinformation using Machine Learning and Data Science
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Ai4Truth: An In-depth Analysis on Misinformation using Machine Learning and Data Science</title> <!-- common meta tags --> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <meta name="title" content="Ai4Truth: An In-depth Analysis on Misinformation using Machine Learning and Data Science"> <meta name="description" content="A number of social issues have been grown due to the increasing amount of “fake news”. With the inevitable exposure to this misinformation, it has become a real challenge for the public to process the correct truth and knowledge with accuracy. In this paper, we have applied machine learning to investigate the correlations between the information and the way people treat it. With enough data, we are able to safely and accurately predict which groups are most vulnerable to misinformation. In addition, we realized that the structure of the survey itself could help with future studies, and the method by which the news articles are presented, and the news articles itself also contributes to the result"/> <meta name="keywords" content="Machine Learning, Cross Validation, Training and Prediction, Misinformation"/> <!-- end common meta tags --> <!-- Dublin Core(DC) meta tags --> <meta name="dc.title" content="Ai4Truth: An In-depth Analysis on Misinformation using Machine Learning and Data Science"> <meta name="citation_authors" content="Kevin Qu"> <meta name="citation_authors" content="Yu Sun"> <meta name="dc.type" content="Article"> <meta name="dc.source" content="Computer Science & Information Technology (CS & IT) Vol. 11, No.23"> <meta name="dc.date" content="2021/12/24"> <meta name="dc.identifier" content="10.5121/csit.2021.112327"> <meta name="dc.publisher" content="AIRCC Publishing Corporation"> <meta name="dc.rights" content="http://creativecommons.org/licenses/by/3.0/"> <meta name="dc.format" content="application/pdf"> <meta name="dc.language" content="en"> <meta name="dc.description" content="A number of social issues have been grown due to the increasing amount of “fake news”. With the inevitable exposure to this misinformation, it has become a real challenge for the public to process the correct truth and knowledge with accuracy. In this paper, we have applied machine learning to investigate the correlations between the information and the way people treat it. With enough data, we are able to safely and accurately predict which groups are most vulnerable to misinformation. In addition, we realized that the structure of the survey itself could help with future studies, and the method by which the news articles are presented, and the news articles itself also contributes to the result. "/> <meta name="dc.subject" content="Machine Learning"> <meta name="dc.subject" content="Cross Validation"> <meta name="dc.subject" content="Training and Prediction"> <meta name="dc.subject" content="Misinformation"> <!-- End Dublin Core(DC) meta tags --> <!-- Prism meta tags --> <meta name="prism.publicationName" content="Computer Science & Information Technology (CS & IT)"> <meta name="prism.publicationDate" content="2021/12/24"> <meta name="prism.volume" content="11"> <meta name="prism.number" content="23"> <meta name="prism.section" content="Article"> <meta name="prism.startingPage" content="355"> <!-- End Prism meta tags --> <!-- citation meta tags --> <meta name="citation_journal_title" content="Computer Science & Information Technology (CS & IT)"> <meta name="citation_publisher" content="AIRCC Publishing Corporation"> <meta name="citation_authors" content="Kevin Qu and Yu Sun"> <meta name="citation_title" content="Ai4Truth: An In-depth Analysis on Misinformation using Machine Learning and Data Science"> <meta name="citation_online_date" content="2021/12/24"> <meta name="citation_issue" content="11"> <meta name="citation_firstpage" content="355"> <meta name="citation_authors" content="Kevin Qu"> <meta name="citation_authors" content="Yu Sun"> <meta name="citation_doi" content="10.5121/csit.2021.112327"> <meta name="citation_abstract_html_url" content="https://aircconline.com/csit/abstract/v11n23/csit112327.html"> <meta name="citation_pdf_url" content="https://aircconline.com/csit/papers/vol11/csit112327.pdf"> <!-- end citation meta tags --> <!-- Og meta tags --> <meta property="og:site_name" content="AIRCC" /> <meta property="og:type" content="article" /> <meta property="og:url" content="https://aircconline.com/csit/abstract/v11n23/csit112327.html"> <meta property="og:title" content="Ai4Truth: An In-depth Analysis on Misinformation using Machine Learning and Data Science"> <meta property="og:description" content="A number of social issues have been grown due to the increasing amount of “fake news”. With the inevitable exposure to this misinformation, it has become a real challenge for the public to process the correct truth and knowledge with accuracy. In this paper, we have applied machine learning to investigate the correlations between the information and the way people treat it. With enough data, we are able to safely and accurately predict which groups are most vulnerable to misinformation. In addition, we realized that the structure of the survey itself could help with future studies, and the method by which the news articles are presented, and the news articles itself also contributes to the result. "/> <!-- end og meta tags --> <!-- INDEX meta tags --> <meta name="google-site-verification" content="t8rHIcM8EfjIqfQzQ0IdYIiA9JxDD0uUZAitBCzsOIw" /> <meta name="yandex-verification" content="e3d2d5a32c7241f4" /> <!-- end INDEX meta tags --> <link rel="icon" type="image/ico" href="../img/ico.ico"/> <link rel="stylesheet" type="text/css" href="../main1.css" media="screen" /> <style type="text/css"> a{ color:white; text-decoration:none; line-height:20px; } ul li a{ font-weight:bold; color:#000; list-style:none; text-decoration:none; size:10px;} .imagess { height:90px; text-align:left; margin:0px 5px 2px 8px; float:right; border:none; } #left p { font-family: CALIBRI; font-size: 16px; margin-left: 20px; font-weight: 500; } .right { margin-right: 20px; } #button{ float: left; font-size: 14px; margin-left: 10px; height: 28px; width: auto; background-color: #1e86c6; } </style> </head> <body> <div class="font"> <div id="wap"> <div id="page"> <div id="top"> <form action="https://airccj.org/csecfp/library/Search.php" method="get" target="_blank" > <table width="100%" cellspacing="0" cellpadding="0" > <tr class="search_input"> <td width="665" align="right"> </td> <td width="236" > <input name="title" type="text" value="Enter the paper title" class="search_textbox" onclick="if(this.value=='Enter the paper title'){this.value=''}" onblur="if(this.value==''){this.value='Enter the paper title'}" /> </td> <td width="59"> <input type="image" src="../img/go.gif" /> </td> </tr> <tr> <td colspan="3" valign="top"><img src="../img/top1.gif" alt="Academy & Industry Research Collaboration Center (AIRCC)" /></td> </tr> </table> </form> </div> <div id="font-face"> <div id="menu"> <a href="http://airccse.org">Home</a> <a href="http://airccse.org/journal.html">Journals</a> <a href="http://airccse.org/ethics.html">Ethics</a> <a href="http://airccse.org/conference.html">Conferences</a> <a href="http://airccse.org/past.html">Past Events</a> <a href="http://airccse.org/b.html">Submission</a> </div> <div id="content"> <div id="left"> <h2 class="lighter"><font size="2">Volume 11, Number 23, December 2021</font></h2> <h4 style="text-align:center;height:auto;"><a>Ai4Truth: An In-depth Analysis on Misinformation using Machine Learning and Data Science</a></h4> <h3> Authors</h3> <p class="#left right" style="text-align:">Kevin Qu and Yu Sun, California State Polytechnic University, USA </p> <h3> Abstract</h3> <p class="#left right" style="text-align:justify">A number of social issues have been grown due to the increasing amount of “fake news”. With the inevitable exposure to this misinformation, it has become a real challenge for the public to process the correct truth and knowledge with accuracy. In this paper, we have applied machine learning to investigate the correlations between the information and the way people treat it. With enough data, we are able to safely and accurately predict which groups are most vulnerable to misinformation. In addition, we realized that the structure of the survey itself could help with future studies, and the method by which the news articles are presented, and the news articles itself also contributes to the result. </p> <h3> Keywords</h3> <p class="#left right" style="text-align:justify">Machine Learning, Cross Validation, Training and Prediction, Misinformation.</p><br> <button type="button" id="button"><a target="blank" href="/csit/papers/vol11/csit112327.pdf">Full Text</a></button> <button type="button" id="button"><a href="http://airccse.org/csit/V11N23.html">Volume 11, Number 23</a></button> <br><br><br><br><br> </div> <div id="right"> <div class="menu_right"> <ul> <li id="id"><a href="http://airccse.org/editorial.html">Editorial Board</a></li> <li><a href="http://airccse.org/arch.html">Archives</a></li> <li><a href="http://airccse.org/indexing.html">Indexing</a></li> <li><a href="http://airccse.org/faq.html" target="_blank">FAQ</a></li> </ul> </div> <div class="clear_left"></div> <br> </div> <div class="clear"></div> <div id="footer"> <table width="100%" > <tr> <td width="46%" class="F_menu"><a href="http://airccse.org/subscription.html">Subscription</a> <a href="http://airccse.org/membership.html">Membership</a> <a href="http://airccse.org/cscp.html">AIRCC CSCP</a> <a href="http://airccse.org/acontact.html">Contact Us</a> </td> <td width="54%" align="right"><a href="http://airccse.org/index.php"><img src="/csit/abstract/img/logo.gif" alt="" width="21" height="24" /></a><a href="http://www.facebook.com/AIRCCSE"><img src="/csit/abstract/img/facebook.jpeg" alt="" width="21" height="24" /></a><a href="https://twitter.com/AIRCCFP"><img src="/csit/abstract/img/twitter.jpeg" alt="" width="21" height="24" /></a><a href="http://cfptech.wordpress.com/"><img src="/csit/abstract/img/index1.jpeg" alt="" width="21" height="24" /></a></td> </tr> <tr><td height="25" colspan="2"> <p align="center">All Rights Reserved ® AIRCC</p> </td></tr> </table> </div> </div> </div> </div> </div> </div> </body> </html>