CINXE.COM

Search results for: bone tissue mineral density

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: bone tissue mineral density</title> <meta name="description" content="Search results for: bone tissue mineral density"> <meta name="keywords" content="bone tissue mineral density"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="bone tissue mineral density" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="bone tissue mineral density"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 6136</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: bone tissue mineral density</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6136</span> Ultrasonic Densitometry of Bone Tissue of Jaws and Phalanges of Fingers in Patients after Orthodontic Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Margarita%20Belousova">Margarita Belousova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ultrasonic densitometry (RU patent № 2541038) was used to assess the density of the bone tissue in the jaws of patients after orthodontic treatment. In addition, by ultrasonic densitometry assessed the state of the bone tissue in the region III phalanges of middle fingers in above mentioned patients. A comparative study was carried out in healthy volunteers of same age. It was established a significant decrease of the ultrasound wave speed and bone mineral density after active period of orthodontic treatment. Statistically, significant differences in bone mineral density of the fingers by ultrasonic densitometry in both groups of patients were not detected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intraoral%20ultrasonic%20densitometry" title="intraoral ultrasonic densitometry">intraoral ultrasonic densitometry</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20tissue%20density%20of%20jaws" title=" bone tissue density of jaws"> bone tissue density of jaws</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20tissue%20density%20of%20phalanges%20of%20fingers" title=" bone tissue density of phalanges of fingers"> bone tissue density of phalanges of fingers</a>, <a href="https://publications.waset.org/abstracts/search?q=orthodontic%20treatment" title=" orthodontic treatment"> orthodontic treatment</a> </p> <a href="https://publications.waset.org/abstracts/54572/ultrasonic-densitometry-of-bone-tissue-of-jaws-and-phalanges-of-fingers-in-patients-after-orthodontic-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54572.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6135</span> Bone Mineral Density and Quality, Body Composition of Women in the Postmenopausal Period</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vladyslav%20Povoroznyuk">Vladyslav Povoroznyuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Oksana%20Ivanyk"> Oksana Ivanyk</a>, <a href="https://publications.waset.org/abstracts/search?q=Nataliia%20Dzerovych"> Nataliia Dzerovych</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the diagnostics of osteoporosis, the gold standard is considered to be bone mineral density; however, X-ray densitometry is not an accurate indicator of osteoporotic fracture risk under all circumstances. In this regard, the search for new methods that could determine the indicators not only of the mineral density, but of the bone tissue quality, is a logical step for diagnostic optimization. One of these methods is the evaluation of trabecular bone quality. The aim of this study was to examine the quality and mineral density of spine bone tissue, femoral neck, and body composition of women depending on the duration of the postmenopausal period, to determine the correlation of body fat with indicators of bone mineral density and quality. The study examined 179 women in premenopausal and postmenopausal periods. The patients were divided into the following groups: Women in the premenopausal period and women in the postmenopausal period at various stages (early, middle, late postmenopause). A general examination and study of the above parameters were conducted with General Electric X-ray densitometer. The results show that bone quality and mineral density probably deteriorate with advancing of postmenopausal period. Total fat and lean mass ratio is not likely to change with age. In the middle and late postmenopausal periods, the bone tissue mineral density of the spine and femoral neck increases along with total fat mass. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=osteoporosis" title="osteoporosis">osteoporosis</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20tissue%20mineral%20density" title=" bone tissue mineral density"> bone tissue mineral density</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20quality" title=" bone quality"> bone quality</a>, <a href="https://publications.waset.org/abstracts/search?q=fat%20mass" title=" fat mass"> fat mass</a>, <a href="https://publications.waset.org/abstracts/search?q=lean%20mass" title=" lean mass"> lean mass</a>, <a href="https://publications.waset.org/abstracts/search?q=postmenopausal%20osteoporosis" title=" postmenopausal osteoporosis"> postmenopausal osteoporosis</a> </p> <a href="https://publications.waset.org/abstracts/66298/bone-mineral-density-and-quality-body-composition-of-women-in-the-postmenopausal-period" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66298.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6134</span> Effect of Aerobic Exercise on Estrogen Hormone and Bone Mineral Density in Osteoporotic Women</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noha%20Mohamed%20Abdelhafez%20Dahy">Noha Mohamed Abdelhafez Dahy</a>, <a href="https://publications.waset.org/abstracts/search?q=Azza%20Abd%20El-Aziz"> Azza Abd El-Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Eman%20Ahmed"> Eman Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Marwa%20El-Sayed"> Marwa El-Sayed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Osteoporosis is a metabolic bone disease characterized by low bone mass, deterioration of bone tissue, and disruption of bone microarchitecture, which leads to compromised bone strength and an increased risk of fracture, commonly it occurs in women 10-15 years after menopause, the mean age of menopause is 51 years. Menopause is natural physiological changes primary because of decline of ovaries function with age which leads to decrease of estrogen hormone production which is the main hormone for bone continuous remodeling for bone density maintenance. Exercise increase stimulation of bone growth to keep bone mass by the effect of the mechanical stimulation, antigravity loading and stress exerted on musculoskeletal muscles. Purpose: This study aimed to determine the effect of aerobic exercise on estrogen hormone and bone mineral density (BMD) in osteoporotic women and the correlation between the estrogen and BMD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Osteoporosis" title="Osteoporosis">Osteoporosis</a>, <a href="https://publications.waset.org/abstracts/search?q=Postmenopause" title=" Postmenopause"> Postmenopause</a>, <a href="https://publications.waset.org/abstracts/search?q=Aerobic%20exercise" title=" Aerobic exercise"> Aerobic exercise</a>, <a href="https://publications.waset.org/abstracts/search?q=DEXA" title=" DEXA"> DEXA</a>, <a href="https://publications.waset.org/abstracts/search?q=Serum%20Estrogen" title=" Serum Estrogen"> Serum Estrogen</a> </p> <a href="https://publications.waset.org/abstracts/166825/effect-of-aerobic-exercise-on-estrogen-hormone-and-bone-mineral-density-in-osteoporotic-women" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166825.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6133</span> A Review on Bone Grafting, Artificial Bone Substitutes and Bone Tissue Engineering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kasun%20Gayashan%20Samarawickrama">Kasun Gayashan Samarawickrama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bone diseases, defects, and fractions are commonly seen in modern life. Since bone is regenerating dynamic living tissue, it will undergo healing process naturally, it cannot recover from major bone injuries, diseases and defects. In order to overcome them, bone grafting technique was introduced. Gold standard was the best method for bone grafting for the past decades. Due to limitations of gold standard, alternative methods have been implemented. Apart from them artificial bone substitutes and bone tissue engineering have become the emerging methods with technology for bone grafting. Many bone diseases and defects will be healed permanently with these promising techniques in future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone%20grafting" title="bone grafting">bone grafting</a>, <a href="https://publications.waset.org/abstracts/search?q=gold%20standard" title=" gold standard"> gold standard</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20substitutes" title=" bone substitutes"> bone substitutes</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20tissue%20engineering" title=" bone tissue engineering"> bone tissue engineering</a> </p> <a href="https://publications.waset.org/abstracts/79771/a-review-on-bone-grafting-artificial-bone-substitutes-and-bone-tissue-engineering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6132</span> Bone Mineral Density in Long-Living Patients with Coronary Artery Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Svetlana%20V.%20Topolyanskaya">Svetlana V. Topolyanskaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Tatyana%20A.%20Eliseeva"> Tatyana A. Eliseeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Olga%20N.%20Vakulenko"> Olga N. Vakulenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Leonid%20I.%20Dvoretski"> Leonid I. Dvoretski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Limited data are available on osteoporosis in centenarians. Therefore, we evaluated bone mineral density in long-living patients with coronary artery disease (CAD). Methods: 202 patients hospitalized with CAD were enrolled in this cross-sectional study. The patients' age ranged from 90 to 101 years. The majority of study participants (64.4%) were women. The main exclusion criteria were any disease or medication that can lead to secondary osteoporosis. Bone mineral density (BMD) was measured by dual-energy X-ray absorptiometry. Results: Normal lumbar spine BMD was observed in 40.9%, osteoporosis – in 26.9%, osteopenia – in 32.2% of patients. Normal proximal femur BMD values were observed in 21.3%, osteoporosis – in 39.9%, and osteopenia – in 38.8% of patients. Normal femoral neck BMD was registered only in 10.4% of patients, osteoporosis was observed in 60.4%, osteopenia in 29.2%. Significant positive correlation was found between all BMD values and body mass index of patients (p < 0.001). Positive correlation was registered between BMD values and serum uric acid (p=0.0005). The likelihood of normal BMD values with hyperuricemia increased 3.8 times, compared to patients with normal uric acid, who often have osteoporosis (Odds Ratio=3.84; p = 0.009). Positive correlation was registered between all BMD values and body mass index (p < 0.001). Positive correlation between triglycerides levels and T-score (p=0.02), but negative correlation between BMD and HDL-cholesterol (p=0.02) were revealed. Negative correlation between frailty severity and BMD values (p=0.01) was found. Positive correlation between BMD values and functional abilities of patients assessed using Barthel index (r=0,44; p=0,000002) and IADL scale (r=0,36; p=0,00008) was registered. Fractures in history were observed in 27.6% of patients. Conclusions: The study results indicate some features of BMD in long-livers. In the study group, significant relationships were found between bone mineral density on the one hand, and patients' functional abilities on the other. It is advisable to further study the state of bone tissue in long-livers involving a large sample of patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=osteoporosis" title="osteoporosis">osteoporosis</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20mineral%20density" title=" bone mineral density"> bone mineral density</a>, <a href="https://publications.waset.org/abstracts/search?q=centenarians" title=" centenarians"> centenarians</a>, <a href="https://publications.waset.org/abstracts/search?q=coronary%20artery%20disease" title=" coronary artery disease"> coronary artery disease</a> </p> <a href="https://publications.waset.org/abstracts/132264/bone-mineral-density-in-long-living-patients-with-coronary-artery-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132264.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6131</span> Effect of cold water immersion on bone mineral metabolism in aging rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Irena%20Baranowska-Bosiacka">Irena Baranowska-Bosiacka</a>, <a href="https://publications.waset.org/abstracts/search?q=Mateusz%20Bosiacki"> Mateusz Bosiacki</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrycja%20Kupnicka"> Patrycja Kupnicka</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20Lubkowska"> Anna Lubkowska</a>, <a href="https://publications.waset.org/abstracts/search?q=Dariusz%20Chlubek"> Dariusz Chlubek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Physical activity and a balanced diet are among the key factors of "healthy ageing". Physical effort, including swimming in cold water (including bathing in natural water reservoirs), is widely recognized as a hardening factor, with a positive effect on the mental and physical health. At the same time, there is little scientific evidence to verify this hypothesis. In the literature to date, it is possible to obtain data on the impact of these factors on selected physiological and biochemical parameters of the blood, at the same time there are no results of research on the effect of immersing in cold water on mineral metabolism, especially bones, hence it seems important to perform such an analysis in relation to the key elements such as calcium (Ca), magnesium (Mg) and phosphorus (P). Taking the above into account, a hypothesis was put forward about the possibility of a positive effect of exercise in cold water on mineral metabolism and bone density in aging rats. The aim of the study was to evaluate the effect of an 8-week swimming training on mineral metabolism and bone density in aging rats in response to exercise in cold water (5oC) in comparison to swimming in thermal comfort (36oC) and sedentary (control) rats of both sexes. The examination of the concentration of the examined elements in the bones was carried out using inductively coupled plasma atomic emission spectrometry (ICP-OES). The mineral density of the femurs of the rats was measured using the Hologic Horizon DEXA System® densitometer. The results of our study showed that swimming in cold water affects bone mineral metabolism in aging rats by changing the Ca, Mg, P concentration and at the same time increasing their bone density. In males, a decrease in Mg concentration and no changes in bone density were observed. In the light of the research results, it seems that swimming in cold water may be a factor that positively modifies the bone aging process by improving the mechanisms affecting their density. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=swimming%20in%20cold%20water" title="swimming in cold water">swimming in cold water</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptation%20to%20cold%20water" title=" adaptation to cold water"> adaptation to cold water</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20mineral%20metabolism" title=" bone mineral metabolism"> bone mineral metabolism</a>, <a href="https://publications.waset.org/abstracts/search?q=aging" title=" aging"> aging</a> </p> <a href="https://publications.waset.org/abstracts/163011/effect-of-cold-water-immersion-on-bone-mineral-metabolism-in-aging-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6130</span> Ultrasonic Densitometry of Alveolar Bone Jaw during Retention Period of Orthodontic Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Margarita%20A.%20Belousova">Margarita A. Belousova</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergey%20N.%20Ermoliev"> Sergey N. Ermoliev</a>, <a href="https://publications.waset.org/abstracts/search?q=Nina%20K.%20Loginova"> Nina K. Loginova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The method of intraoral ultrasound densitometry developed to diagnose mineral density of alveolar bone jaws during retention period of orthodontic treatment (Patent of Russian Federation № 2541038). It was revealed significant decrease of the ultrasonic wave speed and bone mineral density in patients with relapses dentition anomalies during retention period of orthodontic treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intraoral%20ultrasonic%20densitometry" title="intraoral ultrasonic densitometry">intraoral ultrasonic densitometry</a>, <a href="https://publications.waset.org/abstracts/search?q=speed%20of%20sound" title=" speed of sound"> speed of sound</a>, <a href="https://publications.waset.org/abstracts/search?q=alveolar%20jaw%20bone" title=" alveolar jaw bone"> alveolar jaw bone</a>, <a href="https://publications.waset.org/abstracts/search?q=relapses%20of%20dentition%20anomalies" title=" relapses of dentition anomalies"> relapses of dentition anomalies</a>, <a href="https://publications.waset.org/abstracts/search?q=retention%20period%20of%20orthodontic%20treatment" title=" retention period of orthodontic treatment"> retention period of orthodontic treatment</a> </p> <a href="https://publications.waset.org/abstracts/22989/ultrasonic-densitometry-of-alveolar-bone-jaw-during-retention-period-of-orthodontic-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6129</span> Management and Evaluating Technologies of Tissue Engineering Various Fields of Bone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arash%20Sepehri%20Bonab">Arash Sepehri Bonab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Techniques to switch cells between development and differentiation, which tend to be commonly exclusive, are utilized in arrange to supply an expansive cell mass that can perform particular separated capacities required for the tissue to develop. Approaches to tissue engineering center on the have to give signals to cell populaces to advance cell multiplication and separation. Current tissue regenerative procedures depend primarily on tissue repair by transplantation of synthetic/natural inserts. In any case, restrictions on the existing procedures have expanded the request for tissue designing approaches. Tissue engineering innovation and stem cell investigation based on tissue building have made awesome advances in overcoming the issues of tissue and organ damage, useful loss, and surgical complications. Bone tissue has the capability to recover itself; in any case, surrenders of a basic estimate anticipate the bone from recovering and require extra support. The advancement of bone tissue building has been utilized to form useful options to recover the bone. This paper primarily portrays current advances in tissue engineering in different fields of bone and talks about the long-term trend of tissue designing innovation in the treatment of complex diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tissue%20engineering" title="tissue engineering">tissue engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=bone" title=" bone"> bone</a>, <a href="https://publications.waset.org/abstracts/search?q=technologies" title=" technologies"> technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a> </p> <a href="https://publications.waset.org/abstracts/149864/management-and-evaluating-technologies-of-tissue-engineering-various-fields-of-bone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149864.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6128</span> Interactions of Socioeconomic Status, Age at Menarche, Body Composition and Bone Mineral Density in Healthy Turkish Female University Students</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bet%C3%BCl%20Ersoy">Betül Ersoy</a>, <a href="https://publications.waset.org/abstracts/search?q=Deniz%20%C3%96zalp%20Kizilay"> Deniz Özalp Kizilay</a>, <a href="https://publications.waset.org/abstracts/search?q=G%C3%BCl%20G%C3%BCm%C3%BC%C5%9Fer"> Gül Gümüşer</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatma%20Taneli"> Fatma Taneli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Peak bone mass is reached in late adolescence in females. Age at menarche influences estrogen exposure, which plays a vital role in bone metabolism. The relationship between age at menarche and bone mineral density (BMD) is still controversial. In this study, we investigated the relationship between age at menarche, BMD, socioeconomic status (SES) and body composition in female university student. Participant and methods: A total of 138 healthy girls at late adolescence period (mean age 20.13±0.93 years, range 18-22) were included in this university school-based cross-sectional study in the urban area western region of Turkey. Participants have been randomly selected to reflect the university students studying in all faculties. We asked relevant questions about socioeconomic status and age at menarche to female university students. Students were grouped into three SES as lower, middle and higher according to the educational and occupational levels of their parents using Hollingshead index. Height and weight were measured. Body Mass Index (BMI) (kg/m2 ) was calculated. Dual energy X-ray absorptiometry (DXA) was performed using the Lunar DPX series, and BMD and body composition were evaluated. Results: The mean age of menarche of female university student included in the study was 13.09.±1.3 years. There was no significant difference between the three socioeconomic groups in terms of height, body weight, age at menarche, BMD [BMD (gr/cm2 ) (L2-L4) and BMD (gr/cm2 ) (total body)], and body composition (lean tissue, fat tissue, total fat, and body fat) (p>0.05). While no correlation was found between the age at menarche and any parameter (p>0.05), a positive significant correlation was found between lean tissue and BMD L2-L4 (r=0.286, p=0.01). When the relationships were evaluated separately according to socioeconomic status, there was a significant correlation between BMDL2-L4 (r: 0.431, p=0.005) and lean tissue in females with low SES, while this relationship disappeared in females with middle and high SES. Conclusion: Age at menarche did not change according to socioeconomic status, nor did BMD and body composition in female at late adolescents. No relationship was found between age at menarche and BMD and body composition determined by DEXA in female university student who were close to reaching peak bone mass. The results suggested that especially BMDL2-L4 might increase as lean tissue increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone" title="bone">bone</a>, <a href="https://publications.waset.org/abstracts/search?q=osteoposis" title=" osteoposis"> osteoposis</a>, <a href="https://publications.waset.org/abstracts/search?q=menarche" title=" menarche"> menarche</a>, <a href="https://publications.waset.org/abstracts/search?q=dexa" title=" dexa"> dexa</a> </p> <a href="https://publications.waset.org/abstracts/164076/interactions-of-socioeconomic-status-age-at-menarche-body-composition-and-bone-mineral-density-in-healthy-turkish-female-university-students" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164076.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6127</span> Numerical Modelling of Effective Diffusivity in Bone Tissue Engineering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayesha%20Sohail">Ayesha Sohail</a>, <a href="https://publications.waset.org/abstracts/search?q=Khadija%20Maqbool"> Khadija Maqbool</a>, <a href="https://publications.waset.org/abstracts/search?q=Anila%20Asif"> Anila Asif</a>, <a href="https://publications.waset.org/abstracts/search?q=Haroon%20Ahmad"> Haroon Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The field of tissue engineering is an active area of research. Bone tissue engineering helps to resolve the clinical problems of critical size and non-healing defects by the creation of man-made bone tissue. We will design and validate an efficient numerical model, which will simulate the effective diffusivity in bone tissue engineering. Our numerical model will be based on the finite element analysis of the diffusion-reaction equations. It will have the ability to optimize the diffusivity, even at multi-scale, with the variation of time. It will also have a special feature, with which we will not only be able to predict the oxygen, glucose and cell density dynamics, more accurately, but will also sort the issues arising due to anisotropy. We will fix these problems with the help of modifying the governing equations, by selecting appropriate spatio-temporal finite element schemes, by adaptive grid refinement strategy and by transient analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=scaffolds" title="scaffolds">scaffolds</a>, <a href="https://publications.waset.org/abstracts/search?q=porosity" title=" porosity"> porosity</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusion" title=" diffusion"> diffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20analysis" title=" transient analysis"> transient analysis</a> </p> <a href="https://publications.waset.org/abstracts/18702/numerical-modelling-of-effective-diffusivity-in-bone-tissue-engineering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18702.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">541</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6126</span> Bone Mineral Density and Trabecular Bone Score in Ukrainian Men with Obesity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vladyslav%20Povoroznyuk">Vladyslav Povoroznyuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20Musiienko"> Anna Musiienko</a>, <a href="https://publications.waset.org/abstracts/search?q=Nataliia%20Dzerovych"> Nataliia Dzerovych</a>, <a href="https://publications.waset.org/abstracts/search?q=Roksolana%20Povoroznyuk"> Roksolana Povoroznyuk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Osteoporosis and obesity are widespread diseases in people over 50 years associated with changes in structure and body composition. Нigher body mass index (BMI) values are associated with greater bone mineral density (BMD). However, trabecular bone score (TBS) indirectly explores bone quality, independently of BMD. The aim of our study was to evaluate the relationship between the BMD and TBS parameters in Ukrainian men suffering from obesity. We examined 396 men aged 40-89 years. Depending on their BMI all the subjects were divided into two groups: Group I &ndash; patients with obesity whose BMI was &ge; 30 kg/m<sup>2 </sup>(n=129) and Group II &ndash; patients without obesity and BMI of &lt; 30 kg/m<sup>2 </sup>(n=267). The BMD of total body, lumbar spine L<sub>1</sub>-L<sub>4</sub>, femoral neck and forearm were measured by DXA (Prodigy, GEHC Lunar, Madison, WI, USA). The TBS of L<sub>1</sub>- L<sub>4</sub> was assessed by means of TBS iNsight&reg; software installed on DXA machine (product of Med-Imaps, Pessac, France). In general, obese men had a significantly higher BMD of lumbar spine L<sub>1</sub>-L<sub>4</sub>, femoral neck, total body and ultradistal forearm (p &lt; 0.001) in comparison with men without obesity. The TBS of L<sub>1</sub>-L<sub>4</sub> was significantly lower in obese men compared to non-obese ones (p &lt; 0.001). BMD of lumbar spine L<sub>1</sub>-L<sub>4</sub>, femoral neck and total body significantly differ in men aged 40-49, 50-59, 60-69, and 80-89 years (p &lt; 0.05). At the same time, in men aged 70-79 years, BMD of lumbar spine L<sub>1</sub>-L<sub>4</sub> (p=0.46), femoral neck (p=0.18), total body (p=0.21), ultra-distal forearm (p=0.13), and TBS (p=0.07) did not significantly differ. A significant positive correlation between the fat mass and the BMD at different sites was observed. However, the correlation between the fat mass and TBS of L<sub>1</sub>-L<sub>4</sub> was also significant, though negative. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone%20mineral%20density" title="bone mineral density">bone mineral density</a>, <a href="https://publications.waset.org/abstracts/search?q=trabecular%20bone%20score" title=" trabecular bone score"> trabecular bone score</a>, <a href="https://publications.waset.org/abstracts/search?q=obesity" title=" obesity"> obesity</a>, <a href="https://publications.waset.org/abstracts/search?q=men" title=" men"> men</a> </p> <a href="https://publications.waset.org/abstracts/66301/bone-mineral-density-and-trabecular-bone-score-in-ukrainian-men-with-obesity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66301.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6125</span> The Decrease of Collagen or Mineral Affect the Fracture in the Turkey Long Bones</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Vosynek">P. Vosynek</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20N%C3%A1vrat"> T. Návrat</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Pe%C4%8D"> M. Peč</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Po%C5%99%C3%ADzka"> J. Pořízka</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Divi%C5%A1"> P. Diviš</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Changes of mechanical properties and response behavior of bones is an important external sign of medical problems like osteoporosis, bone remodeling after fracture or surgery, osteointegration, or bone tissue loss of astronauts in space. Measuring of mechanical behavior of bones in physiological and osteoporotic states, quantified by different degrees of protein (collagen) and mineral loss, is thus an important topic in biomechanical research. This contribution deals with the relation between mechanical properties of the turkey long bone–tibia in physiological, demineralized, and deproteinized state. Three methods for comparison were used: densitometry, three point bending and harmonic response analysis. The results help to find correlations between the methods and estimate their possible application in medical practice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone%20properties" title="bone properties">bone properties</a>, <a href="https://publications.waset.org/abstracts/search?q=long%20bone" title=" long bone"> long bone</a>, <a href="https://publications.waset.org/abstracts/search?q=osteoporosis" title=" osteoporosis"> osteoporosis</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20behavior" title=" response behavior"> response behavior</a> </p> <a href="https://publications.waset.org/abstracts/17564/the-decrease-of-collagen-or-mineral-affect-the-fracture-in-the-turkey-long-bones" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17564.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6124</span> Induced Bone Tissue Temperature in Drilling Procedures: A Comparative Laboratory Study with and without Lubrication</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Roseiro">L. Roseiro</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Veiga"> C. Veiga</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Maranha"> V. Maranha</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Neto"> A. Neto</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Laraqi"> N. Laraqi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ba%C3%AFri"> A. Baïri</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Alilat"> N. Alilat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In orthopedic surgery there are various situations in which the surgeon needs to implement methods of cutting and drilling the bone. With this type of procedure the generated friction leads to a localized increase in temperature, which may lead to the bone necrosis. Recognizing the importance of studying this phenomenon, an experimental evaluation of the temperatures developed during the procedure of drilling bone has been done. Additionally the influence of the use of the procedure with / without additional lubrication during drilling of bone has also been done. The obtained results are presented and discussed and suggests an advantage in using additional lubrication as a way to minimize the appearance of bone tissue necrosis during bone drilling procedures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone%20necrosis" title="bone necrosis">bone necrosis</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20drilling" title=" bone drilling"> bone drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=thermography" title=" thermography"> thermography</a>, <a href="https://publications.waset.org/abstracts/search?q=surgery" title=" surgery"> surgery</a> </p> <a href="https://publications.waset.org/abstracts/16605/induced-bone-tissue-temperature-in-drilling-procedures-a-comparative-laboratory-study-with-and-without-lubrication" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16605.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">599</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6123</span> Bone Mineral Density of the Lumbar Spine, Femur in Elite Egyptian Male Swimmers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Magdy%20Abouzeid">Magdy Abouzeid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Physical activity has been shown to have a positive effect on bone mineral density (BMD) and bone mineral content (BMC) among children, adolescents, and adults. Sports characterized by little or moderate weight bearing or impact have a low osteogenic effect. However, the action of such sports on bone turnover remains unclear. Swimming, as a non-weight-bearing sport, has been considered to be insignificant in the maintenance of bone mass. Purpose: To examine this issue we measured (BMD) and(BMC) of the lumbar spine, proximal femur via dual energy x-ray absorptiometry in the group of elite male swimmers, and determine the effect of swimming training on bone health and compared the results with matched controls group in age, body weight and height. Materials and Methods: Twenty-five male swimmers (age 20.7+/-0.8 years) training for 12-15 hours/week; and the controls group consisted of 25 non-active male (age 21.3 +/-1.3 years) were studied BMD and BMC of lumbar spine, femur were assessed via (DXA) absorptiometry. Results: There was significant difference between swimmers and control group in BMD and BMC, BMD of Swimmers was significantly greater than controls at all sites. The lumbar spine (1, 08 +/-0.202 vs., 0717+0.57 gxcm (-2), right proximal femur (1, 02 +/-, 044 vs., 771+/-, 027 gxcm (-2), and left proximal femur (1.374+/-0.212 vs. 1.01 +/-0.141 gxcm (-2). Swimmers were significantly taller, and had greater BMC and BMD compared to the controls group (P<0.001). Conclusions: These results suggest that swimming training may be beneficial in the prevention or therapy of OSTEOPENIA, and may lead to increased (BMD) and (BMC) for male swimmers. Swimming may be an effective non-pharmacological intervention for the adults and adolescent. Further research with younger athletes of another type of aquatics sport is warranted to better identify the periods of BMD development during which Aquatics sport has the greatest impact on bone health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone%20mineral%20density" title="bone mineral density">bone mineral density</a>, <a href="https://publications.waset.org/abstracts/search?q=lumbar%20spine" title=" lumbar spine"> lumbar spine</a>, <a href="https://publications.waset.org/abstracts/search?q=femur" title=" femur"> femur</a>, <a href="https://publications.waset.org/abstracts/search?q=swimming" title=" swimming"> swimming</a>, <a href="https://publications.waset.org/abstracts/search?q=DXA%20absorptiometry" title=" DXA absorptiometry"> DXA absorptiometry</a> </p> <a href="https://publications.waset.org/abstracts/45726/bone-mineral-density-of-the-lumbar-spine-femur-in-elite-egyptian-male-swimmers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45726.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6122</span> Relation between Biochemical Parameters and Bone Density in Postmenopausal Women with Osteoporosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shokouh%20Momeni">Shokouh Momeni</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Salamat"> Mohammad Reza Salamat</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Asghar%20Rastegari"> Ali Asghar Rastegari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Osteoporosis is the most prevalent metabolic bone disease in postmenopausal women associated with reduced bone mass and increased bone fracture. Measuring bone density in the lumbar spine and hip is a reliable measure of bone mass and can therefore specify the risk of fracture. Dual-energy X-ray absorptiometry(DXA) is an accurate non-invasive system measuring the bone density, with low margin of error and no complications. The present study aimed to investigate the relationship between biochemical parameters with bone density in postmenopausal women. Materials and methods: This cross-sectional study was conducted on 87 postmenopausal women referred to osteoporosis centers in Isfahan. Bone density was measured in the spine and hip area using DXA system. Serum levels of calcium, phosphorus, alkaline phosphatase and magnesium were measured by autoanalyzer and serum levels of vitamin D were measured by high-performance liquid chromatography(HPLC). Results: The mean parameters of calcium, phosphorus, alkaline phosphatase, vitamin D and magnesium did not show a significant difference between the two groups(P-value>0.05). In the control group, the relationship between alkaline phosphatase and BMC and BA in the spine was significant with a correlation coefficient of -0.402 and 0.258, respectively(P-value<0.05) and BMD and T-score in the femoral neck area showed a direct and significant relationship with phosphorus(Correlation=0.368; P-value=0.038). There was a significant relationship between the Z-score with calcium(Correlation=0.358; P-value=0.044). Conclusion: There was no significant relationship between the values ​​of calcium, phosphorus, alkaline phosphatase, vitamin D and magnesium parameters and bone density (spine and hip) in postmenopaus <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=osteoporosis" title="osteoporosis">osteoporosis</a>, <a href="https://publications.waset.org/abstracts/search?q=menopause" title=" menopause"> menopause</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20mineral%20density" title=" bone mineral density"> bone mineral density</a>, <a href="https://publications.waset.org/abstracts/search?q=vitamin%20d" title=" vitamin d"> vitamin d</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium" title=" calcium"> calcium</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium" title=" magnesium"> magnesium</a>, <a href="https://publications.waset.org/abstracts/search?q=alkaline%20phosphatase" title=" alkaline phosphatase"> alkaline phosphatase</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphorus" title=" phosphorus"> phosphorus</a> </p> <a href="https://publications.waset.org/abstracts/158352/relation-between-biochemical-parameters-and-bone-density-in-postmenopausal-women-with-osteoporosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158352.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6121</span> A CD40 Variant is Associated with Systemic Bone Loss Among Patients with Rheumatoid Arthritis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rim%20Sghiri">Rim Sghiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Samia%20Al%20Shouli"> Samia Al Shouli</a>, <a href="https://publications.waset.org/abstracts/search?q=Hana%20Benhassine"> Hana Benhassine</a>, <a href="https://publications.waset.org/abstracts/search?q=Nejla%20Elamri"> Nejla Elamri</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahid%20Shakoor"> Zahid Shakoor</a>, <a href="https://publications.waset.org/abstracts/search?q=Foued%20Slama"> Foued Slama</a>, <a href="https://publications.waset.org/abstracts/search?q=Adel%20Almogren"> Adel Almogren</a>, <a href="https://publications.waset.org/abstracts/search?q=Hala%20Zeglaoui"> Hala Zeglaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Elyes%20Bouajina"> Elyes Bouajina</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramzi%20Zemni"> Ramzi Zemni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives: Little is known about genes predisposing to systemic bone loss (SBL) in rheumatoid arthritis (RA). Therefore, we examined the association between SBL and a variant of CD40 gene, which is known to play a critical role in both immune response and bone homeostasis among patients with RA. Methods: CD40 rs48104850 was genotyped in 176 adult RA patients. Bone mineral density (BMD) was measured using dual-energy X-ray absorptiometry (DXA). Results: Low BMD was observed in 116 (65.9%) patients. Among them, 60 (34.1%) had low femoral neck (FN) Z score, 72 (40.9%) had low total femur (TF) Z score, and 105 (59.6%) had low lumbar spine (LS) Z score. CD40 rs4810485 was found to be associated with reduced TF Z score with the CD40 rs4810485 T allele protecting against reduced TF Z score (OR = 0.40, 95% CI = 0.23-0.68, p = 0.0005). This association was confirmed in the multivariate logistic regression analysis (OR=0.31, 95% CI= 0.16-0.59, p=3.84 x 10₋₄). Moreover, median FN BMD was reduced among RA patients with CD40 rs4810485 GG genotype compared to RA patients harbouring CD40 rs4810485 TT and GT genotypes (0.788± 0.136 versus 0.826± 0.146g/cm², p=0.001). Conclusion: This study, for the first time ever, demonstrated an association between a CD40 genetic variant and SBL among patients with RA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rheumatoid%20arthritis" title="rheumatoid arthritis">rheumatoid arthritis</a>, <a href="https://publications.waset.org/abstracts/search?q=CD40%20gene" title=" CD40 gene"> CD40 gene</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20mineral%20density" title=" bone mineral density"> bone mineral density</a>, <a href="https://publications.waset.org/abstracts/search?q=systemic%20bone%20loss" title=" systemic bone loss"> systemic bone loss</a>, <a href="https://publications.waset.org/abstracts/search?q=rs48104850" title=" rs48104850"> rs48104850</a> </p> <a href="https://publications.waset.org/abstracts/144783/a-cd40-variant-is-associated-with-systemic-bone-loss-among-patients-with-rheumatoid-arthritis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144783.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6120</span> Biocellulose Template for 3D Mineral Scaffolds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Busuioc">C. Busuioc</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Voicu"> G. Voicu</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20I.%20Jinga"> S. I. Jinga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The field of tissue engineering brings new challenges in terms of proposing original solutions for ongoing medical issues, improving the biological performances of existing clinical systems and speeding the healing process for a faster recovery and a more comfortable life as patient. In this context, we propose the obtaining of 3D porous scaffolds of mineral nature, dedicated to bone repairing and regeneration purposes or employed as bioactive filler for bone cements. Thus, bacterial cellulose - calcium phosphates composite materials have been synthesized by successive immersing of the polymeric membranes in the precursor solution containing Ca2+ and [PO4]3- ions. The mineral phase deposited on the surface of biocellulose fibers was varied as amount through the number of immersing cycles. The intermediary composites were subjected to thermal treatments at different temperatures in order to remove the organic part and provide the formation of a self-sustained 3D architecture. The resulting phase composition consists of common phosphates, while the morphology largely depends on the preparation parameters. Thus, the aspect of the 3D mineral scaffolds can be tuned from a loose microstructure composed of large grains connected via monocrystalline nanorods to a trabecular pattern crossed by parallel internal channels, just like the natural bone. The bioactivity and biocompatibility of the obtained materials have been also assessed, with encouraging results in the clinical use direction. In conclusion, the compositional, structural, morphological and biological characterizations sustain the suitability of the reported biostructures for integration in hard tissue engineering applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacterial%20cellulose" title="bacterial cellulose">bacterial cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20reconstruction" title=" bone reconstruction"> bone reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20phosphates" title=" calcium phosphates"> calcium phosphates</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20scaffolds" title=" mineral scaffolds"> mineral scaffolds</a> </p> <a href="https://publications.waset.org/abstracts/62387/biocellulose-template-for-3d-mineral-scaffolds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62387.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6119</span> Bone Mineral Density and Frequency of Low-Trauma Fractures in Ukrainian Women with Metabolic Syndrome</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vladyslav%20Povoroznyuk">Vladyslav Povoroznyuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Larysa%20Martynyuk"> Larysa Martynyuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Iryna%20Syzonenko"> Iryna Syzonenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Liliya%20Martynyuk"> Liliya Martynyuk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Osteoporosis is one of the important problems in postmenopausal women due to an increased risk of sudden and unexpected fractures. This study is aimed to determine the connection between bone mineral density (BMD) and trabecular bone score (TBS) in Ukrainian women suffering from metabolic syndrome. Participating in the study, 566 menopausal women aged 50-79 year-old were examined and divided into two groups: Group A included 336 women with no obesity (BMI &le; 29.9 kg/m<sup>2</sup>), and Group B &ndash; 230 women with metabolic syndrome (diagnosis according to IDF criteria, 2005). Dual-energy X-ray absorptiometry was used for measuring of lumbar spine (L1-L4), femoral neck, total body and forearm BMD and bone quality indexes (last according to Med-Imaps installation). Data were analyzed using Statistical Package 6.0. A significant increase of lumbar spine (L1-L4), femoral neck, total body and ultradistal radius BMD was found in women with metabolic syndrome compared to those without obesity (p &lt; 0.001) both in their totality and in groups of 50-59 years, 60-69 years, and 70-79 years. TBS was significantly higher in non-obese women compared to metabolic syndrome patients of 50-59 years and in the general sample (p &lt; 0.05). Analysis showed significant positive correlation between body mass index (BMI) and BMD at all levels. Significant negative correlation between BMI and TBS (L1-L4) was established. Despite the fact that BMD indexes were significantly higher in women with metabolic syndrome, the frequency of vertebral and non-vertebral fractures did not differ significantly in the groups of patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone%20mineral%20density" title="bone mineral density">bone mineral density</a>, <a href="https://publications.waset.org/abstracts/search?q=trabecular%20bone%20score" title=" trabecular bone score"> trabecular bone score</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolic%20syndrome" title=" metabolic syndrome"> metabolic syndrome</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture" title=" fracture"> fracture</a> </p> <a href="https://publications.waset.org/abstracts/66299/bone-mineral-density-and-frequency-of-low-trauma-fractures-in-ukrainian-women-with-metabolic-syndrome" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66299.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6118</span> Screening Post-Menopausal Women for Osteoporosis by Complex Impedance Measurements of the Dominant Arm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yekta%20%C3%9Clgen">Yekta Ülgen</a>, <a href="https://publications.waset.org/abstracts/search?q=F%C4%B1rat%20Matur"> Fırat Matur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cole-Cole parameters of 40 post-menopausal women are compared with their DEXA bone mineral density measurements. Impedance characteristics of four extremities are compared; left and right extremities are statistically same, but lower extremities are statistically different than upper ones due to their different fat content. The correlation of Cole-Cole impedance parameters to bone mineral density (BMD) is observed to be higher for a dominant arm. With the post menopausal population, ANOVA tests of the dominant arm characteristic frequency, as a predictor for DEXA classified osteopenic and osteoporotic population around the lumbar spine, is statistically very significant. When used for total lumbar spine osteoporosis diagnosis, the area under the Receiver Operating Curve of the characteristic frequency is 0.875, suggesting that the Cole-Cole plot characteristic frequency could be a useful diagnostic parameter when integrated into standard screening methods for osteoporosis. Moreover, the characteristic frequency can be directly measured by monitoring frequency driven the angular behavior of the dominant arm without performing any complex calculation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioimpedance%20spectroscopy" title="bioimpedance spectroscopy">bioimpedance spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20mineral%20density" title=" bone mineral density"> bone mineral density</a>, <a href="https://publications.waset.org/abstracts/search?q=osteoporosis" title=" osteoporosis"> osteoporosis</a>, <a href="https://publications.waset.org/abstracts/search?q=characteristic%20frequency" title=" characteristic frequency"> characteristic frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=receiver%20operating%20curve" title=" receiver operating curve"> receiver operating curve</a> </p> <a href="https://publications.waset.org/abstracts/30804/screening-post-menopausal-women-for-osteoporosis-by-complex-impedance-measurements-of-the-dominant-arm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30804.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">522</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6117</span> A Radiographic Survey of Eggshell Powder Effect on Tibial Bone Defect Repair Tested in Dog</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Yadegari">M. Yadegari</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Nourbakhsh"> M. Nourbakhsh</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Arbabzadeh"> N. Arbabzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The skeletal system injuries are of major importance. In addition, it is recommended to use materials for hard tissue repair in open or closed fractures. It is important to use complex minerals with a beneficial effect on hard tissue repair, stimulating cell growth in the bone. Materials that could help avoid bone fracture inflammatory reaction and speed up bone fracture repair are of utmost importance in the treatment of bone fractures. Similar to minerals, the inner eggshell membrane consists of carbohydrates, lipids, proteins with the high pH, high calcium absorptive capacity and with faster bone fracture repair ability. In the present radiographic survey, eggshell-derived bone graft substitutes were used for bone defect repair in 8 dog tibia, measuring bone density on the day of implant placement and 30 and 60 days after placement. In fact, the result of this study shows the difference in bone growth and misshapen bones between treatment and control sites. Cell growth was adequate in treatment sites and misshapen bones were less frequent here than in control sites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone%20repair" title="bone repair">bone repair</a>, <a href="https://publications.waset.org/abstracts/search?q=eggshell%20powder" title=" eggshell powder"> eggshell powder</a>, <a href="https://publications.waset.org/abstracts/search?q=implant" title=" implant"> implant</a>, <a href="https://publications.waset.org/abstracts/search?q=radiography" title=" radiography"> radiography</a> </p> <a href="https://publications.waset.org/abstracts/34008/a-radiographic-survey-of-eggshell-powder-effect-on-tibial-bone-defect-repair-tested-in-dog" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34008.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6116</span> Associations between Metabolic Syndrome and Bone Mineral Density and Trabecular Bone Score in Postmenopausal Women with Non-Vertebral Fractures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vladyslav%20Povoroznyuk">Vladyslav Povoroznyuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Larysa%20Martynyuk"> Larysa Martynyuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Iryna%20Syzonenko"> Iryna Syzonenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Liliya%20Martynyuk"> Liliya Martynyuk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Medical, social, and economic relevance of osteoporosis is caused by reducing quality of life, increasing disability and mortality of the patients as a result of fractures due to the low-energy trauma. This study is aimed to examine the associations of metabolic syndrome components, bone mineral density (BMD) and trabecular bone score (TBS) in menopausal women with non-vertebral fractures. 1161 menopausal women aged 50-79 year-old were examined and divided into three groups: A included 419 women with increased body weight (BMI - 25.0-29.9 kg/m<sup>2</sup>), B &ndash; 442 females with obesity (BMI &gt;29.9 kg/m<sup>2</sup>)i and C &ndash; 300 women with metabolic syndrome (diagnosis according to IDF criteria, 2005). BMD of lumbar spine (L1-L4), femoral neck, total body and forearm was investigated with usage of dual-energy X-ray absorptiometry. The bone quality indexes were measured according to Med-Imaps installation. All analyses were performed using Statistical Package 6.0. BMD of lumbar spine (L1-L4), femoral neck, total body, and ultradistal radius was significant higher in women with obesity and metabolic syndrome compared to the pre-obese ones (p&lt;0.001). TBS was significantly higher in women with increased body weight compared to obese and metabolic syndrome patients. Analysis showed significant positive correlation between waist circumference, triglycerides level and BMD of lumbar spine and femur. Significant negative association between serum HDL level and BMD of investigated sites was established. The TBS (L1-L4) indexes positively correlated with HDL (high-density lipoprotein) level. Despite the fact that BMD indexes were better in women with metabolic syndrome, the frequency of non-vertebral fractures was significantly higher in this group of patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone%20mineral%20density" title="bone mineral density">bone mineral density</a>, <a href="https://publications.waset.org/abstracts/search?q=trabecular%20bone%20score" title=" trabecular bone score"> trabecular bone score</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolic%20syndrome" title=" metabolic syndrome"> metabolic syndrome</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture" title=" fracture"> fracture</a> </p> <a href="https://publications.waset.org/abstracts/89679/associations-between-metabolic-syndrome-and-bone-mineral-density-and-trabecular-bone-score-in-postmenopausal-women-with-non-vertebral-fractures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89679.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6115</span> Preparation and Application of Biocompatible Nanobioactive Glass as Therapeutic Agents for Bone Tissue Engineering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Shrivastava">P. Shrivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Vijayalakshmi"> S. Vijayalakshmi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20Singh"> A. K. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Dalai"> S. Dalai</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Teotia"> R. Teotia</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Sharma"> P. Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Bellare"> J. Bellare</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focuses on the synthesis and application of nanobioactive glass for bone regeneration studies. Nanobioactive glass has been synthesized by sol gel method having a combination of silicon, calcium and phosphorous in the molar ratio of 75:21:4. The prepared particles were analyzed for surface morphology by FEG SEM and FEG TEM. Physiochemical properties were investigated using ICP AES, FTIR spectroscopy and X-ray diffraction (XRD) techniques. To ascertain their use for therapeutic use, biocompatibility evaluation of the particles was done by performing soaking studies in SBF and in vitro cell culture studies on MG63 cell lines. Cell morphology was observed by FE SEM and phase contrast microscopy. Nanobioactive glasses (NBG) thus prepared were of 30-200 nm in size, which makes them suitable for nano-biomedical applications. The spherical shape of the particles imparts high surface to volume ratio, promoting fast growth of hydroxyapatite (HA), which is the mineral component of bone. As evaluated by in vitro cell culture studies the NBG was found to enhance the surface activation which enhances osteoblast adhesion. This is an essential parameter to improve bone tissue integration, thereby making nanobioactive glass therapeutically suitable for correcting bone defects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocompatibility" title="biocompatibility">biocompatibility</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20tissue%20engineering" title=" bone tissue engineering"> bone tissue engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxyapatite" title=" hydroxyapatite"> hydroxyapatite</a>, <a href="https://publications.waset.org/abstracts/search?q=nanobioactive%20glass" title=" nanobioactive glass"> nanobioactive glass</a> </p> <a href="https://publications.waset.org/abstracts/14477/preparation-and-application-of-biocompatible-nanobioactive-glass-as-therapeutic-agents-for-bone-tissue-engineering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14477.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6114</span> Association of Serum Uric Acid Level and Bone Mineral Density of Menopausal Women</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soyeon%20Kang">Soyeon Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Youn-Jee%20Chung"> Youn-Jee Chung</a>, <a href="https://publications.waset.org/abstracts/search?q=Jung%20Namkung"> Jung Namkung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: This retrospective study investigated the association between uric acid level and bone mineral density (BMD) in the postmenopausal period. Methods: The study included 328 menopausal women (mean age, 57.3 ± 6.5 years; mean serum uric acid level, 4.6 ± 1.0 mg/dL). Patients were divided into three groups by tertile of serum uric acid level. Patients who used hormone treatment (HT), bisphosphonates, or lipid-lowering agents were included. Results: Blood urea nitrogen, serum creatinine, and serum triglyceride levels were significantly higher in the upper uric acid tertiles. No significant difference was found in the mean uric acid levels between medication users and non-users. Distinct HT regimens showed different mean serum uric acid levels. In a cross-sectional analysis, higher serum uric acid levels showed a tendency toward increased BMD in the spine and femoral neck. Longitudinal analysis of 186 women who underwent follow-up examination at a mean interval of 14.6 months revealed a trend toward a smaller reduction in femoral neck BMD in women in the upper serum uric acid tertiles. Conclusion: A positive correlation exists between serum uric acid levels and BMD in menopausal women. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=menopause" title="menopause">menopause</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=uric%20acid" title=" uric acid"> uric acid</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20mineral%20density" title=" bone mineral density"> bone mineral density</a> </p> <a href="https://publications.waset.org/abstracts/115923/association-of-serum-uric-acid-level-and-bone-mineral-density-of-menopausal-women" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6113</span> Analysis of Patent Protection of Bone Tissue Engineering Scaffold Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yunwei%20Zhang">Yunwei Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Na%20Li"> Na Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuhong%20Niu"> Yuhong Niu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bone tissue engineering scaffold was regarded as an important clinical technology of curing bony defect. The patent protection of bone tissue engineering scaffold had been paid more attention and strengthened all over the world. This study analyzed the future development trends of international technologies in the field of bone tissue engineering scaffold and its patent protection. This study used the methods of data classification and classification indexing to analyze 2718 patents retrieved in the patent database. Results showed that the patents coming from United States had a competitive advantage over other countiries in the field of bone tissue engineering scaffold. The number of patent applications by a single company in U.S. was a quarter of that of the world. However, the capability of R&D in China was obviously weaker than global level, patents mainly coming from universities and scientific research institutions. Moreover, it would be predicted that synthetic organic materials as new materials would be gradually replaced by composite materials. The patent technology protections of composite materials would be more strengthened in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone%20tissue%20engineering" title="bone tissue engineering">bone tissue engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=patent%20analysis" title=" patent analysis"> patent analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Scaffold%20material" title=" Scaffold material"> Scaffold material</a>, <a href="https://publications.waset.org/abstracts/search?q=patent%20protection" title=" patent protection"> patent protection</a> </p> <a href="https://publications.waset.org/abstracts/105186/analysis-of-patent-protection-of-bone-tissue-engineering-scaffold-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105186.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6112</span> TLR4 Gene Polymorphism and Biochemical Markers as a Tool to Identify Risk of Osteoporosis in Women from Karachi</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rozeena%20Baig">Rozeena Baig</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Rehana%20Rehman"> R. Rehana Rehman</a>, <a href="https://publications.waset.org/abstracts/search?q=Rifat%20Ahmed"> Rifat Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Osteoporosis, characterized by low bone mineral density, poses a global health concern. Diagnosis increases the likelihood of developing osteoporosis, a multifactorial disorder marked by low bone mass, elevating the risk of fractures in the lumbar spine, femoral neck, hip, vertebras, and distal forearm, particularly in postmenopausal women due to bone loss influenced by various pathophysiological factors. Objectives: The aim is to investigate the association of serum cytokine, bone turnover marker, bone mineral density and TLR4 gene polymorphism in pre and post-menopausal women and to find if any of these can be the potential predictor of osteoporosis in postmenopausal women. Material and methods: The study participants consisted of Group A (n=91) healthy pre-menopausal women and Group B (n=102) healthy postmenopausal women having ≥ 5 years’ history of menopause. ELISA was performed for cytokine (TNFα) and bone turnover markers (carboxytelopeptides), respectively. Bone Mineral Density (BMD)was measured through a dual X-ray absorptiometry (DEXA) scan. Toll-like Receptors 4 (TLR4) gene polymorphisms (A896G; Asp299Gly) and (C1196T; Thr399Ile) were investigated by PCR and Sanger sequencing. Results: Statistical analysis reveals a positive correlation of age and BMI with T scores in the premenopausal group, whereas in post-menopausal group found a significant negative correlation between age and T-score at hip (r = - 0.352**), spine (r = - .306**), and femoral neck (r = - 0.344**) and a significant negative correlation of BMI with TNF-α (- 0.316**). No association and significant differences were observed for TLR4 genotype and allele frequencies among studied groups However, both SNPs exhibited significant association with each other. Conclusions: This study concludes that BMI, BMD and TNF-α are the potential predictors of osteoporosis in post-menopausal women. However, CTX and TLR4 gene polymorphism did not appear as potential predictors of bone loss in this study and apparently cannot help in predicting bone loss in post-menopausal women. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=osteoporosis" title="osteoporosis">osteoporosis</a>, <a href="https://publications.waset.org/abstracts/search?q=post-menopausal" title=" post-menopausal"> post-menopausal</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-menopausal%20woemn" title=" pre-menopausal woemn"> pre-menopausal woemn</a>, <a href="https://publications.waset.org/abstracts/search?q=genetics%20mutaiont" title=" genetics mutaiont"> genetics mutaiont</a>, <a href="https://publications.waset.org/abstracts/search?q=TLR4%20genepolymorphsum" title=" TLR4 genepolymorphsum"> TLR4 genepolymorphsum</a> </p> <a href="https://publications.waset.org/abstracts/185613/tlr4-gene-polymorphism-and-biochemical-markers-as-a-tool-to-identify-risk-of-osteoporosis-in-women-from-karachi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185613.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">41</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6111</span> Bone Mineral Density and Trabecular Bone Score in Ukrainian Women with Obesity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vladyslav%20Povoroznyuk">Vladyslav Povoroznyuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Nataliia%20Dzerovych"> Nataliia Dzerovych</a>, <a href="https://publications.waset.org/abstracts/search?q=Larysa%20Martynyuk"> Larysa Martynyuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Tetiana%20Kovtun"> Tetiana Kovtun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Obesity and osteoporosis are the two diseases whose increasing prevalence and high impact on the global morbidity and mortality, during the two recent decades, have gained a status of major health threats worldwide. Obesity purports to affect the bone metabolism through complex mechanisms. Debated data on the connection between the bone mineral density and fracture prevalence in the obese patients are widely presented in literature. There is evidence that the correlation of weight and fracture risk is site-specific. The aim of this study was to evaluate the Bone Mineral Density (BMD) and Trabecular Bone Score (TBS) in the obese Ukrainian women. We examined 1025 40-89-year-old women, divided them into the groups according to their body mass index: Group a included 360 women with obesity whose BMI was ≥30 kg/m2, and Group B – 665 women with no obesity and BMI of < 30 kg/m2. The BMD of total body, lumbar spine at the site L1-L4, femur and forearm were measured by DXA (Prodigy, GEHC Lunar, Madison, WI, USA). The TBS of L1-L4 was assessed by means of TBS iNsight® software installed on our DXA machine (product of Med-Imaps, Pessac, France). In general, obese women had a significantly higher BMD of lumbar spine, femoral neck, proximal femur, total body, and ultradistal forearm (p<0.001) in comparison with women without obesity. The TBS of L1-L4 was significantly lower in obese women compared to non-obese women (p<0.001). The BMD of lumbar spine, femoral neck and total body differed to a significant extent in women of 40-49, 50-59, 60-69, and 70-79 years (p<0.05). At same time, in women aged 80-89 years the BMD of lumbar spine (p=0.09), femoral neck (p=0.22) and total body (p=0.06) barely differed. The BMD of ultradistal forearm was significantly higher in women of all age groups (p<0.05). The TBS of L1-L4 in all the age groups tended to reveal the lower parameters in obese women compared with the non-obese; however, those data were not statistically significant. By contrast, a significant positive correlation was observed between the fat mass and the BMD at different sites. The correlation between the fat mass and TBS of L1-L4 was also significant, although negative. Women with vertebral fractures had a significantly lower body weight, body mass index and total body fat mass in comparison with women without vertebral fractures in their anamnesis. In obese women the frequency of vertebral fractures was 27%, while in women without obesity – 57%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=obesity" title="obesity">obesity</a>, <a href="https://publications.waset.org/abstracts/search?q=trabecular%20bone%20score" title=" trabecular bone score"> trabecular bone score</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20mineral%20density" title=" bone mineral density"> bone mineral density</a>, <a href="https://publications.waset.org/abstracts/search?q=women" title=" women"> women</a> </p> <a href="https://publications.waset.org/abstracts/30633/bone-mineral-density-and-trabecular-bone-score-in-ukrainian-women-with-obesity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30633.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6110</span> Suitability Evaluation of CNW as Scaffold for Osteoblast</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hoo%20Cheol%20Lee">Hoo Cheol Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Dae%20Seung%20Kim"> Dae Seung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang%20Myung%20Jung"> Sang Myung Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Gwang%20Heum%20Yoon"> Gwang Heum Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Hwa%20Sung%20Shin"> Hwa Sung Shin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Loss of bone tissue can occur due to a bone tissue disease and aging or fracture. Renewable formation of bone is mainly made by its differentiation and metabolism. For this reason, osteoblasts have been studied for regeneration of bone tissue. So, tissue engineering has attracted attention as a recovery means. In tissue engineering, a particularly important factor is a scaffold that supports cell growth. For osteoblast scaffold, we used the cellulose nanowhisker (CNW) extracted from marine organism. CNW is one of an abundant material obtained from a number of plants and animals. CNW is polymer consisting of monomer cellulose and this composition offers biodegradability and biocompatibility to CNW. Mechanical strength of CNW is superior to the existing natural polymers. In addition, substances of marine origin have a low risk of secondary infection by bacteria and pathogen in contrast with those of land-derived. For evaluating its suitability as an osteoblast scaffold, we fabricate CNW film for osteoblast culture and performed the MTT assay and ALP assay to confirm its cytotoxicity and effect on differentiation. Taking together these results, we assessed CNW is a potential candidate of a material for bone tissue regeneration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone%20regeneration" title="bone regeneration">bone regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulose%20nanowhisker" title=" cellulose nanowhisker"> cellulose nanowhisker</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20derived%20material" title=" marine derived material"> marine derived material</a>, <a href="https://publications.waset.org/abstracts/search?q=osteoblast" title=" osteoblast"> osteoblast</a> </p> <a href="https://publications.waset.org/abstracts/7802/suitability-evaluation-of-cnw-as-scaffold-for-osteoblast" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7802.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6109</span> Osteoarticular Manifestations and Abnormalities of Bone Metabolism in Celiac Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soumaya%20Mrabet">Soumaya Mrabet</a>, <a href="https://publications.waset.org/abstracts/search?q=Imen%20Akkari"> Imen Akkari</a>, <a href="https://publications.waset.org/abstracts/search?q=Amira%20Atig"> Amira Atig</a>, <a href="https://publications.waset.org/abstracts/search?q=Elhem%20Ben%20Jazia"> Elhem Ben Jazia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Celiac disease (CD) is a chronic autoimmune inflammatory enteropathy caused by gluten. The clinical presentation is very variable. Malabsorption in the MC is responsible for an alteration of the bone metabolism. Our purpose is to study the osteoarticular manifestations related to this condition. Material and methods: It is a retrospective study of 41 cases of CD diagnosed on clinical, immunological, endoscopic and histological arguments, in the Internal Medicine and Gastroenterology Department of Farhat Hached Hospital between September 2005 and January 2016. Results: Osteoarticular manifestations were found in 9 patients (22%) among 41 patients presenting CD. These were 7 women and 2 men with an average age of 35.7 years (25 to 67 years). These manifestations were revelatory of CD in 3 cases. Abdominal pain and diarrhea were present in 6 cases. Inflammatory polyarthralgia of wrists and knees has been reported in 7 patients. Mechanical mono arthralgia was noted in 2 patients. Biological tests revealed microcytic anemia by iron deficiency in 7 cases, hypocalcemia in 5 cases, Hypophosphatemia in 3 cases and elevated alkaline phosphatases in 3 cases. Upper gastrointestinal endoscopy with duodenal biopsy found villous atrophy in all cases. In immunology, Anti-transglutaminase antibodies were positive in all patients, Anti-endomysium in 7 cases. Measurement of bone mineral density (BMD) by biphotonic X-ray absorptiometer with evaluation of the T-score and the Z-score was performed in Twenty patients (48.8%). It was normal in 7 cases (33%) and showed osteopenia in 5 patients (25%) and osteoporosis in 2 patients (10%). All patients were treated with a Gluten-free diet associated with vitamin D and calcium substitution in 5 cases. The evolution was favorable in all cases with reduction of bone pain and normalization of the phosphocalcic balance. Conclusion: The bone impact of CD is frequent but often asymptomatic. Patients with CD should be evaluated by the measurement of bone mineral density and monitored for calcium and vitamin D deficiencies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone%20mineral%20density" title="bone mineral density">bone mineral density</a>, <a href="https://publications.waset.org/abstracts/search?q=celiac%20disease" title=" celiac disease"> celiac disease</a>, <a href="https://publications.waset.org/abstracts/search?q=osteoarticular%20manifestations" title=" osteoarticular manifestations"> osteoarticular manifestations</a>, <a href="https://publications.waset.org/abstracts/search?q=vitamin%20D%20and%20calcium" title=" vitamin D and calcium"> vitamin D and calcium</a> </p> <a href="https://publications.waset.org/abstracts/66019/osteoarticular-manifestations-and-abnormalities-of-bone-metabolism-in-celiac-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66019.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6108</span> Bone Mineral Density in Egyptian Children with Familial Mediterranean Fever</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Salah">S. Salah</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20El-Masry"> S. A. El-Masry</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20F.%20Sheba"> H. F. Sheba</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20A.%20El-Banna"> R. A. El-Banna</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Saad"> W. Saad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Familial Mediterranean fever (FMF) has episodic or subclinical inflammation that may lead to a decrease in bone mineral density (BMD). Objective: To assess BMD in Egyptian children with FMF on genetic basis. Subjects and Methods: A cross sectional study included 45 FMF patients and 25 control children of both sexes, with age range between 3-16 years old. The patients were reclassified into 2 groups: Group I (A) 23 cases used colchicines for 1 month or less, and Group I (B) 22 cases used colchicines for more than 6 months. For both patients and control, MEFV mutations were defined using molecular genetics technique and BMD was measured by DXA at 2 sites: proximal femur and the lumber spines. Results: four frequent gene mutations were found in the patient group: E148Q (35.6%), V726A (33.3%), M680I (28.9.0%) and M694V (2.2%). There were also 4 heterozygous gene mutations in 40% of control children. Patients received colchicines treatment for less than 1 month had highly significant lower values of BMD at femur and lumber spines than control children (p<0.05). Patients received colchicines treatment for more than 6 months had improved values of BMD at femur compared to control, but there were still significant differences between them at lumbar spine (p>0.05). There are insignificant effect of type of gene mutation on BMD and the risk of osteopenia among the patients. Conclusion: FMF had significant effect on BMD. However, regular use of colchicines treatment improves this effect mainly at femur. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=familial%20mediterranean%20fever" title="familial mediterranean fever">familial mediterranean fever</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20mineral%20density" title=" bone mineral density"> bone mineral density</a>, <a href="https://publications.waset.org/abstracts/search?q=genes" title=" genes"> genes</a>, <a href="https://publications.waset.org/abstracts/search?q=children" title=" children"> children</a> </p> <a href="https://publications.waset.org/abstracts/9496/bone-mineral-density-in-egyptian-children-with-familial-mediterranean-fever" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6107</span> Suitability Verification of Cellulose Nanowhisker as a Scaffold for Bone Tissue Engineering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moon%20Hee%20Jung">Moon Hee Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Dae%20Seung%20Kim"> Dae Seung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang-Myung%20Jung"> Sang-Myung Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Gwang%20Heum%20Yoon"> Gwang Heum Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Hoo%20Cheol%20Lee"> Hoo Cheol Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hwa%20Sung%20Shin"> Hwa Sung Shin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Scaffolds are an important part to support growth and differentiation of osteoblast for regeneration of injured bone in bone tissue engineering. We utilized tunicate cellulose nanowhisker (CNW) as scaffold and developed complex system that can enhance differentiation of osteoblast by applying mechanical stimulation. CNW, a crystal form of cellulose, has high stiffness with a large surface area and is useful as a biomedical material due to its biodegradability and biocompatibility. In this study, CNW was obtained from tunicate extraction and was confirmed for its adhesion, differentiation, growth of osteoblast without cytotoxicity. In addition, osteoblast was successfully differentiated under mechanical stimulation, followed by calcium dependent signaling. In conclusion, we verified suitability of CNW as scaffold and possibility of bone substitutes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=osteoblast" title="osteoblast">osteoblast</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulose%20nanowhisker" title=" cellulose nanowhisker"> cellulose nanowhisker</a>, <a href="https://publications.waset.org/abstracts/search?q=CNW" title=" CNW"> CNW</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20stimulation" title=" mechanical stimulation"> mechanical stimulation</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20tissue%20engineering" title=" bone tissue engineering"> bone tissue engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20substitute" title=" bone substitute"> bone substitute</a> </p> <a href="https://publications.waset.org/abstracts/50870/suitability-verification-of-cellulose-nanowhisker-as-a-scaffold-for-bone-tissue-engineering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50870.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bone%20tissue%20mineral%20density&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bone%20tissue%20mineral%20density&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bone%20tissue%20mineral%20density&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bone%20tissue%20mineral%20density&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bone%20tissue%20mineral%20density&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bone%20tissue%20mineral%20density&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bone%20tissue%20mineral%20density&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bone%20tissue%20mineral%20density&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bone%20tissue%20mineral%20density&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bone%20tissue%20mineral%20density&amp;page=204">204</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bone%20tissue%20mineral%20density&amp;page=205">205</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bone%20tissue%20mineral%20density&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10