CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–32 of 32 results for author: <span class="mathjax">Boco, L</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/astro-ph" aria-role="search"> Searching in archive <strong>astro-ph</strong>. <a href="/search/?searchtype=author&query=Boco%2C+L">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Boco, L"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Boco%2C+L&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Boco, L"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.12764">arXiv:2502.12764</a> <span> [<a href="https://arxiv.org/pdf/2502.12764">pdf</a>, <a href="https://arxiv.org/format/2502.12764">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Semi-empirical Models of Galaxy Formation and Evolution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Lapi%2C+A">Andrea Lapi</a>, <a href="/search/astro-ph?searchtype=author&query=Boco%2C+L">Lumen Boco</a>, <a href="/search/astro-ph?searchtype=author&query=Shankar%2C+F">Francesco Shankar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.12764v1-abstract-short" style="display: inline;"> We provide a review on semi-empirical models of galaxy formation and evolution. We present a brief census of the three main modeling approaches to galaxy evolution, namely hydrodynamical simulations, semi-analytic models, and semi-empirical models (SEMs). We focus on SEMs in their different flavors, i.e. interpretative, descriptive and hybrid, discussing the peculiarities and highlighting virtues… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.12764v1-abstract-full').style.display = 'inline'; document.getElementById('2502.12764v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.12764v1-abstract-full" style="display: none;"> We provide a review on semi-empirical models of galaxy formation and evolution. We present a brief census of the three main modeling approaches to galaxy evolution, namely hydrodynamical simulations, semi-analytic models, and semi-empirical models (SEMs). We focus on SEMs in their different flavors, i.e. interpretative, descriptive and hybrid, discussing the peculiarities and highlighting virtues and shortcomings for each of these variants. We dissect a simple and recent hybrid SEM from our team to highlight some technical aspects. We offer some outlook on the prospective developments of SEMs. Finally, we provide a short summary of this review. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.12764v1-abstract-full').style.display = 'none'; document.getElementById('2502.12764v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 9 figures. This is a pre-print of a chapter for the Encyclopedia of Astrophysics (edited by I. Mandel, section editor S. McGee) to be published by Elsevier as a Reference Module</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.06942">arXiv:2502.06942</a> <span> [<a href="https://arxiv.org/pdf/2502.06942">pdf</a>, <a href="https://arxiv.org/format/2502.06942">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Shedding light on the star formation rate-halo accretion rate connection and halo quenching mechanism via DECODE, the Discrete statistical sEmi-empiriCal mODEl </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Fu%2C+H">Hao Fu</a>, <a href="/search/astro-ph?searchtype=author&query=Boco%2C+L">Lumen Boco</a>, <a href="/search/astro-ph?searchtype=author&query=Shankar%2C+F">Francesco Shankar</a>, <a href="/search/astro-ph?searchtype=author&query=Lapi%2C+A">Andrea Lapi</a>, <a href="/search/astro-ph?searchtype=author&query=Ayromlou%2C+M">Mohammadreza Ayromlou</a>, <a href="/search/astro-ph?searchtype=author&query=Roberts%2C+D">Daniel Roberts</a>, <a href="/search/astro-ph?searchtype=author&query=Peng%2C+Y">Yingjie Peng</a>, <a href="/search/astro-ph?searchtype=author&query=Rodr%C3%ADguez-Puebla%2C+A">Aldo Rodr铆guez-Puebla</a>, <a href="/search/astro-ph?searchtype=author&query=Yuan%2C+F">Feng Yuan</a>, <a href="/search/astro-ph?searchtype=author&query=Cleland%2C+C">Cressida Cleland</a>, <a href="/search/astro-ph?searchtype=author&query=Mei%2C+S">Simona Mei</a>, <a href="/search/astro-ph?searchtype=author&query=Menci%2C+N">Nicola Menci</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.06942v1-abstract-short" style="display: inline;"> Aims: The relative roles of the physical mechanisms involved in quenching galaxy star formation are still unclear. We tackle this fundamental problem with our cosmological semi-empirical model DECODE (Discrete statistical sEmi-empiriCal mODEl), designed to predict galaxy stellar mass assembly histories, from minimal input assumptions. Methods: Specifically, in this work the star formation histor… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.06942v1-abstract-full').style.display = 'inline'; document.getElementById('2502.06942v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.06942v1-abstract-full" style="display: none;"> Aims: The relative roles of the physical mechanisms involved in quenching galaxy star formation are still unclear. We tackle this fundamental problem with our cosmological semi-empirical model DECODE (Discrete statistical sEmi-empiriCal mODEl), designed to predict galaxy stellar mass assembly histories, from minimal input assumptions. Methods: Specifically, in this work the star formation history of each galaxy is calculated along its progenitor dark matter halo by assigning at each redshift a star formation rate extracted from a monotonic star formation rate-halo accretion rate (SFR-HAR) relation derived from abundance matching between the (observed) SFR function and the (numerically predicted) HAR function, a relation that is also predicted by the TNG100 simulation. SFRs are integrated across cosmic time to build up the mass of galaxies, which may halt their star formation following input physical quenching recipes. Results: In this work we test the popular halo quenching scenario and we find that: 1) the assumption of a monotonic relation between SFR and HAR allows to reproduce the number densities of the bulk of star-forming galaxies in the local Universe; 2) the halo quenching is sufficient to reproduce the statistics of the quenched galaxies and flat (steep) high-mass end of the SMHM relation (SMF); and 3) to align with the observed steep (flat) low-mass end of the SMHM (SMF) additional quenching processes in the least massive haloes are needed. Conclusions: DECODE is an invaluable tool and will pave the way to investigate the origin of newly observed high-redshift objects from the latest ongoing facilities such as JWST and Euclid. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.06942v1-abstract-full').style.display = 'none'; document.getElementById('2502.06942v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 13 figures, accepted for publication in Astronomy & Astrophysics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.05823">arXiv:2502.05823</a> <span> [<a href="https://arxiv.org/pdf/2502.05823">pdf</a>, <a href="https://arxiv.org/format/2502.05823">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Little ado about everything II: an `emergent' dark energy from structure formation to rule cosmic tensions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Lapi%2C+A">Andrea Lapi</a>, <a href="/search/astro-ph?searchtype=author&query=Haridasu%2C+B+S">Balakrishna S. Haridasu</a>, <a href="/search/astro-ph?searchtype=author&query=Boco%2C+L">Lumen Boco</a>, <a href="/search/astro-ph?searchtype=author&query=Cueli%2C+M+M">Marcos M. Cueli</a>, <a href="/search/astro-ph?searchtype=author&query=Baccigalupi%2C+C">Carlo Baccigalupi</a>, <a href="/search/astro-ph?searchtype=author&query=Danese%2C+L">Luigi Danese</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.05823v1-abstract-short" style="display: inline;"> [abridged] The $畏$CDM framework is a new cosmological model aimed to cure some drawbacks of the standard $螞$CDM scenario, such as the origin of the accelerated expansion at late times, the cosmic tensions, and the violation of the cosmological principle due to the progressive development of inhomogeneous/anisotropic conditions in the Universe during structure formation. To this purpose, the model… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.05823v1-abstract-full').style.display = 'inline'; document.getElementById('2502.05823v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.05823v1-abstract-full" style="display: none;"> [abridged] The $畏$CDM framework is a new cosmological model aimed to cure some drawbacks of the standard $螞$CDM scenario, such as the origin of the accelerated expansion at late times, the cosmic tensions, and the violation of the cosmological principle due to the progressive development of inhomogeneous/anisotropic conditions in the Universe during structure formation. To this purpose, the model adopts a statistical perspective envisaging a stochastic evolution of large-scale patches in the Universe with typical sizes $10-50\, h^{-1}$ Mpc, which is meant to describe the complex gravitational processes leading to the formation of the cosmic web. The stochasticity among different patches is technically rendered via the diverse realizations of a multiplicative noise term (`a little ado') in the cosmological equations, and the overall background evolution of the Universe is then operationally defined as an average over the patch ensemble. In this paper we show that such an ensemble-averaged evolution in $畏$CDM can be described in terms of a spatially flat cosmology and of an `emergent' dark energy with a time-dependent equation of state, able to originate the cosmic acceleration with the right timing and to solve the coincidence problem. Then we test the $畏$CDM model against the most recent supernova type-I$a$, baryon acoustic oscillations and structure growth rate datasets, finding an excellent agreement. Remarkably, we demonstrate that $畏$CDM is able to alleviate simultaneously both the $H_0$ and the $f蟽_8$ tensions. Finally, we discuss that the Linders' diagnostic test could be helpful to better distinguish $畏$CDM from the standard scenario in the near future via upcoming galaxy redshift surveys at intermediate redshifts such as those being conducted by the Euclid mission. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.05823v1-abstract-full').style.display = 'none'; document.getElementById('2502.05823v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages, 9 figures. Submitted. Comments welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.21401">arXiv:2410.21401</a> <span> [<a href="https://arxiv.org/pdf/2410.21401">pdf</a>, <a href="https://arxiv.org/format/2410.21401">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> The more accurately we model the metal-dependent star formation rate, the larger the predicted excess of binary black hole mergers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Sgalletta%2C+C">Cecilia Sgalletta</a>, <a href="/search/astro-ph?searchtype=author&query=Mapelli%2C+M">Michela Mapelli</a>, <a href="/search/astro-ph?searchtype=author&query=Boco%2C+L">Lumen Boco</a>, <a href="/search/astro-ph?searchtype=author&query=Santoliquido%2C+F">Filippo Santoliquido</a>, <a href="/search/astro-ph?searchtype=author&query=Artale%2C+M+C">M. Celeste Artale</a>, <a href="/search/astro-ph?searchtype=author&query=Iorio%2C+G">Giuliano Iorio</a>, <a href="/search/astro-ph?searchtype=author&query=Lapi%2C+A">Andrea Lapi</a>, <a href="/search/astro-ph?searchtype=author&query=Spera%2C+M">Mario Spera</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.21401v1-abstract-short" style="display: inline;"> As the number of gravitational-wave detections grows, the merger rate of binary black holes (BBHs) can help us to constrain their formation, the properties of their progenitors, and their birth environment. Here, we aim to address the impact of the metal-dependent star formation rate (SFR) on the BBH merger rate. To this end, we have developed a fully data-driven approach to model the metal-depend… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21401v1-abstract-full').style.display = 'inline'; document.getElementById('2410.21401v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.21401v1-abstract-full" style="display: none;"> As the number of gravitational-wave detections grows, the merger rate of binary black holes (BBHs) can help us to constrain their formation, the properties of their progenitors, and their birth environment. Here, we aim to address the impact of the metal-dependent star formation rate (SFR) on the BBH merger rate. To this end, we have developed a fully data-driven approach to model the metal-dependent SFR and coupled it to BBH evolution. We have adopted the most up-to-date scaling relations, based on recent observational results, and we have studied how the BBH merger rate density varies over a wide grid of galaxy and binary evolution parameters. Our results show that including a realistic metal-dependent SFR evolution yields a value of the merger rate density which is too high compared to the one inferred from GW data. Moreover, variations of the SFR in low-mass galaxies ($M_\ast \lesssim 10^8 \mathrm{M}_{\odot}$) do not contribute more than a factor $\sim 2$ to the overall merger rate density at redshift $z=0$. These results suggest that the discrepancy between the BBH merger rate density inferred from data and theoretical models is not caused by approximations in the treatment of the metal-dependent SFR, but rather stems from stellar evolution models and/or BBH formation channels. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21401v1-abstract-full').style.display = 'none'; document.getElementById('2410.21401v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 9 figures. Submitted to A&A, comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.09118">arXiv:2409.09118</a> <span> [<a href="https://arxiv.org/pdf/2409.09118">pdf</a>, <a href="https://arxiv.org/format/2409.09118">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> Constraining the Initial-Mass Function via Stellar Transients </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Gabrielli%2C+F">Francesco Gabrielli</a>, <a href="/search/astro-ph?searchtype=author&query=Boco%2C+L">Lumen Boco</a>, <a href="/search/astro-ph?searchtype=author&query=Ghirlanda%2C+G">Giancarlo Ghirlanda</a>, <a href="/search/astro-ph?searchtype=author&query=Salafia%2C+O+S">Om Sharan Salafia</a>, <a href="/search/astro-ph?searchtype=author&query=Salvaterra%2C+R">Ruben Salvaterra</a>, <a href="/search/astro-ph?searchtype=author&query=Spera%2C+M">Mario Spera</a>, <a href="/search/astro-ph?searchtype=author&query=Lapi%2C+A">Andrea Lapi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.09118v1-abstract-short" style="display: inline;"> The stellar initial-mass function (IMF) represents a fundamental quantity in astrophysics and cosmology, describing the mass distribution of stars from low to very-high masses. It is intimately linked to a wide variety of topics, including stellar and binary evolution, galaxy evolution, chemical enrichment, and cosmological reionization. Nonetheless, the IMF still remains highly uncertain. In this… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09118v1-abstract-full').style.display = 'inline'; document.getElementById('2409.09118v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.09118v1-abstract-full" style="display: none;"> The stellar initial-mass function (IMF) represents a fundamental quantity in astrophysics and cosmology, describing the mass distribution of stars from low to very-high masses. It is intimately linked to a wide variety of topics, including stellar and binary evolution, galaxy evolution, chemical enrichment, and cosmological reionization. Nonetheless, the IMF still remains highly uncertain. In this work, we aim at determining the IMF with a novel approach based on the observed rates of transients of stellar origin. We parametrize the IMF with a simple, but flexible, Larson shape, and insert it into a parametric model for the cosmic UV luminosity density, local stellar mass density, type Ia supernova (SN Ia), core-collapse supernova (CCSN), and long gamma-ray burst (LGRB) rates as function of redshift. We constrain our free parameters by matching the model predictions to a set of empirical determinations for the corresponding quantities, via a Bayesian Markov-Chain Monte Carlo method. Remarkably, we are able to provide an independent IMF determination, with characteristic mass $m_c=0.10^{+0.24}_{-0.08}\:M_{\odot}$, and high-mass slope $尉=-2.53^{+0.24}_{-0.27}$, that is in accordance with the widely-used IMF parameterizations (e.g. Salpeter, Kroupa, Chabrier). Moreover, the adoption of an up-to-date recipe for the cosmic metallicity evolution, allows us to constrain the maximum metallicity of LGRB progenitors to $Z_{max}=0.12^{+0.29}_{-0.05}\:Z_{\odot}$. We also find what progenitor fraction actually leads to SN Ia or LGRB emission, put constraints on the CCSN and LGRB progenitor mass ranges, and test the IMF universality. These results show the potential of this kind of approach for studying the IMF, its putative evolution with galactic environment and cosmic history, and the properties of SN Ia, CCSN and LGRB progenitors, especially considering the wealth of data incoming in the future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09118v1-abstract-full').style.display = 'none'; document.getElementById('2409.09118v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to Universe. 35 pages, 12 figures, 5 tables (including appendix)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.16823">arXiv:2408.16823</a> <span> [<a href="https://arxiv.org/pdf/2408.16823">pdf</a>, <a href="https://arxiv.org/format/2408.16823">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> The cosmic rate of Pair-Instability Supernovae </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Gabrielli%2C+F">Francesco Gabrielli</a>, <a href="/search/astro-ph?searchtype=author&query=Lapi%2C+A">Andrea Lapi</a>, <a href="/search/astro-ph?searchtype=author&query=Boco%2C+L">Lumen Boco</a>, <a href="/search/astro-ph?searchtype=author&query=Ugolini%2C+C">Cristiano Ugolini</a>, <a href="/search/astro-ph?searchtype=author&query=Costa%2C+G">Guglielmo Costa</a>, <a href="/search/astro-ph?searchtype=author&query=Sgalletta%2C+C">Cecilia Sgalletta</a>, <a href="/search/astro-ph?searchtype=author&query=Shepherd%2C+K">Kendall Shepherd</a>, <a href="/search/astro-ph?searchtype=author&query=Di+Carlo%2C+U+N">Ugo N. Di Carlo</a>, <a href="/search/astro-ph?searchtype=author&query=Bressan%2C+A">Alessandro Bressan</a>, <a href="/search/astro-ph?searchtype=author&query=Limongi%2C+M">Marco Limongi</a>, <a href="/search/astro-ph?searchtype=author&query=Spera%2C+M">Mario Spera</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.16823v1-abstract-short" style="display: inline;"> Pair-instability supernovae (PISNe) have crucial implications for many astrophysical topics, including the search for very massive stars, the black hole mass spectrum, and galaxy chemical enrichment. To this end, we need to understand where PISNe are across cosmic time, and what are their favourable galactic environments. We present a new determination of the PISN rate as a function of redshift, o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.16823v1-abstract-full').style.display = 'inline'; document.getElementById('2408.16823v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.16823v1-abstract-full" style="display: none;"> Pair-instability supernovae (PISNe) have crucial implications for many astrophysical topics, including the search for very massive stars, the black hole mass spectrum, and galaxy chemical enrichment. To this end, we need to understand where PISNe are across cosmic time, and what are their favourable galactic environments. We present a new determination of the PISN rate as a function of redshift, obtained by combining up-to-date stellar evolution tracks from the PARSEC and FRANEC codes, with an up-to-date semi-empirical determination of the star formation rate and metallicity evolution of star-forming galaxies throughout cosmic history. We find the PISN rate to exhibit a huge dependence on the model assumptions, including the criterion to identify stars unstable to pair production, and the upper limit of the stellar initial mass function. Remarkably, the interplay between the maximum metallicity at which stars explode as PISNe, and the dispersion of the galaxy metallicity distribution, dominates the uncertainties, causing a $\sim$ seven-orders-of-magnitude PISN rate range. Furthermore, we show a comparison with the core-collapse supernova rate, and study the properties of the favourable PISN host galaxies. According to our results, the main contribution to the PISN rate comes from metallicities between $\sim 10^{-3}$ and $10^{-2}$, against the common assumption that views very-low-metallicity, Population III stars as exclusive or dominant PISN progenitors. The strong dependencies we find offer the opportunity to constrain stellar and galaxy evolution models based on possible future (or the lack of) PISN observations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.16823v1-abstract-full').style.display = 'none'; document.getElementById('2408.16823v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication on MNRAS, 23 pages, 25 figures, 4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.08611">arXiv:2408.08611</a> <span> [<a href="https://arxiv.org/pdf/2408.08611">pdf</a>, <a href="https://arxiv.org/format/2408.08611">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> Semi-empirical Estimates of the Cosmic Planet Formation Rate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Lapi%2C+A">Andrea Lapi</a>, <a href="/search/astro-ph?searchtype=author&query=Boco%2C+L">Lumen Boco</a>, <a href="/search/astro-ph?searchtype=author&query=Perrotta%2C+F">Francesca Perrotta</a>, <a href="/search/astro-ph?searchtype=author&query=Massardi%2C+M">Marcella Massardi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.08611v1-abstract-short" style="display: inline;"> We devise and exploit a data-driven, semi-empirical framework of galaxy formation and evolution, coupling it to recipes for planet formation from stellar and planetary science, to compute the cosmic planet formation rate, and the properties of the planets' preferred host stellar and galactic environments. We also discuss how the rates and formation sites of planets are affected when considering th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08611v1-abstract-full').style.display = 'inline'; document.getElementById('2408.08611v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.08611v1-abstract-full" style="display: none;"> We devise and exploit a data-driven, semi-empirical framework of galaxy formation and evolution, coupling it to recipes for planet formation from stellar and planetary science, to compute the cosmic planet formation rate, and the properties of the planets' preferred host stellar and galactic environments. We also discuss how the rates and formation sites of planets are affected when considering their habitability, and when including possible threatening sources related to star formation and nuclear activity. Overall, we conservatively estimate a cumulative number of some $10^{20}$ Earth-like planets and around $10^{18}$ habitable Earths in our past lightcone. Finally, we find that a few $10^{17}$ are older than our own Earth, an occurrence which places a loose lower limit a few $10^{-18}$ to the odds for a habitable world to ever hosting a civilization in the observable Universe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08611v1-abstract-full').style.display = 'none'; document.getElementById('2408.08611v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 9 figures. Accepted by Galaxies</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.07605">arXiv:2406.07605</a> <span> [<a href="https://arxiv.org/pdf/2406.07605">pdf</a>, <a href="https://arxiv.org/format/2406.07605">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Unveiling the (in)consistencies among the galaxy stellar mass function, star formation histories, satellite abundances and intracluster light from a semi-empirical perspective </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Fu%2C+H">Hao Fu</a>, <a href="/search/astro-ph?searchtype=author&query=Shankar%2C+F">Francesco Shankar</a>, <a href="/search/astro-ph?searchtype=author&query=Ayromlou%2C+M">Mohammadreza Ayromlou</a>, <a href="/search/astro-ph?searchtype=author&query=Koutsouridou%2C+I">Ioanna Koutsouridou</a>, <a href="/search/astro-ph?searchtype=author&query=Cattaneo%2C+A">Andrea Cattaneo</a>, <a href="/search/astro-ph?searchtype=author&query=Bertemes%2C+C">Caroline Bertemes</a>, <a href="/search/astro-ph?searchtype=author&query=Bellstedt%2C+S">Sabine Bellstedt</a>, <a href="/search/astro-ph?searchtype=author&query=Mart%C3%ADn-Navarro%2C+I">Ignacio Mart铆n-Navarro</a>, <a href="/search/astro-ph?searchtype=author&query=Leja%2C+J">Joel Leja</a>, <a href="/search/astro-ph?searchtype=author&query=Allevato%2C+V">Viola Allevato</a>, <a href="/search/astro-ph?searchtype=author&query=Bernardi%2C+M">Mariangela Bernardi</a>, <a href="/search/astro-ph?searchtype=author&query=Boco%2C+L">Lumen Boco</a>, <a href="/search/astro-ph?searchtype=author&query=Dimauro%2C+P">Paola Dimauro</a>, <a href="/search/astro-ph?searchtype=author&query=Gruppioni%2C+C">Carlotta Gruppioni</a>, <a href="/search/astro-ph?searchtype=author&query=Lapi%2C+A">Andrea Lapi</a>, <a href="/search/astro-ph?searchtype=author&query=Menci%2C+N">Nicola Menci</a>, <a href="/search/astro-ph?searchtype=author&query=Rodr%C3%ADguez%2C+I+M">Iv谩n Mu帽oz Rodr铆guez</a>, <a href="/search/astro-ph?searchtype=author&query=Puglisi%2C+A">Annagrazia Puglisi</a>, <a href="/search/astro-ph?searchtype=author&query=Alonso-Tetilla%2C+A+V">Alba V. Alonso-Tetilla</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.07605v1-abstract-short" style="display: inline;"> In a hierarchical, dark matter-dominated Universe, stellar mass functions (SMFs), galaxy merger rates, star formation histories (SFHs), satellite abundances, and intracluster light, should all be intimately connected observables. However, the systematics affecting observations still prevent universal and uniform measurements of, for example, the SMF and the SFHs, inevitably preventing theoretical… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.07605v1-abstract-full').style.display = 'inline'; document.getElementById('2406.07605v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.07605v1-abstract-full" style="display: none;"> In a hierarchical, dark matter-dominated Universe, stellar mass functions (SMFs), galaxy merger rates, star formation histories (SFHs), satellite abundances, and intracluster light, should all be intimately connected observables. However, the systematics affecting observations still prevent universal and uniform measurements of, for example, the SMF and the SFHs, inevitably preventing theoretical models to compare with multiple data sets robustly and simultaneously. We here present our holistic semi-empirical model DECODE (Discrete statistical sEmi-empiriCal mODEl) that converts via abundance matching dark matter merger trees into galaxy assembly histories, using different SMFs in input and predicting all other observables in output in a fully data-driven and self-consistent fashion with minimal assumptions. We find that: 1) weakly evolving or nearly constant SMFs below the knee ($M_\star \lesssim 10^{11} \, M_\odot$) are the best suited to generate star formation histories aligned with those inferred from MaNGA, SDSS, GAMA, and, more recently, JWST; 2) the evolution of satellites after infall only affects the satellite abundances and star formation histories of massive central galaxies but not their merger histories; 3) the resulting SFR-$M_\star$ relation is lower in normalization by a factor of $\sim 2$ with respect to observations, with a flattening at high masses more pronounced in the presence of mergers; 4) the latest data on intracluster light can be reproduced if mass loss from mergers is included in the models. Our findings are pivotal in acting as pathfinder to test the self-consistency of the high-quality data from, e.g., JWST and Euclid. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.07605v1-abstract-full').style.display = 'none'; document.getElementById('2406.07605v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 12 figures, MNRAS accepted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.07401">arXiv:2403.07401</a> <span> [<a href="https://arxiv.org/pdf/2403.07401">pdf</a>, <a href="https://arxiv.org/format/2403.07401">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Constraining the Initial Mass function in the Epoch of Reionization from Astrophysical and Cosmological data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Lapi%2C+A">A. Lapi</a>, <a href="/search/astro-ph?searchtype=author&query=Gandolfi%2C+G">G. Gandolfi</a>, <a href="/search/astro-ph?searchtype=author&query=Boco%2C+L">L. Boco</a>, <a href="/search/astro-ph?searchtype=author&query=Gabrielli%2C+F">F. Gabrielli</a>, <a href="/search/astro-ph?searchtype=author&query=Massardi%2C+M">M. Massardi</a>, <a href="/search/astro-ph?searchtype=author&query=Haridasu%2C+B+S">B. S. Haridasu</a>, <a href="/search/astro-ph?searchtype=author&query=Baccigalupi%2C+C">C. Baccigalupi</a>, <a href="/search/astro-ph?searchtype=author&query=Bressan%2C+A">A. Bressan</a>, <a href="/search/astro-ph?searchtype=author&query=Danese%2C+L">L. Danese</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.07401v2-abstract-short" style="display: inline;"> [abridged] We aim to constrain the stellar initial mass function (IMF) during the epoch of reionization. To this purpose, we build up a semi-empirical model for the reionization history of the Universe, based on various ingredients: the latest determination of the UV galaxy luminosity function from JWST out to redshift $z\lesssim 12$; data-inferred and simulation-driven assumptions on the redshift… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.07401v2-abstract-full').style.display = 'inline'; document.getElementById('2403.07401v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.07401v2-abstract-full" style="display: none;"> [abridged] We aim to constrain the stellar initial mass function (IMF) during the epoch of reionization. To this purpose, we build up a semi-empirical model for the reionization history of the Universe, based on various ingredients: the latest determination of the UV galaxy luminosity function from JWST out to redshift $z\lesssim 12$; data-inferred and simulation-driven assumptions on the redshift-dependent escape fraction of ionizing photons from primordial galaxies; a simple yet flexible parameterization of the IMF $蠁(m_\star)\sim m_\star^尉\, e^{-m_{\star,\rm c}/m_\star}$ in terms of a high-mass end slope $尉<0$ and of a characteristic mass $m_{\star,\rm c}$ below which a flattening or a bending sets in; the PARSEC stellar evolution code to compute the UV and ionizing emission from different star's masses as a function of age and metallicity; a few physical constraints related to stellar and galaxy formation in faint galaxies at the reionization redshifts. We compare our model outcomes with the reionization observables from different astrophysical and cosmological probes, and perform Bayesian inference on the IMF parameters. We find that the IMF slope $尉$ is within the range from $-2.8$ to $-2.3$, while appreciably flatter slopes are excluded at great significance. However, the bestfit value of the IMF characteristic mass $m_{\star,\rm c}\sim$ a few $M_\odot$ implies a suppression in the formation of small stellar masses, at variance with the IMF in the local Universe; this may be induced by the thermal background $\sim 20-30$ K provided by CMB photons at the reionization redshifts. Finally, we investigate the implications of our reconstructed IMF on the recent JWST detections of massive galaxies at and beyond the reionization epoch, showing that any putative tension with the standard cosmological framework is substantially alleviated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.07401v2-abstract-full').style.display = 'none'; document.getElementById('2403.07401v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 11 figures, typos corrected, in press on Universe</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.12427">arXiv:2402.12427</a> <span> [<a href="https://arxiv.org/pdf/2402.12427">pdf</a>, <a href="https://arxiv.org/format/2402.12427">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202346978">10.1051/0004-6361/202346978 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> GalaPy, the highly optimised C++/Python spectral modelling tool for galaxies -- I. Library presentation and photometric fitting </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Ronconi%2C+T">Tommaso Ronconi</a>, <a href="/search/astro-ph?searchtype=author&query=Lapi%2C+A">Andrea Lapi</a>, <a href="/search/astro-ph?searchtype=author&query=Torsello%2C+M">Martina Torsello</a>, <a href="/search/astro-ph?searchtype=author&query=Bressan%2C+A">Alessandro Bressan</a>, <a href="/search/astro-ph?searchtype=author&query=Donevski%2C+D">Darko Donevski</a>, <a href="/search/astro-ph?searchtype=author&query=Pantoni%2C+L">Lara Pantoni</a>, <a href="/search/astro-ph?searchtype=author&query=Behiri%2C+M">Meriem Behiri</a>, <a href="/search/astro-ph?searchtype=author&query=Boco%2C+L">Lumen Boco</a>, <a href="/search/astro-ph?searchtype=author&query=Cimatti%2C+A">Andrea Cimatti</a>, <a href="/search/astro-ph?searchtype=author&query=D%27Amato%2C+Q">Quirino D'Amato</a>, <a href="/search/astro-ph?searchtype=author&query=Danese%2C+L">Luigi Danese</a>, <a href="/search/astro-ph?searchtype=author&query=Giulietti%2C+M">Marika Giulietti</a>, <a href="/search/astro-ph?searchtype=author&query=Perrotta%2C+F">Francesca Perrotta</a>, <a href="/search/astro-ph?searchtype=author&query=Silva%2C+L">Laura Silva</a>, <a href="/search/astro-ph?searchtype=author&query=Talia%2C+M">Margherita Talia</a>, <a href="/search/astro-ph?searchtype=author&query=Massardi%2C+M">Marcella Massardi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.12427v1-abstract-short" style="display: inline;"> Fostered by upcoming data from new generation observational campaigns, we are about to enter a new era for the study of how galaxies form and evolve. The unprecedented quantity of data that will be collected, from distances only marginally grasped up to now, will require analysis tools designed to target the specific physical peculiarities of the observed sources and handle extremely large dataset… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.12427v1-abstract-full').style.display = 'inline'; document.getElementById('2402.12427v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.12427v1-abstract-full" style="display: none;"> Fostered by upcoming data from new generation observational campaigns, we are about to enter a new era for the study of how galaxies form and evolve. The unprecedented quantity of data that will be collected, from distances only marginally grasped up to now, will require analysis tools designed to target the specific physical peculiarities of the observed sources and handle extremely large datasets. One powerful method to investigate the complex astrophysical processes that govern the properties of galaxies is to model their observed spectral energy distribution (SED) at different stages of evolution and times throughout the history of the Universe. To address these challenges, we have developed GalaPy, a new library for modelling and fitting SEDs of galaxies from the X-ray to the radio band, as well as the evolution of their components and dust attenuation/reradiation. GalaPy incorporates both empirical and physically-motivated star formation histories, state-of-the-art single stellar population synthesis libraries, a two-component dust model for attenuation, an age-dependent energy conservation algorithm to compute dust reradiation, and additional sources of stellar continuum such as synchrotron, nebular/free-free emission and X-ray radiation from low and high mass binary stars. GalaPy has a hybrid implementation that combines the high performance of compiled C++ with the flexibility of Python, and exploits an object-oriented design. It generates models on the fly without relying on templates, and exploits fully Bayesian parameter space sampling. In this first work, we introduce the project and showcase the photometric SED fitting tools already available to users. The library is available on the Python Package Index (PyPI) and comes with extensive online documentation and tutorials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.12427v1-abstract-full').style.display = 'none'; document.getElementById('2402.12427v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">41 pages, 31 figures, 7 tables, to be published on A&A, links to documentation and PyPI available in the PDF, comments are very welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 685, A161 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.06028">arXiv:2310.06028</a> <span> [<a href="https://arxiv.org/pdf/2310.06028">pdf</a>, <a href="https://arxiv.org/format/2310.06028">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Little Ado about Everything: $畏$CDM, a Cosmological Model with Fluctuation-driven Acceleration at Late Times </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Lapi%2C+A">Andrea Lapi</a>, <a href="/search/astro-ph?searchtype=author&query=Boco%2C+L">Lumen Boco</a>, <a href="/search/astro-ph?searchtype=author&query=Cueli%2C+M+M">Marcos M. Cueli</a>, <a href="/search/astro-ph?searchtype=author&query=Haridasu%2C+B+S">Balakrishna S. Haridasu</a>, <a href="/search/astro-ph?searchtype=author&query=Ronconi%2C+T">Tommaso Ronconi</a>, <a href="/search/astro-ph?searchtype=author&query=Baccigalupi%2C+C">Carlo Baccigalupi</a>, <a href="/search/astro-ph?searchtype=author&query=Danese%2C+L">Luigi Danese</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.06028v2-abstract-short" style="display: inline;"> [abridged] We propose a model of the Universe (dubbed $畏$CDM) featuring a stochastic evolution of the cosmological quantities, that is meant to render small deviations from homogeneity/isotropy on scales of $30-50\, h^{-1}$ Mpc at late cosmic times, associated to the emergence of the cosmic web. Specifically, we prescribe that the behavior of the matter/radiation energy densities in different patc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.06028v2-abstract-full').style.display = 'inline'; document.getElementById('2310.06028v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.06028v2-abstract-full" style="display: none;"> [abridged] We propose a model of the Universe (dubbed $畏$CDM) featuring a stochastic evolution of the cosmological quantities, that is meant to render small deviations from homogeneity/isotropy on scales of $30-50\, h^{-1}$ Mpc at late cosmic times, associated to the emergence of the cosmic web. Specifically, we prescribe that the behavior of the matter/radiation energy densities in different patches of the Universe with such a size can be effectively described by a stochastic version of the mass-energy evolution equation. The latter includes an appropriate noise term that statistically accounts for local fluctuations due to inhomogeneities, anisotropic stresses and matter flows. The evolution of the different patches as a function of cosmic time is rendered via the diverse realizations of the noise term; meanwhile, at any given cosmic time, sampling the ensemble of patches will originate a nontrivial spatial distribution of the cosmological quantities. The overall behavior of the Universe will be obtained by averaging over the patch ensemble. We assume a physically reasonable parameterization of the noise term, gauging it against a wealth of cosmological datasets. We find that, with respect to standard $螞$CDM, the ensemble-averaged cosmic dynamics in the $畏$CDM model is substantially altered in three main respects: (i) an accelerated expansion is enforced at late cosmic times without the need for any additional exotic component (e.g., dark energy); (ii) the spatial curvature can stay small even in a low-density Universe; (iii) matter can acquire an effective negative pressure at late times. We provide predictions for the variance of the cosmological quantities among different patches of the Universe at late cosmic times. Finally, we show that in $畏$CDM the Hubble-tension is solved, and the cosmic coincidence problem is relieved without invoking the anthropic principle. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.06028v2-abstract-full').style.display = 'none'; document.getElementById('2310.06028v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 7 figures, typos corrected. Accepted by ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.13036">arXiv:2307.13036</a> <span> [<a href="https://arxiv.org/pdf/2307.13036">pdf</a>, <a href="https://arxiv.org/format/2307.13036">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> TOPSEM, TwO Parameters Semi Empirical Model: Galaxy Evolution and Bulge/Disk Dicothomy from Two-Stage Halo Accretion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Boco%2C+L">Lumen Boco</a>, <a href="/search/astro-ph?searchtype=author&query=Lapi%2C+A">Andrea Lapi</a>, <a href="/search/astro-ph?searchtype=author&query=Shankar%2C+F">Francesco Shankar</a>, <a href="/search/astro-ph?searchtype=author&query=Fu%2C+H">Hao Fu</a>, <a href="/search/astro-ph?searchtype=author&query=Gabrielli%2C+F">Francesco Gabrielli</a>, <a href="/search/astro-ph?searchtype=author&query=Sicilia%2C+A">Alex Sicilia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.13036v1-abstract-short" style="display: inline;"> In recent years, increasing attention has been devoted to semi empirical, data-driven models to tackle some aspects of the complex and still largely debated topic of galaxy formation and evolution. We here present a new semi empirical model whose marking feature is simplicity: it relies on solely two assumptions, one initial condition and two free parameters. Galaxies are connected to evolving dar… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13036v1-abstract-full').style.display = 'inline'; document.getElementById('2307.13036v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.13036v1-abstract-full" style="display: none;"> In recent years, increasing attention has been devoted to semi empirical, data-driven models to tackle some aspects of the complex and still largely debated topic of galaxy formation and evolution. We here present a new semi empirical model whose marking feature is simplicity: it relies on solely two assumptions, one initial condition and two free parameters. Galaxies are connected to evolving dark matter haloes through abundance matching between specific halo accretion rate (sHAR) and specific star formation rate (sSFR). Quenching is treated separately, in a fully empirical way, to marginalize over quiescent galaxies and test our assumption on the sSFR evolution without contaminations from passive objects. Our flexible and transparent model is able to reproduce the observed stellar mass functions up to $z\sim 5$, giving support to our hypothesis of a monotonic relation between sHAR and sSFR. We then exploit the model to test a hypothesis on morphological evolution of galaxies. We attempt to explain the bulge/disk bimodality in terms of the two halo accretion modes: fast and slow accretion. Specifically, we speculate that bulge/spheroidal components might form during the early phase of fast halo growth, while disks form during the later phase of slow accretion. We find excellent agreement with both the observational bulge and elliptical mass functions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13036v1-abstract-full').style.display = 'none'; document.getElementById('2307.13036v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 13 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.04955">arXiv:2305.04955</a> <span> [<a href="https://arxiv.org/pdf/2305.04955">pdf</a>, <a href="https://arxiv.org/format/2305.04955">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> Binary neutron star populations in the Milky Way </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Sgalletta%2C+C">Cecilia Sgalletta</a>, <a href="/search/astro-ph?searchtype=author&query=Iorio%2C+G">Giuliano Iorio</a>, <a href="/search/astro-ph?searchtype=author&query=Mapelli%2C+M">Michela Mapelli</a>, <a href="/search/astro-ph?searchtype=author&query=Artale%2C+M+C">M. Celeste Artale</a>, <a href="/search/astro-ph?searchtype=author&query=Boco%2C+L">Lumen Boco</a>, <a href="/search/astro-ph?searchtype=author&query=Chattopadhyay%2C+D">Debatri Chattopadhyay</a>, <a href="/search/astro-ph?searchtype=author&query=Lapi%2C+A">Andrea Lapi</a>, <a href="/search/astro-ph?searchtype=author&query=Possenti%2C+A">Andrea Possenti</a>, <a href="/search/astro-ph?searchtype=author&query=Rinaldi%2C+S">Stefano Rinaldi</a>, <a href="/search/astro-ph?searchtype=author&query=Spera%2C+M">Mario Spera</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.04955v1-abstract-short" style="display: inline;"> Galactic binary neutron stars (BNSs) are a unique laboratory to probe the evolution of BNSs and their progenitors. Here, we use a new version of the population synthesis code SEVN to evolve the population of Galactic BNSs, by modeling the spin up and down of pulsars self-consistently. We analyze the merger rate $\mathcal{R}_{\rm MW}$, orbital period $P_{\rm orb}$, eccentricity $e$, spin period… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.04955v1-abstract-full').style.display = 'inline'; document.getElementById('2305.04955v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.04955v1-abstract-full" style="display: none;"> Galactic binary neutron stars (BNSs) are a unique laboratory to probe the evolution of BNSs and their progenitors. Here, we use a new version of the population synthesis code SEVN to evolve the population of Galactic BNSs, by modeling the spin up and down of pulsars self-consistently. We analyze the merger rate $\mathcal{R}_{\rm MW}$, orbital period $P_{\rm orb}$, eccentricity $e$, spin period $P$, and spin period derivative $\dot{P}$ of the BNS population. Values of the common envelope parameter $伪=1 - 3$ and an accurate model of the Milky Way star formation history best reproduce the BNS merger rate in our Galaxy ($\mathcal{R}_{\rm MW}\approx{}30$ Myr$^{-1}$). We apply radio-selection effects to our simulated BNSs and compare them to the observed population. Using a Dirichlet process Gaussian mixture method, we evaluate the four-dimensional likelihood in the $(P_{\rm orb}, e, P, \dot{P})$ space, by comparing our radio-selected simulated pulsars against Galactic BNSs. Our analysis favours an uniform initial distribution for both the magnetic field ($10^{10-13}$ G) and the spin period ($10-100$ ms). The implementation of radio selection effects is critical to match not only the spin period and period derivative, but also the orbital period and eccentricity of Galactic BNSs. According to our fiducial model, the Square Kilometre Array will detect $\sim 20$ new BNSs in the Milky Way. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.04955v1-abstract-full').style.display = 'none'; document.getElementById('2305.04955v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 8 figures, 8 tables, comments welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.08563">arXiv:2304.08563</a> <span> [<a href="https://arxiv.org/pdf/2304.08563">pdf</a>, <a href="https://arxiv.org/format/2304.08563">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/accd72">10.3847/1538-4357/accd72 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Way of Water: ALMA resolves H2O emission lines in a strongly lensed dusty star-forming galaxy at z $\sim$ 3.1 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Perrotta%2C+F">F. Perrotta</a>, <a href="/search/astro-ph?searchtype=author&query=Giulietti%2C+M">M. Giulietti</a>, <a href="/search/astro-ph?searchtype=author&query=Massardi%2C+M">M. Massardi</a>, <a href="/search/astro-ph?searchtype=author&query=Gandolfi%2C+G">G. Gandolfi</a>, <a href="/search/astro-ph?searchtype=author&query=Ronconi%2C+T">T. Ronconi</a>, <a href="/search/astro-ph?searchtype=author&query=Zanchettin%2C+M+V">M. V. Zanchettin</a>, <a href="/search/astro-ph?searchtype=author&query=D%27Amato%2C+Q">Q. D'Amato</a>, <a href="/search/astro-ph?searchtype=author&query=Behiri.%2C+M">M. Behiri.</a>, <a href="/search/astro-ph?searchtype=author&query=Torsello%2C+M">M. Torsello</a>, <a href="/search/astro-ph?searchtype=author&query=Gabrielli%2C+F">F. Gabrielli</a>, <a href="/search/astro-ph?searchtype=author&query=Boco%2C+L">L. Boco</a>, <a href="/search/astro-ph?searchtype=author&query=Galluzzi%2C+V">V. Galluzzi</a>, <a href="/search/astro-ph?searchtype=author&query=Lapi%2C+A">A. Lapi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.08563v2-abstract-short" style="display: inline;"> We report ALMA high-resolution observations of water emission lines $p-{\rm{H_2O}} (2_{02}-1_{11}$), $o-{\rm{H_2O}} (3_{21}-3_{12})$, $p-{\rm{H_2O}} (4_{22}-4_{13})$, in the strongly lensed galaxy HATLASJ113526.2-01460 at redshift z $\sim$ 3.1. From the lensing-reconstructed maps of water emission and line profiles, we infer the general physical properties of the ISM in the molecular clouds where… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.08563v2-abstract-full').style.display = 'inline'; document.getElementById('2304.08563v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.08563v2-abstract-full" style="display: none;"> We report ALMA high-resolution observations of water emission lines $p-{\rm{H_2O}} (2_{02}-1_{11}$), $o-{\rm{H_2O}} (3_{21}-3_{12})$, $p-{\rm{H_2O}} (4_{22}-4_{13})$, in the strongly lensed galaxy HATLASJ113526.2-01460 at redshift z $\sim$ 3.1. From the lensing-reconstructed maps of water emission and line profiles, we infer the general physical properties of the ISM in the molecular clouds where the lines arise. We find that the water vapor lines $o-{\rm{H_2O}} (3_{21}-3_{12})$, $p-{\rm{H_2O}} (4_{22}-4_{13})$ are mainly excited by FIR pumping from dust radiation in a warm and dense environment, with dust temperatures ranging from 70 K to $\sim 100$ K, as suggested by the line ratios. The $p-{\rm{H_2O}} (2_{02}-1_{11})$ line instead, is excited by a complex interplay between FIR pumping and collisional excitation in the dense core of the star-forming region. This scenario is also supported by the detection of the medium-level excitation of CO resulting in the line emission CO (J=8-7). Thanks to the unprecedented high resolution offered by the combination of ALMA capabilities and gravitational lensing, we discern the different phases of the ISM and locate the hot molecular clouds into a physical scale of $\sim$ 500 pc. We discuss the possibility of J1135 hosting an AGN in its accretion phase. Finally, we determine the relation between the water emission lines and the total IR luminosity of J1135, as well as the SFR as a function of water emission intensities, comparing the outcomes to local and high-$z$ galactic samples from the literature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.08563v2-abstract-full').style.display = 'none'; document.getElementById('2304.08563v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 10 figures, final version to be published in Astrophysical Journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.06162">arXiv:2212.06162</a> <span> [<a href="https://arxiv.org/pdf/2212.06162">pdf</a>, <a href="https://arxiv.org/format/2212.06162">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acaaa3">10.3847/1538-4357/acaaa3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Searching for anisotropic stochastic gravitational-wave backgrounds with constellations of space-based interferometers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Capurri%2C+G">Giulia Capurri</a>, <a href="/search/astro-ph?searchtype=author&query=Lapi%2C+A">Andrea Lapi</a>, <a href="/search/astro-ph?searchtype=author&query=Boco%2C+L">Lumen Boco</a>, <a href="/search/astro-ph?searchtype=author&query=Baccigalupi%2C+C">Carlo Baccigalupi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.06162v1-abstract-short" style="display: inline;"> Many recent works have shown that the angular resolution of ground-based detectors is too poor to characterize the anisotropies of the stochastic gravitational-wave background (SGWB). For this reason, we asked ourselves if a constellation of space-based instruments could be more suitable. We consider the Laser Interferometer Space Antenna (LISA), a constellation of multiple LISA-like clusters, and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.06162v1-abstract-full').style.display = 'inline'; document.getElementById('2212.06162v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.06162v1-abstract-full" style="display: none;"> Many recent works have shown that the angular resolution of ground-based detectors is too poor to characterize the anisotropies of the stochastic gravitational-wave background (SGWB). For this reason, we asked ourselves if a constellation of space-based instruments could be more suitable. We consider the Laser Interferometer Space Antenna (LISA), a constellation of multiple LISA-like clusters, and the Deci-hertz Interferometer Gravitational-wave Observatory (DECIGO). Specifically, we test whether these detector constellations can probe the anisotropies of the SGWB. For this scope, we considered the SGWB produced by two astrophysical sources: merging compact binaries and a recently proposed scenario for massive black-hole seed formation through multiple mergers of stellar remnants. We find that measuring the angular power spectrum of the SGWB anisotropies is almost unattainable. However, it turns out that it could be possible to probe the SGWB anisotropies through cross-correlation with the CMB fluctuations. In particular, we find that a constellation of two LISA-like detectors and CMB-S4 can marginally constrain the cross-correlation between the CMB lensing convergence and the SGWB produced by the black hole seed formation process. Moreover, we find that DECIGO can probe the cross-correlation between the CMB lensing and the SGWB from merging compact binaries. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.06162v1-abstract-full').style.display = 'none'; document.getElementById('2212.06162v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 9 figures, accepted by ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.00014">arXiv:2208.00014</a> <span> [<a href="https://arxiv.org/pdf/2208.00014">pdf</a>, <a href="https://arxiv.org/format/2208.00014">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stac2205">10.1093/mnras/stac2205 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Testing the key role of the stellar mass-halo mass relation in galaxy merger rates and morphologies via DECODE, a novel Discrete statistical sEmi-empiriCal mODEl </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Fu%2C+H">Hao Fu</a>, <a href="/search/astro-ph?searchtype=author&query=Shankar%2C+F">Francesco Shankar</a>, <a href="/search/astro-ph?searchtype=author&query=Ayromlou%2C+M">Mohammadreza Ayromlou</a>, <a href="/search/astro-ph?searchtype=author&query=Dickson%2C+M">Max Dickson</a>, <a href="/search/astro-ph?searchtype=author&query=Koutsouridou%2C+I">Ioanna Koutsouridou</a>, <a href="/search/astro-ph?searchtype=author&query=Rosas-Guevara%2C+Y">Yetli Rosas-Guevara</a>, <a href="/search/astro-ph?searchtype=author&query=Marsden%2C+C">Christopher Marsden</a>, <a href="/search/astro-ph?searchtype=author&query=Brocklebank%2C+K">Kristina Brocklebank</a>, <a href="/search/astro-ph?searchtype=author&query=Bernardi%2C+M">Mariangela Bernardi</a>, <a href="/search/astro-ph?searchtype=author&query=Shiamtanis%2C+N">Nikolaos Shiamtanis</a>, <a href="/search/astro-ph?searchtype=author&query=Williams%2C+J">Joseph Williams</a>, <a href="/search/astro-ph?searchtype=author&query=Zanisi%2C+L">Lorenzo Zanisi</a>, <a href="/search/astro-ph?searchtype=author&query=Allevato%2C+V">Viola Allevato</a>, <a href="/search/astro-ph?searchtype=author&query=Boco%2C+L">Lumen Boco</a>, <a href="/search/astro-ph?searchtype=author&query=Bonoli%2C+S">Silvia Bonoli</a>, <a href="/search/astro-ph?searchtype=author&query=Cattaneo%2C+A">Andrea Cattaneo</a>, <a href="/search/astro-ph?searchtype=author&query=Dimauro%2C+P">Paola Dimauro</a>, <a href="/search/astro-ph?searchtype=author&query=Jiang%2C+F">Fangzhou Jiang</a>, <a href="/search/astro-ph?searchtype=author&query=Lapi%2C+A">Andrea Lapi</a>, <a href="/search/astro-ph?searchtype=author&query=Menci%2C+N">Nicola Menci</a>, <a href="/search/astro-ph?searchtype=author&query=Petropoulou%2C+S">Stefani Petropoulou</a>, <a href="/search/astro-ph?searchtype=author&query=Villforth%2C+C">Carolin Villforth</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.00014v2-abstract-short" style="display: inline;"> The relative roles of mergers and star formation in regulating galaxy growth are still a matter of intense debate. We here present our DECODE, a new Discrete statistical sEmi-empiriCal mODEl specifically designed to predict rapidly and efficiently, in a full cosmological context, galaxy assembly and merger histories for any given input stellar mass-halo mass (SMHM) relation. DECODE generates objec… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.00014v2-abstract-full').style.display = 'inline'; document.getElementById('2208.00014v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.00014v2-abstract-full" style="display: none;"> The relative roles of mergers and star formation in regulating galaxy growth are still a matter of intense debate. We here present our DECODE, a new Discrete statistical sEmi-empiriCal mODEl specifically designed to predict rapidly and efficiently, in a full cosmological context, galaxy assembly and merger histories for any given input stellar mass-halo mass (SMHM) relation. DECODE generates object-by-object dark matter merger trees (hence discrete) from accurate subhalo mass and infall redshift probability functions (hence statistical) for all subhaloes, including those residing within other subhaloes, with virtually no resolution limits on mass or volume. Merger trees are then converted into galaxy assembly histories via an input, redshift dependent SMHM relation, which is highly sensitive to the significant systematics in the galaxy stellar mass function and on its evolution with cosmic time. DECODE can accurately reproduce the predicted mean galaxy merger rates and assembly histories of hydrodynamic simulations and semi-analytic models, when adopting in input their SMHM relations. In the present work we use DECODE to prove that only SMHM relations implied by stellar mass functions characterized by large abundances of massive galaxies and significant redshift evolution, at least at $M_\star \gtrsim 10^{11} \, M_\odot$, can simultaneously reproduce the local abundances of satellite galaxies, the galaxy (major merger) pairs since $z \sim 3$, and the growth of Brightest Cluster Galaxies. The same models can also reproduce the local fraction of elliptical galaxies, on the assumption that these are strictly formed by major mergers, but not the full bulge-to-disc ratio distributions, which require additional processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.00014v2-abstract-full').style.display = 'none'; document.getElementById('2208.00014v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">MNRAS, accepted, 29 pages, 25 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.07357">arXiv:2206.07357</a> <span> [<a href="https://arxiv.org/pdf/2206.07357">pdf</a>, <a href="https://arxiv.org/format/2206.07357">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac7873">10.3847/1538-4357/ac7873 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Black Hole Mass Function Across Cosmic Times II. Heavy Seeds and (Super)Massive Black Holes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Sicilia%2C+A">A. Sicilia</a>, <a href="/search/astro-ph?searchtype=author&query=Lapi%2C+A">A. Lapi</a>, <a href="/search/astro-ph?searchtype=author&query=Boco%2C+L">L. Boco</a>, <a href="/search/astro-ph?searchtype=author&query=Shankar%2C+F">F. Shankar</a>, <a href="/search/astro-ph?searchtype=author&query=Alexander%2C+D+M">D. M. Alexander</a>, <a href="/search/astro-ph?searchtype=author&query=Allevato%2C+V">V. Allevato</a>, <a href="/search/astro-ph?searchtype=author&query=Villforth%2C+C">C. Villforth</a>, <a href="/search/astro-ph?searchtype=author&query=Massardi%2C+M">M. Massardi</a>, <a href="/search/astro-ph?searchtype=author&query=Spera%2C+M">M. Spera</a>, <a href="/search/astro-ph?searchtype=author&query=Bressan%2C+A">A. Bressan</a>, <a href="/search/astro-ph?searchtype=author&query=Danese%2C+L">L. Danese</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.07357v1-abstract-short" style="display: inline;"> This is the second paper in a series aimed at modeling the black hole (BH) mass function, from the stellar to the (super)massive regime. In the present work we focus on (super)massive BHs and provide an ab-initio computation of their mass function across cosmic times. We consider two main mechanisms to grow the central BH, that are expected to cooperate in the high-redshift star-forming progenitor… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.07357v1-abstract-full').style.display = 'inline'; document.getElementById('2206.07357v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.07357v1-abstract-full" style="display: none;"> This is the second paper in a series aimed at modeling the black hole (BH) mass function, from the stellar to the (super)massive regime. In the present work we focus on (super)massive BHs and provide an ab-initio computation of their mass function across cosmic times. We consider two main mechanisms to grow the central BH, that are expected to cooperate in the high-redshift star-forming progenitors of local massive galaxies. The first is the gaseous dynamical friction process, that can cause the migration toward the nuclear regions of stellar-mass BHs originated during the intense bursts of star formation in the gas-rich host progenitor galaxy, and the buildup of a central heavy BH seed $M_\bullet\sim 10^{3-5}\, M_\odot$ within short timescales $\lesssim$ some $10^7$ yr. The second mechanism is the standard Eddington-type gas disk accretion onto the heavy BH seed, through which the central BH can become (super)massive $M_\bullet\sim 10^{6-10}\, M_\odot$ within the typical star-formation duration $\lesssim 1$ Gyr of the host. We validate our semi-empirical approach by reproducing the observed redshift-dependent bolometric AGN luminosity functions and Eddington ratio distributions, and the relationship between the star-formation and the bolometric luminosity of the accreting central BH. We then derive the relic (super)massive BH mass function at different redshifts via a generalized continuity equation approach, and compare it with present observational estimates. Finally, we reconstruct the overall BH mass function from the stellar to the (super)massive regime, over more than ten orders of magnitudes in BH mass. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.07357v1-abstract-full').style.display = 'none'; document.getElementById('2206.07357v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 11 figures. Accepted by ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.09474">arXiv:2205.09474</a> <span> [<a href="https://arxiv.org/pdf/2205.09474">pdf</a>, <a href="https://arxiv.org/format/2205.09474">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Astroparticle Constraints from Cosmic Reionization and Primordial Galaxy Formation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Lapi%2C+A">A. Lapi</a>, <a href="/search/astro-ph?searchtype=author&query=Ronconi%2C+T">T. Ronconi</a>, <a href="/search/astro-ph?searchtype=author&query=Boco%2C+L">L. Boco</a>, <a href="/search/astro-ph?searchtype=author&query=Shankar%2C+F">F. Shankar</a>, <a href="/search/astro-ph?searchtype=author&query=Krachmalnicoff%2C+N">N. Krachmalnicoff</a>, <a href="/search/astro-ph?searchtype=author&query=Baccigalupi%2C+C">C. Baccigalupi</a>, <a href="/search/astro-ph?searchtype=author&query=Danese%2C+L">L. Danese</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.09474v3-abstract-short" style="display: inline;"> We derive astroparticle constraints in different dark matter scenarios alternative to cold dark matter (CDM): thermal relic warm dark matter, WDM; fuzzy dark matter, $蠄$DM; self-interacting dark matter, SIDM; sterile neutrino dark matter, $谓$DM. Our framework is based on updated determinations of the high-redshift UV luminosity functions for primordial galaxies out to redshift $z\sim 10$, on redsh… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.09474v3-abstract-full').style.display = 'inline'; document.getElementById('2205.09474v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.09474v3-abstract-full" style="display: none;"> We derive astroparticle constraints in different dark matter scenarios alternative to cold dark matter (CDM): thermal relic warm dark matter, WDM; fuzzy dark matter, $蠄$DM; self-interacting dark matter, SIDM; sterile neutrino dark matter, $谓$DM. Our framework is based on updated determinations of the high-redshift UV luminosity functions for primordial galaxies out to redshift $z\sim 10$, on redshift-dependent halo mass functions in the above DM scenarios from numerical simulations, and on robust constraints on the reionization history of the Universe from recent astrophysical and cosmological datasets. First, we build up an empirical model of cosmic reionization characterized by two parameters, namely the escape fraction $f_{\rm esc}$ of ionizing photons from primordial galaxies, and the limiting UV magnitude $M_{\rm UV}^{\rm lim}$ down to which the extrapolated UV luminosity functions are steeply increasing. Second, we perform standard abundance matching of the UV luminosity function and the halo mass function, obtaining a relationship between UV luminosity and halo mass whose shape depends on an astroparticle quantity $X$ specific of each DM scenario (e.g., WDM particle mass); we exploit such a relation to introduce in the analysis a constraint from primordial galaxy formation, in terms of the threshold halo mass above which primordial galaxies can efficiently form stars. Third, we implement a sequential updating Bayesian MCMC technique to perform joint inference on the three parameters $f_{\rm esc}$, $M_{\rm UV}^{\rm lim}$, $X$, and to compare the outcomes of different DM scenarios on the reionization history. Finally, we highlight the relevance of our astroparticle estimates in predicting the behavior of the high-redshift UV luminosity function at faint, yet unexplored magnitudes, that may be tested with the advent of the James Webb Space Telescope. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.09474v3-abstract-full').style.display = 'none'; document.getElementById('2205.09474v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 15 figures. Accepted on Universe</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.05099">arXiv:2205.05099</a> <span> [<a href="https://arxiv.org/pdf/2205.05099">pdf</a>, <a href="https://arxiv.org/format/2205.05099">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stac2384">10.1093/mnras/stac2384 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Modelling the host galaxies of binary compact object mergers with observational scaling relations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Santoliquido%2C+F">Filippo Santoliquido</a>, <a href="/search/astro-ph?searchtype=author&query=Mapelli%2C+M">Michela Mapelli</a>, <a href="/search/astro-ph?searchtype=author&query=Artale%2C+M+C">M. Celeste Artale</a>, <a href="/search/astro-ph?searchtype=author&query=Boco%2C+L">Lumen Boco</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.05099v2-abstract-short" style="display: inline;"> The merger rate density evolution of binary compact objects and the properties of their host galaxies carry crucial information to understand the sources of gravitational waves. Here, we present galaxyRate, a new code that estimates the merger rate density of binary compact objects and the properties of their host galaxies, based on observational scaling relations. We generate our synthetic galaxi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.05099v2-abstract-full').style.display = 'inline'; document.getElementById('2205.05099v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.05099v2-abstract-full" style="display: none;"> The merger rate density evolution of binary compact objects and the properties of their host galaxies carry crucial information to understand the sources of gravitational waves. Here, we present galaxyRate, a new code that estimates the merger rate density of binary compact objects and the properties of their host galaxies, based on observational scaling relations. We generate our synthetic galaxies according to the galaxy stellar mass function. We estimate the metallicity according to both the mass-metallicity relation (MZR) and the fundamental metallicity relation (FMR). Also, we take into account galaxy-galaxy mergers and the evolution of the galaxy properties from the formation to the merger of the binary compact object. We find that the merger rate density changes dramatically depending on the choice of the star-forming galaxy main sequence, especially in the case of binary black holes (BBHs) and black hole neutron star systems (BHNSs). The slope of the merger rate density of BBHs and BHNSs is steeper if we assume the MZR with respect to the FMR, because the latter predicts a shallower decrease of metallicity with redshift. In contrast, binary neutron stars (BNSs) are only mildly affected by both the galaxy main sequence and metallicity relation. Overall, BBHs and BHNSs tend to form in low-mass metal-poor galaxies and merge in high-mass metal-rich galaxies, while BNSs form and merge in massive galaxies. We predict that passive galaxies host at least ~5-10%, ~15-25%, and ~15-35% of all BNS, BHNS and BBH mergers in the local Universe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.05099v2-abstract-full').style.display = 'none'; document.getElementById('2205.05099v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 22 figures (including appendices), 3 tables, published in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.15607">arXiv:2110.15607</a> <span> [<a href="https://arxiv.org/pdf/2110.15607">pdf</a>, <a href="https://arxiv.org/format/2110.15607">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac34fb">10.3847/1538-4357/ac34fb <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Black Hole Mass Function Across Cosmic Times I. Stellar Black Holes and Light Seed Distribution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Sicilia%2C+A">Alex Sicilia</a>, <a href="/search/astro-ph?searchtype=author&query=Lapi%2C+A">Andrea Lapi</a>, <a href="/search/astro-ph?searchtype=author&query=Boco%2C+L">Lumen Boco</a>, <a href="/search/astro-ph?searchtype=author&query=Spera%2C+M">Mario Spera</a>, <a href="/search/astro-ph?searchtype=author&query=Di+Carlo%2C+U+N">Ugo N. Di Carlo</a>, <a href="/search/astro-ph?searchtype=author&query=Mapelli%2C+M">Michela Mapelli</a>, <a href="/search/astro-ph?searchtype=author&query=Shankar%2C+F">Francesco Shankar</a>, <a href="/search/astro-ph?searchtype=author&query=Alexander%2C+D+M">David M. Alexander</a>, <a href="/search/astro-ph?searchtype=author&query=Bressan%2C+A">Alessandro Bressan</a>, <a href="/search/astro-ph?searchtype=author&query=Danese%2C+L">Luigi Danese</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.15607v1-abstract-short" style="display: inline;"> This is the first paper in a series aimed at modeling the black hole (BH) mass function, from the stellar to the intermediate to the (super)massive regime. In the present work we focus on stellar BHs and provide an ab-initio computation of their mass function across cosmic times. Specifically, we exploit the state-of-the-art stellar and binary evolutionary code \texttt{SEVN}, and couple its output… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.15607v1-abstract-full').style.display = 'inline'; document.getElementById('2110.15607v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.15607v1-abstract-full" style="display: none;"> This is the first paper in a series aimed at modeling the black hole (BH) mass function, from the stellar to the intermediate to the (super)massive regime. In the present work we focus on stellar BHs and provide an ab-initio computation of their mass function across cosmic times. Specifically, we exploit the state-of-the-art stellar and binary evolutionary code \texttt{SEVN}, and couple its outputs with redshift-dependent galaxy statistics and empirical scaling relations involving galaxy metallicity, star-formation rate and stellar mass. The resulting relic mass function ${\rm d}N/{\rm d}V{\rm d}\log m_\bullet$ as a function of the BH mass $m_\bullet$ features a rather flat shape up to $m_\bullet\approx 50\, M_\odot$ and then a log-normal decline for larger masses, while its overall normalization at a given mass increases with decreasing redshift. We highlight the contribution to the local mass function from isolated stars evolving into BHs and from binary stellar systems ending up in single or binary BHs. We also include the distortion on the mass function induced by binary BH mergers, finding that it has a minor effect at the high-mass end. We estimate a local stellar BH relic mass density of $蟻_\bullet\approx 5\times 10^7\, M_\odot$ Mpc$^{-3}$, which exceeds by more than two orders of magnitude that in supermassive BHs; this translates into an energy density parameter $惟_\bullet\approx 4\times 10^{-4}$, implying that the total mass in stellar BHs amounts to $\lesssim 1\%$ of the local baryonic matter. We show how our mass function for merging BH binaries compares with the recent estimates from gravitational wave observations by LIGO/Virgo, and discuss the possible implications for dynamical formation of BH binaries in dense environments like star clusters. [abridged] <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.15607v1-abstract-full').style.display = 'none'; document.getElementById('2110.15607v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 14 figures. Accepted by ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.06187">arXiv:2109.06187</a> <span> [<a href="https://arxiv.org/pdf/2109.06187">pdf</a>, <a href="https://arxiv.org/format/2109.06187">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab2690">10.1093/mnras/stab2690 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The impact of the FMR and starburst galaxies on the (low-metallicity) cosmic star formation history </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Chruslinska%2C+M">Martyna Chruslinska</a>, <a href="/search/astro-ph?searchtype=author&query=Nelemans%2C+G">Gijs Nelemans</a>, <a href="/search/astro-ph?searchtype=author&query=Boco%2C+L">Lumen Boco</a>, <a href="/search/astro-ph?searchtype=author&query=Lapi%2C+A">Andrea Lapi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.06187v1-abstract-short" style="display: inline;"> The question how much star formation is occurring at low metallicity throughout the cosmic history appears crucial for the discussion of the origin of various energetic transients, and possibly - double black hole mergers. We revisit the observation-based distribution of birth metallicities of stars (f$_{\rm SFR}$(Z,z)), focusing on several factors that strongly affect its low metallicity part: (i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.06187v1-abstract-full').style.display = 'inline'; document.getElementById('2109.06187v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.06187v1-abstract-full" style="display: none;"> The question how much star formation is occurring at low metallicity throughout the cosmic history appears crucial for the discussion of the origin of various energetic transients, and possibly - double black hole mergers. We revisit the observation-based distribution of birth metallicities of stars (f$_{\rm SFR}$(Z,z)), focusing on several factors that strongly affect its low metallicity part: (i) the method used to describe the metallicity distribution of galaxies (redshift-dependent mass metallicity relation - MZR, or redshift-invariant fundamental metallicity relation - FMR), (ii) the contribution of starburst galaxies and (iii) the slope of the MZR. We empirically construct the FMR based on the low-redshift scaling relations, which allows us to capture the systematic differences in the relation caused by the choice of metallicity and star formation rate (SFR) determination techniques and discuss the related f$_{\rm SFR}$(Z,z) uncertainty. We indicate factors that dominate the f$_{\rm SFR}$(Z,z) uncertainty in different metallicity and redshift regimes. The low metallicity part of the distribution is poorly constrained even at low redshifts (even a factor of $\sim$200 difference between the model variations) The non-evolving FMR implies a much shallower metallicity evolution than the extrapolated MZR, however, its effect on the low metallicity part of the f$_{\rm SFR}$(Z,z) is counterbalanced by the contribution of starbursts (assuming that they follow the FMR). A non-negligible fraction of starbursts in our model may be necessary to satisfy the recent high-redshift SFR density constraints. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.06187v1-abstract-full').style.display = 'none'; document.getElementById('2109.06187v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">resubmitted to MNRAS after minor revision</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.09786">arXiv:2106.09786</a> <span> [<a href="https://arxiv.org/pdf/2106.09786">pdf</a>, <a href="https://arxiv.org/format/2106.09786">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2022/01/004">10.1088/1475-7516/2022/01/004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gravitational waves $\times$ HI intensity mapping: cosmological and astrophysical applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Scelfo%2C+G">Giulio Scelfo</a>, <a href="/search/astro-ph?searchtype=author&query=Spinelli%2C+M">Marta Spinelli</a>, <a href="/search/astro-ph?searchtype=author&query=Raccanelli%2C+A">Alvise Raccanelli</a>, <a href="/search/astro-ph?searchtype=author&query=Boco%2C+L">Lumen Boco</a>, <a href="/search/astro-ph?searchtype=author&query=Lapi%2C+A">Andrea Lapi</a>, <a href="/search/astro-ph?searchtype=author&query=Viel%2C+M">Matteo Viel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.09786v2-abstract-short" style="display: inline;"> Two of the most rapidly growing observables in cosmology and astrophysics are gravitational waves (GW) and the neutral hydrogen (HI) distribution. In this work, we investigate the cross-correlation between resolved gravitational wave detections and HI signal from intensity mapping (IM) experiments. By using a tomographic approach with angular power spectra, including all projection effects, we exp… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.09786v2-abstract-full').style.display = 'inline'; document.getElementById('2106.09786v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.09786v2-abstract-full" style="display: none;"> Two of the most rapidly growing observables in cosmology and astrophysics are gravitational waves (GW) and the neutral hydrogen (HI) distribution. In this work, we investigate the cross-correlation between resolved gravitational wave detections and HI signal from intensity mapping (IM) experiments. By using a tomographic approach with angular power spectra, including all projection effects, we explore possible applications of the combination of the Einstein Telescope and the SKAO intensity mapping surveys. We focus on three main topics: \textit{(i)} statistical inference of the observed redshift distribution of GWs; \textit{(ii)} constraints on dynamical dark energy models as an example of cosmological studies; \textit{(iii)} determination of the nature of the progenitors of merging binary black holes, distinguishing between primordial and astrophysical origin. Our results show that: \textit{(i)} the GW redshift distribution can be calibrated with good accuracy at low redshifts, without any assumptions on cosmology or astrophysics, potentially providing a way to probe astrophysical and cosmological models; \textit{(ii)} the constrains on the dynamical dark energy parameters are competitive with IM-only experiments, in a complementary way and potentially with less systematics; \textit{(iii)} it will be possible to detect a relatively small abundance of primordial black holes within the gravitational waves from resolved mergers. Our results extend towards $\mathrm{GW \times IM}$ the promising field of multi-tracing cosmology and astrophysics, which has the major advantage of allowing scientific investigations in ways that would not be possible by looking at single observables separately. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.09786v2-abstract-full').style.display = 'none'; document.getElementById('2106.09786v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 7 figures, 1 table. Matches the published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JCAP01(2022)004 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.09969">arXiv:2105.09969</a> <span> [<a href="https://arxiv.org/pdf/2105.09969">pdf</a>, <a href="https://arxiv.org/format/2105.09969">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab1472">10.1093/mnras/stab1472 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The evolution of compact massive quiescent and starforming galaxies derived from the $R_e-R_h$ and $M_{\rm star}-M_h$ relations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Zanisi%2C+L">L. Zanisi</a>, <a href="/search/astro-ph?searchtype=author&query=Shankar%2C+F">F. Shankar</a>, <a href="/search/astro-ph?searchtype=author&query=Fu%2C+H">H. Fu</a>, <a href="/search/astro-ph?searchtype=author&query=Rodriguez-Puebla%2C+A">A. Rodriguez-Puebla</a>, <a href="/search/astro-ph?searchtype=author&query=Avila-Reese%2C+V">V. Avila-Reese</a>, <a href="/search/astro-ph?searchtype=author&query=Faisst%2C+A">A. Faisst</a>, <a href="/search/astro-ph?searchtype=author&query=Daddi%2C+E">E. Daddi</a>, <a href="/search/astro-ph?searchtype=author&query=Boco%2C+L">L. Boco</a>, <a href="/search/astro-ph?searchtype=author&query=Lapi%2C+A">A. Lapi</a>, <a href="/search/astro-ph?searchtype=author&query=Giavalisco%2C+M">M. Giavalisco</a>, <a href="/search/astro-ph?searchtype=author&query=Saracco%2C+P">P. Saracco</a>, <a href="/search/astro-ph?searchtype=author&query=Buitrago%2C+F">F. Buitrago</a>, <a href="/search/astro-ph?searchtype=author&query=Huertas-Company%2C+M">M. Huertas-Company</a>, <a href="/search/astro-ph?searchtype=author&query=Puglisi%2C+A">A. Puglisi</a>, <a href="/search/astro-ph?searchtype=author&query=Dekel%2C+A">A. Dekel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.09969v1-abstract-short" style="display: inline;"> The mean size ( effective radius $R_e$) of Massive Galaxies (MGs, $M_{\rm star}>10^{11.2}M_\odot$) is observed to increase steadily with cosmic time. It is still unclear whether this trend originates from the size growth of individual galaxies (via, e.g., mergers and/or AGN feedback) or from the inclusion of larger galaxies entering the selection at later epochs (progenitor bias). We here build a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.09969v1-abstract-full').style.display = 'inline'; document.getElementById('2105.09969v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.09969v1-abstract-full" style="display: none;"> The mean size ( effective radius $R_e$) of Massive Galaxies (MGs, $M_{\rm star}>10^{11.2}M_\odot$) is observed to increase steadily with cosmic time. It is still unclear whether this trend originates from the size growth of individual galaxies (via, e.g., mergers and/or AGN feedback) or from the inclusion of larger galaxies entering the selection at later epochs (progenitor bias). We here build a data-driven, flexible theoretical framework to probe the structural evolution of MGs. We assign galaxies to dark matter haloes via stellar mass-halo mass (SMHM) relations with varying high-mass slopes and scatters $蟽_{\rm SMHM}$ in stellar mass at fixed halo mass, and assign sizes to galaxies using an empirically-motivated, constant and linear relationship between $R_e$ and the host dark matter halo radius $R_h$. We find that: 1) the fast mean size growth of MGs is well reproduced independently of the shape of the input SMHM relation; 2) the numbers of compact MGs grow steadily until $z\gtrsim2$ and fall off at lower redshifts, suggesting a lesser role of progenitor bias at later epochs; 3) a time-independent scatter $蟽_{\rm SMHM}$ is consistent with a scenario in which compact starforming MGs transition into quiescent MGs in a few $10^8$yr with a negligible structural evolution during the compact phase, while a scatter increasing at high redshift implies significant size growth during the starforming phase. A robust measurement of the size function of MGs at high redshift can set strong constraints on the scatter of the SMHM relation and, by extension, on models of galaxy evolution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.09969v1-abstract-full').style.display = 'none'; document.getElementById('2105.09969v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in MNRAS. Comments still welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.07682">arXiv:2104.07682</a> <span> [<a href="https://arxiv.org/pdf/2104.07682">pdf</a>, <a href="https://arxiv.org/format/2104.07682">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2021/10/035">10.1088/1475-7516/2021/10/035 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Growth of Massive Black Hole Seeds by Migration of Stellar and Primordial Black Holes: Gravitational Waves and Stochastic Background </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Boco%2C+L">Lumen Boco</a>, <a href="/search/astro-ph?searchtype=author&query=Lapi%2C+A">Andrea Lapi</a>, <a href="/search/astro-ph?searchtype=author&query=Sicilia%2C+A">Alex Sicilia</a>, <a href="/search/astro-ph?searchtype=author&query=Capurri%2C+G">Giulia Capurri</a>, <a href="/search/astro-ph?searchtype=author&query=Baccigalupi%2C+C">Carlo Baccigalupi</a>, <a href="/search/astro-ph?searchtype=author&query=Danese%2C+L">Luigi Danese</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.07682v2-abstract-short" style="display: inline;"> We investigate the formation and growth of massive black hole (BH) seeds in dusty star-forming galaxies, relying and extending the framework proposed by Boco et al. 2020. Specifically, the latter envisages the migration of stellar compact remnants (neutron stars and stellar-mass black holes) via gaseous dynamical friction towards the galaxy nuclear region, and their subsequent merging to grow a ma… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.07682v2-abstract-full').style.display = 'inline'; document.getElementById('2104.07682v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.07682v2-abstract-full" style="display: none;"> We investigate the formation and growth of massive black hole (BH) seeds in dusty star-forming galaxies, relying and extending the framework proposed by Boco et al. 2020. Specifically, the latter envisages the migration of stellar compact remnants (neutron stars and stellar-mass black holes) via gaseous dynamical friction towards the galaxy nuclear region, and their subsequent merging to grow a massive central BH seed. In this paper we add two relevant ingredients: (i) we include primordial BHs, that could constitute a fraction $f_{\rm pBH}$ of the dark matter, as an additional component participating in the seed growth; (ii) we predict the stochastic gravitational wave background originated during the seed growth, both from stellar compact remnant and from primordial BH mergers. We find that the latter events contribute most to the initial growth of the central seed during a timescale of $10^6-10^7\,\rm yr$, before stellar compact remnant mergers and gas accretion take over. In addition, if the fraction of primordial BHs $f_{\rm pBH}$ is large enough, gravitational waves emitted by their mergers in the nuclear galactic regions could be detected by future interferometers like Einsten Telescope, DECIGO and LISA. As for the associated stochastic gravitational wave background, we predict that it extends over the wide frequency band $10^{-6}\lesssim f [{\rm Hz}]\lesssim 10$, which is very different from the typical range originated by mergers of isolated binary compact objects. On the one hand, the detection of such a background could be a smoking gun to test the proposed seed growth mechanism; on the other hand, it constitutes a relevant contaminant from astrophysical sources to be characterized and subtracted, in the challenging search for a primordial background of cosmological origin. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.07682v2-abstract-full').style.display = 'none'; document.getElementById('2104.07682v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.05680">arXiv:2104.05680</a> <span> [<a href="https://arxiv.org/pdf/2104.05680">pdf</a>, <a href="https://arxiv.org/format/2104.05680">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202039842">10.1051/0004-6361/202039842 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On the effects of the Initial Mass Function on Galactic chemical enrichment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Goswami%2C+S">S. Goswami</a>, <a href="/search/astro-ph?searchtype=author&query=Slemer%2C+A">A. Slemer</a>, <a href="/search/astro-ph?searchtype=author&query=Marigo%2C+P">P. Marigo</a>, <a href="/search/astro-ph?searchtype=author&query=Bressan%2C+A">A. Bressan</a>, <a href="/search/astro-ph?searchtype=author&query=Silva%2C+L">L. Silva</a>, <a href="/search/astro-ph?searchtype=author&query=Spera%2C+M">M. Spera</a>, <a href="/search/astro-ph?searchtype=author&query=Boco%2C+L">L. Boco</a>, <a href="/search/astro-ph?searchtype=author&query=Grisoni%2C+V">V. Grisoni</a>, <a href="/search/astro-ph?searchtype=author&query=Pantoni%2C+L">L. Pantoni</a>, <a href="/search/astro-ph?searchtype=author&query=Lapi%2C+A">A. Lapi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.05680v1-abstract-short" style="display: inline;"> There is mounting evidence that the stellar initial mass function (IMF) could extend much beyond the canonical Mi ~100, Msun limit, but the impact of such hypothesis on the chemical enrichment of galaxies still remains to be clarified. We aim to address this question by analysing the observed abundances of thin- and thick-disc stars in the Milky Way with chemical evolution models that account for… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.05680v1-abstract-full').style.display = 'inline'; document.getElementById('2104.05680v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.05680v1-abstract-full" style="display: none;"> There is mounting evidence that the stellar initial mass function (IMF) could extend much beyond the canonical Mi ~100, Msun limit, but the impact of such hypothesis on the chemical enrichment of galaxies still remains to be clarified. We aim to address this question by analysing the observed abundances of thin- and thick-disc stars in the Milky Way with chemical evolution models that account for the contribution of very massive stars dying as pair-instability supernovae. We built new sets of chemical yields from massive and very massive stars up to Mi ~ 350 Msun, by combining the wind ejecta extracted from our hydrostatic stellar evolution models with explosion ejecta from the literature. Using a simple chemical evolution code we analyse the effects of adopting different yield tables by comparing predictions against observations of stars in the solar vicinity. After several tests, we focus on the [O/Fe] ratio which best separates the chemical patterns of the two Milky Way components. We find that with a standard IMF, truncated at Mi ~ 100 Msun, we can reproduce various observational constraints for thin-disc stars, but the same IMF fails to account for the [O/Fe] ratios of thick-disc stars. The best results are obtained by extending the IMF up to Mi = 350 Msun and including the chemical ejecta of very massive stars, in the form of winds and pair-instability supernova explosions.Our study indicates that PISN played a significant role in shaping the chemical evolution of the Milky Way thick disc. By including their chemical yields it is easier to reproduce not only the level of the alpha-enhancement but also the observed slope of thick-disc stars in the [O/Fe] vs [Fe/H] diagram. The bottom line is that the contribution of very massive stars to the chemical enrichment of galaxies is potentially quite important and should not be neglected in chemical evolution models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.05680v1-abstract-full').style.display = 'none'; document.getElementById('2104.05680v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 17 figures, accepted for publication in A&A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 650, A203 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.12037">arXiv:2103.12037</a> <span> [<a href="https://arxiv.org/pdf/2103.12037">pdf</a>, <a href="https://arxiv.org/format/2103.12037">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2021/11/032">10.1088/1475-7516/2021/11/032 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Intensity and anisotropies of the stochastic Gravitational Wave background from merging compact binaries in galaxies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Capurri%2C+G">Giulia Capurri</a>, <a href="/search/astro-ph?searchtype=author&query=Lapi%2C+A">Andrea Lapi</a>, <a href="/search/astro-ph?searchtype=author&query=Baccigalupi%2C+C">Carlo Baccigalupi</a>, <a href="/search/astro-ph?searchtype=author&query=Boco%2C+L">Lumen Boco</a>, <a href="/search/astro-ph?searchtype=author&query=Scelfo%2C+G">Giulio Scelfo</a>, <a href="/search/astro-ph?searchtype=author&query=Ronconi%2C+T">Tommaso Ronconi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.12037v2-abstract-short" style="display: inline;"> We investigate the isotropic and anisotropic components of the Stochastic Gravitational Wave Background (SGWB) originated from unresolved merging compact binaries in galaxies. We base our analysis on an empirical approach to galactic astrophysics that allows to follow the evolution of individual systems. We then characterize the energy density of the SGWB as a tracer of the total matter density, i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.12037v2-abstract-full').style.display = 'inline'; document.getElementById('2103.12037v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.12037v2-abstract-full" style="display: none;"> We investigate the isotropic and anisotropic components of the Stochastic Gravitational Wave Background (SGWB) originated from unresolved merging compact binaries in galaxies. We base our analysis on an empirical approach to galactic astrophysics that allows to follow the evolution of individual systems. We then characterize the energy density of the SGWB as a tracer of the total matter density, in order to compute the angular power spectrum of anisotropies with the Cosmic Linear Anisotropy Solving System (CLASS) public code in full generality. We obtain predictions for the isotropic energy density and for the angular power spectrum of the SGWB anisotropies, and study the prospect for their observations with advanced Laser Interferometer Gravitational-Wave and Virgo Observatories and with the Einstein Telescope. We identify the contributions coming from different type of sources (binary black holes, binary neutron stars and black hole-neutron star) and from different redshifts. We examine in detail the spectral shape of the energy density for all types of sources, comparing the results for the two detectors. We find that the power spectrum of the SGWB anisotropies behaves like a power law on large angular scales and drops at small scales: we explain this behaviour in terms of the redshift distribution of sources that contribute most to the signal, and of the sensitivities of the two detectors. Finally, we simulate a high resolution full sky map of the SGWB starting from the power spectra obtained with CLASS and including Poisson statistics and clustering properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.12037v2-abstract-full').style.display = 'none'; document.getElementById('2103.12037v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.02800">arXiv:2012.02800</a> <span> [<a href="https://arxiv.org/pdf/2012.02800">pdf</a>, <a href="https://arxiv.org/format/2012.02800">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/abd3a0">10.3847/1538-4357/abd3a0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evolution of Galaxy Star Formation and Metallicity: Impact on Double Compact Objects Mergers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Boco%2C+L">Lumen Boco</a>, <a href="/search/astro-ph?searchtype=author&query=Lapi%2C+A">Andrea Lapi</a>, <a href="/search/astro-ph?searchtype=author&query=Chruslinska%2C+M">Martyna Chruslinska</a>, <a href="/search/astro-ph?searchtype=author&query=Donevski%2C+D">Darko Donevski</a>, <a href="/search/astro-ph?searchtype=author&query=Sicilia%2C+A">Alex Sicilia</a>, <a href="/search/astro-ph?searchtype=author&query=Danese%2C+L">Luigi Danese</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.02800v1-abstract-short" style="display: inline;"> We study the impact of different galaxy statistics and empirical metallicity scaling relations on the merging rates and on the properties of compact objects binaries. First, we analyze the similarities and differences of using the star formation rate functions or the stellar mass functions as galaxy statistics for the computation of the cosmic star formation rate density. Then we investigate the e… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.02800v1-abstract-full').style.display = 'inline'; document.getElementById('2012.02800v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.02800v1-abstract-full" style="display: none;"> We study the impact of different galaxy statistics and empirical metallicity scaling relations on the merging rates and on the properties of compact objects binaries. First, we analyze the similarities and differences of using the star formation rate functions or the stellar mass functions as galaxy statistics for the computation of the cosmic star formation rate density. Then we investigate the effects of adopting the Fundamental Metallicity Relation or a classic Mass Metallicity Relation to assign metallicity to galaxies with given properties. We find that when the Fundamental Metallicity Relation is exploited, the bulk of the star formation occurs at relatively high metallicities even at high redshift; the opposite holds when the Mass Metallicity Relation is employed, since in this case the metallicity at which most of the star formation takes place strongly decreases with redshift. We discuss the various reasons and possible biases originating this discrepancy. Finally, we show the impact that these different astrophysical prescriptions have on the merging rates and on the properties of compact objects binaries; specifically, we present results for the redshift dependent merging rates and for the chirp mass and time delay distributions of the merging binaries. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.02800v1-abstract-full').style.display = 'none'; document.getElementById('2012.02800v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.09278">arXiv:2011.09278</a> <span> [<a href="https://arxiv.org/pdf/2011.09278">pdf</a>, <a href="https://arxiv.org/format/2011.09278">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3389/fphy.2020.603190">10.3389/fphy.2020.603190 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Einstein, Planck and Vera Rubin: relevant encounters between the Cosmological and the Quantum Worlds </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Salucci%2C+P">Paolo Salucci</a>, <a href="/search/astro-ph?searchtype=author&query=Esposito%2C+G">Giampiero Esposito</a>, <a href="/search/astro-ph?searchtype=author&query=Lambiase%2C+G">Gaetano Lambiase</a>, <a href="/search/astro-ph?searchtype=author&query=Battista%2C+E">Emmanuele Battista</a>, <a href="/search/astro-ph?searchtype=author&query=Benetti%2C+M">Micol Benetti</a>, <a href="/search/astro-ph?searchtype=author&query=Bini%2C+D">Donato Bini</a>, <a href="/search/astro-ph?searchtype=author&query=Boco%2C+L">Lumen Boco</a>, <a href="/search/astro-ph?searchtype=author&query=Sharma%2C+G">Gauri Sharma</a>, <a href="/search/astro-ph?searchtype=author&query=Bozza%2C+V">Valerio Bozza</a>, <a href="/search/astro-ph?searchtype=author&query=Buoninfante%2C+L">Luca Buoninfante</a>, <a href="/search/astro-ph?searchtype=author&query=Capolupo%2C+A">Antonio Capolupo</a>, <a href="/search/astro-ph?searchtype=author&query=Capozziello%2C+S">Salvatore Capozziello</a>, <a href="/search/astro-ph?searchtype=author&query=Covone%2C+G">Giovanni Covone</a>, <a href="/search/astro-ph?searchtype=author&query=D%27Agostino%2C+R">Rocco D'Agostino</a>, <a href="/search/astro-ph?searchtype=author&query=DeLaurentis%2C+M">Mariafelicia DeLaurentis</a>, <a href="/search/astro-ph?searchtype=author&query=De+Martino%2C+I">Ivan De Martino</a>, <a href="/search/astro-ph?searchtype=author&query=De+Somma%2C+G">Giulia De Somma</a>, <a href="/search/astro-ph?searchtype=author&query=Di+Grezia%2C+E">Elisabetta Di Grezia</a>, <a href="/search/astro-ph?searchtype=author&query=Di+Paolo%2C+C">Chiara Di Paolo</a>, <a href="/search/astro-ph?searchtype=author&query=Fatibene%2C+L">Lorenzo Fatibene</a>, <a href="/search/astro-ph?searchtype=author&query=Gammaldi%2C+V">Viviana Gammaldi</a>, <a href="/search/astro-ph?searchtype=author&query=Geralico%2C+A">Andrea Geralico</a>, <a href="/search/astro-ph?searchtype=author&query=Ingoglia%2C+L">Lorenzo Ingoglia</a>, <a href="/search/astro-ph?searchtype=author&query=Lapi%2C+A">Andrea Lapi</a>, <a href="/search/astro-ph?searchtype=author&query=Luciano%2C+G+G">Giuseppe G. Luciano</a> , et al. (16 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.09278v1-abstract-short" style="display: inline;"> In Cosmology and in Fundamental Physics there is a crucial question like: where the elusive substance that we call Dark Matter is hidden in the Universe and what is it made of?, that, even after 40 years from the Vera Rubin seminal discovery does not have a proper answer. Actually, the more we have investigated, the more this issue has become strongly entangled with aspects that go beyond the esta… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.09278v1-abstract-full').style.display = 'inline'; document.getElementById('2011.09278v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.09278v1-abstract-full" style="display: none;"> In Cosmology and in Fundamental Physics there is a crucial question like: where the elusive substance that we call Dark Matter is hidden in the Universe and what is it made of?, that, even after 40 years from the Vera Rubin seminal discovery does not have a proper answer. Actually, the more we have investigated, the more this issue has become strongly entangled with aspects that go beyond the established Quantum Physics, the Standard Model of Elementary particles and the General Relativity and related to processes like the Inflation, the accelerated expansion of the Universe and High Energy Phenomena around compact objects. Even Quantum Gravity and very exotic DM particle candidates may play a role in framing the Dark Matter mystery that seems to be accomplice of new unknown Physics. Observations and experiments have clearly indicated that the above phenomenon cannot be considered as already theoretically framed, as hoped for decades. The Special Topic to which this review belongs wants to penetrate this newly realized mystery from different angles, including that of a contamination of different fields of Physics apparently unrelated. We show with the works of this ST that this contamination is able to guide us into the required new Physics. This review wants to provide a good number of these "paths or contamination" beyond/among the three worlds above; in most of the cases, the results presented here open a direct link with the multi-scale dark matter phenomenon, enlightening some of its important aspects. Also in the remaining cases, possible interesting contacts emerges. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.09278v1-abstract-full').style.display = 'none'; document.getElementById('2011.09278v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">64 pages 16 Figures. In print on Frontiers in Astronomy and Space Sciences, for the Research Topic: "When Planck, Einstein and Vera Rubin Meet. Dark Matter: What is it ? Where is it?"</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.08534">arXiv:2007.08534</a> <span> [<a href="https://arxiv.org/pdf/2007.08534">pdf</a>, <a href="https://arxiv.org/format/2007.08534">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2020/10/045">10.1088/1475-7516/2020/10/045 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exploring galaxies-gravitational waves cross-correlations as an astrophysical probe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Scelfo%2C+G">Giulio Scelfo</a>, <a href="/search/astro-ph?searchtype=author&query=Boco%2C+L">Lumen Boco</a>, <a href="/search/astro-ph?searchtype=author&query=Lapi%2C+A">Andrea Lapi</a>, <a href="/search/astro-ph?searchtype=author&query=Viel%2C+M">Matteo Viel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.08534v2-abstract-short" style="display: inline;"> Gravitational waves astronomy has opened a new opportunity to study the Universe. Full exploitation of this window can especially be provided by combining data coming from gravitational waves experiments with luminous tracers of the Large Scale Structure, like galaxies. In this work we investigate the cross-correlation signal between gravitational waves resolved events, as detected by the Einstein… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.08534v2-abstract-full').style.display = 'inline'; document.getElementById('2007.08534v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.08534v2-abstract-full" style="display: none;"> Gravitational waves astronomy has opened a new opportunity to study the Universe. Full exploitation of this window can especially be provided by combining data coming from gravitational waves experiments with luminous tracers of the Large Scale Structure, like galaxies. In this work we investigate the cross-correlation signal between gravitational waves resolved events, as detected by the Einstein Telescope, and actively star-forming galaxies. The galaxies distribution is computed through their UV and IR luminosity functions and the gravitational waves events, assumed to be of stellar origin, are self-consistently computed from the aforementioned galaxies distribution. We provide a state-of-the-art treatment both on the astrophysical side, taking into account the impact of the star formation and chemical evolution histories of galaxies, and in computing the cross-correlation signal, for which we include lensing and relativistic effects. We find that the measured cross-correlation signal can be sufficiently strong to overcome the noise and provide a clear signal. As a possible application of this methodology, we consider a proof-of-concept case in which we aim at discriminating a metallicity dependence on the compact objects merger efficiency against a reference case with no metallicity dependence. When considering galaxies with a Star Formation Rate $蠄> 10 \: M_{\odot} /\rm{yr}$, a Signal-to-Noise ratio around a value of 2-4 is gained after a decade of observation time, depending on the observed fraction of the sky. This formalism can be exploited as an astrophysical probe and could potentially allow to test and compare different astrophysical scenarios. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.08534v2-abstract-full').style.display = 'none'; document.getElementById('2007.08534v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.01643">arXiv:2006.01643</a> <span> [<a href="https://arxiv.org/pdf/2006.01643">pdf</a>, <a href="https://arxiv.org/format/2006.01643">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ab9812">10.3847/1538-4357/ab9812 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> New Analytic Solutions for Galaxy Evolution II: Wind Recycling, Galactic Fountains and Late-Type Galaxies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Lapi%2C+A">A. Lapi</a>, <a href="/search/astro-ph?searchtype=author&query=Pantoni%2C+L">L. Pantoni</a>, <a href="/search/astro-ph?searchtype=author&query=Boco%2C+L">L. Boco</a>, <a href="/search/astro-ph?searchtype=author&query=Danese%2C+L">L. Danese</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.01643v1-abstract-short" style="display: inline;"> We generalize the analytic solutions presented in Pantoni et al. (2019) by including a simple yet effective description of wind recycling and galactic fountains, with the aim of self-consistently investigating the spatially-averaged time evolution of the gas, stellar, metal, and dust content in disc-dominated late-type galaxies (LTGs). Our analytic solutions, when supplemented with specific prescr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.01643v1-abstract-full').style.display = 'inline'; document.getElementById('2006.01643v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.01643v1-abstract-full" style="display: none;"> We generalize the analytic solutions presented in Pantoni et al. (2019) by including a simple yet effective description of wind recycling and galactic fountains, with the aim of self-consistently investigating the spatially-averaged time evolution of the gas, stellar, metal, and dust content in disc-dominated late-type galaxies (LTGs). Our analytic solutions, when supplemented with specific prescriptions for parameter setting and with halo accretion rates from $N-$body simulations, can be exploited to reproduce the main statistical relationships followed by local LTGs; these involve, as a function of the stellar mass, the star formation efficiency, the gas mass fraction, the gas/stellar metallicity, the dust mass, the star formation rate, the specific angular momentum, and the overall mass/metal budget. Our analytic solutions allow to easily disentangle the diverse role of the main physical processes ruling galaxy formation in LTGs; in particular, we highlight the crucial relevance of wind recycling and galactic fountains in efficiently refurnishing the gas mass, extending the star-formation timescale, and boosting the metal enrichment in gas and stars. All in all, our analytic solutions constitute a transparent, handy, and fast tool that can provide a basis for improving the (subgrid) physical recipes presently implemented in more sophisticated semi-analytic models and numerical simulations, and can offer a benchmark for interpreting and forecasting current and future spatially-averaged observations of local and higher redshift LTGs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.01643v1-abstract-full').style.display = 'none'; document.getElementById('2006.01643v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, 15 figures. Accepted by ApJ. arXiv admin note: substantial text overlap with arXiv:1906.07458</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.03645">arXiv:2002.03645</a> <span> [<a href="https://arxiv.org/pdf/2002.03645">pdf</a>, <a href="https://arxiv.org/format/2002.03645">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ab7446">10.3847/1538-4357/ab7446 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Growth of Supermassive Black Hole Seeds in ETG Star-Forming Progenitors: Multiple Merging of Stellar Compact Remnants via Gaseous Dynamical Friction and Gravitational Wave Emission </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Boco%2C+L">L. Boco</a>, <a href="/search/astro-ph?searchtype=author&query=Lapi%2C+A">A. Lapi</a>, <a href="/search/astro-ph?searchtype=author&query=Danese%2C+L">L. Danese</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.03645v1-abstract-short" style="display: inline;"> We propose a new mechanism for the growth of supermassive black hole (BH) seeds in the star-forming progenitors of local early-type galaxies (ETGs) at $z\gtrsim 1$. This envisages the migration and merging of stellar compact remnants (neutron stars and stellar-mass BHs) via gaseous dynamical friction toward the central high-density regions of such galaxies. We show that, under reasonable assumptio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.03645v1-abstract-full').style.display = 'inline'; document.getElementById('2002.03645v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.03645v1-abstract-full" style="display: none;"> We propose a new mechanism for the growth of supermassive black hole (BH) seeds in the star-forming progenitors of local early-type galaxies (ETGs) at $z\gtrsim 1$. This envisages the migration and merging of stellar compact remnants (neutron stars and stellar-mass BHs) via gaseous dynamical friction toward the central high-density regions of such galaxies. We show that, under reasonable assumptions and initial conditions, the process can build up central BH masses of order $10^4-10^6\, M_\odot$ within some $10^7$ yr, so effectively providing heavy seeds before standard disk (Eddington-like) accretion takes over to become the dominant process for further BH growth. Remarkably, such a mechanism may provide an explanation, alternative to super-Eddington accretion rates, for the buildup of billion solar masses BHs in quasar hosts at $z\gtrsim 7$, when the age of the Universe $\lesssim 0.8$ Gyr constitutes a demanding constraint; moreover, in more common ETG progenitors at redshift $z\sim 2-6$ it can concur with disk accretion to build such large BH masses even at moderate Eddington ratios $\lesssim 0.3$ within the short star-formation duration $\lesssim$ Gyr of these systems. Finally, we investigate the perspectives to detect the merger events between the migrating stellar remnants and the accumulating central supermassive BH via gravitational wave emission with future ground and space-based detectors such as the Einstein Telescope (ET) and the Laser Interferometer Space Antenna (LISA). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.03645v1-abstract-full').style.display = 'none'; document.getElementById('2002.03645v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 8 Figures. Accepted by ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.06841">arXiv:1907.06841</a> <span> [<a href="https://arxiv.org/pdf/1907.06841">pdf</a>, <a href="https://arxiv.org/format/1907.06841">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ab328e">10.3847/1538-4357/ab328e <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Merging Rates of Compact Binaries in Galaxies: Perspectives for Gravitational Wave Detections </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Boco%2C+L">L. Boco</a>, <a href="/search/astro-ph?searchtype=author&query=Lapi%2C+A">A. Lapi</a>, <a href="/search/astro-ph?searchtype=author&query=Goswami%2C+S">S. Goswami</a>, <a href="/search/astro-ph?searchtype=author&query=Perrotta%2C+F">F. Perrotta</a>, <a href="/search/astro-ph?searchtype=author&query=Baccigalupi%2C+C">C. Baccigalupi</a>, <a href="/search/astro-ph?searchtype=author&query=Danese%2C+L">L. Danese</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.06841v1-abstract-short" style="display: inline;"> We investigate the merging rates of compact binaries in galaxies, and the related detection rate of gravitational wave (GW) events with AdvLIGO/Virgo and with the Einstein Telescope. To this purpose, we rely on three basic ingredients: (i) the redshift-dependent galaxy statistics provided by the latest determination of the star formation rate functions from UV+far-IR/(sub)millimeter/radio data; (i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.06841v1-abstract-full').style.display = 'inline'; document.getElementById('1907.06841v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.06841v1-abstract-full" style="display: none;"> We investigate the merging rates of compact binaries in galaxies, and the related detection rate of gravitational wave (GW) events with AdvLIGO/Virgo and with the Einstein Telescope. To this purpose, we rely on three basic ingredients: (i) the redshift-dependent galaxy statistics provided by the latest determination of the star formation rate functions from UV+far-IR/(sub)millimeter/radio data; (ii) star formation and chemical enrichment histories for individual galaxies, modeled on the basis of observations; (iii) compact remnant mass distribution and prescriptions for merging of compact binaries from stellar evolution simulations. We present results for the intrinsic birthrate of compact remnants, the merging rates of compact binaries, GW detection rates and GW counts, attempting to differentiate the outcomes among BH-BH, NS-NS, and BH-NS mergers, and to estimate their occurrence in disk and spheroidal host galaxies. We compare our approach with the one based on cosmic SFR density and cosmic metallicity, exploited by many literature studies; the merging rates from the two approaches are in agreement within the overall astrophysical uncertainties. We also investigate the effects of galaxy-scale strong gravitational lensing of GW in enhancing the rate of detectable events toward high-redshift. Finally, we discuss the contribution of undetected GW emission from compact binary mergers to the stochastic background. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.06841v1-abstract-full').style.display = 'none'; document.getElementById('1907.06841v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 10 figures. Accepted by ApJ</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>