CINXE.COM
Search results for: thermo-elastic response
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <script> var _paq = window._paq = window._paq || []; /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ _paq.push(['trackPageView']); _paq.push(['enableLinkTracking']); (function() { var u="//matomo.waset.org/"; _paq.push(['setTrackerUrl', u+'matomo.php']); _paq.push(['setSiteId', '2']); _paq.push(['appendToTrackingUrl', 'bots=1']); var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); })(); </script> <noscript> <!-- Matomo Image Tracker--> <img referrerpolicy="no-referrer-when-downgrade" src="https://matomo.waset.org/matomo.php?idsite=2&rec=1&bots=1" style="border:0" alt="" /> <!-- End Matomo --> </noscript> <!-- End Matomo Code --> <title>Search results for: thermo-elastic response</title> <meta name="description" content="Search results for: thermo-elastic response"> <meta name="keywords" content="thermo-elastic response"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="thermo-elastic response" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2025/2026/2027">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="thermo-elastic response"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: thermo-elastic response</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info"></span> Application of Residual Correction Method on Hyperbolic Thermoelastic Response of Hollow Spherical Medium in Rapid Transient Heat Conduction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Po-Jen%20Su">Po-Jen Su</a>, <a href="https://publications.waset.org/abstracts/search?q=Huann-Ming%20Chou"> Huann-Ming Chou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article we uses the residual correction method to deal with transient thermoelastic problems with a hollow spherical region when the continuum medium possesses spherically isotropic thermoelastic properties. Based on linear thermoelastic theory, the equations of hyperbolic heat conduction and thermoelastic motion were combined to establish the thermoelastic dynamic model with consideration of the deformation acceleration effect and non-Fourier effect under the condition of transient thermal shock. The approximate solutions of temperature and displacement distributions are obtained using the residual correction method based on the maximum principle in combination with the finite difference method, making it easier and faster to obtain upper and lower approximations of exact solutions. The proposed method is found to be an effective numerical method with satisfactory accuracy. Moreover, the result shows that the effect of transient thermal shock induced by deformation acceleration is enhanced by non-Fourier heat conduction with increased peak stress. The influence on the stress increases with the thermal relaxation time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maximum%20principle" title="maximum principle">maximum principle</a>, <a href="https://publications.waset.org/abstracts/search?q=non-Fourier%20heat%20conduction" title=" non-Fourier heat conduction"> non-Fourier heat conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20correction%20method" title=" residual correction method"> residual correction method</a>, <a href="https://publications.waset.org/abstracts/search?q=thermo-elastic%20response" title=" thermo-elastic response"> thermo-elastic response</a> </p> <a href="https://publications.waset.org/abstracts/30884/application-of-residual-correction-method-on-hyperbolic-thermoelastic-response-of-hollow-spherical-medium-in-rapid-transient-heat-conduction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30884.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info"></span> Adomian’s Decomposition Method to Functionally Graded Thermoelastic Materials with Power Law</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamdy%20M.%20Youssef">Hamdy M. Youssef</a>, <a href="https://publications.waset.org/abstracts/search?q=Eman%20A.%20Al-Lehaibi"> Eman A. Al-Lehaibi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an iteration method for the numerical solutions of a one-dimensional problem of generalized thermoelasticity with one relaxation time under given initial and boundary conditions. The thermoelastic material with variable properties as a power functional graded has been considered. Adomian’s decomposition techniques have been applied to the governing equations. The numerical results have been calculated by using the iterations method with a certain algorithm. The numerical results have been represented in figures, and the figures affirm that Adomian’s decomposition method is a successful method for modeling thermoelastic problems. Moreover, the empirical parameter of the functional graded, and the lattice design parameter have significant effects on the temperature increment, the strain, the stress, the displacement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adomian" title="Adomian">Adomian</a>, <a href="https://publications.waset.org/abstracts/search?q=decomposition%20method" title=" decomposition method"> decomposition method</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20thermoelasticity" title=" generalized thermoelasticity"> generalized thermoelasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=algorithm" title=" algorithm"> algorithm</a> </p> <a href="https://publications.waset.org/abstracts/112183/adomians-decomposition-method-to-functionally-graded-thermoelastic-materials-with-power-law" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info"></span> A Problem on Homogeneous Isotropic Microstretch Thermoelastic Half Space with Mass Diffusion Medium under Different Theories</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Devinder%20Singh">Devinder Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajneesh%20Kumar"> Rajneesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Arvind%20Kumar"> Arvind Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present investigation deals with generalized model of the equations for a homogeneous isotropic microstretch thermoelastic half space with mass diffusion medium. Theories of generalized thermoelasticity Lord-Shulman (LS) Green-Lindsay (GL) and Coupled Theory (CT) theories are applied to investigate the problem. The stresses in the considered medium have been studied due to normal force and tangential force. The normal mode analysis technique is used to calculate the normal stress, shear stress, couple stresses and microstress. A numerical computation has been performed on the resulting quantity. The computed numerical results are shown graphically. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microstretch" title="microstretch">microstretch</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoelastic" title=" thermoelastic"> thermoelastic</a>, <a href="https://publications.waset.org/abstracts/search?q=normal%20mode%20analysis" title=" normal mode analysis"> normal mode analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=normal%20and%20tangential%20force" title=" normal and tangential force"> normal and tangential force</a>, <a href="https://publications.waset.org/abstracts/search?q=microstress%20force" title=" microstress force"> microstress force</a> </p> <a href="https://publications.waset.org/abstracts/16723/a-problem-on-homogeneous-isotropic-microstretch-thermoelastic-half-space-with-mass-diffusion-medium-under-different-theories" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">537</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info"></span> A Two-Dimensional Problem Micropolar Thermoelastic Medium under the Effect of Laser Irradiation and Distributed Sources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Devinder%20Singh">Devinder Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajneesh%20Kumar"> Rajneesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Arvind%20Kumar"> Arvind Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present investigation deals with the deformation of micropolar generalized thermoelastic solid subjected to thermo-mechanical loading due to a thermal laser pulse. Laplace transform and Fourier transform techniques are used to solve the problem. Thermo-mechanical laser interactions are taken as distributed sources to describe the application of the approach. The closed form expressions of normal stress, tangential stress, coupled stress and temperature are obtained in the domain. Numerical inversion technique of Laplace transform and Fourier transform has been implied to obtain the resulting quantities in the physical domain after developing a computer program. The normal stress, tangential stress, coupled stress and temperature are depicted graphically to show the effect of relaxation times. Some particular cases of interest are deduced from the present investigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pulse%20laser" title="pulse laser">pulse laser</a>, <a href="https://publications.waset.org/abstracts/search?q=integral%20transform" title=" integral transform"> integral transform</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoelastic" title=" thermoelastic"> thermoelastic</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20value%20problem" title=" boundary value problem"> boundary value problem</a> </p> <a href="https://publications.waset.org/abstracts/33535/a-two-dimensional-problem-micropolar-thermoelastic-medium-under-the-effect-of-laser-irradiation-and-distributed-sources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33535.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">620</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info"></span> A Problem in Microstretch Thermoelastic Diffusive Medium </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Devinder%20Singh">Devinder Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Arvind%20Kumar"> Arvind Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajneesh%20Kumar"> Rajneesh Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The general solution of the equations for a homogeneous isotropic microstretch thermo elastic medium with mass diffusion for two dimensional problems is obtained due to normal and tangential forces. The integral transform technique is used to obtain the components of displacements, microrotation, stress and mass concentration, temperature change and mass concentration. A particular case of interest is deduced from the present investigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=normal%20force" title="normal force">normal force</a>, <a href="https://publications.waset.org/abstracts/search?q=tangential%20force" title="tangential force">tangential force</a>, <a href="https://publications.waset.org/abstracts/search?q=microstretch" title=" microstretch"> microstretch</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoelastic" title=" thermoelastic"> thermoelastic</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20integral%20transform%20technique" title=" the integral transform technique"> the integral transform technique</a>, <a href="https://publications.waset.org/abstracts/search?q=deforming%20force" title=" deforming force"> deforming force</a>, <a href="https://publications.waset.org/abstracts/search?q=microstress%20force" title=" microstress force"> microstress force</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20value%20problem" title=" boundary value problem"> boundary value problem</a> </p> <a href="https://publications.waset.org/abstracts/2040/a-problem-in-microstretch-thermoelastic-diffusive-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2040.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">622</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info"></span> Mathematical Modeling and Analysis of Forced Vibrations in Micro-Scale Microstretch Thermoelastic Simply Supported Beam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Geeta%20Partap">Geeta Partap</a>, <a href="https://publications.waset.org/abstracts/search?q=Nitika%20Chugh"> Nitika Chugh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present paper deals with the flexural vibrations of homogeneous, isotropic, generalized micropolar microstretch thermoelastic thin Euler-Bernoulli beam resonators, due to Exponential time varying load. Both the axial ends of the beam are assumed to be at simply supported conditions. The governing equations have been solved analytically by using Laplace transforms technique twice with respect to time and space variables respectively. The inversion of Laplace transform in time domain has been performed by using the calculus of residues to obtain deflection.The analytical results have been numerically analyzed with the help of MATLAB software for magnesium like material. The graphical representations and interpretations have been discussed for Deflection of beam under Simply Supported boundary condition and for distinct considered values of time and space as well. The obtained results are easy to implement for engineering analysis and designs of resonators (sensors), modulators, actuators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microstretch" title="microstretch">microstretch</a>, <a href="https://publications.waset.org/abstracts/search?q=deflection" title=" deflection"> deflection</a>, <a href="https://publications.waset.org/abstracts/search?q=exponential%20load" title=" exponential load"> exponential load</a>, <a href="https://publications.waset.org/abstracts/search?q=Laplace%20transforms" title=" Laplace transforms"> Laplace transforms</a>, <a href="https://publications.waset.org/abstracts/search?q=residue%20theorem" title=" residue theorem"> residue theorem</a>, <a href="https://publications.waset.org/abstracts/search?q=simply%20supported" title=" simply supported"> simply supported</a> </p> <a href="https://publications.waset.org/abstracts/73611/mathematical-modeling-and-analysis-of-forced-vibrations-in-micro-scale-microstretch-thermoelastic-simply-supported-beam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73611.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info"></span> Thermoelastic Analysis of a Tube Subjected to Internal Heating with Temperature Dependent Material Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasemin%20Kaya">Yasemin Kaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20N.%20Eraslan"> Ahmet N. Eraslan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the thermoelastic behavior of a long tube is studied by taking into account the temperature dependency of all mechanical and thermal properties. As the tube is heated slowly, an uncoupled solution procedure is adopted under free and radially constrained boundary conditions. The nonlinear heat conduction equation is solved by a finite element collocation procedure and the corresponding distributions of stress and strain are computed by shooting iterations. The computational model is verified in comparison to the analytical solution by shutting down the temperature dependency of physical properties. In the analysis, experimental data available in the literature is used to describe the coefficient of thermal expansion $\alpha$, the thermal conductivity $k$, the modulus of rigidity $G$, the yield strength $\sigma_{0}$, and the Poisson's ratio $\nu$ of Nickel. Results of the analysis are presented in comparison to those having constant physical properties. As a result of the calculations, the temperature dependency of the material properties should be taken into account at higher temperature ranges. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermoelasticity" title="thermoelasticity">thermoelasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=long%20tube" title=" long tube"> long tube</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature-dependent%20properties" title=" temperature-dependent properties"> temperature-dependent properties</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20heating" title=" internal heating"> internal heating</a> </p> <a href="https://publications.waset.org/abstracts/22226/thermoelastic-analysis-of-a-tube-subjected-to-internal-heating-with-temperature-dependent-material-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22226.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">616</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info"></span> Buckling Behavior of FGM Plates Using a Simplified Shear Deformation Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mokhtar%20Bouazza">Mokhtar Bouazza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the simplified theory will be used to predict the thermoelastic buckling behavior of rectangular functionally graded plates. The material properties of the functionally graded plates are assumed to vary continuously through the thickness, according to a simple power law distribution of the volume fraction of the constituents. The simplified theory is used to obtain the buckling of the plate under different types of thermal loads. The thermal loads are assumed to be uniform, linear, and non-linear distribution through the thickness. Additional numerical results are presented for FGM plates that show the effects of various parameters on thermal buckling response. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buckling" title="buckling">buckling</a>, <a href="https://publications.waset.org/abstracts/search?q=functionally%20graded" title=" functionally graded"> functionally graded</a>, <a href="https://publications.waset.org/abstracts/search?q=plate" title=" plate"> plate</a>, <a href="https://publications.waset.org/abstracts/search?q=simplified%20higher-order%20deformation%20theory" title=" simplified higher-order deformation theory"> simplified higher-order deformation theory</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20loading" title=" thermal loading"> thermal loading</a> </p> <a href="https://publications.waset.org/abstracts/24270/buckling-behavior-of-fgm-plates-using-a-simplified-shear-deformation-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24270.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info"></span> Temperature-Based Detection of Initial Yielding Point in Loading of Tensile Specimens Made of Structural Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aqsa%20Jamil">Aqsa Jamil</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamura%20Hiroshi"> Tamura Hiroshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Katsuchi%20Hiroshi"> Katsuchi Hiroshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Jiaqi"> Wang Jiaqi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The yield point represents the upper limit of forces which can be applied to a specimen without causing any permanent deformation. After yielding, the behavior of the specimen suddenly changes, including the possibility of cracking or buckling. So, the accumulation of damage or type of fracture changes depending on this condition. As it is difficult to accurately detect yield points of the several stress concentration points in structural steel specimens, an effort has been made in this research work to develop a convenient technique using thermography (temperature-based detection) during tensile tests for the precise detection of yield point initiation. To verify the applicability of thermography camera, tests were conducted under different loading conditions and measuring the deformation by installing various strain gauges and monitoring the surface temperature with the help of a thermography camera. The yield point of specimens was estimated with the help of temperature dip, which occurs due to the thermoelastic effect during the plastic deformation. The scattering of the data has been checked by performing a repeatability analysis. The effects of temperature imperfection and light source have been checked by carrying out the tests at daytime as well as midnight and by calculating the signal to noise ratio (SNR) of the noised data from the infrared thermography camera, it can be concluded that the camera is independent of testing time and the presence of a visible light source. Furthermore, a fully coupled thermal-stress analysis has been performed by using Abaqus/Standard exact implementation technique to validate the temperature profiles obtained from the thermography camera and to check the feasibility of numerical simulation for the prediction of results extracted with the help of the thermographic technique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=signal%20to%20noise%20ratio" title="signal to noise ratio">signal to noise ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoelastic%20effect" title=" thermoelastic effect"> thermoelastic effect</a>, <a href="https://publications.waset.org/abstracts/search?q=thermography" title=" thermography"> thermography</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20point" title=" yield point"> yield point</a> </p> <a href="https://publications.waset.org/abstracts/151454/temperature-based-detection-of-initial-yielding-point-in-loading-of-tensile-specimens-made-of-structural-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info"></span> Response Delay Model: Bridging the Gap in Urban Fire Disaster Response System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sulaiman%20Yunus">Sulaiman Yunus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The need for modeling response to urban fire disaster cannot be over emphasized, as recurrent fire outbreaks have gutted most cities of the world. This necessitated the need for a prompt and efficient response system in order to mitigate the impact of the disaster. Promptness, as a function of time, is seen to be the fundamental determinant for efficiency of a response system and magnitude of a fire disaster. Delay, as a result of several factors, is one of the major determinants of promptgness of a response system and also the magnitude of a fire disaster. Response Delay Model (RDM) intends to bridge the gap in urban fire disaster response system through incorporating and synchronizing the delay moments in measuring the overall efficiency of a response system and determining the magnitude of a fire disaster. The model identified two delay moments (pre-notification and Intra-reflex sequence delay) that can be elastic and collectively plays a significant role in influencing the efficiency of a response system. Due to variation in the elasticity of the delay moments, the model provides for measuring the length of delays in order to arrive at a standard average delay moment for different parts of the world, putting into consideration geographic location, level of preparedness and awareness, technological advancement, socio-economic and environmental factors. It is recommended that participatory researches should be embarked on locally and globally to determine standard average delay moments within each phase of the system so as to enable determining the efficiency of response systems and predicting fire disaster magnitudes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=delay%20moment" title="delay moment">delay moment</a>, <a href="https://publications.waset.org/abstracts/search?q=fire%20disaster" title=" fire disaster"> fire disaster</a>, <a href="https://publications.waset.org/abstracts/search?q=reflex%20sequence" title=" reflex sequence"> reflex sequence</a>, <a href="https://publications.waset.org/abstracts/search?q=response" title=" response"> response</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20delay%20moment" title=" response delay moment"> response delay moment</a> </p> <a href="https://publications.waset.org/abstracts/111201/response-delay-model-bridging-the-gap-in-urban-fire-disaster-response-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111201.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info"></span> Response Reduction Factor for Earthquake Resistant Design of Special Moment Resisting Frames</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rohan%20V.%20Ambekar">Rohan V. Ambekar</a>, <a href="https://publications.waset.org/abstracts/search?q=Shrirang%20N.%20Tande"> Shrirang N. Tande</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study estimates the seismic response reduction factor (R) of reinforced concrete special moment resisting frame (SMRF) with and without shear wall using static nonlinear (pushover) analysis. Calculation of response reduction factor (R) is done as per the new formulation of response reduction factor (R) given by Applied Technology Council (ATC)-19 which is the product of strength factor (Rs), ductility factor (Rµ) and redundancy factor (RR). The analysis revealed that these three factors affect the actual value of response reduction factor (R) and therefore they must be taken into consideration while determining the appropriate response reduction factor to be used during the seismic design process. The actual values required for determination of response reduction factor (R) is worked out on the basis of pushover curve which is a plot of base shear verses roof displacement. Finally, the calculated values of response reduction factor (R) of reinforced concrete special moment resisting frame (SMRF) with and without shear wall are compared with the codal values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=response%20reduction%20factor" title="response reduction factor">response reduction factor</a>, <a href="https://publications.waset.org/abstracts/search?q=ductility%20ratio" title=" ductility ratio"> ductility ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=base%20shear" title=" base shear"> base shear</a>, <a href="https://publications.waset.org/abstracts/search?q=special%20moment%20resisting%20frames" title=" special moment resisting frames"> special moment resisting frames</a> </p> <a href="https://publications.waset.org/abstracts/1362/response-reduction-factor-for-earthquake-resistant-design-of-special-moment-resisting-frames" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1362.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">491</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info"></span> Selection of Rayleigh Damping Coefficients for Seismic Response Analysis of Soil Layers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huai-Feng%20Wang">Huai-Feng Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Meng-Lin%20Lou"> Meng-Lin Lou</a>, <a href="https://publications.waset.org/abstracts/search?q=Ru-Lin%20Zhang"> Ru-Lin Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One good analysis method in seismic response analysis is direct time integration, which widely adopts Rayleigh damping. An approach is presented for selection of Rayleigh damping coefficients to be used in seismic analyses to produce a response that is consistent with Modal damping response. In the presented approach, the expression of the error of peak response, acquired through complete quadratic combination method, and Rayleigh damping coefficients was set up and then the coefficients were produced by minimizing the error. Two finite element modes of soil layers, excited by 28 seismic waves, were used to demonstrate the feasibility and validity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rayleigh%20damping" title="Rayleigh damping">Rayleigh damping</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20damping" title=" modal damping"> modal damping</a>, <a href="https://publications.waset.org/abstracts/search?q=damping%20coefficients" title=" damping coefficients"> damping coefficients</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20response%20analysis" title=" seismic response analysis"> seismic response analysis</a> </p> <a href="https://publications.waset.org/abstracts/57421/selection-of-rayleigh-damping-coefficients-for-seismic-response-analysis-of-soil-layers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57421.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info"></span> Three Dimensional Numerical Analysis for Longitudinal Seismic Response of Tunnels under Asynchronous Earthquake</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peng%20Li">Peng Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Er-xiang%20Song"> Er-xiang Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical analysis of longitudinal tunnel seismic response due to spatial variation of earthquake ground motion is an important issue that cannot be ignored in the design and safety evaluation of tunnel structures. In this paper, numerical methods for analysis of tunnel longitudinal response under asynchronous seismic wave is extensively studied, including the improvement of the 1D time-domain finite element method, three dimensional numerical simulation technique for the site asynchronous earthquake response as well as the 3-D soil-tunnel structure interaction analysis. The study outcome will be beneficial to aid further research on the nonlinear meticulous numerical analysis and seismic response mechanism of tunnel structures under asynchronous earthquake motion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asynchronous%20input" title="asynchronous input">asynchronous input</a>, <a href="https://publications.waset.org/abstracts/search?q=longitudinal%20seismic%20response" title=" longitudinal seismic response"> longitudinal seismic response</a>, <a href="https://publications.waset.org/abstracts/search?q=tunnel%20structure" title=" tunnel structure"> tunnel structure</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=traveling%20wave%20effect" title=" traveling wave effect"> traveling wave effect</a> </p> <a href="https://publications.waset.org/abstracts/9730/three-dimensional-numerical-analysis-for-longitudinal-seismic-response-of-tunnels-under-asynchronous-earthquake" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9730.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info"></span> Effect of Mica Content in Sand on Site Response Analyses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Volkan%20Isbuga">Volkan Isbuga</a>, <a href="https://publications.waset.org/abstracts/search?q=Joman%20M.%20Mahmood"> Joman M. Mahmood</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Firat%20Cabalar"> Ali Firat Cabalar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents the site response analysis of mica-sand mixtures available in certain parts of the world including Izmir, a highly populated city and located in a seismically active region in western part of Turkey. We performed site response analyses by employing SHAKE, an equivalent linear approach, for the micaceous soil deposits consisting of layers with different amount of mica contents and thicknesses. Dynamic behavior of micaceous sands such as shear modulus reduction and damping ratio curves are input for the ground response analyses. Micaceous sands exhibit a unique dynamic response under a scenario earthquake with a magnitude of Mw=6. Results showed that higher amount of mica caused higher spectral accelerations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=micaceous%20sands" title="micaceous sands">micaceous sands</a>, <a href="https://publications.waset.org/abstracts/search?q=site%20response" title=" site response"> site response</a>, <a href="https://publications.waset.org/abstracts/search?q=equivalent%20linear%20approach" title=" equivalent linear approach"> equivalent linear approach</a>, <a href="https://publications.waset.org/abstracts/search?q=SHAKE" title=" SHAKE"> SHAKE</a> </p> <a href="https://publications.waset.org/abstracts/54831/effect-of-mica-content-in-sand-on-site-response-analyses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54831.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info"></span> Dynamic Synthesis of a Flexible Multibody System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Amine%20Ben%20Abdallah">Mohamed Amine Ben Abdallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Imed%20Khemili"> Imed Khemili</a>, <a href="https://publications.waset.org/abstracts/search?q=Nizar%20Aifaoui"> Nizar Aifaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work denotes an insight into dynamic synthesis of multibody systems. A set of mechanism parameters design variable are synthetized based on a desired mechanism response, such as, velocity, acceleration and bodies deformations. Moreover, knowing the work space, for a robot, and mechanism response allow defining optimal parameters mechanism handling with the desired target response. To this end, evolutionary genetic algorithm has been deployed. A demonstrative example for imperfect mechanism has been treated, mainly, a slider crank mechanism with a flexible connecting rod. The transversal deflection of the connecting rod has been chosen as response to identify the mechanism design parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20response" title="dynamic response">dynamic response</a>, <a href="https://publications.waset.org/abstracts/search?q=evolutionary%20genetic%20algorithm" title=" evolutionary genetic algorithm"> evolutionary genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20bodies" title=" flexible bodies"> flexible bodies</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/51863/dynamic-synthesis-of-a-flexible-multibody-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51863.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info"></span> Estimation of Population Mean under Random Non-Response in Two-Phase Successive Sampling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Khalid">M. Khalid</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20N.%20Singh"> G. N. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we have considered the problem of estimation for population mean, on current (second) occasion in the presence of random non response in two-occasion successive sampling under two phase set-up. Modified exponential type estimators have been proposed, and their properties are studied under the assumptions that numbers of sampling units follow a distribution due to random non response situations. The performances of the proposed estimators are compared with linear combinations of two estimators, (a) sample mean estimator for fresh sample and (b) ratio estimator for matched sample under the complete response situations. Results are demonstrated through empirical studies which present the effectiveness of the proposed estimators. Suitable recommendations have been made to the survey practitioners. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=successive%20sampling" title="successive sampling">successive sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20non-response" title=" random non-response"> random non-response</a>, <a href="https://publications.waset.org/abstracts/search?q=auxiliary%20variable" title=" auxiliary variable"> auxiliary variable</a>, <a href="https://publications.waset.org/abstracts/search?q=bias" title=" bias"> bias</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20square%20error" title=" mean square error"> mean square error</a> </p> <a href="https://publications.waset.org/abstracts/78773/estimation-of-population-mean-under-random-non-response-in-two-phase-successive-sampling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78773.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">524</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info"></span> Estimation of Functional Response Model by Supervised Functional Principal Component Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyon%20I.%20Paek">Hyon I. Paek</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang%20Rim%20Kim"> Sang Rim Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyon%20A.%20Ryu"> Hyon A. Ryu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In functional linear regression, one typical problem is to reduce dimension. Compared with multivariate linear regression, functional linear regression is regarded as an infinite-dimensional case, and the main task is to reduce dimensions of functional response and functional predictors. One common approach is to adapt functional principal component analysis (FPCA) on functional predictors and then use a few leading functional principal components (FPC) to predict the functional model. The leading FPCs estimated by the typical FPCA explain a major variation of the functional predictor, but these leading FPCs may not be mostly correlated with the functional response, so they may not be significant in the prediction for response. In this paper, we propose a supervised functional principal component analysis method for a functional response model with FPCs obtained by considering the correlation of the functional response. Our method would have a better prediction accuracy than the typical FPCA method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supervised" title="supervised">supervised</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20principal%20component%20analysis" title=" functional principal component analysis"> functional principal component analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20response" title=" functional response"> functional response</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20linear%20regression" title=" functional linear regression"> functional linear regression</a> </p> <a href="https://publications.waset.org/abstracts/177071/estimation-of-functional-response-model-by-supervised-functional-principal-component-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info"></span> Quality Standards for Emergency Response: A Methodological Framework</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jennifer%20E.%20Lynette">Jennifer E. Lynette</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study describes the development process of a methodological framework for quality standards used to measure the efficiency and quality of response efforts of trained personnel at emergency events. This paper describes the techniques used to develop the initial framework and its potential application to professions under the broader field of emergency management. The example described in detail in this paper applies the framework specifically to fire response activities by firefighters. Within the quality standards framework, the fire response process is chronologically mapped. Individual variables within the sequence of events are identified. Through in-person data collection, questionnaires, interviews, and the expansion of the incident reporting system, this study identifies and categorizes previously unrecorded variables involved in the response phase of a fire. Following a data analysis of each variable using a quantitative or qualitative assessment, the variables are ranked pertaining to the magnitude of their impact to the event outcome. Among others, key indicators of quality performance in the analysis involve decision communication, resource utilization, response techniques, and response time. Through the application of this framework and subsequent utilization of quality standards indicators, there is potential to increase efficiency in the response phase of an emergency event; thereby saving additional lives, property, and resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emergency%20management" title="emergency management">emergency management</a>, <a href="https://publications.waset.org/abstracts/search?q=fire" title=" fire"> fire</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20standards" title=" quality standards"> quality standards</a>, <a href="https://publications.waset.org/abstracts/search?q=response" title=" response"> response</a> </p> <a href="https://publications.waset.org/abstracts/47475/quality-standards-for-emergency-response-a-methodological-framework" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47475.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info"></span> Demand Response from Residential Air Conditioning Load Using a Programmable Communication Thermostat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saurabh%20Chanana">Saurabh Chanana</a>, <a href="https://publications.waset.org/abstracts/search?q=Monika%20Arora"> Monika Arora</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Demand response is getting increased attention these days due to the increase in electricity demand and introduction of renewable resources in the existing power grid. Traditionally demand response programs involve large industrial consumers but with technological advancement, demand response is being implemented for small residential and commercial consumers also. In this paper, demand response program aims to reduce the peak demand as well as overall energy consumption of the residential customers. Air conditioners are the major reason of peak load in residential sector in summer, so a dynamic model of air conditioning load with thermostat action has been considered for applying demand response programs. A programmable communicating thermostat (PCT) is a device that uses real time pricing (RTP) signals to control the thermostat setting. A new model incorporating PCT in air conditioning load has been proposed in this paper. Results show that introduction of PCT in air conditioner is useful in reducing the electricity payments of customers as well as reducing the peak demand. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=demand%20response" title="demand response">demand response</a>, <a href="https://publications.waset.org/abstracts/search?q=home%20energy%20management" title=" home energy management"> home energy management</a>, <a href="https://publications.waset.org/abstracts/search?q=programmable%20communicating%20thermostat" title=" programmable communicating thermostat"> programmable communicating thermostat</a>, <a href="https://publications.waset.org/abstracts/search?q=thermostatically%20controlled%20appliances" title=" thermostatically controlled appliances"> thermostatically controlled appliances</a> </p> <a href="https://publications.waset.org/abstracts/1662/demand-response-from-residential-air-conditioning-load-using-a-programmable-communication-thermostat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">614</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info"></span> Acoustic Room Impulse Response Computation with Image Sources and Frequency Dependent Boundary Reflection Coefficients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pratik%20Gandhi">Pratik Gandhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kavitha%20Chandra"> Kavitha Chandra</a>, <a href="https://publications.waset.org/abstracts/search?q=Charles%20Thompson"> Charles Thompson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A computational model of the acoustic room impulse response between transmitters and receivers located in an enclosed cavity under the influence of frequency-dependent reflection coefficients of the walls is presented. The characteristic features of the impulse responses that differentiate these results from frequency-independent reflecting surfaces are discussed. The image-source model is derived from the first principle solution to Green's function of the acoustic wave equation. The post-processing of the computed impulse response with a band-pass filter to better represents the response of a loud-speaker is demonstrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20room%20impulse%20response" title="acoustic room impulse response">acoustic room impulse response</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20dependent%20reflection%20coefficients" title=" frequency dependent reflection coefficients"> frequency dependent reflection coefficients</a>, <a href="https://publications.waset.org/abstracts/search?q=Green%27s%20function" title=" Green's function"> Green's function</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20model" title=" image model"> image model</a> </p> <a href="https://publications.waset.org/abstracts/152987/acoustic-room-impulse-response-computation-with-image-sources-and-frequency-dependent-boundary-reflection-coefficients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152987.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info"></span> Study on Seismic Response Feature of Multi-Span Bridges Crossing Fault</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yingxin%20Hui">Yingxin Hui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding seismic response feature of the bridges crossing fault is the basis of the seismic fortification. Taking a multi-span bridge crossing active fault under construction as an example, the seismic ground motions at bridge site were generated following hybrid simulation methodology. Multi-support excitations displacement input models and nonlinear time history analysis was used to calculate seismic response of structures, and the results were compared with bridge in the near-fault region. The results showed that the seismic response features of bridges crossing fault were different from the bridges in the near-fault region. The design according to the bridge in near-fault region would cause the calculation results with insecurity and non-reasonable if the effect of cross the fault was ignored. The design of seismic fortification should be based on seismic response feature, which could reduce the adverse effect caused by the structure damage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridge%20engineering" title="bridge engineering">bridge engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20response%20feature" title=" seismic response feature"> seismic response feature</a>, <a href="https://publications.waset.org/abstracts/search?q=across%20faults" title=" across faults"> across faults</a>, <a href="https://publications.waset.org/abstracts/search?q=rupture%20directivity%20effect" title=" rupture directivity effect"> rupture directivity effect</a>, <a href="https://publications.waset.org/abstracts/search?q=fling%20step" title=" fling step"> fling step</a> </p> <a href="https://publications.waset.org/abstracts/19709/study-on-seismic-response-feature-of-multi-span-bridges-crossing-fault" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">438</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info"></span> Stress Analysis of Laminated Cylinders Subject to the Thermomechanical Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C5%9Eafak%20Aksoy">Şafak Aksoy</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Kur%C5%9Fun"> Ali Kurşun</a>, <a href="https://publications.waset.org/abstracts/search?q=Erhan%20%C3%87etin"> Erhan Çetin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Re%C5%9Fit%20Habo%C4%9Flu"> Mustafa Reşit Haboğlu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, thermo elastic stress analysis is performed on a cylinder made of laminated isotropic materials under thermomechanical loads. Laminated cylinders have many applications such as aerospace, automotive and nuclear plant in the industry. These cylinders generally performed under thermomechanical loads. Stress and displacement distribution of the laminated cylinders are determined using by analytical method both thermal and mechanical loads. Based on the results, materials combination plays an important role on the stresses distribution along the radius. Variation of the stresses and displacements along the radius are presented as graphs. Calculations program are prepared using MATLAB® by authors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=isotropic%20materials" title="isotropic materials">isotropic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=laminated%20cylinders" title=" laminated cylinders"> laminated cylinders</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoelastic%20stress" title=" thermoelastic stress"> thermoelastic stress</a>, <a href="https://publications.waset.org/abstracts/search?q=thermomechanical%20load" title=" thermomechanical load"> thermomechanical load</a> </p> <a href="https://publications.waset.org/abstracts/2671/stress-analysis-of-laminated-cylinders-subject-to-the-thermomechanical-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2671.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info"></span> Estimation of Population Mean under Random Non-Response in Two-Occasion Successive Sampling </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Khalid">M. Khalid</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20N.%20Singh"> G. N. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we have considered the problems of estimation for the population mean on current (second) occasion in two-occasion successive sampling under random non-response situations. Some modified exponential type estimators have been proposed and their properties are studied under the assumptions that the number of sampling unit follows a discrete distribution due to random non-response situations. The performances of the proposed estimators are compared with linear combinations of two estimators, (a) sample mean estimator for fresh sample and (b) ratio estimator for matched sample under the complete response situations. Results are demonstrated through empirical studies which present the effectiveness of the proposed estimators. Suitable recommendations have been made to the survey practitioners. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modified%20exponential%20estimator" title="modified exponential estimator">modified exponential estimator</a>, <a href="https://publications.waset.org/abstracts/search?q=successive%20sampling" title=" successive sampling"> successive sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20non-response" title=" random non-response"> random non-response</a>, <a href="https://publications.waset.org/abstracts/search?q=auxiliary%20variable" title=" auxiliary variable"> auxiliary variable</a>, <a href="https://publications.waset.org/abstracts/search?q=bias" title=" bias"> bias</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20square%20error" title=" mean square error"> mean square error</a> </p> <a href="https://publications.waset.org/abstracts/85408/estimation-of-population-mean-under-random-non-response-in-two-occasion-successive-sampling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85408.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info"></span> Evaluation of Response Modification Factor and Behavior of Seismic Base-Isolated RC Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Parsaeimaram">Mohammad Parsaeimaram</a>, <a href="https://publications.waset.org/abstracts/search?q=Fang%20Congqi"> Fang Congqi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, one of the significant seismic design parameter as response modification factor in reinforced concrete (RC) buildings with base isolation system was evaluated. The seismic isolation system is a capable approach to absorbing seismic energy at the base and transfer to the substructure with lower response modification factor as compared to non-isolated structures. A response spectrum method and static nonlinear pushover analysis in according to Uniform Building Code (UBC-97), have been performed on building models involve 5, 8, 12 and 15 stories building with fixed and isolated bases consist of identical moment resisting configurations. The isolation system is composed of lead rubber bearing (LRB) was designed with help UBC-97 parameters. The force-deformation behavior of isolators was modeled as bi-linear hysteretic behavior which can be effectively used to create the isolation systems. The obtained analytical results highlight the response modification factor of considered base isolation system with higher values than recommended in the codes. The response modification factor is used in modern seismic codes to scale down the elastic response of structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=response%20modification%20factor" title="response modification factor">response modification factor</a>, <a href="https://publications.waset.org/abstracts/search?q=base%20isolation%20system" title=" base isolation system"> base isolation system</a>, <a href="https://publications.waset.org/abstracts/search?q=pushover%20analysis" title=" pushover analysis"> pushover analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=lead%20rubber%20bearing" title=" lead rubber bearing"> lead rubber bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=bi-linear%20hysteretic" title=" bi-linear hysteretic"> bi-linear hysteretic</a> </p> <a href="https://publications.waset.org/abstracts/72242/evaluation-of-response-modification-factor-and-behavior-of-seismic-base-isolated-rc-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72242.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info"></span> A Study on the Determinants of Earnings Response Coefficient in an Emerging Market</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bita%20Mashayekhi">Bita Mashayekhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeynab%20Lotfi%20Aghel"> Zeynab Lotfi Aghel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The determinants of Earnings Response Coefficient (ERC), including firm size, earnings growth, and earnings persistence are studied in this research. These determinants are supposed to be moderator variables that affect ERC and Return Response Coefficient. The research sample contains 82 Iranian listed companies in Tehran Stock Exchange (TSE) from 2001 to 2012. Gathered data have been processed by EVIEWS Software. Results show a significant positive relation between firm size and ERC, and also between earnings growth and ERC; however, there is no significant relation between earnings persistence and ERC. Also, the results show that ERC will be increased by firm size and earnings growth, but there is no relation between earnings persistence and ERC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earnings%20response%20coefficient%20%28ERC%29" title="earnings response coefficient (ERC)">earnings response coefficient (ERC)</a>, <a href="https://publications.waset.org/abstracts/search?q=return%20response%20coefficient%20%28RRC%29" title=" return response coefficient (RRC)"> return response coefficient (RRC)</a>, <a href="https://publications.waset.org/abstracts/search?q=firm%20size" title=" firm size"> firm size</a>, <a href="https://publications.waset.org/abstracts/search?q=earnings%20growth" title=" earnings growth"> earnings growth</a>, <a href="https://publications.waset.org/abstracts/search?q=earnings%20persistence" title=" earnings persistence"> earnings persistence</a> </p> <a href="https://publications.waset.org/abstracts/54086/a-study-on-the-determinants-of-earnings-response-coefficient-in-an-emerging-market" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54086.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info"></span> Analysis of Factors Influencing the Response Time of an Aspirating Gaseous Agent Concentration Detection Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu%20Guan">Yu Guan</a>, <a href="https://publications.waset.org/abstracts/search?q=Song%20Lu"> Song Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Yuan"> Wei Yuan</a>, <a href="https://publications.waset.org/abstracts/search?q=Heping%20Zhang"> Heping Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gas fire extinguishing system is widely used due to its cleanliness and efficiency, and since its spray will be affected by many factors such as convection and obstacles in jetting region, so in order to evaluate its effectiveness, detecting concentration distribution in the jetting area is indispensable, which is commonly achieved by aspirating concentration detection technique. During the concentration measurement, the response time of detector is a very important parameter, especially for those fire-extinguishing systems with rapid gas dispersion. Long response time will not only underestimate its concentration but also prolong the change of concentration with time. Therefore it is necessary to analyze the factors influencing the response time. In the paper, an aspirating concentration detection method was introduced, which is achieved by using a small critical nozzle and a laminar flowmeter, and because of the response time is mainly related to the gas transport process from sampling site to the sensor, the effects of exhaust pipe size, gas flow rate, and gas concentration on its response time were analyzed. During the research, Bromotrifluoromethane (CBrF₃) was used. The effect of the sampling tube was investigated with different length of 1, 2, 3, 4 and 5 m (5mm in pipe diameter) and different pipe diameter of 3, 4, 5, 6 and 8 mm (3m in length). The effect of gas flow rate was analyzed by changing the throat diameter of the critical nozzle with 0.5, 0.682, 0.75, 0.8, 0.84 and 0.88 mm. The effect of gas concentration on response time was studied with the concentration range of 0-25%. The result showed that the response time increased with the increase of both the length and diameter of the sampling pipe, and the effect of length on response time was linear, but for the effect of diameter, it was exponential. It was also found that as the throat diameter of critical nozzle increased, the response time reduced a lot, in other words, gas flow rate has a great influence on response time. For the effect of gas concentration, the response time increased with the increase of the CBrF₃ concentration, and the slope of the curve was reduced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aspirating%20concentration%20detection" title="aspirating concentration detection">aspirating concentration detection</a>, <a href="https://publications.waset.org/abstracts/search?q=fire%20extinguishing" title=" fire extinguishing"> fire extinguishing</a>, <a href="https://publications.waset.org/abstracts/search?q=gaseous%20agent" title=" gaseous agent"> gaseous agent</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20time" title=" response time"> response time</a> </p> <a href="https://publications.waset.org/abstracts/74810/analysis-of-factors-influencing-the-response-time-of-an-aspirating-gaseous-agent-concentration-detection-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74810.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info"></span> Improved Estimation Strategies of Sensitive Characteristics Using Scrambled Response Techniques in Successive Sampling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Suman">S. Suman</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20N.%20Singh"> G. N. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research work is an effort to analyse the consequences of scrambled response technique to estimate the current population mean in two-occasion successive sampling when the characteristic of interest is sensitive in nature. The generalized estimation procedures have been proposed using sensitive auxiliary variables under additive and multiplicative scramble models. The properties of resultant estimators have been deeply examined. Simulation, as well as empirical studies, are carried out to evaluate the performances of the proposed estimators with respect to other competent estimators. The results of our studies suggest that the proposed estimation procedures are highly effective under the presence of non-response situation. The result of this study also suggests that additive scrambled response model is a better choice in the perspective of cost of the survey and privacy of the respondents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=scrambled%20response" title="scrambled response">scrambled response</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitive%20characteristic" title=" sensitive characteristic"> sensitive characteristic</a>, <a href="https://publications.waset.org/abstracts/search?q=successive%20sampling" title=" successive sampling"> successive sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=optimum%20replacement%20strategy" title=" optimum replacement strategy"> optimum replacement strategy</a> </p> <a href="https://publications.waset.org/abstracts/95355/improved-estimation-strategies-of-sensitive-characteristics-using-scrambled-response-techniques-in-successive-sampling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95355.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info"></span> Development of Quality Assessment Tool to Gauge Fire Response Activities of Emergency Personnel in Denmark</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jennifer%20E.%20Lynette">Jennifer E. Lynette</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to develop a nation-wide assessment tool to gauge the quality and efficiency of response activities by emergency personnel to fires in Denmark. Current fire incident reports lack detailed information that can lead to breakthroughs in research and improve emergency response efforts. Information generated from the report database is analyzed and assessed for efficiency and quality. By utilizing information collection gaps in the incident reports, an improved, indepth, and streamlined quality gauging system is developed for use by fire brigades. This study pinpoints previously unrecorded factors involved in the response phases of a fire. Variables are recorded and ranked based on their influence to event outcome. By assessing and measuring these data points, quality standards are developed. These quality standards include details of the response phase previously overlooked which individually and cumulatively impact the overall success of a fire response effort. Through the application of this tool and implementation of associated quality standards at Denmark’s fire brigades, there is potential to increase efficiency and quality in the preparedness and response phases, thereby saving additional lives, property, and resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emergency%20management" title="emergency management">emergency management</a>, <a href="https://publications.waset.org/abstracts/search?q=fire" title=" fire"> fire</a>, <a href="https://publications.waset.org/abstracts/search?q=preparedness" title=" preparedness"> preparedness</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20standards" title=" quality standards"> quality standards</a>, <a href="https://publications.waset.org/abstracts/search?q=response" title=" response"> response</a> </p> <a href="https://publications.waset.org/abstracts/38422/development-of-quality-assessment-tool-to-gauge-fire-response-activities-of-emergency-personnel-in-denmark" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38422.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info"></span> Design of Real Time Early Response Systems for Natural Disaster Management Based on Automation and Control Technologies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Pacheco">C. Pacheco</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Cipriano"> A. Cipriano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new concept of response system is proposed for filling the gap that exists in reducing vulnerability during immediate response to natural disasters. Real Time Early Response Systems (RTERSs) incorporate real time information as feedback data for closing control loop and for generating real time situation assessment. A review of the state of the art works that fit the concept of RTERS is presented, and it is found that they are mainly focused on manmade disasters. At the same time, in response phase of natural disaster management many works are involved in creating early warning systems, but just few efforts have been put on deciding what to do once an alarm is activated. In this context a RTERS arises as a useful tool for supporting people in their decision making process during natural disasters after an event is detected, and also as an innovative context for applying well-known automation technologies and automatic control concepts and tools. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=disaster%20management" title="disaster management">disaster management</a>, <a href="https://publications.waset.org/abstracts/search?q=emergency%20response%20system" title=" emergency response system"> emergency response system</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20disasters" title=" natural disasters"> natural disasters</a>, <a href="https://publications.waset.org/abstracts/search?q=real%20time" title=" real time"> real time</a> </p> <a href="https://publications.waset.org/abstracts/26120/design-of-real-time-early-response-systems-for-natural-disaster-management-based-on-automation-and-control-technologies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26120.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info"></span> Analysis of the Relationship between the Unitary Impulse Response for the nth-Volterra Kernel of a Duffing Oscillator System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guillermo%20Manuel%20Flores%20Figueroa">Guillermo Manuel Flores Figueroa</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20Alejandro%20Vazquez%20Feijoo"> Juan Alejandro Vazquez Feijoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20Navarro%20Antonio"> Jose Navarro Antonio</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A continuous nonlinear system response may be obtained by an infinite sum of the so-called Volterra operators. Each operator is obtained from multidimensional convolution of nth-order between the nth-order Volterra kernel and the system input. These operators can also be obtained from the Associated Linear Equations (ALEs) that are linear models of subsystems which inputs and outputs are of the same nth-order. Each ALEs produces a particular nth-Volterra operator. As linear models a unitary impulse response can be obtained from them. This work shows the relationship between this unitary impulse responses and the corresponding order Volterra kernel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Volterra%20series" title="Volterra series">Volterra series</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20response%20functions%20FRF" title=" frequency response functions FRF"> frequency response functions FRF</a>, <a href="https://publications.waset.org/abstracts/search?q=associated%20linear%20equations%20ALEs" title=" associated linear equations ALEs"> associated linear equations ALEs</a>, <a href="https://publications.waset.org/abstracts/search?q=unitary%20response%20function" title=" unitary response function"> unitary response function</a>, <a href="https://publications.waset.org/abstracts/search?q=Voterra%20kernel" title=" Voterra kernel"> Voterra kernel</a> </p> <a href="https://publications.waset.org/abstracts/29423/analysis-of-the-relationship-between-the-unitary-impulse-response-for-the-nth-volterra-kernel-of-a-duffing-oscillator-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29423.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">675</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">« Previous</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermo-elastic%20response&page=2" rel="next">Next »</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2025 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>