CINXE.COM

Search results for: stay ring

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: stay ring</title> <meta name="description" content="Search results for: stay ring"> <meta name="keywords" content="stay ring"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="stay ring" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="stay ring"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1045</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: stay ring</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1045</span> Structural Analysis of Hydro-Turbine Spiral Casing and Stay Ring Using Ansys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Surjit%20Angra">Surjit Angra</a>, <a href="https://publications.waset.org/abstracts/search?q=Pooja%20Rani"> Pooja Rani</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinod%20Kumar"> Vinod Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In hydro power plant spiral casing and Stay ring is meant to guide the water flow to guide vane and runner. Spiral casing and Stay ring is subjected to static i.e. pressure load as well as fluctuating load acting on the structure due to water hammer effect in water conductor system. Finite element method has been used to calculate stresses on spiral casing and stay ring. These calculations were done for the maximum possible loading under operating condition "LC1 Quick Shut Down”. The design load is reached for the spiral casing and stay ring during the emergency closure of the guide apparatus "LC1 Quick Shut Down”. During this operation the forces from the head cover to the stay ring also reach their maximum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydro-turbine" title="hydro-turbine">hydro-turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=spiral%20casing" title=" spiral casing"> spiral casing</a>, <a href="https://publications.waset.org/abstracts/search?q=stay%20ring" title=" stay ring"> stay ring</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20analysis" title=" structural analysis"> structural analysis</a> </p> <a href="https://publications.waset.org/abstracts/5592/structural-analysis-of-hydro-turbine-spiral-casing-and-stay-ring-using-ansys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1044</span> Rings Characterized by Classes of Rad-plus-Supplemented Modules</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manoj%20Kumar%20Patel">Manoj Kumar Patel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we introduce and give various properties of weak* Rad-plus-supplemented and cofinitely weak* Rad-plus-supplemented modules over some special kinds of rings, in particular, artinian serial ring and semiperfect ring. Also prove that ring R is artinian serial if and only if every right and left R-module is weak* Rad-plus-supplemented. We provide the counter example which proves that weak* Rad-plus-supplemented module is the generalization of plus-supplemented and Rad-plus-supplemented modules. Furthermore, as an application of above finding results of this research article, our main focus is to characterized the semisimple ring, artinian principal ideal ring, semilocal ring, semiperfect ring, perfect ring, commutative noetherian ring and Dedekind domain in terms of weak* Rad-plus-supplemented module. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cofinitely%20weak%2A%20Rad-plus-supplemented%20module" title="cofinitely weak* Rad-plus-supplemented module ">cofinitely weak* Rad-plus-supplemented module </a>, <a href="https://publications.waset.org/abstracts/search?q=Dedekind%20domain" title=" Dedekind domain"> Dedekind domain</a>, <a href="https://publications.waset.org/abstracts/search?q=Rad-plus-supplemented%20module" title=" Rad-plus-supplemented module"> Rad-plus-supplemented module</a>, <a href="https://publications.waset.org/abstracts/search?q=semiperfect%20ring" title=" semiperfect ring"> semiperfect ring</a> </p> <a href="https://publications.waset.org/abstracts/79173/rings-characterized-by-classes-of-rad-plus-supplemented-modules" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1043</span> Simulation Analysis of Optical Add Drop Multiplexer in a Ring Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Surinder%20Singh">Surinder Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Meenakshi"> Meenakshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper MZI-FBG based optical add drop multiplexer is designed and its performance is analyzed in the ring network. In the ring network nodes are composed of optical add drop multiplexer, transmitter and receiver. OADM is used to add or drop any frequency at intermediate nodes without affecting other channels. In this paper the performance of the ring network is carried out by varying various kinds of fiber with or without amplifiers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=OADM" title="OADM">OADM</a>, <a href="https://publications.waset.org/abstracts/search?q=ring%20network" title=" ring network"> ring network</a>, <a href="https://publications.waset.org/abstracts/search?q=MZI-FBG" title=" MZI-FBG"> MZI-FBG</a>, <a href="https://publications.waset.org/abstracts/search?q=transmitter" title=" transmitter "> transmitter </a> </p> <a href="https://publications.waset.org/abstracts/15948/simulation-analysis-of-optical-add-drop-multiplexer-in-a-ring-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15948.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">574</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1042</span> On the Girth of the Regular Digraph of Ideals of a ‎Commutative ‎Ring</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Karimi">Masoud Karimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> ‎Let R be a commutative ring‎. ‎The regular digraph of ideals of R, which is denoted by‎ Γ(R)‎, ‎is a digraph whose vertex-set is the set of all ‎non-‎trivial ideals of R and‎, ‎for every‎ two distinct vertices I and J‎, ‎there is an arc from I to J‎, ‎whenever I contains‎ a non-zero-divisor on J. In this article, ‎we ‎show ‎that an indecomposable ‎Noetherian ring ‎‎‎R ‎is ‎Artinian ‎local ‎if ‎and ‎only ‎if Z(I)=Z(R) ‎for ‎every ‎non-nilpotent ‎ideal ‎‎‎I‎. ‎Then ‎we ‎conclude ‎that ‎‎the ‎girth ‎of‎ Γ(R)‎ ‎is ‎not ‎equal ‎to ‎four. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=commutative%20ring%E2%80%8E" title="commutative ring‎">commutative ring‎</a>, <a href="https://publications.waset.org/abstracts/search?q=%E2%80%8Egirth%E2%80%8E" title=" ‎girth‎"> ‎girth‎</a>, <a href="https://publications.waset.org/abstracts/search?q=regular%20digraph%E2%80%8E" title=" regular digraph‎"> regular digraph‎</a>, <a href="https://publications.waset.org/abstracts/search?q=zero-divisor" title=" zero-divisor"> zero-divisor</a> </p> <a href="https://publications.waset.org/abstracts/14244/on-the-girth-of-the-regular-digraph-of-ideals-of-a-commutative-ring" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1041</span> On Modules over Dedekind Prime Rings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elvira%20Kusniyanti">Elvira Kusniyanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanni%20Garminia"> Hanni Garminia</a>, <a href="https://publications.waset.org/abstracts/search?q=Pudji%20Astuti"> Pudji Astuti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research studies an interconnection between finitely generated uniform modules and Dedekind prime rings. The characterization of modules over Dedekind prime rings that will be investigated is an adoption of Noetherian and hereditary concept. Dedekind prime rings are Noetherian and hereditary rings. This property of Dedekind prime rings is a background of the idea of adopting arises. In Noetherian area, it was known that a ring R is Noetherian ring if and only if every finitely generated R-module is a Noetherian module. Similar to that result, a characterization of the hereditary ring is related to its projective modules. That is, a ring R is hereditary ring if and only if every projective R-module is a hereditary module. Due to the above two results, we suppose that characterization of a Dedekind prime ring can be analyzed from finitely generated modules over it. We propose a conjecture: a ring R is a Dedekind prime ring if and only if every finitely generated uniform R-module is a Dedekind module. In this article, we will generalize a concept of the Dedekind module for non-commutative ring case and present a part of the above conjecture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dedekind%20domains" title="dedekind domains">dedekind domains</a>, <a href="https://publications.waset.org/abstracts/search?q=dedekind%20prime%20rings" title=" dedekind prime rings"> dedekind prime rings</a>, <a href="https://publications.waset.org/abstracts/search?q=dedekind%20modules" title=" dedekind modules"> dedekind modules</a>, <a href="https://publications.waset.org/abstracts/search?q=uniform%20modules" title=" uniform modules"> uniform modules</a> </p> <a href="https://publications.waset.org/abstracts/32475/on-modules-over-dedekind-prime-rings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32475.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1040</span> Improved of Elliptic Curves Cryptography over a Ring</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelhakim%20Chillali">Abdelhakim Chillali</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelhamid%20Tadmori"> Abdelhamid Tadmori</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammed%20Ziane"> Muhammed Ziane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article we will study the elliptic curve defined over the ring An and we define the mathematical operations of ECC, which provides a high security and advantage for wireless applications compared to other asymmetric key cryptosystem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elliptic%20curves" title="elliptic curves">elliptic curves</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20ring" title=" finite ring"> finite ring</a>, <a href="https://publications.waset.org/abstracts/search?q=cryptography" title=" cryptography"> cryptography</a>, <a href="https://publications.waset.org/abstracts/search?q=study" title=" study"> study</a> </p> <a href="https://publications.waset.org/abstracts/24042/improved-of-elliptic-curves-cryptography-over-a-ring" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24042.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1039</span> Heterocyclic Ring Extension of Estrone: Synthesis and Cytotoxicity of Fused Pyrin, Pyrimidine and Thiazole Derivatives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rafat%20M.%20Mohareb">Rafat M. Mohareb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several D-ring alkylated estrone analogues display exceptionally high affinity for estrogen receptors. In particular, compounds in which an E-ring is formed are known to be involved in the inhibition of steroidogenic enzymes. Such compounds also have an effect on steroid dehydrogenase activity and the ability to inhibit the detrimental action of the steroid sulfatase enzyme. Generally, E-ring extended steroids have been accessed by modification of the C17-ketone in the D-ring by either arylimine or oximino formation, addition of a carbon nucleophile or hydrazone formation. Other approaches have included ketone reduction, silyl enol ether formation or ring-closing metathesis (giving five- or six-membered E-rings). Chemical modification of the steroid D-ring provides a way to alter the functional groups, sizes and stereochemistry of the D-ring, and numerous structure-activity relationships have been established by such synthetic alterations. Steroids bearing heterocycles fused to the D-ring of the steroid nucleus have been of pharmaceutical interest. In the present paper, we report on the efficient synthesis of estrone possessing pyran, pyrimidine and thiazole ring systems. This study focused on the synthesis and biochemical evaluation of newly synthesized heterocyclic compounds which were then subjected through inhibitory evaluations towards human cancer and normal cell lines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=estrone" title="estrone">estrone</a>, <a href="https://publications.waset.org/abstracts/search?q=heterocyclization" title=" heterocyclization"> heterocyclization</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxicity" title=" cytotoxicity"> cytotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedicine" title=" biomedicine"> biomedicine</a> </p> <a href="https://publications.waset.org/abstracts/1735/heterocyclic-ring-extension-of-estrone-synthesis-and-cytotoxicity-of-fused-pyrin-pyrimidine-and-thiazole-derivatives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1735.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1038</span> Highly Conductive Polycrystalline Metallic Ring in a Magnetic Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isao%20Tomita">Isao Tomita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrical conduction in a quasi-one-dimensional polycrystalline metallic ring with a long electron phase coherence length realized at low temperature is investigated. In this situation, the wave nature of electrons is important in the ring, where the electrical current I can be induced by a vector potential that arises from a static magnetic field applied perpendicularly to the ring&rsquo;s area. It is shown that if the average grain size of the polycrystalline ring becomes large (or comparable to the Fermi wavelength), the electrical current I increases to ~I0, where I0 is a current in a disorder-free ring. The cause of this increasing effect is examined, and this takes place if the electron localization length in the polycrystalline potential increases with increasing grain size, which gives rise to coherent connection of tails of a localized electron wave function in the ring and thus provides highly coherent electrical conduction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20conduction" title="electrical conduction">electrical conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20phase%20coherence" title=" electron phase coherence"> electron phase coherence</a>, <a href="https://publications.waset.org/abstracts/search?q=polycrystalline%20metal" title=" polycrystalline metal"> polycrystalline metal</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a> </p> <a href="https://publications.waset.org/abstracts/42741/highly-conductive-polycrystalline-metallic-ring-in-a-magnetic-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42741.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1037</span> Development of Forging Technology of Cam Ring Gear for Truck Using Small Bar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20H.%20Park">D. H. Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20H.%20Tak"> Y. H. Tak</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20H.%20Kwon"> H. H. Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20J.%20Kwon"> G. J. Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20G.%20Kim"> H. G. Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study focused on developing forging technology of a large-diameter cam ring gear from the small bar. The analyses of temperature variation and deformation behavior of the material are important to obtain the optimal forging products. The hot compression test was carried out to know formability at high temperature. In order to define the optimum forging conditions including material temperature, strain and forging load, the finite element method was used to simulate the forging process of cam ring gear parts. Test results were in good agreement with the simulations. An existing cam ring gear is presented the chips generated by cutting the rod material and the durability issues, but this would be to develop a large-diameter cam ring gear forging parts for truck in order to solve the durability problem and the material waste. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forging%20technology" title="forging technology">forging technology</a>, <a href="https://publications.waset.org/abstracts/search?q=cam%20ring" title=" cam ring"> cam ring</a>, <a href="https://publications.waset.org/abstracts/search?q=gear" title=" gear"> gear</a>, <a href="https://publications.waset.org/abstracts/search?q=truck" title=" truck"> truck</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20bar" title=" small bar"> small bar</a> </p> <a href="https://publications.waset.org/abstracts/54422/development-of-forging-technology-of-cam-ring-gear-for-truck-using-small-bar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54422.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1036</span> Frobenius Manifolds Pairing and Invariant Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zainab%20Al-Maamari">Zainab Al-Maamari</a>, <a href="https://publications.waset.org/abstracts/search?q=Yassir%20Dinar"> Yassir Dinar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The orbit space of an irreducible representation of a finite group is a variety with the ring of invariant polynomials as a coordinate ring. The invariant ring is a polynomial ring if and only if the representation is a reflection representation. Boris Dubrovin shows that the orbits spaces of irreducible real reflection representations acquire the structure of polynomial Frobenius manifolds. Dubrovin's method was also used to construct different examples of Frobenius manifolds on certain reflection representations. By successfully applying Dubrovin’s method on non-polynomial invariant rings of linear representations of dicyclic groups, it gives some results that magnify the relation between invariant theory and Frobenius manifolds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=invariant%20ring" title="invariant ring">invariant ring</a>, <a href="https://publications.waset.org/abstracts/search?q=Frobenius%20manifold" title=" Frobenius manifold"> Frobenius manifold</a>, <a href="https://publications.waset.org/abstracts/search?q=inversion" title=" inversion"> inversion</a>, <a href="https://publications.waset.org/abstracts/search?q=representation%20theory" title=" representation theory"> representation theory</a> </p> <a href="https://publications.waset.org/abstracts/143099/frobenius-manifolds-pairing-and-invariant-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143099.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1035</span> Analysis of Road Network Vulnerability Due to Merapi Volcano Eruption</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imam%20Muthohar">Imam Muthohar</a>, <a href="https://publications.waset.org/abstracts/search?q=Budi%20Hartono"> Budi Hartono</a>, <a href="https://publications.waset.org/abstracts/search?q=Sigit%20Priyanto"> Sigit Priyanto</a>, <a href="https://publications.waset.org/abstracts/search?q=Hardiansyah%20Hardiansyah"> Hardiansyah Hardiansyah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The eruption of Merapi Volcano in Yogyakarta, Indonesia in 2010 caused many casualties due to minimum preparedness in facing disaster. Increasing population capacity and evacuating to safe places become very important to minimize casualties. Regional government through the Regional Disaster Management Agency has divided disaster-prone areas into three parts, namely ring 1 at a distance of 10 km, ring 2 at a distance of 15 km and ring 3 at a distance of 20 km from the center of Mount Merapi. The success of the evacuation is fully supported by road network infrastructure as a way to rescue in an emergency. This research attempts to model evacuation process based on the rise of refugees in ring 1, expanded to ring 2 and finally expanded to ring 3. The model was developed using SATURN (Simulation and Assignment of Traffic to Urban Road Networks) program version 11.3. 12W, involving 140 centroid, 449 buffer nodes, and 851 links across Yogyakarta Special Region, which was aimed at making a preliminary identification of road networks considered vulnerable to disaster. An assumption made to identify vulnerability was the improvement of road network performance in the form of flow and travel times on the coverage of ring 1, ring 2, ring 3, Sleman outside the ring, Yogyakarta City, Bantul, Kulon Progo, and Gunung Kidul. The research results indicated that the performance increase in the road networks existing in the area of ring 2, ring 3, and Sleman outside the ring. The road network in ring 1 started to increase when the evacuation was expanded to ring 2 and ring 3. Meanwhile, the performance of road networks in Yogyakarta City, Bantul, Kulon Progo, and Gunung Kidul during the evacuation period simultaneously decreased in when the evacuation areas were expanded. The results of preliminary identification of the vulnerability have determined that the road networks existing in ring 1, ring 2, ring 3 and Sleman outside the ring were considered vulnerable to the evacuation of Mount Merapi eruption. Therefore, it is necessary to pay a great deal of attention in order to face the disasters that potentially occur at anytime. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=model" title="model">model</a>, <a href="https://publications.waset.org/abstracts/search?q=evacuation" title=" evacuation"> evacuation</a>, <a href="https://publications.waset.org/abstracts/search?q=SATURN" title=" SATURN"> SATURN</a>, <a href="https://publications.waset.org/abstracts/search?q=vulnerability" title=" vulnerability"> vulnerability</a> </p> <a href="https://publications.waset.org/abstracts/87176/analysis-of-road-network-vulnerability-due-to-merapi-volcano-eruption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87176.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1034</span> Parameters Affecting Load Capacity of Reinforced Concrete Ring Deep Beams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atef%20Ahmad%20Bleibel">Atef Ahmad Bleibel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most codes of practice, like ACI 318-14, require the use of strut-and-tie modeling to analyze and design reinforced concrete deep beams. Though, investigations that conducted on deep beams do not include ring deep beams of influential parameters. This work presents an analytical parametric study using strut-and-tie modeling stated by ACI 318-14 to predict load capacity of 20 reinforced concrete ring deep beam specimens with different parameters. The parameters that were under consideration in the current work are ring diameter (Dc), number of supports (NS), width of ring beam (bw), concrete compressive strength (f'c) and width of bearing plate (Bp). It is found that the load capacity decreases by about 14-36% when ring diameter increases by about 25-75%. It is also found that load capacity increases by about 62-189% when number of supports increases by about 33-100%, while the load capacity increases by about 25-75% when the beam ring width increases by about 25-75%. Finally, it is found that load capacity increases by about 24-76% when compressive strength increases by about 24-76%, while the load capacity increases by about 5-16% when Bp increases by about 25-75%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=load%20parameters" title="load parameters">load parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete" title=" reinforced concrete"> reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=ring%20deep%20beam" title=" ring deep beam"> ring deep beam</a>, <a href="https://publications.waset.org/abstracts/search?q=strut%20and%20tie" title=" strut and tie"> strut and tie</a> </p> <a href="https://publications.waset.org/abstracts/112253/parameters-affecting-load-capacity-of-reinforced-concrete-ring-deep-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112253.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1033</span> Prime Graphs of Polynomials and Power Series Over Non-Commutative Rings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Walaa%20Obaidallah%20Alqarafi">Walaa Obaidallah Alqarafi</a>, <a href="https://publications.waset.org/abstracts/search?q=Wafaa%20Mohammed%20Fakieh"> Wafaa Mohammed Fakieh</a>, <a href="https://publications.waset.org/abstracts/search?q=Alaa%20Abdallah%20Altassan"> Alaa Abdallah Altassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Algebraic graph theory is defined as a bridge between algebraic structures and graphs. It has several uses in many fields, including chemistry, physics, and computer science. The prime graph is a type of graph associated with a ring R, where the vertex set is the whole ring R, and two vertices x and y are adjacent if either xRy=0 or yRx=0. However, the investigation of the prime graph over rings remains relatively limited. The behavior of this graph in extended rings, like R[x] and R[[x]], where R is a non-commutative ring, deserves more attention because of the wider applicability in algebra and other mathematical fields. To study the prime graphs over polynomials and power series rings, we used a combination of ring-theoretic and graph-theoretic techniques. This paper focuses on two invariants: the diameter and the girth of these graphs. Furthermore, the work discusses how the graph structures change when passing from R to R[x] and R[[x]]. In our study, we found that the set of strong zero-divisors of ring R represents the set of vertices in prime graphs. Based on this discovery, we redefined the vertices of prime graphs using the definition of strong zero divisors. Additionally, our results show that although the prime graphs of R[x] and R[[x]] are comparable to the graph of R, they have different combinatorial characteristics since these extensions contain new strong zero-divisors. In particular, we find conditions in which the diameter and girth of the graphs, as they expand from R to R[x] and R[[x]], do not change or do change. In conclusion, this study shows how extending a non-commutative ring R to R[x] and R[[x]] affects the structure of their prime graphs, particularly in terms of diameter and girth. These findings enhance the understanding of the relationship between ring extensions and graph properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=prime%20graph" title="prime graph">prime graph</a>, <a href="https://publications.waset.org/abstracts/search?q=diameter" title=" diameter"> diameter</a>, <a href="https://publications.waset.org/abstracts/search?q=girth" title=" girth"> girth</a>, <a href="https://publications.waset.org/abstracts/search?q=polynomial%20ring" title=" polynomial ring"> polynomial ring</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20series%20ring" title=" power series ring"> power series ring</a> </p> <a href="https://publications.waset.org/abstracts/192430/prime-graphs-of-polynomials-and-power-series-over-non-commutative-rings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192430.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">18</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1032</span> Material Detection by Phase Shift Cavity Ring-Down Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rana%20Muhammad%20Armaghan%20Ayaz">Rana Muhammad Armaghan Ayaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Yigit%20Uysall%C4%B1"> Yigit Uysallı</a>, <a href="https://publications.waset.org/abstracts/search?q=Nima%20Bavili"> Nima Bavili</a>, <a href="https://publications.waset.org/abstracts/search?q=Berna%20Morova"> Berna Morova</a>, <a href="https://publications.waset.org/abstracts/search?q=Alper%20Kiraz"> Alper Kiraz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traditional optical methods for example resonance wavelength shift and cavity ring-down spectroscopy used for material detection and sensing have disadvantages, for example, less resistance to laser noise, temperature fluctuations and extraction of the required information can be a difficult task like ring downtime in case of cavity ring-down spectroscopy. Phase shift cavity ring down spectroscopy is not only easy to use but is also capable of overcoming the said problems. This technique compares the phase difference between the signal coming out of the cavity with the reference signal. Detection of any material is made by the phase difference between them. By using this technique, air, water, and isopropyl alcohol can be recognized easily. This Methodology has far-reaching applications and can be used in air pollution detection, human breath analysis and many more. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=materials" title="materials">materials</a>, <a href="https://publications.waset.org/abstracts/search?q=noise" title=" noise"> noise</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20shift" title=" phase shift"> phase shift</a>, <a href="https://publications.waset.org/abstracts/search?q=resonance%20wavelength" title=" resonance wavelength"> resonance wavelength</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity" title=" sensitivity"> sensitivity</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20domain%20approach" title=" time domain approach"> time domain approach</a> </p> <a href="https://publications.waset.org/abstracts/107606/material-detection-by-phase-shift-cavity-ring-down-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1031</span> A Polyimide Based Split-Ring Neural Interface Electrode for Neural Signal Recording</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ning%20Xue">Ning Xue</a>, <a href="https://publications.waset.org/abstracts/search?q=Srinivas%20Merugu"> Srinivas Merugu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ignacio%20Delgado%20Martinez"> Ignacio Delgado Martinez</a>, <a href="https://publications.waset.org/abstracts/search?q=Tao%20Sun"> Tao Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Tsang"> John Tsang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shih-Cheng%20Yen"> Shih-Cheng Yen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have developed a polyimide based neural interface electrode to record nerve signals from the sciatic nerve of a rat. The neural interface electrode has a split-ring shape, with four protruding gold electrodes for recording, and two reference gold electrodes around the split-ring. The split-ring electrode can be opened up to encircle the sciatic nerve. The four electrodes can be bent to sit on top of the nerve and hold the device in position, while the split-ring frame remains flat. In comparison, while traditional cuff electrodes can only fit certain sizes of the nerve, the developed device can fit a variety of rat sciatic nerve dimensions from 0.6 mm to 1.0 mm, and adapt to the chronic changes in the nerve as the electrode tips are bendable. The electrochemical impedance spectroscopy measurement was conducted. The gold electrode impedance is on the order of 10 kΩ, showing excellent charge injection capacity to record neural signals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=impedance" title="impedance">impedance</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20interface" title=" neural interface"> neural interface</a>, <a href="https://publications.waset.org/abstracts/search?q=split-ring%20electrode" title=" split-ring electrode"> split-ring electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20signal%20recording" title=" neural signal recording"> neural signal recording</a> </p> <a href="https://publications.waset.org/abstracts/6287/a-polyimide-based-split-ring-neural-interface-electrode-for-neural-signal-recording" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6287.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1030</span> Upsetting of Tri-Metallic St-Cu-Al and St-Cu60Zn-Al Cylindrical Billets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isik%20Cetintav">Isik Cetintav</a>, <a href="https://publications.waset.org/abstracts/search?q=Cenk%20Misirli"> Cenk Misirli</a>, <a href="https://publications.waset.org/abstracts/search?q=Yilmaz%20Can"> Yilmaz Can</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work investigates upsetting of the tri-metallic cylindrical billets both experimentally and analytically with a reduction ratio 30%. Steel, brass, and copper are used for the outer and outmost rings and aluminum for the inner core. Two different models have been designed to show material flow and the cavity took place over the two interfaces during forming after this reduction ratio. Each model has an outmost ring material as steel. Model 1 has an outer ring between the outmost ring and the solid core material as copper and Model 2 has a material as brass. Solid core is aluminum for each model. Billets were upset in press machine by using parallel flat dies. Upsetting load was recorded and compared for models and single billets. To extend the tests and compare with experimental procedure to a wider range of inner core and outer ring geometries, finite element model was performed. ABAQUS software was used for the simulations. The aim is to show how contact between outmost ring, outer ring and the inner core are carried on throughout the upsetting process. Results have shown that, with changing in height, between outmost ring, outer ring and inner core, the Model 1 and Model 2 had very good interaction, and the contact surfaces of models had various interface behaviour. It is also observed that tri-metallic materials have lower weight but better mechanical properties than single materials. This can give an idea for using and producing these new materials for different purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tri-metallic" title="tri-metallic">tri-metallic</a>, <a href="https://publications.waset.org/abstracts/search?q=upsetting" title=" upsetting"> upsetting</a>, <a href="https://publications.waset.org/abstracts/search?q=copper" title=" copper"> copper</a>, <a href="https://publications.waset.org/abstracts/search?q=brass" title=" brass"> brass</a>, <a href="https://publications.waset.org/abstracts/search?q=steel" title=" steel"> steel</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum" title=" aluminum"> aluminum</a> </p> <a href="https://publications.waset.org/abstracts/48901/upsetting-of-tri-metallic-st-cu-al-and-st-cu60zn-al-cylindrical-billets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48901.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1029</span> Vibration-Based Monitoring of Tensioning Stay Cables of an Extradosed Bridge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chun-Chung%20Chen">Chun-Chung Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo-Han%20Lee"> Bo-Han Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Chi%20Sung"> Yu-Chi Sung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Monitoring the status of tensioning force of stay cables is a significant issue for the assessment of structural safety of extradosed bridges. Moreover, it is known that there is a high correlation between the existing tension force and the vibration frequencies of cables. This paper presents the characteristic of frequencies of stay cables of a field extradosed bridge by using vibration-based monitoring methods. The vibration frequencies of each stay cables were measured in stages from the beginning to the completion of bridge construction. The result shows that the vibration frequency variation trend of different lengths of cables at each measured stage is different. The observed feature can help the application of the bridge long-term monitoring system and contribute to the assessment of bridge safety. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vibration-based%20method" title="vibration-based method">vibration-based method</a>, <a href="https://publications.waset.org/abstracts/search?q=extradosed%20bridges" title=" extradosed bridges"> extradosed bridges</a>, <a href="https://publications.waset.org/abstracts/search?q=bridge%20health%20monitoring" title=" bridge health monitoring"> bridge health monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=bridge%20stay%20cables" title=" bridge stay cables"> bridge stay cables</a> </p> <a href="https://publications.waset.org/abstracts/105500/vibration-based-monitoring-of-tensioning-stay-cables-of-an-extradosed-bridge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105500.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1028</span> Assessment of Residual Stress on HDPE Pipe Wall Thickness</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Sersab">D. Sersab</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Aberkane"> M. Aberkane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Residual stresses, in high-density polyethylene (HDPE) pipes, result from a nonhomogeneous cooling rate that occurs between the inner and outer surfaces during the extrusion process in manufacture. Most known methods of measurements to determine the magnitude and profile of the residual stresses in the pipe wall thickness are layer removal and ring slitting method. The combined layer removal and ring slitting methods described in this paper involves measurement of the circumferential residual stresses with minimal local disturbance. The existing methods used for pipe geometry (ring slitting method) gives a single residual stress value at the bore. The layer removal method which is used more in flat plate specimen is implemented with ring slitting method. The method permits stress measurements to be made directly at different depth in the pipe wall and a well-defined residual stress profile was consequently obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=residual%20stress" title="residual stress">residual stress</a>, <a href="https://publications.waset.org/abstracts/search?q=layer%20removal" title=" layer removal"> layer removal</a>, <a href="https://publications.waset.org/abstracts/search?q=ring%20splitting" title=" ring splitting"> ring splitting</a>, <a href="https://publications.waset.org/abstracts/search?q=HDPE" title=" HDPE"> HDPE</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20thickness" title=" wall thickness "> wall thickness </a> </p> <a href="https://publications.waset.org/abstracts/25357/assessment-of-residual-stress-on-hdpe-pipe-wall-thickness" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25357.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1027</span> Sensitivity Improvement of Optical Ring Resonator for Strain Analysis with the Direction of Strain Recognition Possibility</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tayebeh%20Sahraeibelverdi">Tayebeh Sahraeibelverdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Shirazi%20Hadi%20Veladi"> Ahmad Shirazi Hadi Veladi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mazdak%20Radmalekshah"> Mazdak Radmalekshah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Optical sensors became attractive due to preciseness, low power consumption, and intrinsic electromagnetic interference-free characteristic. Among the waveguide optical sensors, cavity-based ones attended for the high Q-factor. Micro ring resonators as a potential platform have been investigated for various applications as biosensors to pressure sensors thanks to their sensitive ring structure responding to any small change in the refractive index. Furthermore, these small micron size structures can come in an array, bringing the opportunity to have any of the resonance in a specific wavelength and be addressed in this way. Another exciting application is applying a strain to the ring and making them an optical strain gauge where the traditional ones are based on the piezoelectric material. Making them in arrays needs electrical wiring and about fifty times bigger in size. Any physical element that impacts the waveguide cross-section, Waveguide elastic-optic property change, or ring circumference can play a role. In comparison, ring size change has a larger effect than others. Here an engineered ring structure is investigated to study the strain effect on the ring resonance wavelength shift and its potential for more sensitive strain devices. At the same time, these devices can measure any strain by mounting on the surface of interest. The idea is to change the" O" shape ring to a "C" shape ring with a small opening starting from 2π/360 or one degree. We used the Mode solution of Lumbrical software to investigate the effect of changing the ring's opening and the shift induced by applied strain. The designed ring radius is a three Micron silicon on isolator ring which can be fabricated by standard complementary metal-oxide-semiconductor (CMOS) micromachining. The measured wavelength shifts from1-degree opening of the ring to a 6-degree opening have been investigated. Opening the ring for 1-degree affects the ring's quality factor from 3000 to 300, showing an order of magnitude Q-factor reduction. Assuming a strain making the ring-opening from 1 degree to 6 degrees, our simulation results showing negligible Q-factor reduction from 300 to 280. A ring resonator quality factor can reach up to 108 where an order of magnitude reduction is negligible. The resonance wavelength shift showed a blue shift and was obtained to be 1581, 1579,1578,1575nm for 1-, 2-, 4- and 6-degree ring-opening, respectively. This design can find the direction of the strain-induced by applying the opening on different parts of the ring. Moreover, by addressing the specified wavelength, we can precisely find the direction. We can open a significant opportunity to find cracks and any surface mechanical property very specifically and precisely. This idea can be implemented on polymer ring resonators while they can come with a flexible substrate and can be very sensitive to any strain making the two ends of the ring in the slit part come closer or further. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optical%20ring%20resonator" title="optical ring resonator">optical ring resonator</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20gauge" title=" strain gauge"> strain gauge</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20sensor" title=" strain sensor"> strain sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20mechanical%20property%20analysis" title=" surface mechanical property analysis "> surface mechanical property analysis </a> </p> <a href="https://publications.waset.org/abstracts/135442/sensitivity-improvement-of-optical-ring-resonator-for-strain-analysis-with-the-direction-of-strain-recognition-possibility" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135442.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1026</span> Potential of High Performance Ring Spinning Based on Superconducting Magnetic Bearing </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Hossain">M. Hossain</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Abdkader"> A. Abdkader</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Cherif"> C. Cherif</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Berger"> A. Berger</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sparing"> M. Sparing</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20H%C3%BChne"> R. Hühne</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Schultz"> L. Schultz</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Nielsch"> K. Nielsch </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the best quality of yarn and the flexibility of the machine, the ring spinning process is the most widely used spinning method for short staple yarn production. However, the productivity of these machines is still much lower in comparison to other spinning systems such as rotor or air-jet spinning process. The main reason for this limitation lies on the twisting mechanism of the ring spinning process. In the ring/traveler twisting system, each rotation of the traveler along with the ring inserts twist in the yarn. The rotation of the traveler at higher speed includes strong frictional forces, which in turn generates heat. Different ring/traveler systems concerning with its geometries, material combinations and coatings have already been implemented to solve the frictional problem. However, such developments can neither completely solve the frictional problem nor increase the productivity. The friction free superconducting magnetic bearing (SMB) system can be a right alternative replacing the existing ring/traveler system. The unique concept of SMB bearings is that they possess a self-stabilizing behavior, i.e. they remain fully passive without any necessity for expensive position sensing and control. Within the framework of a research project funded by German research foundation (DFG), suitable concepts of the SMB-system have been designed, developed, and integrated as a twisting device of ring spinning replacing the existing ring/traveler system. With the help of the developed mathematical model and experimental investigation, the physical limitations of this innovative twisting device in the spinning process have been determined. The interaction among the parameters of the spinning process and the superconducting twisting element has been further evaluated, which derives the concrete information regarding the new spinning process. Moreover, the influence of the implemented SMB twisting system on the yarn quality has been analyzed with respect to different process parameters. The presented work reveals the enormous potential of the innovative twisting mechanism, so that the productivity of the ring spinning process especially in case of thermoplastic materials can be at least doubled for the first time in a hundred years. The SMB ring spinning tester has also been presented in the international fair &ldquo;International Textile Machinery Association (ITMA) 2015&rdquo;. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ring%20spinning" title="ring spinning">ring spinning</a>, <a href="https://publications.waset.org/abstracts/search?q=superconducting%20magnetic%20bearing" title=" superconducting magnetic bearing"> superconducting magnetic bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=yarn%20properties" title=" yarn properties"> yarn properties</a>, <a href="https://publications.waset.org/abstracts/search?q=productivity" title=" productivity"> productivity</a> </p> <a href="https://publications.waset.org/abstracts/77595/potential-of-high-performance-ring-spinning-based-on-superconducting-magnetic-bearing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77595.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1025</span> Application of Soft Sets to Non-Associative Rings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Inayatur%20Rehman">Inayatur Rehman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Molodtstove developed the theory of soft sets which can be seen as an effective tool to deal with uncertainties. Since the introduction of this concept, the application of soft sets has been restricted to associative algebraic structures (groups, semi groups, associative rings, semi-rings etc.). Acceptably, though the study of soft sets, where the base set of parameters is a commutative structure, has attracted the attention of many researchers for more than one decade. But on the other hand there are many sets which are naturally endowed by two compatible binary operations forming a non-associative ring and we may dig out examples which investigate a non-associative structure in the context of soft sets. Thus it seems natural to apply the concept of soft sets to non-commutative and non-associative structures. In present paper, we make a new approach to apply Molodtsoves notion of soft sets to LA-ring (a class of non-associative ring). We extend the study of soft commutative rings from theoretical aspect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soft%20sets" title="soft sets">soft sets</a>, <a href="https://publications.waset.org/abstracts/search?q=LA-rings" title=" LA-rings"> LA-rings</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20LA-rings" title=" soft LA-rings"> soft LA-rings</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20ideals" title=" soft ideals"> soft ideals</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20prime%20ideals" title=" soft prime ideals"> soft prime ideals</a>, <a href="https://publications.waset.org/abstracts/search?q=idealistic%0D%0Asoft%20LA-rings" title=" idealistic soft LA-rings"> idealistic soft LA-rings</a>, <a href="https://publications.waset.org/abstracts/search?q=LA-ring%20homomorphism" title=" LA-ring homomorphism "> LA-ring homomorphism </a> </p> <a href="https://publications.waset.org/abstracts/33475/application-of-soft-sets-to-non-associative-rings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33475.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1024</span> Development of Interactional Competence: Listener Responses of Long-Term Stay Abroad Chinese L1 Speakers in Australian Universities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wei%20Gao">Wei Gao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current study investigates the change of listener responses in social conversations of the second language (L2) speakers who are staying abroad with Chinese L1 speakers in Australian universities and how their long-term stay abroad impacted their design for L2 recipient actions. There is a limited amount of empirical work on L2 English listener response acquisition, particularly regarding the influence of long-term stay abroad in English-speaking countries. Little is known whether the development of L2 listener responses and the improvement of interactional competence is affected by the prolonged residency in the target L2 country. Forty-eight participants were recruited, and they participated in the designed speaking task through Computer-Mediated Communication. Results showed that long-term stay abroad Chinese L1 speakers demonstrated an English-like pattern of listener responses in communication. Long-term stay abroad experience had a significant impact on L2 English listener responses production and organization in social conversation. Long-term stay abroad L1 Chinese speakers had an active and productive response in listenership than their non-stay abroad counterparts in terms of frequency and placement in producing listener responses. However, the L2 English listener response production only occurred to be partial in response tokens, such as backchannels and reactive expressions, also in resumptive openers' employment. This study shows that L2 English listener responses could be acquired during a long-term stay abroad in English-speaking countries but showed partial acquisition in collaborative finishes production. In addition, the most prominent finding was that Chinese L1 speakers changed their overall listener responses pattern from L1 Chinese to L2 English. The study reveals specific interactional changes in English L2 listener responses acquisition. It generates pedagogical implications for cross-cultural communication and L2 pragmatics acquisition during a long-term stay abroad. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=listener%20responses" title="listener responses">listener responses</a>, <a href="https://publications.waset.org/abstracts/search?q=stay%20abroad" title=" stay abroad"> stay abroad</a>, <a href="https://publications.waset.org/abstracts/search?q=interactional%20competence" title=" interactional competence"> interactional competence</a>, <a href="https://publications.waset.org/abstracts/search?q=L2%20pragmatics%20acquisition" title=" L2 pragmatics acquisition"> L2 pragmatics acquisition</a> </p> <a href="https://publications.waset.org/abstracts/150392/development-of-interactional-competence-listener-responses-of-long-term-stay-abroad-chinese-l1-speakers-in-australian-universities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150392.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1023</span> Image Processing Approach for Detection of Three-Dimensional Tree-Rings from X-Ray Computed Tomography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jorge%20Martinez-Garcia">Jorge Martinez-Garcia</a>, <a href="https://publications.waset.org/abstracts/search?q=Ingrid%20Stelzner"> Ingrid Stelzner</a>, <a href="https://publications.waset.org/abstracts/search?q=Joerg%20Stelzner"> Joerg Stelzner</a>, <a href="https://publications.waset.org/abstracts/search?q=Damian%20Gwerder"> Damian Gwerder</a>, <a href="https://publications.waset.org/abstracts/search?q=Philipp%20Schuetz"> Philipp Schuetz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tree-ring analysis is an important part of the quality assessment and the dating of (archaeological) wood samples. It provides quantitative data about the whole anatomical ring structure, which can be used, for example, to measure the impact of the fluctuating environment on the tree growth, for the dendrochronological analysis of archaeological wooden artefacts and to estimate the wood mechanical properties. Despite advances in computer vision and edge recognition algorithms, detection and counting of annual rings are still limited to 2D datasets and performed in most cases manually, which is a time consuming, tedious task and depends strongly on the operator&rsquo;s experience. This work presents an image processing approach to detect the whole 3D tree-ring structure directly from X-ray computed tomography imaging data. The approach relies on a modified Canny edge detection algorithm, which captures fully connected tree-ring edges throughout the measured image stack and is validated on X-ray computed tomography data taken from six wood species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ring%20recognition" title="ring recognition">ring recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=edge%20detection" title=" edge detection"> edge detection</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20computed%20tomography" title=" X-ray computed tomography"> X-ray computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=dendrochronology" title=" dendrochronology"> dendrochronology</a> </p> <a href="https://publications.waset.org/abstracts/130684/image-processing-approach-for-detection-of-three-dimensional-tree-rings-from-x-ray-computed-tomography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130684.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1022</span> Proximity-Inset Fed Triple Band Antenna for Global Position System with High Gain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=The%20Nan%20Chang">The Nan Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ping-Tang%20Yu"> Ping-Tang Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyun-Ming%20Lin"> Jyun-Ming Lin </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A triple band circularly polarized antenna covering 1.17, 1.22, and 1.57 GHz is presented. To extend to the triple-band operation, we need to add one more ring while maintaining the mechanism to independently control each ring. The inset-part in the feeding scheme is used to excite the band at 1.22 GHz, while the proximate-part of the feeding scheme is used to excite not only the band at 1.57 GHz but also the band at 1.17 GHz. This is achieved by up-vertically coupled with one ring to radiate at 1.57 GHz and down-vertically coupled another ring to radiate at 1.17 GHz. It is also noted that the inset-part in our feeding scheme is by horizontal coupling. Furthermore, to increase the gain at all three bands, three air-layers are added to make the total height of the antenna be 7.8 mm. The total thickness of the three air-layers is 3 mm. The gains of the three bands are all greater than 5 dBiC after adding the air-layers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=circular%20polarization" title="circular polarization">circular polarization</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20position%20system" title=" global position system"> global position system</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20gain" title=" high gain"> high gain</a>, <a href="https://publications.waset.org/abstracts/search?q=triband%20antenna" title=" triband antenna"> triband antenna</a> </p> <a href="https://publications.waset.org/abstracts/91482/proximity-inset-fed-triple-band-antenna-for-global-position-system-with-high-gain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91482.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1021</span> The Impact of Inpatient New Boarding Policy on Emergency Department Overcrowding: A Discrete Event Simulation Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wheyming%20Tina%20Song">Wheyming Tina Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi-Hao%20Hong"> Chi-Hao Hong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we investigate the effect of a new boarding policy - short stay, on the overcrowding efficiency in emergency department (ED). The decision variables are no. of short stay beds for least acuity ED patients. The performance measurements used are national emergency department overcrowding score (NEDOCS) and ED retention rate (the percentage that patients stay in ED over than 48 hours in one month). Discrete event simulation (DES) is used as an analysis tool to evaluate the strategy. Also, common random number (CRN) technique is applied to enhance the simulation precision. The DES model was based on a census of 6 months' patients who were treated in the ED of the National Taiwan University Hospital Yunlin Branch. Our results show that the new short-stay boarding significantly impacts both the NEDOCS and ED retention rate when the no. of short stay beds is more than three. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emergency%20department%20%28ED%29" title="emergency department (ED)">emergency department (ED)</a>, <a href="https://publications.waset.org/abstracts/search?q=common%20random%20number%20%28CRN%29" title=" common random number (CRN)"> common random number (CRN)</a>, <a href="https://publications.waset.org/abstracts/search?q=national%20emergency%20department%20overcrowding%20score%20%28NEDOCS%29" title=" national emergency department overcrowding score (NEDOCS)"> national emergency department overcrowding score (NEDOCS)</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20event%20simulation%20%28DES%29" title=" discrete event simulation (DES)"> discrete event simulation (DES)</a> </p> <a href="https://publications.waset.org/abstracts/74116/the-impact-of-inpatient-new-boarding-policy-on-emergency-department-overcrowding-a-discrete-event-simulation-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74116.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1020</span> Iron Yoke Dipole with High Quality Field for Collector Ring FAIR</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tatyana%20Rybitskaya">Tatyana Rybitskaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandr%20Starostenko"> Alexandr Starostenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Kseniya%20Ryabchenko"> Kseniya Ryabchenko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Collector ring (CR) of FAIR project is a large acceptance storage ring and field quality plays a major role in the magnet design. The CR will use normal conducting dipole magnets. There will be 24 H-type sector magnets with a maximum field value of 1.6 T. The integrated over the length of the magnet field quality as a function of radius is ∆B.l/B.l = ±1x10⁻⁴. Below 1.6 T the value ∆B.l/B.l can be higher with a linear approximation up to ±2.5x10⁻⁴ at the field level of 0.8 T. An iron-dominated magnet with required field quality is produced with standard technology as the quality is dominated by the yoke geometry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conventional%20magnet" title="conventional magnet">conventional magnet</a>, <a href="https://publications.waset.org/abstracts/search?q=iron%20yoke%20dipole" title=" iron yoke dipole"> iron yoke dipole</a>, <a href="https://publications.waset.org/abstracts/search?q=harmonic%20terms" title=" harmonic terms"> harmonic terms</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20accelerators" title=" particle accelerators"> particle accelerators</a> </p> <a href="https://publications.waset.org/abstracts/109830/iron-yoke-dipole-with-high-quality-field-for-collector-ring-fair" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1019</span> The Tadpole-Shaped Polypeptides with Two Regulable (Alkyl Chain) Tails</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hua%20Jin">Hua Jin</a>, <a href="https://publications.waset.org/abstracts/search?q=Il%20Kim"> Il Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The biocompatible tadpole-shaped polypeptides with one cyclic polypeptides ring and two alkyl chain tails were synthesized by N-heterocyclic carbine (NHC)-mediated ring-opening polymerization (ROP) of α-amino acid N-carboxyanhydrides (NCAs). First, the NHC precursor, denoted as [NHC(H)][HCO₃], with two alkyl chains at the nitrogen was prepared by a simple anion metathesis of imidazole(in)ium chlorides with KHCO₃. Then NHC releasing from the [NHC(H)][HCO₃] directly initiated the ROP of NCA to produce the cyclic polypeptides. Finally, the tadpole-shaped polypeptides with two regulable tails were obtained. The target polypeptides were characterized by nuclear magnetic resonance spectrum (1H NMR), Fourier transform infrared spectroscopy (FT-IR), gel permeation chromatography (GPC) and matrix-assisted laser desorption ionization-time of flight mass spectra (MALDI-TOF MS). This pioneering approach simplifies the synthesis procedures of tadpole-shaped polypeptides compared to other methods, which usually requires specific intramolecular ring-closure reaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyclic%20polypeptides" title="cyclic polypeptides">cyclic polypeptides</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B1-amino%20acid%20N-carboxyanhydrides" title=" α-amino acid N-carboxyanhydrides"> α-amino acid N-carboxyanhydrides</a>, <a href="https://publications.waset.org/abstracts/search?q=N-heterocyclic%20carbene" title=" N-heterocyclic carbene"> N-heterocyclic carbene</a>, <a href="https://publications.waset.org/abstracts/search?q=ring-opening%20polymerization" title=" ring-opening polymerization"> ring-opening polymerization</a>, <a href="https://publications.waset.org/abstracts/search?q=tadpole-shaped" title=" tadpole-shaped"> tadpole-shaped</a> </p> <a href="https://publications.waset.org/abstracts/75743/the-tadpole-shaped-polypeptides-with-two-regulable-alkyl-chain-tails" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75743.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1018</span> Diagnostic and Analysis of the Performance of Freight Transportation on Urban Logistics System in the City of Sfax</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tarak%20Barhoumi">Tarak Barhoumi</a>, <a href="https://publications.waset.org/abstracts/search?q=Younes%20Boujelbene"> Younes Boujelbene</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, the problems of freight transport pose logistical constraints on the urban system in the city. The aim of this article is to gain a better understanding of the interactions between local traffic and interurban traffic on the one hand and between the location system and the transport system on the other hand. Thus, in a simulation and analysis approach cannot be restricted to the only transport system. The proposed approach is based on an assessment of the impact of freight transport, which is closely linked to the diagnostic method, based on two surveys carried out on the territory of the urban community of Sfax. These surveys are based on two main components 'establishment component' first and 'driver component' second. The results propose a reorganization of freight transport in the city of Sfax. First, an orientation of the heavy goods vehicles traffic towards the major axes of transport namely the ring roads (ring road N° 2, ring road N° 4 and ring road N° 11) and the penetrating news of the city. Then, the implementation of a retail goods delivery policy and the strengthening of logistics in the city. The creation of a logistics zone at the ring road N° 11 where various modes of freight transport meet, in order to decongest the roads of heavy goods traffic, reduce the cost of transport and thus improve the competitiveness of the economy regional. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=urban%20logistics%20systems" title="urban logistics systems">urban logistics systems</a>, <a href="https://publications.waset.org/abstracts/search?q=transport%20freight" title=" transport freight"> transport freight</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnostics" title=" diagnostics"> diagnostics</a>, <a href="https://publications.waset.org/abstracts/search?q=evaluation" title=" evaluation"> evaluation</a> </p> <a href="https://publications.waset.org/abstracts/92044/diagnostic-and-analysis-of-the-performance-of-freight-transportation-on-urban-logistics-system-in-the-city-of-sfax" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92044.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1017</span> Optical Analysis of the Plasmon Resonances of Gold Nano-Ring</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehrnaz%20Mostafavi">Mehrnaz Mostafavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current research aims to explore a method for creating nano-ring structures through chemical reduction. By employing a direct reduction process at a controlled, slow pace, and concurrently introducing specific reduction agents, the goal is to fabricate these unique nano-ring formations. The deliberate slow reduction of nanoparticles within this process helps prevent spatial hindrances caused by the reduction agents. The timing of the reduction of metal atoms, facilitated by these agents, emerges as a crucial factor influencing the creation of nano-ring structures. In investigation involves a chemical approach utilizing bovine serum albumin and human serum albumin as organic reducing agents to produce gold nano-rings. The controlled reduction of metal atoms at a slow pace and under specific pH conditions plays a pivotal role in the successful fabrication of these nanostructures. Optical spectroscopic analyses revealed distinctive plasmonic behavior in both visible and infrared spectra, owing to the collective movement of electrons along the inner and outer walls of the gold nano-rings. Importantly, these ring-shaped nanoparticles exhibit customizable plasmon resonances in the near-infrared spectrum, a characteristic absent in solid particles of similar sizes. This unique attribute makes the generated samples valuable for applications in Nanomedicine and Nanobiotechnology, leveraging the distinct optical properties of these nanostructures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nano-ring%20structure" title="nano-ring structure">nano-ring structure</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-particles" title=" nano-particles"> nano-particles</a>, <a href="https://publications.waset.org/abstracts/search?q=reductant%20agents" title=" reductant agents"> reductant agents</a>, <a href="https://publications.waset.org/abstracts/search?q=plasmon%20resonace" title=" plasmon resonace"> plasmon resonace</a> </p> <a href="https://publications.waset.org/abstracts/179194/optical-analysis-of-the-plasmon-resonances-of-gold-nano-ring" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1016</span> Audit on the Use of T-MACS Decision Aid for Patients Presenting to ED with Chest Pain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saurav%20Dhawan">Saurav Dhawan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanchit%20Bansal"> Sanchit Bansal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background T-MACS is a computer-based decision aid that ‘rules in’ and ‘rules out’ ACS using a combination of the presence or absence of six clinical features with only one biomarker measured on arrival: hs-cTnT. T-MACS had 99.3% negative predictive value and 98.7% sensitivity for ACS, ‘ruling out’ ACS in 40% of patients while ‘ruling in’ 5% at the highest risk. We aim at benchmarking the use of T-MACS which could help to conserve healthcare resources, facilitate early discharges, and ensure safe practice. Methodology Randomized retrospective data collection (n=300) was done from ED electronic records across 3 hospital sites within MFT over a period of 2 months. Data was analysed and compared by percentage for the usage of T-MACS, number of admissions/discharges, and in days for length of stay in hospital. Results MRI A&E had the maximum compliance with the use of T-MACS in the trust at 66%, with minimum admissions (44%) and an average length of stay of 1.825 days. NMG A&E had an extremely low compliance rate (8 %), with 75% admission and 3.387 days as the average length of stay. WYT A&E had no TMACS recorded, with a maximum of 79% admissions and the longest average length of stay at 5.07 days. Conclusion All three hospital sites had a RAG rating of ‘RED’ as per the compliance levels. The assurance level was calculated as ‘Very Limited’ across all sites. There was a positive correlation observed between compliance with TMACS and direct discharges from ED, thereby reducing the average length of stay for patients in the hospital. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ACS" title="ACS">ACS</a>, <a href="https://publications.waset.org/abstracts/search?q=discharges" title=" discharges"> discharges</a>, <a href="https://publications.waset.org/abstracts/search?q=ED" title=" ED"> ED</a>, <a href="https://publications.waset.org/abstracts/search?q=T-MACS" title=" T-MACS"> T-MACS</a> </p> <a href="https://publications.waset.org/abstracts/183275/audit-on-the-use-of-t-macs-decision-aid-for-patients-presenting-to-ed-with-chest-pain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183275.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">58</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stay%20ring&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stay%20ring&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stay%20ring&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stay%20ring&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stay%20ring&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stay%20ring&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stay%20ring&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stay%20ring&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stay%20ring&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stay%20ring&amp;page=34">34</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stay%20ring&amp;page=35">35</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stay%20ring&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10