CINXE.COM
Search results for: transverse relaxation time
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: transverse relaxation time</title> <meta name="description" content="Search results for: transverse relaxation time"> <meta name="keywords" content="transverse relaxation time"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="transverse relaxation time" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="transverse relaxation time"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 18606</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: transverse relaxation time</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18606</span> Microwave Dielectric Relaxation Study of Diethanolamine with Triethanolamine from 10 MHz-20 GHz</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20V.%20Patil">A. V. Patil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The microwave dielectric relaxation study of diethanolamine with triethanolamine binary mixture have been determined over the frequency range of 10 MHz to 20 GHz, at various temperatures using time domain reflectometry (TDR) method for 11 concentrations of the system. The present work reveals molecular interaction between same multi-functional groups [−OH and –NH2] of the alkanolamines (diethanolamine and triethanolamine) using different models such as Debye model, Excess model, and Kirkwood model. The dielectric parameters viz. static dielectric constant (ε0) and relaxation time (τ) have been obtained with Debye equation characterized by a single relaxation time without relaxation time distribution by the least squares fit method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diethanolamine" title="diethanolamine">diethanolamine</a>, <a href="https://publications.waset.org/abstracts/search?q=excess%20properties" title=" excess properties"> excess properties</a>, <a href="https://publications.waset.org/abstracts/search?q=kirkwood%20properties" title=" kirkwood properties"> kirkwood properties</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20domain%20reflectometry" title=" time domain reflectometry"> time domain reflectometry</a>, <a href="https://publications.waset.org/abstracts/search?q=triethanolamine" title=" triethanolamine"> triethanolamine</a> </p> <a href="https://publications.waset.org/abstracts/47082/microwave-dielectric-relaxation-study-of-diethanolamine-with-triethanolamine-from-10-mhz-20-ghz" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47082.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18605</span> Dry Relaxation Shrinkage Prediction of Bordeaux Fiber Using a Feed Forward Neural</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Baeza%20S.%20Roberto">Baeza S. Roberto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The knitted fabric suffers a deformation in its dimensions due to stretching and tension factors, transverse and longitudinal respectively, during the process in rectilinear knitting machines so it performs a dry relaxation shrinkage procedure and thermal action of prefixed to obtain stable conditions in the knitting. This paper presents a dry relaxation shrinkage prediction of Bordeaux fiber using a feed forward neural network and linear regression models. Six operational alternatives of shrinkage were predicted. A comparison of the results was performed finding neural network models with higher levels of explanation of the variability and prediction. The presence of different reposes are included. The models were obtained through a neural toolbox of Matlab and Minitab software with real data in a knitting company of Southern Guanajuato. The results allow predicting dry relaxation shrinkage of each alternative operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title="neural network">neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=dry%20relaxation" title=" dry relaxation"> dry relaxation</a>, <a href="https://publications.waset.org/abstracts/search?q=knitting" title=" knitting"> knitting</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20regression" title=" linear regression"> linear regression</a> </p> <a href="https://publications.waset.org/abstracts/30179/dry-relaxation-shrinkage-prediction-of-bordeaux-fiber-using-a-feed-forward-neural" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30179.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">585</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18604</span> Influence of Moringa Leaves Extract on the Response of Hb Molecule to Dose Rates’ Changes: II. Relaxation Time and Its Thermodynamic Driven State Functions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20M.%20M.%20Elnasharty">Mohamed M. M. Elnasharty</a>, <a href="https://publications.waset.org/abstracts/search?q=Azhar%20M.%20Elwan"> Azhar M. Elwan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Irradiation deposits energy through ionisation changing the bio-system’s net dipole, allowing the use of dielectric parameters and thermodynamic state functions related to these parameters as biophysical detectors to electrical inhomogeneity within the biosystem. This part is concerned with the effect of Moringa leaves extract, natural supplement, on the response of the biosystem to two different dose rates of irradiation. Having Hb molecule as a representative to the biosystem to be least invasive to the biosystem, dielectric measurements were used to extract the relaxation time of certain process found in the Hb spectrum within the indicated frequency window and the interrelated thermodynamic state functions were calculated from the deduced relaxation time. The results showed that relaxation time was decreased for both dose rates indicating a strong influence of Moringa on the response of biosystem and consequently Hb molecule. This influence was presented in the relaxation time and other parameters as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activation%20energy" title="activation energy">activation energy</a>, <a href="https://publications.waset.org/abstracts/search?q=DC%20conductivity" title=" DC conductivity"> DC conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20relaxation" title=" dielectric relaxation"> dielectric relaxation</a>, <a href="https://publications.waset.org/abstracts/search?q=enthalpy%20change" title=" enthalpy change"> enthalpy change</a>, <a href="https://publications.waset.org/abstracts/search?q=Moringa%20leaves%20extract" title=" Moringa leaves extract"> Moringa leaves extract</a>, <a href="https://publications.waset.org/abstracts/search?q=relaxation%20time" title=" relaxation time"> relaxation time</a> </p> <a href="https://publications.waset.org/abstracts/105917/influence-of-moringa-leaves-extract-on-the-response-of-hb-molecule-to-dose-rates-changes-ii-relaxation-time-and-its-thermodynamic-driven-state-functions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18603</span> Comparative Dielectric Properties of 1,2-Dichloroethane with n-Methylformamide and n,n-Dimethylformamide Using Time Domain Reflectometry Technique in Microwave Frequency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shagufta%20Tabassum">Shagufta Tabassum</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20P.%20Pawar"> V. P. Pawar</a>, <a href="https://publications.waset.org/abstracts/search?q=jr."> jr.</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20N.%20Shinde"> G. N. Shinde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of dielectric relaxation properties of polar liquids in the binary mixture has been carried out at 10, 15, 20 and 25 ºC temperatures for 11 different concentrations using time domain reflectometry technique. The dielectric properties of a solute-solvent mixture of polar liquids in the frequency range of 10 MHz to 30 GHz gives the information regarding formation of monomers and multimers and also an interaction between the molecules of the liquid mixture under study. The dielectric parameters have been obtained by the least squares fit method using the Debye equation characterized by a single relaxation time without relaxation time distribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=excess%20properties" title="excess properties">excess properties</a>, <a href="https://publications.waset.org/abstracts/search?q=relaxation%20time" title=" relaxation time"> relaxation time</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20dielectric%20constant" title=" static dielectric constant"> static dielectric constant</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20time%20domain%20reflectometry%20technique" title=" and time domain reflectometry technique"> and time domain reflectometry technique</a> </p> <a href="https://publications.waset.org/abstracts/110068/comparative-dielectric-properties-of-12-dichloroethane-with-n-methylformamide-and-nn-dimethylformamide-using-time-domain-reflectometry-technique-in-microwave-frequency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18602</span> Static Relaxation of Glass Fiber Reinforced Pipes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Y.%20Abdellah">Mohammed Y. Abdellah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20K.%20Hassan"> Mohamed K. Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20F.%20Mohamed"> A. F. Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Shadi%20M.%20Munshi"> Shadi M. Munshi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Hashem"> A. M. Hashem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pips made from glass fiber reinforced polymer has competitive role in petroleum industry. The need of evaluating the mechanical behavior of (GRP) pipes is essential objects. Stress relaxation illustrates how polymers relieve stress under constant strain. Static relaxation test is carried out at room temperature. The material gives poor static relaxation strength, two loading cycles have been observed for the tested specimen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GRP" title="GRP">GRP</a>, <a href="https://publications.waset.org/abstracts/search?q=sandwich%20composite%20material" title=" sandwich composite material"> sandwich composite material</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20relaxation" title=" static relaxation"> static relaxation</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20relief" title=" stress relief"> stress relief</a> </p> <a href="https://publications.waset.org/abstracts/23225/static-relaxation-of-glass-fiber-reinforced-pipes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23225.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">625</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18601</span> Influence of Annealing on the Mechanical αc-Relaxation of Isotactic-Polypropylene: A Study from the Intermediate Phase Perspective</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Baobao%20Chang">Baobao Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Konrad%20Schneider"> Konrad Schneider</a>, <a href="https://publications.waset.org/abstracts/search?q=Vogel%20Roland"> Vogel Roland</a>, <a href="https://publications.waset.org/abstracts/search?q=Gert%20Heinrich"> Gert Heinrich</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, the influence of annealing on the mechanical αc-relaxation behavior of isotactic polypropylene (iPP) was investigated. The results suggest that the mechanical αc-relaxation behavior depends strongly on the confinement force on the polymer chains in the intermediate phase and the thickness of the intermediate phase. After quenching at 10°C, abundant crystallites with a wide size distribution are formed. The polymer chains in the intermediate phase are constrained by the crystallites, giving rise to one broad αc-relaxation peak. With an annealing temperature between 60°C~105°C, imperfect lamellae melting releases part of the constraint force, which reduces the conformational ordering of the polymer chains neighboring the amorphous phase. Consequently, two separate αc-relaxation peaks could be observed which are labeled as αc1-relaxation and αc2-relaxation. αc1-relaxation and αc2-relaxation describe the relaxation behavior of polymer chains in the region close to the amorphous phase and the crystalline phase, respectively. Both relaxation peaks shift to a higher temperature as annealing temperature increases. With an annealing temperature higher than 105°C, the new crystalline phase is formed in the intermediate phase, which enhances the constraint force on the polymer chains. αc1-relaxation peak is broadened obviously and its position shifts to a higher temperature as annealing temperature increases. Moreover, αc2-relaxation is undetectable because that the polymer chains in the region between the initial crystalline phase and the newly formed crystalline phase are strongly confined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=annealing" title="annealing">annealing</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B1c-relaxation" title=" αc-relaxation"> αc-relaxation</a>, <a href="https://publications.waset.org/abstracts/search?q=isotactic-polypropylene" title=" isotactic-polypropylene"> isotactic-polypropylene</a>, <a href="https://publications.waset.org/abstracts/search?q=intermediate%20phase" title=" intermediate phase"> intermediate phase</a> </p> <a href="https://publications.waset.org/abstracts/67006/influence-of-annealing-on-the-mechanical-ac-relaxation-of-isotactic-polypropylene-a-study-from-the-intermediate-phase-perspective" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67006.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18600</span> Study of Aqueous Solutions: A Dielectric Spectroscopy Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kumbharkhane%20Ashok">Kumbharkhane Ashok</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The time domain dielectric relaxation spectroscopy (TDRS) probes the interaction of a macroscopic sample with a time-dependent electrical field. The resulting complex permittivity spectrum, characterizes amplitude (voltage) and time scale of the charge-density fluctuations within the sample. These fluctuations may arise from the reorientation of the permanent dipole moments of individual molecules or from the rotation of dipolar moieties in flexible molecules, like polymers. The time scale of these fluctuations depends on the sample and its relative relaxation mechanism. Relaxation times range from some picoseconds in low viscosity liquids to hours in glasses, Therefore the DRS technique covers an extensive dynamical process, its corresponding frequency range from 10-4 Hz to 1012 Hz. This inherent ability to monitor the cooperative motion of molecular ensemble distinguishes dielectric relaxation from methods like NMR or Raman spectroscopy which yield information on the motions of individual molecules. An experimental set up for Time Domain Reflectometry (TDR) technique from 10 MHz to 30 GHz has been developed for the aqueous solutions. This technique has been very simple and covers a wide band of frequencies in the single measurement. Dielectric Relaxation Spectroscopy is especially sensitive to intermolecular interactions. The complex permittivity spectra of aqueous solutions have been fitted using Cole-Davidson (CD) model to determine static dielectric constants and relaxation times for entire concentrations. The heterogeneous molecular interactions in aqueous solutions have been discussed through Kirkwood correlation factor and excess properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquid" title="liquid">liquid</a>, <a href="https://publications.waset.org/abstracts/search?q=aqueous%20solutions" title=" aqueous solutions"> aqueous solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20domain%20reflectometry" title=" time domain reflectometry"> time domain reflectometry</a> </p> <a href="https://publications.waset.org/abstracts/28445/study-of-aqueous-solutions-a-dielectric-spectroscopy-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28445.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18599</span> Real Time Ultrasoft Transverse Photons Self Energy at Next To-Leading Order in Hot Scalar Quantum Electrodynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karima%20Bouakaz">Karima Bouakaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Amel%20Youcefi"> Amel Youcefi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdessamad%20Abada"> Abdessamad Abada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We determine a compact analytic expression for the complete next-to-leading contribution to the retarded transverse photons self-energy in the context of hard-thermal-loop summed perturbation of massless quantum electrodynamics (QED) at high temperature to calculate the next-to-leading order dispersion relations for slow-moving transverse photons at high temperature scalar quantum electrodynamics (Scalar QED), using the real time formalism (RTF) in physical representation. We derive the analytic expressions of hard thermal loop (HTL) contributions to propagators and vertices to determine the expressions of the effective propagators and vertices in RTF that contribute to the complete next-to leading order contribution of retarded transverse photons self-energy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hard%20thermal%20loop" title="hard thermal loop">hard thermal loop</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20scalar%20QED" title=" hot scalar QED"> hot scalar QED</a>, <a href="https://publications.waset.org/abstracts/search?q=NLO%20computations" title=" NLO computations"> NLO computations</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20transverse%20photons" title=" soft transverse photons"> soft transverse photons</a> </p> <a href="https://publications.waset.org/abstracts/167410/real-time-ultrasoft-transverse-photons-self-energy-at-next-to-leading-order-in-hot-scalar-quantum-electrodynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167410.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18598</span> Structural Properties of Polar Liquids in Binary Mixture Using Microwave Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shagufta%20Tabassum">Shagufta Tabassum</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20P.%20Pawar"> V. P. Pawar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of static dielectric properties in a binary mixture of 1,2 dichloroethane (DE) and n,n dimethylformamide (DMF) polar liquids has been carried out in the frequency range of 10 MHz to 30 GHz for 11 different concentration using time domain reflectometry technique at 10ºC temperature. The dielectric relaxation study of solute-solvent mixture at microwave frequencies gives information regarding the creation of monomers and multimers as well as interaction between the molecules of the binary mixture. The least squares fit method is used to determine the values of dielectric parameters such as static dielectric constant (ε<sub>0</sub>), dielectric constant at high frequency (ε<sub>∞</sub>) and relaxation time (τ). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shagufta%20shaikhexcess%20parameters" title="shagufta shaikhexcess parameters">shagufta shaikhexcess parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=relaxation%20time" title=" relaxation time"> relaxation time</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20dielectric%20constant" title=" static dielectric constant"> static dielectric constant</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20domain%20reflectometry" title=" time domain reflectometry"> time domain reflectometry</a> </p> <a href="https://publications.waset.org/abstracts/87837/structural-properties-of-polar-liquids-in-binary-mixture-using-microwave-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87837.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18597</span> Time Domain Dielectric Relaxation Microwave Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20C.%20Kumbharkhane">A. C. Kumbharkhane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Time domain dielectric relaxation microwave spectroscopy (TDRMS) is a term used to describe a technique of observing the time dependant response of a sample after application of time dependant electromagnetic field. A TDRMS probes the interaction of a macroscopic sample with a time dependent electrical field. The resulting complex permittivity spectrum, characterizes amplitude (voltage) and time scale of the charge-density fluctuations within the sample. These fluctuations may arise from the reorientation of the permanent dipole moments of individual molecules or from the rotation of dipolar moieties in flexible molecules, like polymers. The time scale of these fluctuations depends on the sample and its relative relaxation mechanism. Relaxation times range from some picoseconds in low viscosity liquids to hours in glasses, Therefore the TDRS technique covers an extensive dynamical process. The corresponding frequencies range from 10-4 Hz to 1012 Hz. This inherent ability to monitor the cooperative motion of molecular ensemble distinguishes dielectric relaxation from methods like NMR or Raman spectroscopy, which yield information on the motions of individual molecules. Recently, we have developed and established the TDR technique in laboratory that provides information regarding dielectric permittivity in the frequency range 10 MHz to 30 GHz. The TDR method involves the generation of step pulse with rise time of 20 pico-seconds in a coaxial line system and monitoring the change in pulse shape after reflection from the sample placed at the end of the coaxial line. There is a great interest to study the dielectric relaxation behaviour in liquid systems to understand the role of hydrogen bond in liquid system. The intermolecular interaction through hydrogen bonds in molecular liquids results in peculiar dynamical properties. The dynamics of hydrogen-bonded liquids have been studied. The theoretical model to explain the experimental results will be discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microwave" title="microwave">microwave</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20domain%20reflectometry%20%28TDR%29" title=" time domain reflectometry (TDR)"> time domain reflectometry (TDR)</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20measurement" title=" dielectric measurement"> dielectric measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=relaxation%20time" title=" relaxation time"> relaxation time</a> </p> <a href="https://publications.waset.org/abstracts/40519/time-domain-dielectric-relaxation-microwave-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40519.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18596</span> Relaxation Behavior of Biorenewable Waterborne Castor Oil-Based Polyurethane-Lignin Thin Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samy%20Madbouly">Samy Madbouly</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The relaxation behavior of biorenewable castor oil-based polyurethane-lignin thin films synthesized in homogenous waterborne dispersions was investigated as a function of concentration at different temperatures and frequencies using broadband dielectric relaxation spectroscopy (BDRS). The molecular dynamics of the glass relaxation process and the local relaxation process of the PU-LS thin films were studied over a wide range of temperatures (-70 to 30 ℃) and frequencies (5 × 10−2 to 0.5 × 107 Hz) for different lignin concentration. Four relaxation processes have been observed namely; ?-, β-, γ-relaxations and ionic conductivity for pure castor oil-based PU and castor oil-lignin-based PU thin films at different temperatures and frequencies ranges. The Vogel-Fulcher-Tammann equation was found to be well described the temperature dependence of the characteristic relaxation times of the ?-relaxation process. However, on the other hand, the molecular dynamics of both β- and γ-relaxation processes were given by the Arrhenius equation. The incorporation of lignin into the castor oil-based PU significantly increased the glass transition temperature and primitivity of the thin films. In addition, the broadness, intensity, and molecular dynamics of the only observed ?-relaxation process were found to be strongly dependent on lignin concentration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=castor%20oil" title="castor oil">castor oil</a>, <a href="https://publications.waset.org/abstracts/search?q=lignin" title=" lignin"> lignin</a>, <a href="https://publications.waset.org/abstracts/search?q=polyurethane" title=" polyurethane"> polyurethane</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric" title=" dielectric"> dielectric</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersions" title=" dispersions"> dispersions</a> </p> <a href="https://publications.waset.org/abstracts/140796/relaxation-behavior-of-biorenewable-waterborne-castor-oil-based-polyurethane-lignin-thin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140796.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18595</span> Relaxation Dynamics of Quantum Emitters Resonantly Coupled to a Localized Surface Plasmon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khachatur%20V.%20Nerkararyan">Khachatur V. Nerkararyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergey%20I.%20Bozhevolnyi"> Sergey I. Bozhevolnyi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We investigate relaxation dynamics of a quantum dipole emitter (QDE), e.g., a molecule or quantum dot, located near a metal nanoparticle (MNP) exhibiting a dipolar localized surface plasmon (LSP) resonance at the frequency of the QDE radiative transition. It is shown that under the condition of the QDE-MNP characteristic relaxation time being much shorter than that of the QDE in free-space but much longer than the LSP lifetime. It is also shown that energy dissipation in the QDE-MNP system is relatively weak with the probability of the photon emission being about 0.75, a number which, rather surprisingly, does not explicitly depend on the metal absorption characteristics. The degree of entanglement measured by the concurrency takes the maximum value, while the distances between the QDEs and metal ball approximately are equal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20nanoparticle" title="metal nanoparticle">metal nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=localized%20surface%20plasmon" title=" localized surface plasmon"> localized surface plasmon</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20dipole%20emitter" title=" quantum dipole emitter"> quantum dipole emitter</a>, <a href="https://publications.waset.org/abstracts/search?q=relaxation%20dynamics" title=" relaxation dynamics"> relaxation dynamics</a> </p> <a href="https://publications.waset.org/abstracts/28289/relaxation-dynamics-of-quantum-emitters-resonantly-coupled-to-a-localized-surface-plasmon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18594</span> Study of Motion of Impurity Ions in Poly(Vinylidene Fluoride) from View Point of Microstructure of Polymer Solid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuichi%20Anada">Yuichi Anada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrical properties of polymer solid is characterized by dielectric relaxation phenomenon. Complex permittivity shows a high dependence on frequency of external stimulation in the broad frequency range from 0.1mHz to 10GHz. The complex-permittivity dispersion gives us a lot of useful information about the molecular motion of polymers and the structure of polymer aggregates. However, the large dispersion of permittivity at low frequencies due to DC conduction of impurity ions often covers the dielectric relaxation in polymer solid. In experimental investigation, many researchers have tried to remove the DC conduction experimentally or analytically for a long time. On the other hand, our laboratory chose another way of research for this problem from the point of view of a reversal in thinking. The way of our research is to use the impurity ions in the DC conduction as a probe to detect the motion of polymer molecules and to investigate the structure of polymer aggregates. In addition to the complex permittivity, the electric modulus and the conductivity relaxation time are strong tools for investigating the ionic motion in DC conduction. In a non-crystalline part of melt-crystallized polymers, free spaces with inhomogeneous size exist between crystallites. As the impurity ions exist in the non-crystalline part and move through these inhomogeneous free spaces, the motion of ions reflects the microstructure of non-crystalline part. The ionic motion of impurity ions in poly(vinylidene fluoride) (PVDF) is investigated in this study. Frequency dependence of the loss permittivity of PVDF shows a characteristic of the direct current (DC) conduction below 1 kHz of frequency at 435 K. The electric modulus-frequency curve shows a characteristic of the dispersion with the single conductivity relaxation time. Namely, it is the Debye-type dispersion. The conductivity relaxation time analyzed from this curve is 0.00003 s at 435 K. From the plot of conductivity relaxation time of PVDF together with the other polymers against permittivity, it was found that there are two group of polymers; one of the group is characterized by small conductivity relaxation time and large permittivity, and another is characterized by large conductivity relaxation time and small permittivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conductivity%20relaxation%20time" title="conductivity relaxation time">conductivity relaxation time</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20modulus" title=" electric modulus"> electric modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20motion" title=" ionic motion"> ionic motion</a>, <a href="https://publications.waset.org/abstracts/search?q=permittivity" title=" permittivity"> permittivity</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28vinylidene%20fluoride%29" title=" poly(vinylidene fluoride)"> poly(vinylidene fluoride)</a>, <a href="https://publications.waset.org/abstracts/search?q=DC%20conduction" title=" DC conduction"> DC conduction</a> </p> <a href="https://publications.waset.org/abstracts/87232/study-of-motion-of-impurity-ions-in-polyvinylidene-fluoride-from-view-point-of-microstructure-of-polymer-solid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87232.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18593</span> The Use of Relaxation Training in Special Schools for Children With Learning Disabilities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Birgit%20Heike%20Spohn">Birgit Heike Spohn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several authors (e.g., Krowatschek & Reid, 2011; Winkler, 1998) pronounce themselves in favor of the use of relaxation techniques in school because those techniques could help children to cope with stress, improve power of concentration, learning, and social behavior as well as class climate. Children with learning disabilities might profit from those techniques in a special way because they contribute to improved learning behavior. There is no study addressing the frequency of the use of relaxation techniques in special schools for children with learning disabilities in German speaking countries. The paper presents a study in which all teachers of special schools for children with learning disabilities in a district of South Germany (n = 625) were questioned about the use of relaxation techniques in school using a standardized questionnaire. Variables addressed were the use of these techniques in the classroom, aspects of their use (kind of relaxation technique, frequency, and regularity of their use), and potential influencing factors. The results are discussed, and implications for further research are drawn. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=special%20education" title="special education">special education</a>, <a href="https://publications.waset.org/abstracts/search?q=learning%20disabilities" title=" learning disabilities"> learning disabilities</a>, <a href="https://publications.waset.org/abstracts/search?q=relaxation%20training" title=" relaxation training"> relaxation training</a>, <a href="https://publications.waset.org/abstracts/search?q=concentration" title=" concentration"> concentration</a> </p> <a href="https://publications.waset.org/abstracts/160489/the-use-of-relaxation-training-in-special-schools-for-children-with-learning-disabilities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160489.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18592</span> MRI R2* of Liver in an Animal Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chiung-Yun%20Chang">Chiung-Yun Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Po-Chou%20Chen"> Po-Chou Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiun-Shiang%20Tzeng"> Jiun-Shiang Tzeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Ka-Wai%20Mac"> Ka-Wai Mac</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Chi%20Hsiao"> Chia-Chi Hsiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Jo-Chi%20Jao"> Jo-Chi Jao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to measure R2* relaxation rates in the liver of New Zealand White (NZW) rabbits. R2* relaxation rate has been widely used in various hepatic diseases for iron overload by quantifying iron contents in liver. R2* relaxation rate is defined as the reciprocal of T2* relaxation time and mainly depends on the composition of tissue. Different tissues would have different R2* relaxation rates. The signal intensity decay in Magnetic resonance imaging (MRI) may be characterized by R2* relaxation rates. In this study, a 1.5T GE Signa HDxt whole body MR scanner equipped with an 8-channel high resolution knee coil was used to observe R2* values in NZW rabbit’s liver and muscle. Eight healthy NZW rabbits weighted 2 ~ 2.5 kg were recruited. After anesthesia using Zoletil 50 and Rompun 2% mixture, the abdomen of rabbit was landmarked at the center of knee coil to perform 3-plane localizer scan using fast spoiled gradient echo (FSPGR) pulse sequence. Afterward, multi-planar fast gradient echo (MFGR) scans were performed with 8 various echo times (TEs) (2/4/6/8/10/12/14/16 ms) to acquire images for R2* calculations. Regions of interest (ROIs) at liver and muscle were measured using Advantage workstation. Finally, the R2* was obtained by a linear regression of ln(SI) on TE. The results showed that the longer the echo time, the smaller the signal intensity. The R2* values of liver and muscle were 44.8 10.9 s-1 and 37.4 9.5 s-1, respectively. It implies that the iron concentration of liver is higher than that of muscle. In conclusion, R2* is correlated with iron contents in tissue. The correlations between R2* and iron content in NZW rabbit might be valuable for further exploration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liver" title="liver">liver</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20resonance%20imaging" title=" magnetic resonance imaging"> magnetic resonance imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=muscle" title=" muscle"> muscle</a>, <a href="https://publications.waset.org/abstracts/search?q=R2%2A%20relaxation%20rate" title=" R2* relaxation rate"> R2* relaxation rate</a> </p> <a href="https://publications.waset.org/abstracts/30632/mri-r2-of-liver-in-an-animal-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18591</span> Landscape Factors Eliciting the Sense of Relaxation in Urban Green Space</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaowen%20Grace%20Chang">Kaowen Grace Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Urban green spaces play an important role in promoting wellbeing through the sense of relaxation for urban residents. Among many designing factors, what the principal ones that could effectively influence people’s sense of relaxation? And, what are the relationship between the sense of relaxation and those factors? Regarding those questions, there is still little evidence for sufficient support. Therefore, the purpose of this study, based on individual responses to environmental information, is to investigate the landscape factors that relate to well-being through the sense of relaxation in mixed-use urban environments. We conducted the experimental design and model construction utilizing choice-based conjoint analysis to test the factors of plant arrangement pattern, plant trimming condition, the distance to visible automobile, the number of landmark objects, and the depth of view. Through the operation of balanced fractional orthogonal design, the goal is to know the relationship between the sense of relaxation and different designs. In a result, the three factors of plant trimming condition, the distance to visible automobile, and the depth of view shed are significantly effective to the sense of relaxation. The stronger magnitude of maintenance and trimming, the further distance to visible automobiles, and deeper view shed that allow the users to see further scenes could significantly promote green space users’ sense of relaxation in urban green spaces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=urban%20green%20space" title="urban green space">urban green space</a>, <a href="https://publications.waset.org/abstracts/search?q=landscape%20planning%20and%20design" title=" landscape planning and design"> landscape planning and design</a>, <a href="https://publications.waset.org/abstracts/search?q=sense%20of%20relaxation" title=" sense of relaxation"> sense of relaxation</a>, <a href="https://publications.waset.org/abstracts/search?q=choice%20model" title=" choice model"> choice model</a> </p> <a href="https://publications.waset.org/abstracts/105354/landscape-factors-eliciting-the-sense-of-relaxation-in-urban-green-space" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18590</span> An Optimization Model for Maximum Clique Problem Based on Semidefinite Programming</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Derkaoui%20Orkia">Derkaoui Orkia</a>, <a href="https://publications.waset.org/abstracts/search?q=Lehireche%20Ahmed"> Lehireche Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The topic of this article is to exploring the potentialities of a powerful optimization technique, namely Semidefinite Programming, for solving NP-hard problems. This approach provides tight relaxations of combinatorial and quadratic problems. In this work, we solve the maximum clique problem using this relaxation. The clique problem is the computational problem of finding cliques in a graph. It is widely acknowledged for its many applications in real-world problems. The numerical results show that it is possible to find a maximum clique in polynomial time, using an algorithm based on semidefinite programming. We implement a primal-dual interior points algorithm to solve this problem based on semidefinite programming. The semidefinite relaxation of this problem can be solved in polynomial time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=semidefinite%20programming" title="semidefinite programming">semidefinite programming</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20clique%20problem" title=" maximum clique problem"> maximum clique problem</a>, <a href="https://publications.waset.org/abstracts/search?q=primal-dual%20interior%20point%20method" title=" primal-dual interior point method"> primal-dual interior point method</a>, <a href="https://publications.waset.org/abstracts/search?q=relaxation" title=" relaxation"> relaxation</a> </p> <a href="https://publications.waset.org/abstracts/73224/an-optimization-model-for-maximum-clique-problem-based-on-semidefinite-programming" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73224.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18589</span> Photophysics of a Coumarin Molecule in Graphene Oxide Containing Reverse Micelle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aloke%20Bapli">Aloke Bapli</a>, <a href="https://publications.waset.org/abstracts/search?q=Debabrata%20Seth"> Debabrata Seth</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graphene oxide (GO) is the two-dimensional (2D) nanoscale allotrope of carbon having several physiochemical properties such as high mechanical strength, high surface area, strong thermal and electrical conductivity makes it an important candidate in various modern applications such as drug delivery, supercapacitors, sensors etc. GO has been used in the photothermal treatment of cancers and Alzheimer’s disease etc. The main idea to choose GO in our work is that it is a surface active molecule, it has a large number of hydrophilic functional groups such as carboxylic acid, hydroxyl, epoxide on its surface and in basal plane. So it can easily interact with organic fluorophores through hydrogen bonding or any other kind of interaction and easily modulate the photophysics of the probe molecules. We have used different spectroscopic techniques for our work. The Ground-state absorption spectra and steady-state fluorescence emission spectra were measured by using UV-Vis spectrophotometer from Shimadzu (model-UV-2550) and spectrofluorometer from Horiba Jobin Yvon (model-Fluoromax 4P) respectively. All the fluorescence lifetime and anisotropy decays were collected by using time-correlated single photon counting (TCSPC) setup from Edinburgh instrument (model: LifeSpec-II, U.K.). Herein, we described the photophysics of a hydrophilic molecule 7-(n,n׀-diethylamino) coumarin-3-carboxylic acid (7-DCCA) in the reverse micelles containing GO. It was observed that photophysics of dye is modulated in the presence of GO compared to photophysics of dye in the absence of GO inside the reverse micelles. Here we have reported the solvent relaxation and rotational relaxation time in GO containing reverse micelle and compare our work with normal reverse micelle system by using 7-DCCA molecule. Normal reverse micelle means reverse micelle in the absence of GO. The absorption maxima of 7-DCCA were blue shifted and emission maxima were red shifted in GO containing reverse micelle compared to normal reverse micelle. The rotational relaxation time in GO containing reverse micelle is always faster compare to normal reverse micelle. Solvent relaxation time, at lower w₀ values, is always slower in GO containing reverse micelle compare to normal reverse micelle and at higher w₀ solvent relaxation time of GO containing reverse micelle becomes almost equal to normal reverse micelle. Here emission maximum of 7-DCCA exhibit bathochromic shift in GO containing reverse micelles compared to that in normal reverse micelles because in presence of GO the polarity of the system increases, as polarity increases the emission maxima was red shifted an average decay time of GO containing reverse micelle is less than that of the normal reverse micelle. In GO containing reverse micelle quantum yield, decay time, rotational relaxation time, solvent relaxation time at λₑₓ=375 nm is always higher than λₑₓ=405 nm, shows the excitation wavelength dependent photophysics of 7-DCCA in GO containing reverse micelles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photophysics" title="photophysics">photophysics</a>, <a href="https://publications.waset.org/abstracts/search?q=reverse%20micelle" title=" reverse micelle"> reverse micelle</a>, <a href="https://publications.waset.org/abstracts/search?q=rotational%20relaxation" title=" rotational relaxation"> rotational relaxation</a>, <a href="https://publications.waset.org/abstracts/search?q=solvent%20relaxation" title=" solvent relaxation"> solvent relaxation</a> </p> <a href="https://publications.waset.org/abstracts/98137/photophysics-of-a-coumarin-molecule-in-graphene-oxide-containing-reverse-micelle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98137.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18588</span> Implementation of a Lattice Boltzmann Method for Pulsatile Flow with Moment Based Boundary Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zainab%20A.%20Bu%20Sinnah">Zainab A. Bu Sinnah</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20I.%20Graham"> David I. Graham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Lattice Boltzmann Method has been developed and used to simulate both steady and unsteady fluid flow problems such as turbulent flows, multiphase flow and flows in the vascular system. As an example, the study of blood flow and its properties can give a greater understanding of atherosclerosis and the flow parameters which influence this phenomenon. The blood flow in the vascular system is driven by a pulsating pressure gradient which is produced by the heart. As a very simple model of this, we simulate plane channel flow under periodic forcing. This pulsatile flow is essentially the standard Poiseuille flow except that the flow is driven by the periodic forcing term. Moment boundary conditions, where various moments of the particle distribution function are specified, are applied at solid walls. We used a second-order single relaxation time model and investigated grid convergence using two distinct approaches. In the first approach, we fixed both Reynolds and Womersley numbers and varied relaxation time with grid size. In the second approach, we fixed the Womersley number and relaxation time. The expected second-order convergence was obtained for the second approach. For the first approach, however, the numerical method converged, but not necessarily to the appropriate analytical result. An explanation is given for these observations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lattice%20Boltzmann%20method" title="Lattice Boltzmann method">Lattice Boltzmann method</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20relaxation%20time" title=" single relaxation time"> single relaxation time</a>, <a href="https://publications.waset.org/abstracts/search?q=pulsatile%20flow" title=" pulsatile flow"> pulsatile flow</a>, <a href="https://publications.waset.org/abstracts/search?q=moment%20based%20boundary%20condition" title=" moment based boundary condition"> moment based boundary condition</a> </p> <a href="https://publications.waset.org/abstracts/81002/implementation-of-a-lattice-boltzmann-method-for-pulsatile-flow-with-moment-based-boundary-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81002.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18587</span> Enhancement Effect of Superparamagnetic Iron Oxide Nanoparticle-Based MRI Contrast Agent at Different Concentrations and Magnetic Field Strengths</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bimali%20Sanjeevani%20Weerakoon">Bimali Sanjeevani Weerakoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Toshiaki%20Osuga"> Toshiaki Osuga</a>, <a href="https://publications.waset.org/abstracts/search?q=Takehisa%20Konishi"> Takehisa Konishi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnetic Resonance Imaging Contrast Agents (MRI-CM) are significant in the clinical and biological imaging as they have the ability to alter the normal tissue contrast, thereby affecting the signal intensity to enhance the visibility and detectability of images. Superparamagnetic Iron Oxide (SPIO) nanoparticles, coated with dextran or carboxydextran are currently available for clinical MR imaging of the liver. Most SPIO contrast agents are T2 shortening agents and Resovist (Ferucarbotran) is one of a clinically tested, organ-specific, SPIO agent which has a low molecular carboxydextran coating. The enhancement effect of Resovist depends on its relaxivity which in turn depends on factors like magnetic field strength, concentrations, nanoparticle properties, pH and temperature. Therefore, this study was conducted to investigate the impact of field strength and different contrast concentrations on enhancement effects of Resovist. The study explored the MRI signal intensity of Resovist in the physiological range of plasma from T2-weighted spin echo sequence at three magnetic field strengths: 0.47 T (r1=15, r2=101), 1.5 T (r1=7.4, r2=95), and 3 T (r1=3.3, r2=160) and the range of contrast concentrations by a mathematical simulation. Relaxivities of r1 and r2 (L mmol-1 Sec-1) were obtained from a previous study and the selected concentrations were 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, and 3.0 mmol/L. T2-weighted images were simulated using TR/TE ratio as 2000 ms /100 ms. According to the reference literature, with increasing magnetic field strengths, the r1 relaxivity tends to decrease while the r2 did not show any systematic relationship with the selected field strengths. In parallel, this study results revealed that the signal intensity of Resovist at lower concentrations tends to increase than the higher concentrations. The highest reported signal intensity was observed in the low field strength of 0.47 T. The maximum signal intensities for 0.47 T, 1.5 T and 3 T were found at the concentration levels of 0.05, 0.06 and 0.05 mmol/L, respectively. Furthermore, it was revealed that, the concentrations higher than the above, the signal intensity was decreased exponentially. An inverse relationship can be found between the field strength and T2 relaxation time, whereas, the field strength was increased, T2 relaxation time was decreased accordingly. However, resulted T2 relaxation time was not significantly different between 0.47 T and 1.5 T in this study. Moreover, a linear correlation of transverse relaxation rates (1/T2, s–1) with the concentrations of Resovist can be observed. According to these results, it can conclude that the concentration of SPIO nanoparticle contrast agents and the field strengths of MRI are two important parameters which can affect the signal intensity of T2-weighted SE sequence. Therefore, when MR imaging those two parameters should be considered prudently. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Concentration" title="Concentration">Concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=resovist" title=" resovist"> resovist</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20strength" title=" field strength"> field strength</a>, <a href="https://publications.waset.org/abstracts/search?q=relaxivity" title=" relaxivity"> relaxivity</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20intensity" title=" signal intensity"> signal intensity</a> </p> <a href="https://publications.waset.org/abstracts/37638/enhancement-effect-of-superparamagnetic-iron-oxide-nanoparticle-based-mri-contrast-agent-at-different-concentrations-and-magnetic-field-strengths" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37638.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18586</span> Raman and Dielectric Relaxation Investigations of Polyester-CoFe₂O₄ Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alhulw%20H.%20Alshammari">Alhulw H. Alshammari</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Iraqi"> Ahmed Iraqi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Saad"> S. A. Saad</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20A.%20Taha"> T. A. Taha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we present for the first time the study of Raman spectra and dielectric relaxation of polyester polymer-CoFe₂O₄ (5.0, 10.0, 15.0, and 20.0 wt%) nanocomposites. Raman spectroscopy was applied as a sensitive structural identification technique to characterize the polyester-CoFe₂O₄ nanocomposites. The images of AFM confirmed the uniform distribution of CoFe₂O₄ inside the polymer matrix. Dielectric relaxation was employed as an important analytical technique to obtain information about the ability of the polymer nanocomposites to store and filter electrical signals. The dielectric relaxation analyses were carried out on the polyester-CoFe₂O₄ nanocomposites at different temperatures. An increase in dielectric constant ε₁ was observed for all samples with increasing temperatures due to the alignment of the electric dipoles with the applied electric field. In contrast, ε₁ decreased with increasing frequency. This is attributed to the difficulty for the electric dipoles to follow the electric field. The α relaxation peak that appeared at a high frequency shifted to higher frequencies when increasing the temperature. The activation energies for Maxwell-Wagner Sillar (MWS) changed from 0.84 to 1.01 eV, while the activation energies for α relaxations were 0.54 – 0.94 eV. The conduction mechanism for the polyester- CoFe₂O₄ nanocomposites followed the correlated barrier hopping (CBH) model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AC%20conductivity" title="AC conductivity">AC conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=activation%20energy" title=" activation energy"> activation energy</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20permittivity" title=" dielectric permittivity"> dielectric permittivity</a>, <a href="https://publications.waset.org/abstracts/search?q=polyester%20nanocomposites" title=" polyester nanocomposites"> polyester nanocomposites</a> </p> <a href="https://publications.waset.org/abstracts/166708/raman-and-dielectric-relaxation-investigations-of-polyester-cofe2o4-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166708.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18585</span> An Aptasensor Based on Magnetic Relaxation Switch and Controlled Magnetic Separation for the Sensitive Detection of Pseudomonas aeruginosa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fei%20Jia">Fei Jia</a>, <a href="https://publications.waset.org/abstracts/search?q=Xingjian%20Bai"> Xingjian Bai</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaowei%20Zhang"> Xiaowei Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenjie%20Yan"> Wenjie Yan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruitong%20Dai"> Ruitong Dai</a>, <a href="https://publications.waset.org/abstracts/search?q=Xingmin%20Li"> Xingmin Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Jozef%20Kokini"> Jozef Kokini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pseudomonas aeruginosa is a Gram-negative, aerobic, opportunistic human pathogen that is present in the soil, water, and food. This microbe has been recognized as a representative food-borne spoilage bacterium that can lead to many types of infections. Considering the casualties and property loss caused by P. aeruginosa, the development of a rapid and reliable technique for the detection of P. aeruginosa is crucial. The whole-cell aptasensor, an emerging biosensor using aptamer as a capture probe to bind to the whole cell, for food-borne pathogens detection has attracted much attention due to its convenience and high sensitivity. Here, a low-field magnetic resonance imaging (LF-MRI) aptasensor for the rapid detection of P. aeruginosa was developed. The basic detection principle of the magnetic relaxation switch (MRSw) nanosensor lies on the ‘T₂-shortening’ effect of magnetic nanoparticles in NMR measurements. Briefly speaking, the transverse relaxation time (T₂) of neighboring water protons get shortened when magnetic nanoparticles are clustered due to the cross-linking upon the recognition and binding of biological targets, or simply when the concentration of the magnetic nanoparticles increased. Such shortening is related to both the state change (aggregation or dissociation) and the concentration change of magnetic nanoparticles and can be detected using NMR relaxometry or MRI scanners. In this work, two different sizes of magnetic nanoparticles, which are 10 nm (MN₁₀) and 400 nm (MN₄₀₀) in diameter, were first immobilized with anti- P. aeruginosa aptamer through 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)/N-hydroxysuccinimide (NHS) chemistry separately, to capture and enrich the P. aeruginosa cells. When incubating with the target, a ‘sandwich’ (MN₁₀-bacteria-MN₄₀₀) complex are formed driven by the bonding of MN400 with P. aeruginosa through aptamer recognition, as well as the conjugate aggregation of MN₁₀ on the surface of P. aeruginosa. Due to the different magnetic performance of the MN₁₀ and MN₄₀₀ in the magnetic field caused by their different saturation magnetization, the MN₁₀-bacteria-MN₄₀₀ complex, as well as the unreacted MN₄₀₀ in the solution, can be quickly removed by magnetic separation, and as a result, only unreacted MN₁₀ remain in the solution. The remaining MN₁₀, which are superparamagnetic and stable in low field magnetic field, work as a signal readout for T₂ measurement. Under the optimum condition, the LF-MRI platform provides both image analysis and quantitative detection of P. aeruginosa, with the detection limit as low as 100 cfu/mL. The feasibility and specificity of the aptasensor are demonstrated in detecting real food samples and validated by using plate counting methods. Only two steps and less than 2 hours needed for the detection procedure, this robust aptasensor can detect P. aeruginosa with a wide linear range from 3.1 ×10² cfu/mL to 3.1 ×10⁷ cfu/mL, which is superior to conventional plate counting method and other molecular biology testing assay. Moreover, the aptasensor has a potential to detect other bacteria or toxins by changing suitable aptamers. Considering the excellent accuracy, feasibility, and practicality, the whole-cell aptasensor provides a promising platform for a quick, direct and accurate determination of food-borne pathogens at cell-level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20resonance%20imaging" title="magnetic resonance imaging">magnetic resonance imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=meat%20spoilage" title=" meat spoilage"> meat spoilage</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20aeruginosa" title=" P. aeruginosa"> P. aeruginosa</a>, <a href="https://publications.waset.org/abstracts/search?q=transverse%20relaxation%20time" title=" transverse relaxation time"> transverse relaxation time</a> </p> <a href="https://publications.waset.org/abstracts/99014/an-aptasensor-based-on-magnetic-relaxation-switch-and-controlled-magnetic-separation-for-the-sensitive-detection-of-pseudomonas-aeruginosa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18584</span> Industrial Rock Characterization using Nuclear Magnetic Resonance (NMR): A Case Study of Ewekoro Quarry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olawale%20Babatunde%20Olatinsu">Olawale Babatunde Olatinsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Deborah%20Oluwaseun%20Olorode"> Deborah Oluwaseun Olorode</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Industrial rocks were collected from a quarry site at Ewekoro in south-western Nigeria and analysed using Nuclear Magnetic Resonance (NMR) technique. NMR measurement was conducted on the samples in partial water-saturated and full brine-saturated conditions. Raw NMR data were analysed with the aid of T2 curves and T2 spectra generated by inversion of raw NMR data using conventional regularized least-squares inversion routine. Results show that NMR transverse relaxation (T2) signatures fairly adequately distinguish between the rock types. Similar T2 curve trend and rates at partial saturation suggests that the relaxation is mainly due to adsorption of water on micropores of similar sizes while T2 curves at full saturation depict relaxation decay rate as: 1/T2(shale)>1/ T2(glauconite)>1/ T2(limestone) and 1/T2(sandstone). NMR T2 distributions at full brine-saturation show: unimodal distribution in shale; bimodal distribution in sandstone and glauconite; and trimodal distribution in limestone. Full saturation T2 distributions revealed the presence of well-developed and more abundant micropores in all the samples with T2 in the range, 402-504 μs. Mesopores with amplitudes much lower than those of micropores are present in limestone, sandstone and glauconite with T2 range: 8.45-26.10 ms, 6.02-10.55 ms, and 9.45-13.26 ms respectively. Very low amplitude macropores of T2 values, 90.26-312.16 ms, are only recognizable in limestone samples. Samples with multiple peaks showed well-connected pore systems with sandstone having the highest degree of connectivity. The difference in T2 curves and distributions for the rocks at full saturation can be utilised as a potent diagnostic tool for discrimination of these rock types found at Ewekoro. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ewekoro" title="Ewekoro">Ewekoro</a>, <a href="https://publications.waset.org/abstracts/search?q=NMR%20techniques" title=" NMR techniques"> NMR techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20rocks" title=" industrial rocks"> industrial rocks</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=relaxation" title=" relaxation"> relaxation</a> </p> <a href="https://publications.waset.org/abstracts/2789/industrial-rock-characterization-using-nuclear-magnetic-resonance-nmr-a-case-study-of-ewekoro-quarry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2789.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18583</span> Research on Axial End Flux Leakage and Detent Force of Transverse Flux PM Linear Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20R.%20Li">W. R. Li</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20K.%20Xia"> J. K. Xia</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Q.%20Peng"> R. Q. Peng</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Y.%20Guo"> Z. Y. Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Jiang"> L. Jiang </a> </p> <p class="card-text"><strong>Abstract:</strong></p> According to 3D magnetic circuit of the transverse flux PM linear machine, distribution law is presented, and analytical expression of axial end flux leakage is derived using numerical method. Maxwell stress tensor is used to solve detent force of mover. A 3D finite element model of the transverse flux PM machine is built to analyze the flux distribution and detent force. Experimental results of the prototype verified the validity of axial end flux leakage and detent force theoretical derivation, the research on axial end flux leakage and detent force provides a valuable reference to other types of linear machine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axial%20end%20flux%20leakage" title="axial end flux leakage">axial end flux leakage</a>, <a href="https://publications.waset.org/abstracts/search?q=detent%20force" title=" detent force"> detent force</a>, <a href="https://publications.waset.org/abstracts/search?q=flux%20distribution" title=" flux distribution"> flux distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=transverse%20flux%20PM%20linear%20machine" title=" transverse flux PM linear machine"> transverse flux PM linear machine</a> </p> <a href="https://publications.waset.org/abstracts/46785/research-on-axial-end-flux-leakage-and-detent-force-of-transverse-flux-pm-linear-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46785.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18582</span> Evaluation of Longitudinal Relaxation Time (T1) of Bone Marrow in Lumbar Vertebrae of Leukaemia Patients Undergoing Magnetic Resonance Imaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20G.%20R.%20S.%20Perera">M. G. R. S. Perera</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20S.%20Weerakoon"> B. S. Weerakoon</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20P.%20G.%20Sherminie"> L. P. G. Sherminie</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20L.%20Jayatilake"> M. L. Jayatilake</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20D.%20Jayasinghe"> R. D. Jayasinghe</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Huang"> W. Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to measure and evaluate the Longitudinal Relaxation Times (T1) in bone marrow of an Acute Myeloid Leukaemia (AML) patient in order to explore the potential for a prognostic biomarker using Magnetic Resonance Imaging (MRI) which will be a non-invasive prognostic approach to AML. MR image data were collected in the DICOM format and MATLAB Simulink software was used in the image processing and data analysis. For quantitative MRI data analysis, Region of Interests (ROI) on multiple image slices were drawn encompassing vertebral bodies of L3, L4, and L5. T1 was evaluated using the T1 maps obtained. The estimated bone marrow mean value of T1 was 790.1 (ms) at 3T. However, the reported T1 value of healthy subjects is significantly (946.0 ms) higher than the present finding. This suggests that the T1 for bone marrow can be considered as a potential prognostic biomarker for AML patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acute%20myeloid%20leukaemia" title="acute myeloid leukaemia">acute myeloid leukaemia</a>, <a href="https://publications.waset.org/abstracts/search?q=longitudinal%20relaxation%20time" title=" longitudinal relaxation time"> longitudinal relaxation time</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20resonance%20imaging" title=" magnetic resonance imaging"> magnetic resonance imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=prognostic%20biomarker." title=" prognostic biomarker."> prognostic biomarker.</a> </p> <a href="https://publications.waset.org/abstracts/12985/evaluation-of-longitudinal-relaxation-time-t1-of-bone-marrow-in-lumbar-vertebrae-of-leukaemia-patients-undergoing-magnetic-resonance-imaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12985.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">531</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18581</span> Probing Multiple Relaxation Process in Zr-Cu Base Alloy Using Mechanical Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20P.%20Srivastava">A. P. Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Srivastava"> D. Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20J.%20Browne"> D. J. Browne</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Relaxation dynamics of Zr44Cu40Al8Ag8 bulk metallic glass (BMG) has been probed using dynamic mechanical analyzer. The BMG sample was casted in the form of a plate of dimension 55 mm x 40 mm x 3 mm using tilt casting technique. X-ray diffraction and transmission electron microscope have been used for the microstructural characterization of as-cast BMG. For the mechanical spectroscopy study, samples in the form of a bar of size 55 mm X 2 mm X 3 mm were machined from the BMG plate. The mechanical spectroscopy was performed on dynamic mechanical analyzer (DMA) by 50 mm 3-point bending method in a nitrogen atmosphere. It was observed that two glass transition process were competing in supercooled liquid region around temperature 390°C and 430°C. The supercooled liquid state was completely characterized using DMA and differential scanning calorimeter (DSC). In addition to the main α-relaxation process, presence of β relaxation process around temperature 360°C; below the glass transition temperature was also observed. The β relaxation process could be described by Arrhenius law with the activation energy of 160 kJ/mole. The volume of the flow unit associated with this relaxation process has been estimated. The results from DMA study has been used to characterize the shear transformation zone in terms of activation volume and size. High fragility parameter value of 34 and higher activation volume indicates that this alloy could show good plasticity in supercooled liquid region. The possible mechanism for the relaxation processes has been discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DMA" title="DMA">DMA</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20transition" title=" glass transition"> glass transition</a>, <a href="https://publications.waset.org/abstracts/search?q=metallic%20glass" title=" metallic glass"> metallic glass</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoplastic%20forming" title=" thermoplastic forming"> thermoplastic forming</a> </p> <a href="https://publications.waset.org/abstracts/67294/probing-multiple-relaxation-process-in-zr-cu-base-alloy-using-mechanical-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67294.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18580</span> Transverse Testicular Ectopia: A Case Report with Review of Literature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rida%20Ahmad">Rida Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Areej%20S.%20Habib"> Areej S. Habib</a>, <a href="https://publications.waset.org/abstracts/search?q=Sohail%20A.%20Dogar"> Sohail A. Dogar</a>, <a href="https://publications.waset.org/abstracts/search?q=Saqib%20H.%20Qazi"> Saqib H. Qazi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transverse testicular ectopia is a rare congenital disorder involving mal descent and mal-positioning of the testes, reported in the medical literature about 300 times. Many theories attempt to explain the failure of the testes to migrate to their correct location. While the age at presentation can vary; most cases present in early adolescents or late adulthood. It is often an incidental discovery made during an operative intervention, most commonly during hernia exploration. It can be isolated or present with a plethora of anomalies. We present the case of a 2-year-old male with transverse testicular ectopia who presented with vague abdominal pain. He was managed successfully with the Modified Ombredanne procedure and good outcome 6 months after the procedure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cryptorchidism" title="cryptorchidism">cryptorchidism</a>, <a href="https://publications.waset.org/abstracts/search?q=persistent%20Mullerian%20duct%20syndrome" title=" persistent Mullerian duct syndrome"> persistent Mullerian duct syndrome</a>, <a href="https://publications.waset.org/abstracts/search?q=transverse%20testicular%20ectopia" title=" transverse testicular ectopia"> transverse testicular ectopia</a>, <a href="https://publications.waset.org/abstracts/search?q=testicular%20mal-descent" title=" testicular mal-descent"> testicular mal-descent</a> </p> <a href="https://publications.waset.org/abstracts/141125/transverse-testicular-ectopia-a-case-report-with-review-of-literature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18579</span> Numerical Investigation of the Transverse Instability in Radiation Pressure Acceleration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Q.%20Shao">F. Q. Shao</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Q.%20Wang"> W. Q. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Yin"> Y. Yin</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20P.%20Yu"> T. P. Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20B.%20Zou"> D. B. Zou</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Ouyang"> J. M. Ouyang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Radiation Pressure Acceleration (RPA) mechanism is very promising in laser-driven ion acceleration because of high laser-ion energy conversion efficiency. Although some experiments have shown the characteristics of RPA, the energy of ions is quite limited. The ion energy obtained in experiments is only several MeV/u, which is much lower than theoretical prediction. One possible limiting factor is the transverse instability incited in the RPA process. The transverse instability is basically considered as the Rayleigh-Taylor (RT) instability, which is a kind of interfacial instability and occurs when a light fluid pushes against a heavy fluid. Multi-dimensional particle-in-cell (PIC) simulations show that the onset of transverse instability will destroy the acceleration process and broaden the energy spectrum of fast ions during the RPA dominant ion acceleration processes. The evidence of the RT instability driven by radiation pressure has been observed in a laser-foil interaction experiment in a typical RPA regime, and the dominant scale of RT instability is close to the laser wavelength. The development of transverse instability in the radiation-pressure-acceleration dominant laser-foil interaction is numerically examined by two-dimensional particle-in-cell simulations. When a laser interacts with a foil with modulated surface, the internal instability is quickly incited and it develops. The linear growth and saturation of the transverse instability are observed, and the growth rate is numerically diagnosed. In order to optimize interaction parameters, a method of information entropy is put forward to describe the chaotic degree of the transverse instability. With moderate modulation, the transverse instability shows a low chaotic degree and a quasi-monoenergetic proton beam is produced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=information%20entropy" title="information entropy">information entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20pressure%20acceleration" title=" radiation pressure acceleration"> radiation pressure acceleration</a>, <a href="https://publications.waset.org/abstracts/search?q=Rayleigh-Taylor%20instability" title=" Rayleigh-Taylor instability"> Rayleigh-Taylor instability</a>, <a href="https://publications.waset.org/abstracts/search?q=transverse%20instability" title=" transverse instability"> transverse instability</a> </p> <a href="https://publications.waset.org/abstracts/46130/numerical-investigation-of-the-transverse-instability-in-radiation-pressure-acceleration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46130.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18578</span> A Structural Constitutive Model for Viscoelastic Rheological Behavior of Human Saphenous Vein Using Experimental Assays </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rassoli%20Aisa">Rassoli Aisa</a>, <a href="https://publications.waset.org/abstracts/search?q=Abrishami%20Movahhed%20Arezu"> Abrishami Movahhed Arezu</a>, <a href="https://publications.waset.org/abstracts/search?q=Faturaee%20Nasser"> Faturaee Nasser</a>, <a href="https://publications.waset.org/abstracts/search?q=Seddighi%20Amir%20Saeed"> Seddighi Amir Saeed</a>, <a href="https://publications.waset.org/abstracts/search?q=Shafigh%20Mohammad"> Shafigh Mohammad </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cardiovascular diseases are one of the most common causes of mortality in developed countries. Coronary artery abnormalities and carotid artery stenosis, also known as silent death, are among these diseases. One of the treatment methods for these diseases is to create a deviatory pathway to conduct blood into the heart through a bypass surgery. The saphenous vein is usually used in this surgery to create the deviatory pathway. Unfortunately, a re-surgery will be necessary after some years due to ignoring the disagreement of mechanical properties of graft tissue and/or applied prostheses with those of host tissue. The objective of the present study is to clarify the viscoelastic behavior of human saphenous tissue. The stress relaxation tests in circumferential and longitudinal direction were done in this vein by exerting 20% and 50% strains. Considering the stress relaxation curves obtained from stress relaxation tests and the coefficients of the standard solid model, it was demonstrated that the saphenous vein has a non-linear viscoelastic behavior. Thereafter, the fitting with Fung’s quasilinear viscoelastic (QLV) model was performed based on stress relaxation time curves. Finally, the coefficients of Fung’s QLV model, which models the behavior of saphenous tissue very well, were presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Viscoelastic%20behavior" title="Viscoelastic behavior">Viscoelastic behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20relaxation%20test" title=" stress relaxation test"> stress relaxation test</a>, <a href="https://publications.waset.org/abstracts/search?q=uniaxial%20tensile%20test" title=" uniaxial tensile test"> uniaxial tensile test</a>, <a href="https://publications.waset.org/abstracts/search?q=Fung%E2%80%99s%20quasilinear%20viscoelastic%20%28QLV%29%20model" title=" Fung’s quasilinear viscoelastic (QLV) model"> Fung’s quasilinear viscoelastic (QLV) model</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20rate" title=" strain rate"> strain rate</a> </p> <a href="https://publications.waset.org/abstracts/41986/a-structural-constitutive-model-for-viscoelastic-rheological-behavior-of-human-saphenous-vein-using-experimental-assays" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41986.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18577</span> Vertebral Transverse Open Wedge Osteotomy in Correction of Thoracolumbar Kyphosis Resulting from Ankylosing Spondylitis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20AliReza%20Mirghasemi">S. AliReza Mirghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Amin%20Mohamadi"> Amin Mohamadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zameer%20Hussain"> Zameer Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=Narges%20Rahimi%20Gabaran"> Narges Rahimi Gabaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Mir%20Mostafa%20Sadat"> Mir Mostafa Sadat</a>, <a href="https://publications.waset.org/abstracts/search?q=Shervin%20Rashidinia"> Shervin Rashidinia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In progressive cases of Ankylosing Spondylitis, patients will have high degrees of kyphosis leading to severe disabilities. Several operative techniques have been used in this stage, but little knowledge exists on the indications for and outcome of these methods. In this study, we examined the efficacy of monosegmental transverse open wedge osteotomy of L3 in 11 patients with progressive spinal kyphosis. The average correction was 36̊ (20 to 42) with no loss of correction after operation. The average operating time was 120 minutes (100 to 130) and the mean blood loss was 1500 ml (1100 to 2000). Osteotomy corrected all patients sufficiently to allow them to see ahead and their posture was improved. There were no fatal complications but one patient had paraplegia after the operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ankylosing%20spondylitis" title="ankylosing spondylitis">ankylosing spondylitis</a>, <a href="https://publications.waset.org/abstracts/search?q=thoracolumbar%20kyphosis" title=" thoracolumbar kyphosis"> thoracolumbar kyphosis</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20wedge%20osteotomy" title=" open wedge osteotomy"> open wedge osteotomy</a>, <a href="https://publications.waset.org/abstracts/search?q=L3%20transverse%20open%20wedge%20osteotomy" title=" L3 transverse open wedge osteotomy"> L3 transverse open wedge osteotomy</a> </p> <a href="https://publications.waset.org/abstracts/34782/vertebral-transverse-open-wedge-osteotomy-in-correction-of-thoracolumbar-kyphosis-resulting-from-ankylosing-spondylitis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34782.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transverse%20relaxation%20time&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transverse%20relaxation%20time&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transverse%20relaxation%20time&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transverse%20relaxation%20time&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transverse%20relaxation%20time&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transverse%20relaxation%20time&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transverse%20relaxation%20time&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transverse%20relaxation%20time&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transverse%20relaxation%20time&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transverse%20relaxation%20time&page=620">620</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transverse%20relaxation%20time&page=621">621</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transverse%20relaxation%20time&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>