CINXE.COM

A Machine Learning Model for Accurate Credit Risk Forecasting in Banking Systems: An Empirical Investigation

<!DOCTYPE html> <!--[if IE 8]> <html class="ie ie8"> <![endif]--> <!--[if IE 9]> <html class="ie ie9"> <![endif]--> <!--[if gt IE 9]><!--> <html> <!--<![endif]--> <head> <meta charset="utf-8" /> <title>A Machine Learning Model for Accurate Credit Risk Forecasting in Banking Systems: An Empirical Investigation</title> <!-- favicon --> <link rel="shortcut icon" type="image/ico" href="./data/ijsom/coversheet/favicon.ico" /> <!-- mobile settings --> <meta name="viewport" content="width=device-width, maximum-scale=1, initial-scale=1, user-scalable=0" /> <!--[if IE]><meta http-equiv='X-UA-Compatible' content='IE=edge,chrome=1'><![endif]--> <!-- user defined metatags --> <meta name="keywords" content="Forecasting,Credit Risk Management,Deep Learning,LSTM,SVM,Time Series" /> <meta name="description" content="Credit risk consists is the expectation of losses stemming from the inability of a borrower to repay a loan. For the purpose of accurate control of credit risks, banking systems seek developing financial information portfolios upon their customers using sophisticated models which are not only restricted to collecting information on borrower鈥檚 characteristics, but also, provide visibility on their respective default risk. This paper introduces a novel deep learning model to forecast the credit risk of company customers in banking systems. In particular, we develop a hybrid SVM-LSTM based neural network that predicts the total turnover of a company given the historical data records of its economic and financial features within specific periods. Through an empirical investigation based on data of 13 Tunisian manufacturing and service companies, we show that our proposed model results in more accurate statistical performances compared to the standard LSTM and to the linear regression that is commonly used in the area of credit risk management." /> <meta name="title" content="A Machine Learning Model for Accurate Credit Risk Forecasting in Banking Systems: An Empirical Investigation" /> <meta name="googlebot" content="NOODP" /> <meta name="citation_title" content="A Machine Learning Model for Accurate Credit Risk Forecasting in Banking Systems: An Empirical Investigation" /> <meta name="citation_author" content="HASNI, Marwa" /> <meta name="citation_author_institution" content="Optimisation et Analyse des Syst&amp;egrave;mes Industriels et de Service Ecole Nationale d&amp;rsquo;Ing&amp;eacute;nieurs de Tunis Laboratoire G&amp;eacute;nie Industriel" /> <meta name="citation_author" content="AGUIR, Mohamed Salah" /> <meta name="citation_author_institution" content="Ecole Nationale d&amp;#039;Ing&amp;eacute;nieurs de Carthage" /> <meta name="citation_author" content="Babai, Mohamed Zied" /> <meta name="citation_author_institution" content="kedge business school" /> <meta name="citation_author" content="JEMAI, Zied" /> <meta name="citation_author_institution" content="Ecole Nationale d&amp;rsquo;Ing&amp;eacute;nieurs de Tunis Laboratoire G&amp;eacute;nie Industriel Centrale Supelec, University of Paris Saclay Paris, France" /> <meta name="citation_abstract" content="Credit risk consists is the expectation of losses stemming from the inability of a borrower to repay a loan. For the purpose of accurate control of credit risks, banking systems seek developing financial information portfolios upon their customers using sophisticated models which are not only restricted to collecting information on borrower鈥檚 characteristics, but also, provide visibility on their respective default risk. This paper introduces a novel deep learning model to forecast the credit risk of company customers in banking systems. In particular, we develop a hybrid SVM-LSTM based neural network that predicts the total turnover of a company given the historical data records of its economic and financial features within specific periods. Through an empirical investigation based on data of 13 Tunisian manufacturing and service companies, we show that our proposed model results in more accurate statistical performances compared to the standard LSTM and to the linear regression that is commonly used in the area of credit risk management." /> <meta name="citation_id" content="2928" /> <meta name="citation_publication_date" content="2024/05/01" /> <meta name="citation_date" content="2024-05-01" /> <meta name="citation_journal_title" content="International Journal of Supply and Operations Management" /> <meta name="citation_issn" content="23831359" /> <meta name="citation_volume" content="11" /> <meta name="citation_issue" content="2" /> <meta name="citation_firstpage" content="168" /> <meta name="citation_lastpage" content="187" /> <meta name="citation_publisher" content="Kharazmi University" /> <meta name="citation_doi" content="10.22034/ijsom.2023.109898.2722" /> <meta name="DC.Identifier" content="10.22034/ijsom.2023.109898.2722" /> <meta name="citation_abstract_html_url" content="http://www.ijsom.com/article_2928.html" /> <meta name="citation_pdf_url" content="http://www.ijsom.com/article_2928_98299b6957904ad25f194b788bc4138f.pdf" /> <meta name="DC.Title" content="A Machine Learning Model for Accurate Credit Risk Forecasting in Banking Systems: An Empirical Investigation" /> <meta name="DC.Source" content="International Journal of Supply and Operations Management" /> <meta name="DC.Date" content="01/05/2024" /> <meta name="DC.Date.issued" content="2024-05-01" /> <meta name="DC.Format" content="application/pdf" /> <meta name="DC.Contributor" content="HASNI, Marwa" /> <meta name="DC.Contributor" content="AGUIR, Mohamed Salah" /> <meta name="DC.Contributor" content="Babai, Mohamed Zied" /> <meta name="DC.Contributor" content="JEMAI, Zied" /> <meta name="og:title" content="A Machine Learning Model for Accurate Credit Risk Forecasting in Banking Systems: An Empirical Investigation" /> <meta name="og:description" content="Credit risk consists is the expectation of losses stemming from the inability of a borrower to repay a loan. For the purpose of accurate control of credit risks, banking systems seek developing financial information portfolios upon their customers using sophisticated models which are not only restricted to collecting information on borrower鈥檚 characteristics, but also, provide visibility on their respective default risk. This paper introduces a novel deep learning model to forecast the credit risk of company customers in banking systems. In particular, we develop a hybrid SVM-LSTM based neural network that predicts the total turnover of a company given the historical data records of its economic and financial features within specific periods. Through an empirical investigation based on data of 13 Tunisian manufacturing and service companies, we show that our proposed model results in more accurate statistical performances compared to the standard LSTM and to the linear regression that is commonly used in the area of credit risk management." /> <meta name="og:url" content="http://www.ijsom.com/article_2928.html" /> <!-- WEB FONTS : use %7C instead of | (pipe) --> <link href="./themes/base/front/assets/css/social-icon-font.css" rel="stylesheet" type="text/css" /> <!-- CORE CSS --> <link href="./themes/base/front/assets/plugins/bootstrap/css/bootstrap.min.css?v=0.02" rel="stylesheet" type="text/css" /> <link href="./themes/old/front/assets/css/header.css?v=0.05" rel="stylesheet" type="text/css" /> <link href="./themes/old/front/assets/css/footer.css" rel="stylesheet" type="text/css" /> <link href="./inc/css/essentials.css?v=0.2" rel="stylesheet" type="text/css" /> <link href="./inc/css/cookieconsent.min.css" rel="stylesheet" type="text/css" /> <link href="./inc/css/print.css" rel="stylesheet" type="text/css" media="print"/> <!-- RTL CSS --> <link href="./themes/base/front/assets/plugins/bootstrap/css/bootstrap-ltr.min.css" rel="stylesheet" type="text/css" /> <link href=" ./themes/base/front/assets/css/gfonts-OpenSans.css" rel="stylesheet" type="text/css" /> <link href="./themes/old/front/assets/css/accordian.css" rel="stylesheet" type="text/css" /> <link href="./themes/base/front/assets/css/academicons.min.css" rel="stylesheet" type="text/css" /> <!-- user defined metatags--> <meta name="google-site-verification" content="UlbWpwabckk_wTgRmzoJCVPEYKnomtCLcftujpXdou4" /> <link href="./data/ijsom/coversheet/stl_front.css?v=0.71" rel="stylesheet" type="text/css" /> <link href="./data/ijsom/coversheet/stl.css" rel="stylesheet" type="text/css" /> <!-- Feed--> <link rel="alternate" type="application/rss+xml" title="RSS feed" href="ju.rss" /> <script type="text/javascript" src="./themes/base/front/assets/plugins/jquery/jquery.min.js?v=0.5"></script> <script type="text/javascript" src="./inc/js/common.js?v=0.1"></script> <script type="text/javascript" src="./inc/js/jquery/cookieconsent.min.js"></script> <!-- Extra Style Scripts --> <!-- Extra Script Scripts --> <script src="inc/js/article.js?v=0.31" type="text/javascript" ></script> </head> <body class="ltr len"> <div class="container" id="header"> <div class="row"> <div class="col-xs-12 text-center"> <img src="./data/ijsom/coversheet/head_en.jpg" class="img-responsive text-center" style="display:-webkit-inline-box; width: 100%;" > </div> </div> </div> <div class="container"> <div class="row"> <div class="col-xs-12 col-lg-12 col-md-12 text-center"> <nav class="navbar navbar-default noborder nomargin noradius" role="navigation"> <div class="container-fluid nopadding" > <div class="navbar-header" style="background: #FFFFFF;"> <button type="button" class="navbar-toggle" data-toggle="collapse" data-target="#bs-example-navbar-collapse-1"> <span class="sr-only">Toggle navigation</span> <span class="icon-bar"></span> <span class="icon-bar"></span> <span class="icon-bar"></span> </button> <!-- <a class="navbar-brand" href="#">Brand</a> --> </div> <!-- Collect the nav links, forms, and other content for toggling --> <div class="collapse navbar-collapse nopadding" id="bs-example-navbar-collapse-1"> <ul class="nav navbar-nav"> <li><a href="././"> Home</a></li> <li class="dropdown"> <a href="" class="dropdown-toggle" data-toggle="dropdown">Browse <b class="caret"></b></a> <ul class="dropdown-menu"> <li><a href="./?_action=current">Current Issue</a></li> <li class="divider margin-bottom-6 margin-top-6"></li> <li><a href="./browse?_action=issue">By Issue</a></li> <li class="divider margin-bottom-6 margin-top-6"></li> <li><a href="./browse?_action=author">By Author</a></li> <li class="divider margin-bottom-6 margin-top-6"></li> <li><a href="./browse?_action=subject">By Subject</a></li> <li class="divider margin-bottom-6 margin-top-6"></li> <li><a href="./author.index">Author Index</a></li> <li class="divider margin-bottom-6 margin-top-6"></li> <li><a href="./keyword.index">Keyword Index</a></li> </ul> </li> <li class="dropdown"> <a href="" class="dropdown-toggle" data-toggle="dropdown">Journal Info <b class="caret"></b></a> <ul class="dropdown-menu"> <li><a href="./journal/about">About Journal</a></li> <li class="divider margin-bottom-6 margin-top-6"></li> <li><a href="./journal/aim_scope">Aims and Scope</a></li> <li class="divider margin-bottom-6 margin-top-6"></li> <li><a href="./journal/editorial.board">Editorial Board</a></li> <li class="divider margin-bottom-6 margin-top-6"></li> <li><a href="./journal/process?ethics">Publication Ethics</a></li> <li class="divider margin-bottom-6 margin-top-6"></li> <li><a href="./journal/indexing">Indexing and Abstracting</a></li> <li class="divider margin-bottom-6 margin-top-6"></li> <li><a href="./journal/links">Related Links</a></li> <li class="divider margin-bottom-6 margin-top-6"></li> <li><a href="./journal/faq">FAQ</a></li> <li class="divider margin-bottom-6 margin-top-6"></li> <li><a href="./journal/process">Peer Review Process</a></li> <li class="divider margin-bottom-6 margin-top-6"></li> <li><a href="./journal/metrics">Journal Metrics</a></li> <li class="divider margin-bottom-6 margin-top-6"></li> <li><a href="./news">News</a></li> </ul> </li> <li><a href="./journal/authors.note"> Guide for Authors</a></li> <li><a href="./author"> Submit Manuscript</a></li> <li><a href="./reviewer?_action=info"> Reviewers</a></li> <li><a href="./journal/contact.us"> Contact Us</a></li> </ul> <ul class="nav navbar-nav navbar-right nomargin"> <li><a href="./contacts">Login</a></li> <li><a href="./contacts?_action=signup">Register</a></li> </ul> </div> <!-- /.navbar-collapse --> </div> <!-- /.container-fluid --> </nav> </div> </div> </div> <!-- MAIN SECTION --> <div class="container" > <div id="dv_main_cnt"> <section class="no-cover-box"> <div class="row"> <!-- CENTER --> <div class="col-lg-9 col-md-9 col-sm-8" id="dv_artcl"> <!-- Current Issue --> <div> <h1 class="margin-bottom-20 size-18 ltr"><span class="article_title bold"> <a href="./article_2928_98299b6957904ad25f194b788bc4138f.pdf" target="_blank">A Machine Learning Model for Accurate Credit Risk Forecasting in Banking Systems: An Empirical Investigation</a></span></h1> <div> <div class="margin-bottom-3"> </div> <p class="margin-bottom-3">Document Type : TORS 2022</p> <p class="padding-0" style="margin:12px -2px 0 -2px"><strong>Authors</strong></p> <ul class="list-inline list-inline-seprator margin-bottom-6 ltr"> <li class="padding-3"> <a href="./?_action=article&amp;au=130057&amp;_au=Marwa++HASNI">Marwa HASNI</a> <sup><a href="mailto:gmarwa92@gmail.com" data-toggle="tooltip" data-placement="bottom" title="Email to Corresponding Author"><i class="fa fa-envelope-o" ></i></a></sup> <sup class="ltr"><a class=" text-green" href="https://www.orcid.org/0000-0002-4509-5563" data-toggle="tooltip" data-placement="bottom" data-html="true" title="ORCID: 0000-0002-4509-5563" target="_blank"><i class="ai ai-orcid size-13" ></i></a></sup> <sup><a href="#aff1" >1</a></sup> </li> <li class="padding-3"> <a href="./?_action=article&amp;au=130600&amp;_au=Mohamed+Salah++AGUIR">Mohamed Salah AGUIR</a> <sup><a href="#aff2" >2</a></sup> </li> <li class="padding-3"> <a href="./?_action=article&amp;au=130374&amp;_au=Mohamed+Zied++Babai">Mohamed Zied Babai</a> <sup class="ltr"><a class=" text-green" href="https://www.orcid.org/0000-0001-7107-6924" data-toggle="tooltip" data-placement="bottom" data-html="true" title="ORCID: 0000-0001-7107-6924" target="_blank"><i class="ai ai-orcid size-13" ></i></a></sup> <sup><a href="#aff3" >3</a></sup> </li> <li class="padding-3"> <a href="./?_action=article&amp;au=130601&amp;_au=Zied++JEMAI">Zied JEMAI</a> <sup><a href="#aff4" >4</a></sup> </li> </ul> <p class="margin-bottom-3 ltr" id="aff1"> <sup>1</sup> Optimisation et Analyse des Syst&amp;egrave;mes Industriels et de Service Ecole Nationale d&amp;rsquo;Ing&amp;eacute;nieurs de Tunis Laboratoire G&amp;eacute;nie Industriel </p> <p class="margin-bottom-3 ltr" id="aff2"> <sup>2</sup> Ecole Nationale d&amp;#039;Ing&amp;eacute;nieurs de Carthage </p> <p class="margin-bottom-3 ltr" id="aff3"> <sup>3</sup> kedge business school </p> <p class="margin-bottom-3 ltr" id="aff4"> <sup>4</sup> Ecole Nationale d&amp;rsquo;Ing&amp;eacute;nieurs de Tunis Laboratoire G&amp;eacute;nie Industriel Centrale Supelec, University of Paris Saclay Paris, France </p> <div class="margin-bottom-3 ltr" id="ar_doi" title="DOI"><i class="ai ai-doi size-25 text-orange"></i> <span dir="ltr"><a href="https://dx.doi.org/10.22034/ijsom.2023.109898.2722">10.22034/ijsom.2023.109898.2722</a></span></div> <p style="margin:12px -2px 0 -2px"><strong>Abstract</strong></p> <div class="padding_abstract justify ltr">Credit risk consists is the expectation of losses stemming from the inability of a borrower to repay a loan. For the purpose of accurate control of credit risks, banking systems seek developing financial information portfolios upon their customers using sophisticated models which are not only restricted to collecting information on borrower&rsquo;s characteristics, but also, provide visibility on their respective default risk. This paper introduces a novel deep learning model to forecast the credit risk of company customers in banking systems. In particular, we develop a hybrid SVM-LSTM based neural network that predicts the total turnover of a company given the historical data records of its economic and financial features within specific periods. Through an empirical investigation based on data of 13 Tunisian manufacturing and service companies, we show that our proposed model results in more accurate statistical performances compared to the standard LSTM and to the linear regression that is commonly used in the area of credit risk management.</div> <p class="padding-0" style="margin:12px -2px 0 -2px"><strong>Keywords</strong></p> <ul class="block list-inline list-inline-seprator margin-bottom-6 ltr"> <li class="padding-3"> <a class="tag_a" href="./?_action=article&amp;kw=1857&amp;_kw=Forecasting" >Forecasting</a> </li> <li class="padding-3"> <a class="tag_a" href="./?_action=article&amp;kw=106485&amp;_kw=Credit+Risk+Management" >Credit Risk Management</a> </li> <li class="padding-3"> <a class="tag_a" href="./?_action=article&amp;kw=106486&amp;_kw=Deep+Learning" >Deep Learning</a> </li> <li class="padding-3"> <a class="tag_a" href="./?_action=article&amp;kw=106487&amp;_kw=LSTM" >LSTM</a> </li> <li class="padding-3"> <a class="tag_a" href="./?_action=article&amp;kw=106488&amp;_kw=SVM" >SVM</a> </li> <li class="padding-3"> <a class="tag_a" href="./?_action=article&amp;kw=105076&amp;_kw=Time+Series" >Time Series</a> </li> </ul> </div> <hr> <div class="page_break"></div> <div class="panel"> <div class="panel-heading card-header"> <h4 class="panel-title "> <a data-toggle="collapse" data-parent="#accordions" href="#collapsesRef"><i class="fa fa-plus"></i> References</a> </h4> </div> <div id="collapsesRef" class="panel-collapse collapse"> <div class="panel-body justify"> <div class="padding-3 margin-top-3 ltr justify">Abdesslem, R. B., Chkir, I., &amp; Dabbou, H. (2022). Is managerial ability a moderator? The effect of credit risk and liquidity risk on the likelihood of bank default.&nbsp;<em>International Review of Financial Analysis,&nbsp;80</em>, 102044. </div> <div class="padding-3 margin-top-3 ltr justify">Alalshekmubarak, A., Smith, L. S. (2013, March). A novel approach combining recurrent neural network and support vector machines for time series classification. In&nbsp;2013 9th International Conference on Innovations in Information Technology (IIT)&nbsp;(pp. 42-47). IEEE. </div> <div class="padding-3 margin-top-3 ltr justify">Ala&rsquo;raj, M., Abbod, M. F., &amp; Majdalawieh, M. (2021). Modelling customers credit card behaviour using bidirectional LSTM neural networks.&nbsp;<em>Journal of Big Data</em>,&nbsp;<em>8</em>(1), 1-27. </div> <div class="padding-3 margin-top-3 ltr justify">Alfian, G., Syafrudin, M., Fahrurrozi, I., Fitriyani, N. L., Atmaji, F. T. D., Widodo, T., ... &amp; Rhee, J. (2022). Predicting breast cancer from risk factors using SVM and extra-trees-based feature selection method.&nbsp;<em>Computers,&nbsp;11</em>(9), 136. </div> <div class="padding-3 margin-top-3 ltr justify">Altan, A., &amp; Karasu, S. (2019). The effect of kernel values in support vector machine to forecasting performance of financial time series.&nbsp;<em>The Journal of Cognitive Systems,&nbsp;4</em>(1), 17-21. </div> <div class="padding-3 margin-top-3 ltr justify">Babu, N. R., and Mohan, B. J. (2017). Fault classification in power systems using EMD and SVM.&nbsp;<em>Ain Shams Engineering Journal,&nbsp;8</em>(2), 103-111. </div> <div class="padding-3 margin-top-3 ltr justify">Bao, W., Yue, J., &amp; Rao, Y. (2017). A deep learning framework for financial time series using stacked autoencoders and long-short term memory.&nbsp;<em>PloS one,&nbsp;12</em>(7), e0180944. </div> <div class="padding-3 margin-top-3 ltr justify">Barboza, F., Kimura, H., Sobreiro, V. A., Basso, L. F. (2016). Credit risk: from a systematic literature review to future directions.&nbsp;<em>Corporate Ownership &amp; Control,&nbsp;13</em>(3), 326-346. </div> <div class="padding-3 margin-top-3 ltr justify">Bhatore, S., Mohan, L., &amp; Reddy, Y. R. (2020). Machine learning techniques for credit risk evaluation: a systematic literature review.&nbsp;<em>Journal of Banking and Financial Technology,&nbsp;4</em>, 111-138. </div> <div class="padding-3 margin-top-3 ltr justify">Chaabane, S. B., Hijji, M., Harrabi, R., &amp; Seddik, H. (2022). Face recognition based on statistical features and SVM classifier<em>.&nbsp;Multimedia Tools and Applications,&nbsp;81</em>(6), 8767-8784. </div> <div class="padding-3 margin-top-3 ltr justify">Chandra, M. A., and Bedi, S. S. (2021). Survey on SVM and their application in image classification.&nbsp;<em>International Journal of Information Technology,&nbsp;13</em>, 1-11. </div> <div class="padding-3 margin-top-3 ltr justify">Cuentas, S., Garcia, E., &amp; Penabaena-Niebles, R. (2022). An SVM-GA based monitoring system for pattern recognition of autocorrelated processes.&nbsp;<em>Soft Computing,&nbsp;26</em>(11), 5159-5178. </div> <div class="padding-3 margin-top-3 ltr justify">Festinger, L., Carlsmith, J. M. (1959). Cognitive consequences of forced compliance.&nbsp;<em>The journal of abnormal and social psychology,&nbsp;58</em>(2), 203. </div> <div class="padding-3 margin-top-3 ltr justify">Hasni, M. and Bhar Layeb, S. (2017). Multiple regression-based models for accurate credit risk management, International Journal of Economics &amp; Strategic Management of Business Process (Special Issue: The 5th International Conference on Innovation &amp; Engineering - IEM2017), volume 10, Issue 1, pages 53-57. </div> <div class="padding-3 margin-top-3 ltr justify">Htun, H. H., Biehl, M., &amp; Petkov, N. (2023). Survey of feature selection and extraction techniques for stock market prediction.&nbsp;<em>Financial Innovation,&nbsp;9</em>(1), 26. </div> <div class="padding-3 margin-top-3 ltr justify">Huang, X., Liu, X., &amp; Ren, Y. (2018). Enterprise credit risk evaluation based on neural network algorithm.&nbsp;<em>Cognitive Systems Research,&nbsp;52</em>, 317-324. </div> <div class="padding-3 margin-top-3 ltr justify">Jiang, J., Chen, R., Chen, M., Wang, W., &amp; Zhang, C. (2019). Dynamic fault prediction of power transformers based on hidden Markov model of dissolved gases analysis.&nbsp;<em>IEEE Transactions on Power Delivery,&nbsp;34</em>(4), 1393-1400. </div> <div class="padding-3 margin-top-3 ltr justify">Jiang, H., Ching, W. K., Yiu, K. F. C., and Qiu, Y. (2018). Stationary Mahalanobis kernel SVM for credit risk evaluation.&nbsp;<em>Applied Soft Computing,&nbsp;71</em>, 407-417. </div> <div class="padding-3 margin-top-3 ltr justify">Jiang, P., Huang, Y., and Liu, X. (2021). Intermittent demand forecasting for spare parts in the heavy-duty vehicle industry: a support vector machine method.&nbsp;<em>International Journal of Production Research,&nbsp;59</em>(24), 7423-7440. </div> <div class="padding-3 margin-top-3 ltr justify">Kaldor, N. (1971). Conflicts in national economic objectives.&nbsp;The Economic Journal,&nbsp;81(321), 1-16. </div> <div class="padding-3 margin-top-3 ltr justify">Kanapickiene, R., &amp; Spicas, R. (2019). Credit risk assessment model for small and micro-enterprises: The case of Lithuania.&nbsp;<em>Risks,&nbsp;7</em>(2), 67. </div> <div class="padding-3 margin-top-3 ltr justify">Kurani, A., Doshi, P., Vakharia, A., &amp; Shah, M. (2023). A comprehensive comparative study of artificial neural network (ANN) and support vector machines (SVM) on stock forecasting.&nbsp;<em>Annals of Data Science,&nbsp;10</em>(1), 183-208. </div> <div class="padding-3 margin-top-3 ltr justify">Li, W., Paraschiv, F., &amp; Sermpinis, G. (2022). A data-driven explainable case-based reasoning approach for financial risk detection.&nbsp;<em>Quantitative Finance,&nbsp;22</em>(12), 2257-2274. </div> <div class="padding-3 margin-top-3 ltr justify">Li, Y., Li, Y., and Li, Y. (2019). What factors are influencing credit card customer&rsquo;s default behavior in China? A study based on survival analysis.&nbsp;<em>Physica A: Statistical Mechanics and its Applications,&nbsp;526</em>, 120861. </div> <div class="padding-3 margin-top-3 ltr justify">Lin, J., and Han, L. (2021). Lattice clustering and its application in credit risk management of commercial banks.&nbsp;<em>Procedia Computer Science,&nbsp;183</em>, 145-151. </div> <div class="padding-3 margin-top-3 ltr justify">Lin, Z., Feng, M., Santos, C. N. D., Yu, M., Xiang, B., Zhou, B., &amp; Bengio, Y. (2017). A structured self-attentive sentence embedding.&nbsp;arXiv preprint arXiv:1703.03130. </div> <div class="padding-3 margin-top-3 ltr justify">Liu, M., Wang, M., Wang, J., &amp; Li, D. (2013). Comparison of random forest, support vector machine and back propagation neural network for electronic tongue data classification: Application to the recognition of orange beverage and Chinese vinegar.&nbsp;<em>Sensors and Actuators B: Chemical,&nbsp;177</em>, 970-980. </div> <div class="padding-3 margin-top-3 ltr justify">Liu, Q., Tan, T., &amp; Yu, K. (2016, November). An investigation on deep learning with beta stabilizer. In&nbsp;2016 IEEE 13th International Conference on Signal Processing (ICSP)&nbsp;(pp. 557-561). IEEE. </div> <div class="padding-3 margin-top-3 ltr justify">Lolli, F., Gamberini, R., Regattieri, A., Balugani, E., Gatos, T., Gucci, S. (2017). Single-hidden layer neural networks for forecasting intermittent demand<em>.&nbsp;International Journal of Production Economics,&nbsp;183</em>, 116-128. </div> <div class="padding-3 margin-top-3 ltr justify">Maleki, M. S., Motevallian, S. N., Hosseini, F., Sabokrou, M., &amp; Maleki, H. S. (2021, October). Improvement of credit scoring by lstm autoencoder model. In&nbsp;2021 11th International Conference on Computer Engineering and Knowledge (ICCKE)&nbsp;(pp. 182-187). IEEE. </div> <div class="padding-3 margin-top-3 ltr justify">Narayan, Y., Ahlawat, V., &amp; Kumar, S. (2020). Pattern recognition of sEMG signals using DWT based feature and SVM Classifier.&nbsp;<em>International Journal of Advance and Science Technology,&nbsp;29</em>(10), 2243-2256. </div> <div class="padding-3 margin-top-3 ltr justify">Pang, S., Hou, X., and Xia, L. (2021). Borrowers&rsquo; credit quality scoring model and applications, with default discriminant analysis based on the extreme learning machine.&nbsp;<em>Technological Forecasting and Social Change,&nbsp;165</em>, 120462. </div> <div class="padding-3 margin-top-3 ltr justify">Pascanu, R., Gulcehre, C., Cho, K., and Bengio, Y. (2013). How to construct deep recurrent neural networks.&nbsp;arXiv preprint arXiv:1312.6026. </div> <div class="padding-3 margin-top-3 ltr justify">Qi, P., Wang, F., Huang, Y., and Yang, X. (2022). Integrating functional data analysis with case-based reasoning for hypertension prognosis and diagnosis based on real-world electronic health records.&nbsp;<em>BMC Medical Informatics and Decision Making,&nbsp;22</em>(1), 149. </div> <div class="padding-3 margin-top-3 ltr justify">Seong-Uk Nam, Sangil Kim, HyunMin Kim, and YongBin Yu. (2021). Comparative study of the performance of support vector machines with various kernels.&nbsp;<em>East Asian Mathematical Journal</em>,&nbsp;<em>37</em>(3), 333-354. </div> <div class="padding-3 margin-top-3 ltr justify">Su, C. W., Cai, X. Y., Qin, M., Tao, R., &amp; Umar, M. (2021). Can bank credit withstand falling house price in China? <em>International Review of Economics &amp; Finance,&nbsp;71</em>, 257-267. </div> <div class="padding-3 margin-top-3 ltr justify">Sun, J., Lang, J., Fujita, H., &amp; Li, H. (2018). Imbalanced enterprise credit evaluation with DTE-SBD: Decision tree ensemble based on SMOTE and bagging with differentiated sampling rates.&nbsp;<em>Information Sciences,&nbsp;425</em>, 76-91. </div> <div class="padding-3 margin-top-3 ltr justify">Tam, K. Y., Kiang, M. Y. (1992). Managerial applications of neural networks: the case of bank failure predictions.&nbsp;<em>Management science,&nbsp;38</em>(7), 926-947. </div> <div class="padding-3 margin-top-3 ltr justify">Tang, Y., Song, Z., Zhu, Y., Yuan, H., Hou, M., Ji, J., ... &amp; Li, J. (2022). A survey on machine learning models for financial time series forecasting.&nbsp;<em>Neurocomputing,&nbsp;512</em>, 363-380. </div> <div class="padding-3 margin-top-3 ltr justify">Tian, Z., Xiao, J., Feng, H., &amp; Wei, Y. (2020). Credit risk assessment based on gradient boosting decision tree.&nbsp;<em>Procedia Computer Science,&nbsp;174</em>, 150-160. </div> <div class="padding-3 margin-top-3 ltr justify">Vu, M. T., Jardani, A., Krimissa, M., Zaoui, F., &amp; Massei, N. (2023). Large-scale seasonal forecasts of river discharge by coupling local and global datasets with a stacked neural network: Case for the Loire River system.&nbsp;<em>Science of The Total Environment</em>, 165494. </div> <div class="padding-3 margin-top-3 ltr justify">Wang, C., Han, D., Liu, Q., Luo, S. (2018). A deep learning approach for credit scoring of peer-to-peer lending using attention mechanism LSTM.&nbsp;<em>IEEE Access,&nbsp;7</em>, 2161-2168. </div> <div class="padding-3 margin-top-3 ltr justify">Wang, H., Zhang, F., Hou, M., Xie, X., Guo, M., &amp; Liu, Q. (2018, February). Shine: Signed heterogeneous information network embedding for sentiment link prediction. In&nbsp;Proceedings of the eleventh ACM international conference on web search and data mining&nbsp;(pp. 592-600). </div> <div class="padding-3 margin-top-3 ltr justify">Worku, Y. B., &amp; Muchie, M. (2019). The Uptake of E-Commerce Services in Johannesburg.&nbsp;<em>Civil Engineering Journal,&nbsp;5</em>(2), 349-362. </div> <div class="padding-3 margin-top-3 ltr justify">Wu, Y., Xu, Y., &amp; Li, J. (2019). Feature construction for fraudulent credit card cash-out detection.&nbsp;<em>Decision Support Systems,&nbsp;127</em>, 113155. </div> <div class="padding-3 margin-top-3 ltr justify">Xia, Y., Li, Y., He, L., Xu, Y., &amp; Meng, Y. (2021). Incorporating multilevel macroeconomic variables into credit scoring for online consumer lending.&nbsp;<em>Electronic Commerce Research and Applications,&nbsp;49</em>, 101095. </div> <div class="padding-3 margin-top-3 ltr justify">Xiao, C., Xia, W., &amp; Jiang, J. (2020). Stock price forecast based on combined model of ARI-MA-LS-SVM<em>.&nbsp;Neural Computing and Applications,&nbsp;32</em>, 5379-5388. </div> <div class="padding-3 margin-top-3 ltr justify">Yang, L., &amp; Shami, A. (2020). On hyperparameter optimization of machine learning algorithms: Theory and practice.&nbsp;<em>Neurocomputing,&nbsp;415</em>, 295-316.</div> </div> </div> </div> </div> </div> <!-- /CENTER --> <!-- LEFT --> <div class="col-lg-3 col-md-3 col-sm-4"> <div class="panel panel-default my_panel-default margin-bottom-10"> <div class="panel-body ar_info_pnl" id="ar_info_pnl_cover"> <div id="pnl_cover"> <div class="row" > <div class="col-xs-6 col-md-6 nomargin-bottom"> <a href="javascript:loadModal('International Journal of Supply and Operations Management', './data/ijsom/coversheet/cover_en.jpg')"> <img src="data/ijsom/coversheet/cover_en.jpg" alt="International Journal of Supply and Operations Management" style="width: 100%;"> </a> </div> <div class="col-xs-6 col-md-6 nomargin-bottom"> <h6><a href="./issue_542_544.html">Volume 11, Issue 2</a><br/>May 2024<div id="sp_ar_pages">Pages <span dir="ltr">168-187</span></div></h6> </div> </div> </div> </div> </div> <!-- Download Files --> <div class="panel panel-default my_panel-default margin-bottom-10 panel-lists"> <div class="panel-heading"> <h3 class="panel-title"><a data-toggle="collapse" data-parent="#accordion" href="#ar_info_pnl_fl"><i class="fa fa-files-o"></i> Files</a></h3> </div> <div id="ar_info_pnl_fl" class="panel-collapse collapse in"> <div class="panel-body ar_info_pnl padding-6"> <ul class="list-group list-group-bordered list-group-noicon nomargin"> <li class="list-group-item"><a href="./?_action=xml&amp;article=2928" target="_blank" class="tag_a pdf_link"><i class="fa fa-file-code-o text-orange" ></i> XML</a></li> <li class="list-group-item"><a href="./article_2928_98299b6957904ad25f194b788bc4138f.pdf" target="_blank" class="tag_a pdf_link"><i class="fa fa-file-pdf-o text-red" ></i> PDF 874.73 K</a></li> <!-- Suplement Files --> </ul> </div> </div> </div> <div class="panel panel-default my_panel-default margin-bottom-10"> <div class="panel-heading"> <h3 class="panel-title"><a data-toggle="collapse" data-parent="#accordion" href="#ar_info_pnl_share"><i class="fa fa-share-square-o" aria-hidden="true"></i> Share</a></h3> </div> <div id="ar_info_pnl_share" class="panel-collapse collapse"> <div class="panel-body ar_info_pnl padding-10 text-center"> <a id="share_facebook" href="https://www.facebook.com/sharer.php?u=http://www.ijsom.com/article_2928.html" target="_blank" class="social-icon social-icon-sm social-facebook" data-toggle="tooltip" data-placement="top" title="Facebook"> <i class="icon-facebook"></i> <i class="icon-facebook"></i> </a> <a id="share_linkedin" href="https://www.linkedin.com/shareArticle?mini=true&amp;url=http://www.ijsom.com/article_2928.html" target="_blank" class="social-icon social-icon-sm social-linkedin" data-toggle="tooltip" data-placement="top" title="Linkedin"> <i class="icon-linkedin"></i> <i class="icon-linkedin"></i> </a> <a id="share_mendeley" href="https://www.mendeley.com/import/?url=http://www.ijsom.com/article_2928.html" target="_blank" class="social-icon social-icon-sm social-youtube" data-toggle="tooltip" data-placement="top" title="Mendeley"> <i class="icon-mendeley"></i> <i class="icon-mendeley"></i> </a> <a id="share_refworks" href="https://www.refworks.com/express/ExpressImport.asp?url=http://www.ijsom.com/article_2928.html" target="_blank" class="social-icon social-icon-sm social-disqus" data-toggle="tooltip" data-placement="top" title="Refworks"> <i class="icon-refworks"><span class="path1"></span><span class="path2"></span><span class="path3"></span><span class="path4"></span><span class="path5"></span><span class="path6"></span><span class="path7"></span><span class="path8"></span><span class="path9"></span><span class="path10"></span></i> <i class="icon-refworks"><span class="path1"></span><span class="path2"></span><span class="path3"></span><span class="path4"></span><span class="path5"></span><span class="path6"></span><span class="path7"></span><span class="path8"></span><span class="path9"></span><span class="path10"></span></i> </a> <a id="share_instagram" href="https://www.instagram.com/?url=http://www.ijsom.com/article_2928.html" target="_blank" class="social-icon social-icon-sm social-instagram" data-toggle="tooltip" data-placement="top" title="Instagram"> <i class="icon-instagram"></i> <i class="icon-instagram"></i> </a> <a id="share_twitter" href="https://twitter.com/share?url=http://www.ijsom.com/article_2928.html&amp;text=A Machine Learning Model for Accurate Credit Risk Forecasting in Banking Systems: An Empirical Investigation" target="_blank" class="social-icon social-icon-sm social-twitter" data-toggle="tooltip" data-placement="top" title="Twitter"> <i class="icon-twitter"></i> <i class="icon-twitter"></i> </a> <a id="share_email" href="javascript:act('email')" class="social-icon social-icon-sm social-email3 " data-toggle="tooltip" data-placement="top" title="Email"> <i class="icon-email3"></i> <i class="icon-email3"></i> </a> <a id="share_print" href="javascript:printDiv('dv_artcl')" class="social-icon social-icon-sm social-print" data-toggle="tooltip" data-placement="top" title="Print"> <i class="icon-print"></i> <i class="icon-print"></i> </a> <a id="share_stumble" href="https://mix.com/mixit?su=submit&url=http://www.ijsom.com/article_2928.html" target="_blank" class="social-icon social-icon-sm social-stumbleupon" data-toggle="tooltip" data-placement="top" title="StumbleUpon"> <i class="icon-stumbleupon"></i> <i class="icon-stumbleupon"></i> </a> <a id="share_acedemia" href="https://www.academia.edu/" target="_blank" class="social-icon social-icon-sm social-academia" data-toggle="tooltip" data-placement="top" title="Academia"> <i class="ai ai-academia"></i> <i class="ai ai-academia"></i> </a> <a id="share_sems" href="https://www.semanticscholar.org/" target="_blank" class="social-icon social-icon-sm social-forrst" data-toggle="tooltip" data-placement="top" title="Semantic scholar"> <i class="ai ai-semantic-scholar"></i> <i class="ai ai-semantic-scholar"></i> </a> <a id="share_reddit" href="https://www.reddit.com/submit?url=http://www.ijsom.com/article_2928.html" target="_blank" class="social-icon social-icon-sm social-dwolla" data-toggle="tooltip" data-placement="top" title="Reddit"> <i class="icon-reddit"></i> <i class="icon-reddit"></i> </a> <a id="share_rg" href="https://www.researchgate.net/" target="_blank" class="social-icon social-icon-sm social-researchgate" data-toggle="tooltip" data-placement="top" title="Research Gate"> <i class="ai ai-researchgate"></i> <i class="ai ai-researchgate"></i> </a> <a id="share_blogger" href="https://www.blogger.com/blog-this.g?u=http://www.ijsom.com/article_2928.html" target="_blank" class="social-icon social-icon-sm social-blogger" data-toggle="tooltip" data-placement="top" title="Blogger"> <i class="icon-blogger"></i> <i class="icon-blogger"></i> </a> <a id="share_pinterest" href="https://pinterest.com/pin/create/bookmarklet/?media=&url=http://www.ijsom.com/article_2928.html" target="_blank" class="social-icon social-icon-sm social-pinterest" data-toggle="tooltip" data-placement="top" title="Pinterest"> <i class="icon-pinterest"></i> <i class="icon-pinterest"></i> </a> <a id="share_digg" href="https://www.digg.com/submit?http://www.ijsom.com/article_2928.html&title=A Machine Learning Model for Accurate Credit Risk Forecasting in Banking Systems: An Empirical Investigation" target="_blank" class="social-icon social-icon-sm social-digg" data-toggle="tooltip" data-placement="top" title="Digg"> <i class="icon-digg"></i> <i class="icon-digg"></i> </a> <a id="share_delicious" href="https://del.icio.us/post?url=http://www.ijsom.com/article_2928.html" target="_blank" class="social-icon social-icon-sm social-delicious" data-toggle="tooltip" data-placement="top" title="Delicious"> <i class="icon-delicious"></i> <i class="icon-delicious"></i> </a> <a id="share_skype" href="https://web.skype.com/share?url=http://www.ijsom.com/article_2928.html" target="_blank" class="social-icon social-icon-sm social-skype" data-toggle="tooltip" data-placement="top" title="Skype"> <i class="icon-skype"></i> <i class="icon-skype"></i> </a> </div> </div> </div> <!-- Cite This Article --> <div class="panel panel-default my_panel-default margin-bottom-10 panel-lists"> <div class="panel-heading"> <h3 class="panel-title"><a data-toggle="collapse" data-parent="#accordion" href="#ar_info_pnl_cite"><i class=" fa fa-external-link"></i> How to cite</a></h3> </div> <div id="ar_info_pnl_cite" class="panel-collapse collapse "> <div class="panel-body ar_info_pnl"> <ul class="list-group list-group-bordered list-group-noicon" style="display:block !important;max-height:9999px"> <li class="list-group-item ltr"><a class="tag_a" href="./?_action=export&rf=ris&rc=2928">RIS</a></li> <li class="list-group-item ltr"><a class="tag_a" href="./?_action=export&rf=enw&rc=2928">EndNote</a></li> <li class="list-group-item ltr"><a class="tag_a" href="./?_action=export&rf=ris&rc=2928">Mendeley</a></li> <li class="list-group-item ltr"><a class="tag_a" href="./?_action=export&rf=bibtex&rc=2928">BibTeX</a></li> <li class="list-group-item ltr"><a class="tag_a" href="javascript:void(0)" data-toggle="modal" data-target="#cite-apa">APA</a></li> <li class="list-group-item ltr"><a class="tag_a" href="javascript:void(0)" data-toggle="modal" data-target="#cite-mla">MLA</a></li> <li class="list-group-item ltr"><a class="tag_a" href="javascript:void(0)" data-toggle="modal" data-target="#cite-harvard">HARVARD</a></li> <li class="list-group-item ltr"><a class="tag_a" href="javascript:void(0)" data-toggle="modal" data-target="#cite-vancouver">VANCOUVER</a></li> </ul> </div> </div> </div> <!-- Article Statastic --> <div class="panel panel-default my_panel-default panel-lists"> <div class="panel-heading"> <h3 class="panel-title"><a data-toggle="collapse" data-parent="#accordion" href="#ar_info_pnl_st"><i class="fa fa-bar-chart" aria-hidden="true"></i> Statistics</a></h3> </div> <div id="ar_info_pnl_st" class="panel-collapse collapse in"> <div class="panel-body ar_info_pnl"> <ul class="list-group list-group-bordered list-group-noicon" style="display:block !important;max-height:9999px"> <li class="list-group-item"><a class="tag_a">Article View: <i>727</i></a></li> <li class="list-group-item"><a class="tag_a">PDF Download: <i>603</i></a></li> </ul> </div> </div> </div> </div> <!-- /LEFT --> </div> </section> <div id="cite-apa" class="modal fade" tabindex="-1" role="dialog" aria-labelledby="myModalLabel" aria-hidden="true"> <div class="modal-dialog"> <div class="modal-content"> <!-- Modal Header --> <div class="modal-header"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> <h4 class="modal-title" id="myModalLabel">APA</h4> </div> <!-- Modal Body --> <div class="modal-body"> <p>HASNI, M., AGUIR, M., Babai, M., & JEMAI, Z. (2024). A Machine Learning Model for Accurate Credit Risk Forecasting in Banking Systems: An Empirical Investigation. <em>International Journal of Supply and Operations Management</em>, 11(2), 168-187. doi: 10.22034/ijsom.2023.109898.2722</p> </div> </div> </div> </div> <div id="cite-mla" class="modal fade" tabindex="-1" role="dialog" aria-labelledby="myModalLabel" aria-hidden="true"> <div class="modal-dialog"> <div class="modal-content"> <!-- Modal Header --> <div class="modal-header"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> <h4 class="modal-title" id="myModalLabel">MLA</h4> </div> <!-- Modal Body --> <div class="modal-body"> <p>Marwa HASNI; Mohamed Salah AGUIR; Mohamed Zied Babai; Zied JEMAI. "A Machine Learning Model for Accurate Credit Risk Forecasting in Banking Systems: An Empirical Investigation". <em>International Journal of Supply and Operations Management</em>, 11, 2, 2024, 168-187. doi: 10.22034/ijsom.2023.109898.2722</p> </div> </div> </div> </div> <div id="cite-harvard" class="modal fade" tabindex="-1" role="dialog" aria-labelledby="myModalLabel" aria-hidden="true"> <div class="modal-dialog"> <div class="modal-content"> <!-- Modal Header --> <div class="modal-header"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> <h4 class="modal-title" id="myModalLabel">HARVARD</h4> </div> <!-- Modal Body --> <div class="modal-body"> <p>HASNI, M., AGUIR, M., Babai, M., JEMAI, Z. (2024). 'A Machine Learning Model for Accurate Credit Risk Forecasting in Banking Systems: An Empirical Investigation', <em>International Journal of Supply and Operations Management</em>, 11(2), pp. 168-187. doi: 10.22034/ijsom.2023.109898.2722</p> </div> </div> </div> </div> <div id="cite-vancouver" class="modal fade" tabindex="-1" role="dialog" aria-labelledby="myModalLabel" aria-hidden="true"> <div class="modal-dialog"> <div class="modal-content"> <!-- Modal Header --> <div class="modal-header"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> <h4 class="modal-title" id="myModalLabel">VANCOUVER</h4> </div> <!-- Modal Body --> <div class="modal-body"> <p>HASNI, M., AGUIR, M., Babai, M., JEMAI, Z. A Machine Learning Model for Accurate Credit Risk Forecasting in Banking Systems: An Empirical Investigation. <em>International Journal of Supply and Operations Management</em>, 2024; 11(2): 168-187. doi: 10.22034/ijsom.2023.109898.2722</p> </div> </div> </div> </div> </div> </div> <!-- /MAIN CONTENT --> <!-- Subscribe --> <section class="alternate padding-xxs"> </section> <!-- /Subscribe --> <!-- FOOTER --> <div class="container"> <footer id="footer"> <div class="scrollup" id="scroll" href="#"><span></span></div> <div class="row"> <div class="col-md-2"> <!-- Links --> <h4 class="">Explore Journal</h4> <ul class="footer-links list-unstyled"> <li id="fli_home"><a href="./">Home</a></li> <li id="fli_about"><a href="./journal/about">About Journal</a></li> <li id="fli_Edb"><a href="./journal/editorial.board">Editorial Board</a></li> <li id="fli_submit"><a href="./author">Submit Manuscript</a></li> <li id="fli_contactus"><a href="./journal/contact.us">Contact Us</a></li> <li id="fli_glossary"><a href="./journal/glossary">Glossary</a></li> <li id="fli_order_hrdj"><a href="./journal/subscription.form">Hard Copy Subscription</a></li> <li id="fli_sitemap"><a href="./sitemap.xml?usr">Sitemap</a></li> </ul> <!-- /Links --> </div> <div class="col-md-3"> <!-- Latest News --> <h4 class="">Latest News</h4> <ul class="footer-posts list-unstyled"> <li> <a href="./news?newsCode=173">SD of ISC: Sustainable Development of Intelligent Supply Chains based on Trends and Future Directions: Application of Novel Solution Techniques</a> <small class="ltr">2023-03-05</small> </li> </ul> <!-- /Latest News --> </div> <div class="col-md-3"> <!-- Footer Note --> <div><p><a title="Linkedin" href="http://www.linkedin.com/company/ijsom?trk=eml-cp_mktg-btn-welcome-20120607%2F"><img src="images/linkedin.jpg" alt="linkedin" /></a></p></div> <!-- /Footer Note --> </div> <div class="col-md-4"> <!-- Newsletter Form --> <h4 class="">Newsletter Subscription</h4> <p>Subscribe to the journal newsletter and receive the latest news and updates</p> <form class="validate" action="" method="post" data-success="Subscription saved successfully." data-toastr-position="bottom-right"> <input type="hidden" name="_token" value="026269544207c49ef4c202836aac2514a6959a87f76a9ffc"/> <div class="input-group"> <span class="input-group-addon"><i class="fa fa-envelope"></i></span> <input type="email" id="email" name="email" required="required" class="form-control required sbs_email" placeholder="Enter your Email" oninvalid="this.setCustomValidity('Enter a valid email address.')" oninput="this.setCustomValidity('')"> <span class="input-group-btn"> <button class="btn btn-primary mybtn" type="submit">Subscribe</button> </span> </div> </form> <!-- /Newsletter Form --> <!-- Social Icons --> <div class="margin-top-20"> <a class="noborder" href="" target="_blank" class="social-icon social-icon-border social-facebook pull-left block" data-toggle="tooltip" data-placement="top" title="Facebook"> <i class="fa fa-facebook-square" aria-hidden="true"></i> </a> <a class="noborder" href="" target="_blank" class="social-icon social-icon-border social-facebook pull-left block" data-toggle="tooltip" data-placement="top" title="Twitter"> <i class="fa fa-twitter-square" aria-hidden="true"></i> </a> <a class="noborder" href="" target="_blank" class="social-icon social-icon-border social-facebook pull-left block" data-toggle="tooltip" data-placement="top" title="Linkedin"> <i class="fa fa-linkedin-square" aria-hidden="true"></i> </a> <a class="noborder" href="./ju.rss" class="social-icon social-icon-border social-rss pull-left block" data-toggle="tooltip" data-placement="top" title="Rss"><i class="fa fa-rss-square" aria-hidden="true"></i></a> </div> </div> </div> <div class="copyright" style="position: relative"> <ul class="nomargin list-inline mobile-block"> <li>&copy; Journal Management System. <span id='sp_crt'>Powered by <a target='_blank' href='https://www.sinaweb.net/'>Sinaweb</a></span></li> </ul> </div> </footer> </div> <!-- /FOOTER --> </div> <!-- /wrapper --> <!-- SCROLL TO TOP --> <a href="#" id="toTop_old"></a> <!-- PRELOADER --> <div id="preloader"> <div class="inner"> <span class="loader"></span> </div> </div><!-- /PRELOADER --> <!-- JAVASCRIPT FILES --> <script type="text/javascript">var plugin_path = './themes/base/front/assets/plugins/';</script> <script type="text/javascript" src="./themes/base/front/assets/js/scripts.js?v=0.02"></script> <!-- user defined scripts--> <!-- Extra Script Scripts --> <script type="text/javascript"> $('ul.nav li.dropdown').hover(function() { if (window.matchMedia('(max-width: 767px)').matches) return; $(this).find('.dropdown-menu').stop(true, true).delay(200).fadeIn(500); }, function() { if (window.matchMedia('(max-width: 767px)').matches) return; $(this).find('.dropdown-menu').stop(true, true).delay(200).fadeOut(500); }); var btn = $('#toTop_old'); $(window).scroll(function() { if ($(window).scrollTop() > 300) { btn.addClass('show'); } else { btn.removeClass('show'); } }); btn.on('click', function(e) { e.preventDefault(); $('html, body').animate({scrollTop:0}, '300'); }); window.cookieconsent.initialise({ "palette": { "popup": { "background": "#222" }, "button": { "background": "#f1d600" } }, "content": { "message": "This website uses cookies to ensure you get the best experience on our website.", "dismiss": "Got it!", "link": "" } }); </script> </body> </html><div id="actn_modal" class="modal fade" tabindex="-1"> <div id="" class="modal-dialog modal-dialog madal-aw"> <div class="modal-content"> <div class="modal-header"> <button type="button" class="close pull-right" data-dismiss="modal" aria-hidden="true" href="#lost">&times;</button> <h5 class="modal-title"></h5> </div> <div class="modal-body"></div> <div class="modal-footer"></div> </div> </div> </div>

Pages: 1 2 3 4 5 6 7 8 9 10