CINXE.COM
Search results for: neurophysiology
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: neurophysiology</title> <meta name="description" content="Search results for: neurophysiology"> <meta name="keywords" content="neurophysiology"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="neurophysiology" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="neurophysiology"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: neurophysiology</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Neurophysiology of Domain Specific Execution Costs of Grasping in Working Memory Phases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rumeysa%20Gunduz">Rumeysa Gunduz</a>, <a href="https://publications.waset.org/abstracts/search?q=Dirk%20Koester"> Dirk Koester</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Schack"> Thomas Schack</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Previous behavioral studies have shown that working memory (WM) and manual actions share limited capacity cognitive resources, which in turn results in execution costs of manual actions in WM. However, to the best of our knowledge, there is no study investigating the neurophysiology of execution costs. The current study aims to fill this research gap investigating the neurophysiology of execution costs of grasping in WM phases (encoding, maintenance, retrieval) considering verbal and visuospatial domains of WM. A WM-grasping dual task paradigm was implemented to examine execution costs. Baseline single task required performing verbal or visuospatial version of a WM task. Dual task required performing the WM task embedded in a high precision grasp to place task. 30 participants were tested in a 2 (single vs. dual task) x 2 (visuo-spatial vs. verbal WM) within subject design. Event related potentials (ERPs) were extracted for each WM phase separately in the single and dual tasks. Memory performance for visuospatial WM, but not for verbal WM, was significantly lower in the dual task compared to the single task. Encoding related ERPs in the single task revealed different ERPs of verbal WM and visuospatial WM at bilateral anterior sites and right posterior site. In the dual task, bilateral anterior difference disappeared due to bilaterally increased anterior negativities for visuospatial WM. Maintenance related ERPs in the dual task revealed different ERPs of verbal WM and visuospatial WM at bilateral posterior sites. There was also anterior negativity for visuospatial WM. Retrieval related ERPs in the single task revealed different ERPs of verbal WM and visuospatial WM at bilateral posterior sites. In the dual task, there was no difference between verbal WM and visuospatial WM. Behavioral and ERP findings suggest that execution of grasping shares cognitive resources only with visuospatial WM, which in turn results in domain specific execution costs. Moreover, ERP findings suggest unique patterns of costs in each WM phase, which supports the idea that each WM phase reflects a separate cognitive process. This study not only contributes to the understanding of cognitive principles of manual action control, but also contributes to the understanding of WM as an entity consisting of separate modalities and cognitive processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dual%20task" title="dual task">dual task</a>, <a href="https://publications.waset.org/abstracts/search?q=grasping%20execution" title=" grasping execution"> grasping execution</a>, <a href="https://publications.waset.org/abstracts/search?q=neurophysiology" title=" neurophysiology"> neurophysiology</a>, <a href="https://publications.waset.org/abstracts/search?q=working%20memory%20domains" title=" working memory domains"> working memory domains</a>, <a href="https://publications.waset.org/abstracts/search?q=working%20memory%20phases" title=" working memory phases "> working memory phases </a> </p> <a href="https://publications.waset.org/abstracts/35773/neurophysiology-of-domain-specific-execution-costs-of-grasping-in-working-memory-phases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35773.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> All-or-None Principle and Weakness of Hodgkin-Huxley Mathematical Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Sadegh%20Zadeh">S. A. Sadegh Zadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Kambhampati"> C. Kambhampati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mathematical and computational modellings are the necessary tools for reviewing, analysing, and predicting processes and events in the wide spectrum range of scientific fields. Therefore, in a field as rapidly developing as neuroscience, the combination of these two modellings can have a significant role in helping to guide the direction the field takes. The paper combined mathematical and computational modelling to prove a weakness in a very precious model in neuroscience. This paper is intended to analyse all-or-none principle in Hodgkin-Huxley mathematical model. By implementation the computational model of Hodgkin-Huxley model and applying the concept of all-or-none principle, an investigation on this mathematical model has been performed. The results clearly showed that the mathematical model of Hodgkin-Huxley does not observe this fundamental law in neurophysiology to generating action potentials. This study shows that further mathematical studies on the Hodgkin-Huxley model are needed in order to create a model without this weakness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=all-or-none" title="all-or-none">all-or-none</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20modelling" title=" computational modelling"> computational modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20model" title=" mathematical model"> mathematical model</a>, <a href="https://publications.waset.org/abstracts/search?q=transmembrane%20voltage" title=" transmembrane voltage"> transmembrane voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=action%20potential" title=" action potential"> action potential</a> </p> <a href="https://publications.waset.org/abstracts/80739/all-or-none-principle-and-weakness-of-hodgkin-huxley-mathematical-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80739.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">617</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> The Neuropsychology of Autism and ADHD</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anvikshaa%20Bisen">Anvikshaa Bisen</a>, <a href="https://publications.waset.org/abstracts/search?q=Krish%20Makkar"> Krish Makkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Professionals misdiagnose autism by ticking off symptoms on a checklist without questioning the causes of said symptoms, and without understanding the innate neurophysiology of the autistic brain. A dysfunctional cingulate gyrus (CG) hyperfocuses attention in the left frontal lobe (logical/analytical) with no ability to access the right frontal lobe (emotional/creative), which plays a central role in spontaneity, social behavior, and nonverbal abilities. Autistic people live in a specialized inner space that is entirely intellectual, free from emotional and social distractions. They have no innate biological way of emotionally connecting with other people. Autistic people process their emotions intellectually, a process that can take 24 hours, by which time it is too late to have felt anything. An inactive amygdala makes it impossible for autistic people to experience fear. Because they do not feel emotion, they have no emotional memories. All memories are of events that happened about which they felt no emotion at the time and feel no emotion when talking about it afterward. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autism" title="autism">autism</a>, <a href="https://publications.waset.org/abstracts/search?q=Asperger" title=" Asperger"> Asperger</a>, <a href="https://publications.waset.org/abstracts/search?q=Asd" title=" Asd"> Asd</a>, <a href="https://publications.waset.org/abstracts/search?q=neuropsychology" title=" neuropsychology"> neuropsychology</a>, <a href="https://publications.waset.org/abstracts/search?q=neuroscience" title=" neuroscience"> neuroscience</a> </p> <a href="https://publications.waset.org/abstracts/182102/the-neuropsychology-of-autism-and-adhd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182102.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">48</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> A Portable Cognitive Tool for Engagement Level and Activity Identification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Terry%20Teo">Terry Teo</a>, <a href="https://publications.waset.org/abstracts/search?q=Sun%20Woh%20Lye"> Sun Woh Lye</a>, <a href="https://publications.waset.org/abstracts/search?q=Yufei%20Li"> Yufei Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Zainuddin%20Zakaria"> Zainuddin Zakaria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wearable devices such as Electroencephalography (EEG) hold immense potential in the monitoring and assessment of a person’s task engagement. This is especially so in remote or online sites. Research into its use in measuring an individual's cognitive state while performing task activities is therefore expected to increase. Despite the growing number of EEG research into brain functioning activities of a person, key challenges remain in adopting EEG for real-time operations. These include limited portability, long preparation time, high number of channel dimensionality, intrusiveness, as well as level of accuracy in acquiring neurological data. This paper proposes an approach using a 4-6 EEG channels to determine the cognitive states of a subject when undertaking a set of passive and active monitoring tasks of a subject. Air traffic controller (ATC) dynamic-tasks are used as a proxy. The work found that when using the channel reduction and identifier algorithm, good trend adherence of 89.1% can be obtained between a commercially available BCI 14 channel Emotiv EPOC+ EEG headset and that of a carefully selected set of reduced 4-6 channels. The approach can also identify different levels of engagement activities ranging from general monitoring ad hoc and repeated active monitoring activities involving information search, extraction, and memory activities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assessment" title="assessment">assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=neurophysiology" title=" neurophysiology"> neurophysiology</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring" title=" monitoring"> monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=EEG" title=" EEG"> EEG</a> </p> <a href="https://publications.waset.org/abstracts/172836/a-portable-cognitive-tool-for-engagement-level-and-activity-identification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172836.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Chronic and Sub-Acute Lumbosacral Radiculopathies Behave Differently to Repeated Back Extension Exercises</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sami%20Alabdulwahab">Sami Alabdulwahab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Repeated back extension exercises (RBEEs) are among the management options for symptoms associated with lumbosacral radiculopathy (LSR). RBEEs have been reported to cause changes in the distribution and intensity of radicular symptoms caused by possible compression/decompression of the compromised nerve root. Purpose: The purpose of this study was to investigate the effects of the RBEEs on the neurophysiology of the compromised nerve root and on standing mobility and pain intensity in patients with sub-acute and chronic LSR. Methods: A total of 40 patients with unilateral sub-acute/chronic lumbosacral radiculopathy voluntarily participated in the study; the patients performed 3 sets of 10 RBEEs in the prone position with 1 min of rest between the sets. The soleus H-reflex, standing mobility and pain intensity were recorded before and after the RBEEs. Results: The results of the study showed that the RBEEs significantly improved the H-reflex, standing mobility and pain intensity in patients with sub-acute LSR (p<0.01); there was not a significant improvement in the patients with chronic LSR (p<0.61). Conclusion: RBEEs in prone position is recommended for improving the neurophysiological function of the compromised nerve root and standing mobility in patients with sub-acute LSR. Implication: Sub-acute and chronic LSR responded differently to RBEEs. Sub-acute LSR appear to have flexible and movable disc structures, which could be managed with RBEEs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=h-reflex" title="h-reflex">h-reflex</a>, <a href="https://publications.waset.org/abstracts/search?q=back%20extension" title=" back extension"> back extension</a>, <a href="https://publications.waset.org/abstracts/search?q=lumbosacral%20radiculopathy" title=" lumbosacral radiculopathy"> lumbosacral radiculopathy</a>, <a href="https://publications.waset.org/abstracts/search?q=pain" title=" pain"> pain</a> </p> <a href="https://publications.waset.org/abstracts/34951/chronic-and-sub-acute-lumbosacral-radiculopathies-behave-differently-to-repeated-back-extension-exercises" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34951.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">478</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Teaching Neuroscience from Neuroscience: an Approach Based on the Allosteric Learning Model, Pathfinder Associative Networks and Teacher Professional Knowledge </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Freddy%20Rodriguez%20Saza">Freddy Rodriguez Saza</a>, <a href="https://publications.waset.org/abstracts/search?q=Erika%20Sanabria"> Erika Sanabria</a>, <a href="https://publications.waset.org/abstracts/search?q=Jair%20Tibana"> Jair Tibana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, the important role of neurosciences in the professional training of the physical educator is known, highlighting in the teaching-learning process aspects such as the nervous structures involved in the adjustment of posture and movement, the neurophysiology of locomotion, the process of nerve impulse transmission, and the relationship between physical activity, learning, and cognition. The teaching-learning process of neurosciences is complex, due to the breadth of the contents, the diversity of teaching contexts required, and the demanding ability to relate concepts from different disciplines, necessary for the correct understanding of the function of the nervous system. This text presents the results of the application of a didactic environment based on the Allosteric Learning Model in morphophysiology students of the Faculty of Military Physical Education, Military School of Cadets of the Colombian Army (Bogotá, Colombia). The research focused then, on analyzing the change in the cognitive structure of the students on neurosciences. Methodology. [1] The predominant learning styles were identified. [2] Students' cognitive structure, core concepts, and threshold concepts were analyzed through the construction of Pathfinder Associative Networks. [3] Didactic Units in Neuroscience were designed to favor metacognition, the development of Executive Functions (working memory, cognitive flexibility, and inhibitory control) that led students to recognize their errors and conceptual distortions and to overcome them. [4] The Teacher's Professional Knowledge and the role of the assessment strategies applied were taken into account, taking into account the perspective of the Dynamizer, Obstacle, and Questioning axes. In conclusion, the study found that physical education students achieved significant learning in neuroscience, favored by the development of executive functions and by didactic environments oriented with the predominant learning styles and focused on increasing cognitive networks and overcoming difficulties, neuromyths and neurophobia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=allosteric%20learning%20model" title="allosteric learning model">allosteric learning model</a>, <a href="https://publications.waset.org/abstracts/search?q=military%20physical%20education" title=" military physical education"> military physical education</a>, <a href="https://publications.waset.org/abstracts/search?q=neurosciences" title=" neurosciences"> neurosciences</a>, <a href="https://publications.waset.org/abstracts/search?q=pathfinder%20associative%20networks" title=" pathfinder associative networks"> pathfinder associative networks</a>, <a href="https://publications.waset.org/abstracts/search?q=teacher%20professional%20knowledge" title=" teacher professional knowledge"> teacher professional knowledge</a> </p> <a href="https://publications.waset.org/abstracts/139099/teaching-neuroscience-from-neuroscience-an-approach-based-on-the-allosteric-learning-model-pathfinder-associative-networks-and-teacher-professional-knowledge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139099.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Dynamic EEG Desynchronization in Response to Vicarious Pain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Justin%20Durham">Justin Durham</a>, <a href="https://publications.waset.org/abstracts/search?q=Chanda%20Rooney"> Chanda Rooney</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Mather"> Robert Mather</a>, <a href="https://publications.waset.org/abstracts/search?q=Mickie%20Vanhoy"> Mickie Vanhoy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The psychological construct of empathy is to understand a person’s cognitive perspective and experience the other person’s emotional state. Deciphering emotional states is conducive for interpreting vicarious pain. Observing others' physical pain activates neural networks related to the actual experience of pain itself. The study addresses empathy as a nonlinear dynamic process of simulation for individuals to understand the mental states of others and experience vicarious pain, exhibiting self-organized criticality. Such criticality follows from a combination of neural networks with an excitatory feedback loop generating bistability to resonate permutated empathy. Cortical networks exhibit diverse patterns of activity, including oscillations, synchrony and waves, however, the temporal dynamics of neurophysiological activities underlying empathic processes remain poorly understood. Mu rhythms are EEG oscillations with dominant frequencies of 8-13 Hz becoming synchronized when the body is relaxed with eyes open and when the sensorimotor system is in idle, thus, mu rhythm synchrony is expected to be highest in baseline conditions. When the sensorimotor system is activated either by performing or simulating action, mu rhythms become suppressed or desynchronize, thus, should be suppressed while observing video clips of painful injuries if previous research on mirror system activation holds. Twelve undergraduates contributed EEG data and survey responses to empathy and psychopathy scales in addition to watching consecutive video clips of sports injuries. Participants watched a blank, black image on a computer monitor before and after observing a video of consecutive sports injuries incidents. Each video condition lasted five-minutes long. A BIOPAC MP150 recorded EEG signals from sensorimotor and thalamocortical regions related to a complex neural network called the ‘pain matrix’. Physical and social pain are activated in this network to resonate vicarious pain responses to processing empathy. Five EEG single electrode locations were applied to regions measuring sensorimotor electrical activity in microvolts (μV) to monitor mu rhythms. EEG signals were sampled at a rate of 200 Hz. Mu rhythm desynchronization was measured via 8-13 Hz at electrode sites (F3 & F4). Data for each participant’s mu rhythms were analyzed via Fast Fourier Transformation (FFT) and multifractal time series analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=desynchronization" title="desynchronization">desynchronization</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamical%20systems%20theory" title=" dynamical systems theory"> dynamical systems theory</a>, <a href="https://publications.waset.org/abstracts/search?q=electroencephalography%20%28EEG%29" title=" electroencephalography (EEG)"> electroencephalography (EEG)</a>, <a href="https://publications.waset.org/abstracts/search?q=empathy" title=" empathy"> empathy</a>, <a href="https://publications.waset.org/abstracts/search?q=multifractal%20time%20series%20analysis" title=" multifractal time series analysis"> multifractal time series analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=mu%20waveform" title=" mu waveform"> mu waveform</a>, <a href="https://publications.waset.org/abstracts/search?q=neurophysiology" title=" neurophysiology"> neurophysiology</a>, <a href="https://publications.waset.org/abstracts/search?q=pain%20simulation" title=" pain simulation"> pain simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20cognition" title=" social cognition"> social cognition</a> </p> <a href="https://publications.waset.org/abstracts/53524/dynamic-eeg-desynchronization-in-response-to-vicarious-pain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53524.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Approach-Avoidance Conflict in the T-Maze: Behavioral Validation for Frontal EEG Activity Asymmetries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eva%20Masson">Eva Masson</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrea%20K%C3%BCbler"> Andrea Kübler</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Anxiety disorders (AD) are the most prevalent psychological disorders. However, far from most affected individuals are diagnosed and receive treatment. This gap is probably due to the diagnosis criteria, relying on symptoms (according to the DSM-5 definition) with no objective biomarker. Approach-avoidance conflict tasks are one common approach to simulate such disorders in a lab setting, with most of the paradigms focusing on the relationships between behavior and neurophysiology. Approach-avoidance conflict tasks typically place participants in a situation where they have to make a decision that leads to both positive and negative outcomes, thereby sending conflicting signals that trigger the Behavioral Inhibition System (BIS). Furthermore, behavioral validation of such paradigms adds credibility to the tasks – with overt conflict behavior, it is safer to assume that the task actually induced a conflict. Some of those tasks have linked asymmetrical frontal brain activity to induced conflicts and the BIS. However, there is currently no consensus for the direction of the frontal activation. The authors present here a modified version of the T-Maze paradigm, a motivational conflict desktop task, in which behavior is recorded simultaneously to the recording of high-density EEG (HD-EEG). Methods: In this within-subject design, HD-EEG and behavior of 35 healthy participants was recorded. EEG data was collected with a 128 channels sponge-based system. The motivational conflict desktop task consisted of three blocks of repeated trials. Each block was designed to record a slightly different behavioral pattern, to increase the chances of eliciting conflict. This variety of behavioral patterns was however similar enough to allow comparison of the number of trials categorized as ‘overt conflict’ between the blocks. Results: Overt conflict behavior was exhibited in all blocks, but always for under 10% of the trials, in average, in each block. However, changing the order of the paradigms successfully introduced a ‘reset’ of the conflict process, therefore providing more trials for analysis. As for the EEG correlates, the authors expect a different pattern for trials categorized as conflict, compared to the other ones. More specifically, we expect an elevated alpha frequency power in the left frontal electrodes at around 200ms post-cueing, compared to the right one (relative higher right frontal activity), followed by an inversion around 600ms later. Conclusion: With this comprehensive approach of a psychological mechanism, new evidence would be brought to the frontal asymmetry discussion, and its relationship with the BIS. Furthermore, with the present task focusing on a very particular type of motivational approach-avoidance conflict, it would open the door to further variations of the paradigm to introduce different kinds of conflicts involved in AD. Even though its application as a potential biomarker sounds difficult, because of the individual reliability of both the task and peak frequency in the alpha range, we hope to open the discussion for task robustness for neuromodulation and neurofeedback future applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anxiety" title="anxiety">anxiety</a>, <a href="https://publications.waset.org/abstracts/search?q=approach-avoidance%20conflict" title=" approach-avoidance conflict"> approach-avoidance conflict</a>, <a href="https://publications.waset.org/abstracts/search?q=behavioral%20inhibition%20system" title=" behavioral inhibition system"> behavioral inhibition system</a>, <a href="https://publications.waset.org/abstracts/search?q=EEG" title=" EEG"> EEG</a> </p> <a href="https://publications.waset.org/abstracts/185873/approach-avoidance-conflict-in-the-t-maze-behavioral-validation-for-frontal-eeg-activity-asymmetries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185873.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">38</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>