CINXE.COM
Search results for: biotransformation
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: biotransformation</title> <meta name="description" content="Search results for: biotransformation"> <meta name="keywords" content="biotransformation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="biotransformation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="biotransformation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 25</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: biotransformation</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Biotransformation of Monoterpenes by Whole Cells of Eleven Praxelis clematidea-Derived Endophytic Fungi</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daomao%20Yang">Daomao Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Qizhi%20Wang"> Qizhi Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Monoterpenoids are mainly found in plant essential oils and they are ideal substrates for biotransformation into oxygen-containing derivatives with important commercial value due to their low price and simple structure. In this paper, eleven strains of endophytic fungi from <em>Praxelis clematidea</em> were used as test strains to conduct the whole cell biotransformation of the monoterpenoids: (+)-limonene, (-)-limonene and myrcene. The fungi were inoculated in 50 ml Sabouraud medium and incubated at 30 ℃ with the agitation of 150 r/min for 6 d, and then 0.5% (v/v) substrates were added into the medium and biotransformed for further 3 d. Afterwards the cultures were filtered, and extracted using equal volume of ethyl acetate. The metabolites were analyzed by GC-MS technique with NIST database. The Total Ion Chromatogram of the extractions from the eleven strains showed that the main product of (+)- and (-)-limonene biotransformation was limonene-1,2-diol, while it is limonene and linalool oxide for biotransformation of myrcene. This work will help screen the microorganisms to biotransform the monoterpenes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=endophytic%20fungi" title="endophytic fungi">endophytic fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=%28%2B%29%E2%80%93limonene" title=" (+)–limonene"> (+)–limonene</a>, <a href="https://publications.waset.org/abstracts/search?q=%28-%29%E2%80%93limonene" title=" (-)–limonene"> (-)–limonene</a>, <a href="https://publications.waset.org/abstracts/search?q=myrcene" title=" myrcene"> myrcene</a> </p> <a href="https://publications.waset.org/abstracts/132414/biotransformation-of-monoterpenes-by-whole-cells-of-eleven-praxelis-clematidea-derived-endophytic-fungi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132414.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Screening of Four Malaysian Isolated Endophytes with Candesartan in a Microtiter Plate </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rasha%20Saad">Rasha Saad</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean%20Frederic%20Weber"> Jean Frederic Weber</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatimah%20Bebe"> Fatimah Bebe</a>, <a href="https://publications.waset.org/abstracts/search?q=Sadia%20Sultan"> Sadia Sultan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of study was to screen the effects of candesartan and four endophytic fungi for their potential in microbial biotransformation. In this experiment, four types of unidentified fungi with the codes of TH2L1, TH2R10, TH1P35 and TH1S46 were used in screening process by MECFUS (Microtiter plate, Elicitors, Combination, Freeze-drying, UHPLC, Statistical analysis) protocol. The experiment was carried out by using 96-well microtiter plate (MTP) with different media and elicitors. Various media with two concentrations of Potato Dextrose Broth (PDB) and elicitors used were to induce the production of secondary metabolites from the fungi as well as the biotransformation of the drug compound. After incubation, cultures were extracted by freeze drying method and finally analyzed by ultra-High performance Liquid Chromatography (uHPLC). The extracts analyzed by uHPLC followed by LC/Ms, demonstrated the presence of biotransformation products from the drug compound and elicitation of the secondary metabolism from the fungi by the occurrence of the additional peaks. From the four fungi, TH1S46 showed highly potential produced secondary metabolites as well as the biotransformation of candesartan. For other fungi, they responded when candesartan was introduced. Moreover, the additional peaks produced in uHPLC need to be further investigation by using LC-MS or NMR. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biotransformation" title="biotransformation">biotransformation</a>, <a href="https://publications.waset.org/abstracts/search?q=candesartan" title=" candesartan"> candesartan</a>, <a href="https://publications.waset.org/abstracts/search?q=endophytes" title=" endophytes"> endophytes</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20metabolites" title=" secondary metabolites"> secondary metabolites</a> </p> <a href="https://publications.waset.org/abstracts/70901/screening-of-four-malaysian-isolated-endophytes-with-candesartan-in-a-microtiter-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70901.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> The Influence of Carbamazepine on the Activity of CYP3A4 in Patients with Alcoholism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mikhail%20S.%20Zastrozhin">Mikhail S. Zastrozhin</a>, <a href="https://publications.waset.org/abstracts/search?q=Valery%20V.%20Smirnov"> Valery V. Smirnov</a>, <a href="https://publications.waset.org/abstracts/search?q=Dmitry%20A.%20Sychev"> Dmitry A. Sychev</a>, <a href="https://publications.waset.org/abstracts/search?q=Ludmila%20M.%20Savchenko"> Ludmila M. Savchenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Evgeny%20A.%20Bryun"> Evgeny A. Bryun</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20O.%20Nechaev"> Mark O. Nechaev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cytochrome P-450 isoenzyme 3A4 takes part in the biotransformation of medical drugs. The activity of CYP isoenzymes depends on genetic (polymorphisms of genes which encoded it) and phenotypic factors (a kind of food, a concomitant drug therapy). The aim of the study was to evaluate a carbamazepine effect on the CYP3A4 activity in patients with alcohol addiction. The study included 25 men with alcohol dependence, who received haloperidol during the exacerbation of the addiction. CYP3A4 activity was assessed by urinary 6-beta-hydroxycortisol/cortisol ratios measured by high performance liquid chromatography with mass spectrometry. The study modeled a graph and an equation of the logarithmic regression, that reflects the dependence of CYP3A4 activity on a dose of carbamazepine: y = 5,5 * 9,1 * 10-5 * x2. The study statistically significant demonstrates the effect of carbamazepine on CYP2D6 isozyme activity in patients with alcohol addiction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CYP3A4" title="CYP3A4">CYP3A4</a>, <a href="https://publications.waset.org/abstracts/search?q=biotransformation" title=" biotransformation"> biotransformation</a>, <a href="https://publications.waset.org/abstracts/search?q=carbamazepine" title=" carbamazepine"> carbamazepine</a>, <a href="https://publications.waset.org/abstracts/search?q=alcohol%20abuse" title=" alcohol abuse"> alcohol abuse</a> </p> <a href="https://publications.waset.org/abstracts/56652/the-influence-of-carbamazepine-on-the-activity-of-cyp3a4-in-patients-with-alcoholism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56652.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> The Metabolite Profiling of Fulvestrant-3 Boronic Acid under Biological Oxidation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Changde%20Zhang">Changde Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiang%20Zhang"> Qiang Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shilong%20Zheng"> Shilong Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiawang%20Liu"> Jiawang Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Shanchun%20Guo"> Shanchun Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiu%20Zhong"> Qiu Zhong</a>, <a href="https://publications.waset.org/abstracts/search?q=Guangdi%20Wang"> Guangdi Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fulvestrant was approved by FDA to treat breast cancer as a selective estrogen receptor downregulator (SERD) with intramuscular injection administration. ZB716, a fulvestarnt-3 boronic acid, is an SERD with comparable anticancer effect to fulvestrant, but could produce good pharmacokinetic properties under oral administration with mice or rat models. To understand why ZB716 produced much better oral bioavailability, it was proposed that the boronic acid blocked the phase II direct biotransformation with the hydroxyl group on the 3 position of the aromatic ring on fulvestrant. In this study, ZB716 or fulvestrant was incubated with human liver microsome and oxidation cofactor NADPH in vitro. Their metabolites after oxidation were profiled with the Q-Exactive, a high-resolution mass spectrometer. The result showed that ZB716 blocked the forming of hydroxyl groups on its benzene ring except for the oxidation of C-B bond forming fulvestrant in its metabolites, and the concentration of fulvestrant with one more hydroxyl group found in the metabolites from incubation with fulvestrant was about 34 fold high as that formed from incubation with ZB716. Compared to fulvestrant, ZB716 is expected to be much difficult to be further bio-transformed into more hydrophilic compounds, to be difficult excreted out of blood system, and to have longer residence time in blood, which can lead to higher oral bioavailability. This study provided evidence to explain the high bioavailability of ZB716 after oral administration from the perspective of its difficulty of oxidation, a phase I biotransformation, on positions on its aromatic ring. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biotransformation" title="biotransformation">biotransformation</a>, <a href="https://publications.waset.org/abstracts/search?q=fulvestrant" title=" fulvestrant"> fulvestrant</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolite%20profiling" title=" metabolite profiling"> metabolite profiling</a>, <a href="https://publications.waset.org/abstracts/search?q=ZB716" title=" ZB716"> ZB716</a> </p> <a href="https://publications.waset.org/abstracts/72780/the-metabolite-profiling-of-fulvestrant-3-boronic-acid-under-biological-oxidation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72780.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Plant Cell Culture to Produce Valuable Natural Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jehad%20Dumireih">Jehad Dumireih</a>, <a href="https://publications.waset.org/abstracts/search?q=Malak%20Dmirieh"> Malak Dmirieh</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Wink"> Michael Wink</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work is aimed to use plant cell suspension cultures of Crataegus monogyna for biosynthesis of valuable natural products by using quercetin as an inexpensive precursor. Suspension cell cultures of C. monogyna were established by using Murashige and Skoog medium (MS) supplemented with 1 mg/L 2,4-dichlorophenoxyacetic acid and 1 mg/L kinetin. Cells were harvested from the cultures and extracted by using methanol and ethyl acetate; then the extracts were used for the identification of isoquercetin by HPLC and by mass spectrometry. The incubation of the cells with 0.24 mM quercetin for one week resulted in an 16 fold increase of isoquercetin biosynthesis; the growth rate of the cells increased by 20%. Moreover, the biosynthesis of isoquercetin was enhanced by 40% when we divided the added quercetin into three portions each one with concentration 0.12 mM supplied at 3 days intervals. In addition, we didn’t find any positive effects of adding different concentrations the precursors phenylalanine (0.2 mM) and galactose to the cell cultures. In conclusion, the efficiency of the biotransformation of quercetin into isoquercetin depended on the concentration quercetin, its incubation time and the way of its administration. The results of the present work suggest that the biotechnological methods such as cell suspension cultures could be successfully used to obtain highly valuable natural product starting from inexpensive compound. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosynthesis" title="biosynthesis">biosynthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=biotransformation" title=" biotransformation"> biotransformation</a>, <a href="https://publications.waset.org/abstracts/search?q=Crataegus" title=" Crataegus"> Crataegus</a>, <a href="https://publications.waset.org/abstracts/search?q=isoquercetin" title=" isoquercetin"> isoquercetin</a> </p> <a href="https://publications.waset.org/abstracts/34551/plant-cell-culture-to-produce-valuable-natural-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34551.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">499</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Biotransformation Process for the Enhanced Production of the Pharmaceutical Agents Sakuranetin and Genkwanin: Poised to be Potent Therapeuctic Drugs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Niranjan%20Koirala">Niranjan Koirala</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumangala%20Darsandhari"> Sumangala Darsandhari</a>, <a href="https://publications.waset.org/abstracts/search?q=Hye%20Jin%20Jung"> Hye Jin Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae%20Kyung%20Sohng"> Jae Kyung Sohng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sakuranetin, an antifungal agent and genkwanin, an anti-inflammatory agent, are flavonoids with several potential pharmaceutical applications. To produce such valuable flavonoids in large quantity, an Escherichia coli cell factory has been created. E. coli harboring O-methyltransferase (SaOMT2) derived from Streptomyces avermitilis was employed for regiospecific methylation of naringenin and apigenin. In order to increase the production via biotransformation, metK gene was overexpressed and the conditions were optimized. The maximum yield of sakuranetin and genkwanin under optimized conditions was 197 µM and 170 µM respectively when 200 µM of naringenin and apigenin were supplemented in the separate cultures. Furthermore, sakuranetin was purified in large scale and used as a substrate for in vitro glycosylation by YjiC to produce glucose and galactose derivatives of sakuranetin for improved solubility. We also found that unlike naringenin, sakuranetin effectively inhibits α-melanocyte stimulating hormone (α-MSH)-stimulated melanogenesis in B16F10 melanoma cells. In addition, genkwanin more potently inhibited angiogenesis than apigenin. Based on our findings, we speculate that these compounds warrant further investigation in vivo as potential new therapeutic anti-carcinogenic, anti-melanogenic and anti-angiogenic agents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-carcinogenic" title="anti-carcinogenic">anti-carcinogenic</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-melanogenic" title=" anti-melanogenic"> anti-melanogenic</a>, <a href="https://publications.waset.org/abstracts/search?q=glycosylation" title=" glycosylation"> glycosylation</a>, <a href="https://publications.waset.org/abstracts/search?q=methylation" title=" methylation"> methylation</a> </p> <a href="https://publications.waset.org/abstracts/29261/biotransformation-process-for-the-enhanced-production-of-the-pharmaceutical-agents-sakuranetin-and-genkwanin-poised-to-be-potent-therapeuctic-drugs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">609</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> In vitro Callus Production from Lantana Camara: A Step towards Biotransformation Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maged%20El-Sayed%20Mohamed">Maged El-Sayed Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plant tissue culture practices are presented nowadays as the most promising substitute to a whole plant in the terms of secondary metabolites production. They offer the advantages of high production, tunability and they have less effect on plant ecosystems. Lantana camara is a weed, which is common all over the world as an ornamental plant. Weeds can adapt to any type of soil and climate due to their rich cellular machinery for secondary metabolites’ production. This characteristic is found in Lantana camara as a plant of very rich diversity of secondary metabolites with no dominant class of compounds. Aim: This trait has encouraged the author to develop tissue culture experiments for Lantana camara to be a platform for production and manipulation of secondary metabolites through biotransformation. Methodology: The plant was collected in its flowering stage in September 2014, from which explants were prepared from shoot tip, auxiliary bud and leaf. Different types of culture media were tried as well as four phytohormones and their combinations; NAA, 2,4-D, BAP and kinetin. Explants were grown in dark or in 12 hours dark and light cycles at 25°C. A metabolic profile for the produced callus was made and then compared to the whole plant profile. The metabolic profile was made using GC-MS for volatile constituents (extracted by n-hexane) and by HPLC-MS and capillary electrophoresis-mass spectrometry (CE-MS) for non-volatile constituents (extracted by ethanol and water). Results: The best conditions for the callus induction was achieved using MS media supplied with 30 gm sucrose and NAA/BAP (1:0.2 mg/L). Initiation of callus was favoured by incubation in dark for 20 day. The callus produced under these conditions showed yellow colour, which changed to brownish after 30 days. The rate of callus growth was high, expressed in the callus diameter, which reached to 1.15±0.2 cm in 30 days; however, the induction of callus delayed for 15 days. The metabolic profile for both volatile and non-volatile constituents of callus showed more simple background metabolites than the whole plant with two new (unresolved) peaks in the callus’ nonvolatile constituents’ chromatogram. Conclusion: Lantana camara callus production can be itself a source of new secondary metabolites and could be used for biotransformation studies due to its simple metabolic background, which allow easy identification of newly formed metabolites. The callus production gathered the simple metabolic background with the rich cellular secondary metabolite machinery of the plant, which could be elicited to produce valuable medicinally active products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capillary%20electrophoresis-mass%20spectrometry" title="capillary electrophoresis-mass spectrometry">capillary electrophoresis-mass spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20chromatography" title=" gas chromatography"> gas chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolic%20profile" title=" metabolic profile"> metabolic profile</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20tissue%20culture" title=" plant tissue culture"> plant tissue culture</a> </p> <a href="https://publications.waset.org/abstracts/40526/in-vitro-callus-production-from-lantana-camara-a-step-towards-biotransformation-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40526.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Development of Broad Spectrum Nitrilase Biocatalysts and Bioprocesses for Nitrile Biotransformation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Avinash%20Vellore%20Sunder">Avinash Vellore Sunder</a>, <a href="https://publications.waset.org/abstracts/search?q=Shikha%20Shah"> Shikha Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Pramod%20P.%20Wangikar"> Pramod P. Wangikar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The enzymatic conversion of nitriles to carboxylic acids by nitrilases has gained significance in the green synthesis of several pharmaceutical precursors and fine chemicals. While nitrilases have been characterized from different sources, the industrial application requires the identification of nitrilases that possess higher substrate tolerance, wider specificity and better thermostability, along with the development of an efficient bioprocess for producing large amounts of nitrilase. To produce large amounts of nitrilase, we developed a fed-batch fermentation process on defined media for the high cell density cultivation of E. coli cells expressing the well-studied nitrilase from Alcaligenes fecalis. A DO-stat feeding approach was employed combined with an optimized post-induction strategy to achieve nitrilase titer of 2.5*105 U/l and 78 g/l dry cell weight. We also identified 16 novel nitrilase sequences from genome mining and analysis of substrate binding residues. The nitrilases were expressed in E. coli and their biocatalytic potential was evaluated on a panel of 22 industrially relevant nitrile substrates using high-throughput screening and HPLC analysis. Nine nitrilases were identified to exhibit high activity on structurally diverse nitriles including aliphatic and aromatic dinitriles, heterocyclic, -hydroxy and -keto nitriles. With fed-batch biotransformation, whole-cell Zobelia galactanivorans nitrilase achieved yields of 2.4 M nicotinic acid and 1.8 M isonicotinic acid from 3-cyanopyridine and 4-cyanopyridine respectively within 5 h, while Cupravidus necator nitrilase enantioselectively converted 740 mM mandelonitrile to (R)–mandelic acid. The nitrilase from Achromobacter insolitus could hydrolyze 542 mM iminodiacetonitrile in 1 h. The availability of highly active nitrilases along with bioprocesses for enzyme production expands the toolbox for industrial biocatalysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocatalysis" title="biocatalysis">biocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=isonicotinic%20acid" title=" isonicotinic acid"> isonicotinic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=iminodiacetic%20acid" title=" iminodiacetic acid"> iminodiacetic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=mandelic%20acid" title=" mandelic acid"> mandelic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrilase" title=" nitrilase"> nitrilase</a> </p> <a href="https://publications.waset.org/abstracts/141515/development-of-broad-spectrum-nitrilase-biocatalysts-and-bioprocesses-for-nitrile-biotransformation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141515.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Development of Technologies for Biotransformation of Aquatic Biological Resources for the Production of Functional, Specialized, Therapeutic, Preventive, and Microbiological Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kira%20Rysakova">Kira Rysakova</a>, <a href="https://publications.waset.org/abstracts/search?q=Vitaly%20Novikov"> Vitaly Novikov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An improved method of obtaining enzymatic collagen hydrolysate from the tissues of marine hydrobionts is proposed, which allows to obtain hydrolysate without pre-isolation of pure collagen. The method can be used to isolate enzymatic collagen hydrolysate from the waste of industrial processing of Red King crab and non-traditional objects - marine holothurias. Comparative analysis of collagen hydrolysates has shown the possibility of their use in a number of nutrient media, but this requires additional optimization of their composition and biological tests on wide sets of test strains of microorganisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=collagen%20hydrolysate" title="collagen hydrolysate">collagen hydrolysate</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20hydrobionts" title=" marine hydrobionts"> marine hydrobionts</a>, <a href="https://publications.waset.org/abstracts/search?q=red%20king%20crab" title=" red king crab"> red king crab</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20holothurias" title=" marine holothurias"> marine holothurias</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymes" title=" enzymes"> enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=exclusive%20HPLC" title=" exclusive HPLC"> exclusive HPLC</a> </p> <a href="https://publications.waset.org/abstracts/146190/development-of-technologies-for-biotransformation-of-aquatic-biological-resources-for-the-production-of-functional-specialized-therapeutic-preventive-and-microbiological-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146190.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Fermentation of Wood Waste by Treating with H₃PO₄-Acetone for Bioethanol Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deokyeong%20Choe">Deokyeong Choe</a>, <a href="https://publications.waset.org/abstracts/search?q=Keonwook%20Nam"> Keonwook Nam</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%20Hoon%20Roh"> Young Hoon Roh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wood waste is a potentially significant resource for economic and environment-friendly recycling. Wood waste represents a key sustainable source of biomass for transformation into bioethanol. Unfortunately, wood waste is highly recalcitrant for biotransformation, which limits its use and prevents economically viable conversion into bioethanol. As a result, an effective pretreatment is necessary to degrade cellulose of the wood waste, which improves the accessibility of cellulase. In this work, a H₃PO₄-acetone pretreatment was selected among the various pretreatment methods and used to dissolve cellulose and lignin. When the H₃PO₄ and acetone were used, 5–6% of the wood waste was found to be very appropriate for saccharification. Also, when the enzymatic saccharification was conducted in the mixture of the wood waste and 0.05 M citrate buffer solution, glucose and xylose were measured to be 80.2 g/L and 9.2 g/L respectively. Furthermore, ethanol obtained after 70 h of fermentation by S. cerevisiae was 30.4 g/L. As a result, the conversion yield from wood waste to bioethanol was calculated to be 57.4%. These results show that the pretreated wood waste can be used as good feedstocks for bioethanol production and that the H₃PO₄-acetone pretreatment can effectively increase the yield of ethanol production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wood%20waste" title="wood waste">wood waste</a>, <a href="https://publications.waset.org/abstracts/search?q=H%E2%82%83PO%E2%82%84-acetone" title=" H₃PO₄-acetone"> H₃PO₄-acetone</a>, <a href="https://publications.waset.org/abstracts/search?q=bioethanol" title=" bioethanol"> bioethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation "> fermentation </a> </p> <a href="https://publications.waset.org/abstracts/84149/fermentation-of-wood-waste-by-treating-with-h3po4-acetone-for-bioethanol-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84149.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">571</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Statistical Optimization of Vanillin Production by Pycnoporus Cinnabarinus 1181</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Swarali%20Hingse">Swarali Hingse</a>, <a href="https://publications.waset.org/abstracts/search?q=Shraddha%20Digole"> Shraddha Digole</a>, <a href="https://publications.waset.org/abstracts/search?q=Uday%20Annapure"> Uday Annapure</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study investigates the biotransformation of ferulic acid to vanillin by Pycnoporus cinnabarinus and its optimization using one-factor-at-a-time method as well as statistical approach. Effect of various physicochemical parameters and medium components was studied using one-factor-at-a-time method. Screening of the significant factors was carried out using L25 Taguchi orthogonal array and then these selected significant factors were further optimized using response surface methodology (RSM). Significant media components obtained using Taguchi L25 orthogonal array were glucose, KH2PO4 and yeast extract. Further, a Box Behnken design was used to investigate the interactive effects of the three most significant media components. The final medium obtained after optimization using RSM containing glucose (34.89 g/L), diammonium tartrate (1 g/L), yeast extract (1.47 g/L), MgSO4•7H2O (0.5 g/L), KH2PO4 (0.15 g/L), and CaCl2•2H2O (20 mg/L) resulted in amplification of vanillin production from 30.88 mg/L to 187.63 mg/L. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ferulic%20acid" title="ferulic acid">ferulic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=pycnoporus%20cinnabarinus" title=" pycnoporus cinnabarinus"> pycnoporus cinnabarinus</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=vanillin" title=" vanillin"> vanillin</a> </p> <a href="https://publications.waset.org/abstracts/20013/statistical-optimization-of-vanillin-production-by-pycnoporus-cinnabarinus-1181" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20013.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Study of Nitrogen Species Fate and Transport in Subsurface: To Assess the Impact of Wastewater Irrigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Mekala">C. Mekala</a>, <a href="https://publications.waset.org/abstracts/search?q=Indumathi%20M.%20Nambi"> Indumathi M. Nambi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nitrogen pollution in groundwater arising from wastewater and fertilizer application through vadose zone is a major problem and it causes a prime risk to groundwater based drinking water supplies. Nitrogenous compounds namely ammonium, nitrate and nitrite fate and transport in soil subsurface were studied experimentally. The major process like sorption, leaching, biotransformation involving microbial growth kinetics, and biological clogging due to biomass growth were assessed and modeled with advection-dispersion reaction equations for ammonium, nitrate and acetate in a saturated, heterogeneous soil medium. The transport process was coupled with freundlich sorption and monod inhibition kinetics for immobile bacteria and permeability reduction due to biomass growth will be verified and validated with the numerical model. This proposed mathematical model will be very helpful in the development of a management model for a sustainable and safe wastewater reuse strategies such as irrigation and groundwater recharge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20species%20transport" title="nitrogen species transport">nitrogen species transport</a>, <a href="https://publications.waset.org/abstracts/search?q=transformation" title=" transformation"> transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20clogging" title=" biological clogging"> biological clogging</a>, <a href="https://publications.waset.org/abstracts/search?q=biokinetic%0D%0Aparameters" title=" biokinetic parameters"> biokinetic parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=contaminant%20transport%20model" title=" contaminant transport model"> contaminant transport model</a>, <a href="https://publications.waset.org/abstracts/search?q=saturated%20soil" title=" saturated soil"> saturated soil</a> </p> <a href="https://publications.waset.org/abstracts/14016/study-of-nitrogen-species-fate-and-transport-in-subsurface-to-assess-the-impact-of-wastewater-irrigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14016.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Kinetics and Specificity of Drosophila melanogaster Molybdo-Flavoenzymes towards Their Substrates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20S.%20Al%20Salhen">Khaled S. Al Salhen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aldehyde oxidase (AO) and xanthine oxidoreductase (XOR) catalyze the oxidation of many different N-heterocyclic compounds as well as aliphatic and aromatic aldehydes to their corresponding lactam and carboxylic acids respectively. The present study examines the oxidation of dimethylamino-cinnamaldehyde (DMAC), vanillin and phenanthridine by AO and xanthine by XOR from Drosophila cytosol. Therefore, the results obtained in the present study showed the DMAC, vanillin and phenanthridine substrates used were found to be good substrates of Drosophila AO and xanthine is the preferred substrate for Drosophila XOR. Km values of AO substrates were observed with DMAC (50±5.4 µM), phenanthridine (80±9.1 µM) and vanillin (303±11.7 µM) respectively for Drosophila cytosol. The Km values for DMAC and phenanthridine were ~6 and ~4 fold lower than that for vanillin as a substrate. The Km for XOR with xanthine using NAD+ as an electron acceptor was 27±4.1 µM. Relatively low Vmax values were obtained with phenanthridine (1.78±0.38 nmol/min/mg protein) and DMAC (1.80±0.35 nmol/min/mg protein). The highest Vmax was obtained from Drosophila cytosol with vanillin (7.58±2.11 nmol/min/mg protein). It is concluded these results that AO and XOR in Drosophila were able to catalyse the biotransformation of numerous substrates of the well-characterised mammalian AO and XOR. The kinetic parameters have indicated that the activity of AO of Drosophila may be a significant factor the oxidation of aromatic aldehyde compounds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aldehyde%20oxidase" title="aldehyde oxidase">aldehyde oxidase</a>, <a href="https://publications.waset.org/abstracts/search?q=xanthine%20oxidoreductase" title=" xanthine oxidoreductase"> xanthine oxidoreductase</a>, <a href="https://publications.waset.org/abstracts/search?q=dimethylamino-cinnamaldehyde" title=" dimethylamino-cinnamaldehyde"> dimethylamino-cinnamaldehyde</a>, <a href="https://publications.waset.org/abstracts/search?q=vanillin" title=" vanillin"> vanillin</a>, <a href="https://publications.waset.org/abstracts/search?q=phenanthridine" title=" phenanthridine"> phenanthridine</a>, <a href="https://publications.waset.org/abstracts/search?q=Drosophila%20melanogaster" title=" Drosophila melanogaster"> Drosophila melanogaster</a> </p> <a href="https://publications.waset.org/abstracts/20585/kinetics-and-specificity-of-drosophila-melanogaster-molybdo-flavoenzymes-towards-their-substrates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20585.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Biotransformation of Glycerine Pitch as Renewable Carbon Resource into P(3HB-co-4HB) Biopolymer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amirul%20Al-Ashraf%20Abdullah">Amirul Al-Ashraf Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Hema%20Ramachandran"> Hema Ramachandran</a>, <a href="https://publications.waset.org/abstracts/search?q=Iszatty%20Ismail"> Iszatty Ismail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oleochemical industry in Malaysia has been diversifying significantly due to the abundant supply of both palm and kernel oils as raw materials as well as the high demand for downstream products such as fatty acids, fatty alcohols and glycerine. However, environmental awareness is growing rapidly in Malaysia because oleochemical industry is one of the palm-oil based industries that possess risk to the environment. Glycerine pitch is one of the scheduled wastes generated from the fatty acid plants in Malaysia and its discharge may cause a serious environmental problem. Therefore, it is imperative to find alternative applications for this waste glycerine. Consequently, the aim of this research is to explore the application of glycerine pitch as direct fermentation substrate in the biosynthesis of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] copolymer, aiming to contribute toward the sustainable production of biopolymer in the world. Utilization of glycerine pitch (10 g/l) together with 1,4-butanediol (5 g/l) had resulted in the achievement of 40 mol% 4HB monomer with the highest PHA concentration of 2.91 g/l. Synthesis of yellow pigment which exhibited antimicrobial properties occurred simultaneously with the production of P(3HB-co-4HB) through the use of glycerine pitch as renewable carbon resource. Utilization of glycerine pitch in the biosynthesis of P(3HB-co-4HB) will not only contribute to reducing society’s dependence on non-renewable resources but also will promote the development of cost efficiency microbial fermentation towards biosustainability and green technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biopolymer" title="biopolymer">biopolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=glycerine%20pitch" title=" glycerine pitch"> glycerine pitch</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20pigment" title=" natural pigment"> natural pigment</a>, <a href="https://publications.waset.org/abstracts/search?q=P%283HB-co-4HB%29" title=" P(3HB-co-4HB)"> P(3HB-co-4HB)</a> </p> <a href="https://publications.waset.org/abstracts/11284/biotransformation-of-glycerine-pitch-as-renewable-carbon-resource-into-p3hb-co-4hb-biopolymer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11284.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Role of Fish Hepatic Aldehyde Oxidase in Oxidative In Vitro Metabolism of Phenanthridine Heterocyclic Aromatic Compound</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20S.%20Al%20Salhen">Khaled S. Al Salhen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aldehyde oxidase is molybdo-flavoenzyme involved in the oxidation of hundreds of endogenous and exogenous and N-heterocyclic compounds and environmental pollutants. Uncharged N-heterocyclic aromatic compounds such phenanthridine are commonly distributed pollutants in soil, air, sediments, surface water and groundwater, and in animal and plant tissues. Phenanthridine as uncharged N-heterocyclic aromatic compound was incubated with partially purified aldehyde oxidase from rainbow trout fish liver. Reversed-phase HLPC method was used to separate the oxidation products from phenanthridine and the metabolite was identified. The 6(5H)-phenanthridinone was identified the major metabolite by partially purified aldehyde oxidase from fish liver. Kinetic constant for the oxidation reactions were determined spectrophotometrically and showed that this substrate has a good affinity (Km = 78 ± 7.6 µM) for hepatic aldehyde oxidase, coupled with a relatively high oxidation rate (0.77± 0.03 nmol/min/mg protein). In addition, the kinetic parameters of hepatic fish aldehyde oxidase towards the phenanthridine substrate indicate that in vitro biotransformation by hepatic fish aldehyde oxidase will be a significant pathway. This study confirms that partially purified aldehyde oxidase from fish liver is indeed the enzyme responsible for the in vitro production 6(5H)-phenanthridinone metabolite as it is a major metabolite by mammalian aldehyde oxidase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aldehyde%20oxidase" title="aldehyde oxidase">aldehyde oxidase</a>, <a href="https://publications.waset.org/abstracts/search?q=fish" title=" fish"> fish</a>, <a href="https://publications.waset.org/abstracts/search?q=phenanthridine" title=" phenanthridine"> phenanthridine</a>, <a href="https://publications.waset.org/abstracts/search?q=specificity" title=" specificity"> specificity</a> </p> <a href="https://publications.waset.org/abstracts/3951/role-of-fish-hepatic-aldehyde-oxidase-in-oxidative-in-vitro-metabolism-of-phenanthridine-heterocyclic-aromatic-compound" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3951.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Production of Novel Antibiotics by Importing eryK and eryG Genes in Streptomyces fradiae</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neda%20Gegar%20Goshe">Neda Gegar Goshe</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Rassi"> Hossein Rassi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The antibacterial properties of macrolide antibiotics (such as erythromycin and tylosin) depend ultimately on the glycosylation of otherwise inactive polyketide lactones. Among the sugars commonly found in such macrolides are various 6-deoxyhexoses including the 3-dimethylamino sugars mycaminose and desosamine (4-deoxymycaminose). Some macrolides (such as tylosin) possess multiple sugar moieties, whereas others (such as erythromycin) have two sugar substituents. Streptomyces fradiae is an ideal host for development of generic polyketide-overproducing strains because it contains three of the most common precursors-malonyl-CoA, methylmalonyl-CoA and ethylmalonyl-CoA-used by modular PKS, and is a host that is amenable to genetic manipulation. As patterns of glycosylation markedly influence a macrolide's drug activity, there is considerable interest in the possibility of using combinatorial biosynthesis to generate new pairings of polyketide lactones with sugars, especially 6-deoxyhexoses. Here, we report a successful attempt to alter the aminodeoxyhexose-biosynthetic capacity of Streptomyces fradiae (a producer of tylosin) by importing genes from the erythromycin producer Saccharopolyspora erythraea. The biotransformation of erythromycin-D into the desired major component erythromycin-A involves two final enzymatic reactions, EryK-catalyzed hydroxylation at the C-12 position of the aglycone and EryG-catalyzed O methylation at the C-3 position of macrose .This engineered S. fradiae produced substantial amounts of two potentially useful macrolides that had not previously been obtained by fermentation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Streptomyces%20fradiae" title="Streptomyces fradiae">Streptomyces fradiae</a>, <a href="https://publications.waset.org/abstracts/search?q=eryK%20and%20eryG%20genes" title=" eryK and eryG genes"> eryK and eryG genes</a>, <a href="https://publications.waset.org/abstracts/search?q=tylosin" title=" tylosin"> tylosin</a>, <a href="https://publications.waset.org/abstracts/search?q=antibiotics" title=" antibiotics"> antibiotics</a> </p> <a href="https://publications.waset.org/abstracts/28452/production-of-novel-antibiotics-by-importing-eryk-and-eryg-genes-in-streptomyces-fradiae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28452.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Adsorption and Transformation of Lead in Coimbatore Urban Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Sivasubramanin">K. Sivasubramanin</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Mahimairaja"> S. Mahimairaja</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Pavithrapriya"> S. Pavithrapriya </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heavy metal pollution originating from industrial wastes is becoming a serious problem in many urban environments. These heavy metals, if not properly managed, could enter into the food chain and cause a serious health hazards in animals and humans. Industrial wastes, sewage sludge, and automobile emissions also contribute to heavy metal like Pb pollution in the urban environment. However, information is scarce on the heavy metal pollution in Coimbatore urban environment. Therefore, the current study was carried out to examine the extent of lead pollution in Coimbatore urban environment the maximum Pb concentration in Coimbatore urban environment was found in ukkadam, whose concentration in soils 352 mg kg-1. In many places, the Pb concentration was found exceeded the permissible limit of 100 mg kg-1. In laboratory, closed incubation experiment showed that the concentration of different species of Pb viz., water soluble Pb(H2O-Pb), exchangeable Pb(KNO3-Pb), organic-Pb(NaOH-Pb), and organic plus metal (Fe & Al) oxides bound-Pb(Na2 EDTA-Pb) was found significantly increased during the 15 days incubation, mainly due to biotransformation processes. Both the moisture content of soil and ambient temperature exerted a profound influence on the transformation of Pb. The results of a batch experiment has shown that the sorption data was adequately described by the Freundlich equation as indicated by the high correlation coefficients (R2= 0.64) than the Langmuir equation (R2 = 0.33). A maximum of 86 mg of Pb was found adsorbed per kilogram of soil. Consistently, a soil column experiment result had shown that only a small amount of Pb( < 1.0 µg g-1 soil) alone was found leached from the soil. This might be due to greater potential of the soil towards Pb adsorption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lead%20pollution" title="lead pollution">lead pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=transformation" title=" transformation"> transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal%20pollution" title=" heavy metal pollution"> heavy metal pollution</a> </p> <a href="https://publications.waset.org/abstracts/26549/adsorption-and-transformation-of-lead-in-coimbatore-urban-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Characterization of 2,4,6-Trinitrotoluene (Tnt)-Metabolizing Bacillus Cereus Sp TUHP2 Isolated from TNT-Polluted Soils in the Vellore District, Tamilnadu, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Hannah%20Elizabeth">S. Hannah Elizabeth</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Panneerselvam"> A. Panneerselvam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: The main objective was to evaluate the degradative properties of Bacillus cereus sp TUHP2 isolated from TNT-Polluted soils in the Vellore District, Tamil Nadu, India. Methods: Among the 3 bacterial genera isolated from different soil samples, one potent TNT degrading strain Bacillus cereus sp TUHP2 was identified. The morphological, physiological and the biochemical properties of the strain Bacillus cereus sp TUHP2 was confirmed by conventional methods and genotypic characterization was carried out using 16S r-DNA partial gene amplification and sequencing. The broken down by products of DNT in the extract was determined by Gas Chromatogram- Mass spectrometry (GC-MS). Supernatant samples from the broth studied at 24 h interval were analyzed by HPLC analysis and the effect on various nutritional and environmental factors were analysed and optimized for the isolate. Results: Out of three isolates one strain TUHP2 were found to have potent efficiency to degrade TNT and revealed the genus Bacillus. 16S rDNA gene sequence analysis showed highest homology (98%) with Bacillus cereus and was assigned as Bacillus cereus sp TUHP2. Based on the energy of the predicted models, the secondary structure predicted by MFE showed the more stable structure with a minimum energy. Products of TNT Transformation showed colour change in the medium during cultivation. TNT derivates such as 2HADNT and 4HADNT were detected by HPLC chromatogram and 2ADNT, 4ADNT by GC/MS analysis. Conclusion: Hence this study presents the clear evidence for the biodegradation process of TNT by strain Bacillus cereus sp TUHP2. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title="bioremediation">bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradation" title=" biodegradation"> biodegradation</a>, <a href="https://publications.waset.org/abstracts/search?q=biotransformation" title=" biotransformation"> biotransformation</a>, <a href="https://publications.waset.org/abstracts/search?q=sequencing" title=" sequencing "> sequencing </a> </p> <a href="https://publications.waset.org/abstracts/19179/characterization-of-246-trinitrotoluene-tnt-metabolizing-bacillus-cereus-sp-tuhp2-isolated-from-tnt-polluted-soils-in-the-vellore-district-tamilnadu-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19179.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Isolation, Characterization and Optimization of Alkalophilic and Thermotolerant Lipase from Bacillus subtilis Strain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Indu%20Bhushan%20Sharma">Indu Bhushan Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Rashmi%20Saraswat"> Rashmi Saraswat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The thermotolerant, solvent stable and alkalophilic lipase producing bacterial strain was isolated from the water sample of the foothills of Trikuta Mountain in Kakryal (Reasi district) in Jammu and Kashmir, India. The lipase-producing microorganisms were screened using tributyrin agar plates. The selected microbe was optimized for maximum lipase production by subjecting to various carbon and nitrogen sources, incubation period and inoculum size. The selected strain was identified as Bacillus subtilis strain kakrayal_1 (BSK_1) using 16S rRNA sequence analysis. Effect of pH, temperature, metal ions, detergents and organic solvents were studied on lipase activity. Lipase was found to be stable over a pH range of 6.0 to 9.0 and exhibited maximum activity at pH 8. Lipolytic activity was highest at 37°C and the enzyme activity remained at 60°C for 24hrs, hence, established as thermo-tolerant. Production of lipase was significantly induced by vegetable oil and the best nitrogen source was found to be peptone. The isolated Bacillus lipase was stimulated by pre-treatment with Mn2+, Ca2+, K+, Zn2+, and Fe2+. Lipase was stable in detergents such as triton X 100, tween 20 and Tween 80. The 100% ethyl acetate enhanced lipase activity whereas, lipase activity were found to be stable in Hexane. The optimization resulted in 4 fold increase in lipase production. Bacillus lipases are ‘generally recognized as safe’ (GRAS) and are industrially interesting. The inducible alkaline, thermo-tolerant lipase exhibited the ability to be stable in detergents and organic solvents. This could be further researched as a potential biocatalyst for industrial applications such as biotransformation, detergent formulation, bioremediation and organic synthesis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacillus" title="bacillus">bacillus</a>, <a href="https://publications.waset.org/abstracts/search?q=lipase" title=" lipase"> lipase</a>, <a href="https://publications.waset.org/abstracts/search?q=thermotolerant" title=" thermotolerant"> thermotolerant</a>, <a href="https://publications.waset.org/abstracts/search?q=alkalophilic" title=" alkalophilic"> alkalophilic</a> </p> <a href="https://publications.waset.org/abstracts/55619/isolation-characterization-and-optimization-of-alkalophilic-and-thermotolerant-lipase-from-bacillus-subtilis-strain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55619.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Toxicological Effects of Atmospheric Fine Particulate Matter on Human Bronchial Epithelial Cells: Metabolic Activation, Genotoxicity and Epigenetic Modifications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Borgie">M. Borgie</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Dagher"> Z. Dagher</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Ledoux"> F. Ledoux</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Verdin"> A. Verdin</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Cazier"> F. Cazier</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Greige"> H. Greige</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Shirali"> P. Shirali</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Courcot"> D. Courcot</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In October 2013, the International Agency for Research on Cancer (IARC) classified outdoor air pollution and fine particulate matter (PM2.5) as carcinogenic to humans. Despite the clearly relationship established by epidemiological studies between PM exposure and the onset of respiratory and cardiovascular diseases, uncertainties remain about the physiopathological mechanisms responsible for these diseases. The aim of this work was to evaluate the toxicological effects of two samples of atmospheric PM2.5 collected at urban and rural sites on human bronchial epithelial cells, BEAS-2B, especially to investigate the metabolic activation of organic compounds, the alteration of epigenetic mechanisms (i.e. microRNAs genes expression), the phosphorylation of H2AX and the telomerase activity. Our results showed a significant increase in CYP1A1, CYP1B1, and AhRR genes expression, miR-21 gene expression, H2AX phosphorylation and telomerase activity in BEAS-2B cells after their exposure to PM2.5, both in a dose and site-dependent manner. These results showed that PM2.5, especially urban PM, are able to induce the expression of metabolizing enzymes which can provide metabolic biotransformation of organic compounds into more toxic and carcinogenic metabolites, and to induce the expression of the oncomiR miR-21 which promotes cell growth and enhances tumor invasion and metastasis in lung cancer. In addition, our results have highlighted the role of PM2.5 in the activation of telomerase, which can maintain the telomeres length and subsequently preventing cell death, and have also demonstrated the ability of PM2.5 to induce DNA breaks and thus to increase the risk of mutations or chromosomal translocations that lead to genomic instability. All these factors may contribute to cell abnormalities, and thus the development of cancer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BEAS-2B%20cells" title="BEAS-2B cells">BEAS-2B cells</a>, <a href="https://publications.waset.org/abstracts/search?q=carcinogenesis" title=" carcinogenesis"> carcinogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=epigenetic%20alterations%20and%20genotoxicity" title=" epigenetic alterations and genotoxicity"> epigenetic alterations and genotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=PM2.5" title=" PM2.5"> PM2.5</a> </p> <a href="https://publications.waset.org/abstracts/18263/toxicological-effects-of-atmospheric-fine-particulate-matter-on-human-bronchial-epithelial-cells-metabolic-activation-genotoxicity-and-epigenetic-modifications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18263.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Anaerobic Co-digestion in Two-Phase TPAD System of Sewage Sludge and Fish Waste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rocio%20L%C3%B3pez">Rocio López</a>, <a href="https://publications.waset.org/abstracts/search?q=Miriam%20Tena"> Miriam Tena</a>, <a href="https://publications.waset.org/abstracts/search?q=Montserrat%20P%C3%A9rez"> Montserrat Pérez</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosario%20Solera"> Rosario Solera</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biotransformation of organic waste into biogas is considered an interesting alternative for the production of clean energy from renewable sources by reducing the volume and organic content of waste Anaerobic digestion is considered one of the most efficient technologies to transform waste into fertilizer and biogas in order to obtain electrical energy or biofuel within the concept of the circular economy. Currently, three types of anaerobic processes have been developed on a commercial scale: (1) single-stage process where sludge bioconversion is completed in a single chamber, (2) two-stage process where the acidogenic and methanogenic stages are separated into two chambers and, finally, (3) temperature-phase sequencing (TPAD) process that combines a thermophilic pretreatment unit prior to mesophilic anaerobic digestion. Two-stage processes can provide hydrogen and methane with easier control of the first and second stage conditions producing higher total energy recovery and substrate degradation than single-stage processes. On the other hand, co-digestion is the simultaneous anaerobic digestion of a mixture of two or more substrates. The technology is similar to anaerobic digestion but is a more attractive option as it produces increased methane yields due to the positive synergism of the mixtures in the digestion medium thus increasing the economic viability of biogas plants. The present study focuses on the energy recovery by anaerobic co-digestion of sewage sludge and waste from the aquaculture-fishing sector. The valorization is approached through the application of a temperature sequential phase process or TPAD technology (Temperature - Phased Anaerobic Digestion). Moreover, two-phase of microorganisms is considered. Thus, the selected process allows the development of a thermophilic acidogenic phase followed by a mesophilic methanogenic phase to obtain hydrogen (H₂) in the first stage and methane (CH₄) in the second stage. The combination of these technologies makes it possible to unify all the advantages of these anaerobic digestion processes individually. To achieve these objectives, a sequential study has been carried out in which the biochemical potential of hydrogen (BHP) is tested followed by a BMP test, which will allow checking the feasibility of the two-stage process. The best results obtained were high total and soluble COD yields (59.8% and 82.67%, respectively) as well as H₂ production rates of 12LH₂/kg SVadded and methane of 28.76 L CH₄/kg SVadded for TPAD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20co-digestion" title="anaerobic co-digestion">anaerobic co-digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=TPAD" title=" TPAD"> TPAD</a>, <a href="https://publications.waset.org/abstracts/search?q=two-phase" title=" two-phase"> two-phase</a>, <a href="https://publications.waset.org/abstracts/search?q=BHP" title=" BHP"> BHP</a>, <a href="https://publications.waset.org/abstracts/search?q=BMP" title=" BMP"> BMP</a>, <a href="https://publications.waset.org/abstracts/search?q=sewage%20sludge" title=" sewage sludge"> sewage sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=fish%20waste" title=" fish waste"> fish waste</a> </p> <a href="https://publications.waset.org/abstracts/143315/anaerobic-co-digestion-in-two-phase-tpad-system-of-sewage-sludge-and-fish-waste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Toxin-Producing Algae of Nigerian Coast, Gulf of Guinea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Medina%20O.%20Kadiri">Medina O. Kadiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeffrey%20U.%20Ogbebor"> Jeffrey U. Ogbebor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Toxin-producing algae are algal species that produce potent toxins, which accumulate in food chains and cause various gastrointestinal and neurological illnesses in humans and other animals. They result in shellfish toxicity, ecosystem alteration, cause fish kills and mortality of other animals and humans, in addition to compromised product quality as well as decreased consumer confidence. Animals, including man, are directly exposed to toxins by absorbing toxins from the water via swimming, drinking water with toxins, or ingestion of algal species via feeding on contaminated seafood. These toxins, algal toxins, undergo bioaccumulation, biotransformation, biotransferrence, and biomagnification through the natural food chains and food webs, thereby endangering animals and humans. The Nigerian coast is situated on the Atlantic Ocean, the Gulf of Guinea, one of Africa’s five large marine ecosystems (LME), and studies on toxic algae in this ecosystem are generally lacking. Algal samples were collected from eight coastal states and ten locations spanning the Bight of Bonny and the Bight of Benin. A total of 70 species of toxin-producing algae were found in the coastal waters of Nigeria. There was a great variety of toxin-producing algae in the coastal waters of Nigeria. They were Domoic acid-producing forms (DSP), Saxitoxin-producing, Gonyautoxin-producing, and Yessotoxin-producing (all PSP). Others were Okadaic acid-producing, Dinophysistoxin-producing, and Palytoxin-producing, which are representatives of DSP; CFP was represented by Ciguatoxin-producing forms and NSP by Brevitoxin-producing species. Emerging or new toxins are comprising of Gymnodimines, Spirolides, Palytoxins, and Prorocentrolidess-producing algae. The CyanoToxin Poisoning (CTP) was represented by Anatoxin-, Microcystin-, Cylindrospermopsis-Lyngbyatoxin-, Nordularin-Applyssiatoxin and Debromoapplatoxin-producing species. The highest group was the Saxitoxin-producing species, followed by Microcystin-producing species, then Anatoxin-producing species. Gonyautoxin (PSP), Palytoxin (DSP), Emerging toxins, and Cylindrospermopsin -producing species had a very substantial representation. Only Ciguatoxin-producing species, Lyngbyatoxin-Nordularin, Applyssiatoxin, and Debromoapplatoxin-producing species were represented by one taxon each. The presence of such overwhelming diversity of toxin-producing algae on the Nigerian coast is a source of concern for fisheries, aquaculture, human health, and ecosystem services. Therefore routine monitoring of toxic and harmful algae is greatly recommended. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algal%20syndromes" title="algal syndromes">algal syndromes</a>, <a href="https://publications.waset.org/abstracts/search?q=Atlantic%20Ocean" title=" Atlantic Ocean"> Atlantic Ocean</a>, <a href="https://publications.waset.org/abstracts/search?q=harmful%20algae" title=" harmful algae"> harmful algae</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigeria" title=" Nigeria"> Nigeria</a> </p> <a href="https://publications.waset.org/abstracts/139706/toxin-producing-algae-of-nigerian-coast-gulf-of-guinea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139706.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Aerobic Biodegradation of a Chlorinated Hydrocarbon by Bacillus Cereus 2479</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Srijata%20Mitra">Srijata Mitra</a>, <a href="https://publications.waset.org/abstracts/search?q=Mobina%20Parveen"> Mobina Parveen</a>, <a href="https://publications.waset.org/abstracts/search?q=Pranab%20Roy"> Pranab Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=Narayan%20Chandra%20Chattopadhyay"> Narayan Chandra Chattopadhyay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chlorinated hydrocarbon can be a major pollution problem in groundwater as well as soil. Many people interact with these chemicals on daily accidentally or by professionally in the laboratory. One of the most common sources for Chlorinated hydrocarbon contamination of soil and groundwater are industrial effluents. The wide use and discharge of Trichloroethylene (TCE), a volatile chlorohydrocarbon from chemical industry, led to major water pollution in rural areas. TCE is an mainly used as an industrial metal degreaser in industries. Biotransformation of TCE to the potent carcinogen vinyl chloride (VC) by consortia of anaerobic bacteria might have role for the above purpose. For these reasons, the aim of current study was to isolate and characterized the genes involved in TCE metabolism and also to investigate the in silico study of those genes. To our knowledge, only one aromatic dioxygenase system, the toluene dioxygenase in Pseudomonas putida F1 has been shown to be involved in TCE degradation. This is first instance where Bacillus cereus group being used in biodegradation of trichloroethylene. A novel bacterial strain 2479 was isolated from oil depot site at Rajbandh, Durgapur (West Bengal, India) by enrichment culture technique. It was identified based on polyphasic approach and ribotyping. The bacterium was gram positive, rod shaped, endospore forming and capable of degrading trichloroethylene as the sole carbon source. On the basis of phylogenetic data and Fatty Acid Methyl Ester Analysis, strain 2479 should be placed within the genus Bacillus and species cereus. However, the present isolate (strain 2479) is unique and sharply different from the usual Bacillus strains in its biodegrading nature. Fujiwara test was done to estimate that the strain 2479 could degrade TCE efficiently. The gene for TCE biodegradation was PCR amplified from genomic DNA of Bacillus cereus 2479 by using todC1 gene specific primers. The 600bp amplicon was cloned into expression vector pUC I8 in the E. coli host XL1-Blue and expressed under the control of lac promoter and nucleotide sequence was determined. The gene sequence was deposited at NCBI under the Accession no. GU183105. In Silico approach involved predicting the physico-chemical properties of deduced Tce1 protein by using ProtParam tool. The tce1 gene contained 342 bp long ORF encoding 114 amino acids with a predicted molecular weight 12.6 kDa and the theoretical pI value of the polypeptide was 5.17, molecular formula: C559H886N152O165S8, total number of atoms: 1770, aliphatic index: 101.93, instability index: 28.60, Grand Average of Hydropathicity (GRAVY): 0.152. Three differentially expressed proteins (97.1, 40 and 30 kDa) were directly involved in TCE biodegradation, found to react immunologically to the antibodies raised against TCE inducible proteins in Western blot analysis. The present study suggested that cloned gene product (TCE1) was capable of degrading TCE as verified chemically. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cloning" title="cloning">cloning</a>, <a href="https://publications.waset.org/abstracts/search?q=Bacillus%20cereus" title=" Bacillus cereus"> Bacillus cereus</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20silico%20analysis" title=" in silico analysis"> in silico analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=TCE" title=" TCE"> TCE</a> </p> <a href="https://publications.waset.org/abstracts/20574/aerobic-biodegradation-of-a-chlorinated-hydrocarbon-by-bacillus-cereus-2479" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20574.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Molecular Characterization and Arsenic Mobilization Properties of a Novel Strain IIIJ3-1 Isolated from Arsenic Contaminated Aquifers of Brahmaputra River Basin, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soma%20Ghosh">Soma Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=Balaram%20Mohapatra"> Balaram Mohapatra</a>, <a href="https://publications.waset.org/abstracts/search?q=Pinaki%20Sar"> Pinaki Sar</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhijeet%20Mukherjee"> Abhijeet Mukherjee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microbial role in arsenic (As) mobilization in the groundwater aquifers of Brahmaputra river basin (BRB) in India, severely threatened by high concentrations of As, remains largely unknown. The present study, therefore, is a molecular and ecophysiological characterization of an indigenous bacterium strain IIIJ3-1 isolated from As contaminated groundwater of BRB and application of this strain in several microcosm set ups differing in their organic carbon (OC) source and terminal electron acceptors (TEA), to understand its role in As dissolution under aerobic and anaerobic conditions. Strain IIIJ3-1 was found to be a new facultative anaerobic, gram-positive, endospore-forming strain capable of arsenite (As3+) oxidation and dissimilatory arsenate (As5+) reduction. The bacterium exhibited low genomic (G+C)% content (45 mol%). Although, its 16S rRNA gene sequence revealed a maximum similarity of 99% with Bacillus cereus ATCC 14579(T) but the DNA-DNA relatedness of their genomic DNAs was only 49.9%, which remains well below the value recommended to delimit different species. Abundance of fatty acids iC17:0, iC15:0 and menaquinone (MK) 7 though corroborates its taxonomic affiliation with B. cereus sensu-lato group, presence of hydroxy fatty acids (HFAs), C18:2, MK5 and MK6 marked its uniqueness. Besides being highly As resistant (MTC=10mM As3+, 350mM As5+), metabolically diverse, efficient aerobic As3+ oxidizer; it exhibited near complete dissimilatory reduction of As5+ (1 mM). Utilization of various carbon sources with As5+ as TEA revealed lactate to serve as the best electron donor. Aerobic biotransformation assay yielded a lower Km for As3+ oxidation than As5+ reduction. Arsenic homeostasis was found to be conferred by the presence of arr, arsB, aioB, and acr3(1) genes. Scanning electron microscopy (SEM) coupled with energy dispersive X-ray (EDX) analysis of this bacterium revealed reduction in cell size upon exposure to As and formation of As-rich electron opaque dots following growth with As3+. Incubation of this strain with sediment (sterilised) collected from BRB aquifers under varying OC, TEA and redox conditions revealed that the strain caused highest As mobilization from solid to aqueous phase under anaerobic condition with lactate and nitrate as electron donor and acceptor, respectively. Co-release of highest concentrations of oxalic acid, a well known bioweathering agent, considerable fold increase in viable cell counts and SEM-EDX and X-ray diffraction analysis of the sediment after incubation under this condition indicated that As release is consequent to microbial bioweathering of the minerals. Co-release of other elements statistically proves decoupled release of As with Fe and Zn. Principle component analysis also revealed prominent role of nitrate under aerobic and/or anaerobic condition in As release by strain IIIJ3-1. This study, therefore, is the first to isolate, characterize and reveal As mobilization property of a strain belonging to the Bacillus cereus sensu lato group isolated from highly As contaminated aquifers of Brahmaputra River Basin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20microcosm" title="anaerobic microcosm">anaerobic microcosm</a>, <a href="https://publications.waset.org/abstracts/search?q=arsenic%20rich%20electron%20opaque%20dots" title=" arsenic rich electron opaque dots"> arsenic rich electron opaque dots</a>, <a href="https://publications.waset.org/abstracts/search?q=Arsenic%20release" title=" Arsenic release"> Arsenic release</a>, <a href="https://publications.waset.org/abstracts/search?q=Bacillus%20strain%20IIIJ3-1" title=" Bacillus strain IIIJ3-1"> Bacillus strain IIIJ3-1</a> </p> <a href="https://publications.waset.org/abstracts/96945/molecular-characterization-and-arsenic-mobilization-properties-of-a-novel-strain-iiij3-1-isolated-from-arsenic-contaminated-aquifers-of-brahmaputra-river-basin-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96945.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Solid State Fermentation: A Technological Alternative for Enriching Bioavailability of Underutilized Crops </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vipin%20Bhandari">Vipin Bhandari</a>, <a href="https://publications.waset.org/abstracts/search?q=Anupama%20Singh"> Anupama Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Kopal%20Gupta"> Kopal Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solid state fermentation, an eminent bioconversion technique for converting many biological substrates into a value-added product, has proven its role in the biotransformation of crops by nutritionally enriching them. Hence, an effort was made for nutritional enhancement of underutilized crops viz. barnyard millet, amaranthus and horse gram based composite flour using SSF. The grains were given pre-treatments before fermentation and these pre-treatments proved quite effective in diminishing the level of antinutrients in grains and in improving their nutritional characteristics. The present study deals with the enhancement of nutritional characteristics of underutilized crops viz. barnyard millet, amaranthus and horsegram based composite flour using solid state fermentation (SSF) as the principle bioconversion technique to convert the composite flour substrate into a nutritionally enriched value added product. Response surface methodology was used to design the experiments. The variables selected for the fermentation experiments were substrate particle size, substrate blend ratio, fermentation time, fermentation temperature and moisture content having three levels of each. Seventeen designed experiments were conducted randomly to find the effect of these variables on microbial count, reducing sugar, pH, total sugar, phytic acid and water absorption index. The data from all experiments were analyzed using Design Expert 8.0.6 and the response functions were developed using multiple regression analysis and second order models were fitted for each response. Results revealed that pretreatments proved quite handful in diminishing the level of antinutrients and thus enhancing the nutritional value of the grains appreciably, for instance, there was about 23% reduction in phytic acid levels after decortication of barnyard millet. The carbohydrate content of the decorticated barnyard millet increased to 81.5% from initial value of 65.2%. Similarly popping and puffing of horsegram and amaranthus respectively greatly reduced the trypsin inhibitor activity. Puffing of amaranthus also reduced the tannin content appreciably. Bacillus subtilis was used as the inoculating specie since it is known to produce phytases in solid state fermentation systems. These phytases remarkably reduce the phytic acid content which acts as a major antinutritional factor in food grains. Results of solid state fermentation experiments revealed that phytic acid levels reduced appreciably when fermentation was allowed to continue for 72 hours at a temperature of 35°C. Particle size and substrate blend ratio also affected the responses positively. All the parameters viz. substrate particle size, substrate blend ratio, fermentation time, fermentation temperature and moisture content affected the responses namely microbial count, reducing sugar, pH, total sugar, phytic acid and water absorption index but the effect of fermentation time was found to be most significant on all the responses. Statistical analysis resulted in the optimum conditions (particle size 355µ, substrate blend ratio 50:20:30 of barnyard millet, amaranthus and horsegram respectively, fermentation time 68 hrs, fermentation temperature 35°C and moisture content 47%) for maximum reduction in phytic acid. The model F- value was found to be highly significant at 1% level of significance in case of all the responses. Hence, second order model could be fitted to predict all the dependent parameters. The effect of fermentation time was found to be most significant as compared to other variables. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20flour" title="composite flour">composite flour</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20state%20fermentation" title=" solid state fermentation"> solid state fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=underutilized%20crops" title=" underutilized crops"> underutilized crops</a>, <a href="https://publications.waset.org/abstracts/search?q=cereals" title=" cereals"> cereals</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation%20technology" title=" fermentation technology"> fermentation technology</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20processing" title=" food processing"> food processing</a> </p> <a href="https://publications.waset.org/abstracts/35405/solid-state-fermentation-a-technological-alternative-for-enriching-bioavailability-of-underutilized-crops" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35405.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>