CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 161 results for author: <span class="mathjax">Mart铆nez, M</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Mart%C3%ADnez%2C+M">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Mart铆nez, M"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Mart%C3%ADnez%2C+M&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Mart铆nez, M"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Mart%C3%ADnez%2C+M&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Mart%C3%ADnez%2C+M&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Mart%C3%ADnez%2C+M&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Mart%C3%ADnez%2C+M&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Mart%C3%ADnez%2C+M&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.01542">arXiv:2502.01542</a> <span> [<a href="https://arxiv.org/pdf/2502.01542">pdf</a>, <a href="https://arxiv.org/format/2502.01542">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Towards a robust model-independent test of the DAMA/LIBRA dark matter signal: ANAIS-112 results with six years of data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Amar%C3%A9%2C+J">Julio Amar茅</a>, <a href="/search/physics?searchtype=author&query=Apilluelo%2C+J">Jaime Apilluelo</a>, <a href="/search/physics?searchtype=author&query=Cebri%C3%A1n%2C+S">Susana Cebri谩n</a>, <a href="/search/physics?searchtype=author&query=Cintas%2C+D">David Cintas</a>, <a href="/search/physics?searchtype=author&query=Coarasa%2C+I">Iv谩n Coarasa</a>, <a href="/search/physics?searchtype=author&query=Garc%C3%ADa%2C+E">Eduardo Garc铆a</a>, <a href="/search/physics?searchtype=author&query=Mart%C3%ADnez%2C+M">Mar铆a Mart铆nez</a>, <a href="/search/physics?searchtype=author&query=Ortigoza%2C+Y">Ysrael Ortigoza</a>, <a href="/search/physics?searchtype=author&query=de+Sol%C3%B3rzano%2C+A+O">Alfonso Ortiz de Sol贸rzano</a>, <a href="/search/physics?searchtype=author&query=Pardo%2C+T">Tamara Pardo</a>, <a href="/search/physics?searchtype=author&query=Puimed%C3%B3n%2C+J">Jorge Puimed贸n</a>, <a href="/search/physics?searchtype=author&query=Sarsa%2C+M+L">Mar铆a Luisa Sarsa</a>, <a href="/search/physics?searchtype=author&query=Seoane%2C+C">Carmen Seoane</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.01542v1-abstract-short" style="display: inline;"> The nature of dark matter, which constitutes 27% of the Universe's matter-energy content, remains one of the most challenging open questions in physics. Over the past two decades, the DAMA/LIBRA experiment has reported an annual modulation in the detection rate of $\approx$250 kg of NaI(Tl) detectors operated at the Gran Sasso Laboratory, which the collaboration interprets as evidence of the galac… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.01542v1-abstract-full').style.display = 'inline'; document.getElementById('2502.01542v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.01542v1-abstract-full" style="display: none;"> The nature of dark matter, which constitutes 27% of the Universe's matter-energy content, remains one of the most challenging open questions in physics. Over the past two decades, the DAMA/LIBRA experiment has reported an annual modulation in the detection rate of $\approx$250 kg of NaI(Tl) detectors operated at the Gran Sasso Laboratory, which the collaboration interprets as evidence of the galactic dark matter detection. However, this claim has not been independently confirmed and is refuted under certain dark matter particle and halo model scenarios. Therefore, it is crucial to perform an experiment with the same target material. The ANAIS experiment uses 112.5 kg of NaI(Tl) detectors at the Canfranc Underground Laboratory and it has been collecting data since August 2017 to model-independently test the DAMA/LIBRA result. This article presents the results of the annual modulation analysis corresponding to six years of ANAIS-112 data. Our results, the most sensitive to date with the same target material, NaI(Tl), are incompatible with the DAMA/LIBRA modulation signal at a 4$蟽$ confidence level. Such a discrepancy strongly challenges the DAMA/LIBRA dark matter interpretation and highlights the need to address systematic uncertainties affecting the comparison, particularly those related to the response of detectors to nuclear recoils, which may require further characterization of the DAMA crystals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.01542v1-abstract-full').style.display = 'none'; document.getElementById('2502.01542v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 13 figures, 4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.13706">arXiv:2501.13706</a> <span> [<a href="https://arxiv.org/pdf/2501.13706">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Engineering, Finance, and Science">cs.CE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Analysis of Eccentric Coaxial Waveguides Filled with Lossy Anisotropic Media via Finite Difference </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ribeiro%2C+R+O">Raul O. Ribeiro</a>, <a href="/search/physics?searchtype=author&query=Martinez%2C+M+A">Maria A. Martinez</a>, <a href="/search/physics?searchtype=author&query=Rosa%2C+G+S">Guilherme S. Rosa</a>, <a href="/search/physics?searchtype=author&query=Penchel%2C+R+A">Rafael A. Penchel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.13706v1-abstract-short" style="display: inline;"> This study presents a finite difference method (FDM) to model the electromagnetic field propagation in eccentric coaxial waveguides filled with lossy uniaxially anisotropic media. The formulation utilizes conformal transformation to map the eccentric circular waveguide into an equivalent concentric one. In the concentric problem, we introduce a novel normalized Helmholtz equation to decouple TM an… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13706v1-abstract-full').style.display = 'inline'; document.getElementById('2501.13706v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.13706v1-abstract-full" style="display: none;"> This study presents a finite difference method (FDM) to model the electromagnetic field propagation in eccentric coaxial waveguides filled with lossy uniaxially anisotropic media. The formulation utilizes conformal transformation to map the eccentric circular waveguide into an equivalent concentric one. In the concentric problem, we introduce a novel normalized Helmholtz equation to decouple TM and TE modes, and we solve this non-homogeneous partial differential equation using the finite difference in cylindrical coordinates. The proposed approach was validated against perturbation-based, spectral element-based, and finite-integration-based numerical solutions. The preliminary results show that our solution is superior in computational time. Furthermore, our FDM formulation can be extended with minimal adaptations to model complex media problems, such as metamaterial devices, optical fibers, and geophysical exploration sensors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13706v1-abstract-full').style.display = 'none'; document.getElementById('2501.13706v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This work was presented at the SBMO 2024 - XXI Brazilian Symposium on Microwaves and Optoelectronics. For more information about the conference, please visit https://www.sbmo.org.br/sbmo/2024/home</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.18867">arXiv:2412.18867</a> <span> [<a href="https://arxiv.org/pdf/2412.18867">pdf</a>, <a href="https://arxiv.org/format/2412.18867">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Quality Assurance and Quality Control of the $26~\text{m}^2$ SiPM production for the DarkSide-20k dark matter experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Acerbi%2C+F">F. Acerbi</a>, <a href="/search/physics?searchtype=author&query=Adhikari%2C+P">P. Adhikari</a>, <a href="/search/physics?searchtype=author&query=Agnes%2C+P">P. Agnes</a>, <a href="/search/physics?searchtype=author&query=Ahmad%2C+I">I. Ahmad</a>, <a href="/search/physics?searchtype=author&query=Albergo%2C+S">S. Albergo</a>, <a href="/search/physics?searchtype=author&query=Albuquerque%2C+I+F">I. F. Albuquerque</a>, <a href="/search/physics?searchtype=author&query=Alexander%2C+T">T. Alexander</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A+K">A. K. Alton</a>, <a href="/search/physics?searchtype=author&query=Amaudruz%2C+P">P. Amaudruz</a>, <a href="/search/physics?searchtype=author&query=Aprile%2C+M+A+E">M. Angiolilli. E. Aprile</a>, <a href="/search/physics?searchtype=author&query=Corona%2C+M+A">M. Atzori Corona</a>, <a href="/search/physics?searchtype=author&query=Auty%2C+D+J">D. J. Auty</a>, <a href="/search/physics?searchtype=author&query=Ave%2C+M">M. Ave</a>, <a href="/search/physics?searchtype=author&query=Avetisov%2C+I+C">I. C. Avetisov</a>, <a href="/search/physics?searchtype=author&query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&query=Back%2C+H+O">H. O. Back</a>, <a href="/search/physics?searchtype=author&query=Balmforth%2C+Z">Z. Balmforth</a>, <a href="/search/physics?searchtype=author&query=Olmedo%2C+A+B">A. Barrado Olmedo</a>, <a href="/search/physics?searchtype=author&query=Barrillon%2C+P">P. Barrillon</a>, <a href="/search/physics?searchtype=author&query=Batignani%2C+G">G. Batignani</a>, <a href="/search/physics?searchtype=author&query=Bhowmick%2C+P">P. Bhowmick</a>, <a href="/search/physics?searchtype=author&query=Bloem%2C+M">M. Bloem</a>, <a href="/search/physics?searchtype=author&query=Blua%2C+S">S. Blua</a>, <a href="/search/physics?searchtype=author&query=Bocci%2C+V">V. Bocci</a>, <a href="/search/physics?searchtype=author&query=Bonivento%2C+W">W. Bonivento</a> , et al. (267 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.18867v1-abstract-short" style="display: inline;"> DarkSide-20k is a novel liquid argon dark matter detector currently under construction at the Laboratori Nazionali del Gran Sasso (LNGS) of the Istituto Nazionale di Fisica Nucleare (INFN) that will push the sensitivity for Weakly Interacting Massive Particle (WIMP) detection into the neutrino fog. The core of the apparatus is a dual-phase Time Projection Chamber (TPC), filled with \SI{50} {tonnes… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18867v1-abstract-full').style.display = 'inline'; document.getElementById('2412.18867v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.18867v1-abstract-full" style="display: none;"> DarkSide-20k is a novel liquid argon dark matter detector currently under construction at the Laboratori Nazionali del Gran Sasso (LNGS) of the Istituto Nazionale di Fisica Nucleare (INFN) that will push the sensitivity for Weakly Interacting Massive Particle (WIMP) detection into the neutrino fog. The core of the apparatus is a dual-phase Time Projection Chamber (TPC), filled with \SI{50} {tonnes} of low radioactivity underground argon (UAr) acting as the WIMP target. NUV-HD-Cryo Silicon Photomultipliers (SiPM)s designed by Fondazione Bruno Kessler (FBK) (Povo, Trento, Italy) were selected as the photon sensors covering two $10.5~\text{m}^2$ Optical Planes, one at each end of the TPC, and a total of $5~\text{m}^2$ photosensitive surface for the liquid argon veto detectors. This paper describes the Quality Assurance and Quality Control (QA/QC) plan and procedures accompanying the production of FBK~NUV-HD-Cryo SiPM wafers manufactured by LFoundry s.r.l. (Avezzano, AQ, Italy). SiPM characteristics are measured at 77~K at the wafer level with a custom-designed probe station. As of May~2024, 603 of the 1400 production wafers (43\% of the total) for DarkSide-20k were tested, including wafers from all 57 production Lots. The wafer yield is $93.6\pm2.5$\%, which exceeds the 80\% specification defined in the original DarkSide-20k production plan. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18867v1-abstract-full').style.display = 'none'; document.getElementById('2412.18867v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.11592">arXiv:2412.11592</a> <span> [<a href="https://arxiv.org/pdf/2412.11592">pdf</a>, <a href="https://arxiv.org/format/2412.11592">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Performance of an instrumented baffle placed at the entrance of Virgo's end mirror vacuum tower during O5 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Andr%C3%A9s-Carcasona%2C+M">M. Andr茅s-Carcasona</a>, <a href="/search/physics?searchtype=author&query=Mart%C3%ADnez%2C+M">M. Mart铆nez</a>, <a href="/search/physics?searchtype=author&query=Mir%2C+L+M">Ll. M. Mir</a>, <a href="/search/physics?searchtype=author&query=Mundet%2C+J">J. Mundet</a>, <a href="/search/physics?searchtype=author&query=Yamamoto%2C+H">H. Yamamoto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.11592v2-abstract-short" style="display: inline;"> In this article, we present results on the simulated performance of an instrumented baffle installed at the entrance of the vacuum towers hosting the end mirrors of Virgo's main Fabry-P茅rot cavities. The installation of instrumented baffles is part of the Advanced Virgo Plus upgrade in time for the O5 observing run. They were originally envisaged to be suspended, mounted on new payloads and surrou… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.11592v2-abstract-full').style.display = 'inline'; document.getElementById('2412.11592v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.11592v2-abstract-full" style="display: none;"> In this article, we present results on the simulated performance of an instrumented baffle installed at the entrance of the vacuum towers hosting the end mirrors of Virgo's main Fabry-P茅rot cavities. The installation of instrumented baffles is part of the Advanced Virgo Plus upgrade in time for the O5 observing run. They were originally envisaged to be suspended, mounted on new payloads and surrounding new larger end mirrors. The current Virgo upgrade plan includes the replacement of the mirrors with new ones of better quality and same dimensions, leaving the installation of new payloads and larger end mirrors to a post-O5 upgrade phase still to be defined. Here we demonstrate that placing the instrumented baffles just beyond the cryotrap gate valve and in front of the end mirrors would be equally effective for monitoring scattered light inside the cavities. This new location, more than a meter away from the mirror, further reduces the risk of contamination and any potential interference with the mirrors, preserves the full capability to monitor scattered light, and decouples the instrumented baffle timeline from the plans for installing large mirrors in the experiment. We provide an estimate of the light distribution the baffles would encounter under both nominal and non-nominal conditions, as well as an assessment of the scattered light noise introduced by these baffles in this new location, confirming that they would not compromise Virgo's sensitivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.11592v2-abstract-full').style.display = 'none'; document.getElementById('2412.11592v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.06909">arXiv:2409.06909</a> <span> [<a href="https://arxiv.org/pdf/2409.06909">pdf</a>, <a href="https://arxiv.org/format/2409.06909">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Realization of giant elastocaloric cooling at cryogenic temperatures in TmVO$_4$ via a strain load/unload technique </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zic%2C+M+P">Mark P. Zic</a>, <a href="/search/physics?searchtype=author&query=Ye%2C+L">Linda Ye</a>, <a href="/search/physics?searchtype=author&query=Martinez%2C+M+H">Maya H. Martinez</a>, <a href="/search/physics?searchtype=author&query=Fisher%2C+I+R">Ian R. Fisher</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.06909v1-abstract-short" style="display: inline;"> The adiabatic elastocaloric effect relates changes in the strain that a material experiences to resulting changes in its temperature. While elastocaloric materials have been utilized for cooling in room temperature applications, the use of such materials for cryogenic cooling remains relatively unexplored. Here, we use a strain load/unload technique at low temperatures, similar to those employed a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06909v1-abstract-full').style.display = 'inline'; document.getElementById('2409.06909v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.06909v1-abstract-full" style="display: none;"> The adiabatic elastocaloric effect relates changes in the strain that a material experiences to resulting changes in its temperature. While elastocaloric materials have been utilized for cooling in room temperature applications, the use of such materials for cryogenic cooling remains relatively unexplored. Here, we use a strain load/unload technique at low temperatures, similar to those employed at room-temperature, to demonstrate a large cooling effect in TmVO$_4$. For strain changes of $1.8 \cdot 10^{-3}$, the inferred cooling reaches approximately 50% of the material's starting temperature at 5 K, justifying the moniker "giant". Beyond establishing the suitability of this class of material for cryogenic elastocaloric cooling, these measurements also provide additional insight to the entropy landscape in the material as a function of strain and temperature, including the behavior proximate to the quadrupolar phase transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06909v1-abstract-full').style.display = 'none'; document.getElementById('2409.06909v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.14071">arXiv:2408.14071</a> <span> [<a href="https://arxiv.org/pdf/2408.14071">pdf</a>, <a href="https://arxiv.org/format/2408.14071">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Benchmarking the design of the cryogenics system for the underground argon in DarkSide-20k </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Collaboration%2C+D">DarkSide-20k Collaboration</a>, <a href="/search/physics?searchtype=author&query=%3A"> :</a>, <a href="/search/physics?searchtype=author&query=Acerbi%2C+F">F. Acerbi</a>, <a href="/search/physics?searchtype=author&query=Adhikari%2C+P">P. Adhikari</a>, <a href="/search/physics?searchtype=author&query=Agnes%2C+P">P. Agnes</a>, <a href="/search/physics?searchtype=author&query=Ahmad%2C+I">I. Ahmad</a>, <a href="/search/physics?searchtype=author&query=Albergo%2C+S">S. Albergo</a>, <a href="/search/physics?searchtype=author&query=Albuquerque%2C+I+F+M">I. F. M. Albuquerque</a>, <a href="/search/physics?searchtype=author&query=Alexander%2C+T">T. Alexander</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A+K">A. K. Alton</a>, <a href="/search/physics?searchtype=author&query=Amaudruz%2C+P">P. Amaudruz</a>, <a href="/search/physics?searchtype=author&query=Angiolilli%2C+M">M. Angiolilli</a>, <a href="/search/physics?searchtype=author&query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&query=Ardito%2C+R">R. Ardito</a>, <a href="/search/physics?searchtype=author&query=Corona%2C+M+A">M. Atzori Corona</a>, <a href="/search/physics?searchtype=author&query=Auty%2C+D+J">D. J. Auty</a>, <a href="/search/physics?searchtype=author&query=Ave%2C+M">M. Ave</a>, <a href="/search/physics?searchtype=author&query=Avetisov%2C+I+C">I. C. Avetisov</a>, <a href="/search/physics?searchtype=author&query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&query=Back%2C+H+O">H. O. Back</a>, <a href="/search/physics?searchtype=author&query=Balmforth%2C+Z">Z. Balmforth</a>, <a href="/search/physics?searchtype=author&query=Olmedo%2C+A+B">A. Barrado Olmedo</a>, <a href="/search/physics?searchtype=author&query=Barrillon%2C+P">P. Barrillon</a>, <a href="/search/physics?searchtype=author&query=Batignani%2C+G">G. Batignani</a>, <a href="/search/physics?searchtype=author&query=Bhowmick%2C+P">P. Bhowmick</a> , et al. (294 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.14071v1-abstract-short" style="display: inline;"> DarkSide-20k (DS-20k) is a dark matter detection experiment under construction at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. It utilises ~100 t of low radioactivity argon from an underground source (UAr) in its inner detector, with half serving as target in a dual-phase time projection chamber (TPC). The UAr cryogenics system must maintain stable thermodynamic conditions throughout t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14071v1-abstract-full').style.display = 'inline'; document.getElementById('2408.14071v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.14071v1-abstract-full" style="display: none;"> DarkSide-20k (DS-20k) is a dark matter detection experiment under construction at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. It utilises ~100 t of low radioactivity argon from an underground source (UAr) in its inner detector, with half serving as target in a dual-phase time projection chamber (TPC). The UAr cryogenics system must maintain stable thermodynamic conditions throughout the experiment's lifetime of >10 years. Continuous removal of impurities and radon from the UAr is essential for maximising signal yield and mitigating background. We are developing an efficient and powerful cryogenics system with a gas purification loop with a target circulation rate of 1000 slpm. Central to its design is a condenser operated with liquid nitrogen which is paired with a gas heat exchanger cascade, delivering a combined cooling power of >8 kW. Here we present the design choices in view of the DS-20k requirements, in particular the condenser's working principle and the cooling control, and we show test results obtained with a dedicated benchmarking platform at CERN and LNGS. We find that the thermal efficiency of the recirculation loop, defined in terms of nitrogen consumption per argon flow rate, is 95 % and the pressure in the test cryostat can be maintained within $\pm$(0.1-0.2) mbar. We further detail a 5-day cool-down procedure of the test cryostat, maintaining a cooling rate typically within -2 K/h, as required for the DS-20k inner detector. Additionally, we assess the circuit's flow resistance, and the heat transfer capabilities of two heat exchanger geometries for argon phase change, used to provide gas for recirculation. We conclude by discussing how our findings influence the finalisation of the system design, including necessary modifications to meet requirements and ongoing testing activities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14071v1-abstract-full').style.display = 'none'; document.getElementById('2408.14071v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">45 pages, 24 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.01444">arXiv:2406.01444</a> <span> [<a href="https://arxiv.org/pdf/2406.01444">pdf</a>, <a href="https://arxiv.org/format/2406.01444">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Development of large-volume $^{130}$TeO$_2$ bolometers for the CROSS $2尾$ decay search experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/physics?searchtype=author&query=Barabash%2C+A+S">A. S. Barabash</a>, <a href="/search/physics?searchtype=author&query=Berest%2C+V">V. Berest</a>, <a href="/search/physics?searchtype=author&query=Berg%C3%A9%2C+L">L. Berg茅</a>, <a href="/search/physics?searchtype=author&query=Calvo-Mozota%2C+J+M">J. M. Calvo-Mozota</a>, <a href="/search/physics?searchtype=author&query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&query=Chapellier%2C+M">M. Chapellier</a>, <a href="/search/physics?searchtype=author&query=Dafinei%2C+I">I. Dafinei</a>, <a href="/search/physics?searchtype=author&query=Danevich%2C+F+A">F. A. Danevich</a>, <a href="/search/physics?searchtype=author&query=Dumoulin%2C+L">L. Dumoulin</a>, <a href="/search/physics?searchtype=author&query=Ferella%2C+F">F. Ferella</a>, <a href="/search/physics?searchtype=author&query=Ferri%2C+F">F. Ferri</a>, <a href="/search/physics?searchtype=author&query=Gallas%2C+A">A. Gallas</a>, <a href="/search/physics?searchtype=author&query=Giuliani%2C+A">A. Giuliani</a>, <a href="/search/physics?searchtype=author&query=Gotti%2C+C">C. Gotti</a>, <a href="/search/physics?searchtype=author&query=Gras%2C+P">P. Gras</a>, <a href="/search/physics?searchtype=author&query=Ianni%2C+A">A. Ianni</a>, <a href="/search/physics?searchtype=author&query=Imbert%2C+L">L. Imbert</a>, <a href="/search/physics?searchtype=author&query=Khalife%2C+H">H. Khalife</a>, <a href="/search/physics?searchtype=author&query=Kobychev%2C+V+V">V. V. Kobychev</a>, <a href="/search/physics?searchtype=author&query=Konovalov%2C+S+I">S. I. Konovalov</a>, <a href="/search/physics?searchtype=author&query=Loaiza%2C+P">P. Loaiza</a>, <a href="/search/physics?searchtype=author&query=de+Marcillac%2C+P">P. de Marcillac</a>, <a href="/search/physics?searchtype=author&query=Marnieros%2C+S">S. Marnieros</a>, <a href="/search/physics?searchtype=author&query=Marrache-Kikuchi%2C+C+A">C. A. Marrache-Kikuchi</a> , et al. (14 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.01444v2-abstract-short" style="display: inline;"> We report on the development of thermal detectors based on large-size tellurium dioxide crystals (45x45x45 mm), containing tellurium enriched in $^{130}$Te to about 91%, for the CROSS double-beta decay experiment. A powder used for the crystals growth was additionally purified by the directional solidification method, resulting in the reduction of the concentration of impurities by a factor 10, to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01444v2-abstract-full').style.display = 'inline'; document.getElementById('2406.01444v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.01444v2-abstract-full" style="display: none;"> We report on the development of thermal detectors based on large-size tellurium dioxide crystals (45x45x45 mm), containing tellurium enriched in $^{130}$Te to about 91%, for the CROSS double-beta decay experiment. A powder used for the crystals growth was additionally purified by the directional solidification method, resulting in the reduction of the concentration of impurities by a factor 10, to a few ppm of the total concentration of residual elements (the main impurity is Fe). The purest part of the ingot (the first ~200 mm, about 80% of the total length of the cylindrical part of the ingot) was determined by scanning segregation profiles of impurities and used for the $^{130}$TeO$_2$ powder production with no evidence of re-contamination. The crystal growth was verified with precursors produced from powder with natural Te isotopic composition, and two small-size (20x20x10 mm) samples were tested at a sea-level laboratory showing high bolometric and spectrometric performance together with acceptable $^{210}$Po content (below 10 mBq/kg). This growth method was then applied for the production of six large cubic $^{130}$TeO$_2$ crystals and 4 of them were taken randomly to be characterized at the Canfranc underground laboratory, in the CROSS-dedicated low-background cryogenic facility. Two $^{130}$TeO$_2$ samples were coated with a thin, $O$(100 nm), metal film in form of Al layer (on 4 sides) or AlPd grid (on a single side) to investigate the possibility to tag surface events by pulse-shape discrimination. Similarly to the small natural precursors, large-volume $^{130}$TeO$_2$ bolometers show high performance and even better internal purity ($^{210}$Po activity $\sim$ 1 mBq/kg, while activities of $^{228}$Th and $^{226}$Ra are below 0.01 mBq/kg), satisfying requirements for the CROSS and, potentially, next-generation experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01444v2-abstract-full').style.display = 'none'; document.getElementById('2406.01444v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to JINST; 22 pages, 11 figures, 4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.18980">arXiv:2405.18980</a> <span> [<a href="https://arxiv.org/pdf/2405.18980">pdf</a>, <a href="https://arxiv.org/format/2405.18980">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> A novel mechanical design of a bolometric array for the CROSS double-beta decay experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Auguste%2C+D">D. Auguste</a>, <a href="/search/physics?searchtype=author&query=Barabash%2C+A+S">A. S. Barabash</a>, <a href="/search/physics?searchtype=author&query=Berest%2C+V">V. Berest</a>, <a href="/search/physics?searchtype=author&query=Berg%C3%A9%2C+L">L. Berg茅</a>, <a href="/search/physics?searchtype=author&query=Calvo-Mozota%2C+J+M">J. M. Calvo-Mozota</a>, <a href="/search/physics?searchtype=author&query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&query=Chapellier%2C+M">M. Chapellier</a>, <a href="/search/physics?searchtype=author&query=Dafinei%2C+I">I. Dafinei</a>, <a href="/search/physics?searchtype=author&query=Danevich%2C+F+A">F. A. Danevich</a>, <a href="/search/physics?searchtype=author&query=Dixon%2C+T">T. Dixon</a>, <a href="/search/physics?searchtype=author&query=Dumoulin%2C+L">L. Dumoulin</a>, <a href="/search/physics?searchtype=author&query=Ferri%2C+F">F. Ferri</a>, <a href="/search/physics?searchtype=author&query=Gallas%2C+A">A. Gallas</a>, <a href="/search/physics?searchtype=author&query=Giuliani%2C+A">A. Giuliani</a>, <a href="/search/physics?searchtype=author&query=Gotti%2C+C">C. Gotti</a>, <a href="/search/physics?searchtype=author&query=Gras%2C+P">P. Gras</a>, <a href="/search/physics?searchtype=author&query=Ianni%2C+A">A. Ianni</a>, <a href="/search/physics?searchtype=author&query=Imbert%2C+L">L. Imbert</a>, <a href="/search/physics?searchtype=author&query=Khalife%2C+H">H. Khalife</a>, <a href="/search/physics?searchtype=author&query=Kobychev%2C+V+V">V. V. Kobychev</a>, <a href="/search/physics?searchtype=author&query=Konovalov%2C+S+I">S. I. Konovalov</a>, <a href="/search/physics?searchtype=author&query=Loaiza%2C+P">P. Loaiza</a>, <a href="/search/physics?searchtype=author&query=de+Marcillac%2C+P">P. de Marcillac</a>, <a href="/search/physics?searchtype=author&query=Marnieros%2C+S">S. Marnieros</a>, <a href="/search/physics?searchtype=author&query=Marrache-Kikuchi%2C+C+A">C. A. Marrache-Kikuchi</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.18980v2-abstract-short" style="display: inline;"> The CROSS experiment will search for neutrinoless double-beta decay using a specific mechanical structure to hold thermal detectors. The design of the structure was tuned to minimize the background contribution, keeping an optimal detector performance. A single module of the structure holds two scintillating bolometers (with a crystal size of 45x45x45 mm and a Ge slab facing the crystal's upper si… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.18980v2-abstract-full').style.display = 'inline'; document.getElementById('2405.18980v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.18980v2-abstract-full" style="display: none;"> The CROSS experiment will search for neutrinoless double-beta decay using a specific mechanical structure to hold thermal detectors. The design of the structure was tuned to minimize the background contribution, keeping an optimal detector performance. A single module of the structure holds two scintillating bolometers (with a crystal size of 45x45x45 mm and a Ge slab facing the crystal's upper side) in the Cu frame, allowing for a modular construction of a large-scale array. Two designs are released: the initial $Thick$ version contains around 15% of Cu over the crystal mass (lithium molybdate, LMO), while this ratio is reduced to ~6% in a finer ($Slim$) design. Both designs were tested extensively at aboveground (IJCLab, France) and underground (LSC, Spain) laboratories. In particular, at LSC we used a pulse-tube-based CROSS facility to operate a 6-crystal array of LMOs enriched/depleted in $^{100}$Mo. The tested LMOs show high spectrometric performance in both designs; notably, the measured energy resolution is 5--7 keV FWHM at 2615 keV $纬$s, nearby the Q-value of $^{100}$Mo (3034 keV). Due to the absence of a reflective cavity around LMOs, a low scintillation signal is detected by Ge bolometers: ~0.3 keV (150 photons) for 1-MeV $纬$($尾$) LMO-event. Despite that, an acceptable separation between $伪$ and $纬$($尾$) events is achieved with most devices. The highest efficiency is reached with light detectors in the $Thick$ design thanks to a lower baseline noise width (0.05--0.09 keV RMS) when compared to that obtained in the $Slim$ version (0.10--0.35 keV RMS). Given the pivotal role of bolometric photodetectors for particle identification and random coincidences rejection, we will use the structure here described with upgraded light detectors, featuring thermal signal amplification via the Neganov-Trofimov-Luke effect, as also demonstrated in the present work. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.18980v2-abstract-full').style.display = 'none'; document.getElementById('2405.18980v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to JINST; 31 pages, 16 figures, 5 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.18492">arXiv:2404.18492</a> <span> [<a href="https://arxiv.org/pdf/2404.18492">pdf</a>, <a href="https://arxiv.org/format/2404.18492">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/19/09/P09021">10.1088/1748-0221/19/09/P09021 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A new hybrid gadolinium nanoparticles-loaded polymeric material for neutron detection in rare event searches </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Collaboration%2C+D">DarkSide-20k Collaboration</a>, <a href="/search/physics?searchtype=author&query=%3A"> :</a>, <a href="/search/physics?searchtype=author&query=Acerbi%2C+F">F. Acerbi</a>, <a href="/search/physics?searchtype=author&query=Adhikari%2C+P">P. Adhikari</a>, <a href="/search/physics?searchtype=author&query=Agnes%2C+P">P. Agnes</a>, <a href="/search/physics?searchtype=author&query=Ahmad%2C+I">I. Ahmad</a>, <a href="/search/physics?searchtype=author&query=Albergo%2C+S">S. Albergo</a>, <a href="/search/physics?searchtype=author&query=Albuquerque%2C+I+F">I. F. Albuquerque</a>, <a href="/search/physics?searchtype=author&query=Alexander%2C+T">T. Alexander</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A+K">A. K. Alton</a>, <a href="/search/physics?searchtype=author&query=Amaudruz%2C+P">P. Amaudruz</a>, <a href="/search/physics?searchtype=author&query=Angiolilli%2C+M">M. Angiolilli</a>, <a href="/search/physics?searchtype=author&query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&query=Ardito%2C+R">R. Ardito</a>, <a href="/search/physics?searchtype=author&query=Corona%2C+M+A">M. Atzori Corona</a>, <a href="/search/physics?searchtype=author&query=Auty%2C+D+J">D. J. Auty</a>, <a href="/search/physics?searchtype=author&query=Ave%2C+M">M. Ave</a>, <a href="/search/physics?searchtype=author&query=Avetisov%2C+I+C">I. C. Avetisov</a>, <a href="/search/physics?searchtype=author&query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&query=Back%2C+H+O">H. O. Back</a>, <a href="/search/physics?searchtype=author&query=Balmforth%2C+Z">Z. Balmforth</a>, <a href="/search/physics?searchtype=author&query=Olmedo%2C+A+B">A. Barrado Olmedo</a>, <a href="/search/physics?searchtype=author&query=Barrillon%2C+P">P. Barrillon</a>, <a href="/search/physics?searchtype=author&query=Batignani%2C+G">G. Batignani</a>, <a href="/search/physics?searchtype=author&query=Bhowmick%2C+P">P. Bhowmick</a> , et al. (290 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.18492v1-abstract-short" style="display: inline;"> Experiments aimed at direct searches for WIMP dark matter require highly effective reduction of backgrounds and control of any residual radioactive contamination. In particular, neutrons interacting with atomic nuclei represent an important class of backgrounds due to the expected similarity of a WIMP-nucleon interaction, so that such experiments often feature a dedicated neutron detector surround… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.18492v1-abstract-full').style.display = 'inline'; document.getElementById('2404.18492v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.18492v1-abstract-full" style="display: none;"> Experiments aimed at direct searches for WIMP dark matter require highly effective reduction of backgrounds and control of any residual radioactive contamination. In particular, neutrons interacting with atomic nuclei represent an important class of backgrounds due to the expected similarity of a WIMP-nucleon interaction, so that such experiments often feature a dedicated neutron detector surrounding the active target volume. In the context of the development of DarkSide-20k detector at INFN Gran Sasso National Laboratory (LNGS), several R&D projects were conceived and developed for the creation of a new hybrid material rich in both hydrogen and gadolinium nuclei to be employed as an essential element of the neutron detector. Thanks to its very high cross-section for neutron capture, gadolinium is one of the most widely used elements in neutron detectors, while the hydrogen-rich material is instrumental in efficiently moderating the neutrons. In this paper results from one of the R&Ds are presented. In this effort the new hybrid material was obtained as a poly(methyl methacrylate) (PMMA) matrix, loaded with gadolinium oxide in the form of nanoparticles. We describe its realization, including all phases of design, purification, construction, characterization, and determination of mechanical properties of the new material. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.18492v1-abstract-full').style.display = 'none'; document.getElementById('2404.18492v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 19 P09021 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.14306">arXiv:2404.14306</a> <span> [<a href="https://arxiv.org/pdf/2404.14306">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Twisted nonlinear optics in monolayer van der Waals crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Norden%2C+T">Tenzin Norden</a>, <a href="/search/physics?searchtype=author&query=Martinez%2C+L+M">Luis M. Martinez</a>, <a href="/search/physics?searchtype=author&query=Tarefder%2C+N">Nehan Tarefder</a>, <a href="/search/physics?searchtype=author&query=Kwock%2C+K+W+C">Kevin W. C. Kwock</a>, <a href="/search/physics?searchtype=author&query=McClintock%2C+L+M">Luke M. McClintock</a>, <a href="/search/physics?searchtype=author&query=Olsen%2C+N">Nicholas Olsen</a>, <a href="/search/physics?searchtype=author&query=Holtzman%2C+L+N">Luke N. Holtzman</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+X">Xiaoyang Zhu</a>, <a href="/search/physics?searchtype=author&query=Hone%2C+J+C">James C. Hone</a>, <a href="/search/physics?searchtype=author&query=Yoo%2C+J">Jinkyoung Yoo</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+J">Jian-Xin Zhu</a>, <a href="/search/physics?searchtype=author&query=Schuck%2C+P+J">P. James Schuck</a>, <a href="/search/physics?searchtype=author&query=Taylor%2C+A+J">Antoinette J. Taylor</a>, <a href="/search/physics?searchtype=author&query=Prasankumar%2C+R+P">Rohit P. Prasankumar</a>, <a href="/search/physics?searchtype=author&query=Kort-Kamp%2C+W+J+M">Wilton J. M. Kort-Kamp</a>, <a href="/search/physics?searchtype=author&query=Padmanabhan%2C+P">Prashant Padmanabhan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.14306v2-abstract-short" style="display: inline;"> In addition to a plethora of emergent phenomena, the spatial topology of optical vortices enables an array of applications spanning communications to quantum photonics. Nonlinear optics is essential in this context, providing access to an infinitely large set of quantum states associated with the orbital angular momentum of light. Nevertheless, the realization of such processes have failed to keep… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.14306v2-abstract-full').style.display = 'inline'; document.getElementById('2404.14306v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.14306v2-abstract-full" style="display: none;"> In addition to a plethora of emergent phenomena, the spatial topology of optical vortices enables an array of applications spanning communications to quantum photonics. Nonlinear optics is essential in this context, providing access to an infinitely large set of quantum states associated with the orbital angular momentum of light. Nevertheless, the realization of such processes have failed to keep pace with the ever-growing need to shrink the fundamental length-scale of photonic technologies to the nanometer regime6. Here, we push the boundaries of vortex nonlinear optics to the ultimate limits of material dimensionality. By exploiting second and third-order frequency-mixing processes in semiconducting monolayers, we demonstrate the independent manipulation of the wavelength, orbital angular momentum, and spatial distribution of vortex light-fields. Due to the atomically-thin nature of the host quantum material, this control spans a broad spectral bandwidth in a highly-integrable platform, unconstrained by the traditional limits of bulk nonlinear optical materials. Our work heralds a new avenue for ultra-compact and scalable hybrid nanotechnologies empowered by twisted nonlinear light-matter interactions in van der Waals quantum nanomaterials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.14306v2-abstract-full').style.display = 'none'; document.getElementById('2404.14306v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.12262">arXiv:2402.12262</a> <span> [<a href="https://arxiv.org/pdf/2402.12262">pdf</a>, <a href="https://arxiv.org/format/2402.12262">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2024.169936">10.1016/j.nima.2024.169936 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> BINGO innovative assembly for background reduction in bolometric $0谓尾尾$ experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Armatol%2C+A">A. Armatol</a>, <a href="/search/physics?searchtype=author&query=Augier%2C+C">C. Augier</a>, <a href="/search/physics?searchtype=author&query=Bandac%2C+I+C">I. C. Bandac</a>, <a href="/search/physics?searchtype=author&query=Baudin%2C+D">D. Baudin</a>, <a href="/search/physics?searchtype=author&query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&query=Berest%2C+V">V. Berest</a>, <a href="/search/physics?searchtype=author&query=Berg%C3%A9%2C+L">L. Berg茅</a>, <a href="/search/physics?searchtype=author&query=Billard%2C+J">J. Billard</a>, <a href="/search/physics?searchtype=author&query=Calvo-Mozota%2C+J+M">J. M. Calvo-Mozota</a>, <a href="/search/physics?searchtype=author&query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&query=Chapellier%2C+M">M. Chapellier</a>, <a href="/search/physics?searchtype=author&query=Danevich%2C+F+A">F. A. Danevich</a>, <a href="/search/physics?searchtype=author&query=De+Jesus%2C+M">M. De Jesus</a>, <a href="/search/physics?searchtype=author&query=Dixon%2C+T">T. Dixon</a>, <a href="/search/physics?searchtype=author&query=Dumoulin%2C+L">L. Dumoulin</a>, <a href="/search/physics?searchtype=author&query=Ferri%2C+F">F. Ferri</a>, <a href="/search/physics?searchtype=author&query=Gascon%2C+J">J. Gascon</a>, <a href="/search/physics?searchtype=author&query=Giuliani%2C+A">A. Giuliani</a>, <a href="/search/physics?searchtype=author&query=Gomez%2C+H">H. Gomez</a>, <a href="/search/physics?searchtype=author&query=Gotti%2C+C">C. Gotti</a>, <a href="/search/physics?searchtype=author&query=Gras%2C+P">Ph. Gras</a>, <a href="/search/physics?searchtype=author&query=Gros%2C+M">M. Gros</a>, <a href="/search/physics?searchtype=author&query=Juillard%2C+A">A. Juillard</a>, <a href="/search/physics?searchtype=author&query=Khalife%2C+H">H. Khalife</a>, <a href="/search/physics?searchtype=author&query=Kobychev%2C+V+V">V. V. Kobychev</a> , et al. (23 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.12262v2-abstract-short" style="display: inline;"> BINGO is a project aiming to set the grounds for large-scale bolometric neutrinoless double-beta-decay experiments capable of investigating the effective Majorana neutrino mass at a few meV level. It focuses on developing innovative technologies (a detector assembly, cryogenic photodetectors and active veto) to achieve a very low background index, of the order of $10^{-5}$ counts/(keV kg yr) in th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.12262v2-abstract-full').style.display = 'inline'; document.getElementById('2402.12262v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.12262v2-abstract-full" style="display: none;"> BINGO is a project aiming to set the grounds for large-scale bolometric neutrinoless double-beta-decay experiments capable of investigating the effective Majorana neutrino mass at a few meV level. It focuses on developing innovative technologies (a detector assembly, cryogenic photodetectors and active veto) to achieve a very low background index, of the order of $10^{-5}$ counts/(keV kg yr) in the region of interest. The BINGO demonstrator, called MINI-BINGO, is designed to investigate the promising double-beta-decay isotopes $^{100}$Mo and $^{130}$Te and it will be composed of Li$_2$MoO$_4$ and TeO$_2$ crystals coupled to bolometric light detectors and surrounded by a Bi$_4$Ge$_3$O$_{12}$-based veto. This will allow us to reject a significant background in bolometers caused by surface contamination from $伪$-active radionuclides by means of light yield selection and to mitigate other sources of background, such as surface contamination from $尾$-active radionuclides, external $纬$ radioactivity, and pile-up due to random coincidence of background events. This paper describes an R\&D program towards the BINGO goals, particularly focusing on the development of an innovative assembly designed to reduce the passive materials within the line of sight of the detectors, which is expected to be a dominant source of background in next-generation bolometric experiments. We present the performance of two prototype modules -- housing four cubic (4.5-cm side) Li$_2$MoO$_4$ crystals in total -- operated in the Canfranc underground laboratory in Spain within a facility developed for the CROSS double-beta-decay experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.12262v2-abstract-full').style.display = 'none'; document.getElementById('2402.12262v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to Nucl. Instr. Meth. A; 28 pages, 11 figures, 4 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl. Instrum. Methods Phys. Res. A 1096, 169936 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.08325">arXiv:2402.08325</a> <span> [<a href="https://arxiv.org/pdf/2402.08325">pdf</a>, <a href="https://arxiv.org/format/2402.08325">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/19/05/P05010">10.1088/1748-0221/19/05/P05010 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multi-Blade detector with VMM3a-ASIC-based readout: installation and commissioning at the reflectometer Amor at PSI </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Piscitelli%2C+F">F. Piscitelli</a>, <a href="/search/physics?searchtype=author&query=Moradi%2C+F+G">F. Ghazi Moradi</a>, <a href="/search/physics?searchtype=author&query=Alves%2C+F+S">F. S. Alves</a>, <a href="/search/physics?searchtype=author&query=Christensen%2C+M+J">M. J. Christensen</a>, <a href="/search/physics?searchtype=author&query=Hrivnak%2C+J">J. Hrivnak</a>, <a href="/search/physics?searchtype=author&query=Johansson%2C+A">A. Johansson</a>, <a href="/search/physics?searchtype=author&query=Fissum%2C+K">K. Fissum</a>, <a href="/search/physics?searchtype=author&query=Lai%2C+C+C">C. C. Lai</a>, <a href="/search/physics?searchtype=author&query=Martinez%2C+A+M">A. Monera Martinez</a>, <a href="/search/physics?searchtype=author&query=Pfeiffer%2C+D">D. Pfeiffer</a>, <a href="/search/physics?searchtype=author&query=Shahu%2C+E">E. Shahu</a>, <a href="/search/physics?searchtype=author&query=Stahn%2C+J">J. Stahn</a>, <a href="/search/physics?searchtype=author&query=Svensson%2C+P+O">P. O. Svensson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.08325v2-abstract-short" style="display: inline;"> The Multi-Blade (MB) Boron-10-based neutron detector is the chosen technology for three instruments at the European Spallation Source (ESS): the two ESS reflectometers, ESTIA and FREIA, and the Test Beam Line. A fourth MB detector has been built, installed and commissioned for the user operation of the reflectometer Amor at PSI (Switzerland). Amor can be considered a downscaled version of the ESS… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.08325v2-abstract-full').style.display = 'inline'; document.getElementById('2402.08325v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.08325v2-abstract-full" style="display: none;"> The Multi-Blade (MB) Boron-10-based neutron detector is the chosen technology for three instruments at the European Spallation Source (ESS): the two ESS reflectometers, ESTIA and FREIA, and the Test Beam Line. A fourth MB detector has been built, installed and commissioned for the user operation of the reflectometer Amor at PSI (Switzerland). Amor can be considered a downscaled version of the ESS reflectometer ESTIA. They are based on the same Selene guide concept, optimized for performing focusing reflectometry on small samples. The experience gained at Amor is invaluable for the future deployment of the MB detector at the ESS. This manuscript describes the MB detector construction and installation at Amor along with the readout electronics chain based on the VMM3a ASIC. The readout chain deployed at Amor is equivalent of that of the ESS, including the readout master module (RMM), event-formation-units (EFUs), Kafka, FileWriter and live visualisation tools. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.08325v2-abstract-full').style.display = 'none'; document.getElementById('2402.08325v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2024 JINST 19 P05010 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.07290">arXiv:2311.07290</a> <span> [<a href="https://arxiv.org/pdf/2311.07290">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Neutron calibrations in dark matter searches: the ANAIS-112 case </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Pardo%2C+T">T. Pardo</a>, <a href="/search/physics?searchtype=author&query=Amar%C3%A9%2C+J">J. Amar茅</a>, <a href="/search/physics?searchtype=author&query=Apilluelo%2C+J">J. Apilluelo</a>, <a href="/search/physics?searchtype=author&query=Cebri%C3%A1n%2C+S">S. Cebri谩n</a>, <a href="/search/physics?searchtype=author&query=Cintas%2C+D">D. Cintas</a>, <a href="/search/physics?searchtype=author&query=Coarasa%2C+I">I. Coarasa</a>, <a href="/search/physics?searchtype=author&query=Garc%C3%ADa%2C+E">E. Garc铆a</a>, <a href="/search/physics?searchtype=author&query=Mart%C3%ADnez%2C+M">M. Mart铆nez</a>, <a href="/search/physics?searchtype=author&query=Oliv%C3%A1n%2C+M+A">M. A. Oliv谩n</a>, <a href="/search/physics?searchtype=author&query=Ortigoza%2C+Y">Y. Ortigoza</a>, <a href="/search/physics?searchtype=author&query=de+Sol%C3%B3rzano%2C+A+O">A. Ortiz de Sol贸rzano</a>, <a href="/search/physics?searchtype=author&query=Pellicer%2C+M">M. Pellicer</a>, <a href="/search/physics?searchtype=author&query=Puimed%C3%B3n%2C+J">J. Puimed贸n</a>, <a href="/search/physics?searchtype=author&query=Salinas%2C+A">A. Salinas</a>, <a href="/search/physics?searchtype=author&query=Sarsa%2C+M+L">M. L. Sarsa</a>, <a href="/search/physics?searchtype=author&query=Villar%2C+P">P. Villar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.07290v1-abstract-short" style="display: inline;"> ANAIS is a direct dark matter detection experiment whose goal is to confirm or refute in a model independent way the positive annual modulation signal claimed by DAMA/LIBRA. Consisting of 112.5 kg of NaI(Tl) scintillators, ANAIS-112 is taking data at the Canfranc Underground Laboratory in Spain since August, 2017. Results corresponding to the analysis of three years of data are compatible with the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.07290v1-abstract-full').style.display = 'inline'; document.getElementById('2311.07290v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.07290v1-abstract-full" style="display: none;"> ANAIS is a direct dark matter detection experiment whose goal is to confirm or refute in a model independent way the positive annual modulation signal claimed by DAMA/LIBRA. Consisting of 112.5 kg of NaI(Tl) scintillators, ANAIS-112 is taking data at the Canfranc Underground Laboratory in Spain since August, 2017. Results corresponding to the analysis of three years of data are compatible with the absence of modulation and incompatible with DAMA/LIBRA. However, testing this signal relies on the knowledge of the scintillation quenching factors (QF), which measure the relative efficiency for the conversion into light of the nuclear recoil energy with respect to the same energy deposited by electrons. Previous measurements of the QF in NaI(Tl) show a large dispersion. Consequently, in order to better understand the response of the ANAIS-112 detectors to nuclear recoils, a specific neutron calibration program has been developed. This program combines two different approaches: on the one hand, QF measurements were carried out in a monoenergetic neutron beam; on the other hand, the study presented here aims at the evaluation of the QF by exposing directly the ANAIS-112 crystals to neutrons from low activity $^{252}$Cf sources, placed outside the lead shielding. Comparison between these onsite neutron measurements and detailed GEANT4 simulations will be presented, confirming that this approach allows testing different QF models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.07290v1-abstract-full').style.display = 'none'; document.getElementById('2311.07290v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contributed to the TAUP2023 Conference, August-September 2023. To be published in Proceeding of Science</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.05692">arXiv:2311.05692</a> <span> [<a href="https://arxiv.org/pdf/2311.05692">pdf</a>, <a href="https://arxiv.org/format/2311.05692">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.commatsci.2024.113058">10.1016/j.commatsci.2024.113058 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phase-Field Model of Silicon Carbide Growth During Isothermal Condition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Munoz%2C+E+J">Elias J. Munoz</a>, <a href="/search/physics?searchtype=author&query=Attari%2C+V">Vahid Attari</a>, <a href="/search/physics?searchtype=author&query=Martinez%2C+M">Marco Martinez</a>, <a href="/search/physics?searchtype=author&query=Dickerson%2C+M+B">Matthew B. Dickerson</a>, <a href="/search/physics?searchtype=author&query=Radovic%2C+M">Miladin Radovic</a>, <a href="/search/physics?searchtype=author&query=Arroyave%2C+R">Raymundo Arroyave</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.05692v1-abstract-short" style="display: inline;"> Silicon carbide (SiC) emerges as a promising ceramic material for high-temperature structural applications, especially within the aerospace sector. The utilization of SiC-based ceramic matrix composites (CMCs) instead of superalloys in components like engine shrouds, combustors, and nozzles offers notable advantages, including a 25% improvement in fuel efficiency, over 10% enhanced thrust, and the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.05692v1-abstract-full').style.display = 'inline'; document.getElementById('2311.05692v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.05692v1-abstract-full" style="display: none;"> Silicon carbide (SiC) emerges as a promising ceramic material for high-temperature structural applications, especially within the aerospace sector. The utilization of SiC-based ceramic matrix composites (CMCs) instead of superalloys in components like engine shrouds, combustors, and nozzles offers notable advantages, including a 25% improvement in fuel efficiency, over 10% enhanced thrust, and the capability to withstand up to 500$^{\circ}$C higher operating temperatures. Employing a CALPHAD-reinforced multi-phase-field model, our study delves into the evolution of the SiC layer under isothermal solidification conditions. By modeling the growth of SiC between liquid Si and solid C at 1450$^{\circ}$C, we compared results with experimental microstructures and quantitatively examined the evolution of SiC thickness over time. Efficient sampling across the entire model space mitigated uncertainty in high-temperature kinetic parameters, allowing us to predict a range of growth rates and morphologies for the SiC layer. The model accounts for parameter uncertainty stemming from limited experimental knowledge and successfully predicts relevant morphologies for the system. Experimental results validated the kinetic parameters of the simulations, offering valuable insights and potential constraints on the reaction kinetics. We further explored the significance of multi-phase-field model parameters on two key outputs, and found that the diffusion coefficient of liquid Si emerges as the most crucial parameter significantly impacting the SiC average layer thickness and grain count over time. This study provides valuable insights into the microstructure evolution of the Si-C binary system, offering pertinent information for the engineering of CMCs in industrial applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.05692v1-abstract-full').style.display = 'none'; document.getElementById('2311.05692v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.04303">arXiv:2309.04303</a> <span> [<a href="https://arxiv.org/pdf/2309.04303">pdf</a>, <a href="https://arxiv.org/format/2309.04303">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Fast Bayesian gravitational wave parameter estimation using convolutional neural networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Andr%C3%A9s-Carcasona%2C+M">M. Andr茅s-Carcasona</a>, <a href="/search/physics?searchtype=author&query=Martinez%2C+M">M. Martinez</a>, <a href="/search/physics?searchtype=author&query=Mir%2C+L+M">Ll. M. Mir</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.04303v2-abstract-short" style="display: inline;"> The determination of the physical parameters of gravitational wave events is a fundamental pillar in the analysis of the signals observed by the current ground-based interferometers. Typically, this is done using Bayesian inference approaches which, albeit very accurate, are very computationally expensive. We propose a convolutional neural network approach to perform this task. The convolutional n… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.04303v2-abstract-full').style.display = 'inline'; document.getElementById('2309.04303v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.04303v2-abstract-full" style="display: none;"> The determination of the physical parameters of gravitational wave events is a fundamental pillar in the analysis of the signals observed by the current ground-based interferometers. Typically, this is done using Bayesian inference approaches which, albeit very accurate, are very computationally expensive. We propose a convolutional neural network approach to perform this task. The convolutional neural network is trained using simulated signals injected in a Gaussian noise. We verify the correctness of the neural network's output distribution and compare its estimates with the posterior distributions obtained from traditional Bayesian inference methods for some real events. The results demonstrate the convolutional neural network's ability to produce posterior distributions that are compatible with the traditional methods. Moreover, it achieves a remarkable inference speed, lowering by orders of magnitude the times of Bayesian inference methods, enabling real-time analysis of gravitational wave signals. Despite the observed reduced accuracy in the parameters, the neural network provides valuable initial indications of key parameters of the event such as the sky location, facilitating a multi-messenger approach. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.04303v2-abstract-full').style.display = 'none'; document.getElementById('2309.04303v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.04154">arXiv:2308.04154</a> <span> [<a href="https://arxiv.org/pdf/2308.04154">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Probing Earth's Missing Potassium using the Unique Antimatter Signature of Geoneutrinos </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Consortium%2C+L">LiquidO Consortium</a>, <a href="/search/physics?searchtype=author&query=%3A"> :</a>, <a href="/search/physics?searchtype=author&query=Cabrera%2C+A">A. Cabrera</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+M">M. Chen</a>, <a href="/search/physics?searchtype=author&query=Mantovani%2C+F">F. Mantovani</a>, <a href="/search/physics?searchtype=author&query=Serafini%2C+A">A. Serafini</a>, <a href="/search/physics?searchtype=author&query=Strati%2C+V">V. Strati</a>, <a href="/search/physics?searchtype=author&query=Apilluelo%2C+J">J. Apilluelo</a>, <a href="/search/physics?searchtype=author&query=Asquith%2C+L">L. Asquith</a>, <a href="/search/physics?searchtype=author&query=Beney%2C+J+L">J. L. Beney</a>, <a href="/search/physics?searchtype=author&query=Bezerra%2C+T+J+C">T. J. C. Bezerra</a>, <a href="/search/physics?searchtype=author&query=Bongrand%2C+M">M. Bongrand</a>, <a href="/search/physics?searchtype=author&query=Bourgeois%2C+C">C. Bourgeois</a>, <a href="/search/physics?searchtype=author&query=Breton%2C+D">D. Breton</a>, <a href="/search/physics?searchtype=author&query=Briere%2C+M">M. Briere</a>, <a href="/search/physics?searchtype=author&query=Busto%2C+J">J. Busto</a>, <a href="/search/physics?searchtype=author&query=Cadiou%2C+A">A. Cadiou</a>, <a href="/search/physics?searchtype=author&query=Calvo%2C+E">E. Calvo</a>, <a href="/search/physics?searchtype=author&query=Chaumat%2C+V">V. Chaumat</a>, <a href="/search/physics?searchtype=author&query=Chauveau%2C+E">E. Chauveau</a>, <a href="/search/physics?searchtype=author&query=Cattermole%2C+B+J">B. J. Cattermole</a>, <a href="/search/physics?searchtype=author&query=Chimenti%2C+P">P. Chimenti</a>, <a href="/search/physics?searchtype=author&query=Delafosse%2C+C">C. Delafosse</a>, <a href="/search/physics?searchtype=author&query=de+Kerret%2C+H">H. de Kerret</a>, <a href="/search/physics?searchtype=author&query=Dusini%2C+S">S. Dusini</a> , et al. (55 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.04154v2-abstract-short" style="display: inline;"> The formation of the Earth remains an epoch with mysterious puzzles extending to our still incomplete understanding of the planet's potential origin and bulk composition. Direct confirmation of the Earth's internal heat engine was accomplished by the successful observation of geoneutrinos originating from uranium (U) and thorium (Th) progenies, manifestations of the planet's natural radioactivity… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.04154v2-abstract-full').style.display = 'inline'; document.getElementById('2308.04154v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.04154v2-abstract-full" style="display: none;"> The formation of the Earth remains an epoch with mysterious puzzles extending to our still incomplete understanding of the planet's potential origin and bulk composition. Direct confirmation of the Earth's internal heat engine was accomplished by the successful observation of geoneutrinos originating from uranium (U) and thorium (Th) progenies, manifestations of the planet's natural radioactivity dominated by potassium (40K) and the decay chains of uranium (238U) and thorium (232Th). This radiogenic energy output is critical to planetary dynamics and must be accurately measured for a complete understanding of the overall heat budget and thermal history of the Earth. Detecting geoneutrinos remains the only direct probe to do so and constitutes a challenging objective in modern neutrino physics. In particular, the intriguing potassium geoneutrinos have never been observed and thus far have been considered impractical to measure. We propose here a novel approach for potassium geoneutrino detection using the unique antimatter signature of antineutrinos to reduce the otherwise overwhelming backgrounds to observing this rarest signal. The proposed detection framework relies on the innovative LiquidO detection technique to enable positron (e+) identification and antineutrino interactions with ideal isotope targets identified here for the first time. We also provide the complete experimental methodology to yield the first potassium geoneutrino discovery. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.04154v2-abstract-full').style.display = 'none'; document.getElementById('2308.04154v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.15454">arXiv:2307.15454</a> <span> [<a href="https://arxiv.org/pdf/2307.15454">pdf</a>, <a href="https://arxiv.org/format/2307.15454">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Directionality of nuclear recoils in a liquid argon time projection chamber </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Collaboration%2C+T+D">The DarkSide-20k Collaboration</a>, <a href="/search/physics?searchtype=author&query=%3A"> :</a>, <a href="/search/physics?searchtype=author&query=Agnes%2C+P">P. Agnes</a>, <a href="/search/physics?searchtype=author&query=Ahmad%2C+I">I. Ahmad</a>, <a href="/search/physics?searchtype=author&query=Albergo%2C+S">S. Albergo</a>, <a href="/search/physics?searchtype=author&query=Albuquerque%2C+I+F+M">I. F. M. Albuquerque</a>, <a href="/search/physics?searchtype=author&query=Alexander%2C+T">T. Alexander</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A+K">A. K. Alton</a>, <a href="/search/physics?searchtype=author&query=Amaudruz%2C+P">P. Amaudruz</a>, <a href="/search/physics?searchtype=author&query=Corona%2C+M+A">M. Atzori Corona</a>, <a href="/search/physics?searchtype=author&query=Ave%2C+M">M. Ave</a>, <a href="/search/physics?searchtype=author&query=Avetisov%2C+I+C">I. Ch. Avetisov</a>, <a href="/search/physics?searchtype=author&query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&query=Back%2C+H+O">H. O. Back</a>, <a href="/search/physics?searchtype=author&query=Balmforth%2C+Z">Z. Balmforth</a>, <a href="/search/physics?searchtype=author&query=Barrado-Olmedo%2C+A">A. Barrado-Olmedo</a>, <a href="/search/physics?searchtype=author&query=Barrillon%2C+P">P. Barrillon</a>, <a href="/search/physics?searchtype=author&query=Basco%2C+A">A. Basco</a>, <a href="/search/physics?searchtype=author&query=Batignani%2C+G">G. Batignani</a>, <a href="/search/physics?searchtype=author&query=Bocci%2C+V">V. Bocci</a>, <a href="/search/physics?searchtype=author&query=Bonivento%2C+W+M">W. M. Bonivento</a>, <a href="/search/physics?searchtype=author&query=Bottino%2C+B">B. Bottino</a>, <a href="/search/physics?searchtype=author&query=Boulay%2C+M+G">M. G. Boulay</a>, <a href="/search/physics?searchtype=author&query=Busto%2C+J">J. Busto</a>, <a href="/search/physics?searchtype=author&query=Cadeddu%2C+M">M. Cadeddu</a> , et al. (243 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.15454v1-abstract-short" style="display: inline;"> The direct search for dark matter in the form of weakly interacting massive particles (WIMP) is performed by detecting nuclear recoils (NR) produced in a target material from the WIMP elastic scattering. A promising experimental strategy for direct dark matter search employs argon dual-phase time projection chambers (TPC). One of the advantages of the TPC is the capability to detect both the scint… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.15454v1-abstract-full').style.display = 'inline'; document.getElementById('2307.15454v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.15454v1-abstract-full" style="display: none;"> The direct search for dark matter in the form of weakly interacting massive particles (WIMP) is performed by detecting nuclear recoils (NR) produced in a target material from the WIMP elastic scattering. A promising experimental strategy for direct dark matter search employs argon dual-phase time projection chambers (TPC). One of the advantages of the TPC is the capability to detect both the scintillation and charge signals produced by NRs. Furthermore, the existence of a drift electric field in the TPC breaks the rotational symmetry: the angle between the drift field and the momentum of the recoiling nucleus can potentially affect the charge recombination probability in liquid argon and then the relative balance between the two signal channels. This fact could make the detector sensitive to the directionality of the WIMP-induced signal, enabling unmistakable annual and daily modulation signatures for future searches aiming for discovery. The Recoil Directionality (ReD) experiment was designed to probe for such directional sensitivity. The TPC of ReD was irradiated with neutrons at the INFN Laboratori Nazionali del Sud, and data were taken with 72 keV NRs of known recoil directions. The direction-dependent liquid argon charge recombination model by Cataudella et al. was adopted and a likelihood statistical analysis was performed, which gave no indications of significant dependence of the detector response to the recoil direction. The aspect ratio R of the initial ionization cloud is estimated to be 1.037 +/- 0.027 and the upper limit is R < 1.072 with 90% confidence level <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.15454v1-abstract-full').style.display = 'none'; document.getElementById('2307.15454v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 10 figures, submitted to Eur. Phys. J. C</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 84:24 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.14831">arXiv:2307.14831</a> <span> [<a href="https://arxiv.org/pdf/2307.14831">pdf</a>, <a href="https://arxiv.org/format/2307.14831">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Test of $^{116}$CdWO$_4$ and Li$_2$MoO$_4$ scintillating bolometers in the CROSS underground facility with upgraded detector suspension </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ahmine%2C+A">A. Ahmine</a>, <a href="/search/physics?searchtype=author&query=Bandac%2C+I+C">I. C. Bandac</a>, <a href="/search/physics?searchtype=author&query=Barabash%2C+A+S">A. S. Barabash</a>, <a href="/search/physics?searchtype=author&query=Berest%2C+V">V. Berest</a>, <a href="/search/physics?searchtype=author&query=Berg%C3%A9%2C+L">L. Berg茅</a>, <a href="/search/physics?searchtype=author&query=Calvo-Mozota%2C+J+M">J. M. Calvo-Mozota</a>, <a href="/search/physics?searchtype=author&query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&query=Chapellier%2C+M">M. Chapellier</a>, <a href="/search/physics?searchtype=author&query=Dafinei%2C+I">I. Dafinei</a>, <a href="/search/physics?searchtype=author&query=Danevich%2C+F+A">F. A. Danevich</a>, <a href="/search/physics?searchtype=author&query=Dixon%2C+T">T. Dixon</a>, <a href="/search/physics?searchtype=author&query=Dumoulin%2C+L">L. Dumoulin</a>, <a href="/search/physics?searchtype=author&query=Ferri%2C+F">F. Ferri</a>, <a href="/search/physics?searchtype=author&query=Giuliani%2C+A">A. Giuliani</a>, <a href="/search/physics?searchtype=author&query=Gotti%2C+C">C. Gotti</a>, <a href="/search/physics?searchtype=author&query=Gras%2C+P">P. Gras</a>, <a href="/search/physics?searchtype=author&query=Helis%2C+D+L">D. L. Helis</a>, <a href="/search/physics?searchtype=author&query=Ianni%2C+A">A. Ianni</a>, <a href="/search/physics?searchtype=author&query=Imbert%2C+L">L. Imbert</a>, <a href="/search/physics?searchtype=author&query=Khalife%2C+H">H. Khalife</a>, <a href="/search/physics?searchtype=author&query=Kobychev%2C+V+V">V. V. Kobychev</a>, <a href="/search/physics?searchtype=author&query=Konovalov%2C+S+I">S. I. Konovalov</a>, <a href="/search/physics?searchtype=author&query=Loaiza%2C+P">P. Loaiza</a>, <a href="/search/physics?searchtype=author&query=de+Marcillac%2C+P">P. de Marcillac</a>, <a href="/search/physics?searchtype=author&query=Marnieros%2C+S">S. Marnieros</a> , et al. (16 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.14831v1-abstract-short" style="display: inline;"> In preparation to the CROSS $2尾$ decay experiment, we installed a new detector suspension with magnetic dumping inside a pulse-tube cryostat of a dedicated low-background facility at the LSC (Spain). The suspension was tested with two scintillating bolometers based on large-volume 116CdWO4 (CWO-enr) and Li2MoO4 (LMO) crystals. The former, a reference device, was used for testing new noise conditio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.14831v1-abstract-full').style.display = 'inline'; document.getElementById('2307.14831v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.14831v1-abstract-full" style="display: none;"> In preparation to the CROSS $2尾$ decay experiment, we installed a new detector suspension with magnetic dumping inside a pulse-tube cryostat of a dedicated low-background facility at the LSC (Spain). The suspension was tested with two scintillating bolometers based on large-volume 116CdWO4 (CWO-enr) and Li2MoO4 (LMO) crystals. The former, a reference device, was used for testing new noise conditions and for comparing bolometric performance of an advanced Li2MoO4 crystal developed in the framework of the CLYMENE project, in view of next-generation double-beta decay experiments like CUPID. We cooled down detectors to 15 mK and achieved high performance for all tested devices. In particular both CWO-enr and LMO bolometers demonstrated the energy resolution of 6 keV FWHM for the 2.6 MeV gamma quanta, among the best for thermal detectors based on such compounds. The baseline noise resolution (FWHM) of the CWO-enr detector was improved by 2 keV, compared to the best previous measurement of this detector in the CROSS facility, while the noise of the Ge-based optical bolometer was improved by a factor 2, to 100 eV FWHM. Despite of the evident progress in the improving of noise conditions of the set-up, we see high-frequency harmonics of a pulse-tube induced noise, suggesting a noise pick-up by cabling. Another Ge light detector was assisted with the signal amplification exploiting the Neganov-Trofimov-Luke effect, which allowed to reach 20 eV FWHM noise resolution by applying 60 V electrode bias. Highly-efficient particle identification was achieved with both detectors, despite a low scintillation efficiency of the LMO material. The radiopurity level of the LMO crystal is rather high; only traces of 210Po and 226Ra were detected (0.1 mBq/kg each), while the 228Th activity is expected to be at least an order of magnitude lower, as well as a 40K activity is found to be < 6 mBq/kg. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.14831v1-abstract-full').style.display = 'none'; document.getElementById('2307.14831v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Prepared for submission to JINST, 26 pages, 8 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.12030">arXiv:2307.12030</a> <span> [<a href="https://arxiv.org/pdf/2307.12030">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/hpl.2024.33">10.1017/hpl.2024.33 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The LCLS-II Photoinjector Laser Infrastructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+H">Hao Zhang</a>, <a href="/search/physics?searchtype=author&query=Gilevich%2C+S">Sasha Gilevich</a>, <a href="/search/physics?searchtype=author&query=Miahnahri%2C+A">Alan Miahnahri</a>, <a href="/search/physics?searchtype=author&query=Alverson%2C+S">Shawn Alverson</a>, <a href="/search/physics?searchtype=author&query=Brachmann%2C+A">Axel Brachmann</a>, <a href="/search/physics?searchtype=author&query=Duris%2C+J">Joseph Duris</a>, <a href="/search/physics?searchtype=author&query=Franz%2C+P">Paris Franz</a>, <a href="/search/physics?searchtype=author&query=Fry%2C+A">Alan Fry</a>, <a href="/search/physics?searchtype=author&query=Hirschman%2C+J">Jack Hirschman</a>, <a href="/search/physics?searchtype=author&query=Larsen%2C+K">Kirk Larsen</a>, <a href="/search/physics?searchtype=author&query=Lemons%2C+R">Randy Lemons</a>, <a href="/search/physics?searchtype=author&query=Li%2C+S">Siqi Li</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+B">Brittany Lu</a>, <a href="/search/physics?searchtype=author&query=Marinelli%2C+A">Agostino Marinelli</a>, <a href="/search/physics?searchtype=author&query=Martinez%2C+M">Mikael Martinez</a>, <a href="/search/physics?searchtype=author&query=May%2C+J">Justin May</a>, <a href="/search/physics?searchtype=author&query=Milshtein%2C+E">Erel Milshtein</a>, <a href="/search/physics?searchtype=author&query=Murari%2C+K">Krishna Murari</a>, <a href="/search/physics?searchtype=author&query=Neveu%2C+N">Nicole Neveu</a>, <a href="/search/physics?searchtype=author&query=Robinson%2C+J">Joseph Robinson</a>, <a href="/search/physics?searchtype=author&query=Schmerge%2C+J">John Schmerge</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+L">Linshan Sun</a>, <a href="/search/physics?searchtype=author&query=Vecchione%2C+T">Theodore Vecchione</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+C">Chengcheng Xu</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+F">Feng Zhou</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.12030v2-abstract-short" style="display: inline;"> This paper presents a comprehensive technical overview of the Linac Coherent Light Source II (LCLS-II) photoinjector laser system, its first and foremost component. The LCLS-II photoinjector laser system serves as an upgrade to the original LCLS at SLAC National Accelerator Laboratory. This advanced laser system generates high-quality laser beams for LCLS-II, contributing to the instrument's unpre… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.12030v2-abstract-full').style.display = 'inline'; document.getElementById('2307.12030v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.12030v2-abstract-full" style="display: none;"> This paper presents a comprehensive technical overview of the Linac Coherent Light Source II (LCLS-II) photoinjector laser system, its first and foremost component. The LCLS-II photoinjector laser system serves as an upgrade to the original LCLS at SLAC National Accelerator Laboratory. This advanced laser system generates high-quality laser beams for LCLS-II, contributing to the instrument's unprecedented brightness, precision, and flexibility. Our discussion extends to the various subsystems that comprise the photoinjector, including the photocathode laser, laser heater, and beam transport systems. Lastly, we draw attention to the ongoing research and development infrastructure underway to enhance the functionality and efficiency of the LCLS-II, and similar X-ray free-electron laser facilities around the world, thereby contributing to the future of laser technology and its applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.12030v2-abstract-full').style.display = 'none'; document.getElementById('2307.12030v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published by High Power Laser Science and Engineering</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.10515">arXiv:2305.10515</a> <span> [<a href="https://arxiv.org/pdf/2305.10515">pdf</a>, <a href="https://arxiv.org/format/2305.10515">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/19/05/P05065">10.1088/1748-0221/19/05/P05065 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The LHCb upgrade I </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=LHCb+collaboration"> LHCb collaboration</a>, <a href="/search/physics?searchtype=author&query=Aaij%2C+R">R. Aaij</a>, <a href="/search/physics?searchtype=author&query=Abdelmotteleb%2C+A+S+W">A. S. W. Abdelmotteleb</a>, <a href="/search/physics?searchtype=author&query=Beteta%2C+C+A">C. Abellan Beteta</a>, <a href="/search/physics?searchtype=author&query=Abudin%C3%A9n%2C+F">F. Abudin茅n</a>, <a href="/search/physics?searchtype=author&query=Achard%2C+C">C. Achard</a>, <a href="/search/physics?searchtype=author&query=Ackernley%2C+T">T. Ackernley</a>, <a href="/search/physics?searchtype=author&query=Adeva%2C+B">B. Adeva</a>, <a href="/search/physics?searchtype=author&query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/physics?searchtype=author&query=Afsharnia%2C+H">H. Afsharnia</a>, <a href="/search/physics?searchtype=author&query=Agapopoulou%2C+C">C. Agapopoulou</a>, <a href="/search/physics?searchtype=author&query=Aidala%2C+C+A">C. A. Aidala</a>, <a href="/search/physics?searchtype=author&query=Ajaltouni%2C+Z">Z. Ajaltouni</a>, <a href="/search/physics?searchtype=author&query=Akar%2C+S">S. Akar</a>, <a href="/search/physics?searchtype=author&query=Akiba%2C+K">K. Akiba</a>, <a href="/search/physics?searchtype=author&query=Albicocco%2C+P">P. Albicocco</a>, <a href="/search/physics?searchtype=author&query=Albrecht%2C+J">J. Albrecht</a>, <a href="/search/physics?searchtype=author&query=Alessio%2C+F">F. Alessio</a>, <a href="/search/physics?searchtype=author&query=Alexander%2C+M">M. Alexander</a>, <a href="/search/physics?searchtype=author&query=Albero%2C+A+A">A. Alfonso Albero</a>, <a href="/search/physics?searchtype=author&query=Aliouche%2C+Z">Z. Aliouche</a>, <a href="/search/physics?searchtype=author&query=Cartelle%2C+P+A">P. Alvarez Cartelle</a>, <a href="/search/physics?searchtype=author&query=Amalric%2C+R">R. Amalric</a>, <a href="/search/physics?searchtype=author&query=Amato%2C+S">S. Amato</a> , et al. (1298 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.10515v2-abstract-short" style="display: inline;"> The LHCb upgrade represents a major change of the experiment. The detectors have been almost completely renewed to allow running at an instantaneous luminosity five times larger than that of the previous running periods. Readout of all detectors into an all-software trigger is central to the new design, facilitating the reconstruction of events at the maximum LHC interaction rate, and their select… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.10515v2-abstract-full').style.display = 'inline'; document.getElementById('2305.10515v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.10515v2-abstract-full" style="display: none;"> The LHCb upgrade represents a major change of the experiment. The detectors have been almost completely renewed to allow running at an instantaneous luminosity five times larger than that of the previous running periods. Readout of all detectors into an all-software trigger is central to the new design, facilitating the reconstruction of events at the maximum LHC interaction rate, and their selection in real time. The experiment's tracking system has been completely upgraded with a new pixel vertex detector, a silicon tracker upstream of the dipole magnet and three scintillating fibre tracking stations downstream of the magnet. The whole photon detection system of the RICH detectors has been renewed and the readout electronics of the calorimeter and muon systems have been fully overhauled. The first stage of the all-software trigger is implemented on a GPU farm. The output of the trigger provides a combination of totally reconstructed physics objects, such as tracks and vertices, ready for final analysis, and of entire events which need further offline reprocessing. This scheme required a complete revision of the computing model and rewriting of the experiment's software. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.10515v2-abstract-full').style.display = 'none'; document.getElementById('2305.10515v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">All figures and tables, along with any supplementary material and additional information, are available at http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-DP-2022-002.html (LHCb public pages)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LHCb-DP-2022-002 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 19 (2024) P05065 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.14563">arXiv:2304.14563</a> <span> [<a href="https://arxiv.org/pdf/2304.14563">pdf</a>, <a href="https://arxiv.org/ps/2304.14563">ps</a>, <a href="https://arxiv.org/format/2304.14563">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.108.056004">10.1103/PhysRevD.108.056004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Causality and stability in first-order conformal anisotropic hydrodynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Bemfica%2C+F+S">Fabio S. Bemfica</a>, <a href="/search/physics?searchtype=author&query=Martinez%2C+M">Mauricio Martinez</a>, <a href="/search/physics?searchtype=author&query=Shokri%2C+M">Masoud Shokri</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.14563v2-abstract-short" style="display: inline;"> We formulate the first-order dissipative anisotropic hydrodynamical theory for a relativistic conformal uncharged fluid, which generalizes the Bemfica-Disconzi-Noronha-Kovtun first-order viscous fluid framework. Our approach maintains causal behavior in the nonlinear regime with or without general relativity coupling, and we derive and analyze the constraints on transport coefficients imposed by c… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.14563v2-abstract-full').style.display = 'inline'; document.getElementById('2304.14563v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.14563v2-abstract-full" style="display: none;"> We formulate the first-order dissipative anisotropic hydrodynamical theory for a relativistic conformal uncharged fluid, which generalizes the Bemfica-Disconzi-Noronha-Kovtun first-order viscous fluid framework. Our approach maintains causal behavior in the nonlinear regime with or without general relativity coupling, and we derive and analyze the constraints on transport coefficients imposed by causality. We demonstrate the causal and stable behavior of our theory in specific cases, including the discussion of nonlinear causality as well as stability for linearized perturbations. We apply our newly developed first-order anisotropic theory to the Bjorken flow and show how causality and stability impose constraints on the behavior of the early-time attractor. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.14563v2-abstract-full').style.display = 'none'; document.getElementById('2304.14563v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Matches the published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D 108 (2023) 5, 056004 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.13100">arXiv:2304.13100</a> <span> [<a href="https://arxiv.org/pdf/2304.13100">pdf</a>, <a href="https://arxiv.org/format/2304.13100">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Li$_2$$^{100\textrm{depl}}$MoO$_4$ Scintillating Bolometers for Rare-Event Search Experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Bandac%2C+I+C">I. C. Bandac</a>, <a href="/search/physics?searchtype=author&query=Barabash%2C+A+S">A. S. Barabash</a>, <a href="/search/physics?searchtype=author&query=Berg%C3%A9%2C+L">L. Berg茅</a>, <a href="/search/physics?searchtype=author&query=Borovlev%2C+Y+A">Yu. A. Borovlev</a>, <a href="/search/physics?searchtype=author&query=Calvo-Mozota%2C+J+M">J. M. Calvo-Mozota</a>, <a href="/search/physics?searchtype=author&query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&query=Chapellier%2C+M">M. Chapellier</a>, <a href="/search/physics?searchtype=author&query=Dafinei%2C+I">I. Dafinei</a>, <a href="/search/physics?searchtype=author&query=Danevich%2C+F+A">F. A. Danevich</a>, <a href="/search/physics?searchtype=author&query=Dumoulin%2C+L">L. Dumoulin</a>, <a href="/search/physics?searchtype=author&query=Ferri%2C+F">F. Ferri</a>, <a href="/search/physics?searchtype=author&query=Giuliani%2C+A">A. Giuliani</a>, <a href="/search/physics?searchtype=author&query=Gotti%2C+C">C. Gotti</a>, <a href="/search/physics?searchtype=author&query=Gras%2C+P">Ph. Gras</a>, <a href="/search/physics?searchtype=author&query=Grigorieva%2C+V+D">V. D. Grigorieva</a>, <a href="/search/physics?searchtype=author&query=Ianni%2C+A">A. Ianni</a>, <a href="/search/physics?searchtype=author&query=Khalife%2C+H">H. Khalife</a>, <a href="/search/physics?searchtype=author&query=Kobychev%2C+V+V">V. V. Kobychev</a>, <a href="/search/physics?searchtype=author&query=Konovalov%2C+S+I">S. I. Konovalov</a>, <a href="/search/physics?searchtype=author&query=Loaiza%2C+P">P. Loaiza</a>, <a href="/search/physics?searchtype=author&query=Madhukuttan%2C+M">M. Madhukuttan</a>, <a href="/search/physics?searchtype=author&query=Makarov%2C+E+P">E. P. Makarov</a>, <a href="/search/physics?searchtype=author&query=de+Marcillac%2C+P">P. de Marcillac</a>, <a href="/search/physics?searchtype=author&query=Marnieros%2C+S">S. Marnieros</a>, <a href="/search/physics?searchtype=author&query=Marrache-Kikuchi%2C+C+A">C. A. Marrache-Kikuchi</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.13100v1-abstract-short" style="display: inline;"> We report on the development of scintillating bolometers based on lithium molybdate crystals containing molybdenum depleted in the double-$尾$ active isotope $^{100}$Mo (Li$_2$$^{100\textrm{depl}}$MoO$_4$). We used two Li$_2$$^{100\textrm{depl}}$MoO$_4$ cubic samples, 45 mm side and 0.28 kg each, produced following purification and crystallization protocols developed for double-$尾$ search experimen… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.13100v1-abstract-full').style.display = 'inline'; document.getElementById('2304.13100v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.13100v1-abstract-full" style="display: none;"> We report on the development of scintillating bolometers based on lithium molybdate crystals containing molybdenum depleted in the double-$尾$ active isotope $^{100}$Mo (Li$_2$$^{100\textrm{depl}}$MoO$_4$). We used two Li$_2$$^{100\textrm{depl}}$MoO$_4$ cubic samples, 45 mm side and 0.28 kg each, produced following purification and crystallization protocols developed for double-$尾$ search experiments with $^{100}$Mo-enriched Li$_2$MoO$_4$ crystals. Bolometric Ge detectors were utilized to register scintillation photons emitted by the Li$_2$$^{100\textrm{depl}}$MoO$_4$ crystal scintillators. The measurements were performed in the CROSS cryogenic set-up at the Canfranc underground laboratory (Spain). We observed that the Li$_2$$^{100\textrm{depl}}$MoO$_4$ scintillating bolometers are characterized by excellent spectrometric performance ($\sim$3--6 keV FWHM at 0.24--2.6 MeV $纬$'s), moderate scintillation signal ($\sim$0.3--0.6 keV/MeV depending on light collection conditions) and high radiopurity ($^{228}$Th and $^{226}$Ra activities are below a few $渭$Bq/kg), comparable to the best reported results of low-temperature detectors based on Li$_2$MoO$_4$ with natural or $^{100}$Mo-enriched molybdenum content. Prospects of Li$_2$$^{100\textrm{depl}}$MoO$_4$ bolometers for use in rare-event search experiments are briefly discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.13100v1-abstract-full').style.display = 'none'; document.getElementById('2304.13100v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Prepared for submission to MDPI Sensors; 16 pages, 7 figures, and 3 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.10400">arXiv:2304.10400</a> <span> [<a href="https://arxiv.org/pdf/2304.10400">pdf</a>, <a href="https://arxiv.org/format/2304.10400">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Dark-field and directional dark-field on low coherence X-ray sources with random mask modulations: validation with SAXS anisotropy measurements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Magnin%2C+C">Clara Magnin</a>, <a href="/search/physics?searchtype=author&query=Quenot%2C+L">Laurene Quenot</a>, <a href="/search/physics?searchtype=author&query=Bohic%2C+S">Sylvain Bohic</a>, <a href="/search/physics?searchtype=author&query=Cenda%2C+D+M">Dan Mihai Cenda</a>, <a href="/search/physics?searchtype=author&query=Mart%C3%ADnez%2C+M+F">Manuel Fern谩ndez Mart铆nez</a>, <a href="/search/physics?searchtype=author&query=Lantz%2C+B">Blandine Lantz</a>, <a href="/search/physics?searchtype=author&query=Faure%2C+B">Bertrand Faure</a>, <a href="/search/physics?searchtype=author&query=Brun%2C+E">Emmanuel Brun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.10400v2-abstract-short" style="display: inline;"> Phase Contrast Imaging (PCI), Dark-Field (DF) and Directional Dark-Field (DDF) imaging are recent X-ray imaging modalities that have demonstrated their interest by providing access to information and contrasts different from those provided by conventional absorption X-ray imaging. However, access to these two types of images is currently limited because the acquisitions require the use of coherent… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.10400v2-abstract-full').style.display = 'inline'; document.getElementById('2304.10400v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.10400v2-abstract-full" style="display: none;"> Phase Contrast Imaging (PCI), Dark-Field (DF) and Directional Dark-Field (DDF) imaging are recent X-ray imaging modalities that have demonstrated their interest by providing access to information and contrasts different from those provided by conventional absorption X-ray imaging. However, access to these two types of images is currently limited because the acquisitions require the use of coherent sources such as synchrotron radiation or complicated optical setups to exploit the coherence requirements. This work demonstrates the possibility of efficiently performing phase contrast, dark-field and directional dark-field imaging on a low-coherence laboratory system equipped with a conventional X-ray tube, using a simple, fast and robust single-mask technique. The transfer to a low spatial coherence laboratory system was made possible by using random modulation based imaging (MoBI) and extending the low coherence system algorithm to retrieve dark-field and directional dark-field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.10400v2-abstract-full').style.display = 'none'; document.getElementById('2304.10400v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.04674">arXiv:2304.04674</a> <span> [<a href="https://arxiv.org/pdf/2304.04674">pdf</a>, <a href="https://arxiv.org/format/2304.04674">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/18/06/P06033">10.1088/1748-0221/18/06/P06033 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A first test of CUPID prototypal light detectors with NTD-Ge sensors in a pulse-tube cryostat </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=CUPID+collaboration"> CUPID collaboration</a>, <a href="/search/physics?searchtype=author&query=Alfonso%2C+K">K. Alfonso</a>, <a href="/search/physics?searchtype=author&query=Armatol%2C+A">A. Armatol</a>, <a href="/search/physics?searchtype=author&query=Augier%2C+C">C. Augier</a>, <a href="/search/physics?searchtype=author&query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/physics?searchtype=author&query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&query=Balata%2C+M">M. Balata</a>, <a href="/search/physics?searchtype=author&query=Barabash%2C+A+S">A. S. Barabash</a>, <a href="/search/physics?searchtype=author&query=Bari%2C+G">G. Bari</a>, <a href="/search/physics?searchtype=author&query=Barresi%2C+A">A. Barresi</a>, <a href="/search/physics?searchtype=author&query=Baudin%2C+D">D. Baudin</a>, <a href="/search/physics?searchtype=author&query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&query=Berest%2C+V">V. Berest</a>, <a href="/search/physics?searchtype=author&query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&query=Bettelli%2C+M">M. Bettelli</a>, <a href="/search/physics?searchtype=author&query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&query=Billard%2C+J">J. Billard</a>, <a href="/search/physics?searchtype=author&query=Boldrini%2C+V">V. Boldrini</a>, <a href="/search/physics?searchtype=author&query=Branca%2C+A">A. Branca</a>, <a href="/search/physics?searchtype=author&query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&query=Camilleri%2C+J">J. Camilleri</a>, <a href="/search/physics?searchtype=author&query=Campani%2C+A">A. Campani</a>, <a href="/search/physics?searchtype=author&query=Capelli%2C+C">C. Capelli</a> , et al. (154 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.04674v1-abstract-short" style="display: inline;"> CUPID is a next-generation bolometric experiment aiming at searching for neutrinoless double-beta decay with ~250 kg of isotopic mass of $^{100}$Mo. It will operate at $\sim$10 mK in a cryostat currently hosting a similar-scale bolometric array for the CUORE experiment at the Gran Sasso National Laboratory (Italy). CUPID will be based on large-volume scintillating bolometers consisting of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.04674v1-abstract-full').style.display = 'inline'; document.getElementById('2304.04674v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.04674v1-abstract-full" style="display: none;"> CUPID is a next-generation bolometric experiment aiming at searching for neutrinoless double-beta decay with ~250 kg of isotopic mass of $^{100}$Mo. It will operate at $\sim$10 mK in a cryostat currently hosting a similar-scale bolometric array for the CUORE experiment at the Gran Sasso National Laboratory (Italy). CUPID will be based on large-volume scintillating bolometers consisting of $^{100}$Mo-enriched Li$_2$MoO$_4$ crystals, facing thin Ge-wafer-based bolometric light detectors. In the CUPID design, the detector structure is novel and needs to be validated. In particular, the CUORE cryostat presents a high level of mechanical vibrations due to the use of pulse tubes and the effect of vibrations on the detector performance must be investigated. In this paper we report the first test of the CUPID-design bolometric light detectors with NTD-Ge sensors in a dilution refrigerator equipped with a pulse tube in an above-ground lab. Light detectors are characterized in terms of sensitivity, energy resolution, pulse time constants, and noise power spectrum. Despite the challenging noisy environment due to pulse-tube-induced vibrations, we demonstrate that all the four tested light detectors comply with the CUPID goal in terms of intrinsic energy resolution of 100 eV RMS baseline noise. Indeed, we have measured 70--90 eV RMS for the four devices, which show an excellent reproducibility. We have also obtained outstanding energy resolutions at the 356 keV line from a $^{133}$Ba source with one light detector achieving 0.71(5) keV FWHM, which is -- to our knowledge -- the best ever obtained when compared to $纬$ detectors of any technology in this energy range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.04674v1-abstract-full').style.display = 'none'; document.getElementById('2304.04674v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Prepared for submission to JINST; 16 pages, 7 figures, and 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.04611">arXiv:2304.04611</a> <span> [<a href="https://arxiv.org/pdf/2304.04611">pdf</a>, <a href="https://arxiv.org/format/2304.04611">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/18/06/P06018">10.1088/1748-0221/18/06/P06018 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Twelve-crystal prototype of Li$_2$MoO$_4$ scintillating bolometers for CUPID and CROSS experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=CUPID"> CUPID</a>, <a href="/search/physics?searchtype=author&query=collaborations%2C+C">CROSS collaborations</a>, <a href="/search/physics?searchtype=author&query=%3A"> :</a>, <a href="/search/physics?searchtype=author&query=Alfonso%2C+K">K. Alfonso</a>, <a href="/search/physics?searchtype=author&query=Armatol%2C+A">A. Armatol</a>, <a href="/search/physics?searchtype=author&query=Augier%2C+C">C. Augier</a>, <a href="/search/physics?searchtype=author&query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/physics?searchtype=author&query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&query=Balata%2C+M">M. Balata</a>, <a href="/search/physics?searchtype=author&query=Bandac%2C+I+C">I. C. Bandac</a>, <a href="/search/physics?searchtype=author&query=Barabash%2C+A+S">A. S. Barabash</a>, <a href="/search/physics?searchtype=author&query=Bari%2C+G">G. Bari</a>, <a href="/search/physics?searchtype=author&query=Barresi%2C+A">A. Barresi</a>, <a href="/search/physics?searchtype=author&query=Baudin%2C+D">D. Baudin</a>, <a href="/search/physics?searchtype=author&query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&query=Berest%2C+V">V. Berest</a>, <a href="/search/physics?searchtype=author&query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&query=Bettelli%2C+M">M. Bettelli</a>, <a href="/search/physics?searchtype=author&query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&query=Billard%2C+J">J. Billard</a>, <a href="/search/physics?searchtype=author&query=Boldrini%2C+V">V. Boldrini</a>, <a href="/search/physics?searchtype=author&query=Branca%2C+A">A. Branca</a>, <a href="/search/physics?searchtype=author&query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&query=Bucci%2C+C">C. Bucci</a> , et al. (160 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.04611v1-abstract-short" style="display: inline;"> An array of twelve 0.28 kg lithium molybdate (LMO) low-temperature bolometers equipped with 16 bolometric Ge light detectors, aiming at optimization of detector structure for CROSS and CUPID double-beta decay experiments, was constructed and tested in a low-background pulse-tube-based cryostat at the Canfranc underground laboratory in Spain. Performance of the scintillating bolometers was studied… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.04611v1-abstract-full').style.display = 'inline'; document.getElementById('2304.04611v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.04611v1-abstract-full" style="display: none;"> An array of twelve 0.28 kg lithium molybdate (LMO) low-temperature bolometers equipped with 16 bolometric Ge light detectors, aiming at optimization of detector structure for CROSS and CUPID double-beta decay experiments, was constructed and tested in a low-background pulse-tube-based cryostat at the Canfranc underground laboratory in Spain. Performance of the scintillating bolometers was studied depending on the size of phonon NTD-Ge sensors glued to both LMO and Ge absorbers, shape of the Ge light detectors (circular vs. square, from two suppliers), in different light collection conditions (with and without reflector, with aluminum coated LMO crystal surface). The scintillating bolometer array was operated over 8 months in the low-background conditions that allowed to probe a very low, $渭$Bq/kg, level of the LMO crystals radioactive contamination by $^{228}$Th and $^{226}$Ra. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.04611v1-abstract-full').style.display = 'none'; document.getElementById('2304.04611v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Prepared for submission to JINST; 23 pages, 9 figures, and 4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.10040">arXiv:2303.10040</a> <span> [<a href="https://arxiv.org/pdf/2303.10040">pdf</a>, <a href="https://arxiv.org/format/2303.10040">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.combustflame.2023.112715">10.1016/j.combustflame.2023.112715 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Assessment of dynamic adaptive chemistry with tabulated reactions for the simulation of unsteady multiregime combustion phenomena </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Surapaneni%2C+A">Anurag Surapaneni</a>, <a href="/search/physics?searchtype=author&query=Martinez%2C+D+M">Daniel Mira Martinez</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.10040v1-abstract-short" style="display: inline;"> Solving chemistry is an integral part of reacting flow simulations, usually dominating the computational cost. Among the different strategies to accelerate the solution of chemistry and to achieve realizable simulations, the use of Dynamic Adaptive Chemistry (DAC) stands out among other methods. DAC methods are based on the use of reduced mechanisms generated from local conditions. The reduction p… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.10040v1-abstract-full').style.display = 'inline'; document.getElementById('2303.10040v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.10040v1-abstract-full" style="display: none;"> Solving chemistry is an integral part of reacting flow simulations, usually dominating the computational cost. Among the different strategies to accelerate the solution of chemistry and to achieve realizable simulations, the use of Dynamic Adaptive Chemistry (DAC) stands out among other methods. DAC methods are based on the use of reduced mechanisms generated from local conditions. The reduction process is computationally expensive and strategies for reducing the frequency of reduction and the re-utilization of the generated reduced mechanisms are key in making DAC methods computationally affordable. In this study, a new method hereby referred as Tabulated Reactions for Adaptive Chemistry (TRAC) is proposed to correlate chemical states with their reduced mechanisms in order to reduce both the frequency of reduction and to allow for re-utilization of reduced chemical schemes. TRAC introduces a mechanism tabulation strategy based on the use of a low-dimensional space that defines the thermo-chemical conditions for which specific reduced reaction mechanisms are stored. Chemistry reduction is achieved by the use of Path Flux Analysis (PFA) with a reaction rate-sensitivity method to achieve further reduction in the reaction mechanisms. The new TRAC proposal is applied to various canonical transient problems and the results are compared with reference solutions obtained from detailed chemistry calculations. A speedup of about 4x was achieved with TRAC while maintaining an error under 3 % in the prediction of the major and minor species, flame structure, and flame propagation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.10040v1-abstract-full').style.display = 'none'; document.getElementById('2303.10040v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Combustion and Flame - Volume 251, May 2023, 112715 ISSN 0010-2180 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.04938">arXiv:2303.04938</a> <span> [<a href="https://arxiv.org/pdf/2303.04938">pdf</a>, <a href="https://arxiv.org/format/2303.04938">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/adaedc">10.1088/1367-2630/adaedc <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cosmic muon flux attenuation methods for superconducting qubit experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Bertoldo%2C+E">Elia Bertoldo</a>, <a href="/search/physics?searchtype=author&query=S%C3%A1nchez%2C+V+P">Victor P茅rez S谩nchez</a>, <a href="/search/physics?searchtype=author&query=Mart%C3%ADnez%2C+M">Maria Mart铆nez</a>, <a href="/search/physics?searchtype=author&query=Mart%C3%ADnez%2C+M">Manel Mart铆nez</a>, <a href="/search/physics?searchtype=author&query=Khalife%2C+H">Hawraa Khalife</a>, <a href="/search/physics?searchtype=author&query=Forn-D%C3%ADaz%2C+P">Pol Forn-D铆az</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.04938v5-abstract-short" style="display: inline;"> We propose and demonstrate two practical mitigation methods to attenuate the cosmic muon flux, compatible with experiments involving superconducting qubits: shallow underground sites and specific device orientation. Using a specifically-built cosmic muon detector, we identify underground sites, widely present in urban environments, where significant attenuation of cosmic muon flux, up to a factor… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.04938v5-abstract-full').style.display = 'inline'; document.getElementById('2303.04938v5-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.04938v5-abstract-full" style="display: none;"> We propose and demonstrate two practical mitigation methods to attenuate the cosmic muon flux, compatible with experiments involving superconducting qubits: shallow underground sites and specific device orientation. Using a specifically-built cosmic muon detector, we identify underground sites, widely present in urban environments, where significant attenuation of cosmic muon flux, up to a factor 35 for 100-meter depths, can be attained. Furthermore, we employ two germanium wafers in an above-ground laboratory, each equipped with a particle sensor, to show how the orientation of the chip with respect to the sky affects the amount and type of energy deposited on the substrate by ionizing radiation. We observe that the horizontal detector sees more counts at lower energy, while the vertical one is impacted by more particles at higher energy. The methods here described proposed ways to directly understand and reduce the effects of cosmic rays on qubits by attenuating the source of this type of decoherence, complementing existing on-chip mitigation strategies. We expect that both on-chip and off-chip methods combined will become ubiquitous in quantum technologies based on superconducting qubit circuits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.04938v5-abstract-full').style.display = 'none'; document.getElementById('2303.04938v5-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.08485">arXiv:2302.08485</a> <span> [<a href="https://arxiv.org/pdf/2302.08485">pdf</a>, <a href="https://arxiv.org/format/2302.08485">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.108.063314">10.1103/PhysRevA.108.063314 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Wave packet dynamics and edge transport in anomalous Floquet topological phases </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Mart%C3%ADnez%2C+M+F">Miguel F. Mart铆nez</a>, <a href="/search/physics?searchtype=author&query=%C3%9Cnal%2C+F+N">F. Nur 脺nal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.08485v2-abstract-short" style="display: inline;"> The possibility of attaining chiral edge modes under periodic driving has spurred tremendous attention, both theoretically and experimentally, especially in light of anomalous Floquet topological phases that feature vanishing Chern numbers unlike any static counterpart. We here consider a periodically modulated honeycomb lattice and experimentally relevant driving protocols, which allows us to obt… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.08485v2-abstract-full').style.display = 'inline'; document.getElementById('2302.08485v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.08485v2-abstract-full" style="display: none;"> The possibility of attaining chiral edge modes under periodic driving has spurred tremendous attention, both theoretically and experimentally, especially in light of anomalous Floquet topological phases that feature vanishing Chern numbers unlike any static counterpart. We here consider a periodically modulated honeycomb lattice and experimentally relevant driving protocols, which allows us to obtain edge modes of various character in a simple model. We calculate the phase diagram over a wide range of parameters and recover an anomalous topological phase with quasienergy gaps harbouring edge states with opposite chirality. Motivated by the advances in single-site control in optical lattices, we investigate wave packet dynamics localized at the edges in distinct Floquet topological regimes that cannot be achieved in equilibrium. We analyse transport properties in edge modes originating from the same bands, but with support at different quasienergies and sublattices as well as possessing different chiralities. We find that an anomalous Floquet topological phase can in general generate more robust chiral edge motion than a Haldane phase. Our results demonstrate that the rich interplay of wave packet dynamics and topological edge states can serve as a versatile tool in ultracold quantum gases in optical lattices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.08485v2-abstract-full').style.display = 'none'; document.getElementById('2302.08485v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9+2 pages, 7+3 figures (Accepted version)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 108, 063314 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.01666">arXiv:2302.01666</a> <span> [<a href="https://arxiv.org/pdf/2302.01666">pdf</a>, <a href="https://arxiv.org/format/2302.01666">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2023.168103">10.1016/j.nima.2023.168103 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Analytical Method algorithm for trigger primitives generation at the LHC Drift Tubes detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Abbiendi%2C+G">G. Abbiendi</a>, <a href="/search/physics?searchtype=author&query=Maestre%2C+J+A">J. Alcaraz Maestre</a>, <a href="/search/physics?searchtype=author&query=Fern%C3%A1ndez%2C+A+%C3%81">A. 脕lvarez Fern谩ndez</a>, <a href="/search/physics?searchtype=author&query=Gonz%C3%A1lez%2C+B+%C3%81">B. 脕lvarez Gonz谩lez</a>, <a href="/search/physics?searchtype=author&query=Amapane%2C+N">N. Amapane</a>, <a href="/search/physics?searchtype=author&query=Bachiller%2C+I">I. Bachiller</a>, <a href="/search/physics?searchtype=author&query=Barcellan%2C+L">L. Barcellan</a>, <a href="/search/physics?searchtype=author&query=Baldanza%2C+C">C. Baldanza</a>, <a href="/search/physics?searchtype=author&query=Battilana%2C+C">C. Battilana</a>, <a href="/search/physics?searchtype=author&query=Bellato%2C+M">M. Bellato</a>, <a href="/search/physics?searchtype=author&query=Bencze%2C+G">G. Bencze</a>, <a href="/search/physics?searchtype=author&query=Benettoni%2C+M">M. Benettoni</a>, <a href="/search/physics?searchtype=author&query=Beni%2C+N">N. Beni</a>, <a href="/search/physics?searchtype=author&query=Benvenuti%2C+A">A. Benvenuti</a>, <a href="/search/physics?searchtype=author&query=Bergnoli%2C+A">A. Bergnoli</a>, <a href="/search/physics?searchtype=author&query=Ramos%2C+L+C+B">L. C. Blanco Ramos</a>, <a href="/search/physics?searchtype=author&query=Borgonovi%2C+L">L. Borgonovi</a>, <a href="/search/physics?searchtype=author&query=Bragagnolo%2C+A">A. Bragagnolo</a>, <a href="/search/physics?searchtype=author&query=Cafaro%2C+V">V. Cafaro</a>, <a href="/search/physics?searchtype=author&query=Calderon%2C+A">A. Calderon</a>, <a href="/search/physics?searchtype=author&query=Calvo%2C+E">E. Calvo</a>, <a href="/search/physics?searchtype=author&query=Carlin%2C+R">R. Carlin</a>, <a href="/search/physics?searchtype=author&query=Montoya%2C+C+A+C">C. A. Carrillo Montoya</a>, <a href="/search/physics?searchtype=author&query=Cavallo%2C+F+R">F. R. Cavallo</a>, <a href="/search/physics?searchtype=author&query=Ruiz%2C+J+M+C">J. M. Cela Ruiz</a> , et al. (121 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.01666v1-abstract-short" style="display: inline;"> The Compact Muon Solenoid (CMS) experiment prepares its Phase-2 upgrade for the high-luminosity era of the LHC operation (HL-LHC). Due to the increase of occupancy, trigger latency and rates, the full electronics of the CMS Drift Tube (DT) chambers will need to be replaced. In the new design, the time bin for the digitisation of the chamber signals will be of around 1~ns, and the totality of the s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.01666v1-abstract-full').style.display = 'inline'; document.getElementById('2302.01666v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.01666v1-abstract-full" style="display: none;"> The Compact Muon Solenoid (CMS) experiment prepares its Phase-2 upgrade for the high-luminosity era of the LHC operation (HL-LHC). Due to the increase of occupancy, trigger latency and rates, the full electronics of the CMS Drift Tube (DT) chambers will need to be replaced. In the new design, the time bin for the digitisation of the chamber signals will be of around 1~ns, and the totality of the signals will be forwarded asynchronously to the service cavern at full resolution. The new backend system will be in charge of building the trigger primitives of each chamber. These trigger primitives contain the information at chamber level about the muon candidates position, direction, and collision time, and are used as input in the L1 CMS trigger. The added functionalities will improve the robustness of the system against ageing. An algorithm based on analytical solutions for reconstructing the DT trigger primitives, called Analytical Method, has been implemented both as a software C++ emulator and in firmware. Its performance has been estimated using the software emulator with simulated and real data samples, and through hardware implementation tests. Measured efficiencies are 96 to 98\% for all qualities and time and spatial resolutions are close to the ultimate performance of the DT chambers. A prototype chain of the HL-LHC electronics using the Analytical Method for trigger primitive generation has been installed during Long Shutdown 2 of the LHC and operated in CMS cosmic data taking campaigns in 2020 and 2021. Results from this validation step, the so-called Slice Test, are presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.01666v1-abstract-full').style.display = 'none'; document.getElementById('2302.01666v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.09100">arXiv:2301.09100</a> <span> [<a href="https://arxiv.org/pdf/2301.09100">pdf</a>, <a href="https://arxiv.org/format/2301.09100">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Atypical plug formation in internal elastoviscoplastic fluid flows over a non-smooth topology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Villalba%2C+M+E">Miguel E. Villalba</a>, <a href="/search/physics?searchtype=author&query=Daneshi%2C+M">Masoud Daneshi</a>, <a href="/search/physics?searchtype=author&query=Chaparian%2C+E">Emad Chaparian</a>, <a href="/search/physics?searchtype=author&query=Martinez%2C+D+M">D. Mark Martinez</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.09100v3-abstract-short" style="display: inline;"> An experimental and computational investigation of the internal flow of elastoviscoplastic fluids over non-smooth topologies is presented in two complimentary studies. In the first study, we visualize the creeping flow of a Carbopol gel over a cavity embedded in a thin slot using Optical Coherence Tomography (OCT) and confocal microscopy. We measure the size and shape of the plug as a function of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.09100v3-abstract-full').style.display = 'inline'; document.getElementById('2301.09100v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.09100v3-abstract-full" style="display: none;"> An experimental and computational investigation of the internal flow of elastoviscoplastic fluids over non-smooth topologies is presented in two complimentary studies. In the first study, we visualize the creeping flow of a Carbopol gel over a cavity embedded in a thin slot using Optical Coherence Tomography (OCT) and confocal microscopy. We measure the size and shape of the plug as a function of Bingham and Weissenberg numbers. An asymmetry in the plug shape is observed which is also evident in our second study -- numerical simulations using adaptive finite element method based upon an augmented Lagrangian scheme. We quantify the asymmetry and present the results as a function of the product of the Weissenberg and Bingham numbers which collapse onto a single curve for each of these geometries. These findings underscore the theoretical underpinnings of the synergy between elasticity and plasticity of these complex fluids. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.09100v3-abstract-full').style.display = 'none'; document.getElementById('2301.09100v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.16313">arXiv:2210.16313</a> <span> [<a href="https://arxiv.org/pdf/2210.16313">pdf</a>, <a href="https://arxiv.org/format/2210.16313">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.062001">10.1103/PhysRevD.107.062001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An instrumented baffle for the Advanced Virgo Input Mode Cleaner End Mirror </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Andres-Carcasona%2C+M">M. Andres-Carcasona</a>, <a href="/search/physics?searchtype=author&query=Ballester%2C+O">O. Ballester</a>, <a href="/search/physics?searchtype=author&query=Blanch%2C+O">O. Blanch</a>, <a href="/search/physics?searchtype=author&query=Campos%2C+J">J. Campos</a>, <a href="/search/physics?searchtype=author&query=Caneva%2C+G">G. Caneva</a>, <a href="/search/physics?searchtype=author&query=Cardiel%2C+L">L. Cardiel</a>, <a href="/search/physics?searchtype=author&query=Cavalli-Sforza%2C+M">M. Cavalli-Sforza</a>, <a href="/search/physics?searchtype=author&query=Chiggiato%2C+P">P. Chiggiato</a>, <a href="/search/physics?searchtype=author&query=Chiummo%2C+A">A. Chiummo</a>, <a href="/search/physics?searchtype=author&query=Ferreira%2C+J+A">J. A. Ferreira</a>, <a href="/search/physics?searchtype=author&query=Illa%2C+J+M">J. M. Illa</a>, <a href="/search/physics?searchtype=author&query=Karathanasis%2C+C">C. Karathanasis</a>, <a href="/search/physics?searchtype=author&query=Kolstein%2C+M">M. Kolstein</a>, <a href="/search/physics?searchtype=author&query=Martinez%2C+M">M. Martinez</a>, <a href="/search/physics?searchtype=author&query=Macquet%2C+A">A. Macquet</a>, <a href="/search/physics?searchtype=author&query=Menendez-Vazquez%2C+A">A. Menendez-Vazquez</a>, <a href="/search/physics?searchtype=author&query=Mir%2C+L+M">Ll. M. Mir</a>, <a href="/search/physics?searchtype=author&query=Mundet%2C+J">J. Mundet</a>, <a href="/search/physics?searchtype=author&query=Pasqualetti%2C+A">A. Pasqualetti</a>, <a href="/search/physics?searchtype=author&query=Piccinni%2C+O">O. Piccinni</a>, <a href="/search/physics?searchtype=author&query=Pio%2C+C">C. Pio</a>, <a href="/search/physics?searchtype=author&query=Romero-Rodriguez%2C+A">A. Romero-Rodriguez</a>, <a href="/search/physics?searchtype=author&query=Serrano%2C+D">D. Serrano</a>, <a href="/search/physics?searchtype=author&query=Dattilo%2C+V">V. Dattilo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.16313v2-abstract-short" style="display: inline;"> A novel instrumented baffle surrounding the suspended end mirror in the input mode cleaner cavity of the Virgo interferometer was installed in spring 2021. Since then, the device has been regularly operated in the experiment and the obtained results indicate a good agreement with simulations of the stray light inside the optical cavity. The baffle will operate in the upcoming O4 observation run, s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.16313v2-abstract-full').style.display = 'inline'; document.getElementById('2210.16313v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.16313v2-abstract-full" style="display: none;"> A novel instrumented baffle surrounding the suspended end mirror in the input mode cleaner cavity of the Virgo interferometer was installed in spring 2021. Since then, the device has been regularly operated in the experiment and the obtained results indicate a good agreement with simulations of the stray light inside the optical cavity. The baffle will operate in the upcoming O4 observation run, serving as a demonstrator of the technology designed to instrument the baffles in front of the main mirrors in time for O5. In this paper we present a detailed description of the baffle design, including mechanics, front-end electronics, data acquisition, as well as optical and vacuum tests, calibration and installation procedures, and performance results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.16313v2-abstract-full').style.display = 'none'; document.getElementById('2210.16313v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 21 figures, 3 tables, to be submitted to PRD</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.16308">arXiv:2210.16308</a> <span> [<a href="https://arxiv.org/pdf/2210.16308">pdf</a>, <a href="https://arxiv.org/format/2210.16308">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6382/acc166">10.1088/1361-6382/acc166 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Simulations of light distribution on new instrumented baffles surrounding Virgo end mirrors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Macquet%2C+A">A. Macquet</a>, <a href="/search/physics?searchtype=author&query=Andr%C3%A9s-Carcasona%2C+M">M. Andr茅s-Carcasona</a>, <a href="/search/physics?searchtype=author&query=Martinez%2C+M">M. Martinez</a>, <a href="/search/physics?searchtype=author&query=Mir%2C+L">Ll-M. Mir</a>, <a href="/search/physics?searchtype=author&query=Romero-Rodriguez%2C+A">A. Romero-Rodriguez</a>, <a href="/search/physics?searchtype=author&query=Yamamoto%2C+H">H. Yamamoto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.16308v2-abstract-short" style="display: inline;"> As part of the second phase of Advanced Virgo upgrade program, instrumented baffles are being constructed to be installed around the end mirrors in the main arms, in continuation of what has been implemented for the input mode cleaner end mirror during phase I. These baffles will be equipped with photosensors, allowing for real-time monitoring of the stray light around the mirrors. In this paper,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.16308v2-abstract-full').style.display = 'inline'; document.getElementById('2210.16308v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.16308v2-abstract-full" style="display: none;"> As part of the second phase of Advanced Virgo upgrade program, instrumented baffles are being constructed to be installed around the end mirrors in the main arms, in continuation of what has been implemented for the input mode cleaner end mirror during phase I. These baffles will be equipped with photosensors, allowing for real-time monitoring of the stray light around the mirrors. In this paper, we present optical simulations of the light distribution in the detector main cavities to assess the ability of the sensors to effectively monitor misalignment and defects on the mirrors surface and to play a role in the pre-alignment of the interferometer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.16308v2-abstract-full').style.display = 'none'; document.getElementById('2210.16308v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.14113">arXiv:2209.14113</a> <span> [<a href="https://arxiv.org/pdf/2209.14113">pdf</a>, <a href="https://arxiv.org/format/2209.14113">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2022/11/048">10.1088/1475-7516/2022/11/048 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Improving ANAIS-112 sensitivity to DAMA/LIBRA signal with machine learning techniques </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Coarasa%2C+I">I. Coarasa</a>, <a href="/search/physics?searchtype=author&query=Apilluelo%2C+J">J. Apilluelo</a>, <a href="/search/physics?searchtype=author&query=Amar%C3%A9%2C+J">J. Amar茅</a>, <a href="/search/physics?searchtype=author&query=Cebri%C3%A1n%2C+S">S. Cebri谩n</a>, <a href="/search/physics?searchtype=author&query=Cintas%2C+D">D. Cintas</a>, <a href="/search/physics?searchtype=author&query=Garc%C3%ADa%2C+E">E. Garc铆a</a>, <a href="/search/physics?searchtype=author&query=Mart%C3%ADnez%2C+M">M. Mart铆nez</a>, <a href="/search/physics?searchtype=author&query=Oliv%C3%A1n%2C+M+A">M. A. Oliv谩n</a>, <a href="/search/physics?searchtype=author&query=Ortigoza%2C+Y">Y. Ortigoza</a>, <a href="/search/physics?searchtype=author&query=de+Sol%C3%B3rzano%2C+A+O">A. Ortiz de Sol贸rzano</a>, <a href="/search/physics?searchtype=author&query=Pardo%2C+T">T. Pardo</a>, <a href="/search/physics?searchtype=author&query=Puimed%C3%B3n%2C+J">J. Puimed贸n</a>, <a href="/search/physics?searchtype=author&query=Salinas%2C+A">A. Salinas</a>, <a href="/search/physics?searchtype=author&query=Sarsa%2C+M+L">M. L. Sarsa</a>, <a href="/search/physics?searchtype=author&query=Villar%2C+P">P. Villar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.14113v3-abstract-short" style="display: inline;"> The DAMA/LIBRA observation of an annual modulation in the detection rate compatible with that expected for dark matter particles from the galactic halo has accumulated evidence for more than twenty years. It is the only hint of a direct detection of the elusive dark matter, but it is in strong tension with the negative results of other very sensitive experiments, requiring ad-hoc scenarios to reco… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.14113v3-abstract-full').style.display = 'inline'; document.getElementById('2209.14113v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.14113v3-abstract-full" style="display: none;"> The DAMA/LIBRA observation of an annual modulation in the detection rate compatible with that expected for dark matter particles from the galactic halo has accumulated evidence for more than twenty years. It is the only hint of a direct detection of the elusive dark matter, but it is in strong tension with the negative results of other very sensitive experiments, requiring ad-hoc scenarios to reconcile all the present experimental results. Testing the DAMA/LIBRA result using the same target material, NaI(Tl), removes the dependence on the particle and halo models and is the goal of the ANAIS-112 experiment, taking data at the Canfranc Underground Laboratory in Spain since August 2017 with 112.5 kg of NaI(Tl). At very low energies, the detection rate is dominated by non-bulk scintillation events and careful event selection is mandatory. This article summarizes the efforts devoted to better characterize and filter this contribution in ANAIS-112 data using a boosted decision tree (BDT), trained for this goal with high efficiency. We report on the selection of the training populations, the procedure to determine the optimal cut on the BDT parameter, the estimate of the efficiencies for the selection of bulk scintillation in the region of interest (ROI), and the evaluation of the performance of this analysis with respect to the previous filtering. The improvement achieved in background rejection in the ROI, but moreover, the increase in detection efficiency, push the ANAIS-112 sensitivity to test the DAMA/LIBRA annual modulation result around 3$蟽$ with three-year exposure, being possible to reach 5$蟽$ by extending the data taking for a few more years than the scheduled 5 years which were due in August 2022. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.14113v3-abstract-full').style.display = 'none'; document.getElementById('2209.14113v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.09490">arXiv:2209.09490</a> <span> [<a href="https://arxiv.org/pdf/2209.09490">pdf</a>, <a href="https://arxiv.org/format/2209.09490">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.032006">10.1103/PhysRevD.107.032006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for Majoron-like particles with CUPID-0 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Collaboration%2C+C">CUPID-0 Collaboration</a>, <a href="/search/physics?searchtype=author&query=%3A"> :</a>, <a href="/search/physics?searchtype=author&query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&query=Beeman%2C+J+W">J. W. Beeman</a>, <a href="/search/physics?searchtype=author&query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&query=Caracciolo%2C+V">V. Caracciolo</a>, <a href="/search/physics?searchtype=author&query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&query=Celi%2C+E">E. Celi</a>, <a href="/search/physics?searchtype=author&query=Chiesa%2C+D">D. Chiesa</a>, <a href="/search/physics?searchtype=author&query=Clemenza%2C+M">M. Clemenza</a>, <a href="/search/physics?searchtype=author&query=Colantoni%2C+I">I. Colantoni</a>, <a href="/search/physics?searchtype=author&query=Cremonesi%2C+O">O. Cremonesi</a>, <a href="/search/physics?searchtype=author&query=Cruciani%2C+A">A. Cruciani</a>, <a href="/search/physics?searchtype=author&query=D%27Addabbo%2C+A">A. D'Addabbo</a>, <a href="/search/physics?searchtype=author&query=Dafinei%2C+I">I. Dafinei</a>, <a href="/search/physics?searchtype=author&query=Di+Domizio%2C+S">S. Di Domizio</a>, <a href="/search/physics?searchtype=author&query=Domp%C3%A8%2C+V">V. Domp猫</a>, <a href="/search/physics?searchtype=author&query=Fantini%2C+G">G. Fantini</a> , et al. (29 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.09490v1-abstract-short" style="display: inline;"> We present the first search for the Majoron-emitting modes of the neutrinoless double $尾$ decay ($0谓尾尾蠂_0$) using scintillating cryogenic calorimeters. We analysed the CUPID-0 Phase I data using a Bayesian approach to reconstruct the background sources activities, and evaluate the potential contribution of the $^{82}$Se $0谓尾尾蠂_0$. We considered several possible theoretical models which predict the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.09490v1-abstract-full').style.display = 'inline'; document.getElementById('2209.09490v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.09490v1-abstract-full" style="display: none;"> We present the first search for the Majoron-emitting modes of the neutrinoless double $尾$ decay ($0谓尾尾蠂_0$) using scintillating cryogenic calorimeters. We analysed the CUPID-0 Phase I data using a Bayesian approach to reconstruct the background sources activities, and evaluate the potential contribution of the $^{82}$Se $0谓尾尾蠂_0$. We considered several possible theoretical models which predict the existence of a Majoron-like boson coupling to the neutrino. The energy spectra arising from the emission of such bosons in the neutrinoless double $尾$ decay have spectral indices $n=$ 1, 2, 3 or 7. We found no evidence of any of these decay modes, setting a lower limit (90% of credibility interval) on the half-life of 1.2 $\times$ 10$^{23}$ yr in the case of $n=$ 1, 3.8 $\times$ 10$^{22}$ yr for $n=$ 2, 1.4 $\times$ 10$^{22}$ yr for $n=$ 3 and 2.2 $\times$ 10$^{21}$ yr for $n=$ 7. These are the best limits on the $0谓尾尾蠂_0$ half-life of the $^{82}$Se, and demonstrate the potentiality of the CUPID-0 technology in this field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.09490v1-abstract-full').style.display = 'none'; document.getElementById('2209.09490v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.01177">arXiv:2209.01177</a> <span> [<a href="https://arxiv.org/pdf/2209.01177">pdf</a>, <a href="https://arxiv.org/format/2209.01177">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.112006">10.1103/PhysRevD.107.112006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sensitivity projections for a dual-phase argon TPC optimized for light dark matter searches through the ionization channel </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Agnes%2C+P">P. Agnes</a>, <a href="/search/physics?searchtype=author&query=Ahmad%2C+I">I. Ahmad</a>, <a href="/search/physics?searchtype=author&query=Albergo%2C+S">S. Albergo</a>, <a href="/search/physics?searchtype=author&query=Albuquerque%2C+I+F+M">I. F. M. Albuquerque</a>, <a href="/search/physics?searchtype=author&query=Alexander%2C+T">T. Alexander</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A+K">A. K. Alton</a>, <a href="/search/physics?searchtype=author&query=Amaudruz%2C+P">P. Amaudruz</a>, <a href="/search/physics?searchtype=author&query=Corona%2C+M+A">M. Atzori Corona</a>, <a href="/search/physics?searchtype=author&query=Auty%2C+D+J">D. J. Auty</a>, <a href="/search/physics?searchtype=author&query=Ave%2C+M">M. Ave</a>, <a href="/search/physics?searchtype=author&query=Avetisov%2C+I+C">I. Ch. Avetisov</a>, <a href="/search/physics?searchtype=author&query=Avetisov%2C+R+I">R. I. Avetisov</a>, <a href="/search/physics?searchtype=author&query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&query=Back%2C+H+O">H. O. Back</a>, <a href="/search/physics?searchtype=author&query=Balmforth%2C+Z">Z. Balmforth</a>, <a href="/search/physics?searchtype=author&query=Barbarian%2C+V">V. Barbarian</a>, <a href="/search/physics?searchtype=author&query=Olmedo%2C+A+B">A. Barrado Olmedo</a>, <a href="/search/physics?searchtype=author&query=Barrillon%2C+P">P. Barrillon</a>, <a href="/search/physics?searchtype=author&query=Basco%2C+A">A. Basco</a>, <a href="/search/physics?searchtype=author&query=Batignani%2C+G">G. Batignani</a>, <a href="/search/physics?searchtype=author&query=Berzin%2C+E">E. Berzin</a>, <a href="/search/physics?searchtype=author&query=Bondar%2C+A">A. Bondar</a>, <a href="/search/physics?searchtype=author&query=Bonivento%2C+W+M">W. M. Bonivento</a>, <a href="/search/physics?searchtype=author&query=Borisova%2C+E">E. Borisova</a>, <a href="/search/physics?searchtype=author&query=Bottino%2C+B">B. Bottino</a> , et al. (274 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.01177v2-abstract-short" style="display: inline;"> Dark matter lighter than 10 GeV/c$^2$ encompasses a promising range of candidates. A conceptual design for a new detector, DarkSide-LowMass, is presented, based on the DarkSide-50 detector and progress toward DarkSide-20k, optimized for a low-threshold electron-counting measurement. Sensitivity to light dark matter is explored for various potential energy thresholds and background rates. These stu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.01177v2-abstract-full').style.display = 'inline'; document.getElementById('2209.01177v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.01177v2-abstract-full" style="display: none;"> Dark matter lighter than 10 GeV/c$^2$ encompasses a promising range of candidates. A conceptual design for a new detector, DarkSide-LowMass, is presented, based on the DarkSide-50 detector and progress toward DarkSide-20k, optimized for a low-threshold electron-counting measurement. Sensitivity to light dark matter is explored for various potential energy thresholds and background rates. These studies show that DarkSide-LowMass can achieve sensitivity to light dark matter down to the solar neutrino floor for GeV-scale masses and significant sensitivity down to 10 MeV/c$^2$ considering the Migdal effect or interactions with electrons. Requirements for optimizing the detector's sensitivity are explored, as are potential sensitivity gains from modeling and mitigating spurious electron backgrounds that may dominate the signal at the lowest energies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.01177v2-abstract-full').style.display = 'none'; document.getElementById('2209.01177v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 107, 112006 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.05130">arXiv:2206.05130</a> <span> [<a href="https://arxiv.org/pdf/2206.05130">pdf</a>, <a href="https://arxiv.org/format/2206.05130">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.129.111801">10.1103/PhysRevLett.129.111801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Final Result on the Neutrinoless Double Beta Decay of $^{82}$Se with CUPID-0 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&query=Beeman%2C+J+W">J. W. Beeman</a>, <a href="/search/physics?searchtype=author&query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&query=Caracciolo%2C+V">V. Caracciolo</a>, <a href="/search/physics?searchtype=author&query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&query=Chiesa%2C+D">D. Chiesa</a>, <a href="/search/physics?searchtype=author&query=Clemenza%2C+M">M. Clemenza</a>, <a href="/search/physics?searchtype=author&query=Colantoni%2C+I">I. Colantoni</a>, <a href="/search/physics?searchtype=author&query=Cremonesi%2C+O">O. Cremonesi</a>, <a href="/search/physics?searchtype=author&query=Cruciani%2C+A">A. Cruciani</a>, <a href="/search/physics?searchtype=author&query=D%27Addabbo%2C+A">A. D'Addabbo</a>, <a href="/search/physics?searchtype=author&query=Dafinei%2C+I">I. Dafinei</a>, <a href="/search/physics?searchtype=author&query=De+Dominics%2C+F">F. De Dominics</a>, <a href="/search/physics?searchtype=author&query=Di+Domizio%2C+S">S. Di Domizio</a>, <a href="/search/physics?searchtype=author&query=Ferroni%2C+F">F. Ferroni</a>, <a href="/search/physics?searchtype=author&query=Gironi%2C+L">L. Gironi</a>, <a href="/search/physics?searchtype=author&query=Giuliani%2C+A">A. Giuliani</a>, <a href="/search/physics?searchtype=author&query=Gorla%2C+P">P. Gorla</a> , et al. (23 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.05130v1-abstract-short" style="display: inline;"> CUPID-0, an array of Zn$^{82}$Se cryogenic calorimeters, was the first medium-scale demonstrator of the scintillating bolometers technology. The first project phase (March 2017 - December 2018) allowed the most stringent limit on the neutrinoless double beta decay half-life of the isotope of interest, $^{82}$Se, to be set. After a six months long detector upgrade, CUPID-0 began its second and last… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.05130v1-abstract-full').style.display = 'inline'; document.getElementById('2206.05130v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.05130v1-abstract-full" style="display: none;"> CUPID-0, an array of Zn$^{82}$Se cryogenic calorimeters, was the first medium-scale demonstrator of the scintillating bolometers technology. The first project phase (March 2017 - December 2018) allowed the most stringent limit on the neutrinoless double beta decay half-life of the isotope of interest, $^{82}$Se, to be set. After a six months long detector upgrade, CUPID-0 began its second and last phase (June 2019 - February 2020). In this letter, we describe the search for neutrinoless double beta decay of $^{82}$Se with a total exposure (phase I + II) of 8.82 kg$\times$yr of isotope. We set a limit on the half-life of $^{82}$Se to the ground state of $^{82}$Kr of T$^{0谓}_{1/2}$($^{82}$Se)$>$ 4.6$\times \mathrm{10}^{24}$ yr (90\% credible interval), corresponding to an effective Majorana neutrino mass m$_{尾尾} <$ (263 -- 545) meV. We also set the most stringent lower limits on the neutrinoless decays of $^{82}$Se to the 0$_1^+$, 2$_1^+$ and 2$_2^+$ excited states of $^{82}$Kr, finding 1.8$\times$10$^{23}$ yr, 3.0$\times$10$^{23}$ yr, 3.2$\times$10$^{23}$ yr (90$\%$ credible interval) respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.05130v1-abstract-full').style.display = 'none'; document.getElementById('2206.05130v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.04905">arXiv:2206.04905</a> <span> [<a href="https://arxiv.org/pdf/2206.04905">pdf</a>, <a href="https://arxiv.org/format/2206.04905">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6382/ac8fdb">10.1088/1361-6382/ac8fdb <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> ETpathfinder: a cryogenic testbed for interferometric gravitational-wave detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Utina%2C+A">A. Utina</a>, <a href="/search/physics?searchtype=author&query=Amato%2C+A">A. Amato</a>, <a href="/search/physics?searchtype=author&query=Arends%2C+J">J. Arends</a>, <a href="/search/physics?searchtype=author&query=Arina%2C+C">C. Arina</a>, <a href="/search/physics?searchtype=author&query=de+Baar%2C+M">M. de Baar</a>, <a href="/search/physics?searchtype=author&query=Baars%2C+M">M. Baars</a>, <a href="/search/physics?searchtype=author&query=Baer%2C+P">P. Baer</a>, <a href="/search/physics?searchtype=author&query=van+Bakel%2C+N">N. van Bakel</a>, <a href="/search/physics?searchtype=author&query=Beaumont%2C+W">W. Beaumont</a>, <a href="/search/physics?searchtype=author&query=Bertolini%2C+A">A. Bertolini</a>, <a href="/search/physics?searchtype=author&query=van+Beuzekom%2C+M">M. van Beuzekom</a>, <a href="/search/physics?searchtype=author&query=Biersteker%2C+S">S. Biersteker</a>, <a href="/search/physics?searchtype=author&query=Binetti%2C+A">A. Binetti</a>, <a href="/search/physics?searchtype=author&query=ter+Brake%2C+H+J+M">H. J. M. ter Brake</a>, <a href="/search/physics?searchtype=author&query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&query=Bryant%2C+J">J. Bryant</a>, <a href="/search/physics?searchtype=author&query=Bulten%2C+H+J">H. J. Bulten</a>, <a href="/search/physics?searchtype=author&query=Busch%2C+L">L. Busch</a>, <a href="/search/physics?searchtype=author&query=Cebeci%2C+P">P. Cebeci</a>, <a href="/search/physics?searchtype=author&query=Collette%2C+C">C. Collette</a>, <a href="/search/physics?searchtype=author&query=Cooper%2C+S">S. Cooper</a>, <a href="/search/physics?searchtype=author&query=Cornelissen%2C+R">R. Cornelissen</a>, <a href="/search/physics?searchtype=author&query=Cuijpers%2C+P">P. Cuijpers</a>, <a href="/search/physics?searchtype=author&query=van+Dael%2C+M">M. van Dael</a>, <a href="/search/physics?searchtype=author&query=Danilishin%2C+S">S. Danilishin</a> , et al. (90 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.04905v1-abstract-short" style="display: inline;"> The third-generation of gravitational wave observatories, such as the Einstein Telescope (ET) and Cosmic Explorer (CE), aim for an improvement in sensitivity of at least a factor of ten over a wide frequency range compared to the current advanced detectors. In order to inform the design of the third-generation detectors and to develop and qualify their subsystems, dedicated test facilities are req… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.04905v1-abstract-full').style.display = 'inline'; document.getElementById('2206.04905v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.04905v1-abstract-full" style="display: none;"> The third-generation of gravitational wave observatories, such as the Einstein Telescope (ET) and Cosmic Explorer (CE), aim for an improvement in sensitivity of at least a factor of ten over a wide frequency range compared to the current advanced detectors. In order to inform the design of the third-generation detectors and to develop and qualify their subsystems, dedicated test facilities are required. ETpathfinder prototype uses full interferometer configurations and aims to provide a high sensitivity facility in a similar environment as ET. Along with the interferometry at 1550 nm and silicon test masses, ETpathfinder will focus on cryogenic technologies, lasers and optics at 2090 nm and advanced quantum-noise reduction schemes. This paper analyses the underpinning noise contributions and combines them into full noise budgets of the two initially targeted configurations: 1) operating with 1550 nm laser light and at a temperature of 18 K and 2) operating at 2090 nm wavelength and a temperature of 123 K. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.04905v1-abstract-full').style.display = 'none'; document.getElementById('2206.04905v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.00653">arXiv:2206.00653</a> <span> [<a href="https://arxiv.org/pdf/2206.00653">pdf</a>, <a href="https://arxiv.org/format/2206.00653">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.116004">10.1103/PhysRevD.107.116004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Novel features of attractors and transseries in non-conformal Bjorken flows </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Kamata%2C+S">Syo Kamata</a>, <a href="/search/physics?searchtype=author&query=Jankowski%2C+J">Jakub Jankowski</a>, <a href="/search/physics?searchtype=author&query=Martinez%2C+M">Mauricio Martinez</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.00653v2-abstract-short" style="display: inline;"> In this work we investigate the impact of conformal symmetry breaking on hydrodynamization of a far-from-equilibrium fluid. We find a new kind of transseries solutions for the non-conformal hydrodynamic equations of a longitudinal boost invariant expanding plasma. The new transseries solutions unveil a rich physical structure which arises due to the interplay of different physical scales. In the p… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.00653v2-abstract-full').style.display = 'inline'; document.getElementById('2206.00653v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.00653v2-abstract-full" style="display: none;"> In this work we investigate the impact of conformal symmetry breaking on hydrodynamization of a far-from-equilibrium fluid. We find a new kind of transseries solutions for the non-conformal hydrodynamic equations of a longitudinal boost invariant expanding plasma. The new transseries solutions unveil a rich physical structure which arises due to the interplay of different physical scales. In the perfect fluid case the non-conformal speed of sound slows down the cooling of the temperature due to the emergence of logarithmic corrections that depends on the mass of the particle. These terms propagate into the perturbative and non-perturbative sectors of the transseries once viscous corrections are included. The logarithmic mass contributions increase the asymptotic value of the Knudsen number while decreasing the damping rate of the transient non-hydrodynamic modes and thus, yielding to an extremely slow hydrodynamization process where flow lines merge to their forward attractor at extremely late times. The early time free streaming expansion is modified and receives logarithmic mass corrections induced by the shear-bulk couplings. The global flow structure and numerical analyses carried out in our work demonstrate the existence of the early and late-time attractors for the shear viscous tensor and bulk viscous pressure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.00653v2-abstract-full').style.display = 'none'; document.getElementById('2206.00653v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages (main text) + 11 pages (appendices + references), 12 figures. v2: Improved discussion, added new figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.13978">arXiv:2203.13978</a> <span> [<a href="https://arxiv.org/pdf/2203.13978">pdf</a>, <a href="https://arxiv.org/format/2203.13978">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-022-10859-z">10.1140/epjc/s10052-022-10859-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Long term measurement of the $^{222}$Rn concentration in the Canfranc Underground Laboratory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Amar%C3%A9%2C+J">J. Amar茅</a>, <a href="/search/physics?searchtype=author&query=Bandac%2C+I">I. Bandac</a>, <a href="/search/physics?searchtype=author&query=Blancas%2C+A">A. Blancas</a>, <a href="/search/physics?searchtype=author&query=Borjabad%2C+S">S. Borjabad</a>, <a href="/search/physics?searchtype=author&query=Buis%C3%A1n%2C+S">S. Buis谩n</a>, <a href="/search/physics?searchtype=author&query=Cebri%C3%A1n%2C+S">S. Cebri谩n</a>, <a href="/search/physics?searchtype=author&query=Cintas%2C+D">D. Cintas</a>, <a href="/search/physics?searchtype=author&query=Coarasa%2C+I">I. Coarasa</a>, <a href="/search/physics?searchtype=author&query=Garc%C3%ADa%2C+E">E. Garc铆a</a>, <a href="/search/physics?searchtype=author&query=Mart%C3%ADnez%2C+M">M. Mart铆nez</a>, <a href="/search/physics?searchtype=author&query=Lagos%2C+R+N">R. N煤帽ez Lagos</a>, <a href="/search/physics?searchtype=author&query=Oliv%C3%A1n%2C+M+A">M. A. Oliv谩n</a>, <a href="/search/physics?searchtype=author&query=Ortigoza%2C+Y">Y. Ortigoza</a>, <a href="/search/physics?searchtype=author&query=de+Sol%C3%B3rzano%2C+A+O">A. Ortiz de Sol贸rzano</a>, <a href="/search/physics?searchtype=author&query=P%C3%A9rez%2C+C">C. P茅rez</a>, <a href="/search/physics?searchtype=author&query=Puimed%C3%B3n%2C+J">J. Puimed贸n</a>, <a href="/search/physics?searchtype=author&query=Rodr%C3%ADguez%2C+S">S. Rodr铆guez</a>, <a href="/search/physics?searchtype=author&query=Salinas%2C+A">A. Salinas</a>, <a href="/search/physics?searchtype=author&query=Sarsa%2C+M+L">M. L. Sarsa</a>, <a href="/search/physics?searchtype=author&query=Villar%2C+P">P. Villar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.13978v1-abstract-short" style="display: inline;"> We report the results of six years (2013-2018) of measurements of $^{222}$Rn air concentration, relative humidity, atmospheric pressure and temperature in the halls A, B and C of the Canfranc Underground Laboratory (LSC). We have calculated all the Pearson correlation coefficients among these parameters and we have found a positive correlation between the $^{222}$Rn concentration and the relative… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.13978v1-abstract-full').style.display = 'inline'; document.getElementById('2203.13978v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.13978v1-abstract-full" style="display: none;"> We report the results of six years (2013-2018) of measurements of $^{222}$Rn air concentration, relative humidity, atmospheric pressure and temperature in the halls A, B and C of the Canfranc Underground Laboratory (LSC). We have calculated all the Pearson correlation coefficients among these parameters and we have found a positive correlation between the $^{222}$Rn concentration and the relative humidity. Both correlated variables show a seasonal periodicity. The joint analysis of laboratory data and four years (2015-2018) of the meteorological variables outside the laboratory shows the correlation between the $^{222}$Rn concentration and the outside temperature. The collected information stresses the relevance of designing good Rn-mitigation strategies in current and future experiments at LSC; in particular, we have checked for two years (2017-2018) the good performance of the mitigation procedure of the ANAIS--112 experiment. Finally, in another measurement (2019-2021) for two years of live time, we report an upper limit to the residual $^{222}$Rn content of the radon-free air provided by the radon abatement system installed in the laboratory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.13978v1-abstract-full').style.display = 'none'; document.getElementById('2203.13978v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.08805">arXiv:2203.08805</a> <span> [<a href="https://arxiv.org/pdf/2203.08805">pdf</a>, <a href="https://arxiv.org/format/2203.08805">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum computing for data analysis in high energy physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Delgado%2C+A">Andrea Delgado</a>, <a href="/search/physics?searchtype=author&query=Hamilton%2C+K+E">Kathleen E. Hamilton</a>, <a href="/search/physics?searchtype=author&query=Date%2C+P">Prasanna Date</a>, <a href="/search/physics?searchtype=author&query=Vlimant%2C+J">Jean-Roch Vlimant</a>, <a href="/search/physics?searchtype=author&query=Magano%2C+D">Duarte Magano</a>, <a href="/search/physics?searchtype=author&query=Omar%2C+Y">Yasser Omar</a>, <a href="/search/physics?searchtype=author&query=Bargassa%2C+P">Pedrame Bargassa</a>, <a href="/search/physics?searchtype=author&query=Francis%2C+A">Anthony Francis</a>, <a href="/search/physics?searchtype=author&query=Gianelle%2C+A">Alessio Gianelle</a>, <a href="/search/physics?searchtype=author&query=Sestini%2C+L">Lorenzo Sestini</a>, <a href="/search/physics?searchtype=author&query=Lucchesi%2C+D">Donatella Lucchesi</a>, <a href="/search/physics?searchtype=author&query=Zuliani%2C+D">Davide Zuliani</a>, <a href="/search/physics?searchtype=author&query=Nicotra%2C+D">Davide Nicotra</a>, <a href="/search/physics?searchtype=author&query=de+Vries%2C+J">Jacco de Vries</a>, <a href="/search/physics?searchtype=author&query=Dibenedetto%2C+D">Dominica Dibenedetto</a>, <a href="/search/physics?searchtype=author&query=Martinez%2C+M+L">Miriam Lucio Martinez</a>, <a href="/search/physics?searchtype=author&query=Rodrigues%2C+E">Eduardo Rodrigues</a>, <a href="/search/physics?searchtype=author&query=Sierra%2C+C+V">Carlos Vazquez Sierra</a>, <a href="/search/physics?searchtype=author&query=Vallecorsa%2C+S">Sofia Vallecorsa</a>, <a href="/search/physics?searchtype=author&query=Thaler%2C+J">Jesse Thaler</a>, <a href="/search/physics?searchtype=author&query=Bravo-Prieto%2C+C">Carlos Bravo-Prieto</a>, <a href="/search/physics?searchtype=author&query=Chang%2C+s+Y">su Yeon Chang</a>, <a href="/search/physics?searchtype=author&query=Lazar%2C+J">Jeffrey Lazar</a>, <a href="/search/physics?searchtype=author&query=Arg%C3%BCelles%2C+C+A">Carlos A. Arg眉elles</a>, <a href="/search/physics?searchtype=author&query=de+Lejarza%2C+J+J+M">Jorge J. Martinez de Lejarza</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.08805v2-abstract-short" style="display: inline;"> Some of the biggest achievements of the modern era of particle physics, such as the discovery of the Higgs boson, have been made possible by the tremendous effort in building and operating large-scale experiments like the Large Hadron Collider or the Tevatron. In these facilities, the ultimate theory to describe matter at the most fundamental level is constantly probed and verified. These experime… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.08805v2-abstract-full').style.display = 'inline'; document.getElementById('2203.08805v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.08805v2-abstract-full" style="display: none;"> Some of the biggest achievements of the modern era of particle physics, such as the discovery of the Higgs boson, have been made possible by the tremendous effort in building and operating large-scale experiments like the Large Hadron Collider or the Tevatron. In these facilities, the ultimate theory to describe matter at the most fundamental level is constantly probed and verified. These experiments often produce large amounts of data that require storing, processing, and analysis techniques that often push the limits of traditional information processing schemes. Thus, the High-Energy Physics (HEP) field has benefited from advancements in information processing and the development of algorithms and tools for large datasets. More recently, quantum computing applications have been investigated in an effort to understand how the community can benefit from the advantages of quantum information science. In this manuscript, we provide an overview of the state-of-the-art applications of quantum computing to data analysis in HEP, discuss the challenges and opportunities in integrating these novel analysis techniques into a day-to-day analysis workflow, and whether there is potential for a quantum advantage. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.08805v2-abstract-full').style.display = 'none'; document.getElementById('2203.08805v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, initially submitted to Snowmass 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.06279">arXiv:2202.06279</a> <span> [<a href="https://arxiv.org/pdf/2202.06279">pdf</a>, <a href="https://arxiv.org/format/2202.06279">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Optimization of the first CUPID detector module </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=CUPID+collaboration"> CUPID collaboration</a>, <a href="/search/physics?searchtype=author&query=Armatol%2C+A">A. Armatol</a>, <a href="/search/physics?searchtype=author&query=Augier%2C+C">C. Augier</a>, <a href="/search/physics?searchtype=author&query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/physics?searchtype=author&query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&query=Balata%2C+M">M. Balata</a>, <a href="/search/physics?searchtype=author&query=Ballen%2C+K">K. Ballen</a>, <a href="/search/physics?searchtype=author&query=Barabash%2C+A+S">A. S. Barabash</a>, <a href="/search/physics?searchtype=author&query=Bari%2C+G">G. Bari</a>, <a href="/search/physics?searchtype=author&query=Barresi%2C+A">A. Barresi</a>, <a href="/search/physics?searchtype=author&query=Baudin%2C+D">D. Baudin</a>, <a href="/search/physics?searchtype=author&query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&query=Bettelli%2C+M">M. Bettelli</a>, <a href="/search/physics?searchtype=author&query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&query=Billard%2C+J">J. Billard</a>, <a href="/search/physics?searchtype=author&query=Boldrini%2C+V">V. Boldrini</a>, <a href="/search/physics?searchtype=author&query=Branca%2C+A">A. Branca</a>, <a href="/search/physics?searchtype=author&query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&query=Camilleri%2C+J">J. Camilleri</a>, <a href="/search/physics?searchtype=author&query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&query=Cappelli%2C+L">L. Cappelli</a> , et al. (153 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.06279v1-abstract-short" style="display: inline;"> CUPID will be a next generation experiment searching for the neutrinoless double $尾$ decay, whose discovery would establish the Majorana nature of the neutrino. Based on the experience achieved with the CUORE experiment, presently taking data at LNGS, CUPID aims to reach a background free environment by means of scintillating Li$_{2}$$^{100}$MoO$_4$ crystals coupled to light detectors. Indeed, the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.06279v1-abstract-full').style.display = 'inline'; document.getElementById('2202.06279v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.06279v1-abstract-full" style="display: none;"> CUPID will be a next generation experiment searching for the neutrinoless double $尾$ decay, whose discovery would establish the Majorana nature of the neutrino. Based on the experience achieved with the CUORE experiment, presently taking data at LNGS, CUPID aims to reach a background free environment by means of scintillating Li$_{2}$$^{100}$MoO$_4$ crystals coupled to light detectors. Indeed, the simultaneous heat and light detection allows us to reject the dominant background of $伪$ particles, as proven by the CUPID-0 and CUPID-Mo demonstrators. In this work we present the results of the first test of the CUPID baseline module. In particular, we propose a new optimized detector structure and light sensors design to enhance the engineering and the light collection, respectively. We characterized the heat detectors, achieving an energy resolution of (5.9 $\pm$ 0.2) keV FWHM at the $Q$-value of $^{100}$Mo (about 3034 keV). We studied the light collection of the baseline CUPID design with respect to an alternative configuration which features gravity-assisted light detectors' mounting. In both cases we obtained an improvement in the light collection with respect to past measures and we validated the particle identification capability of the detector, which ensures an $伪$ particle rejection higher than 99.9%, fully satisfying the requirements for CUPID. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.06279v1-abstract-full').style.display = 'none'; document.getElementById('2202.06279v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.09590">arXiv:2111.09590</a> <span> [<a href="https://arxiv.org/pdf/2111.09590">pdf</a>, <a href="https://arxiv.org/format/2111.09590">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1742-6596/2156/1/012065">10.1088/1742-6596/2156/1/012065 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quenching Factor consistency across several NaI(Tl) crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Cintas%2C+D">D. Cintas</a>, <a href="/search/physics?searchtype=author&query=An%2C+P">P. An</a>, <a href="/search/physics?searchtype=author&query=Awe%2C+C">C. Awe</a>, <a href="/search/physics?searchtype=author&query=Barbeau%2C+P+S">P. S. Barbeau</a>, <a href="/search/physics?searchtype=author&query=de+Souza%2C+E+B">E. Barbosa de Souza</a>, <a href="/search/physics?searchtype=author&query=Hedges%2C+S">S. Hedges</a>, <a href="/search/physics?searchtype=author&query=Jo%2C+J+H">J. H. Jo</a>, <a href="/search/physics?searchtype=author&query=Martinez%2C+M">M. Martinez</a>, <a href="/search/physics?searchtype=author&query=Maruyama%2C+R+H">R. H. Maruyama</a>, <a href="/search/physics?searchtype=author&query=Li%2C+L">L. Li</a>, <a href="/search/physics?searchtype=author&query=Rich%2C+G+C">G. C. Rich</a>, <a href="/search/physics?searchtype=author&query=Runge%2C+J">J. Runge</a>, <a href="/search/physics?searchtype=author&query=Sarsa%2C+M+L">M. L. Sarsa</a>, <a href="/search/physics?searchtype=author&query=Thompson%2C+W+G">W. G. Thompson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.09590v1-abstract-short" style="display: inline;"> Testing the DAMA/LIBRA annual modulation result independently of dark matter particle and halo models has been a challenge for twenty years. Using the same target material, NaI(Tl), is required and presently two experiments, ANAIS-112 and COSINE-100, are running for such a goal. A precise knowledge of the detector response to nuclear recoils is mandatory because this is the most likely channel to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.09590v1-abstract-full').style.display = 'inline'; document.getElementById('2111.09590v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.09590v1-abstract-full" style="display: none;"> Testing the DAMA/LIBRA annual modulation result independently of dark matter particle and halo models has been a challenge for twenty years. Using the same target material, NaI(Tl), is required and presently two experiments, ANAIS-112 and COSINE-100, are running for such a goal. A precise knowledge of the detector response to nuclear recoils is mandatory because this is the most likely channel to find the dark matter signal. The light produced by nuclear recoils is quenched with respect to that produced by electrons by a factor that has to be measured experimentally. However, current quenching factor measurements in NaI(Tl) crystals disagree within the energy region of interest for dark matter searches. To disentangle whether this discrepancy is due to intrinsic differences in the light response among different NaI(Tl) crystals, or has its origin in unaccounted for systematic effects will be key in the comparison among the different experiments. We present measurements of the quenching factors for five small NaI(Tl) crystals performed in the same experimental setup to control systematics. Quenching factor results are compatible between crystals and no clear dependence with energy is observed from 10 to 80 keVnr. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.09590v1-abstract-full').style.display = 'none'; document.getElementById('2111.09590v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceeding of the TAUP 2021 Conference</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.08109">arXiv:2110.08109</a> <span> [<a href="https://arxiv.org/pdf/2110.08109">pdf</a>, <a href="https://arxiv.org/format/2110.08109">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1742-6596/2156/1/012175">10.1088/1742-6596/2156/1/012175 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Background model of the ANAIS-112 dark matter experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Amare%2C+J">J Amare</a>, <a href="/search/physics?searchtype=author&query=Cebrian%2C+S">S Cebrian</a>, <a href="/search/physics?searchtype=author&query=Cintas%2C+D">D Cintas</a>, <a href="/search/physics?searchtype=author&query=Coarasa%2C+I">I Coarasa</a>, <a href="/search/physics?searchtype=author&query=Garcia%2C+E">E Garcia</a>, <a href="/search/physics?searchtype=author&query=Martinez%2C+M">M Martinez</a>, <a href="/search/physics?searchtype=author&query=Olivan%2C+M+A">M A Olivan</a>, <a href="/search/physics?searchtype=author&query=Ortigoza%2C+Y">Y Ortigoza</a>, <a href="/search/physics?searchtype=author&query=de+Solorzano%2C+A+O">A Ortiz de Solorzano</a>, <a href="/search/physics?searchtype=author&query=Puimedon%2C+J">J Puimedon</a>, <a href="/search/physics?searchtype=author&query=Salinas%2C+A">A Salinas</a>, <a href="/search/physics?searchtype=author&query=Sarsa%2C+M+L">M L Sarsa</a>, <a href="/search/physics?searchtype=author&query=Villar%2C+P">P Villar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.08109v1-abstract-short" style="display: inline;"> The ANAIS (Annual modulation with NaI(Tl) Scintillators) experiment aims at the confirmation or refutation of the DAMA/LIBRA positive annual modulation signal in the low energy detection rate. ANAIS-112, consisting of nine 12.5 kg NaI(Tl) modules, is taking data since August, 2017 at the Canfranc Underground Laboratory (LSC) in Spain. Results from the analysis of three years of data are compatible… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.08109v1-abstract-full').style.display = 'inline'; document.getElementById('2110.08109v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.08109v1-abstract-full" style="display: none;"> The ANAIS (Annual modulation with NaI(Tl) Scintillators) experiment aims at the confirmation or refutation of the DAMA/LIBRA positive annual modulation signal in the low energy detection rate. ANAIS-112, consisting of nine 12.5 kg NaI(Tl) modules, is taking data since August, 2017 at the Canfranc Underground Laboratory (LSC) in Spain. Results from the analysis of three years of data are compatible with the absence of modulation. The background model developed for all nine ANAIS-112 detectors was established from commissioning data and non-blinded events in the first year of data taking. Now, background characterization is being improved profiting from the larger accumulated exposure available. Here, the background model is described and comparisons of model and measurements for energy spectra and counting rate time evolution for three-year exposure (considering different analysis conditions) are presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.08109v1-abstract-full').style.display = 'none'; document.getElementById('2110.08109v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Poster presented at TAUP2021 conference; to appear at Journal of Physics: Conference Series</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.07883">arXiv:2108.07883</a> <span> [<a href="https://arxiv.org/pdf/2108.07883">pdf</a>, <a href="https://arxiv.org/format/2108.07883">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.ppnp.2021.103902">10.1016/j.ppnp.2021.103902 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> CUORE Opens the Door to Tonne-scale Cryogenics Experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=CUORE+Collaboration"> CUORE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D+Q">D. Q. Adams</a>, <a href="/search/physics?searchtype=author&query=Alduino%2C+C">C. Alduino</a>, <a href="/search/physics?searchtype=author&query=Alessandria%2C+F">F. Alessandria</a>, <a href="/search/physics?searchtype=author&query=Alfonso%2C+K">K. Alfonso</a>, <a href="/search/physics?searchtype=author&query=Andreotti%2C+E">E. Andreotti</a>, <a href="/search/physics?searchtype=author&query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/physics?searchtype=author&query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&query=Balata%2C+M">M. Balata</a>, <a href="/search/physics?searchtype=author&query=Bandac%2C+I">I. Bandac</a>, <a href="/search/physics?searchtype=author&query=Banks%2C+T+I">T. I. Banks</a>, <a href="/search/physics?searchtype=author&query=Bari%2C+G">G. Bari</a>, <a href="/search/physics?searchtype=author&query=Barucci%2C+M">M. Barucci</a>, <a href="/search/physics?searchtype=author&query=Beeman%2C+J+W">J. W. Beeman</a>, <a href="/search/physics?searchtype=author&query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&query=Bersani%2C+A">A. Bersani</a>, <a href="/search/physics?searchtype=author&query=Biare%2C+D">D. Biare</a>, <a href="/search/physics?searchtype=author&query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&query=Bragazzi%2C+F">F. Bragazzi</a>, <a href="/search/physics?searchtype=author&query=Branca%2C+A">A. Branca</a>, <a href="/search/physics?searchtype=author&query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&query=Bryant%2C+A">A. Bryant</a>, <a href="/search/physics?searchtype=author&query=Buccheri%2C+A">A. Buccheri</a> , et al. (184 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.07883v2-abstract-short" style="display: inline;"> The past few decades have seen major developments in the design and operation of cryogenic particle detectors. This technology offers an extremely good energy resolution - comparable to semiconductor detectors - and a wide choice of target materials, making low temperature calorimetric detectors ideal for a variety of particle physics applications. Rare event searches have continued to require eve… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.07883v2-abstract-full').style.display = 'inline'; document.getElementById('2108.07883v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.07883v2-abstract-full" style="display: none;"> The past few decades have seen major developments in the design and operation of cryogenic particle detectors. This technology offers an extremely good energy resolution - comparable to semiconductor detectors - and a wide choice of target materials, making low temperature calorimetric detectors ideal for a variety of particle physics applications. Rare event searches have continued to require ever greater exposures, which has driven them to ever larger cryogenic detectors, with the CUORE experiment being the first to reach a tonne-scale, mK-cooled, experimental mass. CUORE, designed to search for neutrinoless double beta decay, has been operational since 2017 at a temperature of about 10 mK. This result has been attained by the use of an unprecedentedly large cryogenic infrastructure called the CUORE cryostat: conceived, designed and commissioned for this purpose. In this article the main characteristics and features of the cryogenic facility developed for the CUORE experiment are highlighted. A brief introduction of the evolution of the field and of the past cryogenic facilities are given. The motivation behind the design and development of the CUORE cryogenic facility is detailed as are the steps taken toward realization, commissioning, and operation of the CUORE cryostat. The major challenges overcome by the collaboration and the solutions implemented throughout the building of the cryogenic facility will be discussed along with the potential improvements for future facilities. The success of CUORE has opened the door to a new generation of large-scale cryogenic facilities in numerous fields of science. Broader implications of the incredible feat achieved by the CUORE collaboration on the future cryogenic facilities in various fields ranging from neutrino and dark matter experiments to quantum computing will be examined. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.07883v2-abstract-full').style.display = 'none'; document.getElementById('2108.07883v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">45 pages, 14 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Prog. Part. Nucl. Phys., 122 (2021), Article 103902 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.10934">arXiv:2105.10934</a> <span> [<a href="https://arxiv.org/pdf/2105.10934">pdf</a>, <a href="https://arxiv.org/ps/2105.10934">ps</a>, <a href="https://arxiv.org/format/2105.10934">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Populations and Evolution">q-bio.PE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.31349/RevMexFis.68.011701">10.31349/RevMexFis.68.011701 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mobility strategies based on percolation theory to avoid the spread of diseases: COVID-19 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Herrera%2C+D+R">Diana Rosales Herrera</a>, <a href="/search/physics?searchtype=author&query=Ram%C3%ADrez%2C+J+E">J. E. Ram铆rez</a>, <a href="/search/physics?searchtype=author&query=Vel%C3%A1zquez-Castro%2C+J">Jorge Vel谩zquez-Castro</a>, <a href="/search/physics?searchtype=author&query=D%C3%ADaz%2C+B">Bogar D铆az</a>, <a href="/search/physics?searchtype=author&query=Mart%C3%ADnez%2C+M+I">M. I. Mart铆nez</a>, <a href="/search/physics?searchtype=author&query=Ju%C3%A1rez%2C+P+V">P. V谩zquez Ju谩rez</a>, <a href="/search/physics?searchtype=author&query=T%C3%A9llez%2C+A+F">A. Fern谩ndez T茅llez</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.10934v1-abstract-short" style="display: inline;"> Human mobility is an important factor in the propagation of infectious diseases. In particular, the spatial spread of a disease is a consequence of human mobility. On the other hand, the control strategies based on mobility restrictions are generally unpopular and costly. These high social and economic costs make it very important to design global protocols where the cost is minimized and effect… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.10934v1-abstract-full').style.display = 'inline'; document.getElementById('2105.10934v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.10934v1-abstract-full" style="display: none;"> Human mobility is an important factor in the propagation of infectious diseases. In particular, the spatial spread of a disease is a consequence of human mobility. On the other hand, the control strategies based on mobility restrictions are generally unpopular and costly. These high social and economic costs make it very important to design global protocols where the cost is minimized and effects maximized. In this work, we calculate the percolation threshold of the spread in a network of a disease. In particular, we found the number of roads to close and regions to isolate in the Puebla State, Mexico, to avoid the global spread of COVID-19. Computational simulations taking into account the proposed strategy show a potential reduction of 94% of infections. This methodology can be used in broader and different areas to help in the design of health policies. -- La movilidad de las personas es uno de los principales factores que propician la propagaci贸n de epidemias. En particular, es el factor que genera el esparcimiento de la enfermedad en diferentes regiones. Las medidas de control epidemiol贸gico basadas en la restricci贸n de movilidad son generalmente poco populares y las consecuencias econ贸micas pueden llegar a ser muy grandes. Debido a los altos costos de estas medidas, es de gran relevancia tener estrategias globales que optimicen las medidas minimizando los costos. En este trabajo, se calcula el umbral de percolaci贸n de la propagaci贸n de enfermedades en redes. De manera particular, se encuentra el n煤mero de caminos a restringir y localidades que tienen que ser aisladas para limitar la propagaci贸n global de COVID-19 en el Estado de Puebla, M茅xico. Simulaciones computacionales donde se implementan las medidas de restricci贸n de movilidad entre los diferentes municipios, junto con las medidas de confinamiento, muestran que es posible reducir un 94% de la poblaci贸n afectada comparado con el caso en el que no se implementa ninguna medida. Esta metodolog铆a puede ser aplicada a distintas zonas para ayudar a las autoridades de salud en la toma de decisiones. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.10934v1-abstract-full').style.display = 'none'; document.getElementById('2105.10934v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 8 Figures, in spanish to an easy diffusion between society and government dependences of M茅xico</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Revista Mexicana de F铆sica 68 011701 1-12 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.04409">arXiv:2105.04409</a> <span> [<a href="https://arxiv.org/pdf/2105.04409">pdf</a>, <a href="https://arxiv.org/format/2105.04409">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-021-09476-z">10.1140/epjc/s10052-021-09476-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Background identification in cryogenic calorimeters through $伪-伪$ delayed coincidences </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&query=Beeman%2C+J+W">J. W. Beeman</a>, <a href="/search/physics?searchtype=author&query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&query=Chiesa%2C+D">D. Chiesa</a>, <a href="/search/physics?searchtype=author&query=Clemenza%2C+M">M. Clemenza</a>, <a href="/search/physics?searchtype=author&query=Cremonesi%2C+O">O. Cremonesi</a>, <a href="/search/physics?searchtype=author&query=Cruciani%2C+A">A. Cruciani</a>, <a href="/search/physics?searchtype=author&query=Dafinei%2C+I">I. Dafinei</a>, <a href="/search/physics?searchtype=author&query=D%27Addabbo%2C+A">A. D'Addabbo</a>, <a href="/search/physics?searchtype=author&query=Di+Domizio%2C+S">S. Di Domizio</a>, <a href="/search/physics?searchtype=author&query=Ferroni%2C+F">F. Ferroni</a>, <a href="/search/physics?searchtype=author&query=Gironi%2C+L">L. Gironi</a>, <a href="/search/physics?searchtype=author&query=Giuliani%2C+A">A. Giuliani</a>, <a href="/search/physics?searchtype=author&query=Gorla%2C+P">P. Gorla</a>, <a href="/search/physics?searchtype=author&query=Gotti%2C+C">C. Gotti</a>, <a href="/search/physics?searchtype=author&query=Keppel%2C+G">G. Keppel</a>, <a href="/search/physics?searchtype=author&query=Martinez%2C+M">M. Martinez</a> , et al. (20 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.04409v2-abstract-short" style="display: inline;"> Localization and modeling of radioactive contaminations is a challenge that ultra-low background experiments are constantly facing. These are fundamental steps both to extract scientific results and to further reduce the background of the detectors. Here we present an innovative technique based on the analysis of $伪-伪$ delayed coincidences in $^{232}$Th and $^{238}$U decay chains, developed to inv… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.04409v2-abstract-full').style.display = 'inline'; document.getElementById('2105.04409v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.04409v2-abstract-full" style="display: none;"> Localization and modeling of radioactive contaminations is a challenge that ultra-low background experiments are constantly facing. These are fundamental steps both to extract scientific results and to further reduce the background of the detectors. Here we present an innovative technique based on the analysis of $伪-伪$ delayed coincidences in $^{232}$Th and $^{238}$U decay chains, developed to investigate the contaminations of the ZnSe crystals in the CUPID-0 experiment. This method allows to disentangle surface and bulk contaminations of the detectors relying on the different probability to tag delayed coincidences as function of the $伪$ decay position. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.04409v2-abstract-full').style.display = 'none'; document.getElementById('2105.04409v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 81, 722 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.04031">arXiv:2105.04031</a> <span> [<a href="https://arxiv.org/pdf/2105.04031">pdf</a>, <a href="https://arxiv.org/format/2105.04031">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s41781-021-00070-2">10.1007/s41781-021-00070-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Comparison of CPU and GPU implementations for the LHCb Experiment Run 3 Trigger </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Aaij%2C+R">R. Aaij</a>, <a href="/search/physics?searchtype=author&query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&query=Aiola%2C+S">S. Aiola</a>, <a href="/search/physics?searchtype=author&query=Akar%2C+S">S. Akar</a>, <a href="/search/physics?searchtype=author&query=Albrecht%2C+J">J. Albrecht</a>, <a href="/search/physics?searchtype=author&query=Alexander%2C+M">M. Alexander</a>, <a href="/search/physics?searchtype=author&query=Amato%2C+S">S. Amato</a>, <a href="/search/physics?searchtype=author&query=Amhis%2C+Y">Y. Amhis</a>, <a href="/search/physics?searchtype=author&query=Archilli%2C+F">F. Archilli</a>, <a href="/search/physics?searchtype=author&query=Bala%2C+M">M. Bala</a>, <a href="/search/physics?searchtype=author&query=Bassi%2C+G">G. Bassi</a>, <a href="/search/physics?searchtype=author&query=Bian%2C+L">L. Bian</a>, <a href="/search/physics?searchtype=author&query=Blago%2C+M+P">M. P. Blago</a>, <a href="/search/physics?searchtype=author&query=Boettcher%2C+T">T. Boettcher</a>, <a href="/search/physics?searchtype=author&query=Boldyrev%2C+A">A. Boldyrev</a>, <a href="/search/physics?searchtype=author&query=Borghi%2C+S">S. Borghi</a>, <a href="/search/physics?searchtype=author&query=Rodriguez%2C+A+B">A. Brea Rodriguez</a>, <a href="/search/physics?searchtype=author&query=Calefice%2C+L">L. Calefice</a>, <a href="/search/physics?searchtype=author&query=Gomez%2C+M+C">M. Calvo Gomez</a>, <a href="/search/physics?searchtype=author&query=P%C3%A9rez%2C+D+H+C">D. H. C谩mpora P茅rez</a>, <a href="/search/physics?searchtype=author&query=Cardini%2C+A">A. Cardini</a>, <a href="/search/physics?searchtype=author&query=Cattaneo%2C+M">M. Cattaneo</a>, <a href="/search/physics?searchtype=author&query=Chobanova%2C+V">V. Chobanova</a>, <a href="/search/physics?searchtype=author&query=Ciezarek%2C+G">G. Ciezarek</a>, <a href="/search/physics?searchtype=author&query=Vidal%2C+X+C">X. Cid Vidal</a> , et al. (135 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.04031v2-abstract-short" style="display: inline;"> The LHCb experiment at CERN is undergoing an upgrade in preparation for the Run 3 data taking period of the LHC. As part of this upgrade the trigger is moving to a fully software implementation operating at the LHC bunch crossing rate. We present an evaluation of a CPU-based and a GPU-based implementation of the first stage of the High Level Trigger. After a detailed comparison both options are fo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.04031v2-abstract-full').style.display = 'inline'; document.getElementById('2105.04031v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.04031v2-abstract-full" style="display: none;"> The LHCb experiment at CERN is undergoing an upgrade in preparation for the Run 3 data taking period of the LHC. As part of this upgrade the trigger is moving to a fully software implementation operating at the LHC bunch crossing rate. We present an evaluation of a CPU-based and a GPU-based implementation of the first stage of the High Level Trigger. After a detailed comparison both options are found to be viable. This document summarizes the performance and implementation details of these options, the outcome of which has led to the choice of the GPU-based implementation as the baseline. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.04031v2-abstract-full').style.display = 'none'; document.getElementById('2105.04031v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 15 figures, 8 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LHCb-DP-2021-003 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Computing Software for Big Science 6, Article number: 1 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.03329">arXiv:2105.03329</a> <span> [<a href="https://arxiv.org/pdf/2105.03329">pdf</a>, <a href="https://arxiv.org/format/2105.03329">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2021.136642">10.1016/j.physletb.2021.136642 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of $^{216}$Po half-life with the CUPID-0 experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&query=Beeman%2C+J+W">J. W. Beeman</a>, <a href="/search/physics?searchtype=author&query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&query=Caracciolo%2C+V">V. Caracciolo</a>, <a href="/search/physics?searchtype=author&query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&query=Chiesa%2C+D">D. Chiesa</a>, <a href="/search/physics?searchtype=author&query=Clemenza%2C+M">M. Clemenza</a>, <a href="/search/physics?searchtype=author&query=Colantoni%2C+I">I. Colantoni</a>, <a href="/search/physics?searchtype=author&query=Cremonesi%2C+O">O. Cremonesi</a>, <a href="/search/physics?searchtype=author&query=Cruciani%2C+A">A. Cruciani</a>, <a href="/search/physics?searchtype=author&query=Dafinei%2C+I">I. Dafinei</a>, <a href="/search/physics?searchtype=author&query=D%27Addabbo%2C+A">A. D'Addabbo</a>, <a href="/search/physics?searchtype=author&query=Di+Domizio%2C+S">S. Di Domizio</a>, <a href="/search/physics?searchtype=author&query=Ferroni%2C+F">F. Ferroni</a>, <a href="/search/physics?searchtype=author&query=Gironi%2C+L">L. Gironi</a>, <a href="/search/physics?searchtype=author&query=Giuliani%2C+A">A. Giuliani</a>, <a href="/search/physics?searchtype=author&query=Gorla%2C+P">P. Gorla</a>, <a href="/search/physics?searchtype=author&query=Gotti%2C+C">C. Gotti</a> , et al. (22 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.03329v2-abstract-short" style="display: inline;"> Rare event physics demands very detailed background control, high-performance detectors, and custom analysis strategies. Cryogenic calorimeters combine all these ingredients very effectively, representing a promising tool for next-generation experiments. CUPID-0 is one of the most advanced examples of such a technique, having demonstrated its potential with several results obtained with limited ex… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.03329v2-abstract-full').style.display = 'inline'; document.getElementById('2105.03329v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.03329v2-abstract-full" style="display: none;"> Rare event physics demands very detailed background control, high-performance detectors, and custom analysis strategies. Cryogenic calorimeters combine all these ingredients very effectively, representing a promising tool for next-generation experiments. CUPID-0 is one of the most advanced examples of such a technique, having demonstrated its potential with several results obtained with limited exposure. In this paper, we present a further application. Exploiting the analysis of delayed coincidence, we can identify the signals caused by the $^{220}$Rn-$^{216}$Po decay sequence on an event-by-event basis. The analysis of these events allows us to extract the time differences between the two decays, leading to a new evaluation of $^{216}$ half-life, estimated as (143.3 $\pm$ 2.8) ms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.03329v2-abstract-full').style.display = 'none'; document.getElementById('2105.03329v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.06850">arXiv:2104.06850</a> <span> [<a href="https://arxiv.org/pdf/2104.06850">pdf</a>, <a href="https://arxiv.org/format/2104.06850">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-021-09454-5">10.1140/epjc/s10052-021-09454-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Final results of CALDER: Kinetic inductance light detectors to search for rare events </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Cardani%2C+L">Laura Cardani</a>, <a href="/search/physics?searchtype=author&query=Casali%2C+N">Nicola Casali</a>, <a href="/search/physics?searchtype=author&query=Colantoni%2C+I">Ivan Colantoni</a>, <a href="/search/physics?searchtype=author&query=Cruciani%2C+A">Angelo Cruciani</a>, <a href="/search/physics?searchtype=author&query=Di+Domizio%2C+S">Sergio Di Domizio</a>, <a href="/search/physics?searchtype=author&query=Martinez%2C+M">Maria Martinez</a>, <a href="/search/physics?searchtype=author&query=Pettinacci%2C+V">Valerio Pettinacci</a>, <a href="/search/physics?searchtype=author&query=Pettinari%2C+G">Giorgio Pettinari</a>, <a href="/search/physics?searchtype=author&query=Vignati%2C+M">Marco Vignati</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.06850v1-abstract-short" style="display: inline;"> The next generation of bolometric experiments searching for rave events, in particular for the neutrino-less double beta decay, needs fast, high-sensitivity and easy-to-scale cryogenic light detectors. The CALDER project (2014-2020) developed a new technology for light detection at cryogenic temperature. In this paper we describe the achievements and the final prototype of this project, consisting… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.06850v1-abstract-full').style.display = 'inline'; document.getElementById('2104.06850v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.06850v1-abstract-full" style="display: none;"> The next generation of bolometric experiments searching for rave events, in particular for the neutrino-less double beta decay, needs fast, high-sensitivity and easy-to-scale cryogenic light detectors. The CALDER project (2014-2020) developed a new technology for light detection at cryogenic temperature. In this paper we describe the achievements and the final prototype of this project, consisting of a $5\times5$ cm$^2$, 650 $渭$m thick silicon substrate coupled to a single kinetic inductance detector made of a three-layer aluminum-titanium-aluminum. The baseline energy resolution is 34$\pm$1(stat)$\pm$2(syst) eV RMS and the response time is 120 $渭$s. These features, along with the natural multiplexing capability of kinetic inductance detectors, meet the requirements of future large-scale experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.06850v1-abstract-full').style.display = 'none'; document.getElementById('2104.06850v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.07181">arXiv:2103.07181</a> <span> [<a href="https://arxiv.org/pdf/2103.07181">pdf</a>, <a href="https://arxiv.org/format/2103.07181">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0050124">10.1063/5.0050124 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phonon-mediated crystal detectors with metallic film coating capable of rejecting $伪$ and $尾$ events induced by surface radioactivity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Bandac%2C+I+C">I. C. Bandac</a>, <a href="/search/physics?searchtype=author&query=Barabash%2C+A+S">A. S. Barabash</a>, <a href="/search/physics?searchtype=author&query=Berg%C3%A9%2C+L">L. Berg茅</a>, <a href="/search/physics?searchtype=author&query=Bourgeois%2C+C">Ch. Bourgeois</a>, <a href="/search/physics?searchtype=author&query=Calvo-Mozota%2C+J+M">J. M. Calvo-Mozota</a>, <a href="/search/physics?searchtype=author&query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&query=Chapellier%2C+M">M. Chapellier</a>, <a href="/search/physics?searchtype=author&query=de+Combarieu%2C+M">M. de Combarieu</a>, <a href="/search/physics?searchtype=author&query=Dafinei%2C+I">I. Dafinei</a>, <a href="/search/physics?searchtype=author&query=Danevich%2C+F+A">F. A. Danevich</a>, <a href="/search/physics?searchtype=author&query=Dumoulin%2C+L">L. Dumoulin</a>, <a href="/search/physics?searchtype=author&query=Ferri%2C+F">F. Ferri</a>, <a href="/search/physics?searchtype=author&query=Giuliani%2C+A">A. Giuliani</a>, <a href="/search/physics?searchtype=author&query=Gotti%2C+C">C. Gotti</a>, <a href="/search/physics?searchtype=author&query=Gras%2C+P">Ph. Gras</a>, <a href="/search/physics?searchtype=author&query=Guerard%2C+E">E. Guerard</a>, <a href="/search/physics?searchtype=author&query=Ianni%2C+A">A. Ianni</a>, <a href="/search/physics?searchtype=author&query=Khalife%2C+H">H. Khalife</a>, <a href="/search/physics?searchtype=author&query=Konovalov%2C+S+I">S. I. Konovalov</a>, <a href="/search/physics?searchtype=author&query=Loaiza%2C+P">P. Loaiza</a>, <a href="/search/physics?searchtype=author&query=Madhukuttan%2C+M">M. Madhukuttan</a>, <a href="/search/physics?searchtype=author&query=de+Marcillac%2C+P">P. de Marcillac</a>, <a href="/search/physics?searchtype=author&query=Mariam%2C+R">R. Mariam</a>, <a href="/search/physics?searchtype=author&query=Marnieros%2C+S">S. Marnieros</a>, <a href="/search/physics?searchtype=author&query=Marrache-Kikuchi%2C+C+A">C. A. Marrache-Kikuchi</a> , et al. (11 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.07181v3-abstract-short" style="display: inline;"> Phonon-mediated particle detectors based on single crystals and operated at millikelvin temperatures are used in rare-event experiments for neutrino physics and dark-matter searches. In general, these devices are not sensitive to the particle impact point, especially if the detection is mediated by thermal phonons. In this Letter, we demonstrate that excellent discrimination between interior and s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.07181v3-abstract-full').style.display = 'inline'; document.getElementById('2103.07181v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.07181v3-abstract-full" style="display: none;"> Phonon-mediated particle detectors based on single crystals and operated at millikelvin temperatures are used in rare-event experiments for neutrino physics and dark-matter searches. In general, these devices are not sensitive to the particle impact point, especially if the detection is mediated by thermal phonons. In this Letter, we demonstrate that excellent discrimination between interior and surface $尾$ and $伪$ events can be achieved by coating a crystal face with a thin metallic film, either continuous or in the form of a grid. The coating affects the phonon energy down-conversion cascade that follows the particle interaction, leading to a modified signal shape for close-to-film events. An efficient identification of surface events was demonstrated with detectors based on a rectangular $20 \times 20 \times 10$ mm$^3$ Li$_2$MoO$_4$ crystal coated with a Pd normal-metal film (10~nm thick) and with Al-Pd superconductive bi-layers (100~nm-10~nm thick) on a $20 \times 20$ mm$^2$ face. Discrimination capabilities were tested with $^{238}$U sources emitting both $伪$ and $尾$ particles. Surface events are identified for energy depositions down to millimeter-scale depths from the coated surface. With this technology, a substantial improvement of the background figure can be achieved in experiments searching for neutrinoless double-beta decay. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.07181v3-abstract-full').style.display = 'none'; document.getElementById('2103.07181v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 118 (2021) 184105 </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Mart%C3%ADnez%2C+M&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Mart%C3%ADnez%2C+M&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Mart%C3%ADnez%2C+M&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Mart%C3%ADnez%2C+M&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Mart%C3%ADnez%2C+M&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>