CINXE.COM

Russell Davidson | McGill University - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Russell Davidson | McGill University - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="yaRMNIWXgYOdE8K5okoqjsf8gtGkk9pSyKXuNka2UfyASyVd_aKXlifP-FmUWjZXf3U4tXI1RwGsBxm7NuYWag" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-3d36c19b4875b226bfed0fcba1dcea3f2fe61148383d97c0465c016b8c969290.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-79e78ce59bef0a338eb6540ec3d93b4a7952115b56c57f1760943128f4544d42.css" /><script type="application/ld+json">{"@context":"https://schema.org","@type":"ProfilePage","mainEntity":{"@context":"https://schema.org","@type":"Person","name":"Russell Davidson","url":"https://mcgill.academia.edu/RussellDavidson"},"dateCreated":"2015-08-10T07:28:19-07:00","dateModified":"2024-08-13T12:04:59-07:00"}</script><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-95367dc03b794f6737f30123738a886cf53b7a65cdef98a922a98591d60063e3.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-8c9ae4b5c8a2531640c354d92a1f3579c8ff103277ef74913e34c8a76d4e6c00.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-170d1319f0e354621e81ca17054bb147da2856ec0702fe440a99af314a6338c5.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-2b6f90dbd75f5941bc38f4ad716615f3ac449e7398313bb3bc225fba451cd9fa.css" /> <meta name="author" content="russell davidson" /> <meta name="description" content="I came to McGill in August 2002, having been for many years at Queen&#39;s University in Kingston Ontario. Since 1987, I have regularly divided my time between my…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '1e60a92a442ff83025cbe4f252857ee7c49c0bbe'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":14008,"monthly_visitors":"108 million","monthly_visitor_count":108476212,"monthly_visitor_count_in_millions":108,"user_count":283764967,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1740570766000); window.Aedu.timeDifference = new Date().getTime() - 1740570766000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link rel="preload" href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" as="style" onload="this.rel='stylesheet'"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-1eb081e01ca8bc0c1b1d866df79d9eb4dd2c484e4beecf76e79a7806c72fee08.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-63c3b84e278fb86e50772ccc2ac0281a0f74ac7e2f88741ecad58131583d4c47.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-85b27a68dc793256271cea8ce6f178025923f9e7e3c7450780e59eacecf59a75.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://mcgill.academia.edu/RussellDavidson" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-4a9f418052ec7a403e004849742322653b010f552f60e892779ac5b03c4cc162.js" defer="defer"></script><script>$viewedUser = Aedu.User.set_viewed( {"id":33782563,"first_name":"Russell","middle_initials":null,"last_name":"Davidson","page_name":"RussellDavidson","domain_name":"mcgill","created_at":"2015-08-10T07:28:19.700-07:00","display_name":"Russell Davidson","url":"https://mcgill.academia.edu/RussellDavidson","photo":"https://0.academia-photos.com/33782563/46191570/35772552/s65_russell.davidson.jpeg","has_photo":true,"department":{"id":6244,"name":"Economics","url":"https://mcgill.academia.edu/Departments/Economics/Documents","university":{"id":626,"name":"McGill University","url":"https://mcgill.academia.edu/"}},"position":"Faculty Member","position_id":1,"is_analytics_public":false,"interests":[{"id":53867,"name":"Latin linguistics","url":"https://www.academia.edu/Documents/in/Latin_linguistics"},{"id":76715,"name":"General linguistics","url":"https://www.academia.edu/Documents/in/General_linguistics"},{"id":29859,"name":"Romance Linguistics","url":"https://www.academia.edu/Documents/in/Romance_Linguistics"},{"id":16931,"name":"Classical philology","url":"https://www.academia.edu/Documents/in/Classical_philology"},{"id":6671,"name":"Syntax","url":"https://www.academia.edu/Documents/in/Syntax"},{"id":724,"name":"Economics","url":"https://www.academia.edu/Documents/in/Economics"},{"id":15045,"name":"Bootstrap Econometrics","url":"https://www.academia.edu/Documents/in/Bootstrap_Econometrics"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://mcgill.academia.edu/RussellDavidson&quot;,&quot;location&quot;:&quot;/RussellDavidson&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;mcgill.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/RussellDavidson&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-47baa3ad-8754-4078-a762-c1e38c1cda2d"></div> <div id="ProfileCheckPaperUpdate-react-component-47baa3ad-8754-4078-a762-c1e38c1cda2d"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="Russell Davidson" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/33782563/46191570/35772552/s200_russell.davidson.jpeg" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Russell Davidson</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://mcgill.academia.edu/">McGill University</a>, <a class="u-tcGrayDarker" href="https://mcgill.academia.edu/Departments/Economics/Documents">Economics</a>, <span class="u-tcGrayDarker">Faculty Member</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Russell" data-follow-user-id="33782563" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="33782563"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">54</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">18</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">10</p></div></a><div class="js-mentions-count-container" style="display: none;"><a href="/RussellDavidson/mentions"><div class="stat-container"><p class="label">Mentions</p><p class="data"></p></div></a></div><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="user-bio-container"><div class="profile-bio fake-truncate js-profile-about" style="margin: 0px;">I came to McGill in August 2002, having been for many years at Queen&#39;s University in Kingston Ontario. Since 1987, I have regularly divided my time between my job at McGill and GREQAM, a research lab in Marseille, France, associated with the Aix-Marseille School of Economics. My main research interests lie in the field of econometrics. I have worked for several years now on problems related to the bootstrap, in an attempt to improve the reliability and ease of implementation of this important statistical tool. I have also worked on problems of poverty and income distribution, especially as regards statistical inference about stochastic dominance.<br /><div class="js-profile-less-about u-linkUnstyled u-tcGrayDarker u-textDecorationUnderline u-displayNone">less</div></div></div><div class="suggested-academics-container"><div class="suggested-academics--header"><p class="ds2-5-body-md-bold">Related Authors</p></div><ul class="suggested-user-card-list"><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://stanford.academia.edu/RichardMartin"><img class="profile-avatar u-positionAbsolute" alt="Richard P Martin" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/53717/16088/115195372/s200_richard.martin.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://stanford.academia.edu/RichardMartin">Richard P Martin</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Stanford University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://univie.academia.edu/HannesAFellner"><img class="profile-avatar u-positionAbsolute" alt="Hannes A . Fellner" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/63432/17857/101017571/s200_hannes_a..fellner.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://univie.academia.edu/HannesAFellner">Hannes A . Fellner</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Vienna</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://ub.academia.edu/AlbertBastardas"><img class="profile-avatar u-positionAbsolute" alt="Albert Bastardas-Boada" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/66620/18727/17402/s200_albert.bastardas-boada.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://ub.academia.edu/AlbertBastardas">Albert Bastardas-Boada</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Universitat de Barcelona</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://nd.academia.edu/LawrenceMarsh"><img class="profile-avatar u-positionAbsolute" alt="Lawrence Marsh" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/69664/19509/18115/s200_lawrence.marsh.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://nd.academia.edu/LawrenceMarsh">Lawrence Marsh</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Notre Dame</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://ucla.academia.edu/DavidGoldstein"><img class="profile-avatar u-positionAbsolute" alt="David Goldstein" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/122781/101043/119743/s200_david.goldstein.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://ucla.academia.edu/DavidGoldstein">David Goldstein</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of California, Los Angeles</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://chavez-ucla.academia.edu/GiuliaSissa"><img class="profile-avatar u-positionAbsolute" alt="Giulia Sissa" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/137239/36417/316832/s200_giulia.sissa.jpeg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://chavez-ucla.academia.edu/GiuliaSissa">Giulia Sissa</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Ucla</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://huji.academia.edu/EitanGrossman"><img class="profile-avatar u-positionAbsolute" alt="Eitan Grossman" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/165093/41884/64625709/s200_eitan.grossman.jpeg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://huji.academia.edu/EitanGrossman">Eitan Grossman</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">The Hebrew University of Jerusalem</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://eva-mpg.academia.edu/MartinHaspelmath"><img class="profile-avatar u-positionAbsolute" alt="Martin Haspelmath" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/187373/89901/92584166/s200_martin.haspelmath.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://eva-mpg.academia.edu/MartinHaspelmath">Martin Haspelmath</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Max Planck Institute for Evolutionary Anthropology</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://uoa.academia.edu/IoannisKonstantakos"><img class="profile-avatar u-positionAbsolute" alt="Ioannis Konstantakos" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/305270/61504/1133178/s200_ioannis.konstantakos.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://uoa.academia.edu/IoannisKonstantakos">Ioannis Konstantakos</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">National &amp; Kapodistrian University of Athens</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://utexas.academia.edu/HarryCleaver"><img class="profile-avatar u-positionAbsolute" alt="Harry Cleaver" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/315661/2699812/3142937/s200_harry.cleaver.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://utexas.academia.edu/HarryCleaver">Harry Cleaver</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">The University of Texas at Austin</p></div></div></ul></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span><a class="ri-more-link js-profile-ri-list-card" data-click-track="profile-user-info-primary-research-interest" data-has-card-for-ri-list="33782563">View All (7)</a></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="33782563" href="https://www.academia.edu/Documents/in/Latin_linguistics"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://mcgill.academia.edu/RussellDavidson&quot;,&quot;location&quot;:&quot;/RussellDavidson&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;mcgill.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/RussellDavidson&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Latin linguistics&quot;]}" data-trace="false" data-dom-id="Pill-react-component-ccd5f039-0809-4d77-81e1-a4b770ec57ca"></div> <div id="Pill-react-component-ccd5f039-0809-4d77-81e1-a4b770ec57ca"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="33782563" href="https://www.academia.edu/Documents/in/General_linguistics"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;General linguistics&quot;]}" data-trace="false" data-dom-id="Pill-react-component-506f2b75-8ebb-4a28-a53c-ba72e3e2e4f6"></div> <div id="Pill-react-component-506f2b75-8ebb-4a28-a53c-ba72e3e2e4f6"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="33782563" href="https://www.academia.edu/Documents/in/Romance_Linguistics"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Romance Linguistics&quot;]}" data-trace="false" data-dom-id="Pill-react-component-c725118e-1774-4e48-8c09-fe0677a87735"></div> <div id="Pill-react-component-c725118e-1774-4e48-8c09-fe0677a87735"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="33782563" href="https://www.academia.edu/Documents/in/Classical_philology"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Classical philology&quot;]}" data-trace="false" data-dom-id="Pill-react-component-2a41e913-4f35-4304-8885-fcc8419a1635"></div> <div id="Pill-react-component-2a41e913-4f35-4304-8885-fcc8419a1635"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="33782563" href="https://www.academia.edu/Documents/in/Syntax"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Syntax&quot;]}" data-trace="false" data-dom-id="Pill-react-component-bb0cb2bd-2a71-46a6-a641-aa3a75f668a7"></div> <div id="Pill-react-component-bb0cb2bd-2a71-46a6-a641-aa3a75f668a7"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Russell Davidson</h3></div><div class="js-work-strip profile--work_container" data-work-id="125630183"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125630183/Essays_in_comparative_dynamics"><img alt="Research paper thumbnail of Essays in comparative dynamics" class="work-thumbnail" src="https://attachments.academia-assets.com/119637608/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125630183/Essays_in_comparative_dynamics">Essays in comparative dynamics</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In the second section of the essay, it is assumed that some externality arises which adversely af...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In the second section of the essay, it is assumed that some externality arises which adversely affects urban life and which provokes people to move out to suburbs. The consequences of this are studied and two different kinds of dynamical evolution can be distinguished. One, in which house construction in the suburbs is slow enough to make it necessary for new construction to continue in the city, tends not to be disastrous for the city; the other, in which all urban construction stops when the externality arises, usually leads to complete decay of the city. Throughout the thesis there is an emphasis on the differences in approach between static or quasistatic problems and dynamic ones.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="804215c2bceb4c440fe36d065c940e69" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:119637608,&quot;asset_id&quot;:125630183,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/119637608/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125630183"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125630183"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125630183; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125630183]").text(description); $(".js-view-count[data-work-id=125630183]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125630183; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125630183']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "804215c2bceb4c440fe36d065c940e69" } } $('.js-work-strip[data-work-id=125630183]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125630183,"title":"Essays in comparative dynamics","internal_url":"https://www.academia.edu/125630183/Essays_in_comparative_dynamics","owner_id":33782563,"coauthors_can_edit":true,"owner":{"id":33782563,"first_name":"Russell","middle_initials":null,"last_name":"Davidson","page_name":"RussellDavidson","domain_name":"mcgill","created_at":"2015-08-10T07:28:19.700-07:00","display_name":"Russell Davidson","url":"https://mcgill.academia.edu/RussellDavidson"},"attachments":[{"id":119637608,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119637608/thumbnails/1.jpg","file_name":"2.pdf","download_url":"https://www.academia.edu/attachments/119637608/download_file","bulk_download_file_name":"Essays_in_comparative_dynamics.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119637608/2-libre.pdf?1731868346=\u0026response-content-disposition=attachment%3B+filename%3DEssays_in_comparative_dynamics.pdf\u0026Expires=1740564784\u0026Signature=Aeq5Qq7Rc-om1x7GE3poSufT5nph5wEgB-gd3B2SgYSvJmG0PSxmbu1p-9fHiTnnEXmCitV~sqhQ1HoOaLfsMT0an97pH7Zlr~Zwo0YtVQI6PrxMQ0tqritNIe0QF-0nGXkiWXxpkKcMoUW0b1Gnwl8CL3064KpfIQVJrRirnI4mGjWRDZtKkbDWhZwcTAA-UC65OopJEs61jGHawD8bMMj4h59bNoPdsVgqaYnuTRZA1gwitGdpLYUPcuYRo0nGp-GiOUrvZeQmEwTwYFHfQznLlJoKu5i3oISs-gXaCogiWuGIZ7xNoC0sjnUKnveAPD~7LyhdrMuFGSM5h-GbKg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125630182"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125630182/Asymptotic_and_bootstrap_inference_for_inequality_and_poverty_measures"><img alt="Research paper thumbnail of Asymptotic and bootstrap inference for inequality and poverty measures" class="work-thumbnail" src="https://attachments.academia-assets.com/119637607/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125630182/Asymptotic_and_bootstrap_inference_for_inequality_and_poverty_measures">Asymptotic and bootstrap inference for inequality and poverty measures</a></div><div class="wp-workCard_item"><span>Journal of Econometrics</span><span>, Nov 1, 2007</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A random sample drawn from a population would appear to offer an ideal opportunity to use the boo...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A random sample drawn from a population would appear to offer an ideal opportunity to use the bootstrap in order to perform accurate inference, since the observations of the sample are IID. In this paper, Monte Carlo results suggest that bootstrapping a commonly used index of inequality leads to inference that is not accurate even in very large samples, although inference with poverty indices is satisfactory. We find that the major cause is the extreme sensitivity of many inequality indices to the exact nature of the upper tail of the income distribution. This leads us to study two non-standard bootstraps, the m out of n bootstrap, which is valid in some situations where the standard bootstrap fails, and a bootstrap in which the upper tail is modelled parametrically. Monte Carlo results suggest that accurate inference can be achieved with this last method in moderately large samples.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e939241d493b5771a22877e710f328f5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:119637607,&quot;asset_id&quot;:125630182,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/119637607/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125630182"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125630182"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125630182; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125630182]").text(description); $(".js-view-count[data-work-id=125630182]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125630182; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125630182']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e939241d493b5771a22877e710f328f5" } } $('.js-work-strip[data-work-id=125630182]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125630182,"title":"Asymptotic and bootstrap inference for inequality and poverty measures","internal_url":"https://www.academia.edu/125630182/Asymptotic_and_bootstrap_inference_for_inequality_and_poverty_measures","owner_id":33782563,"coauthors_can_edit":true,"owner":{"id":33782563,"first_name":"Russell","middle_initials":null,"last_name":"Davidson","page_name":"RussellDavidson","domain_name":"mcgill","created_at":"2015-08-10T07:28:19.700-07:00","display_name":"Russell Davidson","url":"https://mcgill.academia.edu/RussellDavidson","email":"WjVEZUhScWJhRDA0OVhPd3JHMm5WcjdDV3pKSXlXQmppYzBIZ1pKZURWQjhZUzk1RHo5aGlPY3NjNDY4bEpVRy0tSlIvcjZLSHpCQUlWM2dPM2VRQVh4Zz09--adcac82df7f982d8fdf5dda6d5e2bba22d987d53"},"attachments":[{"id":119637607,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119637607/thumbnails/1.jpg","file_name":"Davidson_Flachaire_04.pdf","download_url":"https://www.academia.edu/attachments/119637607/download_file","bulk_download_file_name":"Asymptotic_and_bootstrap_inference_for_i.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119637607/Davidson_Flachaire_04-libre.pdf?1731868106=\u0026response-content-disposition=attachment%3B+filename%3DAsymptotic_and_bootstrap_inference_for_i.pdf\u0026Expires=1740520485\u0026Signature=BSjRr23CrwErMGY33GB42twNbYg1v1Nt7PYrOwLg5hlickfyXMme07T1LJVLVn--l3Xmt~CElxnjxfGMv3FVeKIzI~QMOtQTzsFCQmXQKDSNTNm3Y1c3r1W-~WUaPqCRQwSZAJhrQMC0LRKqomh91HbKYmRrgjz958Oaekw71~F0iI~8h789B2-r4oy4pZUS20zVcTO7kZCs4T6nNIkECAte8jSX69enTwqlgW6qY914AsiGoSPqSyXP~pUExHl7Wv8zbKbi4zxlOBOwAFqJYZLKGqnM45VNGZgcBOvYofyj6GTomo~1Jbcu2kY35YerSCUyCpbL39Gl~4uuM3ks3A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119637606,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119637606/thumbnails/1.jpg","file_name":"Davidson_Flachaire_04.pdf","download_url":"https://www.academia.edu/attachments/119637606/download_file","bulk_download_file_name":"Asymptotic_and_bootstrap_inference_for_i.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119637606/Davidson_Flachaire_04-libre.pdf?1731868100=\u0026response-content-disposition=attachment%3B+filename%3DAsymptotic_and_bootstrap_inference_for_i.pdf\u0026Expires=1740520485\u0026Signature=TpqwfI2l7md-TdBNpH2v8UxByqA0EGchM7pxbL8WJs8XiL6sMB-xWvodqrMQJU2XW4laoB9RsHhkPpggTdxtLFOOf63rzjqEXc89Llbji~XR4co3hdvuxTz9hHM8YoCjJZbQqCbkPgU0vp33zMxzOV~YrDKUcRloTGUO4AkrlWp9HPW5LtyPBwFXa563Ook8s8wTltOsOz03Nqov8EVFb5Q~HKsHInVxmOOILSHQT5gi65t2FEr~esx-frBUoBJWMtKUCLGvfd9oBy0dL9THF~PKYCErrncixRK529wddcGmspEbTRxf0EUuVe1QWm2Wh8vHqi1UMGfGXJh7uarnvg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125630180"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125630180/A_Parametric_Bootstrap_for_Heavy_Tailed_Distributions"><img alt="Research paper thumbnail of A Parametric Bootstrap for Heavy-Tailed Distributions" class="work-thumbnail" src="https://attachments.academia-assets.com/119637605/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125630180/A_Parametric_Bootstrap_for_Heavy_Tailed_Distributions">A Parametric Bootstrap for Heavy-Tailed Distributions</a></div><div class="wp-workCard_item"><span>Econometric Theory</span><span>, Sep 8, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">It is known that Efron&#39;s resampling bootstrap of the mean of random variables with common distrib...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">It is known that Efron&#39;s resampling bootstrap of the mean of random variables with common distribution in the domain of attraction of the stable laws with infinite variance is not consistent, in the sense that the limiting distribution of the bootstrap mean is not the same as the limiting distribution of the mean from the real sample. Moreover, the limiting distribution of the bootstrap mean is random and unknown. The conventional remedy for this problem, at least asymptotically, is either the m out of n bootstrap or subsampling. However, we show that both these procedures can be quite unreliable in other than very large samples. A parametric bootstrap is derived by considering the distribution of the bootstrap P value instead of that of the bootstrap statistic. The quality of inference based on the parametric bootstrap is examined in a simulation study, and is found to be satisfactory with heavy-tailed distributions unless the tail index is close to 1 and the distribution is heavily skewed.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="634578f32bbdaa6319946f83eb99550f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:119637605,&quot;asset_id&quot;:125630180,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/119637605/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125630180"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125630180"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125630180; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125630180]").text(description); $(".js-view-count[data-work-id=125630180]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125630180; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125630180']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "634578f32bbdaa6319946f83eb99550f" } } $('.js-work-strip[data-work-id=125630180]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125630180,"title":"A Parametric Bootstrap for Heavy-Tailed Distributions","internal_url":"https://www.academia.edu/125630180/A_Parametric_Bootstrap_for_Heavy_Tailed_Distributions","owner_id":33782563,"coauthors_can_edit":true,"owner":{"id":33782563,"first_name":"Russell","middle_initials":null,"last_name":"Davidson","page_name":"RussellDavidson","domain_name":"mcgill","created_at":"2015-08-10T07:28:19.700-07:00","display_name":"Russell Davidson","url":"https://mcgill.academia.edu/RussellDavidson","email":"ZWlJUzFTS2VKdExaOGRRNkhDRVpkSnhjNU5SSHlPajYzV0YxZEMzcG0xNGNNVE5JNGJpN016NjRxSDcvUTN4YS0tNStncHFmN2dNMjd6aGU5TFF2UWl0Zz09--b2db66135422499743e3720092aa6db1dd7dad3f"},"attachments":[{"id":119637605,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119637605/thumbnails/1.jpg","file_name":"DT2009-41.pdf","download_url":"https://www.academia.edu/attachments/119637605/download_file","bulk_download_file_name":"A_Parametric_Bootstrap_for_Heavy_Tailed.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119637605/DT2009-41-libre.pdf?1731868099=\u0026response-content-disposition=attachment%3B+filename%3DA_Parametric_Bootstrap_for_Heavy_Tailed.pdf\u0026Expires=1740520485\u0026Signature=Qg-7Y7xqX-yLLxa58qgFypoZct7KklpsJ2eReICgwleecx2NKPI0pSEizY3-1gMXC81FsVLj17L1VE9VKI4uC3gth5rUAGodOY5TieJz8yaIkAwQDjT1~PW7E2AjglDB0QGumi7o4Yl1EFsq5iV~qcHmp85XIV~ewyObELulcUiYnZ0ZBFhh3qg6YDaiBZZBxUZYMTpG3UMKWhPtaUnVnnoS0Fql1oUx0k62S9m0RdzhEuACE2pJq~a9qsIkEYlPy2lXgkTCHipAULXSDuPW8cICF1I3rAfE1tYl1cRufUBrhujFRGcQBxcC1cHHTzqoLEG2JmjA-ItIsv4n~OrfZA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119637604,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119637604/thumbnails/1.jpg","file_name":"DT2009-41.pdf","download_url":"https://www.academia.edu/attachments/119637604/download_file","bulk_download_file_name":"A_Parametric_Bootstrap_for_Heavy_Tailed.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119637604/DT2009-41-libre.pdf?1731868102=\u0026response-content-disposition=attachment%3B+filename%3DA_Parametric_Bootstrap_for_Heavy_Tailed.pdf\u0026Expires=1740520485\u0026Signature=JCDVxQY1Z5ay6GWtACWcumOuXvPhCE9YBYsgeB7nCSYpPGeA7vF37HqrIzXAQDVVGfcjIMZ9JFz5LVtVTIqZBy40PRer3lk9ISNh5O1hvcKmcsuTDwi0Nc6IZb1SDuRdpl0j7ZeipTGYLSHS32euOR2PTIBpvgJJR69zh-wSTmu~a5VAC9u9-tcZMHde0lx0jeKKdEfVt9NU0h1kx~jbaE6WGYOI8g8O6Wco9g57kHVZpekpFi0Y2jjxXTCJBi3pAHdeZqJ3Pmu8hQQdeipEriGCG~~NSM0Z4ulH1XR9opypEJ~S0FetzH76PuXqs24gh4-DslrvAiyrVaaDESYN8w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125630168"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125630168/Testing_for_Restricted_Stochastic_Dominance"><img alt="Research paper thumbnail of Testing for Restricted Stochastic Dominance" class="work-thumbnail" src="https://attachments.academia-assets.com/119637597/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125630168/Testing_for_Restricted_Stochastic_Dominance">Testing for Restricted Stochastic Dominance</a></div><div class="wp-workCard_item"><span>Social Science Research Network</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Asymptotic and bootstrap tests are studied for testing whether there is a relation of stochastic ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Asymptotic and bootstrap tests are studied for testing whether there is a relation of stochastic dominance between two distributions. These tests have a null hypothesis of nondominance, with the advantage that, if this null is rejected, then all that is left is dominance. This also leads us to define and focus on restricted stochastic dominance, the only empirically useful form of dominance relation that we can seek to infer in many settings. One testing procedure that we consider is based on an empirical likelihood ratio. The computations necessary for obtaining a test statistic also provide estimates of the distributions under study that satisfy the null hypothesis, on the frontier between dominance and nondominance. These estimates can be used to perform dominance tests that can turn out to provide much improved reliability of inference compared with the asymptotic tests so far proposed in the literature.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="44d550cfa820e23729eacc04d7e7807b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:119637597,&quot;asset_id&quot;:125630168,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/119637597/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125630168"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125630168"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125630168; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125630168]").text(description); $(".js-view-count[data-work-id=125630168]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125630168; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125630168']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "44d550cfa820e23729eacc04d7e7807b" } } $('.js-work-strip[data-work-id=125630168]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125630168,"title":"Testing for Restricted Stochastic Dominance","internal_url":"https://www.academia.edu/125630168/Testing_for_Restricted_Stochastic_Dominance","owner_id":33782563,"coauthors_can_edit":true,"owner":{"id":33782563,"first_name":"Russell","middle_initials":null,"last_name":"Davidson","page_name":"RussellDavidson","domain_name":"mcgill","created_at":"2015-08-10T07:28:19.700-07:00","display_name":"Russell Davidson","url":"https://mcgill.academia.edu/RussellDavidson","email":"TGtDanMwS1FUTC9sb01TamEwdUxLK0Q2ODIzdVdpSElKcVJnOUNLZlBndFJLQnRFZjJPTFJQTmlkMDIvZzg5SC0tbStuc1RMYWlpQ1JpVlVHdEg0bkZiUT09--c1a0ee6bea578da4a69373806f63c68c5f2523e7"},"attachments":[{"id":119637597,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119637597/thumbnails/1.jpg","file_name":"DT2009-39.pdf","download_url":"https://www.academia.edu/attachments/119637597/download_file","bulk_download_file_name":"Testing_for_Restricted_Stochastic_Domina.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119637597/DT2009-39-libre.pdf?1731868095=\u0026response-content-disposition=attachment%3B+filename%3DTesting_for_Restricted_Stochastic_Domina.pdf\u0026Expires=1740520486\u0026Signature=IjkNnj1swWTRBoPad7yiHmG3qXQHtGWgb6Tno6OcI9ZTzZfSLdLmYJANdWIV9yZTeHnUD1IT6Qq0ctkkkp05dBBtJi0hJdSceA93T9pm6-~cSmXRiEL-bvVigKiFQ1av1AzfpMZTLzQzf8uRN3tJcWWLgnUh-ECIewz4iwypIr4e6an6tryNyLAqkWsmF3JH7d~8At0VaWzQVHtDZWqA1WZWGDlnGOAacx-AR-bxq0xXrNkNrjBapDs5ljMAaw1NtyWUN714qT6TMi4j3NT7U7VyyaHiKhuyUnW4cKtxF90Rx6vNmXf30zMPNaYhKGZnrOZisu5r4zeQ~Tz-k-W-cA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119637596,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119637596/thumbnails/1.jpg","file_name":"DT2009-39.pdf","download_url":"https://www.academia.edu/attachments/119637596/download_file","bulk_download_file_name":"Testing_for_Restricted_Stochastic_Domina.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119637596/DT2009-39-libre.pdf?1731868096=\u0026response-content-disposition=attachment%3B+filename%3DTesting_for_Restricted_Stochastic_Domina.pdf\u0026Expires=1740520486\u0026Signature=OvPT4HzWtPkRY5nNfdbcpa~SwI0apJbeRx7tNZi5fndNbIq3E~mEU1gNnmlIvM3M-keqXemhRk6Sowyv0jnK1y30Ye2lxslc37u4VLeM2TGyWpAYLLFx2JEbwhWFveJc9Hee0DwSBChs0GKpWtMLi2zHWzJ10b4u2PBfU282hfWYlNRBolJk65YnhwXxintRcqPpywb204JkGvGYbmBfPJzjVEKCSM4mnJXbWe~mWK3KzAh9JmC1jJLuKIbhGk54MbX-Vn0qJT7ySaQ701Obkkq0mx2QEPPL72NYQPsU9FiIlBcuMsyzOQGWLQNiQLC4qKPuCrJibLB5M1u3ViiDpw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="123020299"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/123020299/Testing_for_Restricted_Stochastic_Dominance"><img alt="Research paper thumbnail of Testing for Restricted Stochastic Dominance" class="work-thumbnail" src="https://attachments.academia-assets.com/117554062/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/123020299/Testing_for_Restricted_Stochastic_Dominance">Testing for Restricted Stochastic Dominance</a></div><div class="wp-workCard_item"><span>Social Science Research Network</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Asymptotic and bootstrap tests are studied for testing whether there is a relation of stochastic ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Asymptotic and bootstrap tests are studied for testing whether there is a relation of stochastic dominance between two distributions. These tests have a null hypothesis of nondominance, with the advantage that, if this null is rejected, then all that is left is dominance. This also leads us to define and focus on restricted stochastic dominance, the only empirically useful form of dominance relation that we can seek to infer in many settings. One testing procedure that we consider is based on an empirical likelihood ratio. The computations necessary for obtaining a test statistic also provide estimates of the distributions under study that satisfy the null hypothesis, on the frontier between dominance and nondominance. These estimates can be used to perform dominance tests that can turn out to provide much improved reliability of inference compared with the asymptotic tests so far proposed in the literature.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4f6883cdf8bc4c051ba6a8ae884b450a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:117554062,&quot;asset_id&quot;:123020299,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/117554062/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="123020299"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="123020299"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 123020299; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=123020299]").text(description); $(".js-view-count[data-work-id=123020299]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 123020299; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='123020299']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4f6883cdf8bc4c051ba6a8ae884b450a" } } $('.js-work-strip[data-work-id=123020299]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":123020299,"title":"Testing for Restricted Stochastic Dominance","internal_url":"https://www.academia.edu/123020299/Testing_for_Restricted_Stochastic_Dominance","owner_id":33782563,"coauthors_can_edit":true,"owner":{"id":33782563,"first_name":"Russell","middle_initials":null,"last_name":"Davidson","page_name":"RussellDavidson","domain_name":"mcgill","created_at":"2015-08-10T07:28:19.700-07:00","display_name":"Russell Davidson","url":"https://mcgill.academia.edu/RussellDavidson","email":"YnFCR0hpQitzSkNTMm9pMXJMeE5SeW50MHpCeUdNelhoV3dsVFdjWUFaQmR2cFprbEpwTzdHcisxVWZJamxWWC0tSkFJd1B4Ris1NEJsREZZQ0FzcWtKQT09--c0f342fc89493aec95677a74ded965400b804148"},"attachments":[{"id":117554062,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117554062/thumbnails/1.jpg","file_name":"n583xz81w.pdf","download_url":"https://www.academia.edu/attachments/117554062/download_file","bulk_download_file_name":"Testing_for_Restricted_Stochastic_Domina.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117554062/n583xz81w-libre.pdf?1724080137=\u0026response-content-disposition=attachment%3B+filename%3DTesting_for_Restricted_Stochastic_Domina.pdf\u0026Expires=1740520486\u0026Signature=BkZa6YnziNZRIgutJzOn67r-j~y3NA9MgMSU9UV0kLfVu62V8V075BrH2waOcfeUydAV0HDFZ7BFCfc2tLICniMFeJf52xDUq~BG3NnFWe21fQ98zUnYaBYxmCgQYmQ0-hVNKo-LWkYx-y9Z5-4iAqp~73GvBnk6i2Z96pt2tUyoFwWHFdAf3k6Xz2w~wfcumjEpPuxztx4ommoY7gwmYGSq5Nnc0QG8r3iqz9qYK24up15PCes05PlpbEEEJ-XNrv8q76ZgyS0ZskkzjvfF0u5MrIuoCWZrfgpq8WkUK8~UTw3NuJyjPgdCUmhutGQPzikId6fCPqiOSJDcRNhptQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":117554061,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117554061/thumbnails/1.jpg","file_name":"n583xz81w.pdf","download_url":"https://www.academia.edu/attachments/117554061/download_file","bulk_download_file_name":"Testing_for_Restricted_Stochastic_Domina.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117554061/n583xz81w-libre.pdf?1724080130=\u0026response-content-disposition=attachment%3B+filename%3DTesting_for_Restricted_Stochastic_Domina.pdf\u0026Expires=1740520486\u0026Signature=FoRbPek6u9PimPh71Hdf-5pwnkyUURQVFdWl6fLuabn7wP0e72M6OGCPZyR5XzmvlemLkmo7nAGsb2FEaCo2iyqbwp8Io2T0r1OYC~jQ3j5205h68zXMrkNyz-SUxS2NsmyK4eDnkxk57tzeeC5qdeGldkJGQlMLrv3ld-3sERPWC2JRdVBDreKhnSKWI8NyS8j-ie6kRleKdvPppbNnAosz-tWBNGhDcGgq4hTMVGvM171XNexqO1eHL0-Wkipjar4JdXLsk8VdgiyH~qPJEuuPwk6Rk9brF1921LvVmkwK6qOI8qS74q1nw7t28fINfEMnTbktsyXCj3pbAfkn9A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121294575"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/121294575/Stochastic_Dominance"><img alt="Research paper thumbnail of Stochastic Dominance" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/121294575/Stochastic_Dominance">Stochastic Dominance</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121294575"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121294575"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121294575; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121294575]").text(description); $(".js-view-count[data-work-id=121294575]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121294575; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121294575']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=121294575]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121294575,"title":"Stochastic Dominance","internal_url":"https://www.academia.edu/121294575/Stochastic_Dominance","owner_id":33782563,"coauthors_can_edit":true,"owner":{"id":33782563,"first_name":"Russell","middle_initials":null,"last_name":"Davidson","page_name":"RussellDavidson","domain_name":"mcgill","created_at":"2015-08-10T07:28:19.700-07:00","display_name":"Russell Davidson","url":"https://mcgill.academia.edu/RussellDavidson","email":"Uy9Hb3lNTlY5LzFYY3d5R1k4OUlrVTBBY08xc2Fib0RWWE5PVjExT2J3UFBOWmVBMlU4RUQ3WEUrVzlOZndqaC0tQzRZbjdLVlNsMytBREZabGRCWTdTdz09--33e9aba51794ab2cb2a694f5cf773e9c9ff68e88"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="115150495"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/115150495/Wild_Bootstrap_Tests_for_IV_Regression"><img alt="Research paper thumbnail of Wild Bootstrap Tests for IV Regression" class="work-thumbnail" src="https://attachments.academia-assets.com/111642967/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/115150495/Wild_Bootstrap_Tests_for_IV_Regression">Wild Bootstrap Tests for IV Regression</a></div><div class="wp-workCard_item"><span>RePEc: Research Papers in Economics</span><span>, Aug 1, 2007</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We propose a wild bootstrap procedure for linear regression models estimated by instrumental vari...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We propose a wild bootstrap procedure for linear regression models estimated by instrumental variables. Like other bootstrap procedures that we have proposed elsewhere, it uses efficient estimates of the reduced-form equation(s). Unlike them, it takes account of possible heteroskedasticity of unknown form. We apply this procedure to t tests, including heteroskedasticity-robust t tests, and provide simulation evidence that it works far better than older methods, such as the pairs bootstrap. We also show how to obtain reliable confidence intervals by inverting bootstrap tests. An empirical example illustrates the utility of these procedures.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1c35fc43ad6a906d88cd4c0b616af2f5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:111642967,&quot;asset_id&quot;:115150495,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/111642967/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="115150495"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="115150495"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 115150495; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=115150495]").text(description); $(".js-view-count[data-work-id=115150495]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 115150495; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='115150495']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1c35fc43ad6a906d88cd4c0b616af2f5" } } $('.js-work-strip[data-work-id=115150495]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":115150495,"title":"Wild Bootstrap Tests for IV Regression","internal_url":"https://www.academia.edu/115150495/Wild_Bootstrap_Tests_for_IV_Regression","owner_id":33782563,"coauthors_can_edit":true,"owner":{"id":33782563,"first_name":"Russell","middle_initials":null,"last_name":"Davidson","page_name":"RussellDavidson","domain_name":"mcgill","created_at":"2015-08-10T07:28:19.700-07:00","display_name":"Russell Davidson","url":"https://mcgill.academia.edu/RussellDavidson"},"attachments":[{"id":111642967,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/111642967/thumbnails/1.jpg","file_name":"wildbootstraptests.pdf","download_url":"https://www.academia.edu/attachments/111642967/download_file","bulk_download_file_name":"Wild_Bootstrap_Tests_for_IV_Regression.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/111642967/wildbootstraptests-libre.pdf?1708416381=\u0026response-content-disposition=attachment%3B+filename%3DWild_Bootstrap_Tests_for_IV_Regression.pdf\u0026Expires=1740564784\u0026Signature=RZxIYh~dRvAm45x8RQFlKDxva3jwKnVEe0vRBQkf2jfFW3~w~-Wwi3IMtvhYtDuV1RvRls6tP2ESyjKLunhdc07hS01bWUmt00Hvr0BJJgWYGbKL5G9y4eV-5TnQSgGrc2yG5wtctN42coeKXQNhvaWoILgOe5JuwlEZrAQKyN7Vb57umffOkjKhDML86HSYTV7ugzzVlJXU~apV6ykxX9RYNy73p2c4bMFpNW5c9IsbA2cFEHnRLi~wYNXEzFHPkHqE4xbFEtVaBDJ~TtTRdSNweLmVBff7WB~hQBVvLqYW4c3NLWwsucq78jP8L1rpiB~ldml8GmpcL6IHipsPuw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="115150493"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/115150493/Statistical_Inference_for_Stochastic_Dominance_and_for_the_Measurement_of_Poverty_and_Inequality"><img alt="Research paper thumbnail of Statistical Inference for Stochastic Dominance and for the Measurement of Poverty and Inequality" class="work-thumbnail" src="https://attachments.academia-assets.com/111642966/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/115150493/Statistical_Inference_for_Stochastic_Dominance_and_for_the_Measurement_of_Poverty_and_Inequality">Statistical Inference for Stochastic Dominance and for the Measurement of Poverty and Inequality</a></div><div class="wp-workCard_item"><span>RePEc: Research Papers in Economics</span><span>, Apr 1, 1998</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We derive the asymptotic sampling distribution of various estimators frequently used to order dis...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We derive the asymptotic sampling distribution of various estimators frequently used to order distributions in terms of poverty, w elfare and inequality. This includes estimators of most of the poverty indices currently in use, as well as estimators of the curves used to infer stochastic dominance of any order. These curves can beused to determine whether poverty, inequality or social welfare is greater in one distribution than in another for general classes of indices. We also derive the sampling distribution of the maximal poverty lines or income censoring thresholds up to which we may con dently assert that poverty or social welfare is greater in one distribution than in another. The sampling distribution of convenient estimators for dual approaches to the measurement o f p o v erty is also established. The statistical results are established for deterministic or stochastic poverty lines as well as for paired or independent samples of incomes. Our results are brie y illustrated using data for 6 countries drawn from the Luxembourg Income Study data bases. On etudie les propri et es asymptotiques de plusieurs estimateurs fr equemment utilis es pour ordonner les r epartitions de revenus en termes de pauvret e, bien-être social et in egalit e. Ces estimateurs incluent les estimateurs de la plupart des indices de pauvret e couramment en usage ainsi que les estimateurs des courbes utiles pour l&#39;inf erence de la dominance stochastique de n&#39;importe quel ordre. Ces courbes nous permettent d e d eterminer si la pauvret e, l&#39;in egalit e ou le bien-être social sont plus elev es dans une r epartition que dans une autre pour des classes g en erales d&#39;indices. On etudie aussi la distribution echantillonnale des seuils maximum de pauvret e ou de censure des revenus jusqu&#39;auxquels on peut a rmer sans ambigu t e que la pauvret e ou le bien-être social sont plus elev es dans une r epartition de revenus que dans une autre. La distribution echantillonnale d&#39;estimateurs pour l&#39;approche duale a la mesure de la pauvret e est aussi d eriv ee. Les r esultats statistiques s&#39;appliquent a des seuils d eterministes ou stochastiques et a des echantillons d ependants ou ind ependants. On illustre bri evement nos r esultats a l&#39;aide de donn ees sur 6 pays tir ees des banques de donn ees du Luxembourg Income Study.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7802f5f1716695f0e9c7c5e6a650e9eb" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:111642966,&quot;asset_id&quot;:115150493,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/111642966/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="115150493"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="115150493"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 115150493; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=115150493]").text(description); $(".js-view-count[data-work-id=115150493]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 115150493; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='115150493']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7802f5f1716695f0e9c7c5e6a650e9eb" } } $('.js-work-strip[data-work-id=115150493]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":115150493,"title":"Statistical Inference for Stochastic Dominance and for the Measurement of Poverty and Inequality","internal_url":"https://www.academia.edu/115150493/Statistical_Inference_for_Stochastic_Dominance_and_for_the_Measurement_of_Poverty_and_Inequality","owner_id":33782563,"coauthors_can_edit":true,"owner":{"id":33782563,"first_name":"Russell","middle_initials":null,"last_name":"Davidson","page_name":"RussellDavidson","domain_name":"mcgill","created_at":"2015-08-10T07:28:19.700-07:00","display_name":"Russell Davidson","url":"https://mcgill.academia.edu/RussellDavidson"},"attachments":[{"id":111642966,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/111642966/thumbnails/1.jpg","file_name":"181.pdf","download_url":"https://www.academia.edu/attachments/111642966/download_file","bulk_download_file_name":"Statistical_Inference_for_Stochastic_Dom.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/111642966/181-libre.pdf?1708416390=\u0026response-content-disposition=attachment%3B+filename%3DStatistical_Inference_for_Stochastic_Dom.pdf\u0026Expires=1740111913\u0026Signature=fF4rn1E6w7SGB1lWsjGDEPBWBqNUYBarXsMlKkVzscbFjVb6xeXDQhd0ctbz0znbP7Jkk2QfLZ9EyHcyV4PR2WYSi-o~VF4ozQIGFzx~a43agOOBUEolhGKAaXOKRujl2kZ7FkQP0j-P4MxFdhRERpsFT6PFFrZeUv5tbeAkn7c7qUBfugO6yW6Bv1kr2XMlWhcoCoP9pS4PyH6gpClwKlVxDT5U2Hgrm9LOf~NdYFg1F78VSyY2imoOiVq0JdsVqLC0~PJV7l-yqA9Gdoz1ezPLGj3wXUIOT-v~gioAxdNtbUp~5A6IzCtQcYJGI37M8lvCd~NB14zPys-WXujQcA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="115150491"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/115150491/Bootstrap_Tests_How_Many_Bootstraps"><img alt="Research paper thumbnail of Bootstrap Tests: How Many Bootstraps?" class="work-thumbnail" src="https://attachments.academia-assets.com/111642963/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/115150491/Bootstrap_Tests_How_Many_Bootstraps">Bootstrap Tests: How Many Bootstraps?</a></div><div class="wp-workCard_item"><span>RePEc: Research Papers in Economics</span><span>, Mar 1, 2001</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In practice, bootstrap tests must use a finite number of bootstrap samples. This means that the o...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In practice, bootstrap tests must use a finite number of bootstrap samples. This means that the outcome of the test will depend on the sequence of random numbers used to generate the bootstrap samples, and it necessarily results in some loss of power. We examine the extent of this power loss and propose a simple pretest procedure for choosing the number of bootstrap samples so as to minimize experimental randomness. Simulation experiments suggest that this procedure will work very well in practice. This research was supported, in part, by grants from the Social Sciences and Humanities Research Council of Canada. We are grateful to Joel Horowitz, Don Andrews, several referees, and numerous seminar participants for comments on earlier work.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e7be529bcf05474330f1c50fa403969e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:111642963,&quot;asset_id&quot;:115150491,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/111642963/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="115150491"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="115150491"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 115150491; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=115150491]").text(description); $(".js-view-count[data-work-id=115150491]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 115150491; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='115150491']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e7be529bcf05474330f1c50fa403969e" } } $('.js-work-strip[data-work-id=115150491]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":115150491,"title":"Bootstrap Tests: How Many Bootstraps?","internal_url":"https://www.academia.edu/115150491/Bootstrap_Tests_How_Many_Bootstraps","owner_id":33782563,"coauthors_can_edit":true,"owner":{"id":33782563,"first_name":"Russell","middle_initials":null,"last_name":"Davidson","page_name":"RussellDavidson","domain_name":"mcgill","created_at":"2015-08-10T07:28:19.700-07:00","display_name":"Russell Davidson","url":"https://mcgill.academia.edu/RussellDavidson"},"attachments":[{"id":111642963,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/111642963/thumbnails/1.jpg","file_name":"qed_wp_951.pdf","download_url":"https://www.academia.edu/attachments/111642963/download_file","bulk_download_file_name":"Bootstrap_Tests_How_Many_Bootstraps.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/111642963/qed_wp_951-libre.pdf?1708416373=\u0026response-content-disposition=attachment%3B+filename%3DBootstrap_Tests_How_Many_Bootstraps.pdf\u0026Expires=1740564785\u0026Signature=YWTIvPe8~~BJHHzD0OsaROWnJIunrJnqicZiQCUrBVPBHOpWYgD3OfUwIKFLQLjDdUvctVYXsqEh0P55jKA3fiR~IGbmUqOCzT~TR18Q9wnsAwX4nd~NcEyuslW4Rt5CfSJkpr7mpg030h3cgLFE7IluTDadlZYQgYNwyenbId4gjzrbJrofJB9eWmwvZJ38Ve5NqYYqx-4ZeGdRK1xJkTDl4K29j8pMVPMsBX0CnLj1LWKhLuvNSu~68A9f4SpNVdYWwXLPeF-2AZ~u5hj28veNw1kvPRQG8Tt9teUFKwgfDdH3RnK1K1kkMejURFMtvOMxQc2TBiUUfeOOFF8vSQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="115150485"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/115150485/Stochastic_Dominance"><img alt="Research paper thumbnail of Stochastic Dominance" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/115150485/Stochastic_Dominance">Stochastic Dominance</a></div><div class="wp-workCard_item"><span>The New Palgrave Dictionary of Economics</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="115150485"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="115150485"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 115150485; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=115150485]").text(description); $(".js-view-count[data-work-id=115150485]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 115150485; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='115150485']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=115150485]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":115150485,"title":"Stochastic Dominance","internal_url":"https://www.academia.edu/115150485/Stochastic_Dominance","owner_id":33782563,"coauthors_can_edit":true,"owner":{"id":33782563,"first_name":"Russell","middle_initials":null,"last_name":"Davidson","page_name":"RussellDavidson","domain_name":"mcgill","created_at":"2015-08-10T07:28:19.700-07:00","display_name":"Russell Davidson","url":"https://mcgill.academia.edu/RussellDavidson","email":"NG16ZlJRcTVwbnZ0Nnd2NEtLNHMxcklFWUlIUG5hd2xjVkEvMVZyM0ZXTmlSVGVhKzZ2bGZaVHkxbEVIMUtNUi0tWGVEcUR2eVg3TTI0NEJyeEEvUVg2Zz09--8664315f7178bb25ee9c23ef0b110fe01aab4999"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="115150441"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/115150441/Bootstrap_inference_in_a_linear_equation_estimated_by_instrumental_variables"><img alt="Research paper thumbnail of Bootstrap inference in a linear equation estimated by instrumental variables" class="work-thumbnail" src="https://attachments.academia-assets.com/111642928/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/115150441/Bootstrap_inference_in_a_linear_equation_estimated_by_instrumental_variables">Bootstrap inference in a linear equation estimated by instrumental variables</a></div><div class="wp-workCard_item"><span>RePEc: Research Papers in Economics</span><span>, Feb 1, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We study several tests for the coefficient of the single right-hand-side endogenous variable in a...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We study several tests for the coefficient of the single right-hand-side endogenous variable in a linear equation estimated by instrumental variables. We show that all the test statistics-Student&#39;s t, Anderson-Rubin, Kleibergen&#39;s K, and likelihood ratio (LR)-can be written as functions of six random quantities. This leads to a number of interesting results about the properties of the tests under weak-instrument asymptotics. We then propose several new procedures for bootstrapping the three non-exact test statistics and a conditional version of the LR test. These use more efficient estimates of the parameters of the reduced-form equation than existing procedures. When the best of these new procedures is used, K and conditional LR have excellent performance under the null, and LR also performs very well. However, power considerations suggest that the conditional LR test, bootstrapped using this new procedure when the sample size is not large, is probably the method of choice.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4f63b8ea5b2c027dea2049f7552577cf" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:111642928,&quot;asset_id&quot;:115150441,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/111642928/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="115150441"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="115150441"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 115150441; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=115150441]").text(description); $(".js-view-count[data-work-id=115150441]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 115150441; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='115150441']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4f63b8ea5b2c027dea2049f7552577cf" } } $('.js-work-strip[data-work-id=115150441]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":115150441,"title":"Bootstrap inference in a linear equation estimated by instrumental variables","internal_url":"https://www.academia.edu/115150441/Bootstrap_inference_in_a_linear_equation_estimated_by_instrumental_variables","owner_id":33782563,"coauthors_can_edit":true,"owner":{"id":33782563,"first_name":"Russell","middle_initials":null,"last_name":"Davidson","page_name":"RussellDavidson","domain_name":"mcgill","created_at":"2015-08-10T07:28:19.700-07:00","display_name":"Russell Davidson","url":"https://mcgill.academia.edu/RussellDavidson"},"attachments":[{"id":111642928,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/111642928/thumbnails/1.jpg","file_name":"qed_wp_1024.pdf","download_url":"https://www.academia.edu/attachments/111642928/download_file","bulk_download_file_name":"Bootstrap_inference_in_a_linear_equation.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/111642928/qed_wp_1024-libre.pdf?1708416405=\u0026response-content-disposition=attachment%3B+filename%3DBootstrap_inference_in_a_linear_equation.pdf\u0026Expires=1740564785\u0026Signature=DYZ7MUSXkyBpyRa0~1IzF6P06uIVPwPNakfJrEF7a5k5LL7dUMr3uo311kYIFxKfbcIXV60jGcGRWYid0HdVMr~y4NKEjlsLcOxRmgdQ3OdAW8SfosC0Jt9qOCcndqRLaxMD2vCZUtxfUYVhNfuQhYghhwRDyg~tUXxgUqjVQhxGCr9pZEVhZVn5zXv9v09gCAI9uIyZTIvvgmAdFTDbLRFHwL3r7vTgQZKu~qBORcw6jsyMv5eYl6JYu86KZeIl7VNLOARNeuYd7cl25Y4EMAV~SO2C1sHseiFdqxnyXQaU7zu1v0yUPOdB7PICJm09fGf6YHg~mB7yOkM6GmeXBA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111265595"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/111265595/Une_nouvelle_forme_du_test_de_Ia_matrice_dinformation"><img alt="Research paper thumbnail of Une nouvelle forme du test de Ia matrice d&#39;information" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/111265595/Une_nouvelle_forme_du_test_de_Ia_matrice_dinformation">Une nouvelle forme du test de Ia matrice d&#39;information</a></div><div class="wp-workCard_item"><span>Annals of economics and statistics</span><span>, 2016</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111265595"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111265595"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111265595; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111265595]").text(description); $(".js-view-count[data-work-id=111265595]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111265595; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111265595']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=111265595]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111265595,"title":"Une nouvelle forme du test de Ia matrice d'information","internal_url":"https://www.academia.edu/111265595/Une_nouvelle_forme_du_test_de_Ia_matrice_dinformation","owner_id":33782563,"coauthors_can_edit":true,"owner":{"id":33782563,"first_name":"Russell","middle_initials":null,"last_name":"Davidson","page_name":"RussellDavidson","domain_name":"mcgill","created_at":"2015-08-10T07:28:19.700-07:00","display_name":"Russell Davidson","url":"https://mcgill.academia.edu/RussellDavidson","email":"L0dPU1JkN0lKZm5rVGdESzc5NXRXckVkSEVxYUs4ak5BWVVvVEM3aFErUUFzeHF2YzFJcXJLNzY5RmpPaDlVMS0tdEFuUnRRS2xSZDAwenZrQnVYVG9VQT09--e5e0ab773cd948f8a4a73ce5cf6031c30b5d8fbc"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111265594"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111265594/The_Case_Against_Jive"><img alt="Research paper thumbnail of The Case Against Jive" class="work-thumbnail" src="https://attachments.academia-assets.com/108849037/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111265594/The_Case_Against_Jive">The Case Against Jive</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We perform an extensive series of Monte Carlo experiments to compare the performance of two varia...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We perform an extensive series of Monte Carlo experiments to compare the performance of two variants of the &quot;Jackknife Instrumental Variables Estimator,&quot; or JIVE, with that of the more familiar 2SLS and LIML estimators. We find no evidence to suggest that JIVE should ever be used. It is always more dispersed than 2SLS, often very much so, and it is almost always inferior to LIML in all respects. Interestingly, JIVE seems to perform particularly badly when the instruments are weak.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f36b3bb58a1d722d65d69c3ea8f9998b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:108849037,&quot;asset_id&quot;:111265594,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/108849037/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111265594"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111265594"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111265594; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111265594]").text(description); $(".js-view-count[data-work-id=111265594]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111265594; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111265594']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f36b3bb58a1d722d65d69c3ea8f9998b" } } $('.js-work-strip[data-work-id=111265594]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111265594,"title":"The Case Against Jive","internal_url":"https://www.academia.edu/111265594/The_Case_Against_Jive","owner_id":33782563,"coauthors_can_edit":true,"owner":{"id":33782563,"first_name":"Russell","middle_initials":null,"last_name":"Davidson","page_name":"RussellDavidson","domain_name":"mcgill","created_at":"2015-08-10T07:28:19.700-07:00","display_name":"Russell Davidson","url":"https://mcgill.academia.edu/RussellDavidson"},"attachments":[{"id":108849037,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108849037/thumbnails/1.jpg","file_name":"against-jive.pdf","download_url":"https://www.academia.edu/attachments/108849037/download_file","bulk_download_file_name":"The_Case_Against_Jive.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108849037/against-jive-libre.pdf?1702413236=\u0026response-content-disposition=attachment%3B+filename%3DThe_Case_Against_Jive.pdf\u0026Expires=1740564785\u0026Signature=Ir86Y0kILMSGRMiLQPawrlnGXs0qj-gc2dRXYb~LSioHVvlrV17dT3NzlLtEj01K9MYxMvZ2iq0H~u5xyRpqrVNttrQBW2LRcWMpC9RTwkggX1r7tM8JAsn2awZRfyE51o1-KATjXYg2D8OLrSra9Fl5DhwpzLDFiIvmyZveQArkfCc~plqX~avYQh9x8X5lm2IofthbsLugk~oN7Ycu-2xVDGWRV4JSaFc~VykBXgTvrsXALQXDEXtdHIhESoXVR0rnhvsBLnnXPVINEURRiq-4Of1~aqkjO7~YKMMNULE399LFY2mIb-xHc-1bWSoWxVfhcgay3ykG2xcQGP81lQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111265593"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111265593/Bootstrap_inference_in_a_linear_equation_estimated_by_instrumental_variables"><img alt="Research paper thumbnail of Bootstrap inference in a linear equation estimated by instrumental variables" class="work-thumbnail" src="https://attachments.academia-assets.com/108848970/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111265593/Bootstrap_inference_in_a_linear_equation_estimated_by_instrumental_variables">Bootstrap inference in a linear equation estimated by instrumental variables</a></div><div class="wp-workCard_item"><span>Econometrics Journal</span><span>, Nov 1, 2008</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We study several tests for the coefficient of the single right-hand-side endogenous variable in a...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We study several tests for the coefficient of the single right-hand-side endogenous variable in a linear equation estimated by instrumental variables. We show that all the test statistics-Student&#39;s t, Anderson-Rubin, Kleibergen&#39;s K, and likelihood ratio (LR)-can be written as functions of six random quantities. This leads to a number of interesting results about the properties of the tests under weak-instrument asymptotics. We then propose several new procedures for bootstrapping the three non-exact test statistics and a conditional version of the LR test. These use more efficient estimates of the parameters of the reduced-form equation than existing procedures. When the best of these new procedures is used, K and conditional LR have excellent performance under the null, and LR also performs very well. However, power considerations suggest that the conditional LR test, bootstrapped using this new procedure when the sample size is not large, is probably the method of choice.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ba60c3a5e12198a9eac81b089a5c7327" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:108848970,&quot;asset_id&quot;:111265593,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/108848970/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111265593"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111265593"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111265593; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111265593]").text(description); $(".js-view-count[data-work-id=111265593]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111265593; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111265593']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ba60c3a5e12198a9eac81b089a5c7327" } } $('.js-work-strip[data-work-id=111265593]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111265593,"title":"Bootstrap inference in a linear equation estimated by instrumental variables","internal_url":"https://www.academia.edu/111265593/Bootstrap_inference_in_a_linear_equation_estimated_by_instrumental_variables","owner_id":33782563,"coauthors_can_edit":true,"owner":{"id":33782563,"first_name":"Russell","middle_initials":null,"last_name":"Davidson","page_name":"RussellDavidson","domain_name":"mcgill","created_at":"2015-08-10T07:28:19.700-07:00","display_name":"Russell Davidson","url":"https://mcgill.academia.edu/RussellDavidson","email":"d2hUZStPNVpTTHE2UE5zMDlkTjJoL2NxZTZOWitBd3pXVnhwWFdyQjFRazVGUnl4TngxSWZjeUpPM0FqK1k2Qi0tR3ZuRzJ6M1FUZ3VKME1OaVMrOVROUT09--877bf9d7218eced46b3fa065870dc8f51849edad"},"attachments":[{"id":108848970,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108848970/thumbnails/1.jpg","file_name":"qed_wp_1024.pdf","download_url":"https://www.academia.edu/attachments/108848970/download_file","bulk_download_file_name":"Bootstrap_inference_in_a_linear_equation.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108848970/qed_wp_1024-libre.pdf?1702413265=\u0026response-content-disposition=attachment%3B+filename%3DBootstrap_inference_in_a_linear_equation.pdf\u0026Expires=1740520486\u0026Signature=STNJfB1-jhUl7z4Z0ygYJYulGVFLDXOzdf9-RXCJNJNRAGmdAiBwgrbw7sxFHIbr~vPkTXSzh-ZmIO6RPWBDtZhk~koC2NDD1ZprwTAWskfVuaKVKN~PANiV1QMr4W0xkZxebA6EQjlymo5J4giEWniFvUSlrdL-YiCH8IrT6Bxg3PBZC1i~jQZQd89REHV~KcNCp54vVyj22YAS4AabEKJHteSEY5JPSGYOKg9nryrfXMz95XigJuoXDgdwy9CQhqWPuElo0z-vYdmR2HbbKaKHXLCCGSVLSW8Yggv6-CN-IS4GD0LhdSCwo-WL-W79jVY0EYfEf9ITMsFxSIB6Xw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108848969,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108848969/thumbnails/1.jpg","file_name":"qed_wp_1024.pdf","download_url":"https://www.academia.edu/attachments/108848969/download_file","bulk_download_file_name":"Bootstrap_inference_in_a_linear_equation.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108848969/qed_wp_1024-libre.pdf?1702413251=\u0026response-content-disposition=attachment%3B+filename%3DBootstrap_inference_in_a_linear_equation.pdf\u0026Expires=1740520486\u0026Signature=aeopPZ4PYrjbhVqBXB5dOaGsuj3OqfJ~fvgo9pC-F-xFnaA-PwlRz6aqyV5qZItzYvAf62QHmYfHvYp2FkZNKa0C7rSRSzXZI93wgCun8rok7hk99YKLLFMv-6CsLyp~aBefO2XAzG~ejEto6gGv11dBBVux-e-fFrF4X3YBheN1yOIcKkSNkw3VHn1HBxh-fWbQykllXPc~UpYzqncm09uiOj10Wr18tZKm41K1m7cYz7wuwGH6YjuNbmEGKLNmAdK6Emd~Rbp-xt6o4m6T2Me3OLgFTH7tmr-Fm1a2snahm-wmy2py0zN~6OqNd6JhaiW4Gd1rBL168HyEch8Zrg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111265592"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111265592/Wild_Bootstrap_Tests_for_IV_Regression"><img alt="Research paper thumbnail of Wild Bootstrap Tests for IV Regression" class="work-thumbnail" src="https://attachments.academia-assets.com/108848968/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111265592/Wild_Bootstrap_Tests_for_IV_Regression">Wild Bootstrap Tests for IV Regression</a></div><div class="wp-workCard_item"><span>Journal of Business &amp; Economic Statistics</span><span>, 2010</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We propose a wild bootstrap procedure for linear regression models estimated by instrumental vari...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We propose a wild bootstrap procedure for linear regression models estimated by instrumental variables. Like other bootstrap procedures that we have proposed elsewhere, it uses efficient estimates of the reduced-form equation(s). Unlike them, it takes account of possible heteroskedasticity of unknown form. We apply this procedure to t tests, including heteroskedasticity-robust t tests, and to the Anderson-Rubin test. We provide simulation evidence that it works far better than older methods, such as the pairs bootstrap. We also show how to obtain reliable confidence intervals by inverting bootstrap tests. An empirical example illustrates the utility of these procedures.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="332e9360c8ed9bf81a2069d9bade5d18" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:108848968,&quot;asset_id&quot;:111265592,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/108848968/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111265592"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111265592"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111265592; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111265592]").text(description); $(".js-view-count[data-work-id=111265592]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111265592; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111265592']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "332e9360c8ed9bf81a2069d9bade5d18" } } $('.js-work-strip[data-work-id=111265592]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111265592,"title":"Wild Bootstrap Tests for IV Regression","internal_url":"https://www.academia.edu/111265592/Wild_Bootstrap_Tests_for_IV_Regression","owner_id":33782563,"coauthors_can_edit":true,"owner":{"id":33782563,"first_name":"Russell","middle_initials":null,"last_name":"Davidson","page_name":"RussellDavidson","domain_name":"mcgill","created_at":"2015-08-10T07:28:19.700-07:00","display_name":"Russell Davidson","url":"https://mcgill.academia.edu/RussellDavidson"},"attachments":[{"id":108848968,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108848968/thumbnails/1.jpg","file_name":"DT2009-35.pdf","download_url":"https://www.academia.edu/attachments/108848968/download_file","bulk_download_file_name":"Wild_Bootstrap_Tests_for_IV_Regression.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108848968/DT2009-35-libre.pdf?1702413251=\u0026response-content-disposition=attachment%3B+filename%3DWild_Bootstrap_Tests_for_IV_Regression.pdf\u0026Expires=1740564785\u0026Signature=Eg9UOmFSirRz1iO-V8LcZZRTYxIzoMSwnMp1QJ5Kb91xQSlco-bGdnYZ2-gxzvH8LytnenSlq2md~61R4hCMo7TFc9CtSiLEGPxSmcLC5wZXAVyxLmZFBbUgnbIRcNRgc7e69z8NaIWh6pma0j80rcTEHCEv~B6bYui9Pu4h5zxa6CRJwZ5tHhhLZHxgcxinLGeIyH63bhjFcqhxS4pbSOPeNwA4GqxPpX4iGd8T1ulUv-LBG8wChLYME~WKXSK3VWZ~7bO5Mm09nXarg4yEofX2~~MhywbNVAUbcellHuzdLydDuQ2LpUyWuRS0XfNYKlUtP33LYydNRaxCpNE~~A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108848967,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108848967/thumbnails/1.jpg","file_name":"DT2009-35.pdf","download_url":"https://www.academia.edu/attachments/108848967/download_file","bulk_download_file_name":"Wild_Bootstrap_Tests_for_IV_Regression.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108848967/DT2009-35-libre.pdf?1702413254=\u0026response-content-disposition=attachment%3B+filename%3DWild_Bootstrap_Tests_for_IV_Regression.pdf\u0026Expires=1740564785\u0026Signature=Zvf6K-bHJ6VsFF09WUIpgqG823xYHrGVgiZda~rhyC0dUYgyHLpbwPLlIntpHQTnbYPzon1rvvcBMEU3QKy0JXRbfMSZzKUV4meSdZl02K51W0HT5nIbSRBfxyVm1HYcPYlZWqPzPedfcsTZQFIK0MRbJhqjfBk7SEbUpt2a-9AGRO9QM4163pMN2siEMJ9o5RruG8NOfkSmbLvblwLTWFNI2RC7TCj12pbPCa9muXjk~ytDrDFFSYHuvd7~Q72NaUINjSdTL~xtoz-E19~xNeTdKrlUm5~ZMYCVhAMsdT5Z0LH3aMGVar1q8nuyS-gJW5TJgthdT~8on6q1fBnZPw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111265591"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/111265591/Time_and_Causality"><img alt="Research paper thumbnail of Time and Causality" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/111265591/Time_and_Causality">Time and Causality</a></div><div class="wp-workCard_item"><span>Annals of economics and statistics</span><span>, 2013</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The understanding of causal chains and mechanisms is an essential part of any scientific activity...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The understanding of causal chains and mechanisms is an essential part of any scientific activity that aims at better explanation of its subject matter, and better understanding of it. While any account of causality requires that a cause should precede its effect, accounts of causality inphysics are complicated by the fact that the role of time in current theoretical physics has evolved very substantially throughout the twentieth century. In this article, I review the status of time and causality in physics, both the classical physics of the nineteenth century, and modern physics based on relativity and quantum mechanics. I then move on to econometrics, with some mention of statistics more generally, and emphasise the role of models in making sense of causal notions, and their place in scientific explanation</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111265591"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111265591"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111265591; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111265591]").text(description); $(".js-view-count[data-work-id=111265591]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111265591; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111265591']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=111265591]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111265591,"title":"Time and Causality","internal_url":"https://www.academia.edu/111265591/Time_and_Causality","owner_id":33782563,"coauthors_can_edit":true,"owner":{"id":33782563,"first_name":"Russell","middle_initials":null,"last_name":"Davidson","page_name":"RussellDavidson","domain_name":"mcgill","created_at":"2015-08-10T07:28:19.700-07:00","display_name":"Russell Davidson","url":"https://mcgill.academia.edu/RussellDavidson"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111265590"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111265590/Bootstrap_tests_how_many_bootstraps"><img alt="Research paper thumbnail of Bootstrap tests: how many bootstraps?" class="work-thumbnail" src="https://attachments.academia-assets.com/108848966/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111265590/Bootstrap_tests_how_many_bootstraps">Bootstrap tests: how many bootstraps?</a></div><div class="wp-workCard_item"><span>Econometric Reviews</span><span>, 2000</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch ge...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. Terms of use: Documents in EconStor may be saved and copied for your personal and scholarly purposes. You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public. If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ea35144b0a2d0b1808511a8ac55caa53" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:108848966,&quot;asset_id&quot;:111265590,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/108848966/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111265590"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111265590"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111265590; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111265590]").text(description); $(".js-view-count[data-work-id=111265590]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111265590; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111265590']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ea35144b0a2d0b1808511a8ac55caa53" } } $('.js-work-strip[data-work-id=111265590]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111265590,"title":"Bootstrap tests: how many bootstraps?","internal_url":"https://www.academia.edu/111265590/Bootstrap_tests_how_many_bootstraps","owner_id":33782563,"coauthors_can_edit":true,"owner":{"id":33782563,"first_name":"Russell","middle_initials":null,"last_name":"Davidson","page_name":"RussellDavidson","domain_name":"mcgill","created_at":"2015-08-10T07:28:19.700-07:00","display_name":"Russell Davidson","url":"https://mcgill.academia.edu/RussellDavidson","email":"NC93OStZL0l4TGlYNXk1b1RiV1VaWWd1TmZyeW9veWdFNkFzWnkveDl6cUI0dWN5UXFDWngzVmJPNjFtY2pEaS0tWUdXQlpLM00wT0dpWGhoaThubE1SQT09--024dfae980c9ea2195e6c96d5c4dd5d91a5a61db"},"attachments":[{"id":108848966,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108848966/thumbnails/1.jpg","file_name":"587473266.pdf","download_url":"https://www.academia.edu/attachments/108848966/download_file","bulk_download_file_name":"Bootstrap_tests_how_many_bootstraps.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108848966/587473266-libre.pdf?1702413239=\u0026response-content-disposition=attachment%3B+filename%3DBootstrap_tests_how_many_bootstraps.pdf\u0026Expires=1740520486\u0026Signature=bjpulbJZkqtY-7c05S6jZY6PLtNaeOO2-5878YoHwUSwdwttjKgoMSmM34o651m6fij3iAItF2MCTlZMmMKOMGsrXMtud~2se71qM7F9jLoEVK3Vy0TzrnkFZj388bKwW6C9q70RUyjKohoGUPaBvi-VlRWLCOL2tzcaAwkd4y2d2BqJTToWPV6QysWBhicV16USDuXwN3Kyne-9sI3UWo6zmBBsh3Sr6ehSUYl58qm89D5POMkY2gmXDvILPm1BIZ6zgCQykokndYya-Bh54L9WzJm7vqvO8VROpAQAWCkCqVmiA-Z5aCeLIgCY1XX1GSoLUENA12RIjSSn4AOhkQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108848965,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108848965/thumbnails/1.jpg","file_name":"587473266.pdf","download_url":"https://www.academia.edu/attachments/108848965/download_file","bulk_download_file_name":"Bootstrap_tests_how_many_bootstraps.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108848965/587473266-libre.pdf?1702413240=\u0026response-content-disposition=attachment%3B+filename%3DBootstrap_tests_how_many_bootstraps.pdf\u0026Expires=1740520486\u0026Signature=JQ~NwKFiQXalUh0Quqx~df5uGCJEiCxlq9yNhaWW2KInVpVpoo2PH9T7leeax8c~2aiXW1WJy3raz2Y1GcaeSWXZTyh7rNEak-RULPs0Ve0tYnndrdckPmFrlIazXnh-F83zQzdwc2RTNnI-ThiusNnidEs1llwfwzpFCmN6iKWHtNDdynxWzaahgHMG4dpM70J2eYQBQ0VFkpfjblLcRALPPIBv1MDzliJaAbyIVaywbKQwHuvH2EFzwuNzQlYvHGJ9j6l2ERQVmrlcIlP2VPugDPyhrkZG~WtTpRN4cA9XoJKQlpQIk96z9DnZTrjZ6JH9lsOm3Wt-tt7VPhbaJg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111265589"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111265589/Statistical_Inference_for_Stochastic_Dominance_and_for_the_Measurement_of_Poverty_and_Inequality"><img alt="Research paper thumbnail of Statistical Inference for Stochastic Dominance and for the Measurement of Poverty and Inequality" class="work-thumbnail" src="https://attachments.academia-assets.com/108848964/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111265589/Statistical_Inference_for_Stochastic_Dominance_and_for_the_Measurement_of_Poverty_and_Inequality">Statistical Inference for Stochastic Dominance and for the Measurement of Poverty and Inequality</a></div><div class="wp-workCard_item"><span>Econometrica</span><span>, Nov 1, 2000</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We derive the asymptotic sampling distribution of various estimators frequently used to order dis...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We derive the asymptotic sampling distribution of various estimators frequently used to order distributions in terms of poverty, w elfare and inequality. This includes estimators of most of the poverty indices currently in use, as well as estimators of the curves used to infer stochastic dominance of any order. These curves can beused to determine whether poverty, inequality or social welfare is greater in one distribution than in another for general classes of indices. We also derive the sampling distribution of the maximal poverty lines or income censoring thresholds up to which we may con dently assert that poverty or social welfare is greater in one distribution than in another. The sampling distribution of convenient estimators for dual approaches to the measurement o f p o v erty is also established. The statistical results are established for deterministic or stochastic poverty lines as well as for paired or independent samples of incomes. Our results are brie y illustrated using data for 6 countries drawn from the Luxembourg Income Study data bases. On etudie les propri et es asymptotiques de plusieurs estimateurs fr equemment utilis es pour ordonner les r epartitions de revenus en termes de pauvret e, bien-être social et in egalit e. Ces estimateurs incluent les estimateurs de la plupart des indices de pauvret e couramment en usage ainsi que les estimateurs des courbes utiles pour l&#39;inf erence de la dominance stochastique de n&#39;importe quel ordre. Ces courbes nous permettent d e d eterminer si la pauvret e, l&#39;in egalit e ou le bien-être social sont plus elev es dans une r epartition que dans une autre pour des classes g en erales d&#39;indices. On etudie aussi la distribution echantillonnale des seuils maximum de pauvret e ou de censure des revenus jusqu&#39;auxquels on peut a rmer sans ambigu t e que la pauvret e ou le bien-être social sont plus elev es dans une r epartition de revenus que dans une autre. La distribution echantillonnale d&#39;estimateurs pour l&#39;approche duale a la mesure de la pauvret e est aussi d eriv ee. Les r esultats statistiques s&#39;appliquent a des seuils d eterministes ou stochastiques et a des echantillons d ependants ou ind ependants. On illustre bri evement nos r esultats a l&#39;aide de donn ees sur 6 pays tir ees des banques de donn ees du Luxembourg Income Study.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8df8697a45bc65611ffd479d167b2629" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:108848964,&quot;asset_id&quot;:111265589,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/108848964/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111265589"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111265589"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111265589; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111265589]").text(description); $(".js-view-count[data-work-id=111265589]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111265589; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111265589']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8df8697a45bc65611ffd479d167b2629" } } $('.js-work-strip[data-work-id=111265589]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111265589,"title":"Statistical Inference for Stochastic Dominance and for the Measurement of Poverty and Inequality","translated_title":"","metadata":{"publisher":"Wiley-Blackwell","grobid_abstract":"We derive the asymptotic sampling distribution of various estimators frequently used to order distributions in terms of poverty, w elfare and inequality. This includes estimators of most of the poverty indices currently in use, as well as estimators of the curves used to infer stochastic dominance of any order. These curves can beused to determine whether poverty, inequality or social welfare is greater in one distribution than in another for general classes of indices. We also derive the sampling distribution of the maximal poverty lines or income censoring thresholds up to which we may con dently assert that poverty or social welfare is greater in one distribution than in another. The sampling distribution of convenient estimators for dual approaches to the measurement o f p o v erty is also established. The statistical results are established for deterministic or stochastic poverty lines as well as for paired or independent samples of incomes. Our results are brie y illustrated using data for 6 countries drawn from the Luxembourg Income Study data bases. On etudie les propri et es asymptotiques de plusieurs estimateurs fr equemment utilis es pour ordonner les r epartitions de revenus en termes de pauvret e, bien-être social et in egalit e. Ces estimateurs incluent les estimateurs de la plupart des indices de pauvret e couramment en usage ainsi que les estimateurs des courbes utiles pour l'inf erence de la dominance stochastique de n'importe quel ordre. Ces courbes nous permettent d e d eterminer si la pauvret e, l'in egalit e ou le bien-être social sont plus elev es dans une r epartition que dans une autre pour des classes g en erales d'indices. On etudie aussi la distribution echantillonnale des seuils maximum de pauvret e ou de censure des revenus jusqu'auxquels on peut a rmer sans ambigu t e que la pauvret e ou le bien-être social sont plus elev es dans une r epartition de revenus que dans une autre. La distribution echantillonnale d'estimateurs pour l'approche duale a la mesure de la pauvret e est aussi d eriv ee. Les r esultats statistiques s'appliquent a des seuils d eterministes ou stochastiques et a des echantillons d ependants ou ind ependants. On illustre bri evement nos r esultats a l'aide de donn ees sur 6 pays tir ees des banques de donn ees du Luxembourg Income Study.","publication_date":{"day":1,"month":11,"year":2000,"errors":{}},"publication_name":"Econometrica","grobid_abstract_attachment_id":108848964},"translated_abstract":null,"internal_url":"https://www.academia.edu/111265589/Statistical_Inference_for_Stochastic_Dominance_and_for_the_Measurement_of_Poverty_and_Inequality","translated_internal_url":"","created_at":"2023-12-12T12:32:19.967-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33782563,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108848964,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108848964/thumbnails/1.jpg","file_name":"lis-wps-181.pdf","download_url":"https://www.academia.edu/attachments/108848964/download_file","bulk_download_file_name":"Statistical_Inference_for_Stochastic_Dom.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108848964/lis-wps-181-libre.pdf?1702413258=\u0026response-content-disposition=attachment%3B+filename%3DStatistical_Inference_for_Stochastic_Dom.pdf\u0026Expires=1738615355\u0026Signature=BcaHmcENNF2ghds5TkppdScaRfGYUCk0D9O6imfrLNmmyiXAetleh27KfqBAXnMz7o0FNL4W2Sn0abj6lhLt5hjNkmSgLrJfhc~w0~W3~JFT7FSHO8s02N1C67opgibTELksTHvVSFNOvHJayaec2I0J1vh8fwt0yRghgm48s337hGJtMlKz3OkPHBbwCOJEa8yyvvvHc40RlvUMvY9WVj31F9z-EBAM2228CzXS9L1h8V5G5fR~UbZmAxQ9tuV3cHVHy7n0JiadHGUiz2zHWGjwszr8KBXjWs8XRhVrSIkygVUfY9BINv3AOp~7e1LOS1WVCTL56FvVtfQT71oZ4Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Statistical_Inference_for_Stochastic_Dominance_and_for_the_Measurement_of_Poverty_and_Inequality","translated_slug":"","page_count":41,"language":"en","content_type":"Work","summary":"We derive the asymptotic sampling distribution of various estimators frequently used to order distributions in terms of poverty, w elfare and inequality. This includes estimators of most of the poverty indices currently in use, as well as estimators of the curves used to infer stochastic dominance of any order. These curves can beused to determine whether poverty, inequality or social welfare is greater in one distribution than in another for general classes of indices. We also derive the sampling distribution of the maximal poverty lines or income censoring thresholds up to which we may con dently assert that poverty or social welfare is greater in one distribution than in another. The sampling distribution of convenient estimators for dual approaches to the measurement o f p o v erty is also established. The statistical results are established for deterministic or stochastic poverty lines as well as for paired or independent samples of incomes. Our results are brie y illustrated using data for 6 countries drawn from the Luxembourg Income Study data bases. On etudie les propri et es asymptotiques de plusieurs estimateurs fr equemment utilis es pour ordonner les r epartitions de revenus en termes de pauvret e, bien-être social et in egalit e. Ces estimateurs incluent les estimateurs de la plupart des indices de pauvret e couramment en usage ainsi que les estimateurs des courbes utiles pour l'inf erence de la dominance stochastique de n'importe quel ordre. Ces courbes nous permettent d e d eterminer si la pauvret e, l'in egalit e ou le bien-être social sont plus elev es dans une r epartition que dans une autre pour des classes g en erales d'indices. On etudie aussi la distribution echantillonnale des seuils maximum de pauvret e ou de censure des revenus jusqu'auxquels on peut a rmer sans ambigu t e que la pauvret e ou le bien-être social sont plus elev es dans une r epartition de revenus que dans une autre. La distribution echantillonnale d'estimateurs pour l'approche duale a la mesure de la pauvret e est aussi d eriv ee. Les r esultats statistiques s'appliquent a des seuils d eterministes ou stochastiques et a des echantillons d ependants ou ind ependants. On illustre bri evement nos r esultats a l'aide de donn ees sur 6 pays tir ees des banques de donn ees du Luxembourg Income Study.","owner":{"id":33782563,"first_name":"Russell","middle_initials":null,"last_name":"Davidson","page_name":"RussellDavidson","domain_name":"mcgill","created_at":"2015-08-10T07:28:19.700-07:00","display_name":"Russell Davidson","url":"https://mcgill.academia.edu/RussellDavidson"},"attachments":[{"id":108848964,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108848964/thumbnails/1.jpg","file_name":"lis-wps-181.pdf","download_url":"https://www.academia.edu/attachments/108848964/download_file","bulk_download_file_name":"Statistical_Inference_for_Stochastic_Dom.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108848964/lis-wps-181-libre.pdf?1702413258=\u0026response-content-disposition=attachment%3B+filename%3DStatistical_Inference_for_Stochastic_Dom.pdf\u0026Expires=1738615355\u0026Signature=BcaHmcENNF2ghds5TkppdScaRfGYUCk0D9O6imfrLNmmyiXAetleh27KfqBAXnMz7o0FNL4W2Sn0abj6lhLt5hjNkmSgLrJfhc~w0~W3~JFT7FSHO8s02N1C67opgibTELksTHvVSFNOvHJayaec2I0J1vh8fwt0yRghgm48s337hGJtMlKz3OkPHBbwCOJEa8yyvvvHc40RlvUMvY9WVj31F9z-EBAM2228CzXS9L1h8V5G5fR~UbZmAxQ9tuV3cHVHy7n0JiadHGUiz2zHWGjwszr8KBXjWs8XRhVrSIkygVUfY9BINv3AOp~7e1LOS1WVCTL56FvVtfQT71oZ4Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108848963,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108848963/thumbnails/1.jpg","file_name":"lis-wps-181.pdf","download_url":"https://www.academia.edu/attachments/108848963/download_file","bulk_download_file_name":"Statistical_Inference_for_Stochastic_Dom.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108848963/lis-wps-181-libre.pdf?1702413257=\u0026response-content-disposition=attachment%3B+filename%3DStatistical_Inference_for_Stochastic_Dom.pdf\u0026Expires=1738615355\u0026Signature=Z7O9Vl1hSxS9oOJRxzDNiQP2qLj2Ju5WdqYWZ6qTWN60VWR00pGcjIRYVryM3j02AXrsPp1loYL9WVlPkm7yEfjdyB2BFN~jKaDNboDentsNBtv58bUojwdTu5wm9sLQ1~DFg7iC5hXpYxQl6WB1gzEZQFRaCtlXKglrT3z5FTmLx6OEgqFtN1f7xnJntHH7jfpkUOO8LsKnIfHAAT8cOURwY62j~thYMQAnhSgbCUl4PX5ma~oKUrk~GTf3vPrg~CmUOH6mBuF9gDM4f-LfLXIzqWGss9Vw-2WjkjYvpcVZs-7SS6EvRYR6ItW4vWcDOjieEFqJ2OF4~T9Zu9QRAA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":39,"name":"Marketing","url":"https://www.academia.edu/Documents/in/Marketing"},{"id":747,"name":"Econometrics","url":"https://www.academia.edu/Documents/in/Econometrics"},{"id":2808,"name":"Poverty","url":"https://www.academia.edu/Documents/in/Poverty"},{"id":6208,"name":"Economic Theory","url":"https://www.academia.edu/Documents/in/Economic_Theory"},{"id":20316,"name":"Stochastic dominance","url":"https://www.academia.edu/Documents/in/Stochastic_dominance"},{"id":67968,"name":"Statistical Inference","url":"https://www.academia.edu/Documents/in/Statistical_Inference"},{"id":91070,"name":"Inequality","url":"https://www.academia.edu/Documents/in/Inequality"},{"id":806332,"name":"Estimator","url":"https://www.academia.edu/Documents/in/Estimator"},{"id":2555488,"name":"econometrica","url":"https://www.academia.edu/Documents/in/econometrica"}],"urls":[{"id":36971829,"url":"https://www.econstor.eu/bitstream/10419/160853/1/lis-wps-181.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111265588"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111265588/Moments_of_IV_and_JIVE_estimators"><img alt="Research paper thumbnail of Moments of IV and JIVE estimators" class="work-thumbnail" src="https://attachments.academia-assets.com/108849034/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111265588/Moments_of_IV_and_JIVE_estimators">Moments of IV and JIVE estimators</a></div><div class="wp-workCard_item"><span>Econometrics Journal</span><span>, Oct 25, 2007</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We develop a method based on the use of polar coordinates to investigate the existence of moments...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We develop a method based on the use of polar coordinates to investigate the existence of moments for instrumental variables and related estimators in the linear regression model. For generalized IV estimators, we obtain familiar results. For JIVE, we obtain the new result that this estimator has no moments at all. Simulation results illustrate the consequences of its lack of moments. JEL codes: C100, C120, C300 This research was supported, in part, by grants from the Social Sciences and Humanities Research Council of Canada. We are grateful to two anonymous referees for comments on earlier versions.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="44d5cdab85b8ec82ecb55b9bda7e41cf" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:108849034,&quot;asset_id&quot;:111265588,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/108849034/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111265588"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111265588"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111265588; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111265588]").text(description); $(".js-view-count[data-work-id=111265588]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111265588; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111265588']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "44d5cdab85b8ec82ecb55b9bda7e41cf" } } $('.js-work-strip[data-work-id=111265588]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111265588,"title":"Moments of IV and JIVE estimators","internal_url":"https://www.academia.edu/111265588/Moments_of_IV_and_JIVE_estimators","owner_id":33782563,"coauthors_can_edit":true,"owner":{"id":33782563,"first_name":"Russell","middle_initials":null,"last_name":"Davidson","page_name":"RussellDavidson","domain_name":"mcgill","created_at":"2015-08-10T07:28:19.700-07:00","display_name":"Russell Davidson","url":"https://mcgill.academia.edu/RussellDavidson"},"attachments":[{"id":108849034,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108849034/thumbnails/1.jpg","file_name":"qed_wp_1085.pdf","download_url":"https://www.academia.edu/attachments/108849034/download_file","bulk_download_file_name":"Moments_of_IV_and_JIVE_estimators.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108849034/qed_wp_1085-libre.pdf?1702413235=\u0026response-content-disposition=attachment%3B+filename%3DMoments_of_IV_and_JIVE_estimators.pdf\u0026Expires=1740564785\u0026Signature=KyiUvnhjWxUVvo3rhdkZJNdyxP~GAB2LGgIcIiiLNo3rLv3rms~G9mmqbmWQbyVYM9WrLV62qa3sJw-wzF20tnSYHmSbQaYTQalIedFA4iFlDoMBZbCuN8j0bbJolUc9VekiFkmYUsFDoWJu8SkSDH5WEjOKjWlJuLE4mfqelbux4dMY3-sSQFUKVwashBSbIgcNpW3NOJ2L~SwW5MCfGGGjr5KN5ZxF0i3b5Wd1GZfxePa2RT5qgW4RBayAeFsSK5JmMgjxVOc8zJGMpNIrMTcs5B9bScSFpq3lVcqRlOYzEXBpZnrGpxr3wIGyxTlgDDluO89IfSmJiXtR~cNjcg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111265587"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/111265587/Tests_for_Model_Specification_in_the_Presence_of_Alternative_Hypotheses_Some_Further_Results"><img alt="Research paper thumbnail of Tests for Model Specification in the Presence of Alternative Hypotheses: Some Further Results" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/111265587/Tests_for_Model_Specification_in_the_Presence_of_Alternative_Hypotheses_Some_Further_Results">Tests for Model Specification in the Presence of Alternative Hypotheses: Some Further Results</a></div><div class="wp-workCard_item"><span>RePEc: Research Papers in Economics</span><span>, 1981</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract In Davidson and MacKinnon (1981), two of the present authors proposed a novel and very s...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract In Davidson and MacKinnon (1981), two of the present authors proposed a novel and very simple procedure for testing the specification of a nonlinear regression model against the evidence provided by a non-nested alternative. In this paper we extend their results in several directions. First, we relax a number of the assumptions of the previous paper; we admit the possibility that the nonlinear regression functions may depend on lagged dependent variables, and we do not require that the error terms be normally distributed. Second, we show how the earlier procedure may straightforwardly be generalized to the case where the two non-nested models involve different transformations of the dependent variable. Finally, we propose a simple procedure for testing non-nested linear regression models which have endogenous variables on the right-hand side, and have therefore been estimated by two-stage least squares.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111265587"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111265587"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111265587; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111265587]").text(description); $(".js-view-count[data-work-id=111265587]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111265587; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111265587']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=111265587]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111265587,"title":"Tests for Model Specification in the Presence of Alternative Hypotheses: Some Further Results","internal_url":"https://www.academia.edu/111265587/Tests_for_Model_Specification_in_the_Presence_of_Alternative_Hypotheses_Some_Further_Results","owner_id":33782563,"coauthors_can_edit":true,"owner":{"id":33782563,"first_name":"Russell","middle_initials":null,"last_name":"Davidson","page_name":"RussellDavidson","domain_name":"mcgill","created_at":"2015-08-10T07:28:19.700-07:00","display_name":"Russell Davidson","url":"https://mcgill.academia.edu/RussellDavidson","email":"T2NoUjJ5TjFkL2FJN0dmMjZGdVY4NWZhMVgraG9xRkh3QkNMOXlpeGE0eFZPajZ6anZNV0FxQzRCMFl5b1hJRS0tVng2SEFLdDZsU0REMWE2V240OEZQdz09--b83691bb0336e25364e8d2577f1aa5756deb1fea"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="3361421" id="papers"><div class="js-work-strip profile--work_container" data-work-id="125630183"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125630183/Essays_in_comparative_dynamics"><img alt="Research paper thumbnail of Essays in comparative dynamics" class="work-thumbnail" src="https://attachments.academia-assets.com/119637608/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125630183/Essays_in_comparative_dynamics">Essays in comparative dynamics</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In the second section of the essay, it is assumed that some externality arises which adversely af...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In the second section of the essay, it is assumed that some externality arises which adversely affects urban life and which provokes people to move out to suburbs. The consequences of this are studied and two different kinds of dynamical evolution can be distinguished. One, in which house construction in the suburbs is slow enough to make it necessary for new construction to continue in the city, tends not to be disastrous for the city; the other, in which all urban construction stops when the externality arises, usually leads to complete decay of the city. Throughout the thesis there is an emphasis on the differences in approach between static or quasistatic problems and dynamic ones.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="804215c2bceb4c440fe36d065c940e69" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:119637608,&quot;asset_id&quot;:125630183,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/119637608/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125630183"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125630183"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125630183; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125630183]").text(description); $(".js-view-count[data-work-id=125630183]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125630183; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125630183']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "804215c2bceb4c440fe36d065c940e69" } } $('.js-work-strip[data-work-id=125630183]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125630183,"title":"Essays in comparative dynamics","internal_url":"https://www.academia.edu/125630183/Essays_in_comparative_dynamics","owner_id":33782563,"coauthors_can_edit":true,"owner":{"id":33782563,"first_name":"Russell","middle_initials":null,"last_name":"Davidson","page_name":"RussellDavidson","domain_name":"mcgill","created_at":"2015-08-10T07:28:19.700-07:00","display_name":"Russell Davidson","url":"https://mcgill.academia.edu/RussellDavidson"},"attachments":[{"id":119637608,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119637608/thumbnails/1.jpg","file_name":"2.pdf","download_url":"https://www.academia.edu/attachments/119637608/download_file","bulk_download_file_name":"Essays_in_comparative_dynamics.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119637608/2-libre.pdf?1731868346=\u0026response-content-disposition=attachment%3B+filename%3DEssays_in_comparative_dynamics.pdf\u0026Expires=1740564784\u0026Signature=Aeq5Qq7Rc-om1x7GE3poSufT5nph5wEgB-gd3B2SgYSvJmG0PSxmbu1p-9fHiTnnEXmCitV~sqhQ1HoOaLfsMT0an97pH7Zlr~Zwo0YtVQI6PrxMQ0tqritNIe0QF-0nGXkiWXxpkKcMoUW0b1Gnwl8CL3064KpfIQVJrRirnI4mGjWRDZtKkbDWhZwcTAA-UC65OopJEs61jGHawD8bMMj4h59bNoPdsVgqaYnuTRZA1gwitGdpLYUPcuYRo0nGp-GiOUrvZeQmEwTwYFHfQznLlJoKu5i3oISs-gXaCogiWuGIZ7xNoC0sjnUKnveAPD~7LyhdrMuFGSM5h-GbKg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125630182"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125630182/Asymptotic_and_bootstrap_inference_for_inequality_and_poverty_measures"><img alt="Research paper thumbnail of Asymptotic and bootstrap inference for inequality and poverty measures" class="work-thumbnail" src="https://attachments.academia-assets.com/119637607/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125630182/Asymptotic_and_bootstrap_inference_for_inequality_and_poverty_measures">Asymptotic and bootstrap inference for inequality and poverty measures</a></div><div class="wp-workCard_item"><span>Journal of Econometrics</span><span>, Nov 1, 2007</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A random sample drawn from a population would appear to offer an ideal opportunity to use the boo...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A random sample drawn from a population would appear to offer an ideal opportunity to use the bootstrap in order to perform accurate inference, since the observations of the sample are IID. In this paper, Monte Carlo results suggest that bootstrapping a commonly used index of inequality leads to inference that is not accurate even in very large samples, although inference with poverty indices is satisfactory. We find that the major cause is the extreme sensitivity of many inequality indices to the exact nature of the upper tail of the income distribution. This leads us to study two non-standard bootstraps, the m out of n bootstrap, which is valid in some situations where the standard bootstrap fails, and a bootstrap in which the upper tail is modelled parametrically. Monte Carlo results suggest that accurate inference can be achieved with this last method in moderately large samples.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e939241d493b5771a22877e710f328f5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:119637607,&quot;asset_id&quot;:125630182,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/119637607/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125630182"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125630182"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125630182; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125630182]").text(description); $(".js-view-count[data-work-id=125630182]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125630182; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125630182']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e939241d493b5771a22877e710f328f5" } } $('.js-work-strip[data-work-id=125630182]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125630182,"title":"Asymptotic and bootstrap inference for inequality and poverty measures","internal_url":"https://www.academia.edu/125630182/Asymptotic_and_bootstrap_inference_for_inequality_and_poverty_measures","owner_id":33782563,"coauthors_can_edit":true,"owner":{"id":33782563,"first_name":"Russell","middle_initials":null,"last_name":"Davidson","page_name":"RussellDavidson","domain_name":"mcgill","created_at":"2015-08-10T07:28:19.700-07:00","display_name":"Russell Davidson","url":"https://mcgill.academia.edu/RussellDavidson","email":"WjVEZUhScWJhRDA0OVhPd3JHMm5WcjdDV3pKSXlXQmppYzBIZ1pKZURWQjhZUzk1RHo5aGlPY3NjNDY4bEpVRy0tSlIvcjZLSHpCQUlWM2dPM2VRQVh4Zz09--adcac82df7f982d8fdf5dda6d5e2bba22d987d53"},"attachments":[{"id":119637607,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119637607/thumbnails/1.jpg","file_name":"Davidson_Flachaire_04.pdf","download_url":"https://www.academia.edu/attachments/119637607/download_file","bulk_download_file_name":"Asymptotic_and_bootstrap_inference_for_i.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119637607/Davidson_Flachaire_04-libre.pdf?1731868106=\u0026response-content-disposition=attachment%3B+filename%3DAsymptotic_and_bootstrap_inference_for_i.pdf\u0026Expires=1740520485\u0026Signature=BSjRr23CrwErMGY33GB42twNbYg1v1Nt7PYrOwLg5hlickfyXMme07T1LJVLVn--l3Xmt~CElxnjxfGMv3FVeKIzI~QMOtQTzsFCQmXQKDSNTNm3Y1c3r1W-~WUaPqCRQwSZAJhrQMC0LRKqomh91HbKYmRrgjz958Oaekw71~F0iI~8h789B2-r4oy4pZUS20zVcTO7kZCs4T6nNIkECAte8jSX69enTwqlgW6qY914AsiGoSPqSyXP~pUExHl7Wv8zbKbi4zxlOBOwAFqJYZLKGqnM45VNGZgcBOvYofyj6GTomo~1Jbcu2kY35YerSCUyCpbL39Gl~4uuM3ks3A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119637606,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119637606/thumbnails/1.jpg","file_name":"Davidson_Flachaire_04.pdf","download_url":"https://www.academia.edu/attachments/119637606/download_file","bulk_download_file_name":"Asymptotic_and_bootstrap_inference_for_i.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119637606/Davidson_Flachaire_04-libre.pdf?1731868100=\u0026response-content-disposition=attachment%3B+filename%3DAsymptotic_and_bootstrap_inference_for_i.pdf\u0026Expires=1740520485\u0026Signature=TpqwfI2l7md-TdBNpH2v8UxByqA0EGchM7pxbL8WJs8XiL6sMB-xWvodqrMQJU2XW4laoB9RsHhkPpggTdxtLFOOf63rzjqEXc89Llbji~XR4co3hdvuxTz9hHM8YoCjJZbQqCbkPgU0vp33zMxzOV~YrDKUcRloTGUO4AkrlWp9HPW5LtyPBwFXa563Ook8s8wTltOsOz03Nqov8EVFb5Q~HKsHInVxmOOILSHQT5gi65t2FEr~esx-frBUoBJWMtKUCLGvfd9oBy0dL9THF~PKYCErrncixRK529wddcGmspEbTRxf0EUuVe1QWm2Wh8vHqi1UMGfGXJh7uarnvg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125630180"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125630180/A_Parametric_Bootstrap_for_Heavy_Tailed_Distributions"><img alt="Research paper thumbnail of A Parametric Bootstrap for Heavy-Tailed Distributions" class="work-thumbnail" src="https://attachments.academia-assets.com/119637605/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125630180/A_Parametric_Bootstrap_for_Heavy_Tailed_Distributions">A Parametric Bootstrap for Heavy-Tailed Distributions</a></div><div class="wp-workCard_item"><span>Econometric Theory</span><span>, Sep 8, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">It is known that Efron&#39;s resampling bootstrap of the mean of random variables with common distrib...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">It is known that Efron&#39;s resampling bootstrap of the mean of random variables with common distribution in the domain of attraction of the stable laws with infinite variance is not consistent, in the sense that the limiting distribution of the bootstrap mean is not the same as the limiting distribution of the mean from the real sample. Moreover, the limiting distribution of the bootstrap mean is random and unknown. The conventional remedy for this problem, at least asymptotically, is either the m out of n bootstrap or subsampling. However, we show that both these procedures can be quite unreliable in other than very large samples. A parametric bootstrap is derived by considering the distribution of the bootstrap P value instead of that of the bootstrap statistic. The quality of inference based on the parametric bootstrap is examined in a simulation study, and is found to be satisfactory with heavy-tailed distributions unless the tail index is close to 1 and the distribution is heavily skewed.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="634578f32bbdaa6319946f83eb99550f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:119637605,&quot;asset_id&quot;:125630180,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/119637605/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125630180"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125630180"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125630180; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125630180]").text(description); $(".js-view-count[data-work-id=125630180]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125630180; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125630180']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "634578f32bbdaa6319946f83eb99550f" } } $('.js-work-strip[data-work-id=125630180]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125630180,"title":"A Parametric Bootstrap for Heavy-Tailed Distributions","internal_url":"https://www.academia.edu/125630180/A_Parametric_Bootstrap_for_Heavy_Tailed_Distributions","owner_id":33782563,"coauthors_can_edit":true,"owner":{"id":33782563,"first_name":"Russell","middle_initials":null,"last_name":"Davidson","page_name":"RussellDavidson","domain_name":"mcgill","created_at":"2015-08-10T07:28:19.700-07:00","display_name":"Russell Davidson","url":"https://mcgill.academia.edu/RussellDavidson","email":"ZWlJUzFTS2VKdExaOGRRNkhDRVpkSnhjNU5SSHlPajYzV0YxZEMzcG0xNGNNVE5JNGJpN016NjRxSDcvUTN4YS0tNStncHFmN2dNMjd6aGU5TFF2UWl0Zz09--b2db66135422499743e3720092aa6db1dd7dad3f"},"attachments":[{"id":119637605,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119637605/thumbnails/1.jpg","file_name":"DT2009-41.pdf","download_url":"https://www.academia.edu/attachments/119637605/download_file","bulk_download_file_name":"A_Parametric_Bootstrap_for_Heavy_Tailed.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119637605/DT2009-41-libre.pdf?1731868099=\u0026response-content-disposition=attachment%3B+filename%3DA_Parametric_Bootstrap_for_Heavy_Tailed.pdf\u0026Expires=1740520485\u0026Signature=Qg-7Y7xqX-yLLxa58qgFypoZct7KklpsJ2eReICgwleecx2NKPI0pSEizY3-1gMXC81FsVLj17L1VE9VKI4uC3gth5rUAGodOY5TieJz8yaIkAwQDjT1~PW7E2AjglDB0QGumi7o4Yl1EFsq5iV~qcHmp85XIV~ewyObELulcUiYnZ0ZBFhh3qg6YDaiBZZBxUZYMTpG3UMKWhPtaUnVnnoS0Fql1oUx0k62S9m0RdzhEuACE2pJq~a9qsIkEYlPy2lXgkTCHipAULXSDuPW8cICF1I3rAfE1tYl1cRufUBrhujFRGcQBxcC1cHHTzqoLEG2JmjA-ItIsv4n~OrfZA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119637604,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119637604/thumbnails/1.jpg","file_name":"DT2009-41.pdf","download_url":"https://www.academia.edu/attachments/119637604/download_file","bulk_download_file_name":"A_Parametric_Bootstrap_for_Heavy_Tailed.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119637604/DT2009-41-libre.pdf?1731868102=\u0026response-content-disposition=attachment%3B+filename%3DA_Parametric_Bootstrap_for_Heavy_Tailed.pdf\u0026Expires=1740520485\u0026Signature=JCDVxQY1Z5ay6GWtACWcumOuXvPhCE9YBYsgeB7nCSYpPGeA7vF37HqrIzXAQDVVGfcjIMZ9JFz5LVtVTIqZBy40PRer3lk9ISNh5O1hvcKmcsuTDwi0Nc6IZb1SDuRdpl0j7ZeipTGYLSHS32euOR2PTIBpvgJJR69zh-wSTmu~a5VAC9u9-tcZMHde0lx0jeKKdEfVt9NU0h1kx~jbaE6WGYOI8g8O6Wco9g57kHVZpekpFi0Y2jjxXTCJBi3pAHdeZqJ3Pmu8hQQdeipEriGCG~~NSM0Z4ulH1XR9opypEJ~S0FetzH76PuXqs24gh4-DslrvAiyrVaaDESYN8w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125630168"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125630168/Testing_for_Restricted_Stochastic_Dominance"><img alt="Research paper thumbnail of Testing for Restricted Stochastic Dominance" class="work-thumbnail" src="https://attachments.academia-assets.com/119637597/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125630168/Testing_for_Restricted_Stochastic_Dominance">Testing for Restricted Stochastic Dominance</a></div><div class="wp-workCard_item"><span>Social Science Research Network</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Asymptotic and bootstrap tests are studied for testing whether there is a relation of stochastic ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Asymptotic and bootstrap tests are studied for testing whether there is a relation of stochastic dominance between two distributions. These tests have a null hypothesis of nondominance, with the advantage that, if this null is rejected, then all that is left is dominance. This also leads us to define and focus on restricted stochastic dominance, the only empirically useful form of dominance relation that we can seek to infer in many settings. One testing procedure that we consider is based on an empirical likelihood ratio. The computations necessary for obtaining a test statistic also provide estimates of the distributions under study that satisfy the null hypothesis, on the frontier between dominance and nondominance. These estimates can be used to perform dominance tests that can turn out to provide much improved reliability of inference compared with the asymptotic tests so far proposed in the literature.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="44d550cfa820e23729eacc04d7e7807b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:119637597,&quot;asset_id&quot;:125630168,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/119637597/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125630168"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125630168"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125630168; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125630168]").text(description); $(".js-view-count[data-work-id=125630168]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125630168; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125630168']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "44d550cfa820e23729eacc04d7e7807b" } } $('.js-work-strip[data-work-id=125630168]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125630168,"title":"Testing for Restricted Stochastic Dominance","internal_url":"https://www.academia.edu/125630168/Testing_for_Restricted_Stochastic_Dominance","owner_id":33782563,"coauthors_can_edit":true,"owner":{"id":33782563,"first_name":"Russell","middle_initials":null,"last_name":"Davidson","page_name":"RussellDavidson","domain_name":"mcgill","created_at":"2015-08-10T07:28:19.700-07:00","display_name":"Russell Davidson","url":"https://mcgill.academia.edu/RussellDavidson","email":"TGtDanMwS1FUTC9sb01TamEwdUxLK0Q2ODIzdVdpSElKcVJnOUNLZlBndFJLQnRFZjJPTFJQTmlkMDIvZzg5SC0tbStuc1RMYWlpQ1JpVlVHdEg0bkZiUT09--c1a0ee6bea578da4a69373806f63c68c5f2523e7"},"attachments":[{"id":119637597,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119637597/thumbnails/1.jpg","file_name":"DT2009-39.pdf","download_url":"https://www.academia.edu/attachments/119637597/download_file","bulk_download_file_name":"Testing_for_Restricted_Stochastic_Domina.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119637597/DT2009-39-libre.pdf?1731868095=\u0026response-content-disposition=attachment%3B+filename%3DTesting_for_Restricted_Stochastic_Domina.pdf\u0026Expires=1740520486\u0026Signature=IjkNnj1swWTRBoPad7yiHmG3qXQHtGWgb6Tno6OcI9ZTzZfSLdLmYJANdWIV9yZTeHnUD1IT6Qq0ctkkkp05dBBtJi0hJdSceA93T9pm6-~cSmXRiEL-bvVigKiFQ1av1AzfpMZTLzQzf8uRN3tJcWWLgnUh-ECIewz4iwypIr4e6an6tryNyLAqkWsmF3JH7d~8At0VaWzQVHtDZWqA1WZWGDlnGOAacx-AR-bxq0xXrNkNrjBapDs5ljMAaw1NtyWUN714qT6TMi4j3NT7U7VyyaHiKhuyUnW4cKtxF90Rx6vNmXf30zMPNaYhKGZnrOZisu5r4zeQ~Tz-k-W-cA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119637596,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119637596/thumbnails/1.jpg","file_name":"DT2009-39.pdf","download_url":"https://www.academia.edu/attachments/119637596/download_file","bulk_download_file_name":"Testing_for_Restricted_Stochastic_Domina.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119637596/DT2009-39-libre.pdf?1731868096=\u0026response-content-disposition=attachment%3B+filename%3DTesting_for_Restricted_Stochastic_Domina.pdf\u0026Expires=1740520486\u0026Signature=OvPT4HzWtPkRY5nNfdbcpa~SwI0apJbeRx7tNZi5fndNbIq3E~mEU1gNnmlIvM3M-keqXemhRk6Sowyv0jnK1y30Ye2lxslc37u4VLeM2TGyWpAYLLFx2JEbwhWFveJc9Hee0DwSBChs0GKpWtMLi2zHWzJ10b4u2PBfU282hfWYlNRBolJk65YnhwXxintRcqPpywb204JkGvGYbmBfPJzjVEKCSM4mnJXbWe~mWK3KzAh9JmC1jJLuKIbhGk54MbX-Vn0qJT7ySaQ701Obkkq0mx2QEPPL72NYQPsU9FiIlBcuMsyzOQGWLQNiQLC4qKPuCrJibLB5M1u3ViiDpw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="123020299"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/123020299/Testing_for_Restricted_Stochastic_Dominance"><img alt="Research paper thumbnail of Testing for Restricted Stochastic Dominance" class="work-thumbnail" src="https://attachments.academia-assets.com/117554062/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/123020299/Testing_for_Restricted_Stochastic_Dominance">Testing for Restricted Stochastic Dominance</a></div><div class="wp-workCard_item"><span>Social Science Research Network</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Asymptotic and bootstrap tests are studied for testing whether there is a relation of stochastic ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Asymptotic and bootstrap tests are studied for testing whether there is a relation of stochastic dominance between two distributions. These tests have a null hypothesis of nondominance, with the advantage that, if this null is rejected, then all that is left is dominance. This also leads us to define and focus on restricted stochastic dominance, the only empirically useful form of dominance relation that we can seek to infer in many settings. One testing procedure that we consider is based on an empirical likelihood ratio. The computations necessary for obtaining a test statistic also provide estimates of the distributions under study that satisfy the null hypothesis, on the frontier between dominance and nondominance. These estimates can be used to perform dominance tests that can turn out to provide much improved reliability of inference compared with the asymptotic tests so far proposed in the literature.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4f6883cdf8bc4c051ba6a8ae884b450a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:117554062,&quot;asset_id&quot;:123020299,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/117554062/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="123020299"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="123020299"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 123020299; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=123020299]").text(description); $(".js-view-count[data-work-id=123020299]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 123020299; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='123020299']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4f6883cdf8bc4c051ba6a8ae884b450a" } } $('.js-work-strip[data-work-id=123020299]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":123020299,"title":"Testing for Restricted Stochastic Dominance","internal_url":"https://www.academia.edu/123020299/Testing_for_Restricted_Stochastic_Dominance","owner_id":33782563,"coauthors_can_edit":true,"owner":{"id":33782563,"first_name":"Russell","middle_initials":null,"last_name":"Davidson","page_name":"RussellDavidson","domain_name":"mcgill","created_at":"2015-08-10T07:28:19.700-07:00","display_name":"Russell Davidson","url":"https://mcgill.academia.edu/RussellDavidson","email":"YnFCR0hpQitzSkNTMm9pMXJMeE5SeW50MHpCeUdNelhoV3dsVFdjWUFaQmR2cFprbEpwTzdHcisxVWZJamxWWC0tSkFJd1B4Ris1NEJsREZZQ0FzcWtKQT09--c0f342fc89493aec95677a74ded965400b804148"},"attachments":[{"id":117554062,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117554062/thumbnails/1.jpg","file_name":"n583xz81w.pdf","download_url":"https://www.academia.edu/attachments/117554062/download_file","bulk_download_file_name":"Testing_for_Restricted_Stochastic_Domina.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117554062/n583xz81w-libre.pdf?1724080137=\u0026response-content-disposition=attachment%3B+filename%3DTesting_for_Restricted_Stochastic_Domina.pdf\u0026Expires=1740520486\u0026Signature=BkZa6YnziNZRIgutJzOn67r-j~y3NA9MgMSU9UV0kLfVu62V8V075BrH2waOcfeUydAV0HDFZ7BFCfc2tLICniMFeJf52xDUq~BG3NnFWe21fQ98zUnYaBYxmCgQYmQ0-hVNKo-LWkYx-y9Z5-4iAqp~73GvBnk6i2Z96pt2tUyoFwWHFdAf3k6Xz2w~wfcumjEpPuxztx4ommoY7gwmYGSq5Nnc0QG8r3iqz9qYK24up15PCes05PlpbEEEJ-XNrv8q76ZgyS0ZskkzjvfF0u5MrIuoCWZrfgpq8WkUK8~UTw3NuJyjPgdCUmhutGQPzikId6fCPqiOSJDcRNhptQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":117554061,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117554061/thumbnails/1.jpg","file_name":"n583xz81w.pdf","download_url":"https://www.academia.edu/attachments/117554061/download_file","bulk_download_file_name":"Testing_for_Restricted_Stochastic_Domina.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117554061/n583xz81w-libre.pdf?1724080130=\u0026response-content-disposition=attachment%3B+filename%3DTesting_for_Restricted_Stochastic_Domina.pdf\u0026Expires=1740520486\u0026Signature=FoRbPek6u9PimPh71Hdf-5pwnkyUURQVFdWl6fLuabn7wP0e72M6OGCPZyR5XzmvlemLkmo7nAGsb2FEaCo2iyqbwp8Io2T0r1OYC~jQ3j5205h68zXMrkNyz-SUxS2NsmyK4eDnkxk57tzeeC5qdeGldkJGQlMLrv3ld-3sERPWC2JRdVBDreKhnSKWI8NyS8j-ie6kRleKdvPppbNnAosz-tWBNGhDcGgq4hTMVGvM171XNexqO1eHL0-Wkipjar4JdXLsk8VdgiyH~qPJEuuPwk6Rk9brF1921LvVmkwK6qOI8qS74q1nw7t28fINfEMnTbktsyXCj3pbAfkn9A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121294575"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/121294575/Stochastic_Dominance"><img alt="Research paper thumbnail of Stochastic Dominance" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/121294575/Stochastic_Dominance">Stochastic Dominance</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121294575"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121294575"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121294575; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121294575]").text(description); $(".js-view-count[data-work-id=121294575]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121294575; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121294575']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=121294575]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121294575,"title":"Stochastic Dominance","internal_url":"https://www.academia.edu/121294575/Stochastic_Dominance","owner_id":33782563,"coauthors_can_edit":true,"owner":{"id":33782563,"first_name":"Russell","middle_initials":null,"last_name":"Davidson","page_name":"RussellDavidson","domain_name":"mcgill","created_at":"2015-08-10T07:28:19.700-07:00","display_name":"Russell Davidson","url":"https://mcgill.academia.edu/RussellDavidson","email":"Uy9Hb3lNTlY5LzFYY3d5R1k4OUlrVTBBY08xc2Fib0RWWE5PVjExT2J3UFBOWmVBMlU4RUQ3WEUrVzlOZndqaC0tQzRZbjdLVlNsMytBREZabGRCWTdTdz09--33e9aba51794ab2cb2a694f5cf773e9c9ff68e88"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="115150495"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/115150495/Wild_Bootstrap_Tests_for_IV_Regression"><img alt="Research paper thumbnail of Wild Bootstrap Tests for IV Regression" class="work-thumbnail" src="https://attachments.academia-assets.com/111642967/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/115150495/Wild_Bootstrap_Tests_for_IV_Regression">Wild Bootstrap Tests for IV Regression</a></div><div class="wp-workCard_item"><span>RePEc: Research Papers in Economics</span><span>, Aug 1, 2007</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We propose a wild bootstrap procedure for linear regression models estimated by instrumental vari...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We propose a wild bootstrap procedure for linear regression models estimated by instrumental variables. Like other bootstrap procedures that we have proposed elsewhere, it uses efficient estimates of the reduced-form equation(s). Unlike them, it takes account of possible heteroskedasticity of unknown form. We apply this procedure to t tests, including heteroskedasticity-robust t tests, and provide simulation evidence that it works far better than older methods, such as the pairs bootstrap. We also show how to obtain reliable confidence intervals by inverting bootstrap tests. An empirical example illustrates the utility of these procedures.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1c35fc43ad6a906d88cd4c0b616af2f5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:111642967,&quot;asset_id&quot;:115150495,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/111642967/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="115150495"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="115150495"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 115150495; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=115150495]").text(description); $(".js-view-count[data-work-id=115150495]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 115150495; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='115150495']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1c35fc43ad6a906d88cd4c0b616af2f5" } } $('.js-work-strip[data-work-id=115150495]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":115150495,"title":"Wild Bootstrap Tests for IV Regression","internal_url":"https://www.academia.edu/115150495/Wild_Bootstrap_Tests_for_IV_Regression","owner_id":33782563,"coauthors_can_edit":true,"owner":{"id":33782563,"first_name":"Russell","middle_initials":null,"last_name":"Davidson","page_name":"RussellDavidson","domain_name":"mcgill","created_at":"2015-08-10T07:28:19.700-07:00","display_name":"Russell Davidson","url":"https://mcgill.academia.edu/RussellDavidson"},"attachments":[{"id":111642967,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/111642967/thumbnails/1.jpg","file_name":"wildbootstraptests.pdf","download_url":"https://www.academia.edu/attachments/111642967/download_file","bulk_download_file_name":"Wild_Bootstrap_Tests_for_IV_Regression.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/111642967/wildbootstraptests-libre.pdf?1708416381=\u0026response-content-disposition=attachment%3B+filename%3DWild_Bootstrap_Tests_for_IV_Regression.pdf\u0026Expires=1740564784\u0026Signature=RZxIYh~dRvAm45x8RQFlKDxva3jwKnVEe0vRBQkf2jfFW3~w~-Wwi3IMtvhYtDuV1RvRls6tP2ESyjKLunhdc07hS01bWUmt00Hvr0BJJgWYGbKL5G9y4eV-5TnQSgGrc2yG5wtctN42coeKXQNhvaWoILgOe5JuwlEZrAQKyN7Vb57umffOkjKhDML86HSYTV7ugzzVlJXU~apV6ykxX9RYNy73p2c4bMFpNW5c9IsbA2cFEHnRLi~wYNXEzFHPkHqE4xbFEtVaBDJ~TtTRdSNweLmVBff7WB~hQBVvLqYW4c3NLWwsucq78jP8L1rpiB~ldml8GmpcL6IHipsPuw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="115150493"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/115150493/Statistical_Inference_for_Stochastic_Dominance_and_for_the_Measurement_of_Poverty_and_Inequality"><img alt="Research paper thumbnail of Statistical Inference for Stochastic Dominance and for the Measurement of Poverty and Inequality" class="work-thumbnail" src="https://attachments.academia-assets.com/111642966/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/115150493/Statistical_Inference_for_Stochastic_Dominance_and_for_the_Measurement_of_Poverty_and_Inequality">Statistical Inference for Stochastic Dominance and for the Measurement of Poverty and Inequality</a></div><div class="wp-workCard_item"><span>RePEc: Research Papers in Economics</span><span>, Apr 1, 1998</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We derive the asymptotic sampling distribution of various estimators frequently used to order dis...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We derive the asymptotic sampling distribution of various estimators frequently used to order distributions in terms of poverty, w elfare and inequality. This includes estimators of most of the poverty indices currently in use, as well as estimators of the curves used to infer stochastic dominance of any order. These curves can beused to determine whether poverty, inequality or social welfare is greater in one distribution than in another for general classes of indices. We also derive the sampling distribution of the maximal poverty lines or income censoring thresholds up to which we may con dently assert that poverty or social welfare is greater in one distribution than in another. The sampling distribution of convenient estimators for dual approaches to the measurement o f p o v erty is also established. The statistical results are established for deterministic or stochastic poverty lines as well as for paired or independent samples of incomes. Our results are brie y illustrated using data for 6 countries drawn from the Luxembourg Income Study data bases. On etudie les propri et es asymptotiques de plusieurs estimateurs fr equemment utilis es pour ordonner les r epartitions de revenus en termes de pauvret e, bien-être social et in egalit e. Ces estimateurs incluent les estimateurs de la plupart des indices de pauvret e couramment en usage ainsi que les estimateurs des courbes utiles pour l&#39;inf erence de la dominance stochastique de n&#39;importe quel ordre. Ces courbes nous permettent d e d eterminer si la pauvret e, l&#39;in egalit e ou le bien-être social sont plus elev es dans une r epartition que dans une autre pour des classes g en erales d&#39;indices. On etudie aussi la distribution echantillonnale des seuils maximum de pauvret e ou de censure des revenus jusqu&#39;auxquels on peut a rmer sans ambigu t e que la pauvret e ou le bien-être social sont plus elev es dans une r epartition de revenus que dans une autre. La distribution echantillonnale d&#39;estimateurs pour l&#39;approche duale a la mesure de la pauvret e est aussi d eriv ee. Les r esultats statistiques s&#39;appliquent a des seuils d eterministes ou stochastiques et a des echantillons d ependants ou ind ependants. On illustre bri evement nos r esultats a l&#39;aide de donn ees sur 6 pays tir ees des banques de donn ees du Luxembourg Income Study.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7802f5f1716695f0e9c7c5e6a650e9eb" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:111642966,&quot;asset_id&quot;:115150493,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/111642966/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="115150493"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="115150493"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 115150493; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=115150493]").text(description); $(".js-view-count[data-work-id=115150493]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 115150493; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='115150493']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7802f5f1716695f0e9c7c5e6a650e9eb" } } $('.js-work-strip[data-work-id=115150493]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":115150493,"title":"Statistical Inference for Stochastic Dominance and for the Measurement of Poverty and Inequality","internal_url":"https://www.academia.edu/115150493/Statistical_Inference_for_Stochastic_Dominance_and_for_the_Measurement_of_Poverty_and_Inequality","owner_id":33782563,"coauthors_can_edit":true,"owner":{"id":33782563,"first_name":"Russell","middle_initials":null,"last_name":"Davidson","page_name":"RussellDavidson","domain_name":"mcgill","created_at":"2015-08-10T07:28:19.700-07:00","display_name":"Russell Davidson","url":"https://mcgill.academia.edu/RussellDavidson"},"attachments":[{"id":111642966,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/111642966/thumbnails/1.jpg","file_name":"181.pdf","download_url":"https://www.academia.edu/attachments/111642966/download_file","bulk_download_file_name":"Statistical_Inference_for_Stochastic_Dom.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/111642966/181-libre.pdf?1708416390=\u0026response-content-disposition=attachment%3B+filename%3DStatistical_Inference_for_Stochastic_Dom.pdf\u0026Expires=1740111913\u0026Signature=fF4rn1E6w7SGB1lWsjGDEPBWBqNUYBarXsMlKkVzscbFjVb6xeXDQhd0ctbz0znbP7Jkk2QfLZ9EyHcyV4PR2WYSi-o~VF4ozQIGFzx~a43agOOBUEolhGKAaXOKRujl2kZ7FkQP0j-P4MxFdhRERpsFT6PFFrZeUv5tbeAkn7c7qUBfugO6yW6Bv1kr2XMlWhcoCoP9pS4PyH6gpClwKlVxDT5U2Hgrm9LOf~NdYFg1F78VSyY2imoOiVq0JdsVqLC0~PJV7l-yqA9Gdoz1ezPLGj3wXUIOT-v~gioAxdNtbUp~5A6IzCtQcYJGI37M8lvCd~NB14zPys-WXujQcA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="115150491"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/115150491/Bootstrap_Tests_How_Many_Bootstraps"><img alt="Research paper thumbnail of Bootstrap Tests: How Many Bootstraps?" class="work-thumbnail" src="https://attachments.academia-assets.com/111642963/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/115150491/Bootstrap_Tests_How_Many_Bootstraps">Bootstrap Tests: How Many Bootstraps?</a></div><div class="wp-workCard_item"><span>RePEc: Research Papers in Economics</span><span>, Mar 1, 2001</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In practice, bootstrap tests must use a finite number of bootstrap samples. This means that the o...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In practice, bootstrap tests must use a finite number of bootstrap samples. This means that the outcome of the test will depend on the sequence of random numbers used to generate the bootstrap samples, and it necessarily results in some loss of power. We examine the extent of this power loss and propose a simple pretest procedure for choosing the number of bootstrap samples so as to minimize experimental randomness. Simulation experiments suggest that this procedure will work very well in practice. This research was supported, in part, by grants from the Social Sciences and Humanities Research Council of Canada. We are grateful to Joel Horowitz, Don Andrews, several referees, and numerous seminar participants for comments on earlier work.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e7be529bcf05474330f1c50fa403969e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:111642963,&quot;asset_id&quot;:115150491,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/111642963/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="115150491"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="115150491"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 115150491; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=115150491]").text(description); $(".js-view-count[data-work-id=115150491]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 115150491; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='115150491']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e7be529bcf05474330f1c50fa403969e" } } $('.js-work-strip[data-work-id=115150491]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":115150491,"title":"Bootstrap Tests: How Many Bootstraps?","internal_url":"https://www.academia.edu/115150491/Bootstrap_Tests_How_Many_Bootstraps","owner_id":33782563,"coauthors_can_edit":true,"owner":{"id":33782563,"first_name":"Russell","middle_initials":null,"last_name":"Davidson","page_name":"RussellDavidson","domain_name":"mcgill","created_at":"2015-08-10T07:28:19.700-07:00","display_name":"Russell Davidson","url":"https://mcgill.academia.edu/RussellDavidson"},"attachments":[{"id":111642963,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/111642963/thumbnails/1.jpg","file_name":"qed_wp_951.pdf","download_url":"https://www.academia.edu/attachments/111642963/download_file","bulk_download_file_name":"Bootstrap_Tests_How_Many_Bootstraps.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/111642963/qed_wp_951-libre.pdf?1708416373=\u0026response-content-disposition=attachment%3B+filename%3DBootstrap_Tests_How_Many_Bootstraps.pdf\u0026Expires=1740564785\u0026Signature=YWTIvPe8~~BJHHzD0OsaROWnJIunrJnqicZiQCUrBVPBHOpWYgD3OfUwIKFLQLjDdUvctVYXsqEh0P55jKA3fiR~IGbmUqOCzT~TR18Q9wnsAwX4nd~NcEyuslW4Rt5CfSJkpr7mpg030h3cgLFE7IluTDadlZYQgYNwyenbId4gjzrbJrofJB9eWmwvZJ38Ve5NqYYqx-4ZeGdRK1xJkTDl4K29j8pMVPMsBX0CnLj1LWKhLuvNSu~68A9f4SpNVdYWwXLPeF-2AZ~u5hj28veNw1kvPRQG8Tt9teUFKwgfDdH3RnK1K1kkMejURFMtvOMxQc2TBiUUfeOOFF8vSQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="115150485"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/115150485/Stochastic_Dominance"><img alt="Research paper thumbnail of Stochastic Dominance" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/115150485/Stochastic_Dominance">Stochastic Dominance</a></div><div class="wp-workCard_item"><span>The New Palgrave Dictionary of Economics</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="115150485"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="115150485"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 115150485; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=115150485]").text(description); $(".js-view-count[data-work-id=115150485]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 115150485; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='115150485']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=115150485]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":115150485,"title":"Stochastic Dominance","internal_url":"https://www.academia.edu/115150485/Stochastic_Dominance","owner_id":33782563,"coauthors_can_edit":true,"owner":{"id":33782563,"first_name":"Russell","middle_initials":null,"last_name":"Davidson","page_name":"RussellDavidson","domain_name":"mcgill","created_at":"2015-08-10T07:28:19.700-07:00","display_name":"Russell Davidson","url":"https://mcgill.academia.edu/RussellDavidson","email":"NG16ZlJRcTVwbnZ0Nnd2NEtLNHMxcklFWUlIUG5hd2xjVkEvMVZyM0ZXTmlSVGVhKzZ2bGZaVHkxbEVIMUtNUi0tWGVEcUR2eVg3TTI0NEJyeEEvUVg2Zz09--8664315f7178bb25ee9c23ef0b110fe01aab4999"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="115150441"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/115150441/Bootstrap_inference_in_a_linear_equation_estimated_by_instrumental_variables"><img alt="Research paper thumbnail of Bootstrap inference in a linear equation estimated by instrumental variables" class="work-thumbnail" src="https://attachments.academia-assets.com/111642928/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/115150441/Bootstrap_inference_in_a_linear_equation_estimated_by_instrumental_variables">Bootstrap inference in a linear equation estimated by instrumental variables</a></div><div class="wp-workCard_item"><span>RePEc: Research Papers in Economics</span><span>, Feb 1, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We study several tests for the coefficient of the single right-hand-side endogenous variable in a...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We study several tests for the coefficient of the single right-hand-side endogenous variable in a linear equation estimated by instrumental variables. We show that all the test statistics-Student&#39;s t, Anderson-Rubin, Kleibergen&#39;s K, and likelihood ratio (LR)-can be written as functions of six random quantities. This leads to a number of interesting results about the properties of the tests under weak-instrument asymptotics. We then propose several new procedures for bootstrapping the three non-exact test statistics and a conditional version of the LR test. These use more efficient estimates of the parameters of the reduced-form equation than existing procedures. When the best of these new procedures is used, K and conditional LR have excellent performance under the null, and LR also performs very well. However, power considerations suggest that the conditional LR test, bootstrapped using this new procedure when the sample size is not large, is probably the method of choice.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4f63b8ea5b2c027dea2049f7552577cf" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:111642928,&quot;asset_id&quot;:115150441,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/111642928/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="115150441"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="115150441"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 115150441; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=115150441]").text(description); $(".js-view-count[data-work-id=115150441]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 115150441; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='115150441']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4f63b8ea5b2c027dea2049f7552577cf" } } $('.js-work-strip[data-work-id=115150441]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":115150441,"title":"Bootstrap inference in a linear equation estimated by instrumental variables","internal_url":"https://www.academia.edu/115150441/Bootstrap_inference_in_a_linear_equation_estimated_by_instrumental_variables","owner_id":33782563,"coauthors_can_edit":true,"owner":{"id":33782563,"first_name":"Russell","middle_initials":null,"last_name":"Davidson","page_name":"RussellDavidson","domain_name":"mcgill","created_at":"2015-08-10T07:28:19.700-07:00","display_name":"Russell Davidson","url":"https://mcgill.academia.edu/RussellDavidson"},"attachments":[{"id":111642928,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/111642928/thumbnails/1.jpg","file_name":"qed_wp_1024.pdf","download_url":"https://www.academia.edu/attachments/111642928/download_file","bulk_download_file_name":"Bootstrap_inference_in_a_linear_equation.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/111642928/qed_wp_1024-libre.pdf?1708416405=\u0026response-content-disposition=attachment%3B+filename%3DBootstrap_inference_in_a_linear_equation.pdf\u0026Expires=1740564785\u0026Signature=DYZ7MUSXkyBpyRa0~1IzF6P06uIVPwPNakfJrEF7a5k5LL7dUMr3uo311kYIFxKfbcIXV60jGcGRWYid0HdVMr~y4NKEjlsLcOxRmgdQ3OdAW8SfosC0Jt9qOCcndqRLaxMD2vCZUtxfUYVhNfuQhYghhwRDyg~tUXxgUqjVQhxGCr9pZEVhZVn5zXv9v09gCAI9uIyZTIvvgmAdFTDbLRFHwL3r7vTgQZKu~qBORcw6jsyMv5eYl6JYu86KZeIl7VNLOARNeuYd7cl25Y4EMAV~SO2C1sHseiFdqxnyXQaU7zu1v0yUPOdB7PICJm09fGf6YHg~mB7yOkM6GmeXBA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111265595"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/111265595/Une_nouvelle_forme_du_test_de_Ia_matrice_dinformation"><img alt="Research paper thumbnail of Une nouvelle forme du test de Ia matrice d&#39;information" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/111265595/Une_nouvelle_forme_du_test_de_Ia_matrice_dinformation">Une nouvelle forme du test de Ia matrice d&#39;information</a></div><div class="wp-workCard_item"><span>Annals of economics and statistics</span><span>, 2016</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111265595"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111265595"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111265595; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111265595]").text(description); $(".js-view-count[data-work-id=111265595]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111265595; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111265595']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=111265595]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111265595,"title":"Une nouvelle forme du test de Ia matrice d'information","internal_url":"https://www.academia.edu/111265595/Une_nouvelle_forme_du_test_de_Ia_matrice_dinformation","owner_id":33782563,"coauthors_can_edit":true,"owner":{"id":33782563,"first_name":"Russell","middle_initials":null,"last_name":"Davidson","page_name":"RussellDavidson","domain_name":"mcgill","created_at":"2015-08-10T07:28:19.700-07:00","display_name":"Russell Davidson","url":"https://mcgill.academia.edu/RussellDavidson","email":"L0dPU1JkN0lKZm5rVGdESzc5NXRXckVkSEVxYUs4ak5BWVVvVEM3aFErUUFzeHF2YzFJcXJLNzY5RmpPaDlVMS0tdEFuUnRRS2xSZDAwenZrQnVYVG9VQT09--e5e0ab773cd948f8a4a73ce5cf6031c30b5d8fbc"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111265594"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111265594/The_Case_Against_Jive"><img alt="Research paper thumbnail of The Case Against Jive" class="work-thumbnail" src="https://attachments.academia-assets.com/108849037/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111265594/The_Case_Against_Jive">The Case Against Jive</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We perform an extensive series of Monte Carlo experiments to compare the performance of two varia...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We perform an extensive series of Monte Carlo experiments to compare the performance of two variants of the &quot;Jackknife Instrumental Variables Estimator,&quot; or JIVE, with that of the more familiar 2SLS and LIML estimators. We find no evidence to suggest that JIVE should ever be used. It is always more dispersed than 2SLS, often very much so, and it is almost always inferior to LIML in all respects. Interestingly, JIVE seems to perform particularly badly when the instruments are weak.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f36b3bb58a1d722d65d69c3ea8f9998b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:108849037,&quot;asset_id&quot;:111265594,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/108849037/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111265594"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111265594"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111265594; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111265594]").text(description); $(".js-view-count[data-work-id=111265594]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111265594; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111265594']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f36b3bb58a1d722d65d69c3ea8f9998b" } } $('.js-work-strip[data-work-id=111265594]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111265594,"title":"The Case Against Jive","internal_url":"https://www.academia.edu/111265594/The_Case_Against_Jive","owner_id":33782563,"coauthors_can_edit":true,"owner":{"id":33782563,"first_name":"Russell","middle_initials":null,"last_name":"Davidson","page_name":"RussellDavidson","domain_name":"mcgill","created_at":"2015-08-10T07:28:19.700-07:00","display_name":"Russell Davidson","url":"https://mcgill.academia.edu/RussellDavidson"},"attachments":[{"id":108849037,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108849037/thumbnails/1.jpg","file_name":"against-jive.pdf","download_url":"https://www.academia.edu/attachments/108849037/download_file","bulk_download_file_name":"The_Case_Against_Jive.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108849037/against-jive-libre.pdf?1702413236=\u0026response-content-disposition=attachment%3B+filename%3DThe_Case_Against_Jive.pdf\u0026Expires=1740564785\u0026Signature=Ir86Y0kILMSGRMiLQPawrlnGXs0qj-gc2dRXYb~LSioHVvlrV17dT3NzlLtEj01K9MYxMvZ2iq0H~u5xyRpqrVNttrQBW2LRcWMpC9RTwkggX1r7tM8JAsn2awZRfyE51o1-KATjXYg2D8OLrSra9Fl5DhwpzLDFiIvmyZveQArkfCc~plqX~avYQh9x8X5lm2IofthbsLugk~oN7Ycu-2xVDGWRV4JSaFc~VykBXgTvrsXALQXDEXtdHIhESoXVR0rnhvsBLnnXPVINEURRiq-4Of1~aqkjO7~YKMMNULE399LFY2mIb-xHc-1bWSoWxVfhcgay3ykG2xcQGP81lQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111265593"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111265593/Bootstrap_inference_in_a_linear_equation_estimated_by_instrumental_variables"><img alt="Research paper thumbnail of Bootstrap inference in a linear equation estimated by instrumental variables" class="work-thumbnail" src="https://attachments.academia-assets.com/108848970/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111265593/Bootstrap_inference_in_a_linear_equation_estimated_by_instrumental_variables">Bootstrap inference in a linear equation estimated by instrumental variables</a></div><div class="wp-workCard_item"><span>Econometrics Journal</span><span>, Nov 1, 2008</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We study several tests for the coefficient of the single right-hand-side endogenous variable in a...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We study several tests for the coefficient of the single right-hand-side endogenous variable in a linear equation estimated by instrumental variables. We show that all the test statistics-Student&#39;s t, Anderson-Rubin, Kleibergen&#39;s K, and likelihood ratio (LR)-can be written as functions of six random quantities. This leads to a number of interesting results about the properties of the tests under weak-instrument asymptotics. We then propose several new procedures for bootstrapping the three non-exact test statistics and a conditional version of the LR test. These use more efficient estimates of the parameters of the reduced-form equation than existing procedures. When the best of these new procedures is used, K and conditional LR have excellent performance under the null, and LR also performs very well. However, power considerations suggest that the conditional LR test, bootstrapped using this new procedure when the sample size is not large, is probably the method of choice.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ba60c3a5e12198a9eac81b089a5c7327" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:108848970,&quot;asset_id&quot;:111265593,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/108848970/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111265593"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111265593"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111265593; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111265593]").text(description); $(".js-view-count[data-work-id=111265593]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111265593; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111265593']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ba60c3a5e12198a9eac81b089a5c7327" } } $('.js-work-strip[data-work-id=111265593]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111265593,"title":"Bootstrap inference in a linear equation estimated by instrumental variables","internal_url":"https://www.academia.edu/111265593/Bootstrap_inference_in_a_linear_equation_estimated_by_instrumental_variables","owner_id":33782563,"coauthors_can_edit":true,"owner":{"id":33782563,"first_name":"Russell","middle_initials":null,"last_name":"Davidson","page_name":"RussellDavidson","domain_name":"mcgill","created_at":"2015-08-10T07:28:19.700-07:00","display_name":"Russell Davidson","url":"https://mcgill.academia.edu/RussellDavidson","email":"d2hUZStPNVpTTHE2UE5zMDlkTjJoL2NxZTZOWitBd3pXVnhwWFdyQjFRazVGUnl4TngxSWZjeUpPM0FqK1k2Qi0tR3ZuRzJ6M1FUZ3VKME1OaVMrOVROUT09--877bf9d7218eced46b3fa065870dc8f51849edad"},"attachments":[{"id":108848970,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108848970/thumbnails/1.jpg","file_name":"qed_wp_1024.pdf","download_url":"https://www.academia.edu/attachments/108848970/download_file","bulk_download_file_name":"Bootstrap_inference_in_a_linear_equation.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108848970/qed_wp_1024-libre.pdf?1702413265=\u0026response-content-disposition=attachment%3B+filename%3DBootstrap_inference_in_a_linear_equation.pdf\u0026Expires=1740520486\u0026Signature=STNJfB1-jhUl7z4Z0ygYJYulGVFLDXOzdf9-RXCJNJNRAGmdAiBwgrbw7sxFHIbr~vPkTXSzh-ZmIO6RPWBDtZhk~koC2NDD1ZprwTAWskfVuaKVKN~PANiV1QMr4W0xkZxebA6EQjlymo5J4giEWniFvUSlrdL-YiCH8IrT6Bxg3PBZC1i~jQZQd89REHV~KcNCp54vVyj22YAS4AabEKJHteSEY5JPSGYOKg9nryrfXMz95XigJuoXDgdwy9CQhqWPuElo0z-vYdmR2HbbKaKHXLCCGSVLSW8Yggv6-CN-IS4GD0LhdSCwo-WL-W79jVY0EYfEf9ITMsFxSIB6Xw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108848969,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108848969/thumbnails/1.jpg","file_name":"qed_wp_1024.pdf","download_url":"https://www.academia.edu/attachments/108848969/download_file","bulk_download_file_name":"Bootstrap_inference_in_a_linear_equation.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108848969/qed_wp_1024-libre.pdf?1702413251=\u0026response-content-disposition=attachment%3B+filename%3DBootstrap_inference_in_a_linear_equation.pdf\u0026Expires=1740520486\u0026Signature=aeopPZ4PYrjbhVqBXB5dOaGsuj3OqfJ~fvgo9pC-F-xFnaA-PwlRz6aqyV5qZItzYvAf62QHmYfHvYp2FkZNKa0C7rSRSzXZI93wgCun8rok7hk99YKLLFMv-6CsLyp~aBefO2XAzG~ejEto6gGv11dBBVux-e-fFrF4X3YBheN1yOIcKkSNkw3VHn1HBxh-fWbQykllXPc~UpYzqncm09uiOj10Wr18tZKm41K1m7cYz7wuwGH6YjuNbmEGKLNmAdK6Emd~Rbp-xt6o4m6T2Me3OLgFTH7tmr-Fm1a2snahm-wmy2py0zN~6OqNd6JhaiW4Gd1rBL168HyEch8Zrg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111265592"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111265592/Wild_Bootstrap_Tests_for_IV_Regression"><img alt="Research paper thumbnail of Wild Bootstrap Tests for IV Regression" class="work-thumbnail" src="https://attachments.academia-assets.com/108848968/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111265592/Wild_Bootstrap_Tests_for_IV_Regression">Wild Bootstrap Tests for IV Regression</a></div><div class="wp-workCard_item"><span>Journal of Business &amp; Economic Statistics</span><span>, 2010</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We propose a wild bootstrap procedure for linear regression models estimated by instrumental vari...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We propose a wild bootstrap procedure for linear regression models estimated by instrumental variables. Like other bootstrap procedures that we have proposed elsewhere, it uses efficient estimates of the reduced-form equation(s). Unlike them, it takes account of possible heteroskedasticity of unknown form. We apply this procedure to t tests, including heteroskedasticity-robust t tests, and to the Anderson-Rubin test. We provide simulation evidence that it works far better than older methods, such as the pairs bootstrap. We also show how to obtain reliable confidence intervals by inverting bootstrap tests. An empirical example illustrates the utility of these procedures.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="332e9360c8ed9bf81a2069d9bade5d18" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:108848968,&quot;asset_id&quot;:111265592,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/108848968/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111265592"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111265592"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111265592; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111265592]").text(description); $(".js-view-count[data-work-id=111265592]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111265592; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111265592']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "332e9360c8ed9bf81a2069d9bade5d18" } } $('.js-work-strip[data-work-id=111265592]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111265592,"title":"Wild Bootstrap Tests for IV Regression","internal_url":"https://www.academia.edu/111265592/Wild_Bootstrap_Tests_for_IV_Regression","owner_id":33782563,"coauthors_can_edit":true,"owner":{"id":33782563,"first_name":"Russell","middle_initials":null,"last_name":"Davidson","page_name":"RussellDavidson","domain_name":"mcgill","created_at":"2015-08-10T07:28:19.700-07:00","display_name":"Russell Davidson","url":"https://mcgill.academia.edu/RussellDavidson"},"attachments":[{"id":108848968,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108848968/thumbnails/1.jpg","file_name":"DT2009-35.pdf","download_url":"https://www.academia.edu/attachments/108848968/download_file","bulk_download_file_name":"Wild_Bootstrap_Tests_for_IV_Regression.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108848968/DT2009-35-libre.pdf?1702413251=\u0026response-content-disposition=attachment%3B+filename%3DWild_Bootstrap_Tests_for_IV_Regression.pdf\u0026Expires=1740564785\u0026Signature=Eg9UOmFSirRz1iO-V8LcZZRTYxIzoMSwnMp1QJ5Kb91xQSlco-bGdnYZ2-gxzvH8LytnenSlq2md~61R4hCMo7TFc9CtSiLEGPxSmcLC5wZXAVyxLmZFBbUgnbIRcNRgc7e69z8NaIWh6pma0j80rcTEHCEv~B6bYui9Pu4h5zxa6CRJwZ5tHhhLZHxgcxinLGeIyH63bhjFcqhxS4pbSOPeNwA4GqxPpX4iGd8T1ulUv-LBG8wChLYME~WKXSK3VWZ~7bO5Mm09nXarg4yEofX2~~MhywbNVAUbcellHuzdLydDuQ2LpUyWuRS0XfNYKlUtP33LYydNRaxCpNE~~A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108848967,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108848967/thumbnails/1.jpg","file_name":"DT2009-35.pdf","download_url":"https://www.academia.edu/attachments/108848967/download_file","bulk_download_file_name":"Wild_Bootstrap_Tests_for_IV_Regression.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108848967/DT2009-35-libre.pdf?1702413254=\u0026response-content-disposition=attachment%3B+filename%3DWild_Bootstrap_Tests_for_IV_Regression.pdf\u0026Expires=1740564785\u0026Signature=Zvf6K-bHJ6VsFF09WUIpgqG823xYHrGVgiZda~rhyC0dUYgyHLpbwPLlIntpHQTnbYPzon1rvvcBMEU3QKy0JXRbfMSZzKUV4meSdZl02K51W0HT5nIbSRBfxyVm1HYcPYlZWqPzPedfcsTZQFIK0MRbJhqjfBk7SEbUpt2a-9AGRO9QM4163pMN2siEMJ9o5RruG8NOfkSmbLvblwLTWFNI2RC7TCj12pbPCa9muXjk~ytDrDFFSYHuvd7~Q72NaUINjSdTL~xtoz-E19~xNeTdKrlUm5~ZMYCVhAMsdT5Z0LH3aMGVar1q8nuyS-gJW5TJgthdT~8on6q1fBnZPw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111265591"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/111265591/Time_and_Causality"><img alt="Research paper thumbnail of Time and Causality" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/111265591/Time_and_Causality">Time and Causality</a></div><div class="wp-workCard_item"><span>Annals of economics and statistics</span><span>, 2013</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The understanding of causal chains and mechanisms is an essential part of any scientific activity...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The understanding of causal chains and mechanisms is an essential part of any scientific activity that aims at better explanation of its subject matter, and better understanding of it. While any account of causality requires that a cause should precede its effect, accounts of causality inphysics are complicated by the fact that the role of time in current theoretical physics has evolved very substantially throughout the twentieth century. In this article, I review the status of time and causality in physics, both the classical physics of the nineteenth century, and modern physics based on relativity and quantum mechanics. I then move on to econometrics, with some mention of statistics more generally, and emphasise the role of models in making sense of causal notions, and their place in scientific explanation</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111265591"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111265591"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111265591; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111265591]").text(description); $(".js-view-count[data-work-id=111265591]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111265591; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111265591']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=111265591]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111265591,"title":"Time and Causality","internal_url":"https://www.academia.edu/111265591/Time_and_Causality","owner_id":33782563,"coauthors_can_edit":true,"owner":{"id":33782563,"first_name":"Russell","middle_initials":null,"last_name":"Davidson","page_name":"RussellDavidson","domain_name":"mcgill","created_at":"2015-08-10T07:28:19.700-07:00","display_name":"Russell Davidson","url":"https://mcgill.academia.edu/RussellDavidson"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111265590"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111265590/Bootstrap_tests_how_many_bootstraps"><img alt="Research paper thumbnail of Bootstrap tests: how many bootstraps?" class="work-thumbnail" src="https://attachments.academia-assets.com/108848966/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111265590/Bootstrap_tests_how_many_bootstraps">Bootstrap tests: how many bootstraps?</a></div><div class="wp-workCard_item"><span>Econometric Reviews</span><span>, 2000</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch ge...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. Terms of use: Documents in EconStor may be saved and copied for your personal and scholarly purposes. You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public. If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ea35144b0a2d0b1808511a8ac55caa53" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:108848966,&quot;asset_id&quot;:111265590,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/108848966/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111265590"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111265590"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111265590; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111265590]").text(description); $(".js-view-count[data-work-id=111265590]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111265590; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111265590']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ea35144b0a2d0b1808511a8ac55caa53" } } $('.js-work-strip[data-work-id=111265590]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111265590,"title":"Bootstrap tests: how many bootstraps?","internal_url":"https://www.academia.edu/111265590/Bootstrap_tests_how_many_bootstraps","owner_id":33782563,"coauthors_can_edit":true,"owner":{"id":33782563,"first_name":"Russell","middle_initials":null,"last_name":"Davidson","page_name":"RussellDavidson","domain_name":"mcgill","created_at":"2015-08-10T07:28:19.700-07:00","display_name":"Russell Davidson","url":"https://mcgill.academia.edu/RussellDavidson","email":"NC93OStZL0l4TGlYNXk1b1RiV1VaWWd1TmZyeW9veWdFNkFzWnkveDl6cUI0dWN5UXFDWngzVmJPNjFtY2pEaS0tWUdXQlpLM00wT0dpWGhoaThubE1SQT09--024dfae980c9ea2195e6c96d5c4dd5d91a5a61db"},"attachments":[{"id":108848966,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108848966/thumbnails/1.jpg","file_name":"587473266.pdf","download_url":"https://www.academia.edu/attachments/108848966/download_file","bulk_download_file_name":"Bootstrap_tests_how_many_bootstraps.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108848966/587473266-libre.pdf?1702413239=\u0026response-content-disposition=attachment%3B+filename%3DBootstrap_tests_how_many_bootstraps.pdf\u0026Expires=1740520486\u0026Signature=bjpulbJZkqtY-7c05S6jZY6PLtNaeOO2-5878YoHwUSwdwttjKgoMSmM34o651m6fij3iAItF2MCTlZMmMKOMGsrXMtud~2se71qM7F9jLoEVK3Vy0TzrnkFZj388bKwW6C9q70RUyjKohoGUPaBvi-VlRWLCOL2tzcaAwkd4y2d2BqJTToWPV6QysWBhicV16USDuXwN3Kyne-9sI3UWo6zmBBsh3Sr6ehSUYl58qm89D5POMkY2gmXDvILPm1BIZ6zgCQykokndYya-Bh54L9WzJm7vqvO8VROpAQAWCkCqVmiA-Z5aCeLIgCY1XX1GSoLUENA12RIjSSn4AOhkQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108848965,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108848965/thumbnails/1.jpg","file_name":"587473266.pdf","download_url":"https://www.academia.edu/attachments/108848965/download_file","bulk_download_file_name":"Bootstrap_tests_how_many_bootstraps.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108848965/587473266-libre.pdf?1702413240=\u0026response-content-disposition=attachment%3B+filename%3DBootstrap_tests_how_many_bootstraps.pdf\u0026Expires=1740520486\u0026Signature=JQ~NwKFiQXalUh0Quqx~df5uGCJEiCxlq9yNhaWW2KInVpVpoo2PH9T7leeax8c~2aiXW1WJy3raz2Y1GcaeSWXZTyh7rNEak-RULPs0Ve0tYnndrdckPmFrlIazXnh-F83zQzdwc2RTNnI-ThiusNnidEs1llwfwzpFCmN6iKWHtNDdynxWzaahgHMG4dpM70J2eYQBQ0VFkpfjblLcRALPPIBv1MDzliJaAbyIVaywbKQwHuvH2EFzwuNzQlYvHGJ9j6l2ERQVmrlcIlP2VPugDPyhrkZG~WtTpRN4cA9XoJKQlpQIk96z9DnZTrjZ6JH9lsOm3Wt-tt7VPhbaJg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111265589"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111265589/Statistical_Inference_for_Stochastic_Dominance_and_for_the_Measurement_of_Poverty_and_Inequality"><img alt="Research paper thumbnail of Statistical Inference for Stochastic Dominance and for the Measurement of Poverty and Inequality" class="work-thumbnail" src="https://attachments.academia-assets.com/108848964/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111265589/Statistical_Inference_for_Stochastic_Dominance_and_for_the_Measurement_of_Poverty_and_Inequality">Statistical Inference for Stochastic Dominance and for the Measurement of Poverty and Inequality</a></div><div class="wp-workCard_item"><span>Econometrica</span><span>, Nov 1, 2000</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We derive the asymptotic sampling distribution of various estimators frequently used to order dis...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We derive the asymptotic sampling distribution of various estimators frequently used to order distributions in terms of poverty, w elfare and inequality. This includes estimators of most of the poverty indices currently in use, as well as estimators of the curves used to infer stochastic dominance of any order. These curves can beused to determine whether poverty, inequality or social welfare is greater in one distribution than in another for general classes of indices. We also derive the sampling distribution of the maximal poverty lines or income censoring thresholds up to which we may con dently assert that poverty or social welfare is greater in one distribution than in another. The sampling distribution of convenient estimators for dual approaches to the measurement o f p o v erty is also established. The statistical results are established for deterministic or stochastic poverty lines as well as for paired or independent samples of incomes. Our results are brie y illustrated using data for 6 countries drawn from the Luxembourg Income Study data bases. On etudie les propri et es asymptotiques de plusieurs estimateurs fr equemment utilis es pour ordonner les r epartitions de revenus en termes de pauvret e, bien-être social et in egalit e. Ces estimateurs incluent les estimateurs de la plupart des indices de pauvret e couramment en usage ainsi que les estimateurs des courbes utiles pour l&#39;inf erence de la dominance stochastique de n&#39;importe quel ordre. Ces courbes nous permettent d e d eterminer si la pauvret e, l&#39;in egalit e ou le bien-être social sont plus elev es dans une r epartition que dans une autre pour des classes g en erales d&#39;indices. On etudie aussi la distribution echantillonnale des seuils maximum de pauvret e ou de censure des revenus jusqu&#39;auxquels on peut a rmer sans ambigu t e que la pauvret e ou le bien-être social sont plus elev es dans une r epartition de revenus que dans une autre. La distribution echantillonnale d&#39;estimateurs pour l&#39;approche duale a la mesure de la pauvret e est aussi d eriv ee. Les r esultats statistiques s&#39;appliquent a des seuils d eterministes ou stochastiques et a des echantillons d ependants ou ind ependants. On illustre bri evement nos r esultats a l&#39;aide de donn ees sur 6 pays tir ees des banques de donn ees du Luxembourg Income Study.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8df8697a45bc65611ffd479d167b2629" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:108848964,&quot;asset_id&quot;:111265589,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/108848964/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111265589"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111265589"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111265589; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111265589]").text(description); $(".js-view-count[data-work-id=111265589]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111265589; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111265589']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8df8697a45bc65611ffd479d167b2629" } } $('.js-work-strip[data-work-id=111265589]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111265589,"title":"Statistical Inference for Stochastic Dominance and for the Measurement of Poverty and Inequality","translated_title":"","metadata":{"publisher":"Wiley-Blackwell","grobid_abstract":"We derive the asymptotic sampling distribution of various estimators frequently used to order distributions in terms of poverty, w elfare and inequality. This includes estimators of most of the poverty indices currently in use, as well as estimators of the curves used to infer stochastic dominance of any order. These curves can beused to determine whether poverty, inequality or social welfare is greater in one distribution than in another for general classes of indices. We also derive the sampling distribution of the maximal poverty lines or income censoring thresholds up to which we may con dently assert that poverty or social welfare is greater in one distribution than in another. The sampling distribution of convenient estimators for dual approaches to the measurement o f p o v erty is also established. The statistical results are established for deterministic or stochastic poverty lines as well as for paired or independent samples of incomes. Our results are brie y illustrated using data for 6 countries drawn from the Luxembourg Income Study data bases. On etudie les propri et es asymptotiques de plusieurs estimateurs fr equemment utilis es pour ordonner les r epartitions de revenus en termes de pauvret e, bien-être social et in egalit e. Ces estimateurs incluent les estimateurs de la plupart des indices de pauvret e couramment en usage ainsi que les estimateurs des courbes utiles pour l'inf erence de la dominance stochastique de n'importe quel ordre. Ces courbes nous permettent d e d eterminer si la pauvret e, l'in egalit e ou le bien-être social sont plus elev es dans une r epartition que dans une autre pour des classes g en erales d'indices. On etudie aussi la distribution echantillonnale des seuils maximum de pauvret e ou de censure des revenus jusqu'auxquels on peut a rmer sans ambigu t e que la pauvret e ou le bien-être social sont plus elev es dans une r epartition de revenus que dans une autre. La distribution echantillonnale d'estimateurs pour l'approche duale a la mesure de la pauvret e est aussi d eriv ee. Les r esultats statistiques s'appliquent a des seuils d eterministes ou stochastiques et a des echantillons d ependants ou ind ependants. On illustre bri evement nos r esultats a l'aide de donn ees sur 6 pays tir ees des banques de donn ees du Luxembourg Income Study.","publication_date":{"day":1,"month":11,"year":2000,"errors":{}},"publication_name":"Econometrica","grobid_abstract_attachment_id":108848964},"translated_abstract":null,"internal_url":"https://www.academia.edu/111265589/Statistical_Inference_for_Stochastic_Dominance_and_for_the_Measurement_of_Poverty_and_Inequality","translated_internal_url":"","created_at":"2023-12-12T12:32:19.967-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33782563,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":108848964,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108848964/thumbnails/1.jpg","file_name":"lis-wps-181.pdf","download_url":"https://www.academia.edu/attachments/108848964/download_file","bulk_download_file_name":"Statistical_Inference_for_Stochastic_Dom.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108848964/lis-wps-181-libre.pdf?1702413258=\u0026response-content-disposition=attachment%3B+filename%3DStatistical_Inference_for_Stochastic_Dom.pdf\u0026Expires=1738615355\u0026Signature=BcaHmcENNF2ghds5TkppdScaRfGYUCk0D9O6imfrLNmmyiXAetleh27KfqBAXnMz7o0FNL4W2Sn0abj6lhLt5hjNkmSgLrJfhc~w0~W3~JFT7FSHO8s02N1C67opgibTELksTHvVSFNOvHJayaec2I0J1vh8fwt0yRghgm48s337hGJtMlKz3OkPHBbwCOJEa8yyvvvHc40RlvUMvY9WVj31F9z-EBAM2228CzXS9L1h8V5G5fR~UbZmAxQ9tuV3cHVHy7n0JiadHGUiz2zHWGjwszr8KBXjWs8XRhVrSIkygVUfY9BINv3AOp~7e1LOS1WVCTL56FvVtfQT71oZ4Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Statistical_Inference_for_Stochastic_Dominance_and_for_the_Measurement_of_Poverty_and_Inequality","translated_slug":"","page_count":41,"language":"en","content_type":"Work","summary":"We derive the asymptotic sampling distribution of various estimators frequently used to order distributions in terms of poverty, w elfare and inequality. This includes estimators of most of the poverty indices currently in use, as well as estimators of the curves used to infer stochastic dominance of any order. These curves can beused to determine whether poverty, inequality or social welfare is greater in one distribution than in another for general classes of indices. We also derive the sampling distribution of the maximal poverty lines or income censoring thresholds up to which we may con dently assert that poverty or social welfare is greater in one distribution than in another. The sampling distribution of convenient estimators for dual approaches to the measurement o f p o v erty is also established. The statistical results are established for deterministic or stochastic poverty lines as well as for paired or independent samples of incomes. Our results are brie y illustrated using data for 6 countries drawn from the Luxembourg Income Study data bases. On etudie les propri et es asymptotiques de plusieurs estimateurs fr equemment utilis es pour ordonner les r epartitions de revenus en termes de pauvret e, bien-être social et in egalit e. Ces estimateurs incluent les estimateurs de la plupart des indices de pauvret e couramment en usage ainsi que les estimateurs des courbes utiles pour l'inf erence de la dominance stochastique de n'importe quel ordre. Ces courbes nous permettent d e d eterminer si la pauvret e, l'in egalit e ou le bien-être social sont plus elev es dans une r epartition que dans une autre pour des classes g en erales d'indices. On etudie aussi la distribution echantillonnale des seuils maximum de pauvret e ou de censure des revenus jusqu'auxquels on peut a rmer sans ambigu t e que la pauvret e ou le bien-être social sont plus elev es dans une r epartition de revenus que dans une autre. La distribution echantillonnale d'estimateurs pour l'approche duale a la mesure de la pauvret e est aussi d eriv ee. Les r esultats statistiques s'appliquent a des seuils d eterministes ou stochastiques et a des echantillons d ependants ou ind ependants. On illustre bri evement nos r esultats a l'aide de donn ees sur 6 pays tir ees des banques de donn ees du Luxembourg Income Study.","owner":{"id":33782563,"first_name":"Russell","middle_initials":null,"last_name":"Davidson","page_name":"RussellDavidson","domain_name":"mcgill","created_at":"2015-08-10T07:28:19.700-07:00","display_name":"Russell Davidson","url":"https://mcgill.academia.edu/RussellDavidson"},"attachments":[{"id":108848964,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108848964/thumbnails/1.jpg","file_name":"lis-wps-181.pdf","download_url":"https://www.academia.edu/attachments/108848964/download_file","bulk_download_file_name":"Statistical_Inference_for_Stochastic_Dom.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108848964/lis-wps-181-libre.pdf?1702413258=\u0026response-content-disposition=attachment%3B+filename%3DStatistical_Inference_for_Stochastic_Dom.pdf\u0026Expires=1738615355\u0026Signature=BcaHmcENNF2ghds5TkppdScaRfGYUCk0D9O6imfrLNmmyiXAetleh27KfqBAXnMz7o0FNL4W2Sn0abj6lhLt5hjNkmSgLrJfhc~w0~W3~JFT7FSHO8s02N1C67opgibTELksTHvVSFNOvHJayaec2I0J1vh8fwt0yRghgm48s337hGJtMlKz3OkPHBbwCOJEa8yyvvvHc40RlvUMvY9WVj31F9z-EBAM2228CzXS9L1h8V5G5fR~UbZmAxQ9tuV3cHVHy7n0JiadHGUiz2zHWGjwszr8KBXjWs8XRhVrSIkygVUfY9BINv3AOp~7e1LOS1WVCTL56FvVtfQT71oZ4Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108848963,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108848963/thumbnails/1.jpg","file_name":"lis-wps-181.pdf","download_url":"https://www.academia.edu/attachments/108848963/download_file","bulk_download_file_name":"Statistical_Inference_for_Stochastic_Dom.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108848963/lis-wps-181-libre.pdf?1702413257=\u0026response-content-disposition=attachment%3B+filename%3DStatistical_Inference_for_Stochastic_Dom.pdf\u0026Expires=1738615355\u0026Signature=Z7O9Vl1hSxS9oOJRxzDNiQP2qLj2Ju5WdqYWZ6qTWN60VWR00pGcjIRYVryM3j02AXrsPp1loYL9WVlPkm7yEfjdyB2BFN~jKaDNboDentsNBtv58bUojwdTu5wm9sLQ1~DFg7iC5hXpYxQl6WB1gzEZQFRaCtlXKglrT3z5FTmLx6OEgqFtN1f7xnJntHH7jfpkUOO8LsKnIfHAAT8cOURwY62j~thYMQAnhSgbCUl4PX5ma~oKUrk~GTf3vPrg~CmUOH6mBuF9gDM4f-LfLXIzqWGss9Vw-2WjkjYvpcVZs-7SS6EvRYR6ItW4vWcDOjieEFqJ2OF4~T9Zu9QRAA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":39,"name":"Marketing","url":"https://www.academia.edu/Documents/in/Marketing"},{"id":747,"name":"Econometrics","url":"https://www.academia.edu/Documents/in/Econometrics"},{"id":2808,"name":"Poverty","url":"https://www.academia.edu/Documents/in/Poverty"},{"id":6208,"name":"Economic Theory","url":"https://www.academia.edu/Documents/in/Economic_Theory"},{"id":20316,"name":"Stochastic dominance","url":"https://www.academia.edu/Documents/in/Stochastic_dominance"},{"id":67968,"name":"Statistical Inference","url":"https://www.academia.edu/Documents/in/Statistical_Inference"},{"id":91070,"name":"Inequality","url":"https://www.academia.edu/Documents/in/Inequality"},{"id":806332,"name":"Estimator","url":"https://www.academia.edu/Documents/in/Estimator"},{"id":2555488,"name":"econometrica","url":"https://www.academia.edu/Documents/in/econometrica"}],"urls":[{"id":36971829,"url":"https://www.econstor.eu/bitstream/10419/160853/1/lis-wps-181.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111265588"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111265588/Moments_of_IV_and_JIVE_estimators"><img alt="Research paper thumbnail of Moments of IV and JIVE estimators" class="work-thumbnail" src="https://attachments.academia-assets.com/108849034/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111265588/Moments_of_IV_and_JIVE_estimators">Moments of IV and JIVE estimators</a></div><div class="wp-workCard_item"><span>Econometrics Journal</span><span>, Oct 25, 2007</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We develop a method based on the use of polar coordinates to investigate the existence of moments...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We develop a method based on the use of polar coordinates to investigate the existence of moments for instrumental variables and related estimators in the linear regression model. For generalized IV estimators, we obtain familiar results. For JIVE, we obtain the new result that this estimator has no moments at all. Simulation results illustrate the consequences of its lack of moments. JEL codes: C100, C120, C300 This research was supported, in part, by grants from the Social Sciences and Humanities Research Council of Canada. We are grateful to two anonymous referees for comments on earlier versions.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="44d5cdab85b8ec82ecb55b9bda7e41cf" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:108849034,&quot;asset_id&quot;:111265588,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/108849034/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111265588"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111265588"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111265588; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111265588]").text(description); $(".js-view-count[data-work-id=111265588]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111265588; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111265588']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "44d5cdab85b8ec82ecb55b9bda7e41cf" } } $('.js-work-strip[data-work-id=111265588]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111265588,"title":"Moments of IV and JIVE estimators","internal_url":"https://www.academia.edu/111265588/Moments_of_IV_and_JIVE_estimators","owner_id":33782563,"coauthors_can_edit":true,"owner":{"id":33782563,"first_name":"Russell","middle_initials":null,"last_name":"Davidson","page_name":"RussellDavidson","domain_name":"mcgill","created_at":"2015-08-10T07:28:19.700-07:00","display_name":"Russell Davidson","url":"https://mcgill.academia.edu/RussellDavidson"},"attachments":[{"id":108849034,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108849034/thumbnails/1.jpg","file_name":"qed_wp_1085.pdf","download_url":"https://www.academia.edu/attachments/108849034/download_file","bulk_download_file_name":"Moments_of_IV_and_JIVE_estimators.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108849034/qed_wp_1085-libre.pdf?1702413235=\u0026response-content-disposition=attachment%3B+filename%3DMoments_of_IV_and_JIVE_estimators.pdf\u0026Expires=1740564785\u0026Signature=KyiUvnhjWxUVvo3rhdkZJNdyxP~GAB2LGgIcIiiLNo3rLv3rms~G9mmqbmWQbyVYM9WrLV62qa3sJw-wzF20tnSYHmSbQaYTQalIedFA4iFlDoMBZbCuN8j0bbJolUc9VekiFkmYUsFDoWJu8SkSDH5WEjOKjWlJuLE4mfqelbux4dMY3-sSQFUKVwashBSbIgcNpW3NOJ2L~SwW5MCfGGGjr5KN5ZxF0i3b5Wd1GZfxePa2RT5qgW4RBayAeFsSK5JmMgjxVOc8zJGMpNIrMTcs5B9bScSFpq3lVcqRlOYzEXBpZnrGpxr3wIGyxTlgDDluO89IfSmJiXtR~cNjcg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111265587"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/111265587/Tests_for_Model_Specification_in_the_Presence_of_Alternative_Hypotheses_Some_Further_Results"><img alt="Research paper thumbnail of Tests for Model Specification in the Presence of Alternative Hypotheses: Some Further Results" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/111265587/Tests_for_Model_Specification_in_the_Presence_of_Alternative_Hypotheses_Some_Further_Results">Tests for Model Specification in the Presence of Alternative Hypotheses: Some Further Results</a></div><div class="wp-workCard_item"><span>RePEc: Research Papers in Economics</span><span>, 1981</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract In Davidson and MacKinnon (1981), two of the present authors proposed a novel and very s...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract In Davidson and MacKinnon (1981), two of the present authors proposed a novel and very simple procedure for testing the specification of a nonlinear regression model against the evidence provided by a non-nested alternative. In this paper we extend their results in several directions. First, we relax a number of the assumptions of the previous paper; we admit the possibility that the nonlinear regression functions may depend on lagged dependent variables, and we do not require that the error terms be normally distributed. Second, we show how the earlier procedure may straightforwardly be generalized to the case where the two non-nested models involve different transformations of the dependent variable. Finally, we propose a simple procedure for testing non-nested linear regression models which have endogenous variables on the right-hand side, and have therefore been estimated by two-stage least squares.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111265587"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111265587"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111265587; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111265587]").text(description); $(".js-view-count[data-work-id=111265587]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111265587; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111265587']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=111265587]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111265587,"title":"Tests for Model Specification in the Presence of Alternative Hypotheses: Some Further Results","internal_url":"https://www.academia.edu/111265587/Tests_for_Model_Specification_in_the_Presence_of_Alternative_Hypotheses_Some_Further_Results","owner_id":33782563,"coauthors_can_edit":true,"owner":{"id":33782563,"first_name":"Russell","middle_initials":null,"last_name":"Davidson","page_name":"RussellDavidson","domain_name":"mcgill","created_at":"2015-08-10T07:28:19.700-07:00","display_name":"Russell Davidson","url":"https://mcgill.academia.edu/RussellDavidson","email":"T2NoUjJ5TjFkL2FJN0dmMjZGdVY4NWZhMVgraG9xRkh3QkNMOXlpeGE0eFZPajZ6anZNV0FxQzRCMFl5b1hJRS0tVng2SEFLdDZsU0REMWE2V240OEZQdz09--b83691bb0336e25364e8d2577f1aa5756deb1fea"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; } .sign-in-with-apple-button > div { margin: 0 auto; / This centers the Apple-rendered button horizontally }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "859f94d8362d747bee651ecc39a16bbda39d8425411ac27eed4fc7cd2b8fd141", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="PKPucdtYVlrZiQsqGyjGDvScJHQNsmSQlPXhTx6Dut51TIcYo21AT2NVMcotONrXTBWeENsU-cPwVxbCbtP9SA" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://mcgill.academia.edu/RussellDavidson" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="gEwbamsHA4AIjMizKvUGvPXse-iKImZkm26f1wqw26fJo3IDEzIVlbJQ8lMc5RplTWXBjFyE-zf_zGhaeuCcMQ" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2025</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10