CINXE.COM
Triangle inequality - Wikipedia
<!doctype html> <html class="client-nojs skin-theme-clientpref-day mf-expand-sections-clientpref-0 mf-font-size-clientpref-small mw-mf-amc-clientpref-0" lang="en" dir="ltr"> <head> <base href="https://en.m.wikipedia.org/wiki/Triangle_inequality"> <meta charset="UTF-8"> <title>Triangle inequality - Wikipedia</title> <script>(function(){var className="client-js skin-theme-clientpref-day mf-expand-sections-clientpref-0 mf-font-size-clientpref-small mw-mf-amc-clientpref-0";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"3a736014-67c4-4312-9cdb-57d2f6084f7a","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Triangle_inequality","wgTitle":"Triangle inequality","wgCurRevisionId":1276124540,"wgRevisionId":1276124540,"wgArticleId": 53941,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Triangle_inequality","wgRelevantArticleId":53941,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFMode":"stable","wgMFAmc":false,"wgMFAmcOutreachActive":false,"wgMFAmcOutreachUserEligible":false,"wgMFLazyLoadImages":true,"wgMFEditNoticesFeatureConflict":false,"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgMFIsSupportedEditRequest":true,"wgMFScriptPath":"", "wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":30000,"wgEditSubmitButtonLabelPublish":true,"wgSectionTranslationMissingLanguages":[{"lang":"ace","autonym":"Acèh","dir":"ltr"},{"lang":"ady","autonym":"адыгабзэ","dir":"ltr"},{"lang":"alt","autonym":"алтай тил","dir":"ltr"},{"lang":"am","autonym":"አማርኛ","dir":"ltr"},{"lang":"ami","autonym":"Pangcah","dir":"ltr"},{"lang":"an","autonym":"aragonés","dir":"ltr"},{"lang":"ang","autonym":"Ænglisc","dir":"ltr"},{"lang":"ann","autonym":"Obolo","dir":"ltr"},{"lang":"anp","autonym":"अंगिका","dir":"ltr"},{"lang":"ary","autonym":"الدارجة","dir":"rtl"},{"lang":"arz","autonym":"مصرى","dir":"rtl"},{"lang":"as","autonym":"অসমীয়া","dir":"ltr"},{"lang":"ast","autonym":"asturianu","dir":"ltr"},{"lang":"av","autonym":"авар","dir":"ltr"},{"lang":"avk","autonym":"Kotava","dir":"ltr"},{"lang":"awa","autonym":"अवधी","dir":"ltr"},{"lang":"ay","autonym":"Aymar aru","dir": "ltr"},{"lang":"az","autonym":"azərbaycanca","dir":"ltr"},{"lang":"azb","autonym":"تۆرکجه","dir":"rtl"},{"lang":"ba","autonym":"башҡортса","dir":"ltr"},{"lang":"ban","autonym":"Basa Bali","dir":"ltr"},{"lang":"bar","autonym":"Boarisch","dir":"ltr"},{"lang":"bbc","autonym":"Batak Toba","dir":"ltr"},{"lang":"bcl","autonym":"Bikol Central","dir":"ltr"},{"lang":"bdr","autonym":"Bajau Sama","dir":"ltr"},{"lang":"bew","autonym":"Betawi","dir":"ltr"},{"lang":"bho","autonym":"भोजपुरी","dir":"ltr"},{"lang":"bi","autonym":"Bislama","dir":"ltr"},{"lang":"bjn","autonym":"Banjar","dir":"ltr"},{"lang":"blk","autonym":"ပအိုဝ်ႏဘာႏသာႏ","dir":"ltr"},{"lang":"bm","autonym":"bamanankan","dir":"ltr"},{"lang":"bn","autonym":"বাংলা","dir":"ltr"},{"lang":"bo","autonym":"བོད་ཡིག","dir":"ltr"},{"lang":"bpy","autonym":"বিষ্ণুপ্রিয়া মণিপুরী","dir":"ltr"},{"lang":"br","autonym":"brezhoneg","dir" :"ltr"},{"lang":"bs","autonym":"bosanski","dir":"ltr"},{"lang":"btm","autonym":"Batak Mandailing","dir":"ltr"},{"lang":"bug","autonym":"Basa Ugi","dir":"ltr"},{"lang":"cdo","autonym":"閩東語 / Mìng-dĕ̤ng-ngṳ̄","dir":"ltr"},{"lang":"ce","autonym":"нохчийн","dir":"ltr"},{"lang":"ceb","autonym":"Cebuano","dir":"ltr"},{"lang":"ch","autonym":"Chamoru","dir":"ltr"},{"lang":"chr","autonym":"ᏣᎳᎩ","dir":"ltr"},{"lang":"co","autonym":"corsu","dir":"ltr"},{"lang":"cr","autonym":"Nēhiyawēwin / ᓀᐦᐃᔭᐍᐏᐣ","dir":"ltr"},{"lang":"crh","autonym":"qırımtatarca","dir":"ltr"},{"lang":"cu","autonym":"словѣньскъ / ⰔⰎⰑⰂⰡⰐⰠⰔⰍⰟ","dir":"ltr"},{"lang":"cy","autonym":"Cymraeg","dir":"ltr"},{"lang":"dag","autonym":"dagbanli","dir":"ltr"},{"lang":"dga","autonym":"Dagaare","dir":"ltr"},{"lang":"din","autonym":"Thuɔŋjäŋ","dir":"ltr"},{"lang":"diq","autonym":"Zazaki","dir":"ltr"},{"lang":"dsb","autonym":"dolnoserbski","dir":"ltr"},{"lang":"dtp", "autonym":"Kadazandusun","dir":"ltr"},{"lang":"dv","autonym":"ދިވެހިބަސް","dir":"rtl"},{"lang":"dz","autonym":"ཇོང་ཁ","dir":"ltr"},{"lang":"ee","autonym":"eʋegbe","dir":"ltr"},{"lang":"eml","autonym":"emiliàn e rumagnòl","dir":"ltr"},{"lang":"fat","autonym":"mfantse","dir":"ltr"},{"lang":"ff","autonym":"Fulfulde","dir":"ltr"},{"lang":"fj","autonym":"Na Vosa Vakaviti","dir":"ltr"},{"lang":"fo","autonym":"føroyskt","dir":"ltr"},{"lang":"fon","autonym":"fɔ̀ngbè","dir":"ltr"},{"lang":"frp","autonym":"arpetan","dir":"ltr"},{"lang":"frr","autonym":"Nordfriisk","dir":"ltr"},{"lang":"fur","autonym":"furlan","dir":"ltr"},{"lang":"fy","autonym":"Frysk","dir":"ltr"},{"lang":"gag","autonym":"Gagauz","dir":"ltr"},{"lang":"gan","autonym":"贛語","dir":"ltr"},{"lang":"gcr","autonym":"kriyòl gwiyannen","dir":"ltr"},{"lang":"glk","autonym":"گیلکی","dir":"rtl"},{"lang":"gn","autonym":"Avañe'ẽ","dir":"ltr"},{"lang":"gom","autonym": "गोंयची कोंकणी / Gõychi Konknni","dir":"ltr"},{"lang":"gor","autonym":"Bahasa Hulontalo","dir":"ltr"},{"lang":"gpe","autonym":"Ghanaian Pidgin","dir":"ltr"},{"lang":"gu","autonym":"ગુજરાતી","dir":"ltr"},{"lang":"guc","autonym":"wayuunaiki","dir":"ltr"},{"lang":"gur","autonym":"farefare","dir":"ltr"},{"lang":"guw","autonym":"gungbe","dir":"ltr"},{"lang":"gv","autonym":"Gaelg","dir":"ltr"},{"lang":"ha","autonym":"Hausa","dir":"ltr"},{"lang":"hak","autonym":"客家語 / Hak-kâ-ngî","dir":"ltr"},{"lang":"haw","autonym":"Hawaiʻi","dir":"ltr"},{"lang":"hif","autonym":"Fiji Hindi","dir":"ltr"},{"lang":"hr","autonym":"hrvatski","dir":"ltr"},{"lang":"hsb","autonym":"hornjoserbsce","dir":"ltr"},{"lang":"ht","autonym":"Kreyòl ayisyen","dir":"ltr"},{"lang":"hyw","autonym":"Արեւմտահայերէն","dir":"ltr"},{"lang":"ia","autonym":"interlingua","dir":"ltr"},{"lang":"iba","autonym":"Jaku Iban","dir":"ltr"},{"lang":"ie","autonym":"Interlingue","dir": "ltr"},{"lang":"ig","autonym":"Igbo","dir":"ltr"},{"lang":"igl","autonym":"Igala","dir":"ltr"},{"lang":"ilo","autonym":"Ilokano","dir":"ltr"},{"lang":"io","autonym":"Ido","dir":"ltr"},{"lang":"iu","autonym":"ᐃᓄᒃᑎᑐᑦ / inuktitut","dir":"ltr"},{"lang":"jam","autonym":"Patois","dir":"ltr"},{"lang":"jv","autonym":"Jawa","dir":"ltr"},{"lang":"ka","autonym":"ქართული","dir":"ltr"},{"lang":"kaa","autonym":"Qaraqalpaqsha","dir":"ltr"},{"lang":"kab","autonym":"Taqbaylit","dir":"ltr"},{"lang":"kbd","autonym":"адыгэбзэ","dir":"ltr"},{"lang":"kbp","autonym":"Kabɩyɛ","dir":"ltr"},{"lang":"kcg","autonym":"Tyap","dir":"ltr"},{"lang":"kg","autonym":"Kongo","dir":"ltr"},{"lang":"kge","autonym":"Kumoring","dir":"ltr"},{"lang":"ki","autonym":"Gĩkũyũ","dir":"ltr"},{"lang":"kk","autonym":"қазақша","dir":"ltr"},{"lang":"kl","autonym":"kalaallisut","dir":"ltr"},{"lang":"km","autonym":"ភាសាខ្មែរ","dir":"ltr"},{"lang":"kn","autonym": "ಕನ್ನಡ","dir":"ltr"},{"lang":"knc","autonym":"Yerwa Kanuri","dir":"ltr"},{"lang":"koi","autonym":"перем коми","dir":"ltr"},{"lang":"krc","autonym":"къарачай-малкъар","dir":"ltr"},{"lang":"ks","autonym":"कॉशुर / کٲشُر","dir":"rtl"},{"lang":"ku","autonym":"kurdî","dir":"ltr"},{"lang":"kus","autonym":"Kʋsaal","dir":"ltr"},{"lang":"kv","autonym":"коми","dir":"ltr"},{"lang":"kw","autonym":"kernowek","dir":"ltr"},{"lang":"ky","autonym":"кыргызча","dir":"ltr"},{"lang":"lad","autonym":"Ladino","dir":"ltr"},{"lang":"lb","autonym":"Lëtzebuergesch","dir":"ltr"},{"lang":"lez","autonym":"лезги","dir":"ltr"},{"lang":"lg","autonym":"Luganda","dir":"ltr"},{"lang":"li","autonym":"Limburgs","dir":"ltr"},{"lang":"lld","autonym":"Ladin","dir":"ltr"},{"lang":"lmo","autonym":"lombard","dir":"ltr"},{"lang":"ln","autonym":"lingála","dir":"ltr"},{"lang":"lo","autonym":"ລາວ","dir":"ltr"},{"lang":"ltg","autonym":"latgaļu","dir":"ltr"},{ "lang":"lv","autonym":"latviešu","dir":"ltr"},{"lang":"mad","autonym":"Madhurâ","dir":"ltr"},{"lang":"mai","autonym":"मैथिली","dir":"ltr"},{"lang":"map-bms","autonym":"Basa Banyumasan","dir":"ltr"},{"lang":"mdf","autonym":"мокшень","dir":"ltr"},{"lang":"mg","autonym":"Malagasy","dir":"ltr"},{"lang":"mhr","autonym":"олык марий","dir":"ltr"},{"lang":"mi","autonym":"Māori","dir":"ltr"},{"lang":"min","autonym":"Minangkabau","dir":"ltr"},{"lang":"mk","autonym":"македонски","dir":"ltr"},{"lang":"ml","autonym":"മലയാളം","dir":"ltr"},{"lang":"mn","autonym":"монгол","dir":"ltr"},{"lang":"mni","autonym":"ꯃꯤꯇꯩ ꯂꯣꯟ","dir":"ltr"},{"lang":"mnw","autonym":"ဘာသာမန်","dir":"ltr"},{"lang":"mos","autonym":"moore","dir":"ltr"},{"lang":"mr","autonym":"मराठी","dir":"ltr"},{"lang":"mrj","autonym":"кырык мары","dir":"ltr"},{"lang":"ms","autonym":"Bahasa Melayu","dir":"ltr"},{"lang":"mt","autonym":"Malti", "dir":"ltr"},{"lang":"mwl","autonym":"Mirandés","dir":"ltr"},{"lang":"my","autonym":"မြန်မာဘာသာ","dir":"ltr"},{"lang":"myv","autonym":"эрзянь","dir":"ltr"},{"lang":"mzn","autonym":"مازِرونی","dir":"rtl"},{"lang":"nah","autonym":"Nāhuatl","dir":"ltr"},{"lang":"nan","autonym":"閩南語 / Bân-lâm-gú","dir":"ltr"},{"lang":"nap","autonym":"Napulitano","dir":"ltr"},{"lang":"nb","autonym":"norsk bokmål","dir":"ltr"},{"lang":"nds","autonym":"Plattdüütsch","dir":"ltr"},{"lang":"nds-nl","autonym":"Nedersaksies","dir":"ltr"},{"lang":"ne","autonym":"नेपाली","dir":"ltr"},{"lang":"new","autonym":"नेपाल भाषा","dir":"ltr"},{"lang":"nia","autonym":"Li Niha","dir":"ltr"},{"lang":"nqo","autonym":"ߒߞߏ","dir":"rtl"},{"lang":"nr","autonym":"isiNdebele seSewula","dir":"ltr"},{"lang":"nso","autonym":"Sesotho sa Leboa","dir":"ltr"},{"lang":"ny","autonym":"Chi-Chewa","dir":"ltr"},{"lang":"oc","autonym":"occitan","dir":"ltr"},{"lang": "om","autonym":"Oromoo","dir":"ltr"},{"lang":"or","autonym":"ଓଡ଼ିଆ","dir":"ltr"},{"lang":"os","autonym":"ирон","dir":"ltr"},{"lang":"pa","autonym":"ਪੰਜਾਬੀ","dir":"ltr"},{"lang":"pag","autonym":"Pangasinan","dir":"ltr"},{"lang":"pam","autonym":"Kapampangan","dir":"ltr"},{"lang":"pap","autonym":"Papiamentu","dir":"ltr"},{"lang":"pcd","autonym":"Picard","dir":"ltr"},{"lang":"pcm","autonym":"Naijá","dir":"ltr"},{"lang":"pdc","autonym":"Deitsch","dir":"ltr"},{"lang":"pms","autonym":"Piemontèis","dir":"ltr"},{"lang":"pnb","autonym":"پنجابی","dir":"rtl"},{"lang":"ps","autonym":"پښتو","dir":"rtl"},{"lang":"pwn","autonym":"pinayuanan","dir":"ltr"},{"lang":"qu","autonym":"Runa Simi","dir":"ltr"},{"lang":"rm","autonym":"rumantsch","dir":"ltr"},{"lang":"rn","autonym":"ikirundi","dir":"ltr"},{"lang":"rsk","autonym":"руски","dir":"ltr"},{"lang":"rue","autonym":"русиньскый","dir":"ltr"},{"lang":"rup","autonym":"armãneashti","dir":"ltr"},{"lang": "rw","autonym":"Ikinyarwanda","dir":"ltr"},{"lang":"sa","autonym":"संस्कृतम्","dir":"ltr"},{"lang":"sah","autonym":"саха тыла","dir":"ltr"},{"lang":"sat","autonym":"ᱥᱟᱱᱛᱟᱲᱤ","dir":"ltr"},{"lang":"sc","autonym":"sardu","dir":"ltr"},{"lang":"scn","autonym":"sicilianu","dir":"ltr"},{"lang":"sco","autonym":"Scots","dir":"ltr"},{"lang":"sd","autonym":"سنڌي","dir":"rtl"},{"lang":"se","autonym":"davvisámegiella","dir":"ltr"},{"lang":"sg","autonym":"Sängö","dir":"ltr"},{"lang":"sgs","autonym":"žemaitėška","dir":"ltr"},{"lang":"sh","autonym":"srpskohrvatski / српскохрватски","dir":"ltr"},{"lang":"shi","autonym":"Taclḥit","dir":"ltr"},{"lang":"shn","autonym":"ၽႃႇသႃႇတႆး ","dir":"ltr"},{"lang":"si","autonym":"සිංහල","dir":"ltr"},{"lang":"sk","autonym":"slovenčina","dir":"ltr"},{"lang":"skr","autonym":"سرائیکی","dir":"rtl"},{"lang":"sl","autonym":"slovenščina","dir":"ltr"},{"lang":"sm","autonym": "Gagana Samoa","dir":"ltr"},{"lang":"smn","autonym":"anarâškielâ","dir":"ltr"},{"lang":"sn","autonym":"chiShona","dir":"ltr"},{"lang":"so","autonym":"Soomaaliga","dir":"ltr"},{"lang":"sq","autonym":"shqip","dir":"ltr"},{"lang":"srn","autonym":"Sranantongo","dir":"ltr"},{"lang":"ss","autonym":"SiSwati","dir":"ltr"},{"lang":"st","autonym":"Sesotho","dir":"ltr"},{"lang":"stq","autonym":"Seeltersk","dir":"ltr"},{"lang":"su","autonym":"Sunda","dir":"ltr"},{"lang":"sw","autonym":"Kiswahili","dir":"ltr"},{"lang":"szl","autonym":"ślůnski","dir":"ltr"},{"lang":"tay","autonym":"Tayal","dir":"ltr"},{"lang":"tcy","autonym":"ತುಳು","dir":"ltr"},{"lang":"tdd","autonym":"ᥖᥭᥰ ᥖᥬᥲ ᥑᥨᥒᥰ","dir":"ltr"},{"lang":"te","autonym":"తెలుగు","dir":"ltr"},{"lang":"tet","autonym":"tetun","dir":"ltr"},{"lang":"tg","autonym":"тоҷикӣ","dir":"ltr"},{"lang":"th","autonym":"ไทย","dir":"ltr"},{"lang":"ti","autonym":"ትግርኛ","dir":"ltr"},{"lang":"tig","autonym": "ትግሬ","dir":"ltr"},{"lang":"tk","autonym":"Türkmençe","dir":"ltr"},{"lang":"tl","autonym":"Tagalog","dir":"ltr"},{"lang":"tly","autonym":"tolışi","dir":"ltr"},{"lang":"tn","autonym":"Setswana","dir":"ltr"},{"lang":"to","autonym":"lea faka-Tonga","dir":"ltr"},{"lang":"tpi","autonym":"Tok Pisin","dir":"ltr"},{"lang":"trv","autonym":"Seediq","dir":"ltr"},{"lang":"ts","autonym":"Xitsonga","dir":"ltr"},{"lang":"tt","autonym":"татарча / tatarça","dir":"ltr"},{"lang":"tum","autonym":"chiTumbuka","dir":"ltr"},{"lang":"tw","autonym":"Twi","dir":"ltr"},{"lang":"ty","autonym":"reo tahiti","dir":"ltr"},{"lang":"tyv","autonym":"тыва дыл","dir":"ltr"},{"lang":"udm","autonym":"удмурт","dir":"ltr"},{"lang":"ur","autonym":"اردو","dir":"rtl"},{"lang":"uz","autonym":"oʻzbekcha / ўзбекча","dir":"ltr"},{"lang":"ve","autonym":"Tshivenda","dir":"ltr"},{"lang":"vec","autonym":"vèneto","dir":"ltr"},{"lang":"vep","autonym":"vepsän kel’","dir":"ltr"},{"lang":"vls", "autonym":"West-Vlams","dir":"ltr"},{"lang":"vo","autonym":"Volapük","dir":"ltr"},{"lang":"vro","autonym":"võro","dir":"ltr"},{"lang":"wa","autonym":"walon","dir":"ltr"},{"lang":"war","autonym":"Winaray","dir":"ltr"},{"lang":"wo","autonym":"Wolof","dir":"ltr"},{"lang":"wuu","autonym":"吴语","dir":"ltr"},{"lang":"xal","autonym":"хальмг","dir":"ltr"},{"lang":"xh","autonym":"isiXhosa","dir":"ltr"},{"lang":"xmf","autonym":"მარგალური","dir":"ltr"},{"lang":"yi","autonym":"ייִדיש","dir":"rtl"},{"lang":"yo","autonym":"Yorùbá","dir":"ltr"},{"lang":"yue","autonym":"粵語","dir":"ltr"},{"lang":"za","autonym":"Vahcuengh","dir":"ltr"},{"lang":"zgh","autonym":"ⵜⴰⵎⴰⵣⵉⵖⵜ ⵜⴰⵏⴰⵡⴰⵢⵜ","dir":"ltr"},{"lang":"zu","autonym":"isiZulu","dir":"ltr"}],"wgSectionTranslationTargetLanguages":["ace","ady","alt","am","ami","an","ang","ann","anp","ar","ary","arz","as","ast","av","avk","awa","ay","az","azb","ba","ban","bar","bbc","bcl","bdr","be","bew" ,"bg","bho","bi","bjn","blk","bm","bn","bo","bpy","br","bs","btm","bug","ca","cdo","ce","ceb","ch","chr","ckb","co","cr","crh","cs","cu","cy","da","dag","de","dga","din","diq","dsb","dtp","dv","dz","ee","el","eml","eo","es","et","eu","fa","fat","ff","fi","fj","fo","fon","fr","frp","frr","fur","fy","gag","gan","gcr","gl","glk","gn","gom","gor","gpe","gu","guc","gur","guw","gv","ha","hak","haw","he","hi","hif","hr","hsb","ht","hu","hy","hyw","ia","iba","ie","ig","igl","ilo","io","is","it","iu","ja","jam","jv","ka","kaa","kab","kbd","kbp","kcg","kg","kge","ki","kk","kl","km","kn","knc","ko","koi","krc","ks","ku","kus","kv","kw","ky","lad","lb","lez","lg","li","lij","lld","lmo","ln","lo","lt","ltg","lv","mad","mai","map-bms","mdf","mg","mhr","mi","min","mk","ml","mn","mni","mnw","mos","mr","mrj","ms","mt","mwl","my","myv","mzn","nah","nan","nap","nb","nds","nds-nl","ne","new","nia","nl","nn","nqo","nr","nso","ny","oc","om","or","os","pa","pag","pam","pap","pcd","pcm","pdc","pl","pms","pnb" ,"ps","pt","pwn","qu","rm","rn","ro","rsk","rue","rup","rw","sa","sah","sat","sc","scn","sco","sd","se","sg","sgs","sh","shi","shn","si","sk","skr","sl","sm","smn","sn","so","sq","sr","srn","ss","st","stq","su","sv","sw","szl","ta","tay","tcy","tdd","te","tet","tg","th","ti","tig","tk","tl","tly","tn","to","tpi","tr","trv","ts","tt","tum","tw","ty","tyv","udm","ur","uz","ve","vec","vep","vi","vls","vo","vro","wa","war","wo","wuu","xal","xh","xmf","yi","yo","yue","za","zgh","zh","zu"],"isLanguageSearcherCXEntrypointEnabled":true,"mintEntrypointLanguages":["ace","ast","azb","bcl","bjn","bh","crh","ff","fon","ig","is","ki","ks","lmo","min","sat","ss","tn","vec"],"wgWikibaseItemId":"Q208216","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false, "wgGELevelingUpEnabledForUser":false,"wgMinervaPermissions":{"watchable":true,"watch":false},"wgMinervaFeatures":{"beta":false,"donate":true,"mobileOptionsLink":true,"categories":false,"pageIssues":true,"talkAtTop":true,"historyInPageActions":false,"overflowSubmenu":false,"tabsOnSpecials":true,"personalMenu":false,"mainMenuExpanded":false,"echo":true,"nightMode":true},"wgMinervaDownloadNamespaces":[0]};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.minerva.styles":"ready","skins.minerva.content.styles.images":"ready","mediawiki.hlist":"ready","skins.minerva.codex.styles":"ready","skins.minerva.icons":"ready","skins.minerva.amc.styles":"ready","ext.wikimediamessages.styles":"ready","mobile.init.styles":"ready","ext.relatedArticles.styles":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"}; RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","skins.minerva.scripts","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","ext.popups","mobile.init","ext.echo.centralauth","ext.relatedArticles.readMore.bootstrap","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.cx.eventlogging.campaigns","ext.cx.entrypoints.mffrequentlanguages","ext.cx.entrypoints.languagesearcher.init","mw.externalguidance.init","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.relatedArticles.styles%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cmediawiki.hlist%7Cmobile.init.styles%7Cskins.minerva.amc.styles%7Cskins.minerva.codex.styles%7Cskins.minerva.content.styles.images%7Cskins.minerva.icons%2Cstyles%7Cwikibase.client.init&only=styles&skin=minerva"> <script async src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=minerva"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=minerva"> <meta name="generator" content="MediaWiki 1.44.0-wmf.16"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="theme-color" content="#eaecf0"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/b/b2/TriangleInequality.svg/1200px-TriangleInequality.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1159"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/b/b2/TriangleInequality.svg/800px-TriangleInequality.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="773"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/b/b2/TriangleInequality.svg/640px-TriangleInequality.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="618"> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes, minimum-scale=0.25, maximum-scale=5.0"> <meta property="og:title" content="Triangle inequality - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="manifest" href="/w/api.php?action=webapp-manifest"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Triangle_inequality&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Triangle_inequality"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="dns-prefetch" href="//meta.wikimedia.org"> <link rel="dns-prefetch" href="login.wikimedia.org"> <meta http-equiv="X-Translated-By" content="Google"> <meta http-equiv="X-Translated-To" content="en"> <script type="text/javascript" src="https://www.gstatic.com/_/translate_http/_/js/k=translate_http.tr.en_GB.tKc6KWkFf-8.O/am=gAE/d=1/rs=AN8SPfrf36LIV3DkhtRBGWFnLWWzaykPyw/m=corsproxy" data-sourceurl="https://en.m.wikipedia.org/wiki/Triangle_inequality"></script> <link href="https://fonts.googleapis.com/css2?family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20..48,100..700,0..1,-50..200" rel="stylesheet"> <script type="text/javascript" src="https://www.gstatic.com/_/translate_http/_/js/k=translate_http.tr.en_GB.tKc6KWkFf-8.O/am=gAE/d=1/exm=corsproxy/ed=1/rs=AN8SPfrf36LIV3DkhtRBGWFnLWWzaykPyw/m=phishing_protection" data-phishing-protection-enabled="false" data-forms-warning-enabled="true" data-source-url="https://en.m.wikipedia.org/wiki/Triangle_inequality"></script> <meta name="robots" content="none"> </head> <body class="mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Triangle_inequality rootpage-Triangle_inequality stable issues-group-B skin-minerva action-view skin--responsive mw-mf-amc-disabled mw-mf"> <script type="text/javascript" src="https://www.gstatic.com/_/translate_http/_/js/k=translate_http.tr.en_GB.tKc6KWkFf-8.O/am=gAE/d=1/exm=corsproxy,phishing_protection/ed=1/rs=AN8SPfrf36LIV3DkhtRBGWFnLWWzaykPyw/m=navigationui" data-environment="prod" data-proxy-url="https://en-m-wikipedia-org.translate.goog" data-proxy-full-url="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-source-url="https://en.m.wikipedia.org/wiki/Triangle_inequality" data-source-language="auto" data-target-language="en" data-display-language="en-GB" data-detected-source-language="en" data-is-source-untranslated="false" data-source-untranslated-url="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://en.m.wikipedia.org/wiki/Triangle_inequality&anno=2" data-client="tr"></script> <div id="mw-mf-viewport"> <div id="mw-mf-page-center"><a class="mw-mf-page-center__mask" href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#"></a> <header class="header-container header-chrome"> <div class="minerva-header"> <nav class="navigation-drawer toggle-list view-border-box"><input type="checkbox" id="main-menu-input" class="toggle-list__checkbox" role="button" aria-haspopup="true" aria-expanded="false" aria-labelledby="mw-mf-main-menu-button"> <label role="button" for="main-menu-input" id="mw-mf-main-menu-button" aria-hidden="true" data-event-name="ui.mainmenu" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet toggle-list__toggle"> <span class="minerva-icon minerva-icon--menu"></span> <span></span> </label> <div id="mw-mf-page-left" class="menu view-border-box"> <ul id="p-navigation" class="toggle-list__list"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--home" href="https://en-m-wikipedia-org.translate.goog/wiki/Main_Page?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-mw="interface"> <span class="minerva-icon minerva-icon--home"></span> <span class="toggle-list-item__label">Home</span> </a></li> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--random" href="https://en-m-wikipedia-org.translate.goog/wiki/Special:Random?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-mw="interface"> <span class="minerva-icon minerva-icon--die"></span> <span class="toggle-list-item__label">Random</span> </a></li> <li class="toggle-list-item skin-minerva-list-item-jsonly"><a class="toggle-list-item__anchor menu__item--nearby" href="https://en-m-wikipedia-org.translate.goog/wiki/Special:Nearby?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-event-name="menu.nearby" data-mw="interface"> <span class="minerva-icon minerva-icon--mapPin"></span> <span class="toggle-list-item__label">Nearby</span> </a></li> </ul> <ul id="p-personal" class="toggle-list__list"> <li class="toggle-list-item "><a class="toggle-list-item__anchor mw-list-item menu__item--login" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Special:UserLogin&returnto=Triangle+inequality&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-event-name="menu.login" data-mw="interface"> <span class="minerva-icon minerva-icon--logIn"></span> <span class="toggle-list-item__label">Log in</span> </a></li> </ul> <ul id="pt-preferences" class="toggle-list__list"> <li class="toggle-list-item skin-minerva-list-item-jsonly"><a class="toggle-list-item__anchor menu__item--settings" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Special:MobileOptions&returnto=Triangle+inequality&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-event-name="menu.settings" data-mw="interface"> <span class="minerva-icon minerva-icon--settings"></span> <span class="toggle-list-item__label">Settings</span> </a></li> </ul> <ul id="p-donation" class="toggle-list__list"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--donate" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://donate.wikimedia.org/?wmf_source%3Ddonate%26wmf_medium%3Dsidebar%26wmf_campaign%3Den.wikipedia.org%26uselang%3Den%26wmf_key%3Dminerva" data-event-name="menu.donate" data-mw="interface"> <span class="minerva-icon minerva-icon--heart"></span> <span class="toggle-list-item__label">Donate</span> </a></li> </ul> <ul class="hlist"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--about" href="https://en-m-wikipedia-org.translate.goog/wiki/Wikipedia:About?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-mw="interface"> <span class="toggle-list-item__label">About Wikipedia</span> </a></li> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--disclaimers" href="https://en-m-wikipedia-org.translate.goog/wiki/Wikipedia:General_disclaimer?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-mw="interface"> <span class="toggle-list-item__label">Disclaimers</span> </a></li> </ul> </div><label class="main-menu-mask" for="main-menu-input"></label> </nav> <div class="branding-box"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Main_Page?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB"> <span><img src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" alt="Wikipedia" width="120" height="18" style="width: 7.5em; height: 1.125em;"> </span> </a> </div> <form action="/w/index.php" method="get" class="minerva-search-form"> <div class="search-box"><input type="hidden" name="title" value="Special:Search"> <input class="search skin-minerva-search-trigger" id="searchInput" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f"> <span class="search-box-icon-overlay"><span class="minerva-icon minerva-icon--search"></span> </span> </div><button id="searchIcon" class="cdx-button cdx-button--size-large cdx-button--icon-only cdx-button--weight-quiet skin-minerva-search-trigger"> <span class="minerva-icon minerva-icon--search"></span> <span>Search</span> </button> </form> <nav class="minerva-user-navigation" aria-label="User navigation"> </nav> </div> </header> <main id="content" class="mw-body"> <div class="banner-container"> <div id="siteNotice"></div> </div> <div class="pre-content heading-holder"> <div class="page-heading"> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Triangle inequality</span></h1> <div class="tagline"></div> </div> <ul id="p-associated-pages" class="minerva__tab-container"> <li class="minerva__tab selected mw-list-item"><a class="minerva__tab-text" href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" rel="" data-event-name="tabs.main">Article</a></li> <li class="minerva__tab mw-list-item"><a class="minerva__tab-text" href="https://en-m-wikipedia-org.translate.goog/wiki/Talk:Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" rel="discussion" data-event-name="tabs.talk">Talk</a></li> </ul> <nav class="page-actions-menu"> <ul id="p-views" class="page-actions-menu__list"> <li id="language-selector" class="page-actions-menu__list-item"><a role="button" href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#p-lang" data-mw="interface" data-event-name="menu.languages" title="Language" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet language-selector"> <span class="minerva-icon minerva-icon--language"></span> <span>Language</span> </a></li> <li id="page-actions-watch" class="page-actions-menu__list-item"><a role="button" id="ca-watch" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Special:UserLogin&returnto=Triangle+inequality&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-event-name="menu.watch" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet menu__item--page-actions-watch"> <span class="minerva-icon minerva-icon--star"></span> <span>Watch</span> </a></li> <li id="page-actions-edit" class="page-actions-menu__list-item"><a role="button" id="ca-edit" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Triangle_inequality&action=edit&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-event-name="menu.edit" data-mw="interface" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet edit-page menu__item--page-actions-edit"> <span class="minerva-icon minerva-icon--edit"></span> <span>Edit</span> </a></li> </ul> </nav><!-- version 1.0.2 (change every time you update a partial) --> <div id="mw-content-subtitle"></div> </div> <div id="bodyContent" class="content"> <div id="mw-content-text" class="mw-body-content"> <script>function mfTempOpenSection(id){var block=document.getElementById("mf-section-"+id);block.className+=" open-block";block.previousSibling.className+=" open-block";}</script> <div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"> <section class="mf-section-0" id="mf-section-0"> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style> <div role="note" class="hatnote navigation-not-searchable"> This article is about the basic inequality <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c\leq a+b}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> c </mi> <mo> ≤<!-- ≤ --> </mo> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle c\leq a+b} </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7af0192f95f340bfc5ba28442bec7763893b4f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:9.173ex; height:2.343ex;" alt="{\displaystyle c\leq a+b}"></span>. For other inequalities associated with triangles, see <a href="https://en-m-wikipedia-org.translate.goog/wiki/List_of_triangle_inequalities?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="List of triangle inequalities">List of triangle inequalities</a>. </div> <p>In <a href="https://en-m-wikipedia-org.translate.goog/wiki/Mathematics?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Mathematics">mathematics</a>, the <b>triangle inequality</b> states that for any <a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Triangle">triangle</a>, the sum of the lengths of any two sides must be greater than or equal to the length of the remaining side.<sup id="cite_ref-1" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Khamsi_2-0" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-Khamsi-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> This statement permits the inclusion of <a href="https://en-m-wikipedia-org.translate.goog/wiki/Degeneracy_(mathematics)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Triangle" title="Degeneracy (mathematics)">degenerate triangles</a>, but some authors, especially those writing about elementary geometry, will exclude this possibility, thus leaving out the possibility of equality.<sup id="cite_ref-3" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> If <span class="texhtml mvar" style="font-style:italic;">a</span>, <span class="texhtml mvar" style="font-style:italic;">b</span>, and <span class="texhtml mvar" style="font-style:italic;">c</span> are the lengths of the sides of a triangle then the triangle inequality states that</p> <figure class="mw-default-size" typeof="mw:File/Thumb"> <a href="https://en-m-wikipedia-org.translate.goog/wiki/File:TriangleInequality.svg?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b2/TriangleInequality.svg/220px-TriangleInequality.svg.png" decoding="async" width="220" height="212" class="mw-file-element" srcset="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://upload.wikimedia.org/wikipedia/commons/thumb/b/b2/TriangleInequality.svg/330px-TriangleInequality.svg.png 1.5x,https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://upload.wikimedia.org/wikipedia/commons/thumb/b/b2/TriangleInequality.svg/440px-TriangleInequality.svg.png 2x" data-file-width="938" data-file-height="906"></a> <figcaption> Three examples of the triangle inequality for triangles with sides of lengths <span class="texhtml mvar" style="font-style:italic;">x</span>, <span class="texhtml mvar" style="font-style:italic;">y</span>, <span class="texhtml mvar" style="font-style:italic;">z</span>. The top example shows a case where <span class="texhtml mvar" style="font-style:italic;">z</span> is much less than the sum <span class="texhtml"><i>x</i> + <i>y</i></span> of the other two sides, and the bottom example shows a case where the side <span class="texhtml mvar" style="font-style:italic;">z</span> is only slightly less than <span class="texhtml"><i>x</i> + <i>y</i></span>. </figcaption> </figure> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c\leq a+b,}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> c </mi> <mo> ≤<!-- ≤ --> </mo> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle c\leq a+b,} </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/22ff9e0576b17c5f9495758847133d25a21b0cb2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.82ex; height:2.509ex;" alt="{\displaystyle c\leq a+b,}"></span> </dd> </dl> <p>with equality only in the degenerate case of a triangle with zero area.</p> <p>In <a href="https://en-m-wikipedia-org.translate.goog/wiki/Euclidean_geometry?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Euclidean geometry">Euclidean geometry</a> and some other geometries, the triangle inequality is a theorem about vectors and vector lengths (<a href="https://en-m-wikipedia-org.translate.goog/wiki/Norm_(mathematics)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Norm (mathematics)">norms</a>):</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|\mathbf {u} +\mathbf {v} \|\leq \|\mathbf {u} \|+\|\mathbf {v} \|,}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo> ≤<!-- ≤ --> </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo> + </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \|\mathbf {u} +\mathbf {v} \|\leq \|\mathbf {u} \|+\|\mathbf {v} \|,} </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a85e31ebcb4131c320fee1290408fe786a7ffd86" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.193ex; height:2.843ex;" alt="{\displaystyle \|\mathbf {u} +\mathbf {v} \|\leq \|\mathbf {u} \|+\|\mathbf {v} \|,}"></span> </dd> </dl> <p>where the length of the third side has been replaced by the length of the vector sum <span class="texhtml"><b>u</b> + <b>v</b></span>. When <span class="texhtml"><b>u</b></span> and <span class="texhtml"><b>v</b></span> are <a href="https://en-m-wikipedia-org.translate.goog/wiki/Real_number?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Real number">real numbers</a>, they can be viewed as vectors in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{1}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck"> R </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbb {R} ^{1}} </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec2e282911e406fc800fb1095093667d66f18c7f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{1}}"></span>, and the triangle inequality expresses a relationship between <a href="https://en-m-wikipedia-org.translate.goog/wiki/Absolute_value?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Absolute value">absolute values</a>.</p> <p>In Euclidean geometry, for <a href="https://en-m-wikipedia-org.translate.goog/wiki/Right_triangle?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Right triangle">right triangles</a> the triangle inequality is a consequence of the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Pythagorean_theorem?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Pythagorean theorem">Pythagorean theorem</a>, and for general triangles, a consequence of the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Law_of_cosines?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Law of cosines">law of cosines</a>, although it may be proved without these theorems. The inequality can be viewed intuitively in either <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{2}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck"> R </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbb {R} ^{2}} </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e150115ab9f63023215109595b76686a1ff890fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{2}}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{3}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck"> R </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbb {R} ^{3}} </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f936ddf584f8f3dd2a0ed08917001b7a404c10b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{3}}"></span>. The figure at the right shows three examples beginning with clear inequality (top) and approaching equality (bottom). In the Euclidean case, equality occurs only if the triangle has a <span class="texhtml">180°</span> angle and two <span class="texhtml">0°</span> angles, making the three <a href="https://en-m-wikipedia-org.translate.goog/wiki/Vertex_(geometry)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Vertex (geometry)">vertices</a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Straight_line?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="Straight line">collinear</a>, as shown in the bottom example. Thus, in Euclidean geometry, the shortest distance between two points is a straight line.</p> <p>In <a href="https://en-m-wikipedia-org.translate.goog/wiki/Spherical_geometry?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Spherical geometry">spherical geometry</a>, the shortest distance between two points is an arc of a <a href="https://en-m-wikipedia-org.translate.goog/wiki/Great_circle?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Great circle">great circle</a>, but the triangle inequality holds provided the restriction is made that the distance between two points on a sphere is the length of a minor spherical line segment (that is, one with central angle in <span class="texhtml"><span class="texhtml">[0, <i>π</i>]</span></span>) with those endpoints.<sup id="cite_ref-Ramos_4-0" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-Ramos-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Ramsay_5-0" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-Ramsay-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup></p> <p>The triangle inequality is a <i>defining property</i> of <a href="https://en-m-wikipedia-org.translate.goog/wiki/Norm_(mathematics)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Norm (mathematics)">norms</a> and measures of <a href="https://en-m-wikipedia-org.translate.goog/wiki/Metric_(mathematics)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Definition" class="mw-redirect" title="Metric (mathematics)">distance</a>. This property must be established as a theorem for any function proposed for such purposes for each particular space: for example, spaces such as the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Real_number?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Real number">real numbers</a>, <a href="https://en-m-wikipedia-org.translate.goog/wiki/Euclidean_space?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Euclidean space">Euclidean spaces</a>, the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Lp_space?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Lp space">L<sup>p</sup> spaces</a> (<span class="texhtml"><i>p</i> ≥ 1</span>), and <a href="https://en-m-wikipedia-org.translate.goog/wiki/Inner_product_space?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Inner product space">inner product spaces</a>.</p> <div id="toc" class="toc" role="navigation" aria-labelledby="mw-toc-heading"> <input type="checkbox" role="button" id="toctogglecheckbox" class="toctogglecheckbox" style="display:none"> <div class="toctitle" lang="en" dir="ltr"> <h2 id="mw-toc-heading">Contents</h2><span class="toctogglespan"><label class="toctogglelabel" for="toctogglecheckbox"></label></span> </div> <ul> <li class="toclevel-1 tocsection-1"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Euclidean_geometry"><span class="tocnumber">1</span> <span class="toctext">Euclidean geometry</span></a> <ul> <li class="toclevel-2 tocsection-2"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Mathematical_expression_of_the_constraint_on_the_sides_of_a_triangle"><span class="tocnumber">1.1</span> <span class="toctext">Mathematical expression of the constraint on the sides of a triangle</span></a></li> <li class="toclevel-2 tocsection-3"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Right_triangle"><span class="tocnumber">1.2</span> <span class="toctext">Right triangle</span></a></li> <li class="toclevel-2 tocsection-4"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Examples_of_use"><span class="tocnumber">1.3</span> <span class="toctext">Examples of use</span></a></li> <li class="toclevel-2 tocsection-5"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Generalization_to_any_polygon"><span class="tocnumber">1.4</span> <span class="toctext">Generalization to any polygon</span></a> <ul> <li class="toclevel-3 tocsection-6"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Example_of_the_generalized_polygon_inequality_for_a_quadrilateral"><span class="tocnumber">1.4.1</span> <span class="toctext">Example of the generalized polygon inequality for a quadrilateral</span></a></li> <li class="toclevel-3 tocsection-7"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Relationship_with_shortest_paths"><span class="tocnumber">1.4.2</span> <span class="toctext">Relationship with shortest paths</span></a></li> </ul></li> <li class="toclevel-2 tocsection-8"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Converse"><span class="tocnumber">1.5</span> <span class="toctext">Converse</span></a></li> <li class="toclevel-2 tocsection-9"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Generalization_to_higher_dimensions"><span class="tocnumber">1.6</span> <span class="toctext">Generalization to higher dimensions</span></a></li> </ul></li> <li class="toclevel-1 tocsection-10"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Normed_vector_space"><span class="tocnumber">2</span> <span class="toctext">Normed vector space</span></a> <ul> <li class="toclevel-2 tocsection-11"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Example_norms"><span class="tocnumber">2.1</span> <span class="toctext">Example norms</span></a></li> </ul></li> <li class="toclevel-1 tocsection-12"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Metric_space"><span class="tocnumber">3</span> <span class="toctext">Metric space</span></a></li> <li class="toclevel-1 tocsection-13"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Reverse_triangle_inequality"><span class="tocnumber">4</span> <span class="toctext">Reverse triangle inequality</span></a></li> <li class="toclevel-1 tocsection-14"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Triangle_inequality_for_cosine_similarity"><span class="tocnumber">5</span> <span class="toctext">Triangle inequality for cosine similarity</span></a></li> <li class="toclevel-1 tocsection-15"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Reversal_in_Minkowski_space"><span class="tocnumber">6</span> <span class="toctext">Reversal in Minkowski space</span></a></li> <li class="toclevel-1 tocsection-16"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#See_also"><span class="tocnumber">7</span> <span class="toctext">See also</span></a></li> <li class="toclevel-1 tocsection-17"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Notes"><span class="tocnumber">8</span> <span class="toctext">Notes</span></a></li> <li class="toclevel-1 tocsection-18"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#References"><span class="tocnumber">9</span> <span class="toctext">References</span></a></li> </ul> </div> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(1)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Euclidean_geometry">Euclidean geometry</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Triangle_inequality&action=edit&section=1&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Edit section: Euclidean geometry" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-1 collapsible-block" id="mf-section-1"> <figure class="mw-default-size" typeof="mw:File/Thumb"> <a href="https://en-m-wikipedia-org.translate.goog/wiki/File:Euclid_triangle_inequality.svg?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-file-description"> <noscript> <img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8d/Euclid_triangle_inequality.svg/220px-Euclid_triangle_inequality.svg.png" decoding="async" width="220" height="171" class="mw-file-element" data-file-width="535" data-file-height="417"> </noscript><span class="lazy-image-placeholder" style="width: 220px;height: 171px;" data-mw-src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8d/Euclid_triangle_inequality.svg/220px-Euclid_triangle_inequality.svg.png" data-width="220" data-height="171" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8d/Euclid_triangle_inequality.svg/330px-Euclid_triangle_inequality.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8d/Euclid_triangle_inequality.svg/440px-Euclid_triangle_inequality.svg.png 2x" data-class="mw-file-element"> </span></a> <figcaption> Euclid's construction for proof of the triangle inequality for plane geometry. </figcaption> </figure> <p>Euclid proved the triangle inequality for distances in <a href="https://en-m-wikipedia-org.translate.goog/wiki/Euclidean_geometry?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Euclidean geometry">plane geometry</a> using the construction in the figure.<sup id="cite_ref-Jacobs_6-0" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-Jacobs-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> Beginning with triangle <span class="texhtml mvar" style="font-style:italic;">ABC</span>, an isosceles triangle is constructed with one side taken as <span class="texhtml mvar" style="font-style:italic;"><span style="text-decoration:overline;">BC</span></span> and the other equal leg <span class="texhtml mvar" style="font-style:italic;"><span style="text-decoration:overline;">BD</span></span> along the extension of side <span class="texhtml mvar" style="font-style:italic;"><span style="text-decoration:overline;">AB</span></span>. It then is argued that angle <span class="texhtml mvar" style="font-style:italic;">β</span> has larger measure than angle <span class="texhtml mvar" style="font-style:italic;">α</span>, so side <span class="texhtml mvar" style="font-style:italic;"><span style="text-decoration:overline;">AD</span></span> is longer than side <span class="texhtml mvar" style="font-style:italic;"><span style="text-decoration:overline;">AC</span></span>. However:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {AD}}={\overline {AB}}+{\overline {BD}}={\overline {AB}}+{\overline {BC}},}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi> A </mi> <mi> D </mi> </mrow> <mo accent="false"> ¯<!-- ¯ --> </mo> </mover> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi> A </mi> <mi> B </mi> </mrow> <mo accent="false"> ¯<!-- ¯ --> </mo> </mover> </mrow> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi> B </mi> <mi> D </mi> </mrow> <mo accent="false"> ¯<!-- ¯ --> </mo> </mover> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi> A </mi> <mi> B </mi> </mrow> <mo accent="false"> ¯<!-- ¯ --> </mo> </mover> </mrow> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi> B </mi> <mi> C </mi> </mrow> <mo accent="false"> ¯<!-- ¯ --> </mo> </mover> </mrow> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\overline {AD}}={\overline {AB}}+{\overline {BD}}={\overline {AB}}+{\overline {BC}},} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4f69ecac3d78525eef1dcbd7593cecf46d7c703a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:31.068ex; height:3.343ex;" alt="{\displaystyle {\overline {AD}}={\overline {AB}}+{\overline {BD}}={\overline {AB}}+{\overline {BC}},}"> </noscript><span class="lazy-image-placeholder" style="width: 31.068ex;height: 3.343ex;vertical-align: -0.671ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4f69ecac3d78525eef1dcbd7593cecf46d7c703a" data-alt="{\displaystyle {\overline {AD}}={\overline {AB}}+{\overline {BD}}={\overline {AB}}+{\overline {BC}},}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>so the sum of the lengths of sides <span class="texhtml mvar" style="font-style:italic;"><span style="text-decoration:overline;">AB</span></span> and <span class="texhtml mvar" style="font-style:italic;"><span style="text-decoration:overline;">BC</span></span> is larger than the length of <span class="texhtml mvar" style="font-style:italic;"><span style="text-decoration:overline;">AC</span></span>. This proof appears in <a href="https://en-m-wikipedia-org.translate.goog/wiki/Euclid%27s_Elements?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Euclid's Elements">Euclid's Elements</a>, Book 1, Proposition 20.<sup id="cite_ref-Joyce_7-0" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-Joyce-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup></p> <div class="mw-heading mw-heading3"> <h3 id="Mathematical_expression_of_the_constraint_on_the_sides_of_a_triangle">Mathematical expression of the constraint on the sides of a triangle</h3><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Triangle_inequality&action=edit&section=2&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Edit section: Mathematical expression of the constraint on the sides of a triangle" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>For a proper triangle, the triangle inequality, as stated in words, literally translates into three inequalities (given that a proper triangle has side lengths <span class="texhtml"><i>a</i>, <i>b</i>, <i>c</i></span> that are all positive and excludes the degenerate case of zero area):</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a+b>c,\quad b+c>a,\quad c+a>b.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> > </mo> <mi> c </mi> <mo> , </mo> <mspace width="1em"></mspace> <mi> b </mi> <mo> + </mo> <mi> c </mi> <mo> > </mo> <mi> a </mi> <mo> , </mo> <mspace width="1em"></mspace> <mi> c </mi> <mo> + </mo> <mi> a </mi> <mo> > </mo> <mi> b </mi> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle a+b>c,\quad b+c>a,\quad c+a>b.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/109c1c77f5f1a29d0af753083dd25d2f3ff6ddd4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:34.879ex; height:2.509ex;" alt="{\displaystyle a+b>c,\quad b+c>a,\quad c+a>b.}"> </noscript><span class="lazy-image-placeholder" style="width: 34.879ex;height: 2.509ex;vertical-align: -0.671ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/109c1c77f5f1a29d0af753083dd25d2f3ff6ddd4" data-alt="{\displaystyle a+b>c,\quad b+c>a,\quad c+a>b.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>A more succinct form of this inequality system can be shown to be</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |a-b|<c<a+b.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mi> a </mi> <mo> −<!-- − --> </mo> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mo> < </mo> <mi> c </mi> <mo> < </mo> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle |a-b|<c<a+b.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2798e693d2f3eb2fffcbaebc74d88abd47b29f21" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.28ex; height:2.843ex;" alt="{\displaystyle |a-b|<c<a+b.}"> </noscript><span class="lazy-image-placeholder" style="width: 19.28ex;height: 2.843ex;vertical-align: -0.838ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2798e693d2f3eb2fffcbaebc74d88abd47b29f21" data-alt="{\displaystyle |a-b|<c<a+b.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>Another way to state it is</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \max(a,b,c)<a+b+c-\max(a,b,c)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix"> max </mo> <mo stretchy="false"> ( </mo> <mi> a </mi> <mo> , </mo> <mi> b </mi> <mo> , </mo> <mi> c </mi> <mo stretchy="false"> ) </mo> <mo> < </mo> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mi> c </mi> <mo> −<!-- − --> </mo> <mo movablelimits="true" form="prefix"> max </mo> <mo stretchy="false"> ( </mo> <mi> a </mi> <mo> , </mo> <mi> b </mi> <mo> , </mo> <mi> c </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \max(a,b,c)<a+b+c-\max(a,b,c)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54ad3af7ae686c35fbf4160dbac6852d7043df02" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:37.728ex; height:2.843ex;" alt="{\displaystyle \max(a,b,c)<a+b+c-\max(a,b,c)}"> </noscript><span class="lazy-image-placeholder" style="width: 37.728ex;height: 2.843ex;vertical-align: -0.838ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54ad3af7ae686c35fbf4160dbac6852d7043df02" data-alt="{\displaystyle \max(a,b,c)<a+b+c-\max(a,b,c)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>implying</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\max(a,b,c)<a+b+c}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn> 2 </mn> <mo movablelimits="true" form="prefix"> max </mo> <mo stretchy="false"> ( </mo> <mi> a </mi> <mo> , </mo> <mi> b </mi> <mo> , </mo> <mi> c </mi> <mo stretchy="false"> ) </mo> <mo> < </mo> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle 2\max(a,b,c)<a+b+c} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0c0ea2697cb84c590e32c0d2777af66f9c68355" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25ex; height:2.843ex;" alt="{\displaystyle 2\max(a,b,c)<a+b+c}"> </noscript><span class="lazy-image-placeholder" style="width: 25ex;height: 2.843ex;vertical-align: -0.838ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0c0ea2697cb84c590e32c0d2777af66f9c68355" data-alt="{\displaystyle 2\max(a,b,c)<a+b+c}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>and thus that the longest side length is less than the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Semiperimeter?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Semiperimeter">semiperimeter</a>.</p> <p>A mathematically equivalent formulation is that the area of a triangle with sides <span class="texhtml"><i>a</i>, <i>b</i>, <i>c</i></span> must be a real number greater than zero. <a href="https://en-m-wikipedia-org.translate.goog/wiki/Heron%27s_formula?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Heron's formula">Heron's formula</a> for the area is</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}4\cdot {\text{area}}&={\sqrt {(a+b+c)(-a+b+c)(a-b+c)(a+b-c)}}\\&={\sqrt {-a^{4}-b^{4}-c^{4}+2a^{2}b^{2}+2a^{2}c^{2}+2b^{2}c^{2}}}.\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mn> 4 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mtext> area </mtext> </mrow> </mtd> <mtd> <mi></mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo stretchy="false"> ( </mo> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mi> c </mi> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ( </mo> <mo> −<!-- − --> </mo> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mi> c </mi> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ( </mo> <mi> a </mi> <mo> −<!-- − --> </mo> <mi> b </mi> <mo> + </mo> <mi> c </mi> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ( </mo> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> −<!-- − --> </mo> <mi> c </mi> <mo stretchy="false"> ) </mo> </msqrt> </mrow> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo> −<!-- − --> </mo> <msup> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 4 </mn> </mrow> </msup> <mo> −<!-- − --> </mo> <msup> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 4 </mn> </mrow> </msup> <mo> −<!-- − --> </mo> <msup> <mi> c </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 4 </mn> </mrow> </msup> <mo> + </mo> <mn> 2 </mn> <msup> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <msup> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <mn> 2 </mn> <msup> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <msup> <mi> c </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <mn> 2 </mn> <msup> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <msup> <mi> c </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </msqrt> </mrow> <mo> . </mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}4\cdot {\text{area}}&={\sqrt {(a+b+c)(-a+b+c)(a-b+c)(a+b-c)}}\\&={\sqrt {-a^{4}-b^{4}-c^{4}+2a^{2}b^{2}+2a^{2}c^{2}+2b^{2}c^{2}}}.\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/69860e3cdf566c6756124896a953270f196891ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.838ex; width:57.989ex; height:8.843ex;" alt="{\displaystyle {\begin{aligned}4\cdot {\text{area}}&={\sqrt {(a+b+c)(-a+b+c)(a-b+c)(a+b-c)}}\\&={\sqrt {-a^{4}-b^{4}-c^{4}+2a^{2}b^{2}+2a^{2}c^{2}+2b^{2}c^{2}}}.\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 57.989ex;height: 8.843ex;vertical-align: -3.838ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/69860e3cdf566c6756124896a953270f196891ab" data-alt="{\displaystyle {\begin{aligned}4\cdot {\text{area}}&={\sqrt {(a+b+c)(-a+b+c)(a-b+c)(a+b-c)}}\\&={\sqrt {-a^{4}-b^{4}-c^{4}+2a^{2}b^{2}+2a^{2}c^{2}+2b^{2}c^{2}}}.\end{aligned}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>In terms of either area expression, the triangle inequality imposed on all sides is equivalent to the condition that the expression under the square root sign be real and greater than zero (so the area expression is real and greater than zero).</p> <p>The triangle inequality provides two more interesting constraints for triangles whose sides are <span class="texhtml"><i>a</i>, <i>b</i>, <i>c</i></span>, where <span class="texhtml"><i>a</i> ≥ <i>b</i> ≥ <i>c</i></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> ϕ<!-- ϕ --> </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \phi } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72b1f30316670aee6270a28334bdf4f5072cdde4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.385ex; height:2.509ex;" alt="{\displaystyle \phi }"> </noscript><span class="lazy-image-placeholder" style="width: 1.385ex;height: 2.509ex;vertical-align: -0.671ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72b1f30316670aee6270a28334bdf4f5072cdde4" data-alt="{\displaystyle \phi }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> is the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Golden_ratio?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Golden ratio">golden ratio</a>, as</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1<{\frac {a+c}{b}}<3}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn> 1 </mn> <mo> < </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> c </mi> </mrow> <mi> b </mi> </mfrac> </mrow> <mo> < </mo> <mn> 3 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle 1<{\frac {a+c}{b}}<3} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1aec38a22e6e0b075c17df3fc6859708e8e7bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:14.435ex; height:5.176ex;" alt="{\displaystyle 1<{\frac {a+c}{b}}<3}"> </noscript><span class="lazy-image-placeholder" style="width: 14.435ex;height: 5.176ex;vertical-align: -2.005ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1aec38a22e6e0b075c17df3fc6859708e8e7bab" data-alt="{\displaystyle 1<{\frac {a+c}{b}}<3}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1\leq \min \left({\frac {a}{b}},{\frac {b}{c}}\right)<\phi .}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn> 1 </mn> <mo> ≤<!-- ≤ --> </mo> <mo movablelimits="true" form="prefix"> min </mo> <mrow> <mo> ( </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> a </mi> <mi> b </mi> </mfrac> </mrow> <mo> , </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> b </mi> <mi> c </mi> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> < </mo> <mi> ϕ<!-- ϕ --> </mi> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle 1\leq \min \left({\frac {a}{b}},{\frac {b}{c}}\right)<\phi .} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c2d1fd3cea600eab036f3570c0ecb93a65c53e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:22.018ex; height:6.176ex;" alt="{\displaystyle 1\leq \min \left({\frac {a}{b}},{\frac {b}{c}}\right)<\phi .}"> </noscript><span class="lazy-image-placeholder" style="width: 22.018ex;height: 6.176ex;vertical-align: -2.505ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c2d1fd3cea600eab036f3570c0ecb93a65c53e5" data-alt="{\displaystyle 1\leq \min \left({\frac {a}{b}},{\frac {b}{c}}\right)<\phi .}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span><sup id="cite_ref-8" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> </dd> </dl> <div class="mw-heading mw-heading3"> <h3 id="Right_triangle">Right triangle</h3><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Triangle_inequality&action=edit&section=3&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Edit section: Right triangle" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <figure class="mw-default-size" typeof="mw:File/Thumb"> <a href="https://en-m-wikipedia-org.translate.goog/wiki/File:Isosceles_triangle_made_of_right_triangles.svg?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-file-description"> <noscript> <img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d9/Isosceles_triangle_made_of_right_triangles.svg/220px-Isosceles_triangle_made_of_right_triangles.svg.png" decoding="async" width="220" height="219" class="mw-file-element" data-file-width="545" data-file-height="543"> </noscript><span class="lazy-image-placeholder" style="width: 220px;height: 219px;" data-mw-src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d9/Isosceles_triangle_made_of_right_triangles.svg/220px-Isosceles_triangle_made_of_right_triangles.svg.png" data-width="220" data-height="219" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d9/Isosceles_triangle_made_of_right_triangles.svg/330px-Isosceles_triangle_made_of_right_triangles.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d9/Isosceles_triangle_made_of_right_triangles.svg/440px-Isosceles_triangle_made_of_right_triangles.svg.png 2x" data-class="mw-file-element"> </span></a> <figcaption> Isosceles triangle with equal sides <span class="texhtml"><span style="text-decoration:overline;">AB</span> = <span style="text-decoration:overline;">AC</span></span> divided into two right triangles by an altitude drawn from one of the two base angles. </figcaption> </figure> <p>In the case of right triangles, the triangle inequality specializes to the statement that the hypotenuse is greater than either of the two sides and less than their sum.<sup id="cite_ref-Palmer_9-0" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-Palmer-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup></p> <p>The second part of this theorem is already established above for any side of any triangle. The first part is established using the lower figure. In the figure, consider the right triangle <span class="texhtml mvar" style="font-style:italic;">ADC</span>. An isosceles triangle <span class="texhtml mvar" style="font-style:italic;">ABC</span> is constructed with equal sides <span class="texhtml"><i><span style="text-decoration:overline;">AB</span></i> = <i><span style="text-decoration:overline;">AC</span></i></span>. From the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_postulate?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="Triangle postulate">triangle postulate</a>, the angles in the right triangle <span class="texhtml">ADC</span> satisfy:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha +\gamma =\pi /2\ .}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> α<!-- α --> </mi> <mo> + </mo> <mi> γ<!-- γ --> </mi> <mo> = </mo> <mi> π<!-- π --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mo> / </mo> </mrow> <mn> 2 </mn> <mtext> </mtext> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \alpha +\gamma =\pi /2\ .} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b098f381a35a729477ee7d43adb41b891d804a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.573ex; height:2.843ex;" alt="{\displaystyle \alpha +\gamma =\pi /2\ .}"> </noscript><span class="lazy-image-placeholder" style="width: 13.573ex;height: 2.843ex;vertical-align: -0.838ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b098f381a35a729477ee7d43adb41b891d804a1" data-alt="{\displaystyle \alpha +\gamma =\pi /2\ .}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>Likewise, in the isosceles triangle <span class="texhtml mvar" style="font-style:italic;">ABC</span>, the angles satisfy:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\beta +\gamma =\pi \ .}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn> 2 </mn> <mi> β<!-- β --> </mi> <mo> + </mo> <mi> γ<!-- γ --> </mi> <mo> = </mo> <mi> π<!-- π --> </mi> <mtext> </mtext> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle 2\beta +\gamma =\pi \ .} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0abfdac2d493d64cd2d74f91082ea78c07774ef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.255ex; height:2.676ex;" alt="{\displaystyle 2\beta +\gamma =\pi \ .}"> </noscript><span class="lazy-image-placeholder" style="width: 12.255ex;height: 2.676ex;vertical-align: -0.838ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0abfdac2d493d64cd2d74f91082ea78c07774ef" data-alt="{\displaystyle 2\beta +\gamma =\pi \ .}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>Therefore,</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha =\pi /2-\gamma ,\ \mathrm {while} \ \beta =\pi /2-\gamma /2\ ,}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> α<!-- α --> </mi> <mo> = </mo> <mi> π<!-- π --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mo> / </mo> </mrow> <mn> 2 </mn> <mo> −<!-- − --> </mo> <mi> γ<!-- γ --> </mi> <mo> , </mo> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> w </mi> <mi mathvariant="normal"> h </mi> <mi mathvariant="normal"> i </mi> <mi mathvariant="normal"> l </mi> <mi mathvariant="normal"> e </mi> </mrow> <mtext> </mtext> <mi> β<!-- β --> </mi> <mo> = </mo> <mi> π<!-- π --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mo> / </mo> </mrow> <mn> 2 </mn> <mo> −<!-- − --> </mo> <mi> γ<!-- γ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mo> / </mo> </mrow> <mn> 2 </mn> <mtext> </mtext> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \alpha =\pi /2-\gamma ,\ \mathrm {while} \ \beta =\pi /2-\gamma /2\ ,} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b82e3182c24e204b132c0067b97ae59d914ae78" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:35.58ex; height:2.843ex;" alt="{\displaystyle \alpha =\pi /2-\gamma ,\ \mathrm {while} \ \beta =\pi /2-\gamma /2\ ,}"> </noscript><span class="lazy-image-placeholder" style="width: 35.58ex;height: 2.843ex;vertical-align: -0.838ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b82e3182c24e204b132c0067b97ae59d914ae78" data-alt="{\displaystyle \alpha =\pi /2-\gamma ,\ \mathrm {while} \ \beta =\pi /2-\gamma /2\ ,}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>and so, in particular,</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha <\beta \ .}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> α<!-- α --> </mi> <mo> < </mo> <mi> β<!-- β --> </mi> <mtext> </mtext> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \alpha <\beta \ .} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6886b24d363352cab4d9c918baa52bd54266ad30" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.146ex; height:2.509ex;" alt="{\displaystyle \alpha <\beta \ .}"> </noscript><span class="lazy-image-placeholder" style="width: 7.146ex;height: 2.509ex;vertical-align: -0.671ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6886b24d363352cab4d9c918baa52bd54266ad30" data-alt="{\displaystyle \alpha <\beta \ .}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>That means side <span class="texhtml mvar" style="font-style:italic;">AD</span>, which is opposite to angle <span class="texhtml mvar" style="font-style:italic;">α</span>, is shorter than side <span class="texhtml mvar" style="font-style:italic;">AB</span>, which is opposite to the larger angle <span class="texhtml mvar" style="font-style:italic;">β</span>. But <span class="texhtml"><i><span style="text-decoration:overline;">AB</span></i> = <i><span style="text-decoration:overline;">AC</span></i></span>. Hence:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {AC}}>{\overline {AD}}\ .}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi> A </mi> <mi> C </mi> </mrow> <mo accent="false"> ¯<!-- ¯ --> </mo> </mover> </mrow> <mo> > </mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi> A </mi> <mi> D </mi> </mrow> <mo accent="false"> ¯<!-- ¯ --> </mo> </mover> </mrow> <mtext> </mtext> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\overline {AC}}>{\overline {AD}}\ .} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01e17af6a1cb2948a9f11e401f0ccc35f4605418" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:11.801ex; height:3.009ex;" alt="{\displaystyle {\overline {AC}}>{\overline {AD}}\ .}"> </noscript><span class="lazy-image-placeholder" style="width: 11.801ex;height: 3.009ex;vertical-align: -0.338ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01e17af6a1cb2948a9f11e401f0ccc35f4605418" data-alt="{\displaystyle {\overline {AC}}>{\overline {AD}}\ .}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>A similar construction shows <span class="texhtml"><i><span style="text-decoration:overline;">AC</span></i> > <i><span style="text-decoration:overline;">DC</span></i></span>, establishing the theorem.</p> <p>An alternative proof (also based upon the triangle postulate) proceeds by considering three positions for point <span class="texhtml mvar" style="font-style:italic;">B</span>:<sup id="cite_ref-Zawaira_10-0" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-Zawaira-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> (i) as depicted (which is to be proved), or (ii) <span class="texhtml mvar" style="font-style:italic;">B</span> coincident with <span class="texhtml mvar" style="font-style:italic;">D</span> (which would mean the isosceles triangle had two right angles as base angles plus the vertex angle <span class="texhtml mvar" style="font-style:italic;">γ</span>, which would violate the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_postulate?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="Triangle postulate">triangle postulate</a>), or lastly, (iii) <span class="texhtml mvar" style="font-style:italic;">B</span> interior to the right triangle between points <span class="texhtml mvar" style="font-style:italic;">A</span> and <span class="texhtml mvar" style="font-style:italic;">D</span> (in which case angle <span class="texhtml mvar" style="font-style:italic;">ABC</span> is an exterior angle of a right triangle <span class="texhtml mvar" style="font-style:italic;">BDC</span> and therefore larger than <span class="texhtml"><i>π</i>/2</span>, meaning the other base angle of the isosceles triangle also is greater than <span class="texhtml"><i>π</i>/2</span> and their sum exceeds <span class="texhtml mvar" style="font-style:italic;">π</span> in violation of the triangle postulate).</p> <p>This theorem establishing inequalities is sharpened by <a href="https://en-m-wikipedia-org.translate.goog/wiki/Pythagoras%27_theorem?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="Pythagoras' theorem">Pythagoras' theorem</a> to the equality that the square of the length of the hypotenuse equals the sum of the squares of the other two sides.</p> <div class="mw-heading mw-heading3"> <h3 id="Examples_of_use">Examples of use</h3><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Triangle_inequality&action=edit&section=4&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Edit section: Examples of use" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Consider a triangle whose sides are in an <a href="https://en-m-wikipedia-org.translate.goog/wiki/Arithmetic_progression?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Arithmetic progression">arithmetic progression</a> and let the sides be <span class="texhtml"><i>a</i>, <i>a</i> + <i>d</i>, <i>a</i> + 2<i>d</i></span>. Then the triangle inequality requires that</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{array}{rcccl}0&<&a&<&2a+3d,\\0&<&a+d&<&2a+2d,\\0&<&a+2d&<&2a+d.\end{array}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right center center center left" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn> 0 </mn> </mtd> <mtd> <mo> < </mo> </mtd> <mtd> <mi> a </mi> </mtd> <mtd> <mo> < </mo> </mtd> <mtd> <mn> 2 </mn> <mi> a </mi> <mo> + </mo> <mn> 3 </mn> <mi> d </mi> <mo> , </mo> </mtd> </mtr> <mtr> <mtd> <mn> 0 </mn> </mtd> <mtd> <mo> < </mo> </mtd> <mtd> <mi> a </mi> <mo> + </mo> <mi> d </mi> </mtd> <mtd> <mo> < </mo> </mtd> <mtd> <mn> 2 </mn> <mi> a </mi> <mo> + </mo> <mn> 2 </mn> <mi> d </mi> <mo> , </mo> </mtd> </mtr> <mtr> <mtd> <mn> 0 </mn> </mtd> <mtd> <mo> < </mo> </mtd> <mtd> <mi> a </mi> <mo> + </mo> <mn> 2 </mn> <mi> d </mi> </mtd> <mtd> <mo> < </mo> </mtd> <mtd> <mn> 2 </mn> <mi> a </mi> <mo> + </mo> <mi> d </mi> <mo> . </mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{array}{rcccl}0&<&a&<&2a+3d,\\0&<&a+d&<&2a+2d,\\0&<&a+2d&<&2a+d.\end{array}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/391314cbecc93ed607fc4b8dee1737c6ac7c9193" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:29.527ex; height:9.176ex;" alt="{\displaystyle {\begin{array}{rcccl}0&<&a&<&2a+3d,\\0&<&a+d&<&2a+2d,\\0&<&a+2d&<&2a+d.\end{array}}}"> </noscript><span class="lazy-image-placeholder" style="width: 29.527ex;height: 9.176ex;vertical-align: -4.005ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/391314cbecc93ed607fc4b8dee1737c6ac7c9193" data-alt="{\displaystyle {\begin{array}{rcccl}0&<&a&<&2a+3d,\\0&<&a+d&<&2a+2d,\\0&<&a+2d&<&2a+d.\end{array}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>To satisfy all these inequalities requires</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a>0{\text{ and }}-{\frac {a}{3}}<d<a.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> a </mi> <mo> > </mo> <mn> 0 </mn> <mrow class="MJX-TeXAtom-ORD"> <mtext> and </mtext> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> a </mi> <mn> 3 </mn> </mfrac> </mrow> <mo> < </mo> <mi> d </mi> <mo> < </mo> <mi> a </mi> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle a>0{\text{ and }}-{\frac {a}{3}}<d<a.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2eefd4566b5230891d4f4c840f9eb34b11212a85" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:24.595ex; height:4.676ex;" alt="{\displaystyle a>0{\text{ and }}-{\frac {a}{3}}<d<a.}"> </noscript><span class="lazy-image-placeholder" style="width: 24.595ex;height: 4.676ex;vertical-align: -1.838ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2eefd4566b5230891d4f4c840f9eb34b11212a85" data-alt="{\displaystyle a>0{\text{ and }}-{\frac {a}{3}}<d<a.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span><sup id="cite_ref-11" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> </dd> </dl> <p>When <span class="texhtml mvar" style="font-style:italic;">d</span> is chosen such that <span class="texhtml"><i>d</i> = <i>a</i>/3</span>, it generates a right triangle that is always similar to the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Pythagorean_triple?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Pythagorean triple">Pythagorean triple</a> with sides <span class="texhtml">3</span>, <span class="texhtml">4</span>, <span class="texhtml">5</span>.</p> <p>Now consider a triangle whose sides are in a <a href="https://en-m-wikipedia-org.translate.goog/wiki/Geometric_progression?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Geometric progression">geometric progression</a> and let the sides be <span class="texhtml"><i>a</i>, <i>ar</i>, <i>ar</i><sup>2</sup></span>. Then the triangle inequality requires that</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{array}{rcccl}0&<&a&<&ar+ar^{2},\\0&<&ar&<&a+ar^{2},\\0&<&\!ar^{2}&<&a+ar.\end{array}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right center center center left" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn> 0 </mn> </mtd> <mtd> <mo> < </mo> </mtd> <mtd> <mi> a </mi> </mtd> <mtd> <mo> < </mo> </mtd> <mtd> <mi> a </mi> <mi> r </mi> <mo> + </mo> <mi> a </mi> <msup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> , </mo> </mtd> </mtr> <mtr> <mtd> <mn> 0 </mn> </mtd> <mtd> <mo> < </mo> </mtd> <mtd> <mi> a </mi> <mi> r </mi> </mtd> <mtd> <mo> < </mo> </mtd> <mtd> <mi> a </mi> <mo> + </mo> <mi> a </mi> <msup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> , </mo> </mtd> </mtr> <mtr> <mtd> <mn> 0 </mn> </mtd> <mtd> <mo> < </mo> </mtd> <mtd> <mspace width="negativethinmathspace"></mspace> <mi> a </mi> <msup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mtd> <mtd> <mo> < </mo> </mtd> <mtd> <mi> a </mi> <mo> + </mo> <mi> a </mi> <mi> r </mi> <mo> . </mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{array}{rcccl}0&<&a&<&ar+ar^{2},\\0&<&ar&<&a+ar^{2},\\0&<&\!ar^{2}&<&a+ar.\end{array}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88b134a9284023d120b636ad3246039596b8bdd2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.171ex; width:26.865ex; height:9.509ex;" alt="{\displaystyle {\begin{array}{rcccl}0&<&a&<&ar+ar^{2},\\0&<&ar&<&a+ar^{2},\\0&<&\!ar^{2}&<&a+ar.\end{array}}}"> </noscript><span class="lazy-image-placeholder" style="width: 26.865ex;height: 9.509ex;vertical-align: -4.171ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88b134a9284023d120b636ad3246039596b8bdd2" data-alt="{\displaystyle {\begin{array}{rcccl}0&<&a&<&ar+ar^{2},\\0&<&ar&<&a+ar^{2},\\0&<&\!ar^{2}&<&a+ar.\end{array}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>The first inequality requires <span class="texhtml"><i>a</i> > 0</span>; consequently it can be divided through and eliminated. With <span class="texhtml"><i>a</i> > 0</span>, the middle inequality only requires <span class="texhtml"><i>r</i> > 0</span>. This now leaves the first and third inequalities needing to satisfy</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}r^{2}+r-1&{}>0\\r^{2}-r-1&{}<0.\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <mi> r </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mtd> <mtd> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo> > </mo> <mn> 0 </mn> </mtd> </mtr> <mtr> <mtd> <msup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> −<!-- − --> </mo> <mi> r </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mtd> <mtd> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo> < </mo> <mn> 0. </mn> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}r^{2}+r-1&{}>0\\r^{2}-r-1&{}<0.\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b86ade1523d82a7beb060017d3a5bd1fc79acaf0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:15.654ex; height:6.176ex;" alt="{\displaystyle {\begin{aligned}r^{2}+r-1&{}>0\\r^{2}-r-1&{}<0.\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 15.654ex;height: 6.176ex;vertical-align: -2.505ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b86ade1523d82a7beb060017d3a5bd1fc79acaf0" data-alt="{\displaystyle {\begin{aligned}r^{2}+r-1&{}>0\\r^{2}-r-1&{}<0.\end{aligned}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>The first of these quadratic inequalities requires <span class="texhtml mvar" style="font-style:italic;">r</span> to range in the region beyond the value of the positive root of the quadratic equation <span class="texhtml"><i>r</i><sup>2</sup> + <i>r</i> − 1 = 0</span>, i.e. <span class="texhtml"><i>r</i> > <i>φ</i> − 1</span> where <span class="texhtml mvar" style="font-style:italic;">φ</span> is the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Golden_ratio?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Golden ratio">golden ratio</a>. The second quadratic inequality requires <span class="texhtml mvar" style="font-style:italic;">r</span> to range between 0 and the positive root of the quadratic equation <span class="texhtml"><i>r</i><sup>2</sup> − <i>r</i> − 1 = 0</span>, i.e. <span class="texhtml">0 < <i>r</i> < <i>φ</i></span>. The combined requirements result in <span class="texhtml mvar" style="font-style:italic;">r</span> being confined to the range</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi -1<r<\varphi \,{\text{ and }}a>0.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> φ<!-- φ --> </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> <mo> < </mo> <mi> r </mi> <mo> < </mo> <mi> φ<!-- φ --> </mi> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mtext> and </mtext> </mrow> <mi> a </mi> <mo> > </mo> <mn> 0. </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \varphi -1<r<\varphi \,{\text{ and }}a>0.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e74742556d6dabf681246e5fc50b1a9ae4c58af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.722ex; height:2.676ex;" alt="{\displaystyle \varphi -1<r<\varphi \,{\text{ and }}a>0.}"> </noscript><span class="lazy-image-placeholder" style="width: 25.722ex;height: 2.676ex;vertical-align: -0.838ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e74742556d6dabf681246e5fc50b1a9ae4c58af" data-alt="{\displaystyle \varphi -1<r<\varphi \,{\text{ and }}a>0.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span><sup id="cite_ref-12" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> </dd> </dl> <p>When <span class="texhtml mvar" style="font-style:italic;">r</span> the common ratio is chosen such that <span class="texhtml"><i>r</i> = <span class="nowrap">√<span style="border-top:1px solid; padding:0 0.1em;"><i>φ</i></span></span></span> it generates a right triangle that is always similar to the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Kepler_triangle?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Kepler triangle">Kepler triangle</a>.</p> <div class="mw-heading mw-heading3"> <h3 id="Generalization_to_any_polygon">Generalization to any polygon</h3><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Triangle_inequality&action=edit&section=5&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Edit section: Generalization to any polygon" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>The triangle inequality can be extended by <a href="https://en-m-wikipedia-org.translate.goog/wiki/Mathematical_induction?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Mathematical induction">mathematical induction</a> to arbitrary polygonal paths, showing that the total length of such a path is no less than the length of the straight line between its endpoints. Consequently, the length of any polygon side is always less than the sum of the other polygon side lengths.</p> <div class="mw-heading mw-heading4"> <h4 id="Example_of_the_generalized_polygon_inequality_for_a_quadrilateral">Example of the generalized polygon inequality for a quadrilateral</h4><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Triangle_inequality&action=edit&section=6&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Edit section: Example of the generalized polygon inequality for a quadrilateral" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Consider a quadrilateral whose sides are in a <a href="https://en-m-wikipedia-org.translate.goog/wiki/Geometric_progression?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Geometric progression">geometric progression</a> and let the sides be <span class="texhtml"><i>a</i>, <i>ar</i>, <i>ar</i><sup>2</sup>, <i>ar</i><sup>3</sup></span>. Then the generalized polygon inequality requires that</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{array}{rcccl}0&<&a&<&ar+ar^{2}+ar^{3}\\0&<&ar&<&a+ar^{2}+ar^{3}\\0&<&ar^{2}&<&a+ar+ar^{3}\\0&<&ar^{3}&<&a+ar+ar^{2}.\end{array}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right center center center left" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn> 0 </mn> </mtd> <mtd> <mo> < </mo> </mtd> <mtd> <mi> a </mi> </mtd> <mtd> <mo> < </mo> </mtd> <mtd> <mi> a </mi> <mi> r </mi> <mo> + </mo> <mi> a </mi> <msup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <mi> a </mi> <msup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mn> 0 </mn> </mtd> <mtd> <mo> < </mo> </mtd> <mtd> <mi> a </mi> <mi> r </mi> </mtd> <mtd> <mo> < </mo> </mtd> <mtd> <mi> a </mi> <mo> + </mo> <mi> a </mi> <msup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <mi> a </mi> <msup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mn> 0 </mn> </mtd> <mtd> <mo> < </mo> </mtd> <mtd> <mi> a </mi> <msup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mtd> <mtd> <mo> < </mo> </mtd> <mtd> <mi> a </mi> <mo> + </mo> <mi> a </mi> <mi> r </mi> <mo> + </mo> <mi> a </mi> <msup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mn> 0 </mn> </mtd> <mtd> <mo> < </mo> </mtd> <mtd> <mi> a </mi> <msup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msup> </mtd> <mtd> <mo> < </mo> </mtd> <mtd> <mi> a </mi> <mo> + </mo> <mi> a </mi> <mi> r </mi> <mo> + </mo> <mi> a </mi> <msup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> . </mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{array}{rcccl}0&<&a&<&ar+ar^{2}+ar^{3}\\0&<&ar&<&a+ar^{2}+ar^{3}\\0&<&ar^{2}&<&a+ar+ar^{3}\\0&<&ar^{3}&<&a+ar+ar^{2}.\end{array}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a0540b2d59823ab14ff014d9feeb0f4924d1e6e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.838ex; margin-top: -0.225ex; width:32.778ex; height:12.843ex;" alt="{\displaystyle {\begin{array}{rcccl}0&<&a&<&ar+ar^{2}+ar^{3}\\0&<&ar&<&a+ar^{2}+ar^{3}\\0&<&ar^{2}&<&a+ar+ar^{3}\\0&<&ar^{3}&<&a+ar+ar^{2}.\end{array}}}"> </noscript><span class="lazy-image-placeholder" style="width: 32.778ex;height: 12.843ex;vertical-align: -5.838ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a0540b2d59823ab14ff014d9feeb0f4924d1e6e" data-alt="{\displaystyle {\begin{array}{rcccl}0&<&a&<&ar+ar^{2}+ar^{3}\\0&<&ar&<&a+ar^{2}+ar^{3}\\0&<&ar^{2}&<&a+ar+ar^{3}\\0&<&ar^{3}&<&a+ar+ar^{2}.\end{array}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>These inequalities for <span class="texhtml"><i>a</i> > 0</span> reduce to the following</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r^{3}+r^{2}+r-1>0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msup> <mo> + </mo> <msup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <mi> r </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> <mo> > </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle r^{3}+r^{2}+r-1>0} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9cb6a6872f3f738c8720148a82957e5a52702461" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:19.199ex; height:2.843ex;" alt="{\displaystyle r^{3}+r^{2}+r-1>0}"> </noscript><span class="lazy-image-placeholder" style="width: 19.199ex;height: 2.843ex;vertical-align: -0.505ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9cb6a6872f3f738c8720148a82957e5a52702461" data-alt="{\displaystyle r^{3}+r^{2}+r-1>0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r^{3}-r^{2}-r-1<0.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msup> <mo> −<!-- − --> </mo> <msup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> −<!-- − --> </mo> <mi> r </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> <mo> < </mo> <mn> 0. </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle r^{3}-r^{2}-r-1<0.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e15de5fd427d06be5e9d4f7d16b61e5c7e6629b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:19.846ex; height:2.843ex;" alt="{\displaystyle r^{3}-r^{2}-r-1<0.}"> </noscript><span class="lazy-image-placeholder" style="width: 19.846ex;height: 2.843ex;vertical-align: -0.505ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e15de5fd427d06be5e9d4f7d16b61e5c7e6629b" data-alt="{\displaystyle r^{3}-r^{2}-r-1<0.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span><sup id="cite_ref-13" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> </dd> </dl> <p>The left-hand side polynomials of these two inequalities have roots that are the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Generalizations_of_Fibonacci_numbers?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Tribonacci_numbers" title="Generalizations of Fibonacci numbers">tribonacci constant</a> and its reciprocal. Consequently, <span class="texhtml mvar" style="font-style:italic;">r</span> is limited to the range <span class="texhtml">1/<i>t</i> < <i>r</i> < <i>t</i></span> where <span class="texhtml mvar" style="font-style:italic;">t</span> is the tribonacci constant.</p> <div class="mw-heading mw-heading4"> <h4 id="Relationship_with_shortest_paths">Relationship with shortest paths</h4><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Triangle_inequality&action=edit&section=7&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Edit section: Relationship with shortest paths" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <figure typeof="mw:File/Thumb"> <a href="https://en-m-wikipedia-org.translate.goog/wiki/File:Arclength.svg?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-file-description"> <noscript> <img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5a/Arclength.svg/300px-Arclength.svg.png" decoding="async" width="300" height="78" class="mw-file-element" data-file-width="582" data-file-height="152"> </noscript><span class="lazy-image-placeholder" style="width: 300px;height: 78px;" data-mw-src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5a/Arclength.svg/300px-Arclength.svg.png" data-width="300" data-height="78" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/5a/Arclength.svg/450px-Arclength.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/5a/Arclength.svg/600px-Arclength.svg.png 2x" data-class="mw-file-element"> </span></a> <figcaption> The arc length of a curve is defined as the least upper bound of the lengths of polygonal approximations. </figcaption> </figure> <p>This generalization can be used to prove that the shortest curve between two points in Euclidean geometry is a straight line.</p> <p>No polygonal path between two points is shorter than the line between them. This implies that no curve can have an <a href="https://en-m-wikipedia-org.translate.goog/wiki/Arc_length?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Arc length">arc length</a> less than the distance between its endpoints. By definition, the arc length of a curve is the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Least_upper_bound?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="Least upper bound">least upper bound</a> of the lengths of all polygonal approximations of the curve. The result for polygonal paths shows that the straight line between the endpoints is the shortest of all the polygonal approximations. Because the arc length of the curve is greater than or equal to the length of every polygonal approximation, the curve itself cannot be shorter than the straight line path.<sup id="cite_ref-14" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup></p> <div class="mw-heading mw-heading3"> <h3 id="Converse">Converse</h3><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Triangle_inequality&action=edit&section=8&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Edit section: Converse" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>The converse of the triangle inequality theorem is also true: if three real numbers are such that each is less than the sum of the others, then there exists a triangle with these numbers as its side lengths and with positive area; and if one number equals the sum of the other two, there exists a degenerate triangle (that is, with zero area) with these numbers as its side lengths.</p> <p>In either case, if the side lengths are <span class="texhtml mvar" style="font-style:italic;">a</span>, <span class="texhtml mvar" style="font-style:italic;">b</span>, <span class="texhtml mvar" style="font-style:italic;">c</span> we can attempt to place a triangle in the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Euclidean_plane?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Euclidean plane">Euclidean plane</a> as shown in the diagram. We need to prove that there exists a real number <span class="texhtml mvar" style="font-style:italic;">h</span> consistent with the values <span class="texhtml mvar" style="font-style:italic;">a</span>, <span class="texhtml mvar" style="font-style:italic;">b</span>, and <span class="texhtml mvar" style="font-style:italic;">c</span>, in which case this triangle exists.</p> <figure typeof="mw:File/Thumb"> <a href="https://en-m-wikipedia-org.translate.goog/wiki/File:Triangle_with_notations_3.svg?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-file-description"> <noscript> <img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6a/Triangle_with_notations_3.svg/270px-Triangle_with_notations_3.svg.png" decoding="async" width="270" height="169" class="mw-file-element" data-file-width="320" data-file-height="200"> </noscript><span class="lazy-image-placeholder" style="width: 270px;height: 169px;" data-mw-src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6a/Triangle_with_notations_3.svg/270px-Triangle_with_notations_3.svg.png" data-width="270" data-height="169" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/6a/Triangle_with_notations_3.svg/405px-Triangle_with_notations_3.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/6a/Triangle_with_notations_3.svg/540px-Triangle_with_notations_3.svg.png 2x" data-class="mw-file-element"> </span></a> <figcaption> Triangle with altitude <span class="texhtml mvar" style="font-style:italic;">h</span> cutting base <span class="texhtml mvar" style="font-style:italic;">c</span> into <span class="texhtml"><i>d</i> + (<i>c</i> − <i>d</i>)</span>. </figcaption> </figure> <p>By the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Pythagorean_theorem?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Pythagorean theorem">Pythagorean theorem</a> we have <span class="texhtml"><i>b</i><sup>2</sup> = <i>h</i><sup>2</sup> + <i>d</i><sup>2</sup></span> and <span class="texhtml"><i>a</i><sup>2</sup> = <i>h</i><sup>2</sup> + (<i>c</i> − <i>d</i>)<sup>2</sup></span> according to the figure at the right. Subtracting these yields <span class="texhtml"><i>a</i><sup>2</sup> − <i>b</i><sup>2</sup> = <i>c</i><sup>2</sup> − 2<i>cd</i></span>. This equation allows us to express <span class="texhtml mvar" style="font-style:italic;">d</span> in terms of the sides of the triangle:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d={\frac {-a^{2}+b^{2}+c^{2}}{2c}}.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> d </mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo> −<!-- − --> </mo> <msup> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <msup> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <msup> <mi> c </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mrow> <mrow> <mn> 2 </mn> <mi> c </mi> </mrow> </mfrac> </mrow> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle d={\frac {-a^{2}+b^{2}+c^{2}}{2c}}.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dbf182a76b8b2d1cd9ffaaddec260a1705bd5287" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:19.683ex; height:5.676ex;" alt="{\displaystyle d={\frac {-a^{2}+b^{2}+c^{2}}{2c}}.}"> </noscript><span class="lazy-image-placeholder" style="width: 19.683ex;height: 5.676ex;vertical-align: -1.838ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dbf182a76b8b2d1cd9ffaaddec260a1705bd5287" data-alt="{\displaystyle d={\frac {-a^{2}+b^{2}+c^{2}}{2c}}.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>For the height of the triangle we have that <span class="texhtml"><i>h</i><sup>2</sup> = <i>b</i><sup>2</sup> − <i>d</i><sup>2</sup></span>. By replacing <span class="texhtml mvar" style="font-style:italic;">d</span> with the formula given above, we have</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h^{2}=b^{2}-\left({\frac {-a^{2}+b^{2}+c^{2}}{2c}}\right)^{2}.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi> h </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> = </mo> <msup> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> −<!-- − --> </mo> <msup> <mrow> <mo> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo> −<!-- − --> </mo> <msup> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <msup> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <msup> <mi> c </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mrow> <mrow> <mn> 2 </mn> <mi> c </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle h^{2}=b^{2}-\left({\frac {-a^{2}+b^{2}+c^{2}}{2c}}\right)^{2}.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d4d658c8294ff5e0aed14db782121e4866f9d6d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:30.228ex; height:6.676ex;" alt="{\displaystyle h^{2}=b^{2}-\left({\frac {-a^{2}+b^{2}+c^{2}}{2c}}\right)^{2}.}"> </noscript><span class="lazy-image-placeholder" style="width: 30.228ex;height: 6.676ex;vertical-align: -2.505ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d4d658c8294ff5e0aed14db782121e4866f9d6d" data-alt="{\displaystyle h^{2}=b^{2}-\left({\frac {-a^{2}+b^{2}+c^{2}}{2c}}\right)^{2}.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>For a real number <span class="texhtml mvar" style="font-style:italic;">h</span> to satisfy this, <span class="texhtml"><i>h</i><sup>2</sup></span> must be non-negative:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}0&\leq b^{2}-\left({\frac {-a^{2}+b^{2}+c^{2}}{2c}}\right)^{2}\\[4pt]0&\leq \left(b-{\frac {-a^{2}+b^{2}+c^{2}}{2c}}\right)\left(b+{\frac {-a^{2}+b^{2}+c^{2}}{2c}}\right)\\[4pt]0&\leq \left(a^{2}-(b-c)^{2})((b+c)^{2}-a^{2}\right)\\[6pt]0&\leq (a+b-c)(a-b+c)(b+c+a)(b+c-a)\\[6pt]0&\leq (a+b-c)(a+c-b)(b+c-a)\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.7em 0.7em 0.9em 0.9em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mn> 0 </mn> </mtd> <mtd> <mi></mi> <mo> ≤<!-- ≤ --> </mo> <msup> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> −<!-- − --> </mo> <msup> <mrow> <mo> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo> −<!-- − --> </mo> <msup> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <msup> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <msup> <mi> c </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mrow> <mrow> <mn> 2 </mn> <mi> c </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mn> 0 </mn> </mtd> <mtd> <mi></mi> <mo> ≤<!-- ≤ --> </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo> −<!-- − --> </mo> <msup> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <msup> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <msup> <mi> c </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mrow> <mrow> <mn> 2 </mn> <mi> c </mi> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo> −<!-- − --> </mo> <msup> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <msup> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <msup> <mi> c </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mrow> <mrow> <mn> 2 </mn> <mi> c </mi> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mn> 0 </mn> </mtd> <mtd> <mi></mi> <mo> ≤<!-- ≤ --> </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> −<!-- − --> </mo> <mo stretchy="false"> ( </mo> <mi> b </mi> <mo> −<!-- − --> </mo> <mi> c </mi> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ( </mo> <mo stretchy="false"> ( </mo> <mi> b </mi> <mo> + </mo> <mi> c </mi> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> −<!-- − --> </mo> <msup> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mn> 0 </mn> </mtd> <mtd> <mi></mi> <mo> ≤<!-- ≤ --> </mo> <mo stretchy="false"> ( </mo> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> −<!-- − --> </mo> <mi> c </mi> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ( </mo> <mi> a </mi> <mo> −<!-- − --> </mo> <mi> b </mi> <mo> + </mo> <mi> c </mi> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ( </mo> <mi> b </mi> <mo> + </mo> <mi> c </mi> <mo> + </mo> <mi> a </mi> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ( </mo> <mi> b </mi> <mo> + </mo> <mi> c </mi> <mo> −<!-- − --> </mo> <mi> a </mi> <mo stretchy="false"> ) </mo> </mtd> </mtr> <mtr> <mtd> <mn> 0 </mn> </mtd> <mtd> <mi></mi> <mo> ≤<!-- ≤ --> </mo> <mo stretchy="false"> ( </mo> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> −<!-- − --> </mo> <mi> c </mi> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ( </mo> <mi> a </mi> <mo> + </mo> <mi> c </mi> <mo> −<!-- − --> </mo> <mi> b </mi> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ( </mo> <mi> b </mi> <mo> + </mo> <mi> c </mi> <mo> −<!-- − --> </mo> <mi> a </mi> <mo stretchy="false"> ) </mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}0&\leq b^{2}-\left({\frac {-a^{2}+b^{2}+c^{2}}{2c}}\right)^{2}\\[4pt]0&\leq \left(b-{\frac {-a^{2}+b^{2}+c^{2}}{2c}}\right)\left(b+{\frac {-a^{2}+b^{2}+c^{2}}{2c}}\right)\\[4pt]0&\leq \left(a^{2}-(b-c)^{2})((b+c)^{2}-a^{2}\right)\\[6pt]0&\leq (a+b-c)(a-b+c)(b+c+a)(b+c-a)\\[6pt]0&\leq (a+b-c)(a+c-b)(b+c-a)\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e8f266b2a02c0f9643c3c251cd0cc417af539466" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -13.171ex; width:49.362ex; height:27.509ex;" alt="{\displaystyle {\begin{aligned}0&\leq b^{2}-\left({\frac {-a^{2}+b^{2}+c^{2}}{2c}}\right)^{2}\\[4pt]0&\leq \left(b-{\frac {-a^{2}+b^{2}+c^{2}}{2c}}\right)\left(b+{\frac {-a^{2}+b^{2}+c^{2}}{2c}}\right)\\[4pt]0&\leq \left(a^{2}-(b-c)^{2})((b+c)^{2}-a^{2}\right)\\[6pt]0&\leq (a+b-c)(a-b+c)(b+c+a)(b+c-a)\\[6pt]0&\leq (a+b-c)(a+c-b)(b+c-a)\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 49.362ex;height: 27.509ex;vertical-align: -13.171ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e8f266b2a02c0f9643c3c251cd0cc417af539466" data-alt="{\displaystyle {\begin{aligned}0&\leq b^{2}-\left({\frac {-a^{2}+b^{2}+c^{2}}{2c}}\right)^{2}\\[4pt]0&\leq \left(b-{\frac {-a^{2}+b^{2}+c^{2}}{2c}}\right)\left(b+{\frac {-a^{2}+b^{2}+c^{2}}{2c}}\right)\\[4pt]0&\leq \left(a^{2}-(b-c)^{2})((b+c)^{2}-a^{2}\right)\\[6pt]0&\leq (a+b-c)(a-b+c)(b+c+a)(b+c-a)\\[6pt]0&\leq (a+b-c)(a+c-b)(b+c-a)\end{aligned}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>which holds if the triangle inequality is satisfied for all sides. Therefore, there does exist a real number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> h </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle h} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b26be3e694314bc90c3215047e4a2010c6ee184a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.339ex; height:2.176ex;" alt="{\displaystyle h}"> </noscript><span class="lazy-image-placeholder" style="width: 1.339ex;height: 2.176ex;vertical-align: -0.338ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b26be3e694314bc90c3215047e4a2010c6ee184a" data-alt="{\displaystyle h}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> consistent with the sides <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a,b,c}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> a </mi> <mo> , </mo> <mi> b </mi> <mo> , </mo> <mi> c </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle a,b,c} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f13f068df656c1b1911ae9f81628c49a6181194d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.302ex; height:2.509ex;" alt="{\displaystyle a,b,c}"> </noscript><span class="lazy-image-placeholder" style="width: 5.302ex;height: 2.509ex;vertical-align: -0.671ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f13f068df656c1b1911ae9f81628c49a6181194d" data-alt="{\displaystyle a,b,c}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, and the triangle exists. If each triangle inequality holds <a href="https://en-m-wikipedia-org.translate.goog/wiki/Strict_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="Strict inequality">strictly</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h>0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> h </mi> <mo> > </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle h>0} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cbddb7a5cca6170575e4e73e769fbb434c2a3d71" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.6ex; height:2.176ex;" alt="{\displaystyle h>0}"> </noscript><span class="lazy-image-placeholder" style="width: 5.6ex;height: 2.176ex;vertical-align: -0.338ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cbddb7a5cca6170575e4e73e769fbb434c2a3d71" data-alt="{\displaystyle h>0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> and the triangle is non-degenerate (has positive area); but if one of the inequalities holds with equality, so <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h=0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> h </mi> <mo> = </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle h=0} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffe239e1050529410001cc1c0b3245945bc69709" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.6ex; height:2.176ex;" alt="{\displaystyle h=0}"> </noscript><span class="lazy-image-placeholder" style="width: 5.6ex;height: 2.176ex;vertical-align: -0.338ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffe239e1050529410001cc1c0b3245945bc69709" data-alt="{\displaystyle h=0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, the triangle is degenerate.</p> <div class="mw-heading mw-heading3"> <h3 id="Generalization_to_higher_dimensions">Generalization to higher dimensions</h3><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Triangle_inequality&action=edit&section=9&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Edit section: Generalization to higher dimensions" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style> <table class="box-Unreferenced_section plainlinks metadata ambox ambox-content ambox-Unreferenced" role="presentation"> <tbody> <tr> <td class="mbox-text"> <div class="mbox-text-span"> This section <b>does not <a href="https://en-m-wikipedia-org.translate.goog/wiki/Wikipedia:Citing_sources?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Wikipedia:Citing sources">cite</a> any <a href="https://en-m-wikipedia-org.translate.goog/wiki/Wikipedia:Verifiability?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Wikipedia:Verifiability">sources</a></b>.<span class="hide-when-compact"> Please help <a href="https://en-m-wikipedia-org.translate.goog/wiki/Special:EditPage/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Special:EditPage/Triangle inequality">improve this section</a> by <a href="https://en-m-wikipedia-org.translate.goog/wiki/Help:Referencing_for_beginners?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Help:Referencing for beginners">adding citations to reliable sources</a>. Unsourced material may be challenged and <a href="https://en-m-wikipedia-org.translate.goog/wiki/Wikipedia:Verifiability?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Burden_of_evidence" title="Wikipedia:Verifiability">removed</a>.</span> <span class="date-container"><i>(<span class="date">October 2021</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="https://en-m-wikipedia-org.translate.goog/wiki/Help:Maintenance_template_removal?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span> </div></td> </tr> </tbody> </table> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"> <div role="note" class="hatnote navigation-not-searchable"> See also: <a href="https://en-m-wikipedia-org.translate.goog/wiki/Distance_geometry?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Cayley%E2%80%93Menger_determinants" title="Distance geometry">Distance geometry § Cayley–Menger determinants</a> </div> <p>The area of a triangular face of a <a href="https://en-m-wikipedia-org.translate.goog/wiki/Tetrahedron?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Tetrahedron">tetrahedron</a> is less than or equal to the sum of the areas of the other three triangular faces. More generally, in Euclidean space the hypervolume of an <span class="texhtml">(<i>n</i> − 1)</span>-<a href="https://en-m-wikipedia-org.translate.goog/wiki/Facet_(mathematics)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="Facet (mathematics)">facet</a> of an <span class="texhtml mvar" style="font-style:italic;">n</span>-<a href="https://en-m-wikipedia-org.translate.goog/wiki/Simplex?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Simplex">simplex</a> is less than or equal to the sum of the hypervolumes of the other <span class="texhtml mvar" style="font-style:italic;">n</span> facets.</p> <p>Much as the triangle inequality generalizes to a polygon inequality, the inequality for a simplex of any dimension generalizes to a <a href="https://en-m-wikipedia-org.translate.goog/wiki/Polytope?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Polytope">polytope</a> of any dimension: the hypervolume of any facet of a polytope is less than or equal to the sum of the hypervolumes of the remaining facets.</p> <p>In some cases the tetrahedral inequality is stronger than several applications of the triangle inequality. For example, the triangle inequality appears to allow the possibility of four points <span class="texhtml mvar" style="font-style:italic;">A</span>, <span class="texhtml mvar" style="font-style:italic;">B</span>, <span class="texhtml mvar" style="font-style:italic;">C</span>, and <span class="texhtml mvar" style="font-style:italic;">Z</span> in Euclidean space such that distances</p> <dl> <dd> <span class="texhtml"><i>AB</i> = <i>BC</i> = <i>CA</i> = 26</span> </dd> </dl> <p>and</p> <dl> <dd> <span class="texhtml"><i>AZ</i> = <i>BZ</i> = <i>CZ</i> = 14</span>. </dd> </dl> <p>However, points with such distances cannot exist: the area of the <span class="texhtml">26–26–26</span> equilateral triangle <span class="texhtml"><i>ABC</i></span> is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle 169{\sqrt {3}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mn> 169 </mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn> 3 </mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\textstyle 169{\sqrt {3}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b00f116292ae7a7334438b0067c29b7228721fa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.586ex; height:3.009ex;" alt="{\textstyle 169{\sqrt {3}}}"> </noscript><span class="lazy-image-placeholder" style="width: 6.586ex;height: 3.009ex;vertical-align: -0.671ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b00f116292ae7a7334438b0067c29b7228721fa" data-alt="{\textstyle 169{\sqrt {3}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, which is larger than three times <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle 39{\sqrt {3}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mn> 39 </mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn> 3 </mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\textstyle 39{\sqrt {3}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9408bbf2e8c9550f806b42af2c340c1645155167" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.423ex; height:3.009ex;" alt="{\textstyle 39{\sqrt {3}}}"> </noscript><span class="lazy-image-placeholder" style="width: 5.423ex;height: 3.009ex;vertical-align: -0.671ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9408bbf2e8c9550f806b42af2c340c1645155167" data-alt="{\textstyle 39{\sqrt {3}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, the area of a <span class="texhtml">26–14–14</span> isosceles triangle (all by <a href="https://en-m-wikipedia-org.translate.goog/wiki/Heron%27s_formula?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Heron's formula">Heron's formula</a>), and so the arrangement is forbidden by the tetrahedral inequality.</p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(2)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Normed_vector_space">Normed vector space</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Triangle_inequality&action=edit&section=10&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Edit section: Normed vector space" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-2 collapsible-block" id="mf-section-2"> <figure typeof="mw:File/Thumb"> <a href="https://en-m-wikipedia-org.translate.goog/wiki/File:Vector-triangle-inequality.svg?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-file-description"> <noscript> <img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5a/Vector-triangle-inequality.svg/300px-Vector-triangle-inequality.svg.png" decoding="async" width="300" height="129" class="mw-file-element" data-file-width="625" data-file-height="269"> </noscript><span class="lazy-image-placeholder" style="width: 300px;height: 129px;" data-mw-src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5a/Vector-triangle-inequality.svg/300px-Vector-triangle-inequality.svg.png" data-width="300" data-height="129" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/5a/Vector-triangle-inequality.svg/450px-Vector-triangle-inequality.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/5a/Vector-triangle-inequality.svg/600px-Vector-triangle-inequality.svg.png 2x" data-class="mw-file-element"> </span></a> <figcaption> Triangle inequality for norms of vectors. </figcaption> </figure> <p>In a <a href="https://en-m-wikipedia-org.translate.goog/wiki/Normed_vector_space?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Normed vector space">normed vector space</a> <span class="texhtml mvar" style="font-style:italic;">V</span>, one of the defining properties of the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Norm_(mathematics)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Norm (mathematics)">norm</a> is the triangle inequality:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|\mathbf {u} +\mathbf {v} \|\leq \|\mathbf {u} \|+\|\mathbf {v} \|\quad \forall \,\mathbf {u} ,\mathbf {v} \in V}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo> ≤<!-- ≤ --> </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo> + </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mspace width="1em"></mspace> <mi mathvariant="normal"> ∀<!-- ∀ --> </mi> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mo> , </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mo> ∈<!-- ∈ --> </mo> <mi> V </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \|\mathbf {u} +\mathbf {v} \|\leq \|\mathbf {u} \|+\|\mathbf {v} \|\quad \forall \,\mathbf {u} ,\mathbf {v} \in V} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd426bb9f128d5ce04ac7a82121fe69c05cf6c91" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:34.107ex; height:2.843ex;" alt="{\displaystyle \|\mathbf {u} +\mathbf {v} \|\leq \|\mathbf {u} \|+\|\mathbf {v} \|\quad \forall \,\mathbf {u} ,\mathbf {v} \in V}"> </noscript><span class="lazy-image-placeholder" style="width: 34.107ex;height: 2.843ex;vertical-align: -0.838ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd426bb9f128d5ce04ac7a82121fe69c05cf6c91" data-alt="{\displaystyle \|\mathbf {u} +\mathbf {v} \|\leq \|\mathbf {u} \|+\|\mathbf {v} \|\quad \forall \,\mathbf {u} ,\mathbf {v} \in V}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>That is, the norm of the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Vector_sum?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Addition_and_subtraction" class="mw-redirect" title="Vector sum">sum of two vectors</a> is at most as large as the sum of the norms of the two vectors. This is also referred to as <a href="https://en-m-wikipedia-org.translate.goog/wiki/Subadditivity?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Subadditivity">subadditivity</a>. For any proposed function to behave as a norm, it must satisfy this requirement.<sup id="cite_ref-Kress_15-0" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-Kress-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup></p> <p>If the normed space is <a href="https://en-m-wikipedia-org.translate.goog/wiki/Euclidean_space?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Euclidean space">Euclidean</a>, or, more generally, <a href="https://en-m-wikipedia-org.translate.goog/wiki/Strictly_convex_space?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Strictly convex space">strictly convex</a>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|\mathbf {u} +\mathbf {v} \|=\|\mathbf {u} \|+\|\mathbf {v} \|}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo> = </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo> + </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \|\mathbf {u} +\mathbf {v} \|=\|\mathbf {u} \|+\|\mathbf {v} \|} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43db653ff387f716b0e4494847b2c342b66b0011" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.547ex; height:2.843ex;" alt="{\displaystyle \|\mathbf {u} +\mathbf {v} \|=\|\mathbf {u} \|+\|\mathbf {v} \|}"> </noscript><span class="lazy-image-placeholder" style="width: 21.547ex;height: 2.843ex;vertical-align: -0.838ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43db653ff387f716b0e4494847b2c342b66b0011" data-alt="{\displaystyle \|\mathbf {u} +\mathbf {v} \|=\|\mathbf {u} \|+\|\mathbf {v} \|}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> if and only if the triangle formed by <span class="texhtml"><b>u</b></span>, <span class="texhtml"><b>v</b></span>, and <span class="texhtml"><b>u</b> + <b>v</b></span>, is degenerate, that is, <span class="texhtml"><b>u</b></span> and <span class="texhtml"><b>v</b></span> are on the same ray, i.e., <span class="texhtml"><b>u</b> = 0</span> or <span class="texhtml"><b>v</b> = 0</span>, or <span class="texhtml"><b>u</b> = <i>α</i> <b>v</b></span> for some <span class="texhtml"><i>α</i> > 0</span>. This property characterizes strictly convex normed spaces such as the <span class="texhtml"><i>ℓ<sub>p</sub></i></span> spaces with <span class="texhtml">1 < <i>p</i> < ∞</span>. However, there are normed spaces in which this is not true. For instance, consider the plane with the <span class="texhtml"><i>ℓ</i><sub>1</sub></span> norm (the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Manhattan_distance?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="Manhattan distance">Manhattan distance</a>) and denote <span class="texhtml"><b>u</b> = (1, 0)</span> and <span class="texhtml"><b>v</b> = (0, 1)</span>. Then the triangle formed by <span class="texhtml"><b>u</b></span>, <span class="texhtml"><b>v</b></span>, and <span class="texhtml"><b>u</b> + <b>v</b></span>, is non-degenerate but</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|\mathbf {u} +\mathbf {v} \|=\|(1,1)\|=|1|+|1|=2=\|\mathbf {u} \|+\|\mathbf {v} \|.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo> = </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo stretchy="false"> ( </mo> <mn> 1 </mn> <mo> , </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mn> 1 </mn> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mn> 1 </mn> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mo> = </mo> <mn> 2 </mn> <mo> = </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo> + </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \|\mathbf {u} +\mathbf {v} \|=\|(1,1)\|=|1|+|1|=2=\|\mathbf {u} \|+\|\mathbf {v} \|.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1458e7fb856e87c5e525d71e6f4cc31d2bf287d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:47.897ex; height:2.843ex;" alt="{\displaystyle \|\mathbf {u} +\mathbf {v} \|=\|(1,1)\|=|1|+|1|=2=\|\mathbf {u} \|+\|\mathbf {v} \|.}"> </noscript><span class="lazy-image-placeholder" style="width: 47.897ex;height: 2.843ex;vertical-align: -0.838ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1458e7fb856e87c5e525d71e6f4cc31d2bf287d" data-alt="{\displaystyle \|\mathbf {u} +\mathbf {v} \|=\|(1,1)\|=|1|+|1|=2=\|\mathbf {u} \|+\|\mathbf {v} \|.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <div class="mw-heading mw-heading3"> <h3 id="Example_norms">Example norms</h3><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Triangle_inequality&action=edit&section=11&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Edit section: Example norms" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>The <i><a href="https://en-m-wikipedia-org.translate.goog/wiki/Absolute_value?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Absolute value">absolute value</a></i> is a norm for the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Real_line?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="Real line">real line</a>; as required, the absolute value satisfies the triangle inequality for any real numbers <span class="texhtml mvar" style="font-style:italic;">u</span> and <span class="texhtml mvar" style="font-style:italic;">v</span>. If <span class="texhtml mvar" style="font-style:italic;">u</span> and <span class="texhtml mvar" style="font-style:italic;">v</span> have the same sign or either of them is zero, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |u+v|=|u|+|v|.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mi> u </mi> <mo> + </mo> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle |u+v|=|u|+|v|.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb813e1e40f0248cdf40396744dcf722e0954109" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.222ex; height:2.843ex;" alt="{\displaystyle |u+v|=|u|+|v|.}"> </noscript><span class="lazy-image-placeholder" style="width: 18.222ex;height: 2.843ex;vertical-align: -0.838ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb813e1e40f0248cdf40396744dcf722e0954109" data-alt="{\displaystyle |u+v|=|u|+|v|.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> If <span class="texhtml mvar" style="font-style:italic;">u</span> and <span class="texhtml mvar" style="font-style:italic;">v</span> have opposite signs, then <a href="https://en-m-wikipedia-org.translate.goog/wiki/Without_loss_of_generality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Without loss of generality">without loss of generality</a> assume <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |u|>|v|.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mo> > </mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle |u|>|v|.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8be6fb4ccdcc121588dade5b2e0dc9c3b7a9f27a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.79ex; height:2.843ex;" alt="{\displaystyle |u|>|v|.}"> </noscript><span class="lazy-image-placeholder" style="width: 8.79ex;height: 2.843ex;vertical-align: -0.838ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8be6fb4ccdcc121588dade5b2e0dc9c3b7a9f27a" data-alt="{\displaystyle |u|>|v|.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> Then <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |u+v|=|u|-|v|<|u|+|v|.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mi> u </mi> <mo> + </mo> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mo> < </mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle |u+v|=|u|-|v|<|u|+|v|.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc52047e64419f1c9a1c25fc071a04c0e35e655e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:29.205ex; height:2.843ex;" alt="{\displaystyle |u+v|=|u|-|v|<|u|+|v|.}"> </noscript><span class="lazy-image-placeholder" style="width: 29.205ex;height: 2.843ex;vertical-align: -0.838ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc52047e64419f1c9a1c25fc071a04c0e35e655e" data-alt="{\displaystyle |u+v|=|u|-|v|<|u|+|v|.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> Combining these cases:<sup id="cite_ref-Stewart_16-0" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-Stewart-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup></span></p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |u+v|\leq |u|+|v|.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mi> u </mi> <mo> + </mo> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mo> ≤<!-- ≤ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle |u+v|\leq |u|+|v|.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e7dd5741100aa30dcc531841647c8bc5b03e835" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.222ex; height:2.843ex;" alt="{\displaystyle |u+v|\leq |u|+|v|.}"> </noscript><span class="lazy-image-placeholder" style="width: 18.222ex;height: 2.843ex;vertical-align: -0.838ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e7dd5741100aa30dcc531841647c8bc5b03e835" data-alt="{\displaystyle |u+v|\leq |u|+|v|.}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span></p> <p>The triangle inequality is useful in <a href="https://en-m-wikipedia-org.translate.goog/wiki/Mathematical_analysis?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Mathematical analysis">mathematical analysis</a> for determining the best upper estimate on the size of the sum of two numbers, in terms of the sizes of the individual numbers. There is also a lower estimate, which can be found using the <i>reverse triangle inequality</i> which states that for any real numbers <span class="texhtml mvar" style="font-style:italic;">u</span> and <span class="texhtml mvar" style="font-style:italic;">v</span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |u-v|\geq {\bigl |}|u|-|v|{\bigr |}.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mi> u </mi> <mo> −<!-- − --> </mo> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mo> ≥<!-- ≥ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em"> | </mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em"> | </mo> </mrow> </mrow> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle |u-v|\geq {\bigl |}|u|-|v|{\bigr |}.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ed7aa87c40ca56d8f1de2c56834812bed69b576" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:19.515ex; height:3.176ex;" alt="{\displaystyle |u-v|\geq {\bigl |}|u|-|v|{\bigr |}.}"> </noscript><span class="lazy-image-placeholder" style="width: 19.515ex;height: 3.176ex;vertical-align: -1.005ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ed7aa87c40ca56d8f1de2c56834812bed69b576" data-alt="{\displaystyle |u-v|\geq {\bigl |}|u|-|v|{\bigr |}.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></p> <p>The <i><a href="https://en-m-wikipedia-org.translate.goog/wiki/Taxicab_norm?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="Taxicab norm">taxicab norm</a></i> or 1-norm is one generalization absolute value to higher dimensions. To find the norm of a vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v=(v_{1},v_{2},\ldots v_{n}),}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> v </mi> <mo> = </mo> <mo stretchy="false"> ( </mo> <msub> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <msub> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo> , </mo> <mo> …<!-- … --> </mo> <msub> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle v=(v_{1},v_{2},\ldots v_{n}),} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73f988ca596b2b4397c6eb405968baf0e28a660d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.57ex; height:2.843ex;" alt="{\displaystyle v=(v_{1},v_{2},\ldots v_{n}),}"> </noscript><span class="lazy-image-placeholder" style="width: 18.57ex;height: 2.843ex;vertical-align: -0.838ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73f988ca596b2b4397c6eb405968baf0e28a660d" data-alt="{\displaystyle v=(v_{1},v_{2},\ldots v_{n}),}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> just add the absolute value of each component separately, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|v\|_{1}=|v_{1}|+|v_{2}|+\dotsb +|v_{n}|.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> v </mi> <msub> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <msub> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <msub> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mo> + </mo> <mo> ⋯<!-- ⋯ --> </mo> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <msub> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \|v\|_{1}=|v_{1}|+|v_{2}|+\dotsb +|v_{n}|.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/90a355195bd470f163c1e67d0179ab72908ae236" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:30.087ex; height:2.843ex;" alt="{\displaystyle \|v\|_{1}=|v_{1}|+|v_{2}|+\dotsb +|v_{n}|.}"> </noscript><span class="lazy-image-placeholder" style="width: 30.087ex;height: 2.843ex;vertical-align: -0.838ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/90a355195bd470f163c1e67d0179ab72908ae236" data-alt="{\displaystyle \|v\|_{1}=|v_{1}|+|v_{2}|+\dotsb +|v_{n}|.}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span></p> <p>The <i>Euclidean norm</i> or 2-norm defines the length of translation vectors in an <span class="texhtml mvar" style="font-style:italic;">n</span>-dimensional <a href="https://en-m-wikipedia-org.translate.goog/wiki/Euclidean_space?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Euclidean space">Euclidean space</a> in terms of a <a href="https://en-m-wikipedia-org.translate.goog/wiki/Cartesian_coordinate_system?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Cartesian coordinate system">Cartesian coordinate system</a>. For a vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v=(v_{1},v_{2},\ldots v_{n}),}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> v </mi> <mo> = </mo> <mo stretchy="false"> ( </mo> <msub> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <msub> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo> , </mo> <mo> …<!-- … --> </mo> <msub> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle v=(v_{1},v_{2},\ldots v_{n}),} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73f988ca596b2b4397c6eb405968baf0e28a660d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.57ex; height:2.843ex;" alt="{\displaystyle v=(v_{1},v_{2},\ldots v_{n}),}"> </noscript><span class="lazy-image-placeholder" style="width: 18.57ex;height: 2.843ex;vertical-align: -0.838ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73f988ca596b2b4397c6eb405968baf0e28a660d" data-alt="{\displaystyle v=(v_{1},v_{2},\ldots v_{n}),}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> its length is defined using the <span class="texhtml mvar" style="font-style:italic;">n</span>-dimensional <a href="https://en-m-wikipedia-org.translate.goog/wiki/Pythagorean_theorem?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Pythagorean theorem">Pythagorean theorem</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|v\|_{2}={\sqrt {|v_{1}|^{2}+|v_{2}|^{2}+\dotsb +|v_{n}|^{2}}}.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> v </mi> <msub> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <msub> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <msub> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <mo> ⋯<!-- ⋯ --> </mo> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <msub> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </msqrt> </mrow> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \|v\|_{2}={\sqrt {|v_{1}|^{2}+|v_{2}|^{2}+\dotsb +|v_{n}|^{2}}}.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e6abb20f1d86d7bd5fd6de864c5ec50ac49b765" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:35.574ex; height:4.843ex;" alt="{\displaystyle \|v\|_{2}={\sqrt {|v_{1}|^{2}+|v_{2}|^{2}+\dotsb +|v_{n}|^{2}}}.}"> </noscript><span class="lazy-image-placeholder" style="width: 35.574ex;height: 4.843ex;vertical-align: -1.671ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e6abb20f1d86d7bd5fd6de864c5ec50ac49b765" data-alt="{\displaystyle \|v\|_{2}={\sqrt {|v_{1}|^{2}+|v_{2}|^{2}+\dotsb +|v_{n}|^{2}}}.}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span></p> <p>The <i>inner product</i> is norm in any <a href="https://en-m-wikipedia-org.translate.goog/wiki/Inner_product_space?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Inner product space">inner product space</a>, a generalization of Euclidean vector spaces including infinite-dimensional examples. The triangle inequality follows from the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Cauchy%E2%80%93Schwarz_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Cauchy–Schwarz inequality">Cauchy–Schwarz inequality</a> as follows: Given vectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> u </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle u} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3e6bb763d22c20916ed4f0bb6bd49d7470cffd8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle u}"> </noscript><span class="lazy-image-placeholder" style="width: 1.33ex;height: 1.676ex;vertical-align: -0.338ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3e6bb763d22c20916ed4f0bb6bd49d7470cffd8" data-alt="{\displaystyle u}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> v </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle v} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e07b00e7fc0847fbd16391c778d65bc25c452597" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.128ex; height:1.676ex;" alt="{\displaystyle v}"> </noscript><span class="lazy-image-placeholder" style="width: 1.128ex;height: 1.676ex;vertical-align: -0.338ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e07b00e7fc0847fbd16391c778d65bc25c452597" data-alt="{\displaystyle v}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, and denoting the inner product as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle u,v\rangle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false"> ⟨<!-- ⟨ --> </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo fence="false" stretchy="false"> ⟩<!-- ⟩ --> </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \langle u,v\rangle } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b6704456ffbbed3155bc5dd40e03459129011c99" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.301ex; height:2.843ex;" alt="{\displaystyle \langle u,v\rangle }"> </noscript><span class="lazy-image-placeholder" style="width: 5.301ex;height: 2.843ex;vertical-align: -0.838ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b6704456ffbbed3155bc5dd40e03459129011c99" data-alt="{\displaystyle \langle u,v\rangle }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>:<sup id="cite_ref-Stillwell_17-0" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-Stillwell-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup></p> <dl> <dd> <table> <tbody> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|u+v\|^{2}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> u </mi> <mo> + </mo> <mi> v </mi> <msup> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \|u+v\|^{2}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bce9dee15b5f8e5ad78da6ff0173c02653e748e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.677ex; height:3.176ex;" alt="{\displaystyle \|u+v\|^{2}}"> </noscript><span class="lazy-image-placeholder" style="width: 8.677ex;height: 3.176ex;vertical-align: -0.838ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bce9dee15b5f8e5ad78da6ff0173c02653e748e2" data-alt="{\displaystyle \|u+v\|^{2}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle =\langle u+v,u+v\rangle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo> = </mo> <mo fence="false" stretchy="false"> ⟨<!-- ⟨ --> </mo> <mi> u </mi> <mo> + </mo> <mi> v </mi> <mo> , </mo> <mi> u </mi> <mo> + </mo> <mi> v </mi> <mo fence="false" stretchy="false"> ⟩<!-- ⟩ --> </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle =\langle u+v,u+v\rangle } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05ffa49ff92e16f2c652380cb7fedd4a399bdd1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.892ex; height:2.843ex;" alt="{\displaystyle =\langle u+v,u+v\rangle }"> </noscript><span class="lazy-image-placeholder" style="width: 15.892ex;height: 2.843ex;vertical-align: -0.838ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05ffa49ff92e16f2c652380cb7fedd4a399bdd1e" data-alt="{\displaystyle =\langle u+v,u+v\rangle }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></td> </tr> <tr> <td></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle =\|u\|^{2}+\langle u,v\rangle +\langle v,u\rangle +\|v\|^{2}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo> = </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> u </mi> <msup> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <mo fence="false" stretchy="false"> ⟨<!-- ⟨ --> </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo fence="false" stretchy="false"> ⟩<!-- ⟩ --> </mo> <mo> + </mo> <mo fence="false" stretchy="false"> ⟨<!-- ⟨ --> </mo> <mi> v </mi> <mo> , </mo> <mi> u </mi> <mo fence="false" stretchy="false"> ⟩<!-- ⟩ --> </mo> <mo> + </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> v </mi> <msup> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle =\|u\|^{2}+\langle u,v\rangle +\langle v,u\rangle +\|v\|^{2}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2705065d27ea5b0fd218d85303b066d060dc656" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:30.791ex; height:3.176ex;" alt="{\displaystyle =\|u\|^{2}+\langle u,v\rangle +\langle v,u\rangle +\|v\|^{2}}"> </noscript><span class="lazy-image-placeholder" style="width: 30.791ex;height: 3.176ex;vertical-align: -0.838ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2705065d27ea5b0fd218d85303b066d060dc656" data-alt="{\displaystyle =\|u\|^{2}+\langle u,v\rangle +\langle v,u\rangle +\|v\|^{2}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></td> </tr> <tr> <td></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \leq \|u\|^{2}+2|\langle u,v\rangle |+\|v\|^{2}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo> ≤<!-- ≤ --> </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> u </mi> <msup> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <mn> 2 </mn> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mo fence="false" stretchy="false"> ⟨<!-- ⟨ --> </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo fence="false" stretchy="false"> ⟩<!-- ⟩ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mo> + </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> v </mi> <msup> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \leq \|u\|^{2}+2|\langle u,v\rangle |+\|v\|^{2}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/794527280cf331b5ad64fc534ffffd4dc4e583c8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.106ex; height:3.176ex;" alt="{\displaystyle \leq \|u\|^{2}+2|\langle u,v\rangle |+\|v\|^{2}}"> </noscript><span class="lazy-image-placeholder" style="width: 25.106ex;height: 3.176ex;vertical-align: -0.838ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/794527280cf331b5ad64fc534ffffd4dc4e583c8" data-alt="{\displaystyle \leq \|u\|^{2}+2|\langle u,v\rangle |+\|v\|^{2}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></td> </tr> <tr> <td></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \leq \|u\|^{2}+2\|u\|\|v\|+\|v\|^{2}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo> ≤<!-- ≤ --> </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> u </mi> <msup> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <mn> 2 </mn> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> u </mi> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> v </mi> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo> + </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> v </mi> <msup> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \leq \|u\|^{2}+2\|u\|\|v\|+\|v\|^{2}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7848d5ac90707f1df8903810e2012d12eb95e6f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.619ex; height:3.176ex;" alt="{\displaystyle \leq \|u\|^{2}+2\|u\|\|v\|+\|v\|^{2}}"> </noscript><span class="lazy-image-placeholder" style="width: 25.619ex;height: 3.176ex;vertical-align: -0.838ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7848d5ac90707f1df8903810e2012d12eb95e6f4" data-alt="{\displaystyle \leq \|u\|^{2}+2\|u\|\|v\|+\|v\|^{2}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> (by the Cauchy–Schwarz inequality)</td> </tr> <tr> <td></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle =\left(\|u\|+\|v\|\right)^{2}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo> = </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> u </mi> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo> + </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> v </mi> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> </mrow> <mo> ) </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle =\left(\|u\|+\|v\|\right)^{2}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82224a4b73b926096aa7664e56d0b3f6b286bc5d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.264ex; height:3.343ex;" alt="{\displaystyle =\left(\|u\|+\|v\|\right)^{2}}"> </noscript><span class="lazy-image-placeholder" style="width: 15.264ex;height: 3.343ex;vertical-align: -0.838ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82224a4b73b926096aa7664e56d0b3f6b286bc5d" data-alt="{\displaystyle =\left(\|u\|+\|v\|\right)^{2}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>.</td> </tr> </tbody> </table> </dd> </dl> <p>The Cauchy–Schwarz inequality turns into an equality if and only if <span class="texhtml mvar" style="font-style:italic;">u</span> and <span class="texhtml mvar" style="font-style:italic;">v</span> are linearly dependent. The inequality <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle u,v\rangle +\langle v,u\rangle \leq 2\left|\left\langle u,v\right\rangle \right|}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false"> ⟨<!-- ⟨ --> </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo fence="false" stretchy="false"> ⟩<!-- ⟩ --> </mo> <mo> + </mo> <mo fence="false" stretchy="false"> ⟨<!-- ⟨ --> </mo> <mi> v </mi> <mo> , </mo> <mi> u </mi> <mo fence="false" stretchy="false"> ⟩<!-- ⟩ --> </mo> <mo> ≤<!-- ≤ --> </mo> <mn> 2 </mn> <mrow> <mo> | </mo> <mrow> <mo> ⟨ </mo> <mrow> <mi> u </mi> <mo> , </mo> <mi> v </mi> </mrow> <mo> ⟩ </mo> </mrow> <mo> | </mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \langle u,v\rangle +\langle v,u\rangle \leq 2\left|\left\langle u,v\right\rangle \right|} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a4d30cb307abe6c44389e560738e49b4ab827dca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.684ex; height:2.843ex;" alt="{\displaystyle \langle u,v\rangle +\langle v,u\rangle \leq 2\left|\left\langle u,v\right\rangle \right|}"> </noscript><span class="lazy-image-placeholder" style="width: 24.684ex;height: 2.843ex;vertical-align: -0.838ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a4d30cb307abe6c44389e560738e49b4ab827dca" data-alt="{\displaystyle \langle u,v\rangle +\langle v,u\rangle \leq 2\left|\left\langle u,v\right\rangle \right|}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> turns into an equality for linearly dependent <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> u </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle u} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3e6bb763d22c20916ed4f0bb6bd49d7470cffd8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle u}"> </noscript><span class="lazy-image-placeholder" style="width: 1.33ex;height: 1.676ex;vertical-align: -0.338ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3e6bb763d22c20916ed4f0bb6bd49d7470cffd8" data-alt="{\displaystyle u}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> v </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle v} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e07b00e7fc0847fbd16391c778d65bc25c452597" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.128ex; height:1.676ex;" alt="{\displaystyle v}"> </noscript><span class="lazy-image-placeholder" style="width: 1.128ex;height: 1.676ex;vertical-align: -0.338ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e07b00e7fc0847fbd16391c778d65bc25c452597" data-alt="{\displaystyle v}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> if and only if one of the vectors <span class="texhtml mvar" style="font-style:italic;">u</span> or <span class="texhtml mvar" style="font-style:italic;">v</span> is a <i>nonnegative</i> scalar of the other. Taking the square root of the final result gives the triangle inequality.</p> <p>The <a href="https://en-m-wikipedia-org.translate.goog/wiki/P-norm?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="P-norm"><span class="texhtml mvar" style="font-style:italic;">p</span>-norm</a> is a generalization of taxicab and Euclidean norms, using an arbitrary positive integer exponent, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|v\|_{p}={\bigl (}|v_{1}|^{p}+|v_{2}|^{p}+\dotsb +|v_{n}|^{p}{\bigr )}^{1/p},}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> v </mi> <msub> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> p </mi> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em"> ( </mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <msub> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> p </mi> </mrow> </msup> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <msub> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> p </mi> </mrow> </msup> <mo> + </mo> <mo> ⋯<!-- ⋯ --> </mo> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <msub> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> p </mi> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em"> ) </mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> <mrow class="MJX-TeXAtom-ORD"> <mo> / </mo> </mrow> <mi> p </mi> </mrow> </msup> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \|v\|_{p}={\bigl (}|v_{1}|^{p}+|v_{2}|^{p}+\dotsb +|v_{n}|^{p}{\bigr )}^{1/p},} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac874518f031c598337c9acad39373e62f903141" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:38.103ex; height:3.843ex;" alt="{\displaystyle \|v\|_{p}={\bigl (}|v_{1}|^{p}+|v_{2}|^{p}+\dotsb +|v_{n}|^{p}{\bigr )}^{1/p},}"> </noscript><span class="lazy-image-placeholder" style="width: 38.103ex;height: 3.843ex;vertical-align: -1.005ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac874518f031c598337c9acad39373e62f903141" data-alt="{\displaystyle \|v\|_{p}={\bigl (}|v_{1}|^{p}+|v_{2}|^{p}+\dotsb +|v_{n}|^{p}{\bigr )}^{1/p},}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span> where the <span class="texhtml"><i>v<sub>i</sub></i></span> are the components of vector <span class="texhtml mvar" style="font-style:italic;">v</span>.</p> <p>Except for the case <span class="texhtml"><i>p</i> = 2</span>, the <span class="texhtml mvar" style="font-style:italic;">p</span>-norm is <i>not</i> an inner product norm, because it does not satisfy the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Parallelogram_law?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Parallelogram law">parallelogram law</a>. The triangle inequality for general values of <span class="texhtml mvar" style="font-style:italic;">p</span> is called <a href="https://en-m-wikipedia-org.translate.goog/wiki/Minkowski%27s_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="Minkowski's inequality">Minkowski's inequality</a>.<sup id="cite_ref-Saxe_18-0" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-Saxe-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup> It takes the form:<span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|u+v\|_{p}\leq \|u\|_{p}+\|v\|_{p}\ .}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> u </mi> <mo> + </mo> <mi> v </mi> <msub> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> p </mi> </mrow> </msub> <mo> ≤<!-- ≤ --> </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> u </mi> <msub> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> p </mi> </mrow> </msub> <mo> + </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> v </mi> <msub> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> p </mi> </mrow> </msub> <mtext> </mtext> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \|u+v\|_{p}\leq \|u\|_{p}+\|v\|_{p}\ .} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/588f5e42b6c4b9c7f7143b0e89f791733052bdc0" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:25.074ex; height:3.009ex;" alt="{\displaystyle \|u+v\|_{p}\leq \|u\|_{p}+\|v\|_{p}\ .}"> </noscript><span class="lazy-image-placeholder" style="width: 25.074ex;height: 3.009ex;vertical-align: -1.005ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/588f5e42b6c4b9c7f7143b0e89f791733052bdc0" data-alt="{\displaystyle \|u+v\|_{p}\leq \|u\|_{p}+\|v\|_{p}\ .}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span></p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(3)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Metric_space">Metric space</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Triangle_inequality&action=edit&section=12&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Edit section: Metric space" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-3 collapsible-block" id="mf-section-3"> <p>In a <a href="https://en-m-wikipedia-org.translate.goog/wiki/Metric_space?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Metric space">metric space</a> <span class="texhtml mvar" style="font-style:italic;">M</span> with metric <span class="texhtml mvar" style="font-style:italic;">d</span>, the triangle inequality is a requirement upon <a href="https://en-m-wikipedia-org.translate.goog/wiki/Metric_(mathematics)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Definition" class="mw-redirect" title="Metric (mathematics)">distance</a>:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(A,\ C)\leq d(A,\ B)+d(B,\ C)\ ,}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> d </mi> <mo stretchy="false"> ( </mo> <mi> A </mi> <mo> , </mo> <mtext> </mtext> <mi> C </mi> <mo stretchy="false"> ) </mo> <mo> ≤<!-- ≤ --> </mo> <mi> d </mi> <mo stretchy="false"> ( </mo> <mi> A </mi> <mo> , </mo> <mtext> </mtext> <mi> B </mi> <mo stretchy="false"> ) </mo> <mo> + </mo> <mi> d </mi> <mo stretchy="false"> ( </mo> <mi> B </mi> <mo> , </mo> <mtext> </mtext> <mi> C </mi> <mo stretchy="false"> ) </mo> <mtext> </mtext> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle d(A,\ C)\leq d(A,\ B)+d(B,\ C)\ ,} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cce68d5d5bba49599b2ac9186323bbdd4568a6ec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:31.633ex; height:2.843ex;" alt="{\displaystyle d(A,\ C)\leq d(A,\ B)+d(B,\ C)\ ,}"> </noscript><span class="lazy-image-placeholder" style="width: 31.633ex;height: 2.843ex;vertical-align: -0.838ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cce68d5d5bba49599b2ac9186323bbdd4568a6ec" data-alt="{\displaystyle d(A,\ C)\leq d(A,\ B)+d(B,\ C)\ ,}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>for all points <span class="texhtml mvar" style="font-style:italic;">A</span>, <span class="texhtml mvar" style="font-style:italic;">B</span>, and <span class="texhtml mvar" style="font-style:italic;">C</span> in <span class="texhtml mvar" style="font-style:italic;">M</span>. That is, the distance from <span class="texhtml mvar" style="font-style:italic;">A</span> to <span class="texhtml mvar" style="font-style:italic;">C</span> is at most as large as the sum of the distance from <span class="texhtml mvar" style="font-style:italic;">A</span> to <span class="texhtml mvar" style="font-style:italic;">B</span> and the distance from <span class="texhtml mvar" style="font-style:italic;">B</span> to <span class="texhtml mvar" style="font-style:italic;">C</span>.</p> <p>The triangle inequality is responsible for most of the interesting structure on a metric space, namely, convergence. This is because the remaining requirements for a metric are rather simplistic in comparison. For example, the fact that any <a href="https://en-m-wikipedia-org.translate.goog/wiki/Limit_of_a_sequence?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Limit of a sequence">convergent sequence</a> in a metric space is a <a href="https://en-m-wikipedia-org.translate.goog/wiki/Cauchy_sequence?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Cauchy sequence">Cauchy sequence</a> is a direct consequence of the triangle inequality, because if we choose any <span class="texhtml"><i>x<sub>n</sub></i></span> and <span class="texhtml"><i>x<sub>m</sub></i></span> such that <span class="texhtml"><i>d</i>(<i>x<sub>n</sub></i>, <i>x</i>) < <i>ε</i>/2</span> and <span class="texhtml"><i>d</i>(<i>x<sub>m</sub></i>, <i>x</i>) < <i>ε</i>/2</span>, where <span class="texhtml"><i>ε</i> > 0</span> is given and arbitrary (as in the definition of a limit in a metric space), then by the triangle inequality, <span class="texhtml"><i>d</i>(<i>x<sub>n</sub></i>, <i>x<sub>m</sub></i>) ≤ <i>d</i>(<i>x<sub>n</sub></i>, <i>x</i>) + <i>d</i>(<i>x<sub>m</sub></i>, <i>x</i>) < <i>ε</i>/2 + <i>ε</i>/2 = <i>ε</i></span>, so that the sequence <span class="texhtml">{<i>x<sub>n</sub></i>}</span> is a Cauchy sequence, by definition.</p> <p>This version of the triangle inequality reduces to the one stated above in case of normed vector spaces where a metric is induced via <span class="texhtml"><i>d</i>(<i>u</i>, <i>v</i>) ≔ ‖<i>u</i> − <i>v</i>‖</span>, with <span class="texhtml"><i>u</i> − <i>v</i></span> being the vector pointing from point <span class="texhtml mvar" style="font-style:italic;">v</span> to <span class="texhtml mvar" style="font-style:italic;">u</span>.</p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(4)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Reverse_triangle_inequality">Reverse triangle inequality</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Triangle_inequality&action=edit&section=13&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Edit section: Reverse triangle inequality" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-4 collapsible-block" id="mf-section-4"> <p>The <b>reverse triangle inequality</b> is an equivalent alternative formulation of the triangle inequality that gives lower bounds instead of upper bounds. For plane geometry, the statement is:<sup id="cite_ref-inequality_19-0" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-inequality-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup></p> <dl> <dd> <i>Any side of a triangle is greater than or equal to the difference between the other two sides</i>. </dd> </dl> <p>In the case of a normed vector space, the statement is:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\big |}\|u\|-\|v\|{\big |}\leq \|u-v\|,}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em"> | </mo> </mrow> </mrow> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> u </mi> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo> −<!-- − --> </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> v </mi> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em"> | </mo> </mrow> </mrow> <mo> ≤<!-- ≤ --> </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> u </mi> <mo> −<!-- − --> </mo> <mi> v </mi> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\big |}\|u\|-\|v\|{\big |}\leq \|u-v\|,} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/edb25ae558fa1993b75e6c9c7bdee14a8a9e75f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:22.609ex; height:3.176ex;" alt="{\displaystyle {\big |}\|u\|-\|v\|{\big |}\leq \|u-v\|,}"> </noscript><span class="lazy-image-placeholder" style="width: 22.609ex;height: 3.176ex;vertical-align: -1.005ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/edb25ae558fa1993b75e6c9c7bdee14a8a9e75f0" data-alt="{\displaystyle {\big |}\|u\|-\|v\|{\big |}\leq \|u-v\|,}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>or for metric spaces, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |d(A,C)-d(B,C)|\leq d(A,B)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mi> d </mi> <mo stretchy="false"> ( </mo> <mi> A </mi> <mo> , </mo> <mi> C </mi> <mo stretchy="false"> ) </mo> <mo> −<!-- − --> </mo> <mi> d </mi> <mo stretchy="false"> ( </mo> <mi> B </mi> <mo> , </mo> <mi> C </mi> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mo> ≤<!-- ≤ --> </mo> <mi> d </mi> <mo stretchy="false"> ( </mo> <mi> A </mi> <mo> , </mo> <mi> B </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle |d(A,C)-d(B,C)|\leq d(A,B)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d284ac8bc2efbe211f17ad04a9888265f2919ee7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:29.957ex; height:2.843ex;" alt="{\displaystyle |d(A,C)-d(B,C)|\leq d(A,B)}"> </noscript><span class="lazy-image-placeholder" style="width: 29.957ex;height: 2.843ex;vertical-align: -0.838ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d284ac8bc2efbe211f17ad04a9888265f2919ee7" data-alt="{\displaystyle |d(A,C)-d(B,C)|\leq d(A,B)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>. This implies that the norm <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|\cdot \|}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo> ⋅<!-- ⋅ --> </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \|\cdot \|} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/113f0d8fe6108fc1c5e9802f7c3f634f5480b3d1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.004ex; height:2.843ex;" alt="{\displaystyle \|\cdot \|}"> </noscript><span class="lazy-image-placeholder" style="width: 4.004ex;height: 2.843ex;vertical-align: -0.838ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/113f0d8fe6108fc1c5e9802f7c3f634f5480b3d1" data-alt="{\displaystyle \|\cdot \|}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> as well as the distance-from-<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> z </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle z} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"> </noscript><span class="lazy-image-placeholder" style="width: 1.088ex;height: 1.676ex;vertical-align: -0.338ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" data-alt="{\displaystyle z}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(z,\cdot )}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> d </mi> <mo stretchy="false"> ( </mo> <mi> z </mi> <mo> , </mo> <mo> ⋅<!-- ⋅ --> </mo> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle d(z,\cdot )} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/934a1c521cfac5b2e36f517b47fc97e63e043d25" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.794ex; height:2.843ex;" alt="{\displaystyle d(z,\cdot )}"> </noscript><span class="lazy-image-placeholder" style="width: 5.794ex;height: 2.843ex;vertical-align: -0.838ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/934a1c521cfac5b2e36f517b47fc97e63e043d25" data-alt="{\displaystyle d(z,\cdot )}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> are <a href="https://en-m-wikipedia-org.translate.goog/wiki/Lipschitz_continuity?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Lipschitz continuity">Lipschitz continuous</a> with Lipschitz constant <span class="texhtml">1</span>, and therefore are in particular <a href="https://en-m-wikipedia-org.translate.goog/wiki/Uniform_continuity?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Uniform continuity">uniformly continuous</a>.</p> <p>The proof of the reverse triangle inequality from the usual one uses <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|v-u\|=\|{-}1(u-v)\|=|{-}1|\cdot \|u-v\|=\|u-v\|}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> v </mi> <mo> −<!-- − --> </mo> <mi> u </mi> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo> = </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mo> −<!-- − --> </mo> </mrow> <mn> 1 </mn> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> −<!-- − --> </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> −<!-- − --> </mo> </mrow> <mn> 1 </mn> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> u </mi> <mo> −<!-- − --> </mo> <mi> v </mi> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo> = </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> u </mi> <mo> −<!-- − --> </mo> <mi> v </mi> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \|v-u\|=\|{-}1(u-v)\|=|{-}1|\cdot \|u-v\|=\|u-v\|} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e73a0f04dce3eb41e64267de384f5678f1e13a36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:50.509ex; height:2.843ex;" alt="{\displaystyle \|v-u\|=\|{-}1(u-v)\|=|{-}1|\cdot \|u-v\|=\|u-v\|}"> </noscript><span class="lazy-image-placeholder" style="width: 50.509ex;height: 2.843ex;vertical-align: -0.838ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e73a0f04dce3eb41e64267de384f5678f1e13a36" data-alt="{\displaystyle \|v-u\|=\|{-}1(u-v)\|=|{-}1|\cdot \|u-v\|=\|u-v\|}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> to find:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|u\|=\|(u-v)+v\|\leq \|u-v\|+\|v\|\Rightarrow \|u\|-\|v\|\leq \|u-v\|,}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> u </mi> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo> = </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> −<!-- − --> </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mo> + </mo> <mi> v </mi> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo> ≤<!-- ≤ --> </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> u </mi> <mo> −<!-- − --> </mo> <mi> v </mi> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo> + </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> v </mi> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo stretchy="false"> ⇒<!-- ⇒ --> </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> u </mi> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo> −<!-- − --> </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> v </mi> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo> ≤<!-- ≤ --> </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> u </mi> <mo> −<!-- − --> </mo> <mi> v </mi> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \|u\|=\|(u-v)+v\|\leq \|u-v\|+\|v\|\Rightarrow \|u\|-\|v\|\leq \|u-v\|,} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/684c58b4a9d97760668342c50080ebbfba3f7df8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:62.096ex; height:2.843ex;" alt="{\displaystyle \|u\|=\|(u-v)+v\|\leq \|u-v\|+\|v\|\Rightarrow \|u\|-\|v\|\leq \|u-v\|,}"> </noscript><span class="lazy-image-placeholder" style="width: 62.096ex;height: 2.843ex;vertical-align: -0.838ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/684c58b4a9d97760668342c50080ebbfba3f7df8" data-alt="{\displaystyle \|u\|=\|(u-v)+v\|\leq \|u-v\|+\|v\|\Rightarrow \|u\|-\|v\|\leq \|u-v\|,}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|v\|=\|(v-u)+u\|\leq \|v-u\|+\|u\|\Rightarrow \|u\|-\|v\|\geq -\|u-v\|,}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> v </mi> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo> = </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo stretchy="false"> ( </mo> <mi> v </mi> <mo> −<!-- − --> </mo> <mi> u </mi> <mo stretchy="false"> ) </mo> <mo> + </mo> <mi> u </mi> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo> ≤<!-- ≤ --> </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> v </mi> <mo> −<!-- − --> </mo> <mi> u </mi> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo> + </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> u </mi> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo stretchy="false"> ⇒<!-- ⇒ --> </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> u </mi> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo> −<!-- − --> </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> v </mi> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo> ≥<!-- ≥ --> </mo> <mo> −<!-- − --> </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> u </mi> <mo> −<!-- − --> </mo> <mi> v </mi> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \|v\|=\|(v-u)+u\|\leq \|v-u\|+\|u\|\Rightarrow \|u\|-\|v\|\geq -\|u-v\|,} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cabc473b44ba4bc4ec423f25f6c83f646d3ef346" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:64.107ex; height:2.843ex;" alt="{\displaystyle \|v\|=\|(v-u)+u\|\leq \|v-u\|+\|u\|\Rightarrow \|u\|-\|v\|\geq -\|u-v\|,}"> </noscript><span class="lazy-image-placeholder" style="width: 64.107ex;height: 2.843ex;vertical-align: -0.838ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cabc473b44ba4bc4ec423f25f6c83f646d3ef346" data-alt="{\displaystyle \|v\|=\|(v-u)+u\|\leq \|v-u\|+\|u\|\Rightarrow \|u\|-\|v\|\geq -\|u-v\|,}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>Combining these two statements gives:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -\|u-v\|\leq \|u\|-\|v\|\leq \|u-v\|\Rightarrow {\big |}\|u\|-\|v\|{\big |}\leq \|u-v\|.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo> −<!-- − --> </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> u </mi> <mo> −<!-- − --> </mo> <mi> v </mi> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo> ≤<!-- ≤ --> </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> u </mi> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo> −<!-- − --> </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> v </mi> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo> ≤<!-- ≤ --> </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> u </mi> <mo> −<!-- − --> </mo> <mi> v </mi> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo stretchy="false"> ⇒<!-- ⇒ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em"> | </mo> </mrow> </mrow> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> u </mi> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo> −<!-- − --> </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> v </mi> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em"> | </mo> </mrow> </mrow> <mo> ≤<!-- ≤ --> </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> u </mi> <mo> −<!-- − --> </mo> <mi> v </mi> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle -\|u-v\|\leq \|u\|-\|v\|\leq \|u-v\|\Rightarrow {\big |}\|u\|-\|v\|{\big |}\leq \|u-v\|.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ddc02431fc3c4c6c6bc13bb0859893d4fa3fff7b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:59.421ex; height:3.176ex;" alt="{\displaystyle -\|u-v\|\leq \|u\|-\|v\|\leq \|u-v\|\Rightarrow {\big |}\|u\|-\|v\|{\big |}\leq \|u-v\|.}"> </noscript><span class="lazy-image-placeholder" style="width: 59.421ex;height: 3.176ex;vertical-align: -1.005ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ddc02431fc3c4c6c6bc13bb0859893d4fa3fff7b" data-alt="{\displaystyle -\|u-v\|\leq \|u\|-\|v\|\leq \|u-v\|\Rightarrow {\big |}\|u\|-\|v\|{\big |}\leq \|u-v\|.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>In the converse, the proof of the triangle inequality from the reverse triangle inequality works in two cases:</p> <p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|u+v\|-\|u\|\geq 0,}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> u </mi> <mo> + </mo> <mi> v </mi> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo> −<!-- − --> </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> u </mi> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo> ≥<!-- ≥ --> </mo> <mn> 0 </mn> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \|u+v\|-\|u\|\geq 0,} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a1425124b7fa8dbf3739641778fe8b31603bf746" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.025ex; height:2.843ex;" alt="{\displaystyle \|u+v\|-\|u\|\geq 0,}"> </noscript><span class="lazy-image-placeholder" style="width: 19.025ex;height: 2.843ex;vertical-align: -0.838ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a1425124b7fa8dbf3739641778fe8b31603bf746" data-alt="{\displaystyle \|u+v\|-\|u\|\geq 0,}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> then by the reverse triangle inequality, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|u+v\|-\|u\|={\big |}\|u+v\|-\|u\|{\big |}\leq \|(u+v)-u\|=\|v\|\Rightarrow \|u+v\|\leq \|u\|+\|v\|}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> u </mi> <mo> + </mo> <mi> v </mi> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo> −<!-- − --> </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> u </mi> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em"> | </mo> </mrow> </mrow> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> u </mi> <mo> + </mo> <mi> v </mi> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo> −<!-- − --> </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> u </mi> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em"> | </mo> </mrow> </mrow> <mo> ≤<!-- ≤ --> </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> + </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mo> −<!-- − --> </mo> <mi> u </mi> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo> = </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> v </mi> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo stretchy="false"> ⇒<!-- ⇒ --> </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> u </mi> <mo> + </mo> <mi> v </mi> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo> ≤<!-- ≤ --> </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> u </mi> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo> + </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> v </mi> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \|u+v\|-\|u\|={\big |}\|u+v\|-\|u\|{\big |}\leq \|(u+v)-u\|=\|v\|\Rightarrow \|u+v\|\leq \|u\|+\|v\|} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee527bcb597218840aaaa44a539bf183dcc8cebb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:80.161ex; height:3.176ex;" alt="{\displaystyle \|u+v\|-\|u\|={\big |}\|u+v\|-\|u\|{\big |}\leq \|(u+v)-u\|=\|v\|\Rightarrow \|u+v\|\leq \|u\|+\|v\|}"> </noscript><span class="lazy-image-placeholder" style="width: 80.161ex;height: 3.176ex;vertical-align: -1.005ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee527bcb597218840aaaa44a539bf183dcc8cebb" data-alt="{\displaystyle \|u+v\|-\|u\|={\big |}\|u+v\|-\|u\|{\big |}\leq \|(u+v)-u\|=\|v\|\Rightarrow \|u+v\|\leq \|u\|+\|v\|}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>,</p> <p>and if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|u+v\|-\|u\|<0,}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> u </mi> <mo> + </mo> <mi> v </mi> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo> −<!-- − --> </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> u </mi> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo> < </mo> <mn> 0 </mn> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \|u+v\|-\|u\|<0,} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4df50b2952621e91d1c362d3f7052cee2bf49619" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.025ex; height:2.843ex;" alt="{\displaystyle \|u+v\|-\|u\|<0,}"> </noscript><span class="lazy-image-placeholder" style="width: 19.025ex;height: 2.843ex;vertical-align: -0.838ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4df50b2952621e91d1c362d3f7052cee2bf49619" data-alt="{\displaystyle \|u+v\|-\|u\|<0,}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> then trivially <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|u\|+\|v\|\geq \|u\|>\|u+v\|}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> u </mi> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo> + </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> v </mi> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo> ≥<!-- ≥ --> </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> u </mi> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo> > </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> u </mi> <mo> + </mo> <mi> v </mi> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \|u\|+\|v\|\geq \|u\|>\|u+v\|} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f3541ce84754accbad08c457962d526450b82b62" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.422ex; height:2.843ex;" alt="{\displaystyle \|u\|+\|v\|\geq \|u\|>\|u+v\|}"> </noscript><span class="lazy-image-placeholder" style="width: 27.422ex;height: 2.843ex;vertical-align: -0.838ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f3541ce84754accbad08c457962d526450b82b62" data-alt="{\displaystyle \|u\|+\|v\|\geq \|u\|>\|u+v\|}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> by the nonnegativity of the norm.</p> <p>Thus, in both cases, we find that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|u\|+\|v\|\geq \|u+v\|}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> u </mi> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo> + </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> v </mi> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo> ≥<!-- ≥ --> </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> u </mi> <mo> + </mo> <mi> v </mi> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \|u\|+\|v\|\geq \|u+v\|} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/57ed93fb79539298b5f8e000767a0584c7435a0f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.669ex; height:2.843ex;" alt="{\displaystyle \|u\|+\|v\|\geq \|u+v\|}"> </noscript><span class="lazy-image-placeholder" style="width: 20.669ex;height: 2.843ex;vertical-align: -0.838ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/57ed93fb79539298b5f8e000767a0584c7435a0f" data-alt="{\displaystyle \|u\|+\|v\|\geq \|u+v\|}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>.</p> <p>For metric spaces, the proof of the reverse triangle inequality is found similarly by:</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(A,B)+d(B,C)\geq d(A,C)\Rightarrow d(A,B)\geq d(A,C)-d(B,C)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> d </mi> <mo stretchy="false"> ( </mo> <mi> A </mi> <mo> , </mo> <mi> B </mi> <mo stretchy="false"> ) </mo> <mo> + </mo> <mi> d </mi> <mo stretchy="false"> ( </mo> <mi> B </mi> <mo> , </mo> <mi> C </mi> <mo stretchy="false"> ) </mo> <mo> ≥<!-- ≥ --> </mo> <mi> d </mi> <mo stretchy="false"> ( </mo> <mi> A </mi> <mo> , </mo> <mi> C </mi> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ⇒<!-- ⇒ --> </mo> <mi> d </mi> <mo stretchy="false"> ( </mo> <mi> A </mi> <mo> , </mo> <mi> B </mi> <mo stretchy="false"> ) </mo> <mo> ≥<!-- ≥ --> </mo> <mi> d </mi> <mo stretchy="false"> ( </mo> <mi> A </mi> <mo> , </mo> <mi> C </mi> <mo stretchy="false"> ) </mo> <mo> −<!-- − --> </mo> <mi> d </mi> <mo stretchy="false"> ( </mo> <mi> B </mi> <mo> , </mo> <mi> C </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle d(A,B)+d(B,C)\geq d(A,C)\Rightarrow d(A,B)\geq d(A,C)-d(B,C)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb55931d9fddf2dae3f46da11ba7c09b0c0fdb4f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:60.94ex; height:2.843ex;" alt="{\displaystyle d(A,B)+d(B,C)\geq d(A,C)\Rightarrow d(A,B)\geq d(A,C)-d(B,C)}"> </noscript><span class="lazy-image-placeholder" style="width: 60.94ex;height: 2.843ex;vertical-align: -0.838ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb55931d9fddf2dae3f46da11ba7c09b0c0fdb4f" data-alt="{\displaystyle d(A,B)+d(B,C)\geq d(A,C)\Rightarrow d(A,B)\geq d(A,C)-d(B,C)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(C,A)+d(A,B)\geq d(C,B)\Rightarrow d(A,B)\geq d(B,C)-d(A,C)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> d </mi> <mo stretchy="false"> ( </mo> <mi> C </mi> <mo> , </mo> <mi> A </mi> <mo stretchy="false"> ) </mo> <mo> + </mo> <mi> d </mi> <mo stretchy="false"> ( </mo> <mi> A </mi> <mo> , </mo> <mi> B </mi> <mo stretchy="false"> ) </mo> <mo> ≥<!-- ≥ --> </mo> <mi> d </mi> <mo stretchy="false"> ( </mo> <mi> C </mi> <mo> , </mo> <mi> B </mi> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ⇒<!-- ⇒ --> </mo> <mi> d </mi> <mo stretchy="false"> ( </mo> <mi> A </mi> <mo> , </mo> <mi> B </mi> <mo stretchy="false"> ) </mo> <mo> ≥<!-- ≥ --> </mo> <mi> d </mi> <mo stretchy="false"> ( </mo> <mi> B </mi> <mo> , </mo> <mi> C </mi> <mo stretchy="false"> ) </mo> <mo> −<!-- − --> </mo> <mi> d </mi> <mo stretchy="false"> ( </mo> <mi> A </mi> <mo> , </mo> <mi> C </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle d(C,A)+d(A,B)\geq d(C,B)\Rightarrow d(A,B)\geq d(B,C)-d(A,C)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/356a53ddd5dac74f1e86e34bbb56c183b5e33de3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:60.94ex; height:2.843ex;" alt="{\displaystyle d(C,A)+d(A,B)\geq d(C,B)\Rightarrow d(A,B)\geq d(B,C)-d(A,C)}"> </noscript><span class="lazy-image-placeholder" style="width: 60.94ex;height: 2.843ex;vertical-align: -0.838ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/356a53ddd5dac74f1e86e34bbb56c183b5e33de3" data-alt="{\displaystyle d(C,A)+d(A,B)\geq d(C,B)\Rightarrow d(A,B)\geq d(B,C)-d(A,C)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></p> <p>Putting these equations together we find:</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(A,B)\geq |d(A,C)-d(B,C)|}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> d </mi> <mo stretchy="false"> ( </mo> <mi> A </mi> <mo> , </mo> <mi> B </mi> <mo stretchy="false"> ) </mo> <mo> ≥<!-- ≥ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mi> d </mi> <mo stretchy="false"> ( </mo> <mi> A </mi> <mo> , </mo> <mi> C </mi> <mo stretchy="false"> ) </mo> <mo> −<!-- − --> </mo> <mi> d </mi> <mo stretchy="false"> ( </mo> <mi> B </mi> <mo> , </mo> <mi> C </mi> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle d(A,B)\geq |d(A,C)-d(B,C)|} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d13e3b0739948fe8c1785bc86f57f15d4974aa5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:29.957ex; height:2.843ex;" alt="{\displaystyle d(A,B)\geq |d(A,C)-d(B,C)|}"> </noscript><span class="lazy-image-placeholder" style="width: 29.957ex;height: 2.843ex;vertical-align: -0.838ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d13e3b0739948fe8c1785bc86f57f15d4974aa5" data-alt="{\displaystyle d(A,B)\geq |d(A,C)-d(B,C)|}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></p> <p>And in the converse, beginning from the reverse triangle inequality, we can again use two cases:</p> <p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(A,C)-d(B,C)\geq 0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> d </mi> <mo stretchy="false"> ( </mo> <mi> A </mi> <mo> , </mo> <mi> C </mi> <mo stretchy="false"> ) </mo> <mo> −<!-- − --> </mo> <mi> d </mi> <mo stretchy="false"> ( </mo> <mi> B </mi> <mo> , </mo> <mi> C </mi> <mo stretchy="false"> ) </mo> <mo> ≥<!-- ≥ --> </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle d(A,C)-d(B,C)\geq 0} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86143c8d7072555ba7bbc59b399f17ef5eec5d00" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.259ex; height:2.843ex;" alt="{\displaystyle d(A,C)-d(B,C)\geq 0}"> </noscript><span class="lazy-image-placeholder" style="width: 22.259ex;height: 2.843ex;vertical-align: -0.838ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86143c8d7072555ba7bbc59b399f17ef5eec5d00" data-alt="{\displaystyle d(A,C)-d(B,C)\geq 0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(A,B)\geq |d(A,C)-d(B,C)|=d(A,C)-d(B,C)\Rightarrow d(A,B)+d(B,C)\geq d(A,C)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> d </mi> <mo stretchy="false"> ( </mo> <mi> A </mi> <mo> , </mo> <mi> B </mi> <mo stretchy="false"> ) </mo> <mo> ≥<!-- ≥ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mi> d </mi> <mo stretchy="false"> ( </mo> <mi> A </mi> <mo> , </mo> <mi> C </mi> <mo stretchy="false"> ) </mo> <mo> −<!-- − --> </mo> <mi> d </mi> <mo stretchy="false"> ( </mo> <mi> B </mi> <mo> , </mo> <mi> C </mi> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mo> = </mo> <mi> d </mi> <mo stretchy="false"> ( </mo> <mi> A </mi> <mo> , </mo> <mi> C </mi> <mo stretchy="false"> ) </mo> <mo> −<!-- − --> </mo> <mi> d </mi> <mo stretchy="false"> ( </mo> <mi> B </mi> <mo> , </mo> <mi> C </mi> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ⇒<!-- ⇒ --> </mo> <mi> d </mi> <mo stretchy="false"> ( </mo> <mi> A </mi> <mo> , </mo> <mi> B </mi> <mo stretchy="false"> ) </mo> <mo> + </mo> <mi> d </mi> <mo stretchy="false"> ( </mo> <mi> B </mi> <mo> , </mo> <mi> C </mi> <mo stretchy="false"> ) </mo> <mo> ≥<!-- ≥ --> </mo> <mi> d </mi> <mo stretchy="false"> ( </mo> <mi> A </mi> <mo> , </mo> <mi> C </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle d(A,B)\geq |d(A,C)-d(B,C)|=d(A,C)-d(B,C)\Rightarrow d(A,B)+d(B,C)\geq d(A,C)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42063e2fac26954702d436abaabd543887c776ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:83.331ex; height:2.843ex;" alt="{\displaystyle d(A,B)\geq |d(A,C)-d(B,C)|=d(A,C)-d(B,C)\Rightarrow d(A,B)+d(B,C)\geq d(A,C)}"> </noscript><span class="lazy-image-placeholder" style="width: 83.331ex;height: 2.843ex;vertical-align: -0.838ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42063e2fac26954702d436abaabd543887c776ce" data-alt="{\displaystyle d(A,B)\geq |d(A,C)-d(B,C)|=d(A,C)-d(B,C)\Rightarrow d(A,B)+d(B,C)\geq d(A,C)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>,</p> <p>and if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(A,C)-d(B,C)<0,}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> d </mi> <mo stretchy="false"> ( </mo> <mi> A </mi> <mo> , </mo> <mi> C </mi> <mo stretchy="false"> ) </mo> <mo> −<!-- − --> </mo> <mi> d </mi> <mo stretchy="false"> ( </mo> <mi> B </mi> <mo> , </mo> <mi> C </mi> <mo stretchy="false"> ) </mo> <mo> < </mo> <mn> 0 </mn> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle d(A,C)-d(B,C)<0,} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7212db02fffe811c8c65708c1f7e549d360cba11" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.906ex; height:2.843ex;" alt="{\displaystyle d(A,C)-d(B,C)<0,}"> </noscript><span class="lazy-image-placeholder" style="width: 22.906ex;height: 2.843ex;vertical-align: -0.838ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7212db02fffe811c8c65708c1f7e549d360cba11" data-alt="{\displaystyle d(A,C)-d(B,C)<0,}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(A,B)+d(B,C)\geq d(B,C)>d(A,C)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> d </mi> <mo stretchy="false"> ( </mo> <mi> A </mi> <mo> , </mo> <mi> B </mi> <mo stretchy="false"> ) </mo> <mo> + </mo> <mi> d </mi> <mo stretchy="false"> ( </mo> <mi> B </mi> <mo> , </mo> <mi> C </mi> <mo stretchy="false"> ) </mo> <mo> ≥<!-- ≥ --> </mo> <mi> d </mi> <mo stretchy="false"> ( </mo> <mi> B </mi> <mo> , </mo> <mi> C </mi> <mo stretchy="false"> ) </mo> <mo> > </mo> <mi> d </mi> <mo stretchy="false"> ( </mo> <mi> A </mi> <mo> , </mo> <mi> C </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle d(A,B)+d(B,C)\geq d(B,C)>d(A,C)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a56962bfb75385d74ee3823a0fc0b97312e830c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:39.351ex; height:2.843ex;" alt="{\displaystyle d(A,B)+d(B,C)\geq d(B,C)>d(A,C)}"> </noscript><span class="lazy-image-placeholder" style="width: 39.351ex;height: 2.843ex;vertical-align: -0.838ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a56962bfb75385d74ee3823a0fc0b97312e830c" data-alt="{\displaystyle d(A,B)+d(B,C)\geq d(B,C)>d(A,C)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> again by the nonnegativity of the metric.</p> <p>Thus, in both cases, we find that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(A,B)+d(B,C)\geq d(A,C)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> d </mi> <mo stretchy="false"> ( </mo> <mi> A </mi> <mo> , </mo> <mi> B </mi> <mo stretchy="false"> ) </mo> <mo> + </mo> <mi> d </mi> <mo stretchy="false"> ( </mo> <mi> B </mi> <mo> , </mo> <mi> C </mi> <mo stretchy="false"> ) </mo> <mo> ≥<!-- ≥ --> </mo> <mi> d </mi> <mo stretchy="false"> ( </mo> <mi> A </mi> <mo> , </mo> <mi> C </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle d(A,B)+d(B,C)\geq d(A,C)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e85366f1965268ae63a5444600dcbdfb3155b80b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.663ex; height:2.843ex;" alt="{\displaystyle d(A,B)+d(B,C)\geq d(A,C)}"> </noscript><span class="lazy-image-placeholder" style="width: 28.663ex;height: 2.843ex;vertical-align: -0.838ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e85366f1965268ae63a5444600dcbdfb3155b80b" data-alt="{\displaystyle d(A,B)+d(B,C)\geq d(A,C)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>.</p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(5)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Triangle_inequality_for_cosine_similarity">Triangle inequality for cosine similarity</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Triangle_inequality&action=edit&section=14&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Edit section: Triangle inequality for cosine similarity" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-5 collapsible-block" id="mf-section-5"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"> <div role="note" class="hatnote navigation-not-searchable"> Further information: <a href="https://en-m-wikipedia-org.translate.goog/wiki/Cosine_similarity?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Cosine similarity">Cosine similarity</a> </div> <p>By applying the cosine function to the triangle inequality and reverse triangle inequality for arc lengths and employing the angle addition and subtraction formulas for cosines, it follows immediately that<sup id="cite_ref-20" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup></p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {sim} (u,w)\geq \operatorname {sim} (u,v)\cdot \operatorname {sim} (v,w)-{\sqrt {\left(1-\operatorname {sim} (u,v)^{2}\right)\cdot \left(1-\operatorname {sim} (v,w)^{2}\right)}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> sim </mi> <mo> <!-- --> </mo> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> w </mi> <mo stretchy="false"> ) </mo> <mo> ≥<!-- ≥ --> </mo> <mi> sim </mi> <mo> <!-- --> </mo> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mo> ⋅<!-- ⋅ --> </mo> <mi> sim </mi> <mo> <!-- --> </mo> <mo stretchy="false"> ( </mo> <mi> v </mi> <mo> , </mo> <mi> w </mi> <mo stretchy="false"> ) </mo> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> −<!-- − --> </mo> <mi> sim </mi> <mo> <!-- --> </mo> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> −<!-- − --> </mo> <mi> sim </mi> <mo> <!-- --> </mo> <mo stretchy="false"> ( </mo> <mi> v </mi> <mo> , </mo> <mi> w </mi> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \operatorname {sim} (u,w)\geq \operatorname {sim} (u,v)\cdot \operatorname {sim} (v,w)-{\sqrt {\left(1-\operatorname {sim} (u,v)^{2}\right)\cdot \left(1-\operatorname {sim} (v,w)^{2}\right)}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/70765841cee7b5a0ffca1a1fc60140583ea0852f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:71.198ex; height:4.843ex;" alt="{\displaystyle \operatorname {sim} (u,w)\geq \operatorname {sim} (u,v)\cdot \operatorname {sim} (v,w)-{\sqrt {\left(1-\operatorname {sim} (u,v)^{2}\right)\cdot \left(1-\operatorname {sim} (v,w)^{2}\right)}}}"> </noscript><span class="lazy-image-placeholder" style="width: 71.198ex;height: 4.843ex;vertical-align: -1.838ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/70765841cee7b5a0ffca1a1fc60140583ea0852f" data-alt="{\displaystyle \operatorname {sim} (u,w)\geq \operatorname {sim} (u,v)\cdot \operatorname {sim} (v,w)-{\sqrt {\left(1-\operatorname {sim} (u,v)^{2}\right)\cdot \left(1-\operatorname {sim} (v,w)^{2}\right)}}}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span></p> <p>and</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {sim} (u,w)\leq \operatorname {sim} (u,v)\cdot \operatorname {sim} (v,w)+{\sqrt {\left(1-\operatorname {sim} (u,v)^{2}\right)\cdot \left(1-\operatorname {sim} (v,w)^{2}\right)}}\,.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> sim </mi> <mo> <!-- --> </mo> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> w </mi> <mo stretchy="false"> ) </mo> <mo> ≤<!-- ≤ --> </mo> <mi> sim </mi> <mo> <!-- --> </mo> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mo> ⋅<!-- ⋅ --> </mo> <mi> sim </mi> <mo> <!-- --> </mo> <mo stretchy="false"> ( </mo> <mi> v </mi> <mo> , </mo> <mi> w </mi> <mo stretchy="false"> ) </mo> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> −<!-- − --> </mo> <mi> sim </mi> <mo> <!-- --> </mo> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> −<!-- − --> </mo> <mi> sim </mi> <mo> <!-- --> </mo> <mo stretchy="false"> ( </mo> <mi> v </mi> <mo> , </mo> <mi> w </mi> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </msqrt> </mrow> <mspace width="thinmathspace"></mspace> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \operatorname {sim} (u,w)\leq \operatorname {sim} (u,v)\cdot \operatorname {sim} (v,w)+{\sqrt {\left(1-\operatorname {sim} (u,v)^{2}\right)\cdot \left(1-\operatorname {sim} (v,w)^{2}\right)}}\,.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8290849016fbe65ebca0530eb04055c907ed4705" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:72.232ex; height:4.843ex;" alt="{\displaystyle \operatorname {sim} (u,w)\leq \operatorname {sim} (u,v)\cdot \operatorname {sim} (v,w)+{\sqrt {\left(1-\operatorname {sim} (u,v)^{2}\right)\cdot \left(1-\operatorname {sim} (v,w)^{2}\right)}}\,.}"> </noscript><span class="lazy-image-placeholder" style="width: 72.232ex;height: 4.843ex;vertical-align: -1.838ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8290849016fbe65ebca0530eb04055c907ed4705" data-alt="{\displaystyle \operatorname {sim} (u,w)\leq \operatorname {sim} (u,v)\cdot \operatorname {sim} (v,w)+{\sqrt {\left(1-\operatorname {sim} (u,v)^{2}\right)\cdot \left(1-\operatorname {sim} (v,w)^{2}\right)}}\,.}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span></p> <p>With these formulas, one needs to compute a <a href="https://en-m-wikipedia-org.translate.goog/wiki/Square_root?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Square root">square root</a> for each triple of vectors <span class="texhtml">{<i>u</i>, <i>v</i>, <i>w</i>}</span> that is examined rather than <span class="texhtml">arccos(sim(<i>u</i>,<i>v</i>))</span> for each pair of vectors <span class="texhtml">{<i>u</i>, <i>v</i>}</span> examined, and could be a performance improvement when the number of triples examined is less than the number of pairs examined.</p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(6)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Reversal_in_Minkowski_space">Reversal in Minkowski space</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Triangle_inequality&action=edit&section=15&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Edit section: Reversal in Minkowski space" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-6 collapsible-block" id="mf-section-6"> <p>The <a href="https://en-m-wikipedia-org.translate.goog/wiki/Minkowski_space?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Minkowski space">Minkowski space</a> metric <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta _{\mu \nu }}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> η<!-- η --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> μ<!-- μ --> </mi> <mi> ν<!-- ν --> </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \eta _{\mu \nu }} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a8fb25ea6ee5d591c2d819519401a871ee04bc6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.25ex; height:2.343ex;" alt="{\displaystyle \eta _{\mu \nu }}"> </noscript><span class="lazy-image-placeholder" style="width: 3.25ex;height: 2.343ex;vertical-align: -1.005ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a8fb25ea6ee5d591c2d819519401a871ee04bc6" data-alt="{\displaystyle \eta _{\mu \nu }}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> is not positive-definite, which means that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|u\|^{2}=\eta _{\mu \nu }u^{\mu }u^{\nu }}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> u </mi> <msup> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> = </mo> <msub> <mi> η<!-- η --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> μ<!-- μ --> </mi> <mi> ν<!-- ν --> </mi> </mrow> </msub> <msup> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> μ<!-- μ --> </mi> </mrow> </msup> <msup> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> ν<!-- ν --> </mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \|u\|^{2}=\eta _{\mu \nu }u^{\mu }u^{\nu }} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d17894e28281ee55d2d04351fba5f9e78164344d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:16.044ex; height:3.343ex;" alt="{\displaystyle \|u\|^{2}=\eta _{\mu \nu }u^{\mu }u^{\nu }}"> </noscript><span class="lazy-image-placeholder" style="width: 16.044ex;height: 3.343ex;vertical-align: -1.005ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d17894e28281ee55d2d04351fba5f9e78164344d" data-alt="{\displaystyle \|u\|^{2}=\eta _{\mu \nu }u^{\mu }u^{\nu }}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> can have either sign or vanish, even if the vector <span class="texhtml mvar" style="font-style:italic;">u</span> is non-zero. Moreover, if <span class="texhtml mvar" style="font-style:italic;">u</span> and <span class="texhtml mvar" style="font-style:italic;">v</span> are both timelike vectors lying in the future light cone, the triangle inequality is reversed:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|u+v\|\geq \|u\|+\|v\|.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> u </mi> <mo> + </mo> <mi> v </mi> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo> ≥<!-- ≥ --> </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> u </mi> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo> + </mo> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mi> v </mi> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \|u+v\|\geq \|u\|+\|v\|.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b13717002f66e070c812be642d0feeaa777659ac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.315ex; height:2.843ex;" alt="{\displaystyle \|u+v\|\geq \|u\|+\|v\|.}"> </noscript><span class="lazy-image-placeholder" style="width: 21.315ex;height: 2.843ex;vertical-align: -0.838ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b13717002f66e070c812be642d0feeaa777659ac" data-alt="{\displaystyle \|u+v\|\geq \|u\|+\|v\|.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>A physical example of this inequality is the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Twin_paradox?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Twin paradox">twin paradox</a> in <a href="https://en-m-wikipedia-org.translate.goog/wiki/Special_relativity?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Special relativity">special relativity</a>. The same reversed form of the inequality holds if both vectors lie in the past light cone, and if one or both are null vectors. The result holds in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n+1}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle n+1} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a135e65a42f2d73cccbfc4569523996ca0036f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.398ex; height:2.343ex;" alt="{\displaystyle n+1}"> </noscript><span class="lazy-image-placeholder" style="width: 5.398ex;height: 2.343ex;vertical-align: -0.505ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a135e65a42f2d73cccbfc4569523996ca0036f1" data-alt="{\displaystyle n+1}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> dimensions for any <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\geq 1}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> n </mi> <mo> ≥<!-- ≥ --> </mo> <mn> 1 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle n\geq 1} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8ce9ce38d06f6bf5a3fe063118c09c2b6202bfe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.656ex; height:2.343ex;" alt="{\displaystyle n\geq 1}"> </noscript><span class="lazy-image-placeholder" style="width: 5.656ex;height: 2.343ex;vertical-align: -0.505ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8ce9ce38d06f6bf5a3fe063118c09c2b6202bfe" data-alt="{\displaystyle n\geq 1}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>. If the plane defined by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> u </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle u} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3e6bb763d22c20916ed4f0bb6bd49d7470cffd8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle u}"> </noscript><span class="lazy-image-placeholder" style="width: 1.33ex;height: 1.676ex;vertical-align: -0.338ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3e6bb763d22c20916ed4f0bb6bd49d7470cffd8" data-alt="{\displaystyle u}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> v </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle v} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e07b00e7fc0847fbd16391c778d65bc25c452597" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.128ex; height:1.676ex;" alt="{\displaystyle v}"> </noscript><span class="lazy-image-placeholder" style="width: 1.128ex;height: 1.676ex;vertical-align: -0.338ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e07b00e7fc0847fbd16391c778d65bc25c452597" data-alt="{\displaystyle v}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> is space-like (and therefore a Euclidean subspace) then the usual triangle inequality holds.</p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(7)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="See_also">See also</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Triangle_inequality&action=edit&section=16&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Edit section: See also" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-7 collapsible-block" id="mf-section-7"> <ul> <li><a href="https://en-m-wikipedia-org.translate.goog/wiki/Subadditivity?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Subadditivity">Subadditivity</a></li> <li><a href="https://en-m-wikipedia-org.translate.goog/wiki/Minkowski_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Minkowski inequality">Minkowski inequality</a></li> <li><a href="https://en-m-wikipedia-org.translate.goog/wiki/Ptolemy%27s_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Ptolemy's inequality">Ptolemy's inequality</a></li> </ul> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(8)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Notes">Notes</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Triangle_inequality&action=edit&section=17&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Edit section: Notes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-8 collapsible-block" id="mf-section-8"> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style> <div class="reflist reflist-columns references-column-width" style="column-width: 30em;"> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-1">^</a></b></span> <span class="reference-text">Wolfram MathWorld – <a rel="nofollow" class="external free" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=http://mathworld.wolfram.com/TriangleInequality.html">http://mathworld.wolfram.com/TriangleInequality.html</a></span></li> <li id="cite_note-Khamsi-2"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-Khamsi_2-0">^</a></b></span> <span class="reference-text"> <style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFMohamed_A._KhamsiWilliam_A._Kirk2001" class="citation book cs1">Mohamed A. Khamsi; William A. Kirk (2001). <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://books.google.com/books?id%3D4qXbEpAK5eUC%26pg%3DPA8">"§1.4 The triangle inequality in <span class="texhtml"><b>R</b><sup>n</sup></span>"</a>. <i>An introduction to metric spaces and fixed point theory</i>. Wiley-IEEE. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISBN_(identifier)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Special:BookSources/0-471-41825-0?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Special:BookSources/0-471-41825-0"><bdi>0-471-41825-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=%C2%A71.4+The+triangle+inequality+in+%3Cspan+class%3D%22texhtml+%22+%3ER%3Csup%3En%3C%2Fsup%3E%3C%2Fspan%3E&rft.btitle=An+introduction+to+metric+spaces+and+fixed+point+theory&rft.pub=Wiley-IEEE&rft.date=2001&rft.isbn=0-471-41825-0&rft.au=Mohamed+A.+Khamsi&rft.au=William+A.+Kirk&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D4qXbEpAK5eUC%26pg%3DPA8&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATriangle+inequality" class="Z3988"></span></span></li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-3">^</a></b></span> <span class="reference-text">for instance, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJacobs1974" class="citation cs2">Jacobs, Harold R. (1974), <i>Geometry</i>, W. H. Freeman & Co., p. 246, <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISBN_(identifier)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Special:BookSources/0-7167-0456-0?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Special:BookSources/0-7167-0456-0"><bdi>0-7167-0456-0</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Geometry&rft.pages=246&rft.pub=W.+H.+Freeman+%26+Co.&rft.date=1974&rft.isbn=0-7167-0456-0&rft.aulast=Jacobs&rft.aufirst=Harold+R.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATriangle+inequality" class="Z3988"></span></span></li> <li id="cite_note-Ramos-4"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-Ramos_4-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOliver_BrockJeff_TrinkleFabio_Ramos2009" class="citation book cs1">Oliver Brock; Jeff Trinkle; Fabio Ramos (2009). <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://books.google.com/books?id%3DfvCaQfBQ7qEC%26pg%3DPA195"><i>Robotics: Science and Systems IV</i></a>. MIT Press. p. 195. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISBN_(identifier)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Special:BookSources/978-0-262-51309-8?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Special:BookSources/978-0-262-51309-8"><bdi>978-0-262-51309-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Robotics%3A+Science+and+Systems+IV&rft.pages=195&rft.pub=MIT+Press&rft.date=2009&rft.isbn=978-0-262-51309-8&rft.au=Oliver+Brock&rft.au=Jeff+Trinkle&rft.au=Fabio+Ramos&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DfvCaQfBQ7qEC%26pg%3DPA195&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATriangle+inequality" class="Z3988"></span></span></li> <li id="cite_note-Ramsay-5"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-Ramsay_5-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFArlan_RamsayRobert_D._Richtmyer1995" class="citation book cs1">Arlan Ramsay; Robert D. Richtmyer (1995). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://archive.org/details/introductiontohy0000rams"><i>Introduction to hyperbolic geometry</i></a></span>. Springer. p. <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://archive.org/details/introductiontohy0000rams/page/17">17</a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISBN_(identifier)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Special:BookSources/0-387-94339-0?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Special:BookSources/0-387-94339-0"><bdi>0-387-94339-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Introduction+to+hyperbolic+geometry&rft.pages=17&rft.pub=Springer&rft.date=1995&rft.isbn=0-387-94339-0&rft.au=Arlan+Ramsay&rft.au=Robert+D.+Richtmyer&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fintroductiontohy0000rams&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATriangle+inequality" class="Z3988"></span></span></li> <li id="cite_note-Jacobs-6"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-Jacobs_6-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHarold_R._Jacobs2003" class="citation book cs1">Harold R. Jacobs (2003). <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://books.google.com/books?id%3DXhQRgZRDDq0C%26pg%3DPA201"><i>Geometry: seeing, doing, understanding</i></a> (3rd ed.). Macmillan. p. 201. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISBN_(identifier)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Special:BookSources/0-7167-4361-2?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Special:BookSources/0-7167-4361-2"><bdi>0-7167-4361-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Geometry%3A+seeing%2C+doing%2C+understanding&rft.pages=201&rft.edition=3rd&rft.pub=Macmillan&rft.date=2003&rft.isbn=0-7167-4361-2&rft.au=Harold+R.+Jacobs&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DXhQRgZRDDq0C%26pg%3DPA201&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATriangle+inequality" class="Z3988"></span></span></li> <li id="cite_note-Joyce-7"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-Joyce_7-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDavid_E._Joyce1997" class="citation web cs1"><a href="https://en-m-wikipedia-org.translate.goog/wiki/David_E._Joyce_(mathematician)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="David E. Joyce (mathematician)">David E. Joyce</a> (1997). <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=http://aleph0.clarku.edu/~djoyce/java/elements/bookI/propI20.html">"Euclid's elements, Book 1, Proposition 20"</a>. <i>Euclid's elements</i>. Dept. Math and Computer Science, Clark University<span class="reference-accessdate">. Retrieved <span class="nowrap">2010-06-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Euclid%27s+elements&rft.atitle=Euclid%27s+elements%2C+Book+1%2C+Proposition+20&rft.date=1997&rft.au=David+E.+Joyce&rft_id=http%3A%2F%2Faleph0.clarku.edu%2F~djoyce%2Fjava%2Felements%2FbookI%2FpropI20.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATriangle+inequality" class="Z3988"></span></span></li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-8">^</a></b></span> <span class="reference-text"><i><a href="https://en-m-wikipedia-org.translate.goog/wiki/American_Mathematical_Monthly?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="American Mathematical Monthly">American Mathematical Monthly</a></i>, pp. 49-50, 1954.</span></li> <li id="cite_note-Palmer-9"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-Palmer_9-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFClaude_Irwin_Palmer1919" class="citation book cs1">Claude Irwin Palmer (1919). <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://archive.org/details/practicalmathema00palmiala"><i>Practical mathematics for home study: being the essentials of arithmetic, geometry, algebra and trigonometry</i></a>. McGraw-Hill. p. <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://archive.org/details/practicalmathema00palmiala/page/422">422</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Practical+mathematics+for+home+study%3A+being+the+essentials+of+arithmetic%2C+geometry%2C+algebra+and+trigonometry&rft.pages=422&rft.pub=McGraw-Hill&rft.date=1919&rft.au=Claude+Irwin+Palmer&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fpracticalmathema00palmiala&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATriangle+inequality" class="Z3988"></span></span></li> <li id="cite_note-Zawaira-10"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-Zawaira_10-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAlexander_ZawairaGavin_Hitchcock2009" class="citation book cs1">Alexander Zawaira; Gavin Hitchcock (2009). <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://books.google.com/books?id%3DA21T73sqZ3AC%26pg%3DPA30">"Lemma 1: In a right-angled triangle the hypotenuse is greater than either of the other two sides"</a>. <i>A primer for mathematics competitions</i>. Oxford University Press. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISBN_(identifier)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Special:BookSources/978-0-19-953988-8?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Special:BookSources/978-0-19-953988-8"><bdi>978-0-19-953988-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Lemma+1%3A+In+a+right-angled+triangle+the+hypotenuse+is+greater+than+either+of+the+other+two+sides&rft.btitle=A+primer+for+mathematics+competitions&rft.pub=Oxford+University+Press&rft.date=2009&rft.isbn=978-0-19-953988-8&rft.au=Alexander+Zawaira&rft.au=Gavin+Hitchcock&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DA21T73sqZ3AC%26pg%3DPA30&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATriangle+inequality" class="Z3988"></span></span></li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-11">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWolfram|Alpha" class="citation journal cs1">Wolfram|Alpha. <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=http://www.wolframalpha.com/input/?i%3Dsolve%25200%253Ca%253C2a%252B3d%252C%25200%253Ca%252Bd%253C2a%252B2d%252C%25200%253Ca%252B2d%253C2a%252Bd%26t%3Dff3tb01">"input: <i>solve 0<a<2a+3d, 0<a+d<2a+2d, 0<a+2d<2a+d,</i>"</a>. <i>Wolfram Research</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2010-09-07</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Wolfram+Research&rft.atitle=input%3A+solve+0%3Ca%3C2a%2B3d%2C+0%3Ca%2Bd%3C2a%2B2d%2C+0%3Ca%2B2d%3C2a%2Bd%2C&rft.au=Wolfram%7CAlpha&rft_id=http%3A%2F%2Fwww.wolframalpha.com%2Finput%2F%3Fi%3Dsolve%25200%253Ca%253C2a%252B3d%252C%25200%253Ca%252Bd%253C2a%252B2d%252C%25200%253Ca%252B2d%253C2a%252Bd%26t%3Dff3tb01&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATriangle+inequality" class="Z3988"></span></span></li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-12">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWolfram|Alpha" class="citation journal cs1">Wolfram|Alpha. <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=http://wolframalpha.com/input?i%3Dsolve%2B0%253Ca%253Car%252Bar%255E2%252C%2B0%253Car%253Ca%252Bar%255E2%252C%2B0%253Car%255E2%253Ca%252Bar">"input: <i>solve 0<a<ar+ar<sup>2</sup>, 0<ar<a+ar<sup>2</sup>, 0<ar<sup>2</sup><a+ar</i>"</a>. <i>Wolfram Research</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2010-09-07</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Wolfram+Research&rft.atitle=input%3A+solve+0%3Ca%3Car%2Bar%3Csup%3E2%3C%2Fsup%3E%2C+0%3Car%3Ca%2Bar%3Csup%3E2%3C%2Fsup%3E%2C+0%3Car%3Csup%3E2%3C%2Fsup%3E%3Ca%2Bar&rft.au=Wolfram%7CAlpha&rft_id=http%3A%2F%2Fwolframalpha.com%2Finput%3Fi%3Dsolve%2B0%253Ca%253Car%252Bar%5E2%252C%2B0%253Car%253Ca%252Bar%5E2%252C%2B0%253Car%5E2%253Ca%252Bar&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATriangle+inequality" class="Z3988"></span></span></li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-13">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWolfram|Alpha" class="citation journal cs1">Wolfram|Alpha. <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=http://www.wolframalpha.com/input/?i%3Dsolve%2520%257B0%253Ca%253Ca*r%252Ba*r%255E2%252Ba*r%255E3%252C%25200%253Ca*r%255E3%253Ca%252Ba*r%252Ba*r%255E2%257D%26t%3Dff3tb01">"input: <i>solve 0<a<ar+ar<sup>2</sup>+ar<sup>3</sup>, 0<ar<sup>3</sup><a+ar+ar<sup>2</sup></i>"</a>. <i>Wolfram Research</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2012-07-29</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Wolfram+Research&rft.atitle=input%3A+solve+0%3Ca%3Car%2Bar%3Csup%3E2%3C%2Fsup%3E%2Bar%3Csup%3E3%3C%2Fsup%3E%2C+0%3Car%3Csup%3E3%3C%2Fsup%3E%3Ca%2Bar%2Bar%3Csup%3E2%3C%2Fsup%3E&rft.au=Wolfram%7CAlpha&rft_id=http%3A%2F%2Fwww.wolframalpha.com%2Finput%2F%3Fi%3Dsolve%2520%7B0%253Ca%253Ca%2Ar%252Ba%2Ar%5E2%252Ba%2Ar%5E3%252C%25200%253Ca%2Ar%5E3%253Ca%252Ba%2Ar%252Ba%2Ar%5E2%7D%26t%3Dff3tb01&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATriangle+inequality" class="Z3988"></span></span></li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-14">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJohn_Stillwell1997" class="citation book cs1"><a href="https://en-m-wikipedia-org.translate.goog/wiki/John_Stillwell?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="John Stillwell">John Stillwell</a> (1997). <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://books.google.com/books?id%3D4elkHwVS0eUC%26pg%3DPA95"><i>Numbers and Geometry</i></a>. Springer. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISBN_(identifier)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Special:BookSources/978-0-387-98289-2?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Special:BookSources/978-0-387-98289-2"><bdi>978-0-387-98289-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Numbers+and+Geometry&rft.pub=Springer&rft.date=1997&rft.isbn=978-0-387-98289-2&rft.au=John+Stillwell&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D4elkHwVS0eUC%26pg%3DPA95&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATriangle+inequality" class="Z3988"></span> p. 95.</span></li> <li id="cite_note-Kress-15"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-Kress_15-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRainer_Kress1988" class="citation book cs1">Rainer Kress (1988). <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://books.google.com/books?id%3De7ZmHRIxum0C%26pg%3DPA26">"§3.1: Normed spaces"</a>. <i>Numerical analysis</i>. Springer. p. 26. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISBN_(identifier)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Special:BookSources/0-387-98408-9?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Special:BookSources/0-387-98408-9"><bdi>0-387-98408-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=%C2%A73.1%3A+Normed+spaces&rft.btitle=Numerical+analysis&rft.pages=26&rft.pub=Springer&rft.date=1988&rft.isbn=0-387-98408-9&rft.au=Rainer+Kress&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3De7ZmHRIxum0C%26pg%3DPA26&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATriangle+inequality" class="Z3988"></span></span></li> <li id="cite_note-Stewart-16"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-Stewart_16-0">^</a></b></span> <span class="reference-text">A proof not requiring separate cases is as follows: Any number is always less than or equal to its own absolute value, so <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -|u|\leq u\leq |u|}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mo> ≤<!-- ≤ --> </mo> <mi> u </mi> <mo> ≤<!-- ≤ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle -|u|\leq u\leq |u|} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc6bc7bc5b59e0aee53f393667d6399033d1dc96" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.581ex; height:2.843ex;" alt="{\displaystyle -|u|\leq u\leq |u|}"> </noscript><span class="lazy-image-placeholder" style="width: 14.581ex;height: 2.843ex;vertical-align: -0.838ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc6bc7bc5b59e0aee53f393667d6399033d1dc96" data-alt="{\displaystyle -|u|\leq u\leq |u|}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -|v|\leq v\leq |v|.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mo> ≤<!-- ≤ --> </mo> <mi> v </mi> <mo> ≤<!-- ≤ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle -|v|\leq v\leq |v|.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87144c9537a86b47c2e5036a8dae15ee8916f266" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.622ex; height:2.843ex;" alt="{\displaystyle -|v|\leq v\leq |v|.}"> </noscript><span class="lazy-image-placeholder" style="width: 14.622ex;height: 2.843ex;vertical-align: -0.838ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87144c9537a86b47c2e5036a8dae15ee8916f266" data-alt="{\displaystyle -|v|\leq v\leq |v|.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> Adding these inequalities together, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\bigl (}|u|+|v|{\bigr )}\leq u+v\leq |u|+|v|,}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em"> ( </mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em"> ) </mo> </mrow> </mrow> <mo> ≤<!-- ≤ --> </mo> <mi> u </mi> <mo> + </mo> <mi> v </mi> <mo> ≤<!-- ≤ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle -{\bigl (}|u|+|v|{\bigr )}\leq u+v\leq |u|+|v|,} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e4ebd02905eac0e3481973cc56fa5ace35c647bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:31.85ex; height:3.176ex;" alt="{\displaystyle -{\bigl (}|u|+|v|{\bigr )}\leq u+v\leq |u|+|v|,}"> </noscript><span class="lazy-image-placeholder" style="width: 31.85ex;height: 3.176ex;vertical-align: -1.005ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e4ebd02905eac0e3481973cc56fa5ace35c647bf" data-alt="{\displaystyle -{\bigl (}|u|+|v|{\bigr )}\leq u+v\leq |u|+|v|,}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> the sum has the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -a\leq b\leq a}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo> −<!-- − --> </mo> <mi> a </mi> <mo> ≤<!-- ≤ --> </mo> <mi> b </mi> <mo> ≤<!-- ≤ --> </mo> <mi> a </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle -a\leq b\leq a} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2daabcaed944a0533186ec4a2bb5e6e888162d82" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:11.462ex; height:2.343ex;" alt="{\displaystyle -a\leq b\leq a}"> </noscript><span class="lazy-image-placeholder" style="width: 11.462ex;height: 2.343ex;vertical-align: -0.505ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2daabcaed944a0533186ec4a2bb5e6e888162d82" data-alt="{\displaystyle -a\leq b\leq a}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a=|u|+|v|}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> a </mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle a=|u|+|v|} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c202bc46c6d3135a6d5b27812f110f39e79358e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.213ex; height:2.843ex;" alt="{\displaystyle a=|u|+|v|}"> </noscript><span class="lazy-image-placeholder" style="width: 12.213ex;height: 2.843ex;vertical-align: -0.838ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c202bc46c6d3135a6d5b27812f110f39e79358e" data-alt="{\displaystyle a=|u|+|v|}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b=u+v.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> b </mi> <mo> = </mo> <mi> u </mi> <mo> + </mo> <mi> v </mi> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle b=u+v.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dcbe4ad3c281db177a67365c8c5e646c6186a9bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.041ex; height:2.343ex;" alt="{\displaystyle b=u+v.}"> </noscript><span class="lazy-image-placeholder" style="width: 10.041ex;height: 2.343ex;vertical-align: -0.505ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dcbe4ad3c281db177a67365c8c5e646c6186a9bc" data-alt="{\displaystyle b=u+v.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> But this always implies <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |b|\leq a}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mo> ≤<!-- ≤ --> </mo> <mi> a </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle |b|\leq a} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d6de1867d123b96a6bb14f49255d5b7ca6055f2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.62ex; height:2.843ex;" alt="{\displaystyle |b|\leq a}"> </noscript><span class="lazy-image-placeholder" style="width: 6.62ex;height: 2.843ex;vertical-align: -0.838ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d6de1867d123b96a6bb14f49255d5b7ca6055f2" data-alt="{\displaystyle |b|\leq a}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, or, expanded, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |u+v|\leq |u|+|v|.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mi> u </mi> <mo> + </mo> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mo> ≤<!-- ≤ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle |u+v|\leq |u|+|v|.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e7dd5741100aa30dcc531841647c8bc5b03e835" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.222ex; height:2.843ex;" alt="{\displaystyle |u+v|\leq |u|+|v|.}"> </noscript><span class="lazy-image-placeholder" style="width: 18.222ex;height: 2.843ex;vertical-align: -0.838ex;" data-mw-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e7dd5741100aa30dcc531841647c8bc5b03e835" data-alt="{\displaystyle |u+v|\leq |u|+|v|.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> <div class="paragraphbreak" style="margin-top:0.5em"></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJames_Stewart2008" class="citation book cs1">James Stewart (2008). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://archive.org/details/studentsolutions0000stew"><i>Essential Calculus</i></a></span>. Thomson Brooks/Cole. p. A10. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISBN_(identifier)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Special:BookSources/978-0-495-10860-3?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Special:BookSources/978-0-495-10860-3"><bdi>978-0-495-10860-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Essential+Calculus&rft.pages=A10&rft.pub=Thomson+Brooks%2FCole&rft.date=2008&rft.isbn=978-0-495-10860-3&rft.au=James+Stewart&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fstudentsolutions0000stew&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATriangle+inequality" class="Z3988"></span></span></li> <li id="cite_note-Stillwell-17"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-Stillwell_17-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJohn_Stillwell2005" class="citation book cs1">John Stillwell (2005). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://archive.org/details/fourpillarsofgeo0000stil"><i>The four pillars of geometry</i></a></span>. Springer. p. <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://archive.org/details/fourpillarsofgeo0000stil/page/80">80</a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISBN_(identifier)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Special:BookSources/0-387-25530-3?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Special:BookSources/0-387-25530-3"><bdi>0-387-25530-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+four+pillars+of+geometry&rft.pages=80&rft.pub=Springer&rft.date=2005&rft.isbn=0-387-25530-3&rft.au=John+Stillwell&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Ffourpillarsofgeo0000stil&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATriangle+inequality" class="Z3988"></span></span></li> <li id="cite_note-Saxe-18"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-Saxe_18-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKaren_Saxe2002" class="citation book cs1"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Karen_Saxe?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Karen Saxe">Karen Saxe</a> (2002). <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://books.google.com/books?id%3D0LeWJ74j8GQC%26pg%3DPA61"><i>Beginning functional analysis</i></a>. Springer. p. 61. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISBN_(identifier)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Special:BookSources/0-387-95224-1?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Special:BookSources/0-387-95224-1"><bdi>0-387-95224-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Beginning+functional+analysis&rft.pages=61&rft.pub=Springer&rft.date=2002&rft.isbn=0-387-95224-1&rft.au=Karen+Saxe&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D0LeWJ74j8GQC%26pg%3DPA61&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATriangle+inequality" class="Z3988"></span></span></li> <li id="cite_note-inequality-19"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-inequality_19-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAnonymous1854" class="citation book cs1">Anonymous (1854). <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://books.google.com/books?id%3DlTACAAAAQAAJ%26pg%3DPA196">"Exercise I. to proposition XIX"</a>. <i>The popular educator; fourth volume</i>. Ludgate Hill, London: John Cassell. p. 196.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Exercise+I.+to+proposition+XIX&rft.btitle=The+popular+educator%3B+fourth+volume&rft.place=Ludgate+Hill%2C+London&rft.pages=196&rft.pub=John+Cassell&rft.date=1854&rft.au=Anonymous&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DlTACAAAAQAAJ%26pg%3DPA196&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATriangle+inequality" class="Z3988"></span></span></li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_inequality?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-20">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchubert2021" class="citation conference cs1">Schubert, Erich (2021). <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://arxiv.org/pdf/2107.04071"><i>A Triangle Inequality for Cosine Similarity</i></a>. International Conference on Similarity Search and Applications. Dortmund: Springer. <a href="https://en-m-wikipedia-org.translate.goog/wiki/Doi_(identifier)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://doi.org/10.1007%252F978-3-030-89657-7_3">10.1007/978-3-030-89657-7_3</a><span class="reference-accessdate">. Retrieved <span class="nowrap">29 January</span> 2025</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=conference&rft.btitle=A+Triangle+Inequality+for+Cosine+Similarity&rft.place=Dortmund&rft.pub=Springer&rft.date=2021&rft_id=info%3Adoi%2F10.1007%2F978-3-030-89657-7_3&rft.aulast=Schubert&rft.aufirst=Erich&rft_id=https%3A%2F%2Farxiv.org%2Fpdf%2F2107.04071&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATriangle+inequality" class="Z3988"></span></span></li> </ol> </div> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(9)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="References">References</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Triangle_inequality&action=edit&section=18&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Edit section: References" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-9 collapsible-block" id="mf-section-9"> <ul> <li> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPedoe1988" class="citation book cs1"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Daniel_Pedoe?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Daniel Pedoe">Pedoe, Daniel</a> (1988). <i>Geometry: A comprehensive course</i>. Dover. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISBN_(identifier)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Special:BookSources/0-486-65812-0?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Special:BookSources/0-486-65812-0"><bdi>0-486-65812-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Geometry%3A+A+comprehensive+course&rft.pub=Dover&rft.date=1988&rft.isbn=0-486-65812-0&rft.aulast=Pedoe&rft.aufirst=Daniel&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATriangle+inequality" class="Z3988"></span></li> <li> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRudin1976" class="citation book cs1"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Walter_Rudin?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Walter Rudin">Rudin, Walter</a> (1976). <i>Principles of Mathematical Analysis</i>. New York: <a href="https://en-m-wikipedia-org.translate.goog/wiki/McGraw-Hill?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="McGraw-Hill">McGraw-Hill</a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISBN_(identifier)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Special:BookSources/0-07-054235-X?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Special:BookSources/0-07-054235-X"><bdi>0-07-054235-X</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Principles+of+Mathematical+Analysis&rft.place=New+York&rft.pub=McGraw-Hill&rft.date=1976&rft.isbn=0-07-054235-X&rft.aulast=Rudin&rft.aufirst=Walter&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATriangle+inequality" class="Z3988"></span></li> </ul><!-- NewPP limit report Parsed by mw‐api‐ext.codfw.main‐786d8bd985‐phvqt Cached time: 20250217005128 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.733 seconds Real time usage: 1.048 seconds Preprocessor visited node count: 6583/1000000 Post‐expand include size: 66479/2097152 bytes Template argument size: 9000/2097152 bytes Highest expansion depth: 12/100 Expensive parser function count: 5/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 76350/5000000 bytes Lua time usage: 0.360/10.000 seconds Lua memory usage: 5785631/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 666.483 1 -total 38.52% 256.723 1 Template:Reflist 27.24% 181.559 14 Template:Cite_book 18.01% 120.065 1 Template:Short_description 15.74% 104.916 83 Template:Math 13.08% 87.146 2 Template:Pagetype 9.51% 63.367 1 Template:Unreferenced_section 9.26% 61.749 1 Template:About 8.79% 58.577 1 Template:Unreferenced 8.33% 55.540 1 Template:Ambox --> <!-- Saved in parser cache with key enwiki:pcache:53941:|#|:idhash:canonical and timestamp 20250217005128 and revision id 1276124540. Rendering was triggered because: page-edit --> </section> </div><!-- MobileFormatter took 0.045 seconds --><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --> <noscript> <img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?useformat=mobile&type=1x1&usesul3=0" alt="" width="1" height="1" style="border: none; position: absolute;"> </noscript> <div class="printfooter" data-nosnippet=""> Retrieved from "<a dir="ltr" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://en.wikipedia.org/w/index.php?title%3DTriangle_inequality%26oldid%3D1276124540">https://en.wikipedia.org/w/index.php?title=Triangle_inequality&oldid=1276124540</a>" </div> </div> </div> <div class="post-content" id="page-secondary-actions"> </div> </main> <footer class="mw-footer minerva-footer" role="contentinfo"><a class="last-modified-bar" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Triangle_inequality&action=history&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB"> <div class="post-content last-modified-bar__content"><span class="minerva-icon minerva-icon-size-medium minerva-icon--modified-history"></span> <span class="last-modified-bar__text modified-enhancement" data-user-name="2601:246:D081:6980:B958:52D0:DA4D:8BCF" data-user-gender="unknown" data-timestamp="1739753487"> <span>Last edited on 17 February 2025, at 00:51</span> </span> <span class="minerva-icon minerva-icon-size-small minerva-icon--expand"></span> </div></a> <div class="post-content footer-content"> <div id="mw-data-after-content"> <div class="read-more-container"></div> </div> <div id="p-lang"> <h4>Languages</h4> <section> <ul id="p-variants" class="minerva-languages"></ul> <ul class="minerva-languages"> <li class="interlanguage-link interwiki-als mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://als.wikipedia.org/wiki/Dreiecksungleichung" title="Dreiecksungleichung – Alemannic" lang="gsw" hreflang="gsw" data-title="Dreiecksungleichung" data-language-autonym="Alemannisch" data-language-local-name="Alemannic" class="interlanguage-link-target"><span>Alemannisch</span></a></li> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ar.wikipedia.org/wiki/%25D9%2585%25D8%25AA%25D8%25A8%25D8%25A7%25D9%258A%25D9%2586%25D8%25A9_%25D8%25A7%25D9%2584%25D9%2585%25D8%25AB%25D9%2584%25D8%25AB" title="متباينة المثلث – Arabic" lang="ar" hreflang="ar" data-title="متباينة المثلث" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li> <li class="interlanguage-link interwiki-be mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://be.wikipedia.org/wiki/%25D0%259D%25D1%258F%25D1%2580%25D0%25BE%25D1%259E%25D0%25BD%25D0%25B0%25D1%2581%25D1%2586%25D1%258C_%25D1%2582%25D1%2580%25D0%25BE%25D1%2585%25D0%25B2%25D1%2583%25D0%25B3%25D0%25BE%25D0%25BB%25D1%258C%25D0%25BD%25D1%2596%25D0%25BA%25D0%25B0" title="Няроўнасць трохвугольніка – Belarusian" lang="be" hreflang="be" data-title="Няроўнасць трохвугольніка" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li> <li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://bg.wikipedia.org/wiki/%25D0%259D%25D0%25B5%25D1%2580%25D0%25B0%25D0%25B2%25D0%25B5%25D0%25BD%25D1%2581%25D1%2582%25D0%25B2%25D0%25BE_%25D0%25BD%25D0%25B0_%25D1%2582%25D1%2580%25D0%25B8%25D1%258A%25D0%25B3%25D1%258A%25D0%25BB%25D0%25BD%25D0%25B8%25D0%25BA%25D0%25B0" title="Неравенство на триъгълника – Bulgarian" lang="bg" hreflang="bg" data-title="Неравенство на триъгълника" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li> <li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ca.wikipedia.org/wiki/Desigualtat_triangular" title="Desigualtat triangular – Catalan" lang="ca" hreflang="ca" data-title="Desigualtat triangular" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li> <li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://cv.wikipedia.org/wiki/%25D0%2592%25D0%25B8%25C3%25A7%25D0%25BA%25C4%2595%25D1%2582%25D0%25B5%25D1%2581%25D0%25BB%25C4%2595%25D1%2585_%25D1%2582%25D0%25B0%25D0%25BD%25D0%25BC%25D0%25B0%25D1%2580%25D0%25BB%25C4%2583%25D1%2585%25C4%2595" title="Виçкĕтеслĕх танмарлăхĕ – Chuvash" lang="cv" hreflang="cv" data-title="Виçкĕтеслĕх танмарлăхĕ" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li> <li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://cs.wikipedia.org/wiki/Troj%25C3%25BAheln%25C3%25ADkov%25C3%25A1_nerovnost" title="Trojúhelníková nerovnost – Czech" lang="cs" hreflang="cs" data-title="Trojúhelníková nerovnost" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li> <li class="interlanguage-link interwiki-da mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://da.wikipedia.org/wiki/Trekantsuligheden" title="Trekantsuligheden – Danish" lang="da" hreflang="da" data-title="Trekantsuligheden" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li> <li class="interlanguage-link interwiki-de mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://de.wikipedia.org/wiki/Dreiecksungleichung" title="Dreiecksungleichung – German" lang="de" hreflang="de" data-title="Dreiecksungleichung" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li> <li class="interlanguage-link interwiki-et mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://et.wikipedia.org/wiki/Kolmnurga_v%25C3%25B5rratus" title="Kolmnurga võrratus – Estonian" lang="et" hreflang="et" data-title="Kolmnurga võrratus" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li> <li class="interlanguage-link interwiki-el mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://el.wikipedia.org/wiki/%25CE%25A4%25CF%2581%25CE%25B9%25CE%25B3%25CF%2589%25CE%25BD%25CE%25B9%25CE%25BA%25CE%25AE_%25CE%25B1%25CE%25BD%25CE%25B9%25CF%2583%25CF%258C%25CF%2584%25CE%25B7%25CF%2584%25CE%25B1" title="Τριγωνική ανισότητα – Greek" lang="el" hreflang="el" data-title="Τριγωνική ανισότητα" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li> <li class="interlanguage-link interwiki-es mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://es.wikipedia.org/wiki/Desigualdad_triangular" title="Desigualdad triangular – Spanish" lang="es" hreflang="es" data-title="Desigualdad triangular" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li> <li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://eo.wikipedia.org/wiki/Neegala%25C4%25B5o_de_triangulo" title="Neegalaĵo de triangulo – Esperanto" lang="eo" hreflang="eo" data-title="Neegalaĵo de triangulo" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li> <li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://eu.wikipedia.org/wiki/Desberdintza_triangeluar" title="Desberdintza triangeluar – Basque" lang="eu" hreflang="eu" data-title="Desberdintza triangeluar" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li> <li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://fa.wikipedia.org/wiki/%25D9%2586%25D8%25A7%25D8%25A8%25D8%25B1%25D8%25A7%25D8%25A8%25D8%25B1%25DB%258C_%25D9%2585%25D8%25AB%25D9%2584%25D8%25AB%25DB%258C" title="نابرابری مثلثی – Persian" lang="fa" hreflang="fa" data-title="نابرابری مثلثی" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li> <li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://fr.wikipedia.org/wiki/In%25C3%25A9galit%25C3%25A9_triangulaire" title="Inégalité triangulaire – French" lang="fr" hreflang="fr" data-title="Inégalité triangulaire" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li> <li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://gl.wikipedia.org/wiki/Desigualdade_triangular" title="Desigualdade triangular – Galician" lang="gl" hreflang="gl" data-title="Desigualdade triangular" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li> <li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ko.wikipedia.org/wiki/%25EC%2582%25BC%25EA%25B0%2581_%25EB%25B6%2580%25EB%2593%25B1%25EC%258B%259D" title="삼각 부등식 – Korean" lang="ko" hreflang="ko" data-title="삼각 부등식" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li> <li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://hy.wikipedia.org/wiki/%25D4%25B5%25D5%25BC%25D5%25A1%25D5%25B6%25D5%25AF%25D5%25B5%25D5%25A1%25D5%25B6_%25D5%25A1%25D5%25B6%25D5%25B0%25D5%25A1%25D5%25BE%25D5%25A1%25D5%25BD%25D5%25A1%25D6%2580%25D5%25B8%25D6%2582%25D5%25A9%25D5%25B5%25D5%25B8%25D6%2582%25D5%25B6" title="Եռանկյան անհավասարություն – Armenian" lang="hy" hreflang="hy" data-title="Եռանկյան անհավասարություն" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li> <li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://hi.wikipedia.org/wiki/%25E0%25A4%25A4%25E0%25A5%258D%25E0%25A4%25B0%25E0%25A4%25BF%25E0%25A4%25AD%25E0%25A5%2581%25E0%25A4%259C_%25E0%25A4%2585%25E0%25A4%25B8%25E0%25A4%25AE%25E0%25A4%25BF%25E0%25A4%2595%25E0%25A4%25BE" title="त्रिभुज असमिका – Hindi" lang="hi" hreflang="hi" data-title="त्रिभुज असमिका" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li> <li class="interlanguage-link interwiki-id mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://id.wikipedia.org/wiki/Pertidaksamaan_segitiga" title="Pertidaksamaan segitiga – Indonesian" lang="id" hreflang="id" data-title="Pertidaksamaan segitiga" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li> <li class="interlanguage-link interwiki-is mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://is.wikipedia.org/wiki/%25C3%259Er%25C3%25ADhyrnings%25C3%25B3jafna" title="Þríhyrningsójafna – Icelandic" lang="is" hreflang="is" data-title="Þríhyrningsójafna" data-language-autonym="Íslenska" data-language-local-name="Icelandic" class="interlanguage-link-target"><span>Íslenska</span></a></li> <li class="interlanguage-link interwiki-it mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://it.wikipedia.org/wiki/Disuguaglianza_triangolare" title="Disuguaglianza triangolare – Italian" lang="it" hreflang="it" data-title="Disuguaglianza triangolare" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li> <li class="interlanguage-link interwiki-he mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://he.wikipedia.org/wiki/%25D7%2590%25D7%2599-%25D7%25A9%25D7%2595%25D7%2595%25D7%2599%25D7%2595%25D7%259F_%25D7%2594%25D7%259E%25D7%25A9%25D7%2595%25D7%259C%25D7%25A9" title="אי-שוויון המשולש – Hebrew" lang="he" hreflang="he" data-title="אי-שוויון המשולש" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li> <li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://lt.wikipedia.org/wiki/Trikampio_nelygyb%25C4%2597" title="Trikampio nelygybė – Lithuanian" lang="lt" hreflang="lt" data-title="Trikampio nelygybė" data-language-autonym="Lietuvių" data-language-local-name="Lithuanian" class="interlanguage-link-target"><span>Lietuvių</span></a></li> <li class="interlanguage-link interwiki-lij mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://lij.wikipedia.org/wiki/Disegualiansa_triangol%25C3%25A2" title="Disegualiansa triangolâ – Ligurian" lang="lij" hreflang="lij" data-title="Disegualiansa triangolâ" data-language-autonym="Ligure" data-language-local-name="Ligurian" class="interlanguage-link-target"><span>Ligure</span></a></li> <li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://hu.wikipedia.org/wiki/H%25C3%25A1romsz%25C3%25B6g-egyenl%25C5%2591tlens%25C3%25A9g" title="Háromszög-egyenlőtlenség – Hungarian" lang="hu" hreflang="hu" data-title="Háromszög-egyenlőtlenség" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li> <li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://nl.wikipedia.org/wiki/Driehoeksongelijkheid" title="Driehoeksongelijkheid – Dutch" lang="nl" hreflang="nl" data-title="Driehoeksongelijkheid" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li> <li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ja.wikipedia.org/wiki/%25E4%25B8%2589%25E8%25A7%2592%25E4%25B8%258D%25E7%25AD%2589%25E5%25BC%258F" title="三角不等式 – Japanese" lang="ja" hreflang="ja" data-title="三角不等式" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li> <li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://nn.wikipedia.org/wiki/Trekantulikskapen" title="Trekantulikskapen – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="Trekantulikskapen" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li> <li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://pl.wikipedia.org/wiki/Nier%25C3%25B3wno%25C5%259B%25C4%2587_tr%25C3%25B3jk%25C4%2585ta" title="Nierówność trójkąta – Polish" lang="pl" hreflang="pl" data-title="Nierówność trójkąta" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li> <li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://pt.wikipedia.org/wiki/Desigualdade_triangular" title="Desigualdade triangular – Portuguese" lang="pt" hreflang="pt" data-title="Desigualdade triangular" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li> <li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ro.wikipedia.org/wiki/Inegalitatea_triunghiului" title="Inegalitatea triunghiului – Romanian" lang="ro" hreflang="ro" data-title="Inegalitatea triunghiului" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li> <li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ru.wikipedia.org/wiki/%25D0%259D%25D0%25B5%25D1%2580%25D0%25B0%25D0%25B2%25D0%25B5%25D0%25BD%25D1%2581%25D1%2582%25D0%25B2%25D0%25BE_%25D1%2582%25D1%2580%25D0%25B5%25D1%2583%25D0%25B3%25D0%25BE%25D0%25BB%25D1%258C%25D0%25BD%25D0%25B8%25D0%25BA%25D0%25B0" title="Неравенство треугольника – Russian" lang="ru" hreflang="ru" data-title="Неравенство треугольника" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li> <li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ckb.wikipedia.org/wiki/%25D9%2584%25D8%25A7%25D8%25B3%25DB%2595%25D9%2586%25DA%25AF%25DB%2595%25DB%258C_%25D8%25B3%25DB%258E%25DA%25AF%25DB%2586%25D8%25B4%25DB%2595%25DB%258C%25DB%258C" title="لاسەنگەی سێگۆشەیی – Central Kurdish" lang="ckb" hreflang="ckb" data-title="لاسەنگەی سێگۆشەیی" data-language-autonym="کوردی" data-language-local-name="Central Kurdish" class="interlanguage-link-target"><span>کوردی</span></a></li> <li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://sr.wikipedia.org/wiki/%25D0%259D%25D0%25B5%25D1%2598%25D0%25B5%25D0%25B4%25D0%25BD%25D0%25B0%25D0%25BA%25D0%25BE%25D1%2581%25D1%2582_%25D1%2582%25D1%2580%25D0%25BE%25D1%2583%25D0%25B3%25D0%25BB%25D0%25B0" title="Неједнакост троугла – Serbian" lang="sr" hreflang="sr" data-title="Неједнакост троугла" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li> <li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://fi.wikipedia.org/wiki/Kolmioep%25C3%25A4yht%25C3%25A4l%25C3%25B6" title="Kolmioepäyhtälö – Finnish" lang="fi" hreflang="fi" data-title="Kolmioepäyhtälö" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li> <li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://sv.wikipedia.org/wiki/Triangelolikheten" title="Triangelolikheten – Swedish" lang="sv" hreflang="sv" data-title="Triangelolikheten" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li> <li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ta.wikipedia.org/wiki/%25E0%25AE%2585%25E0%25AE%259F%25E0%25AE%25BF%25E0%25AE%25AA%25E0%25AF%258D%25E0%25AE%25AA%25E0%25AE%259F%25E0%25AF%2588_%25E0%25AE%25AE%25E0%25AF%2581%25E0%25AE%2595%25E0%25AF%258D%25E0%25AE%2595%25E0%25AF%258B%25E0%25AE%25A3%25E0%25AE%259A%25E0%25AF%258D_%25E0%25AE%259A%25E0%25AE%25AE%25E0%25AE%25A9%25E0%25AE%25BF%25E0%25AE%25A9%25E0%25AF%258D%25E0%25AE%25AE%25E0%25AF%2588" title="அடிப்படை முக்கோணச் சமனின்மை – Tamil" lang="ta" hreflang="ta" data-title="அடிப்படை முக்கோணச் சமனின்மை" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li> <li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://tr.wikipedia.org/wiki/%25C3%259C%25C3%25A7gen_e%25C5%259Fitsizli%25C4%259Fi" title="Üçgen eşitsizliği – Turkish" lang="tr" hreflang="tr" data-title="Üçgen eşitsizliği" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li> <li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://uk.wikipedia.org/wiki/%25D0%259D%25D0%25B5%25D1%2580%25D1%2596%25D0%25B2%25D0%25BD%25D1%2596%25D1%2581%25D1%2582%25D1%258C_%25D1%2582%25D1%2580%25D0%25B8%25D0%25BA%25D1%2583%25D1%2582%25D0%25BD%25D0%25B8%25D0%25BA%25D0%25B0" title="Нерівність трикутника – Ukrainian" lang="uk" hreflang="uk" data-title="Нерівність трикутника" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li> <li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://vi.wikipedia.org/wiki/B%25E1%25BA%25A5t_%25C4%2591%25E1%25BA%25B3ng_th%25E1%25BB%25A9c_tam_gi%25C3%25A1c" title="Bất đẳng thức tam giác – Vietnamese" lang="vi" hreflang="vi" data-title="Bất đẳng thức tam giác" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li> <li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://zh-yue.wikipedia.org/wiki/%25E4%25B8%2589%25E8%25A7%2592%25E4%25B8%258D%25E7%25AD%2589%25E5%25BC%258F" title="三角不等式 – Cantonese" lang="yue" hreflang="yue" data-title="三角不等式" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li> <li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://zh.wikipedia.org/wiki/%25E4%25B8%2589%25E8%25A7%2592%25E4%25B8%258D%25E7%25AD%2589%25E5%25BC%258F" title="三角不等式 – Chinese" lang="zh" hreflang="zh" data-title="三角不等式" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> </section> </div> <div class="minerva-footer-logo"> <img src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" alt="Wikipedia" width="120" height="18" style="width: 7.5em; height: 1.125em;"> </div> <ul id="footer-info" class="footer-info hlist hlist-separated"> <li id="footer-info-lastmod">This page was last edited on 17 February 2025, at 00:51<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Content is available under <a class="external" rel="nofollow" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://creativecommons.org/licenses/by-sa/4.0/deed.en">CC BY-SA 4.0</a> unless otherwise noted.</li> </ul> <ul id="footer-places" class="footer-places hlist hlist-separated"> <li id="footer-places-privacy"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Wikipedia:About?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Wikipedia:General_disclaimer?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB">Disclaimers</a></li> <li id="footer-places-contact"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://stats.wikimedia.org/%23/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-terms-use"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://foundation.m.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use">Terms of Use</a></li> <li id="footer-places-desktop-toggle"><a id="mw-mf-display-toggle" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://en.wikipedia.org/w/index.php?title%3DTriangle_inequality%26mobileaction%3Dtoggle_view_desktop" data-event-name="switch_to_desktop">Desktop</a></li> </ul> </div> </footer> </div> </div> <div class="mw-notification-area" data-mw="interface"></div><!-- v:8.3.1 --> <script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-b766959bd-nnnmk","wgBackendResponseTime":269,"wgPageParseReport":{"limitreport":{"cputime":"0.733","walltime":"1.048","ppvisitednodes":{"value":6583,"limit":1000000},"postexpandincludesize":{"value":66479,"limit":2097152},"templateargumentsize":{"value":9000,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":5,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":76350,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 666.483 1 -total"," 38.52% 256.723 1 Template:Reflist"," 27.24% 181.559 14 Template:Cite_book"," 18.01% 120.065 1 Template:Short_description"," 15.74% 104.916 83 Template:Math"," 13.08% 87.146 2 Template:Pagetype"," 9.51% 63.367 1 Template:Unreferenced_section"," 9.26% 61.749 1 Template:About"," 8.79% 58.577 1 Template:Unreferenced"," 8.33% 55.540 1 Template:Ambox"]},"scribunto":{"limitreport-timeusage":{"value":"0.360","limit":"10.000"},"limitreport-memusage":{"value":5785631,"limit":52428800}},"cachereport":{"origin":"mw-api-ext.codfw.main-786d8bd985-phvqt","timestamp":"20250217005128","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Triangle inequality","url":"https:\/\/en.wikipedia.org\/wiki\/Triangle_inequality","sameAs":"http:\/\/www.wikidata.org\/entity\/Q208216","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q208216","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2002-05-28T15:38:26Z","dateModified":"2025-02-17T00:51:27Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/b\/b2\/TriangleInequality.svg","headline":"inequality of the form |x + y| \u2264 |x| + |y|"}</script> <script>(window.NORLQ=window.NORLQ||[]).push(function(){var ns,i,p,img;ns=document.getElementsByTagName('noscript');for(i=0;i<ns.length;i++){p=ns[i].nextSibling;if(p&&p.className&&p.className.indexOf('lazy-image-placeholder')>-1){img=document.createElement('img');img.setAttribute('src',p.getAttribute('data-src'));img.setAttribute('width',p.getAttribute('data-width'));img.setAttribute('height',p.getAttribute('data-height'));img.setAttribute('alt',p.getAttribute('data-alt'));p.parentNode.replaceChild(img,p);}}});</script> <script>function gtElInit() {var lib = new google.translate.TranslateService();lib.translatePage('en', 'en', function () {});}</script> <script src="https://translate.google.com/translate_a/element.js?cb=gtElInit&hl=en-GB&client=wt" type="text/javascript"></script> </body> </html>