CINXE.COM
Search results for: evaporation rate
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: evaporation rate</title> <meta name="description" content="Search results for: evaporation rate"> <meta name="keywords" content="evaporation rate"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="evaporation rate" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="evaporation rate"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8294</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: evaporation rate</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8294</span> Investigation of Knitted Fabric Properties Effect on Evaporation Rate </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20S.%20Achour">N. S. Achour</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hamdaoui"> M. Hamdaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ben%20Nasrallah"> S. Ben Nasrallah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Evaporation kinetics of water from porous knitted fabrics are studied: An experimental study of determining evaporated water mass (g) versus time (s) from different knitted fabrics was gravimetrically investigated in various atmospheric conditions. Then evaporation rates are calculated. The goal is to determine the effect of fabric composition, knit structure and yarns properties on evaporation rate. The results show that fabrics geometrical properties, such as porosity and thickness, have a significant influence on evaporated water quantities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=evaporation%20rate" title="evaporation rate">evaporation rate</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20study" title=" experimental study"> experimental study</a>, <a href="https://publications.waset.org/abstracts/search?q=geometrical%20properties" title=" geometrical properties"> geometrical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20knitted%20fabrics" title=" porous knitted fabrics"> porous knitted fabrics</a> </p> <a href="https://publications.waset.org/abstracts/29062/investigation-of-knitted-fabric-properties-effect-on-evaporation-rate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29062.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">503</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8293</span> Analysis of Evaporation of Liquid Ammonia in a Vertical Cylindrical Storage Tank</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Chikh">S. Chikh</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Boulifa"> S. Boulifa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study addresses the problem of ammonia evaporation during filling of a vertical cylindrical tank and the influence of various external factors on the stability of storage by determining the conditions for minimum evaporation. Numerical simulation is carried out by solving the governing equations namely, continuity, momentum, energy, and diffusion of species. The effect of temperature of surrounding air, the filling speed of the reservoir and the temperature of the filling liquid ammonia on the evaporation rate is investigated. Results show that the temperature of the filling liquid has little effect on the liquid ammonia for a short period, which, in fact, is function of the filling speed. The evaporation rate along the free surface of the liquid is non-uniform. The inlet temperature affects the vapor ammonia temperature because of pressure increase. The temperature of the surrounding air affects the temperature of the vapor phase rather than the liquid phase. The maximum of evaporation is reached at the final step of filling. In order to minimize loss of ammonia vapors automatically causing losses in quantity of the liquid stored, it is suggested to ensure the proper insulation for the walls and roof of the reservoir and to increase the filling speed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=evaporation" title="evaporation">evaporation</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20ammonia" title=" liquid ammonia"> liquid ammonia</a>, <a href="https://publications.waset.org/abstracts/search?q=storage%20tank" title=" storage tank"> storage tank</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a> </p> <a href="https://publications.waset.org/abstracts/49166/analysis-of-evaporation-of-liquid-ammonia-in-a-vertical-cylindrical-storage-tank" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49166.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8292</span> Numerical Investigation of the Flow Characteristics inside the Scrubber Unit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kumaresh%20Selvakumar">Kumaresh Selvakumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Man%20Young%20Kim"> Man Young Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wet scrubbers have found widespread use in cleaning contaminated gas streams because of their ability to remove particulates and based on the applications of scrubbing of marine engine exhaust gases by spraying sea-water. In order to examine the flow characteristics inside the scrubber, the model is designated with flow properties of hot air and water sprayer. The flow dynamics of evaporation of hot air by the injection of water droplets is the key factor considered in this paper. The flow behavior inside the scrubber was investigated from the previous works and to sum up the evaporation rate with respect to the concentration of water droplets are predicted to bring out the competent modelling. The numerical analysis using CFD facilitates in understanding the problem better and empathies the behavior of the model over its entire operating envelope. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concentration%20of%20water%20droplets" title="concentration of water droplets">concentration of water droplets</a>, <a href="https://publications.waset.org/abstracts/search?q=evaporation%20rate" title=" evaporation rate"> evaporation rate</a>, <a href="https://publications.waset.org/abstracts/search?q=scrubber" title=" scrubber"> scrubber</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20sprayer" title=" water sprayer"> water sprayer</a> </p> <a href="https://publications.waset.org/abstracts/21713/numerical-investigation-of-the-flow-characteristics-inside-the-scrubber-unit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21713.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8291</span> Wicking and Evaporation of Liquids in Knitted Fabrics: Analytic Solution of Capillary Rise Restrained by Gravity and Evaporation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20S.%20Achour">N. S. Achour</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hamdaoui"> M. Hamdaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ben%20Nasrallah"> S. Ben Nasrallah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wicking and evaporation of water in porous knitted fabrics is investigated by combining experimental and analytical approaches: The standard wicking model from Lucas and Washburn is enhanced to account for evaporation and gravity effects. The goal is to model the effect of gravity and evaporation on wicking using simple analytical expressions and investigate the influence of fabrics geometrical parameters, such as porosity and thickness on evaporation impact on maximum reachable height values. The results show that fabric properties have a significant influence on evaporation effect. In this paper, an experimental study of determining water kinetics from different knitted fabrics were gravimetrically investigated permitting the measure of the mass and the height of liquid rising in fabrics in various atmospheric conditions. From these measurements, characteristic pore parameters (capillary radius and permeability) can be determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=evaporation" title="evaporation">evaporation</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20study" title=" experimental study"> experimental study</a>, <a href="https://publications.waset.org/abstracts/search?q=geometrical%20parameters" title=" geometrical parameters"> geometrical parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=model" title=" model"> model</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20knitted%20fabrics" title=" porous knitted fabrics"> porous knitted fabrics</a>, <a href="https://publications.waset.org/abstracts/search?q=wicking" title=" wicking"> wicking</a> </p> <a href="https://publications.waset.org/abstracts/27286/wicking-and-evaporation-of-liquids-in-knitted-fabrics-analytic-solution-of-capillary-rise-restrained-by-gravity-and-evaporation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27286.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">582</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8290</span> Evaluating Evaporation and Seepage Losses in Lakes Using Sentinel Images and the Water Balance Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelrahman%20Elsehsah">Abdelrahman Elsehsah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this study is to assess changes in the water capacity of Aswan High Dam Lake (AHDL) caused by evaporation and seepage losses. To achieve this objective, a comprehensive methodology was employed. The methodology involves acquiring Sentinel-3 imagery and extracting the surface area of the lake using remote sensing techniques. Using water areas calculated from sentinel images, collected field data, and the lake’s water balance equation, monthly evaporation and seepage losses were estimated for the years 2021 and 2022. Based on the water balance method results, the average monthly evaporation losses for the year 2021 were estimated to be around 1.41 billion cubic meters (Bm3), which closely matches the estimates provided by the Ministry of Water Resources and Irrigation (MWRI) annual reports (approximately 1.37 Bm3 in the same year). This means that the water balance method slightly overestimated the monthly evaporation losses by about 2.92%. Similarly, the average monthly seepage losses for the year 2022 were estimated to be around 0.005 Bm3, while the MWRI reports indicated approximately 0.0046 Bm3. By another means, the water balance method overestimated the monthly seepage losses by about 8.70%. Furthermore, the study found that the average monthly evaporation rate within AHDL was 210.88 mm/month, which closely aligns with the computed value of approximately 204.9 mm/month by AHDA. These findings indicated that the applied water balance method, utilizing remote sensing and field data, is a reliable tool for estimating monthly evaporation and seepage losses as well as monthly evaporation rates in AHDL. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aswan%20high%20dam%20lake" title="Aswan high dam lake">Aswan high dam lake</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20balance%20equation" title=" water balance equation"> water balance equation</a>, <a href="https://publications.waset.org/abstracts/search?q=seepage%20loss" title=" seepage loss"> seepage loss</a>, <a href="https://publications.waset.org/abstracts/search?q=evaporation%20loss" title=" evaporation loss"> evaporation loss</a> </p> <a href="https://publications.waset.org/abstracts/188529/evaluating-evaporation-and-seepage-losses-in-lakes-using-sentinel-images-and-the-water-balance-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">34</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8289</span> Boundary Motion by Curvature: Accessible Modeling of Oil Spill Evaporation/Dissipation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gary%20Miller">Gary Miller</a>, <a href="https://publications.waset.org/abstracts/search?q=Andriy%20Didenko"> Andriy Didenko</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Allison"> David Allison</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The boundary of a region in the plane shrinks according to its curvature. A simple algorithm based upon this motion by curvature performed by a spreadsheet simulates the evaporation/dissipation behavior of oil spill boundaries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modeling" title="mathematical modeling">mathematical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=oil" title=" oil"> oil</a>, <a href="https://publications.waset.org/abstracts/search?q=evaporation" title=" evaporation"> evaporation</a>, <a href="https://publications.waset.org/abstracts/search?q=dissipation" title=" dissipation"> dissipation</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary" title=" boundary"> boundary</a> </p> <a href="https://publications.waset.org/abstracts/13621/boundary-motion-by-curvature-accessible-modeling-of-oil-spill-evaporationdissipation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13621.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">510</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8288</span> A Study on the Effect of Different Climate Conditions on Time of Balance of Bleeding and Evaporation in Plastic Shrinkage Cracking of Concrete Pavements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Ziari">Hasan Ziari</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Fazaeli"> Hassan Fazaeli</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Javad%20Vaziri%20Kang%20Olyaei"> Seyed Javad Vaziri Kang Olyaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Asma%20Sadat%20Dabiri"> Asma Sadat Dabiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The presence of cracks in concrete pavements is a place for the ingression of corrosive substances, acids, oils, and water into the pavement and reduces its long-term durability and level of service. One of the causes of early cracks in concrete pavements is the plastic shrinkage. This shrinkage occurs due to the formation of negative capillary pressures after the equilibrium of the bleeding and evaporation rates at the pavement surface. These cracks form if the tensile stresses caused by the restrained shrinkage exceed the tensile strength of the concrete. Different climate conditions change the rate of evaporation and thus change the balance time of the bleeding and evaporation, which changes the severity of cracking in concrete. The present study examined the relationship between the balance time of bleeding and evaporation and the area of cracking in the concrete slabs using the standard method ASTM C1579 in 27 different environmental conditions by using continuous video recording and digital image analyzing. The results showed that as the evaporation rate increased and the balance time decreased, the crack severity significantly increased so that by reducing the balance time from the maximum value to its minimum value, the cracking area increased more than four times. It was also observed that the cracking area- balance time curve could be interpreted in three sections. An examination of these three parts showed that the combination of climate conditions has a significant effect on increasing or decreasing these two variables. The criticality of a single factor cannot cause the critical conditions of plastic cracking. By combining two mild environmental factors with a severe climate factor (in terms of surface evaporation rate), a considerable reduction in balance time and a sharp increase in cracking severity can be prevented. The results of this study showed that balance time could be an essential factor in controlling and predicting plastic shrinkage cracking in concrete pavements. It is necessary to control this factor in the case of constructing concrete pavements in different climate conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bleeding%20and%20cracking%20severity" title="bleeding and cracking severity">bleeding and cracking severity</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20pavements" title=" concrete pavements"> concrete pavements</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20conditions" title=" climate conditions"> climate conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20shrinkage" title=" plastic shrinkage "> plastic shrinkage </a> </p> <a href="https://publications.waset.org/abstracts/127405/a-study-on-the-effect-of-different-climate-conditions-on-time-of-balance-of-bleeding-and-evaporation-in-plastic-shrinkage-cracking-of-concrete-pavements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127405.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8287</span> Concentration of Waste Waters by Enzyme-Assisted Low-Temperature Evaporation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahokas%20Mikko">Ahokas Mikko</a>, <a href="https://publications.waset.org/abstracts/search?q=Taskila%20Sanna"> Taskila Sanna</a>, <a href="https://publications.waset.org/abstracts/search?q=Varrio%20Kalle"> Varrio Kalle</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanskanen%20Juha"> Tanskanen Juha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present research aimed at the development of an energy efficient process for the concentration of starchy waste waters. The selected principle is mechanical vapor recompression evaporation (MVR) which leads to concentrated solid material and evaporated water phase. Evaporation removes water until a certain viscosity limit is reached. Materials with high viscosity cannot be concentrated using standard evaporators due to limitations of pumps and other constraints, such as wetting. Control of viscosity is thus essential for efficient evaporation. This applies especially to fluids in which due starch or other compounds the viscosity tends to increase via removal of water. In the present research, the effect of enzymes on evaporation of highly viscous starch industry waste waters was investigated. Wastewater samples were received from starch industry at pH of 4.8. Response surface methodology (RSM) was applied for the investigation of factor effects on the behaviour of concentrate during evaporation. The RSM was prepared using quadratic face-centered central composite design (CCF). The evaporation performance was evaluated by monitoring the viscosity of fluid during processing. Based on viscosity curves, the addition of glucoamylase reduced the viscosity during evaporation. This assumption was confirmed by CCF, suggesting that the use of starch decomposing glucoamylase allowed evaporation of the starchy wastewater to a relatively high total solid concentration without a detrimental increase in the viscosity. The results suggest that use of enzymes for reduction of viscosity during the evaporation allows more effective concentration of the wastewater and thereby recovery of potable water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=viscous" title="viscous">viscous</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=evaporation" title=" evaporation"> evaporation</a>, <a href="https://publications.waset.org/abstracts/search?q=concentration" title=" concentration"> concentration</a> </p> <a href="https://publications.waset.org/abstracts/66441/concentration-of-waste-waters-by-enzyme-assisted-low-temperature-evaporation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66441.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8286</span> Looking for a Connection between Oceanic Regions with Trends in Evaporation with Continental Ones with Trends in Precipitation through a Lagrangian Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raquel%20Nieto">Raquel Nieto</a>, <a href="https://publications.waset.org/abstracts/search?q=Marta%20V%C3%A1zquez"> Marta Vázquez</a>, <a href="https://publications.waset.org/abstracts/search?q=Anita%20Drumond"> Anita Drumond</a>, <a href="https://publications.waset.org/abstracts/search?q=Luis%20Gimeno"> Luis Gimeno</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the hot spots of climate change is the increment of ocean evaporation. The best estimation of evaporation, OAFlux data, shows strong increasing trends in evaporation from the oceans since 1978, with peaks during the hemispheric winter and strongest along the paths of the global western boundary currents and any inner Seas. The transport of moisture from oceanic sources to the continents is the connection between evaporation from the ocean and precipitation over the continents. A key question is to try to relate evaporative source regions over the oceans where trends have occurred in the last decades with their sinks over the continents to check if there have been also any trends in the precipitation amount or its characteristics. A Lagrangian approach based on FLEXPART and ERA-interim data is used to establish this connection. The analyzed period was 1980 to 2012. Results show that there is not a general pattern, but a significant agreement was found in important areas of climate interest. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ocean%20evaporation" title="ocean evaporation">ocean evaporation</a>, <a href="https://publications.waset.org/abstracts/search?q=Lagrangian%20approaches" title=" Lagrangian approaches"> Lagrangian approaches</a>, <a href="https://publications.waset.org/abstracts/search?q=contiental%20precipitation" title=" contiental precipitation"> contiental precipitation</a>, <a href="https://publications.waset.org/abstracts/search?q=Europe" title=" Europe"> Europe</a> </p> <a href="https://publications.waset.org/abstracts/38234/looking-for-a-connection-between-oceanic-regions-with-trends-in-evaporation-with-continental-ones-with-trends-in-precipitation-through-a-lagrangian-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38234.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8285</span> A Review of Atomization Mechanisms Used for Spray Flash Evaporation: Their Effectiveness and Proposal of Rotary Bell Atomizer for Flashing Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Murad%20A.%20Channa">Murad A. Channa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Khiadani.%20Yasir%20Al-Abdeli"> Mehdi Khiadani. Yasir Al-Abdeli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Considering the severity of water scarcity around the world and its widening at an alarming rate, practical improvements in desalination techniques need to be engineered at the earliest. Atomization is the major aspect of flashing phenomena, yet it has been paid less attention to until now. There is a need to test efficient ways of atomization for the flashing process. Flash evaporation together with reverse osmosis is also a commercially matured desalination technique commonly famous as Multi-stage Flash (MSF). Even though reverse osmosis is massively practical, it is not economical or sustainable compared to flash evaporation. However, flashing evaporation has its drawbacks as well such as lower efficiency of water production per higher consumption of power and time. Flash evaporation is simply the instant boiling of a subcooled liquid which is introduced as droplets in a well-maintained negative environment. This negative pressure inside the vacuum increases the temperature of the liquid droplets far above their boiling point, which results in the release of latent heat, and the liquid droplets turn into vapor which is collected to be condensed back into an impurity-free liquid in a condenser. Atomization is the main difference between pool and spray flash evaporation. Atomization is the heart of the flash evaporation process as it increases the evaporating surface area per drop atomized. Atomization can be categorized into many levels depending on its drop size, which again becomes crucial for increasing the droplet density (drop count) per given flow rate. This review comprehensively summarizes the selective results relating to the methods of atomization and their effectiveness on the evaporation rate from earlier works to date. In addition, the reviewers propose using centrifugal atomization for the flashing application, which brings several advantages viz ultra-fine droplets, uniform droplet density, and the swirling geometry of the spray with kinetically more energetic sprays during their flight. Finally, several challenges of using rotary bell atomizer (RBA) and RBA Sprays inside the chamber have been identified which will be explored in detail. A schematic of rotary bell atomizer (RBA) integration with the chamber has been designed. This powerful centrifugal atomization has the potential to increase potable water production in commercial multi-stage flash evaporators, where it would be preferably advantageous. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atomization" title="atomization">atomization</a>, <a href="https://publications.waset.org/abstracts/search?q=desalination" title=" desalination"> desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=flash%20evaporation" title=" flash evaporation"> flash evaporation</a>, <a href="https://publications.waset.org/abstracts/search?q=rotary%20bell%20atomizer" title=" rotary bell atomizer"> rotary bell atomizer</a> </p> <a href="https://publications.waset.org/abstracts/162448/a-review-of-atomization-mechanisms-used-for-spray-flash-evaporation-their-effectiveness-and-proposal-of-rotary-bell-atomizer-for-flashing-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162448.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8284</span> Modeling Pan Evaporation Using Intelligent Methods of ANN, LSSVM and Tree Model M5 (Case Study: Shahroud and Mayamey Stations)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamidreza%20Ghazvinian">Hamidreza Ghazvinian</a>, <a href="https://publications.waset.org/abstracts/search?q=Khosro%20Ghazvinian"> Khosro Ghazvinian</a>, <a href="https://publications.waset.org/abstracts/search?q=Touba%20Khodaiean"> Touba Khodaiean</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The importance of evaporation estimation in water resources and agricultural studies is undeniable. Pan evaporation are used as an indicator to determine the evaporation of lakes and reservoirs around the world due to the ease of interpreting its data. In this research, intelligent models were investigated in estimating pan evaporation on a daily basis. Shahroud and Mayamey were considered as the studied cities. These two cities are located in Semnan province in Iran. The mentioned cities have dry weather conditions that are susceptible to high evaporation potential. Meteorological data of 11 years of synoptic stations of Shahrood and Mayamey cities were used. The intelligent models used in this study are Artificial Neural Network (ANN), Least Squares Support Vector Machine (LSSVM), and M5 tree models. Meteorological parameters of minimum and maximum air temperature (Tmax, Tmin), wind speed (WS), sunshine hours (SH), air pressure (PA), relative humidity (RH) as selected input data and evaporation data from pan (EP) to The output data was considered. 70% of data is used at the education level, and 30 % of the data is used at the test level. Models used with explanation coefficient evaluation (R2) Root of Mean Squares Error (RMSE) and Mean Absolute Error (MAE). The results for the two Shahroud and Mayamey stations showed that the above three models' operations are rather appropriate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pan%20evaporation" title="pan evaporation">pan evaporation</a>, <a href="https://publications.waset.org/abstracts/search?q=intelligent%20methods" title=" intelligent methods"> intelligent methods</a>, <a href="https://publications.waset.org/abstracts/search?q=shahroud" title=" shahroud"> shahroud</a>, <a href="https://publications.waset.org/abstracts/search?q=mayamey" title=" mayamey"> mayamey</a> </p> <a href="https://publications.waset.org/abstracts/159379/modeling-pan-evaporation-using-intelligent-methods-of-ann-lssvm-and-tree-model-m5-case-study-shahroud-and-mayamey-stations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159379.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8283</span> Solar Pond: Some Issues in Their Management and Mathematical Description</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Abdullah">A. A. Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20A.%20Lindsay"> K. A. Lindsay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The management of a salt-gradient is investigated with respect to the interaction between the solar pond and its associated evaporation pond. Issues considered are the impact of precipitation and the operation of the flushing system with particular reference to the case in which the flushing fluid is pure water. Results suggest that a management strategy based on a flushing system that simply replaces evaporation losses of water from the solar pond and evaporation pond will be optimally efficient. Such a management strategy will maintain the operational viability of a salt-gradient solar pond as a reservoir of cheap heat while simultaneously ensuring that the associated evaporation pond can feed the storage zone of the solar pond with sufficient saturated brine to balance the effect of salt diffusion. Other findings are, first, that once near saturation is achieved in the evaporation pond, the efficacy of the proposed management strategy is relatively insensitive to both the size of the evaporation pond or its depth, and second, small changes in the extraction of heat from the storage zone of a salt-gradient solar pond have an amplified effect on the temperature of that zone. The possibility of boiling of the storage zone cannot be ignored in a well-configured salt-gradient solar pond. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aqueous%20sodium%20chloride" title="aqueous sodium chloride">aqueous sodium chloride</a>, <a href="https://publications.waset.org/abstracts/search?q=constitutive%20expression" title=" constitutive expression"> constitutive expression</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20pond" title=" solar pond"> solar pond</a>, <a href="https://publications.waset.org/abstracts/search?q=salt-gradient" title=" salt-gradient"> salt-gradient</a> </p> <a href="https://publications.waset.org/abstracts/42081/solar-pond-some-issues-in-their-management-and-mathematical-description" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42081.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8282</span> Theoretical Prediction on the Lifetime of Sessile Evaporating Droplet in Blade Cooling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yang%20Shen">Yang Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongpan%20Cheng"> Yongpan Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinliang%20Xu"> Jinliang Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effective blade cooling is of great significance for improving the performance of turbine. The mist cooling emerges as the promising way compared with the transitional single-phase cooling. In the mist cooling, the injected droplet will evaporate rapidly, and cool down the blade surface due to the absorbed latent heat, hence the lifetime for evaporating droplet becomes critical for design of cooling passages for the blade. So far there have been extensive studies on the droplet evaporation, but usually the isothermal model is applied for most of the studies. Actually the surface cooling effect can affect the droplet evaporation greatly, it can prolong the droplet evaporation lifetime significantly. In our study, a new theoretical model for sessile droplet evaporation with surface cooling effect is built up in toroidal coordinate. Three evaporation modes are analyzed during the evaporation lifetime, include “Constant Contact Radius”(CCR) mode、“Constant Contact Angle”(CCA) mode and “stick-slip”(SS) mode. The dimensionless number E0 is introduced to indicate the strength of the evaporative cooling, it is defined based on the thermal properties of the liquid and the atmosphere. Our model can predict accurately the lifetime of evaporation by validating with available experimental data. Then the temporal variation of droplet volume, contact angle and contact radius are presented under CCR, CCA and SS mode, the following conclusions are obtained. 1) The larger the dimensionless number E0, the longer the lifetime of three evaporation cases is; 2) The droplet volume over time still follows “2/3 power law” in the CCA mode, as in the isothermal model without the cooling effect; 3) In the “SS” mode, the large transition contact angle can reduce the evaporation time in CCR mode, and increase the time in CCA mode, the overall lifetime will be increased; 4) The correction factor for predicting instantaneous volume of the droplet is derived to predict the droplet life time accurately. These findings may be of great significance to explore the dynamics and heat transfer of sessile droplet evaporation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blade%20cooling" title="blade cooling">blade cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=droplet%20evaporation" title=" droplet evaporation"> droplet evaporation</a>, <a href="https://publications.waset.org/abstracts/search?q=lifetime" title=" lifetime"> lifetime</a>, <a href="https://publications.waset.org/abstracts/search?q=theoretical%20analysis" title=" theoretical analysis"> theoretical analysis</a> </p> <a href="https://publications.waset.org/abstracts/118748/theoretical-prediction-on-the-lifetime-of-sessile-evaporating-droplet-in-blade-cooling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118748.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8281</span> Modeling and Simulation of Multiphase Evaporation in High Torque Low Speed Diesel Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Raza">Ali Raza</a>, <a href="https://publications.waset.org/abstracts/search?q=Rizwan%20Latif"> Rizwan Latif</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Adnan%20Qasim"> Syed Adnan Qasim</a>, <a href="https://publications.waset.org/abstracts/search?q=Imran%20Shafi"> Imran Shafi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diesel engines are most efficient and reliable in terms of efficiency, reliability, and adaptability. Most of the research and development up till now have been directed towards High Speed Diesel Engine, for Commercial use. In these engines, objective is to optimize maximum acceleration by reducing exhaust emission to meet international standards. In high torque low speed engines, the requirement is altogether different. These types of engines are mostly used in Maritime Industry, Agriculture Industry, Static Engines Compressors Engines, etc. On the contrary, high torque low speed engines are neglected quite often and are eminent for low efficiency and high soot emissions. One of the most effective ways to overcome these issues is by efficient combustion in an engine cylinder. Fuel spray dynamics play a vital role in defining mixture formation, fuel consumption, combustion efficiency and soot emissions. Therefore, a comprehensive understanding of the fuel spray characteristics and atomization process in high torque low speed diesel engine is of great importance. Evaporation in the combustion chamber has a rigorous effect on the efficiency of the engine. In this paper, multiphase evaporation of fuel is modeled for high torque low speed engine using the CFD (computational fluid dynamics) codes. Two distinct phases of evaporation are modeled using modeling soft wares. The basic model equations are derived from the energy conservation equation and Naiver-Stokes equation. O’Rourke model is used to model the evaporation phases. The results obtained showed a generous effect on the efficiency of the engine. Evaporation rate of fuel droplet is increased with the increase in vapor pressure. An appreciable reduction in size of droplet is achieved by adding the convective heat effects in the combustion chamber. By and large, an overall increase in efficiency is observed by modeling distinct evaporation phases. This increase in efficiency is due to the fact that droplet size is reduced and vapor pressure is increased in the engine cylinder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diesel%20fuel" title="diesel fuel">diesel fuel</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=evaporation" title=" evaporation"> evaporation</a>, <a href="https://publications.waset.org/abstracts/search?q=multiphase" title=" multiphase"> multiphase</a> </p> <a href="https://publications.waset.org/abstracts/75619/modeling-and-simulation-of-multiphase-evaporation-in-high-torque-low-speed-diesel-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75619.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8280</span> Enhanced Solar-Driven Evaporation Process via F-Mwcnts/Pvdf Photothermal Membrane for Forward Osmosis Draw Solution Recovery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayat%20N.%20El-Shazly">Ayat N. El-Shazly</a>, <a href="https://publications.waset.org/abstracts/search?q=Dina%20Magdy%20Abdo"> Dina Magdy Abdo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamdy%20Maamoun%20Abdel-Ghafar"> Hamdy Maamoun Abdel-Ghafar</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiangju%20Song"> Xiangju Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Heqing%20Jiang"> Heqing Jiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Product water recovery and draw solution (DS) reuse is the most energy-intensive stage in forwarding osmosis (FO) technology. Sucrose solution is the most suitable DS for FO application in food and beverages. However, sucrose DS recovery by conventional pressure-driven or thermal-driven concentration techniques consumes high energy. Herein, we developed a spontaneous and sustainable solar-driven evaporation process based on a photothermal membrane for the concentration and recovery of sucrose solution. The photothermal membrane is composed of multi-walled carbon nanotubes (f-MWCNTs)photothermal layer on a hydrophilic polyvinylidene fluoride (PVDF) substrate. The f-MWCNTs photothermal layer with a rough surface and interconnected network structures not only improves the light-harvesting and light-to-heat conversion performance but also facilitates the transport of water molecules. The hydrophilic PVDF substrate can promote the rapid transport of water for adequate water supply to the photothermal layer. As a result, the optimized f-MWCNTs/PVDF photothermal membrane exhibits an excellent light absorption of 95%, and a high surface temperature of 74 °C at 1 kW m−2 . Besides, it realizes an evaporation rate of 1.17 kg m−2 h−1 for 5% (w/v) of sucrose solution, which is about 5 times higher than that of the natural evaporation. The designed photothermal evaporation process is capable of concentrating sucrose solution efficiently from 5% to 75% (w/v), which has great potential in FO process and juice concentration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar" title="solar">solar</a>, <a href="https://publications.waset.org/abstracts/search?q=pothothermal" title=" pothothermal"> pothothermal</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=MWCNT" title=" MWCNT"> MWCNT</a> </p> <a href="https://publications.waset.org/abstracts/151136/enhanced-solar-driven-evaporation-process-via-f-mwcntspvdf-photothermal-membrane-for-forward-osmosis-draw-solution-recovery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151136.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8279</span> Experimental Testing of Solar Still with Movable Inclined Surface and Equipped with Wick</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20N.%20Shmroukh">Ahmed N. Shmroukh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study examined a new solar still equipped with a movable inclined back, and this back is covered with a wick for seawater desalination. The tested backside inclination angles were 105, 125 and 160, respectively. The wick helped in increasing the seawater evaporation rate by increasing the evaporation surface area allowed for seawater in the still basin. The proposed modified solar still was compared with the conventional simple still. The results showed that the daily produced desalinated water of the modified solar still with angles 105, 125 and 160 increased by approximately 13.7%, 27.9%, and 39.2%, respectively, compared with the conventional solar still. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20still" title="solar still">solar still</a>, <a href="https://publications.waset.org/abstracts/search?q=inclined%20still" title=" inclined still"> inclined still</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20materials" title=" porous materials"> porous materials</a>, <a href="https://publications.waset.org/abstracts/search?q=Wick" title=" Wick"> Wick</a> </p> <a href="https://publications.waset.org/abstracts/172980/experimental-testing-of-solar-still-with-movable-inclined-surface-and-equipped-with-wick" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172980.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8278</span> Respiratory Bioaerosol Dynamics: Impact of Salinity on Evaporation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akhil%20Teja%20Kambhampati">Akhil Teja Kambhampati</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20A.%20Hoffman"> Mark A. Hoffman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the realm of infectious disease research, airborne viral transmission stands as a paramount concern due to its pivotal role in propagating pathogens within densely populated regions. However, amidst this landscape, the phenomenon of hygroscopic growth within respiratory bioaerosols remains relatively underexplored. Unlike pure water aerosols, the unique composition of respiratory bioaerosols leads to varied evaporation rates and hygroscopic growth patterns, influenced by factors such as ambient humidity, temperature, and airflow. This study addresses this gap by focusing on the behaviors of single respiratory bioaerosol utilizing salinity to induce saliva-like hygroscopic behavior. By employing mass, momentum, and energy equations, the study unveils the intricate interplay between evaporation and hygroscopic growth over time. The numerical model enables temporal analysis of bioaerosol characteristics, including size, temperature, and trajectory. The analysis reveals that due to evaporation, there is a reduction in initial size, which shortens the lifetime and distance traveled. However, when hygroscopic growth begins to influence the bioaerosol size, the rate of size reduction slows significantly. The interplay between evaporation and hygroscopic growth results in bioaerosol size within the inhalation range of humans and prolongs the traveling distance. Findings procured from the analysis are crucial for understanding the spread of infectious diseases, especially in high-risk environments such as healthcare facilities and public transportation systems. By elucidating the nuanced behaviors of respiratory bioaerosols, this study seeks to inform the development of more effective preventative strategies against pathogens propagation in the air, thereby contributing to public health efforts on a global scale. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airborne%20viral%20transmission" title="airborne viral transmission">airborne viral transmission</a>, <a href="https://publications.waset.org/abstracts/search?q=high-risk%20environments" title=" high-risk environments"> high-risk environments</a>, <a href="https://publications.waset.org/abstracts/search?q=hygroscopic%20growth" title=" hygroscopic growth"> hygroscopic growth</a>, <a href="https://publications.waset.org/abstracts/search?q=evaporation" title=" evaporation"> evaporation</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20modeling" title=" numerical modeling"> numerical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=pathogen%20propagation" title=" pathogen propagation"> pathogen propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=preventative%20strategies" title=" preventative strategies"> preventative strategies</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20health" title=" public health"> public health</a>, <a href="https://publications.waset.org/abstracts/search?q=respiratory%20bioaerosols" title=" respiratory bioaerosols"> respiratory bioaerosols</a> </p> <a href="https://publications.waset.org/abstracts/186562/respiratory-bioaerosol-dynamics-impact-of-salinity-on-evaporation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186562.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">39</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8277</span> Plants as Alternative Covers at Contaminated Sites </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Grifoni">M. Grifoni</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Petruzzelli"> G. Petruzzelli</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Barbafieri"> M. Barbafieri</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Rosellini"> I. Rosellini</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Pezzarossa"> B. Pezzarossa</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Pedron"> F. Pedron</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Evapotranspiration (ET) covers are an alternative cover system that utilizes water balance approach to maximize the ET process to reduce the contaminants leaching through the soil profile. Microcosm tests allow to identify in a short time the most suitable plant species to be used as alternative covers, their survival capacity, and simultaneously the transpiration and evaporation rate of the cover in a specific contaminated soil. This work shows the soil characterization and ET results of microcosm tests carried out on two contaminated soils by using <em>Triticum durum</em> and <em>Helianthus annuus</em> species. The data indicated that transpiration was higher than evaporation, supporting the use of plants as alternative cover at this contaminated site. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contaminated%20sites" title="contaminated sites">contaminated sites</a>, <a href="https://publications.waset.org/abstracts/search?q=evapotranspiration%20cover" title=" evapotranspiration cover"> evapotranspiration cover</a>, <a href="https://publications.waset.org/abstracts/search?q=evapotranspiration" title=" evapotranspiration"> evapotranspiration</a>, <a href="https://publications.waset.org/abstracts/search?q=microcosm%20experiments" title=" microcosm experiments"> microcosm experiments</a> </p> <a href="https://publications.waset.org/abstracts/77910/plants-as-alternative-covers-at-contaminated-sites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77910.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8276</span> Analysis of Sweat Evaporation and Heat Transfer on Skin Surface: A Pointwise Numerical Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Utsav%20Swarnkar">Utsav Swarnkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Rabi%20Pathak"> Rabi Pathak</a>, <a href="https://publications.waset.org/abstracts/search?q=Rina%20Maiti"> Rina Maiti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to investigate the thermoregulatory role of sweating by comprehensively analyzing the evaporation process and its thermal cooling impact on local skin temperature at various time intervals. Traditional experimental methods struggle to fully capture these intricate phenomena. Therefore, numerical simulations play a crucial role in assessing sweat production rates and associated thermal cooling. This research utilizes transient computational fluid dynamics (CFD) to enhance our understanding of the evaporative cooling process on human skin. We conducted a simulation employing the k-w SST turbulence model. This simulation includes a scenario where sweat evaporation occurs over the skin surface, and at particular time intervals, temperatures at different locations have been observed and its effect explained. During this study, sweat evaporation was monitored on the skin surface following the commencement of the simulation. Subsequent to the simulation, various observations were made regarding temperature fluctuations at specific points over time intervals. It was noted that points situated closer to the periphery of the droplets exhibited higher levels of heat transfer and lower temperatures, whereas points within the droplets displayed contrasting trends. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=sweat" title=" sweat"> sweat</a>, <a href="https://publications.waset.org/abstracts/search?q=evaporation" title=" evaporation"> evaporation</a>, <a href="https://publications.waset.org/abstracts/search?q=multiphase%20flow" title=" multiphase flow"> multiphase flow</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20heat%20loss" title=" local heat loss"> local heat loss</a> </p> <a href="https://publications.waset.org/abstracts/182975/analysis-of-sweat-evaporation-and-heat-transfer-on-skin-surface-a-pointwise-numerical-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8275</span> Experimental Testing of a Synthetic Mulch to Reduce Runoff and Evaporative Water Losses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasmeen%20Saleem">Yasmeen Saleem</a>, <a href="https://publications.waset.org/abstracts/search?q=Pedro%20%20Berliner"> Pedro Berliner</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurit%20Agam"> Nurit Agam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The most severe limitation for plant production in arid areas is water. Rainfall events are rare but can have pulses of high intensity. As a result, crusts are formed, which decreases infiltration into the soil, and results additionally in erosive losses of soil. Direct evaporation of water from the wetted soil can account for large fractions of the water stored in the soil. Different kinds of mulches have been used to decrease the loss of water in arid and semi-arid region. This study aims to evaluate the effect of polystyrene styrofoam pellets mulch on soil infiltration, runoff, and evaporation as a more efficient and economically viable mulch alternative. Polystyrene styrofoam pellets of two sizes (0.5 and 1 cm diameter) will be placed on top of the soil in two mulch layer depths (1 and 2 cm), in addition to the non-mulched treatment. The rainfall simulator will be used as an artificial source of rain. The preliminary results in the prototype experiment indicate that polystyrene styrofoam pellets decreased runoff, increased soil-water infiltration. We are still testing the effect of these pellets on decreasing the soil-water evaporation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=synthetic%20mulch" title="synthetic mulch">synthetic mulch</a>, <a href="https://publications.waset.org/abstracts/search?q=runoff" title=" runoff"> runoff</a>, <a href="https://publications.waset.org/abstracts/search?q=evaporation" title=" evaporation"> evaporation</a>, <a href="https://publications.waset.org/abstracts/search?q=infiltration" title=" infiltration"> infiltration</a> </p> <a href="https://publications.waset.org/abstracts/113759/experimental-testing-of-a-synthetic-mulch-to-reduce-runoff-and-evaporative-water-losses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113759.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8274</span> Performance of an Improved Fluidized System for Processing Green Tea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nickson%20Kipng%E2%80%99etich%20Lang%E2%80%99at">Nickson Kipng’etich Lang’at</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Thoruwa"> Thomas Thoruwa</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Abraham"> John Abraham</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Wanyoko"> John Wanyoko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Green tea is made from the top two leaves and buds of a shrub, <em>Camellia sinensis</em>, of the family Theaceae and the order Theales. The green tea leaves are picked and immediately sent to be dried or steamed to prevent fermentation. Fluid bed drying technique is a common drying method used in drying green tea because of its ease in design and construction and fluidization of fine tea particles. Major problems in this method are significant loss of chemical content of the leaf and green appearance of tea, retention of high moisture content in the leaves and bed channeling and defluidization. The energy associated with the drying technology has been shown to be a vital factor in determining the quality of green tea. As part of the implementation, prototype dryer was built that facilitated sequence of operations involving steaming, cooling, pre-drying and final drying. The major findings of the project were in terms of quality characteristics of tea leaves and energy consumption during processing. The optimal design achieved a moisture content of 4.2 ± 0.84%. With the optimum drying temperature of 100 ºC, the specific energy consumption was 1697.8 kj.Kg<sup>-1</sup> and evaporation rate of 4.272 x 10<sup>-4 </sup>Kg.m<sup>-2</sup>.s<sup>-1</sup>. The energy consumption in a fluidized system can be further reduced by focusing on energy saving designs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=evaporation%20rate" title="evaporation rate">evaporation rate</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20bed%20dryer" title=" fluid bed dryer"> fluid bed dryer</a>, <a href="https://publications.waset.org/abstracts/search?q=maceration" title=" maceration"> maceration</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20energy%20consumption" title=" specific energy consumption"> specific energy consumption</a> </p> <a href="https://publications.waset.org/abstracts/49974/performance-of-an-improved-fluidized-system-for-processing-green-tea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49974.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8273</span> Generalized Correlation for the Condensation and Evaporation Heat Transfer Coefficients of Propane (R290), Butane (R600), R134a, and R407c in Porous Horizontal Tubes: Experimental Investigation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Tarawneh">M. Tarawneh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work is an experimental study on the heat transfer characteristics and pressure drop of different refrigerants during the condensation and evaporation processes in porous media. Four different refrigerants (R134a, R407C, 600a, R290), with different porosities were used to reach a real understanding of the actual heat transfer characteristics and pressure drop when using porous material inside the condenser and evaporator. Steel balls were used as porous media with different porosities (38%, 43%, 48%). The main goal of this project is to enhance the heat transfer coefficient during the condensation and evaporation processes when using different refrigerants and different porosities. Different correlations for the heat transfer coefficient and the pressure drop of the different refrigerants were developed. Also a generalized empirical correlation was developed for the different refrigerants. The experimental and predicted heat transfer coefficients and pressure drops were compared. It was found that, the Absolute standard deviation for the heat transfer coefficient and the pressure drop not exceeded values of 15% and 20%, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=condensation" title="condensation">condensation</a>, <a href="https://publications.waset.org/abstracts/search?q=evaporation" title=" evaporation"> evaporation</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20media" title=" porous media"> porous media</a>, <a href="https://publications.waset.org/abstracts/search?q=horizontal%20tubes" title=" horizontal tubes"> horizontal tubes</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20coefficient" title=" heat transfer coefficient"> heat transfer coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=propane" title=" propane"> propane</a>, <a href="https://publications.waset.org/abstracts/search?q=butane" title=" butane "> butane </a> </p> <a href="https://publications.waset.org/abstracts/18433/generalized-correlation-for-the-condensation-and-evaporation-heat-transfer-coefficients-of-propane-r290-butane-r600-r134a-and-r407c-in-porous-horizontal-tubes-experimental-investigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">538</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8272</span> Valorization of Waste Reverse Osmosis Desalination Brine and Crystallization Sequence Approach for Kainite Recovery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayoub%20Bouazza">Ayoub Bouazza</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Faddouli"> Ali Faddouli</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Amal"> Said Amal</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Benhida"> Rachid Benhida</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaoula%20Khaless"> Khaoula Khaless</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Brine waste generated from reverse osmosis (RO) desalination plants contains various valuable compounds, mainly salts, trace elements, and organic matter. These wastes are up to two times saltier than standard seawater. Therefore, there is a strong economic interest in recovering these salts. The current practice in desalination plants is to reject the brine back to the sea, which affects the marine ecosystem and the environment. Our study aims to bring forth a reliable management solution for the valorisation of waste brines. Natural evaporation, isothermal evaporation at 25°C and 50°C, and evaporation using continuous heating were used to crystallize valuable salts from a reverse osmosis desalination plant brine located on the Moroccan Atlantic coast. The crystallization sequence of the brine was studied in comparison with standard seawater. The X-Ray Diffraction (XRD) of the precipitated solid phases showed similar results, where halite was the main solid phase precipitated from both the brine and seawater. However, Jänecke diagram prediction, along with FREZCHEM simulations, showed that Kainite should crystallize before Epsomite and Carnallite. As the absence of kainite formation in many experiments in the literature has been related to the metastability of kainite and the critical relative humidity conditions, and the precipitation of K–Mg salts is very sensitive to climatic conditions. An evaporation process is proposed as a solution to achieve the predicted crystallization path and to affirm the recovery of Kainite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=salts%20crystallization" title="salts crystallization">salts crystallization</a>, <a href="https://publications.waset.org/abstracts/search?q=reverse%20osmosis" title=" reverse osmosis"> reverse osmosis</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20evaporation" title=" solar evaporation"> solar evaporation</a>, <a href="https://publications.waset.org/abstracts/search?q=frezchem" title=" frezchem"> frezchem</a>, <a href="https://publications.waset.org/abstracts/search?q=ZLD" title=" ZLD"> ZLD</a> </p> <a href="https://publications.waset.org/abstracts/162012/valorization-of-waste-reverse-osmosis-desalination-brine-and-crystallization-sequence-approach-for-kainite-recovery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162012.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8271</span> The Evaporation Study of 1-ethyl-3-methylimidazolium chloride </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kirill%20D.%20Semavin">Kirill D. Semavin</a>, <a href="https://publications.waset.org/abstracts/search?q=Norbert%20S.%20Chilingarov"> Norbert S. Chilingarov</a>, <a href="https://publications.waset.org/abstracts/search?q=Eugene.V.%20Skokan"> Eugene.V. Skokan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ionic liquids (ILs) based on imidazolium cation are well known nowadays. The changing anions and substituents in imidazolium ring may lead to different physical and chemical properties of ILs. It is important that such ILs with halogen as anion are characterized by a low thermal stability. The data about thermal stability of 1-ethyl-3-methylimidazolium chloride are ambiguous. In the works of last years, thermal stability of this IL was investigated by thermogravimetric analysis and obtained results are contradictory. Moreover, in the last study, it was shown that the observed temperature of the beginning of decomposition significantly depends on the experimental conditions, for example, the heating rate of the sample. The vapor pressure of this IL is not presented at the literature. In this study, the vapor pressure of 1-ethyl-3-methylimidazolium chloride was obtained by Knudsen effusion mass-spectrometry (KEMS). The samples of [ЕMIm]Cl (purity > 98%) were supplied by Sigma–Aldrich and were additionally dried at dynamic vacuum (T = 60 0C). Preliminary procedures with Il were derived into glove box. The evaporation studies of [ЕMIm]Cl were carried out by KEMS with using original research equipment based on commercial MI1201 magnetic mass spectrometer. The stainless steel effusion cell had an effective evaporation/effusion area ratio of more than 6000. The cell temperature, measured by a Pt/Pt−Rh (10%) thermocouple, was controlled by a Termodat 128K5 device with an accuracy of ±1 K. In first step of this study, the optimal temperature of experiment and heating rate of samples were customized: 449 K and 5 K/min, respectively. In these conditions the sample is decomposed, but the experimental measurements of the vapor pressures are possible. The thermodynamic activity of [ЕMIm]Cl is close to 1 and products of decomposition don’t affect it at firstly 50 hours of experiment. Therefore, it lets to determine the saturated vapor pressure of IL. The electronic ionization mass-spectra shows that the decomposition of [ЕMIm]Cl proceeds with two ways. Nonetheless, the MALDI mass spectra of the starting sample and residue in the cell were similar. It means that the main decomposition products are gaseous under experimental conditions. This result allows us to obtain information about the kinetics of [ЕMIm]Cl decomposition. Thus, the original KEMS-based procedure made it possible to determine the IL vapor pressure under decomposition conditions. Also, the loss of sample mass due to the evaporation was obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquids" title="ionic liquids">ionic liquids</a>, <a href="https://publications.waset.org/abstracts/search?q=Knudsen%20effusion%20mass%20spectrometry" title=" Knudsen effusion mass spectrometry"> Knudsen effusion mass spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20stability" title=" thermal stability"> thermal stability</a>, <a href="https://publications.waset.org/abstracts/search?q=vapor%20pressure" title=" vapor pressure"> vapor pressure</a> </p> <a href="https://publications.waset.org/abstracts/137604/the-evaporation-study-of-1-ethyl-3-methylimidazolium-chloride" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137604.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8270</span> Preparation of Carbon Monoliths from PET Waste and Their Use in Solar Interfacial Water Evaporation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andrea%20Alfaro%20Barajas">Andrea Alfaro Barajas</a>, <a href="https://publications.waset.org/abstracts/search?q=Arturo%20I.%20Martinez"> Arturo I. Martinez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 3D photothermal structure of carbon was synthesized using PET bottles waste and sodium chloride through controlled carbonization. Characterization techniques such as X-ray photoelectron spectroscopy, X-ray diffraction, BET, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, spectrophotometry, and mechanical compression were carried out. The carbon showed physical integrity > 90%, an absorbance > 90% between 300-1000nm of the solar spectrum, and a high specific surface area from 450 to 620 m2/g. The X-ray was employed to examine the phase structure; the obtained pattern shows an amorphous material. A higher intensity of band D with respect to band G was confirmed by Raman Spectroscopy. C-OH, COOH, C-O, and C-C bonds were obtained from the deconvolution of the high-resolution C1s orbital. Macropores of 160 to 180µm and micropores of 0.5 to 2nm were observed by SEM and TEM images, respectively. Such combined characteristics of carbon confer efficient evaporation of water under 1 sun irradiation > 60%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar-absorber" title="solar-absorber">solar-absorber</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon" title=" carbon"> carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=water-evaporation" title=" water-evaporation"> water-evaporation</a>, <a href="https://publications.waset.org/abstracts/search?q=interfacial" title=" interfacial "> interfacial </a> </p> <a href="https://publications.waset.org/abstracts/128720/preparation-of-carbon-monoliths-from-pet-waste-and-their-use-in-solar-interfacial-water-evaporation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128720.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8269</span> Numerical Simulation of Urea Water Solution Evaporation Behavior inside the Diesel Selective Catalytic Reduction System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kumaresh%20Selvakumar">Kumaresh Selvakumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Man%20Young%20Kim"> Man Young Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Selective catalytic reduction (SCR) converts the nitrogen oxides with the aid of a catalyst by adding aqueous urea into the exhaust stream. In this work, the urea water droplets are sprayed over the exhaust gases by treating with Lagrangian particle tracking. The evaporation of ammonia from a single droplet of urea water solution is investigated computationally by convection-diffusion controlled model. The conversion to ammonia due to thermolysis of urea water droplets is measured downstream at different sections using finite rate/eddy dissipation model. In this paper, the mixer installed at the upstream enhances the distribution of ammonia over the entire domain which is calculated for different time steps. Calculations are made within the respective duration such that the complete decomposition of urea is possible at a much shorter residence time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convection-diffusion%20controlled%20model" title="convection-diffusion controlled model">convection-diffusion controlled model</a>, <a href="https://publications.waset.org/abstracts/search?q=lagrangian%20particle%20tracking" title=" lagrangian particle tracking"> lagrangian particle tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=selective%20catalytic%20reduction" title=" selective catalytic reduction"> selective catalytic reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=thermolysis" title=" thermolysis"> thermolysis</a> </p> <a href="https://publications.waset.org/abstracts/59691/numerical-simulation-of-urea-water-solution-evaporation-behavior-inside-the-diesel-selective-catalytic-reduction-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59691.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8268</span> Modelling of Heating and Evaporation of Biodiesel Fuel Droplets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mansour%20Al%20Qubeissi">Mansour Al Qubeissi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergei%20S.%20Sazhin"> Sergei S. Sazhin</a>, <a href="https://publications.waset.org/abstracts/search?q=Cyril%20Crua"> Cyril Crua</a>, <a href="https://publications.waset.org/abstracts/search?q=Morgan%20R.%20Heikal"> Morgan R. Heikal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the application of the Discrete Component Model for heating and evaporation to multi-component biodiesel fuel droplets in direct injection internal combustion engines. This model takes into account the effects of temperature gradient, recirculation and species diffusion inside droplets. A distinctive feature of the model used in the analysis is that it is based on the analytical solutions to the temperature and species diffusion equations inside the droplets. Nineteen types of biodiesel fuels are considered. It is shown that a simplistic model, based on the approximation of biodiesel fuel by a single component or ignoring the diffusion of components of biodiesel fuel, leads to noticeable errors in predicted droplet evaporation time and time evolution of droplet surface temperature and radius. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%2Fmass%20transfer" title="heat/mass transfer">heat/mass transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title=" biodiesel"> biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-component%20fuel" title=" multi-component fuel"> multi-component fuel</a>, <a href="https://publications.waset.org/abstracts/search?q=droplet" title=" droplet"> droplet</a> </p> <a href="https://publications.waset.org/abstracts/19140/modelling-of-heating-and-evaporation-of-biodiesel-fuel-droplets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19140.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">567</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8267</span> Numerical Investigation of the Evaporation and Mixing of UWS in a Diesel Exhaust Pipe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tae%20Hyun%20Ahn">Tae Hyun Ahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Gyo%20Woo%20Lee"> Gyo Woo Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Man%20Young%20Kim"> Man Young Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Because of high thermal efficiency and low CO2 emission, diesel engines are being used widely in many industrial fields although it makes many PM and NOx which give both human health and environment a negative effect. NOx regulations for diesel engines, however, are being strengthened and it is impossible to meet the emission standard without NOx reduction devices such as SCR (Selective Catalytic Reduction), LNC (Lean NOx Catalyst), and LNT (Lean NOx Trap). Among the NOx reduction devices, urea-SCR system is known as the most stable and efficient method to solve the problem of NOx emission. But this device has some issues associated with the ammonia slip phenomenon which is occurred by shortage of evaporation and thermolysis time, and that makes it difficult to achieve uniform distribution of the injected urea in front of monolith. Therefore, this study has focused on the mixing enhancement between urea and exhaust gases to enhance the efficiency of the SCR catalyst equipped in catalytic muffler by changing inlet gas temperature and spray conditions to improve the spray uniformity of the urea water solution. Finally, it can be found that various parameters such as inlet gas temperature and injector and injection angles significantly affect the evaporation and mixing of the urea water solution with exhaust gases, and therefore, optimization of these parameters are required. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=UWS%20%28Urea-Water-Solution%29" title="UWS (Urea-Water-Solution)">UWS (Urea-Water-Solution)</a>, <a href="https://publications.waset.org/abstracts/search?q=selective%20catalytic%20reduction%20%28SCR%29" title=" selective catalytic reduction (SCR)"> selective catalytic reduction (SCR)</a>, <a href="https://publications.waset.org/abstracts/search?q=evaporation" title=" evaporation"> evaporation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermolysis" title=" thermolysis"> thermolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=injection" title=" injection"> injection</a> </p> <a href="https://publications.waset.org/abstracts/14831/numerical-investigation-of-the-evaporation-and-mixing-of-uws-in-a-diesel-exhaust-pipe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14831.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8266</span> Searching the Stabilizing Effects of Neutron Shell Closure via Fusion Evaporation Residue Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20R.%20S.%20Babu">B. R. S. Babu</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Prasad"> E. Prasad</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20V.%20Laveen"> P. V. Laveen</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Vinodkumar"> A. M. Vinodkumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Searching the “Island of stability” is a topic of extreme interest in theoretical as well as experimental modern physics today. This “island of stability” is spanned by superheavy elements (SHE's) that are produced in the laboratory. SHE's are believed to exist primarily due to the “magic” stabilizing effects of nuclear shell structure. SHE synthesis is extremely difficult due to their very low production cross section, often of the order of pico barns or less. Stabilizing effects of shell closures at proton number Z=82 and neutron number N=126 are predicted theoretically. Though stabilizing effects of Z=82 have been experimentally verified, no concluding observations have been made with N=126, so far. We measured and analyzed the total evaporation residue (ER) cross sections for a number of systems with neutron number around 126 to explore possible shell closure effects in ER cross sections, in this work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=super%20heavy%20elements" title="super heavy elements">super heavy elements</a>, <a href="https://publications.waset.org/abstracts/search?q=fusion" title=" fusion"> fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=evaporation%20residue" title=" evaporation residue"> evaporation residue</a>, <a href="https://publications.waset.org/abstracts/search?q=compund%20nucleus" title=" compund nucleus"> compund nucleus</a> </p> <a href="https://publications.waset.org/abstracts/36277/searching-the-stabilizing-effects-of-neutron-shell-closure-via-fusion-evaporation-residue-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36277.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">476</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8265</span> Investigation on Ultrahigh Heat Flux of Nanoporous Membrane Evaporation Using Dimensionless Lattice Boltzmann Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20H.%20Zheng">W. H. Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Li"> J. Li</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20J.%20Hong"> F. J. Hong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thin liquid film evaporation in ultrathin nanoporous membranes, which reduce the viscous resistance while still maintaining high capillary pressure and efficient liquid delivery, is a promising thermal management approach for high-power electronic devices cooling. Given the challenges and technical limitations of experimental studies for accurate interface temperature sensing, complex manufacturing process, and short duration of membranes, a dimensionless lattice Boltzmann method capable of restoring thermophysical properties of working fluid is particularly derived. The evaporation of R134a to its pure vapour ambient in nanoporous membranes with the pore diameter of 80nm, thickness of 472nm, and three porosities of 0.25, 0.33 and 0.5 are numerically simulated. The numerical results indicate that the highest heat transfer coefficient is about 1740kW/m²·K; the highest heat flux is about 1.49kW/cm² with only about the wall superheat of 8.59K in the case of porosity equals to 0.5. The dissipated heat flux scaled with porosity because of the increasing effective evaporative area. Additionally, the self-regulation of the shape and curvature of the meniscus under different operating conditions is also observed. This work shows a promising approach to forecast the membrane performance for different geometry and working fluids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20heat%20flux" title="high heat flux">high heat flux</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrathin%20nanoporous%20membrane" title=" ultrathin nanoporous membrane"> ultrathin nanoporous membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20film%20evaporation" title=" thin film evaporation"> thin film evaporation</a>, <a href="https://publications.waset.org/abstracts/search?q=lattice%20Boltzmann%20method" title=" lattice Boltzmann method"> lattice Boltzmann method</a> </p> <a href="https://publications.waset.org/abstracts/127523/investigation-on-ultrahigh-heat-flux-of-nanoporous-membrane-evaporation-using-dimensionless-lattice-boltzmann-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127523.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=evaporation%20rate&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=evaporation%20rate&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=evaporation%20rate&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=evaporation%20rate&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=evaporation%20rate&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=evaporation%20rate&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=evaporation%20rate&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=evaporation%20rate&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=evaporation%20rate&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=evaporation%20rate&page=276">276</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=evaporation%20rate&page=277">277</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=evaporation%20rate&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>