CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 103 results for author: <span class="mathjax">Burns, E</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/astro-ph" aria-role="search"> Searching in archive <strong>astro-ph</strong>. <a href="/search/?searchtype=author&query=Burns%2C+E">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Burns, E"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Burns%2C+E&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Burns, E"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Burns%2C+E&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Burns%2C+E&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Burns%2C+E&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Burns%2C+E&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.17244">arXiv:2411.17244</a> <span> [<a href="https://arxiv.org/pdf/2411.17244">pdf</a>, <a href="https://arxiv.org/format/2411.17244">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> The apparent and cosmic rates of short gamma-ray bursts </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Howell%2C+E+J">E. J. Howell</a>, <a href="/search/astro-ph?searchtype=author&query=Burns%2C+E">E. Burns</a>, <a href="/search/astro-ph?searchtype=author&query=Goldstein%2C+A">A. Goldstein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.17244v1-abstract-short" style="display: inline;"> The short gamma-ray burst (sGRB), GRB~170817A, is often considered a rare event. However, its inferred event rate, $\mathcal{O}(100s)\ \text{Gpc}^{-3}\ \text{yr}^{-1}$, exceeds cosmic sGRB rate estimates from high-redshift samples by an order of magnitude. This discrepancy can be explained by geometric effects related to the structure of the relativistic jet. We first illustrate how adopting a det… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17244v1-abstract-full').style.display = 'inline'; document.getElementById('2411.17244v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.17244v1-abstract-full" style="display: none;"> The short gamma-ray burst (sGRB), GRB~170817A, is often considered a rare event. However, its inferred event rate, $\mathcal{O}(100s)\ \text{Gpc}^{-3}\ \text{yr}^{-1}$, exceeds cosmic sGRB rate estimates from high-redshift samples by an order of magnitude. This discrepancy can be explained by geometric effects related to the structure of the relativistic jet. We first illustrate how adopting a detector flux threshold point estimate rather than an efficiency function, can lead to a large variation in rate estimates. Simulating the Fermi-GBM sGRB detection efficiency, we then show that for a given a universal structured jet profile, one can model a geometric bias with redshift. Assuming different jet profiles, we show a geometrically scaled rate of GRB~170817A is consistent with the cosmic beaming uncorrected rate estimates of short $纬$-ray bursts (sGRBs) and that geometry can boost observational rates within $\mathcal{O}(100s)$\,Mpc. We find an apparent GRB~170817A rate of $303_{-300}^{+1580}$ $\mathrm{Gpc}^{-3}\, \mathrm{yr}^{-1} $ which when corrected for geometry yields $6.15_{-6.06}^{+31.2}$ $\mathrm{Gpc}^{-3}\, \mathrm{yr}^{-1} $ and $3.34_{-3.29}^{+16.7}$ $\mathrm{Gpc}^{-3}\, \mathrm{yr}^{-1} $ for two different jet profiles, consistent with pre-2017 estimates of the isotropic sGRB rate. Our study shows how jet structure can impact rate estimations and could allow one to test structured jet profiles. We finally show that modelling the maximum structured jet viewing angle with redshift can transform a cosmic beaming uncorrected rate to a representative estimate of the binary neutron star merger rate. We suggest this framework can be used to demonstrate parity with merger rates or to yield estimates of the successful jet fraction of sGRBs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17244v1-abstract-full').style.display = 'none'; document.getElementById('2411.17244v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.16846">arXiv:2411.16846</a> <span> [<a href="https://arxiv.org/pdf/2411.16846">pdf</a>, <a href="https://arxiv.org/format/2411.16846">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Extragalactic Magnetar Giant Flares: Population Implications, Rates and Prospects for Gamma-Rays, Gravitational Waves and Neutrinos </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Beniamini%2C+P">Paz Beniamini</a>, <a href="/search/astro-ph?searchtype=author&query=Wadiasingh%2C+Z">Zorawar Wadiasingh</a>, <a href="/search/astro-ph?searchtype=author&query=Trigg%2C+A">Aaron Trigg</a>, <a href="/search/astro-ph?searchtype=author&query=Chirenti%2C+C">Cecilia Chirenti</a>, <a href="/search/astro-ph?searchtype=author&query=Burns%2C+E">Eric Burns</a>, <a href="/search/astro-ph?searchtype=author&query=Younes%2C+G">George Younes</a>, <a href="/search/astro-ph?searchtype=author&query=Negro%2C+M">Michela Negro</a>, <a href="/search/astro-ph?searchtype=author&query=Granot%2C+J">Jonathan Granot</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.16846v1-abstract-short" style="display: inline;"> Magnetar Giant Flares (MGFs) are the most energetic non-catastrophic transients known to originate from stellar objects. The first discovered events were nearby. In recent years, several extragalactic events have been identified, implying an extremely high volumetric rate. We show that future instruments with a sensitivity $\lesssim 5\times 10^{-9}$ erg cm$^{-2}$ at $\sim 1$ MeV will be dominated… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16846v1-abstract-full').style.display = 'inline'; document.getElementById('2411.16846v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.16846v1-abstract-full" style="display: none;"> Magnetar Giant Flares (MGFs) are the most energetic non-catastrophic transients known to originate from stellar objects. The first discovered events were nearby. In recent years, several extragalactic events have been identified, implying an extremely high volumetric rate. We show that future instruments with a sensitivity $\lesssim 5\times 10^{-9}$ erg cm$^{-2}$ at $\sim 1$ MeV will be dominated by extragalactic MGFs over short gamma-ray bursts (sGRBs). Clear discrimination of MGFs requires intrinsic GRB localization capability to identify host galaxies. As MGFs involve a release of a sizable fraction of the neutron star's magnetic free energy reservoir in a single event, they provide us with invaluable tools for better understanding magnetar birth properties and the evolution of their magnetic fields. A major obstacle is to identify a (currently) small sub-population of MGFs in a larger sample of more energetic and distant sGRBs. We develop the tools to analyze the properties of detected events and their occurrence rate relative to sGRBs. Even with the current (limited) number of events, we can constrain the initial internal magnetic field of a typical magnetar at formation to be $B_0\approx 3\times 10^{14}-2\times 10^{15}$\,G. Larger samples will constrain the distribution of birth fields. We also estimate the contribution of MGFs to the gravitational wave (GW) stochastic background. Depending on the acceleration time of baryon-loaded ejecta involved in MGFs, their GW emission may reach beyond 10~kHz and, if so, will likely dominate over other conventional astrophysical sources in that frequency range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16846v1-abstract-full').style.display = 'none'; document.getElementById('2411.16846v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To be submitted in a few days. Comments welcome!</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.07973">arXiv:2411.07973</a> <span> [<a href="https://arxiv.org/pdf/2411.07973">pdf</a>, <a href="https://arxiv.org/format/2411.07973">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> The Nature of Optical Afterglows Without Gamma-ray Bursts: Identification of AT2023lcr and Multiwavelength Modeling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Li%2C+M+L">Maggie L. Li</a>, <a href="/search/astro-ph?searchtype=author&query=Ho%2C+A+Y+Q">Anna Y. Q. Ho</a>, <a href="/search/astro-ph?searchtype=author&query=Ryan%2C+G">Geoffrey Ryan</a>, <a href="/search/astro-ph?searchtype=author&query=Perley%2C+D+A">Daniel A. Perley</a>, <a href="/search/astro-ph?searchtype=author&query=Lamb%2C+G+P">Gavin P. Lamb</a>, <a href="/search/astro-ph?searchtype=author&query=Nayana%2C+A+J">A. J. Nayana</a>, <a href="/search/astro-ph?searchtype=author&query=Andreoni%2C+I">Igor Andreoni</a>, <a href="/search/astro-ph?searchtype=author&query=Anupama%2C+G+C">G. C. Anupama</a>, <a href="/search/astro-ph?searchtype=author&query=Bellm%2C+E+C">Eric C. Bellm</a>, <a href="/search/astro-ph?searchtype=author&query=Berger%2C+E">Edo Berger</a>, <a href="/search/astro-ph?searchtype=author&query=Bloom%2C+J+S">Joshua S. Bloom</a>, <a href="/search/astro-ph?searchtype=author&query=Burns%2C+E">Eric Burns</a>, <a href="/search/astro-ph?searchtype=author&query=Caiazzo%2C+I">Ilaria Caiazzo</a>, <a href="/search/astro-ph?searchtype=author&query=Chandra%2C+P">Poonam Chandra</a>, <a href="/search/astro-ph?searchtype=author&query=Coughlin%2C+M+W">Michael W. Coughlin</a>, <a href="/search/astro-ph?searchtype=author&query=El-Badry%2C+K">Kareem El-Badry</a>, <a href="/search/astro-ph?searchtype=author&query=Graham%2C+M+J">Matthew J. Graham</a>, <a href="/search/astro-ph?searchtype=author&query=Kasliwal%2C+M">Mansi Kasliwal</a>, <a href="/search/astro-ph?searchtype=author&query=Keating%2C+G+K">Garrett K. Keating</a>, <a href="/search/astro-ph?searchtype=author&query=Kulkarni%2C+S+R">S. R. Kulkarni</a>, <a href="/search/astro-ph?searchtype=author&query=Kumar%2C+H">Harsh Kumar</a>, <a href="/search/astro-ph?searchtype=author&query=Masci%2C+F+J">Frank J. Masci</a>, <a href="/search/astro-ph?searchtype=author&query=Perley%2C+R+A">Richard A. Perley</a>, <a href="/search/astro-ph?searchtype=author&query=Purdum%2C+J">Josiah Purdum</a>, <a href="/search/astro-ph?searchtype=author&query=Rao%2C+R">Ramprasad Rao</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.07973v1-abstract-short" style="display: inline;"> In the past few years, the improved sensitivity and cadence of wide-field optical surveys have enabled the discovery of several afterglows without associated detected gamma-ray bursts (GRBs). We present the identification, observations, and multiwavelength modeling of a recent such afterglow (AT2023lcr), and model three literature events (AT2020blt, AT2021any, and AT2021lfa) in a consistent fashio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07973v1-abstract-full').style.display = 'inline'; document.getElementById('2411.07973v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.07973v1-abstract-full" style="display: none;"> In the past few years, the improved sensitivity and cadence of wide-field optical surveys have enabled the discovery of several afterglows without associated detected gamma-ray bursts (GRBs). We present the identification, observations, and multiwavelength modeling of a recent such afterglow (AT2023lcr), and model three literature events (AT2020blt, AT2021any, and AT2021lfa) in a consistent fashion. For each event, we consider the following possibilities as to why a GRB was not observed: 1) the jet was off-axis; 2) the jet had a low initial Lorentz factor; and 3) the afterglow was the result of an on-axis classical GRB (on-axis jet with physical parameters typical of the GRB population), but the emission was undetected by gamma-ray satellites. We estimate all physical parameters using afterglowpy and Markov Chain Monte Carlo methods from emcee. We find that AT2023lcr, AT2020blt, and AT2021any are consistent with on-axis classical GRBs, and AT2021lfa is consistent with both on-axis low Lorentz factor ($螕_0 \approx 5 - 13$) and off-axis ($胃_\text{obs}=2胃_\text{jet}$) high Lorentz factor ($螕_0 \approx 100$) jets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07973v1-abstract-full').style.display = 'none'; document.getElementById('2411.07973v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">40 pages, 18 figures, 20 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.10378">arXiv:2410.10378</a> <span> [<a href="https://arxiv.org/pdf/2410.10378">pdf</a>, <a href="https://arxiv.org/format/2410.10378">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Explaining Non-Merger Gamma-Ray Bursts and Broad-Lined Supernovae with Close Binary Progenitors with Black Hole Central Engine </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Fryer%2C+C+L">Christopher L. Fryer</a>, <a href="/search/astro-ph?searchtype=author&query=Burns%2C+E">Eric Burns</a>, <a href="/search/astro-ph?searchtype=author&query=Ho%2C+A+Y+Q">Anna Y. Q. Ho</a>, <a href="/search/astro-ph?searchtype=author&query=Corsi%2C+A">Alessandra Corsi</a>, <a href="/search/astro-ph?searchtype=author&query=Lien%2C+A+Y">Amy Y. Lien</a>, <a href="/search/astro-ph?searchtype=author&query=Perley%2C+D+A">Daniel A. Perley</a>, <a href="/search/astro-ph?searchtype=author&query=Vail%2C+J+L">Jada L. Vail</a>, <a href="/search/astro-ph?searchtype=author&query=Villar%2C+V+A">V. Ashley Villar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.10378v2-abstract-short" style="display: inline;"> For over 25 years, the origin of long-duration gamma-ray bursts (lGRBs) has been linked to the collapse of rotating massive stars. However, we have yet to pinpoint the stellar progenitor powering these transients. Moreover, the dominant engine powering the explosions remains open to debate. Observations of both lGRBs, supernovae associated with these GRBs, such as broad-line (BL) stripped-envelope… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10378v2-abstract-full').style.display = 'inline'; document.getElementById('2410.10378v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.10378v2-abstract-full" style="display: none;"> For over 25 years, the origin of long-duration gamma-ray bursts (lGRBs) has been linked to the collapse of rotating massive stars. However, we have yet to pinpoint the stellar progenitor powering these transients. Moreover, the dominant engine powering the explosions remains open to debate. Observations of both lGRBs, supernovae associated with these GRBs, such as broad-line (BL) stripped-envelope (type Ic) supernovae (hereafter, Ic-BL) supernovae (SNe) and perhaps superluminous SNe, fast blue optical transients, and fast x-ray transients, may provide clues to both engines and progenitors. In this paper, we conduct a detailed study of the tight-binary formation scenario for lGRBs, comparing this scenario to other leading progenitor models. Combining this progenitor scenario with different lGRB engines, we can compare to existing data and make predictions for future observational tests. We find that the combination of the tight-binary progenitor scenario with the black hole accretion disk (BHAD) engine can explain lGRBs, low-luminosity GRBs, ultra-long GRBs, and Ic-BL. We discuss the various progenitor properties required for these different subclasses and note such systems would be future gravitational wave merger sources. We show that the current literature on other progenitor-engine scenarios cannot explain all of these transient classes with a single origin, motivating additional work. We find that the tight-binary progenitor with a magnetar engine is excluded by existing observations. The observations can be used to constrain the properties of stellar evolution, the nature of the GRB and the associated SN engines in lGRBs and Ic-BL. We discuss the future observations needed to constrain our understanding of these rare, but powerful, explosions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10378v2-abstract-full').style.display = 'none'; document.getElementById('2410.10378v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 10 figures, submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.09203">arXiv:2410.09203</a> <span> [<a href="https://arxiv.org/pdf/2410.09203">pdf</a>, <a href="https://arxiv.org/format/2410.09203">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Search for non-virialized axions with 3.3-4.2 $渭$eV mass at selected resolving powers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Hipp%2C+A+T">A. T. Hipp</a>, <a href="/search/astro-ph?searchtype=author&query=Quiskamp%2C+A">A. Quiskamp</a>, <a href="/search/astro-ph?searchtype=author&query=Caligiure%2C+T+J">T. J. Caligiure</a>, <a href="/search/astro-ph?searchtype=author&query=Gleason%2C+J+R">J. R. Gleason</a>, <a href="/search/astro-ph?searchtype=author&query=Han%2C+Y">Y. Han</a>, <a href="/search/astro-ph?searchtype=author&query=Jois%2C+S">S. Jois</a>, <a href="/search/astro-ph?searchtype=author&query=Sikivie%2C+P">P. Sikivie</a>, <a href="/search/astro-ph?searchtype=author&query=Solano%2C+M+E">M. E. Solano</a>, <a href="/search/astro-ph?searchtype=author&query=Sullivan%2C+N+S">N. S. Sullivan</a>, <a href="/search/astro-ph?searchtype=author&query=Tanner%2C+D+B">D. B. Tanner</a>, <a href="/search/astro-ph?searchtype=author&query=Goryachev%2C+M">M. Goryachev</a>, <a href="/search/astro-ph?searchtype=author&query=Hartman%2C+E">E. Hartman</a>, <a href="/search/astro-ph?searchtype=author&query=Tobar%2C+M+E">M. E. Tobar</a>, <a href="/search/astro-ph?searchtype=author&query=McAllister%2C+B+T">B. T. McAllister</a>, <a href="/search/astro-ph?searchtype=author&query=Duffy%2C+L+D">L. D. Duffy</a>, <a href="/search/astro-ph?searchtype=author&query=Braine%2C+T">T. Braine</a>, <a href="/search/astro-ph?searchtype=author&query=Burns%2C+E">E. Burns</a>, <a href="/search/astro-ph?searchtype=author&query=Cervantes%2C+R">R. Cervantes</a>, <a href="/search/astro-ph?searchtype=author&query=Crisosto%2C+N">N. Crisosto</a>, <a href="/search/astro-ph?searchtype=author&query=Goodman%2C+C">C. Goodman</a>, <a href="/search/astro-ph?searchtype=author&query=Guzzetti%2C+M">M. Guzzetti</a>, <a href="/search/astro-ph?searchtype=author&query=Hanretty%2C+C">C. Hanretty</a>, <a href="/search/astro-ph?searchtype=author&query=Lee%2C+S">S. Lee</a>, <a href="/search/astro-ph?searchtype=author&query=Korandla%2C+H">H. Korandla</a>, <a href="/search/astro-ph?searchtype=author&query=Leum%2C+G">G. Leum</a> , et al. (43 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.09203v2-abstract-short" style="display: inline;"> The Axion Dark Matter eXperiment is sensitive to narrow axion flows, given axions compose a fraction of the dark matter with a non-negligible local density. Detecting these low-velocity dispersion flows requires a high spectral resolution and careful attention to the expected signal modulation due to Earth's motion. We report an exclusion on the local axion dark matter density in narrow flows of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09203v2-abstract-full').style.display = 'inline'; document.getElementById('2410.09203v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.09203v2-abstract-full" style="display: none;"> The Axion Dark Matter eXperiment is sensitive to narrow axion flows, given axions compose a fraction of the dark matter with a non-negligible local density. Detecting these low-velocity dispersion flows requires a high spectral resolution and careful attention to the expected signal modulation due to Earth's motion. We report an exclusion on the local axion dark matter density in narrow flows of $蟻_a \gtrsim 0.03\,\mathrm{GeV/cm^3}$ and $蟻_a \gtrsim 0.004\,\mathrm{GeV/cm^3}$ for Dine-Fischler-Srednicki-Zhitnitski and Kim-Shifman-Vainshtein-Zakharov axion-photon couplings, respectively, over the mass range $3.3-4.2\,渭\text{eV}$. Measurements were made at selected resolving powers to allow for a range of possible velocity dispersions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09203v2-abstract-full').style.display = 'none'; document.getElementById('2410.09203v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.08344">arXiv:2410.08344</a> <span> [<a href="https://arxiv.org/pdf/2410.08344">pdf</a>, <a href="https://arxiv.org/format/2410.08344">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Front-End ASIC for the STROBE-X HEMA and WFM Detectors: Concept and Design </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=De+Geronimo%2C+G">Gianluigi De Geronimo</a>, <a href="/search/astro-ph?searchtype=author&query=Ray%2C+P+S">Paul S. Ray</a>, <a href="/search/astro-ph?searchtype=author&query=Wulf%2C+E+A">Eric A. Wulf</a>, <a href="/search/astro-ph?searchtype=author&query=Wilson-Hodge%2C+C+A">Colleen A. Wilson-Hodge</a>, <a href="/search/astro-ph?searchtype=author&query=Burns%2C+E">Eric Burns</a>, <a href="/search/astro-ph?searchtype=author&query=Evangelista%2C+Y">Yuri Evangelista</a>, <a href="/search/astro-ph?searchtype=author&query=Hutcheson%2C+A">Anthony Hutcheson</a>, <a href="/search/astro-ph?searchtype=author&query=Maccarone%2C+T+J">Thomas J. Maccarone</a>, <a href="/search/astro-ph?searchtype=author&query=Zampa%2C+G">Gianluigi Zampa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.08344v1-abstract-short" style="display: inline;"> This paper presents the NSX front-end ASIC, being developed to read charge signals from the HEMA and WFM X-ray detectors for the STROBE-X mission. The ASIC reads out signals from up to 64 anodes of linear Silicon Drift Detectors (SDDs). When unloaded, the ASIC channel has a charge resolution, expressed in Equivalent Noise Charge (ENC) of about 2.8 e-. Once connected to the SDD anode we anticipate,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.08344v1-abstract-full').style.display = 'inline'; document.getElementById('2410.08344v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.08344v1-abstract-full" style="display: none;"> This paper presents the NSX front-end ASIC, being developed to read charge signals from the HEMA and WFM X-ray detectors for the STROBE-X mission. The ASIC reads out signals from up to 64 anodes of linear Silicon Drift Detectors (SDDs). When unloaded, the ASIC channel has a charge resolution, expressed in Equivalent Noise Charge (ENC) of about 2.8 e-. Once connected to the SDD anode we anticipate, for the 80 keV energy range, a ENC of about 10.7 e- at a leakage current of 2 pA, which corresponds to a FWHM of about 145 eV at 6 keV once the Fano-limited statistics from charge generation in Si is included. The acquisition is event-triggered and, for events exceeding the threshold, the ASIC measures the peak amplitude and stores it in an analog memory for subsequent readout. The ASIC can also force the measurement of the sub-threshold channels neighboring the triggered channel, including the ones that belong to neighbor chips by using bi-directional differential inter-chip communication. Alternatively, the ASIC can measure the amplitudes of all channels at the time of the first detected peak. Additional features include a high-resolution option, channel power down and skip function, a low-noise pulse generator, a temperature sensor, and the monitoring of the channel analog output and trimmed threshold. The power consumption of the individual channel is ~590 $渭$W and, when including all shared circuits, it averages to ~670 $渭$W / channel. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.08344v1-abstract-full').style.display = 'none'; document.getElementById('2410.08344v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 12 figures, accepted for publication in JATIS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.03980">arXiv:2410.03980</a> <span> [<a href="https://arxiv.org/pdf/2410.03980">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Time-Domain And MultiMessenger Astrophysics Communications Science Analysis Group Report </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Kennea%2C+J+A">Jamie A. Kennea</a>, <a href="/search/astro-ph?searchtype=author&query=Racusin%2C+J+L">Judith L. Racusin</a>, <a href="/search/astro-ph?searchtype=author&query=Burns%2C+E">Eric Burns</a>, <a href="/search/astro-ph?searchtype=author&query=Grefenstettte%2C+B+W">Brian W. Grefenstettte</a>, <a href="/search/astro-ph?searchtype=author&query=Hounsell%2C+R+A">Rebekah A. Hounsell</a>, <a href="/search/astro-ph?searchtype=author&query=Hui%2C+C+M">C. Michelle Hui</a>, <a href="/search/astro-ph?searchtype=author&query=Kocevski%2C+D">Daniel Kocevski</a>, <a href="/search/astro-ph?searchtype=author&query=Lazio%2C+T+J+W">T. Joseph W. Lazio</a>, <a href="/search/astro-ph?searchtype=author&query=Lesage%2C+S">Stephen Lesage</a>, <a href="/search/astro-ph?searchtype=author&query=Pritchard%2C+T+A">Tyler A. Pritchard</a>, <a href="/search/astro-ph?searchtype=author&query=Tohuvavohu%2C+A">Aaron Tohuvavohu</a>, <a href="/search/astro-ph?searchtype=author&query=Tomsick%2C+J+A">John A. Tomsick</a>, <a href="/search/astro-ph?searchtype=author&query=Traore%2C+D">David Traore</a>, <a href="/search/astro-ph?searchtype=author&query=Wilson-Hodge%2C+C+A">Colleen A. Wilson-Hodge</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.03980v1-abstract-short" style="display: inline;"> The Time-Domain And MultiMessenger (TDAMM) Communications Science Analysis Group (TDAMMCommSAG) was formulated to describe the unique technical challenges of communicating rapidly to and from NASA astrophysics missions studying the most variable, transient, and extreme objects in the Universe. This report describes the study of if and how the transition from current NASA-operated space and ground… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.03980v1-abstract-full').style.display = 'inline'; document.getElementById('2410.03980v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.03980v1-abstract-full" style="display: none;"> The Time-Domain And MultiMessenger (TDAMM) Communications Science Analysis Group (TDAMMCommSAG) was formulated to describe the unique technical challenges of communicating rapidly to and from NASA astrophysics missions studying the most variable, transient, and extreme objects in the Universe. This report describes the study of if and how the transition from current NASA-operated space and ground relays to commercial services will adequately serve these missions. Depending on the individual mission requirements and Concept of Operations (ConOps), TDAMM missions may utilize a rapid low-rate demand access service, a low-rate continuous contact service, low-latency downlink upon demand, or a higher-latency but regular relay service. The specific implementations can vary via space relay or direct to Earth, but requires flexibility and adaptability using modern software infrastructure. The study team reviewed the current state of NASA communications services and future commercial and NASA communications services under study and in development. We explored the communications capabilities driving from the behavior of the astrophysical objects themselves. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.03980v1-abstract-full').style.display = 'none'; document.getElementById('2410.03980v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 page, 1 figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.00286">arXiv:2410.00286</a> <span> [<a href="https://arxiv.org/pdf/2410.00286">pdf</a>, <a href="https://arxiv.org/format/2410.00286">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applications">stat.AP</span> </div> </div> <p class="title is-5 mathjax"> Fermi-GBM Team Analysis on The Ravasio Line </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Burns%2C+E">Eric Burns</a>, <a href="/search/astro-ph?searchtype=author&query=Lesage%2C+S">Stephen Lesage</a>, <a href="/search/astro-ph?searchtype=author&query=Goldstein%2C+A">Adam Goldstein</a>, <a href="/search/astro-ph?searchtype=author&query=Briggs%2C+M+S">Michael S. Briggs</a>, <a href="/search/astro-ph?searchtype=author&query=Veres%2C+P">Peter Veres</a>, <a href="/search/astro-ph?searchtype=author&query=Bala%2C+S">Suman Bala</a>, <a href="/search/astro-ph?searchtype=author&query=de+Barra%2C+C">Cuan de Barra</a>, <a href="/search/astro-ph?searchtype=author&query=Bissaldi%2C+E">Elisabetta Bissaldi</a>, <a href="/search/astro-ph?searchtype=author&query=Cleveland%2C+W+H">William H Cleveland</a>, <a href="/search/astro-ph?searchtype=author&query=Giles%2C+M+M">Misty M Giles</a>, <a href="/search/astro-ph?searchtype=author&query=Godwin%2C+M">Matthew Godwin</a>, <a href="/search/astro-ph?searchtype=author&query=Hristov%2C+B+A">Boyan A. Hristov</a>, <a href="/search/astro-ph?searchtype=author&query=Hui%2C+C+M">C. Michelle Hui</a>, <a href="/search/astro-ph?searchtype=author&query=Kocevski%2C+D">Daniel Kocevski</a>, <a href="/search/astro-ph?searchtype=author&query=Mailyan%2C+B">Bagrat Mailyan</a>, <a href="/search/astro-ph?searchtype=author&query=Malacaria%2C+C">Christian Malacaria</a>, <a href="/search/astro-ph?searchtype=author&query=McBreen%2C+S">Sheila McBreen</a>, <a href="/search/astro-ph?searchtype=author&query=Preece%2C+R">Robert Preece</a>, <a href="/search/astro-ph?searchtype=author&query=Roberts%2C+O+J">Oliver J. Roberts</a>, <a href="/search/astro-ph?searchtype=author&query=Scotton%2C+L">Lorenzo Scotton</a>, <a href="/search/astro-ph?searchtype=author&query=von+Kienlin%2C+A">A. von Kienlin</a>, <a href="/search/astro-ph?searchtype=author&query=Wilson-Hodge%2C+C+A">Colleen A. Wilson-Hodge</a>, <a href="/search/astro-ph?searchtype=author&query=Wood%2C+J">Joshua Wood</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.00286v1-abstract-short" style="display: inline;"> The prompt spectra of gamma-ray bursts are known to follow broadband continuum behavior over decades in energy. GRB 221009A, given the moniker the brightest of all time (BOAT), is the brightest gamma-ray burst identified in half a century of observations, and was first identified by the Fermi Gamma-ray Burst Monitor (GBM). On behalf of the Fermi-GBM Team, Lesage et al. (2023) described the initial… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00286v1-abstract-full').style.display = 'inline'; document.getElementById('2410.00286v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.00286v1-abstract-full" style="display: none;"> The prompt spectra of gamma-ray bursts are known to follow broadband continuum behavior over decades in energy. GRB 221009A, given the moniker the brightest of all time (BOAT), is the brightest gamma-ray burst identified in half a century of observations, and was first identified by the Fermi Gamma-ray Burst Monitor (GBM). On behalf of the Fermi-GBM Team, Lesage et al. (2023) described the initial GBM analysis. Ravasio et al. (2024) report the identification of a spectral line in part of the prompt emission of this burst, which they describe as evolving over 80 s from $\sim$12 MeV to 6 MeV. We report a GBM Team analysis on the Ravasio Line: 1) We cannot identify an instrumental effect that could have produced this signal, and 2) our method of calculating the statistical significance of the line shows it easily exceeds the 5$蟽$ discovery threshold. We additionally comment on the claim of the line beginning at earlier time intervals, up to 37 MeV, as reported in Zhang et al. (2024). We find that it is reasonable to utilize these measurements for characterization of the line evolution, with caution. We encourage theoretical studies exploring this newly discovered gamma-ray burst spectral feature, unless any rigorous alternative explanation unrelated to the emission from GRB 221009A is identified. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00286v1-abstract-full').style.display = 'none'; document.getElementById('2410.00286v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.06056">arXiv:2409.06056</a> <span> [<a href="https://arxiv.org/pdf/2409.06056">pdf</a>, <a href="https://arxiv.org/format/2409.06056">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Extragalactic Magnetar Giant Flare GRB 231115A: Insights from Fermi/GBM Observations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Trigg%2C+A+C">Aaron C. Trigg</a>, <a href="/search/astro-ph?searchtype=author&query=Stewart%2C+R">Rachel Stewart</a>, <a href="/search/astro-ph?searchtype=author&query=van+Kooten%2C+A">Alex van Kooten</a>, <a href="/search/astro-ph?searchtype=author&query=Burns%2C+E">Eric Burns</a>, <a href="/search/astro-ph?searchtype=author&query=Roberts%2C+O+J">Oliver J. Roberts</a>, <a href="/search/astro-ph?searchtype=author&query=Frederiks%2C+D+D">Dmitry D. Frederiks</a>, <a href="/search/astro-ph?searchtype=author&query=Baring%2C+M+G">Matthew G. Baring</a>, <a href="/search/astro-ph?searchtype=author&query=Younes%2C+G">George Younes</a>, <a href="/search/astro-ph?searchtype=author&query=Svinkin%2C+D+S">Dmitry S. Svinkin</a>, <a href="/search/astro-ph?searchtype=author&query=Wadiasingh%2C+Z">Zorawar Wadiasingh</a>, <a href="/search/astro-ph?searchtype=author&query=Veres%2C+P">Peter Veres</a>, <a href="/search/astro-ph?searchtype=author&query=Bhat%2C+N">Narayana Bhat</a>, <a href="/search/astro-ph?searchtype=author&query=Briggs%2C+M+S">Michael S. Briggs</a>, <a href="/search/astro-ph?searchtype=author&query=Scotton%2C+L">Lorenzo Scotton</a>, <a href="/search/astro-ph?searchtype=author&query=Goldstein%2C+A">Adam Goldstein</a>, <a href="/search/astro-ph?searchtype=author&query=Busmann%2C+M">Malte Busmann</a>, <a href="/search/astro-ph?searchtype=author&query=O%27Connor%2C+B">Brendan O'Connor</a>, <a href="/search/astro-ph?searchtype=author&query=Hu%2C+L">Lei Hu</a>, <a href="/search/astro-ph?searchtype=author&query=Gruen%2C+D">Daniel Gruen</a>, <a href="/search/astro-ph?searchtype=author&query=Riffeser%2C+A">Arno Riffeser</a>, <a href="/search/astro-ph?searchtype=author&query=Zoeller%2C+R">Raphael Zoeller</a>, <a href="/search/astro-ph?searchtype=author&query=Palmese%2C+A">Antonella Palmese</a>, <a href="/search/astro-ph?searchtype=author&query=Huppenkothen%2C+D">Daniela Huppenkothen</a>, <a href="/search/astro-ph?searchtype=author&query=Kouveliotou%2C+C">Chryssa Kouveliotou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.06056v2-abstract-short" style="display: inline;"> We present the detection and analysis of GRB 231115A, a candidate extragalactic magnetar giant flare (MGF) observed by Fermi/GBM and localized by INTEGRAL to the starburst galaxy M82. This burst exhibits distinctive temporal and spectral characteristics that align with known MGFs, including a short duration and a high peak energy. Gamma-ray analyses reveal significant insights into this burst, sup… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06056v2-abstract-full').style.display = 'inline'; document.getElementById('2409.06056v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.06056v2-abstract-full" style="display: none;"> We present the detection and analysis of GRB 231115A, a candidate extragalactic magnetar giant flare (MGF) observed by Fermi/GBM and localized by INTEGRAL to the starburst galaxy M82. This burst exhibits distinctive temporal and spectral characteristics that align with known MGFs, including a short duration and a high peak energy. Gamma-ray analyses reveal significant insights into this burst, supporting conclusions already established in the literature: our time-resolved spectral studies provide further evidence that GRB 231115A is indeed a MGF. Significance calculations also suggest a robust association with M82, further supported by a high Bayes factor that minimizes the probability of chance alignment with a neutron star merger. Despite extensive follow-up efforts, no contemporaneous gravitational wave or radio emissions were detected. The lack of radio emission sets stringent upper limits on possible radio luminosity. Constraints from our analysis show no fast radio bursts (FRBs) associated with two MGFs. X-ray observations conducted post-burst by Swift/XRT and XMM/Newton provided additional data, though no persistent counterparts were identified. Our study underscores the importance of coordinated multi-wavelength follow-up and highlights the potential of MGFs to enhance our understanding of short GRBs and magnetar activities in the cosmos. Current MGF identification and follow-up implementation are insufficient for detecting expected counterparts; however, improvements in these areas may allow for the recovery of follow-up signals with existing instruments. Future advancements in observational technologies and methodologies will be crucial in furthering these studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06056v2-abstract-full').style.display = 'none'; document.getElementById('2409.06056v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.04580">arXiv:2409.04580</a> <span> [<a href="https://arxiv.org/pdf/2409.04580">pdf</a>, <a href="https://arxiv.org/format/2409.04580">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> GRB 221009A: the B.O.A.T Burst that Shines in Gamma Rays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Axelsson%2C+M">M. Axelsson</a>, <a href="/search/astro-ph?searchtype=author&query=Ajello%2C+M">M. Ajello</a>, <a href="/search/astro-ph?searchtype=author&query=Arimoto%2C+M">M. Arimoto</a>, <a href="/search/astro-ph?searchtype=author&query=Baldini%2C+L">L. Baldini</a>, <a href="/search/astro-ph?searchtype=author&query=Ballet%2C+J">J. Ballet</a>, <a href="/search/astro-ph?searchtype=author&query=Baring%2C+M+G">M. G. Baring</a>, <a href="/search/astro-ph?searchtype=author&query=Bartolini%2C+C">C. Bartolini</a>, <a href="/search/astro-ph?searchtype=author&query=Bastieri%2C+D">D. Bastieri</a>, <a href="/search/astro-ph?searchtype=author&query=Gonzalez%2C+J+B">J. Becerra Gonzalez</a>, <a href="/search/astro-ph?searchtype=author&query=Bellazzini%2C+R">R. Bellazzini</a>, <a href="/search/astro-ph?searchtype=author&query=Berenji%2C+B">B. Berenji</a>, <a href="/search/astro-ph?searchtype=author&query=Bissaldi%2C+E">E. Bissaldi</a>, <a href="/search/astro-ph?searchtype=author&query=Blandford%2C+R+D">R. D. Blandford</a>, <a href="/search/astro-ph?searchtype=author&query=Bonino%2C+R">R. Bonino</a>, <a href="/search/astro-ph?searchtype=author&query=Bruel%2C+P">P. Bruel</a>, <a href="/search/astro-ph?searchtype=author&query=Buson%2C+S">S. Buson</a>, <a href="/search/astro-ph?searchtype=author&query=Cameron%2C+R+A">R. A. Cameron</a>, <a href="/search/astro-ph?searchtype=author&query=Caputo%2C+R">R. Caputo</a>, <a href="/search/astro-ph?searchtype=author&query=Caraveo%2C+P+A">P. A. Caraveo</a>, <a href="/search/astro-ph?searchtype=author&query=Cavazzuti%2C+E">E. Cavazzuti</a>, <a href="/search/astro-ph?searchtype=author&query=Cheung%2C+C+C">C. C. Cheung</a>, <a href="/search/astro-ph?searchtype=author&query=Chiaro%2C+G">G. Chiaro</a>, <a href="/search/astro-ph?searchtype=author&query=Cibrario%2C+N">N. Cibrario</a>, <a href="/search/astro-ph?searchtype=author&query=Ciprini%2C+S">S. Ciprini</a>, <a href="/search/astro-ph?searchtype=author&query=Cozzolongo%2C+G">G. Cozzolongo</a> , et al. (129 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.04580v1-abstract-short" style="display: inline;"> We present a complete analysis of Fermi Large Area Telescope (LAT) data of GRB 221009A, the brightest Gamma-Ray Burst (GRB) ever detected. The burst emission above 30 MeV detected by the LAT preceded by 1 s the low-energy (< 10 MeV) pulse that triggered the Fermi Gamma-Ray Burst Monitor (GBM), as has been observed in other GRBs. The prompt phase of GRB 221009A lasted a few hundred seconds. It was… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04580v1-abstract-full').style.display = 'inline'; document.getElementById('2409.04580v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.04580v1-abstract-full" style="display: none;"> We present a complete analysis of Fermi Large Area Telescope (LAT) data of GRB 221009A, the brightest Gamma-Ray Burst (GRB) ever detected. The burst emission above 30 MeV detected by the LAT preceded by 1 s the low-energy (< 10 MeV) pulse that triggered the Fermi Gamma-Ray Burst Monitor (GBM), as has been observed in other GRBs. The prompt phase of GRB 221009A lasted a few hundred seconds. It was so bright that we identify a Bad Time Interval (BTI) of 64 seconds caused by the extremely high flux of hard X-rays and soft gamma rays, during which the event reconstruction efficiency was poor and the dead time fraction quite high. The late-time emission decayed as a power law, but the extrapolation of the late-time emission during the first 450 seconds suggests that the afterglow started during the prompt emission. We also found that high-energy events observed by the LAT are incompatible with synchrotron origin, and, during the prompt emission, are more likely related to an extra component identified as synchrotron self-Compton (SSC). A remarkable 400 GeV photon, detected by the LAT 33 ks after the GBM trigger and directionally consistent with the location of GRB 221009A, is hard to explain as a product of SSC or TeV electromagnetic cascades, and the process responsible for its origin is uncertain. Because of its proximity and energetic nature, GRB 221009A is an extremely rare event. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04580v1-abstract-full').style.display = 'none'; document.getElementById('2409.04580v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">60 pages, 38 figures, 9 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.04967">arXiv:2406.04967</a> <span> [<a href="https://arxiv.org/pdf/2406.04967">pdf</a>, <a href="https://arxiv.org/format/2406.04967">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> The role of magnetar transient activity in time-domain and multimessenger astronomy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Negro%2C+M">Michela Negro</a>, <a href="/search/astro-ph?searchtype=author&query=Younes%2C+G">George Younes</a>, <a href="/search/astro-ph?searchtype=author&query=Wadiasingh%2C+Z">Zorawar Wadiasingh</a>, <a href="/search/astro-ph?searchtype=author&query=Burns%2C+E">Eric Burns</a>, <a href="/search/astro-ph?searchtype=author&query=Trigg%2C+A">Aaron Trigg</a>, <a href="/search/astro-ph?searchtype=author&query=Baring%2C+M">Matthew Baring</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.04967v1-abstract-short" style="display: inline;"> Time-domain and multimessenger astronomy (TDAMM) involves the study of transient and time-variable phenomena across various wavelengths and messengers. The Astro2020 Decadal Survey has identified TDAMM as the top priority for NASA in this decade, emphasizing its crucial role in advancing our understanding of the universe and driving new discoveries in astrophysics. The TDAMM community has come tog… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.04967v1-abstract-full').style.display = 'inline'; document.getElementById('2406.04967v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.04967v1-abstract-full" style="display: none;"> Time-domain and multimessenger astronomy (TDAMM) involves the study of transient and time-variable phenomena across various wavelengths and messengers. The Astro2020 Decadal Survey has identified TDAMM as the top priority for NASA in this decade, emphasizing its crucial role in advancing our understanding of the universe and driving new discoveries in astrophysics. The TDAMM community has come together to provide further guidance to funding agencies, aiming to define a clear path toward optimizing scientific returns in this research domain. This encompasses not only astronomy but also fundamental physics, offering insights into gravity properties, the formation of heavy elements, the equation of state of dense matter, and quantum effects associated with extreme magnetic fields. Magnetars, neutron stars with the strongest magnetic fields known in the universe, play a critical role in this context. In this manuscript, we aim to underscore the significance of magnetars in TDAMM, highlighting the necessity of ensuring observational continuity, addressing current limitations, and outlining essential requirements to expand our knowledge in this field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.04967v1-abstract-full').style.display = 'none'; document.getElementById('2406.04967v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by Frontiers</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.03643">arXiv:2406.03643</a> <span> [<a href="https://arxiv.org/pdf/2406.03643">pdf</a>, <a href="https://arxiv.org/format/2406.03643">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Prompt GRB recognition through waterfalls and deep learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Negro%2C+M">Michela Negro</a>, <a href="/search/astro-ph?searchtype=author&query=Cibrario%2C+N">Nicol贸 Cibrario</a>, <a href="/search/astro-ph?searchtype=author&query=Burns%2C+E">Eric Burns</a>, <a href="/search/astro-ph?searchtype=author&query=Wood%2C+J">Joshua Wood</a>, <a href="/search/astro-ph?searchtype=author&query=Goldstein%2C+A">Adam Goldstein</a>, <a href="/search/astro-ph?searchtype=author&query=Canton%2C+T+D">Tito Dal Canton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.03643v1-abstract-short" style="display: inline;"> Gamma-ray Bursts (GRBs) are one of the most energetic phenomena in the cosmos, whose study probes physics extremes beyond the reach of laboratories on Earth. Our quest to unravel the origin of these events and understand their underlying physics is far from complete. Central to this pursuit is the rapid classification of GRBs to guide follow-up observations and analysis across the electromagnetic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.03643v1-abstract-full').style.display = 'inline'; document.getElementById('2406.03643v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.03643v1-abstract-full" style="display: none;"> Gamma-ray Bursts (GRBs) are one of the most energetic phenomena in the cosmos, whose study probes physics extremes beyond the reach of laboratories on Earth. Our quest to unravel the origin of these events and understand their underlying physics is far from complete. Central to this pursuit is the rapid classification of GRBs to guide follow-up observations and analysis across the electromagnetic spectrum and beyond. Here, we introduce a compelling approach for a new and robust GRB prompt classification. Leveraging self-supervised deep learning, we pioneer a previously unexplored data product to approach this task: the GRB waterfalls. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.03643v1-abstract-full').style.display = 'none'; document.getElementById('2406.03643v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted for review to PRL</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.10752">arXiv:2405.10752</a> <span> [<a href="https://arxiv.org/pdf/2405.10752">pdf</a>, <a href="https://arxiv.org/format/2405.10752">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> </div> <p class="title is-5 mathjax"> Constraining possible $纬$-ray burst emission from GW230529 using Swift-BAT and Fermi-GBM </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Ronchini%2C+S">Samuele Ronchini</a>, <a href="/search/astro-ph?searchtype=author&query=Bala%2C+S">Suman Bala</a>, <a href="/search/astro-ph?searchtype=author&query=Wood%2C+J">Joshua Wood</a>, <a href="/search/astro-ph?searchtype=author&query=Delaunay%2C+J">James Delaunay</a>, <a href="/search/astro-ph?searchtype=author&query=Dichiara%2C+S">Simone Dichiara</a>, <a href="/search/astro-ph?searchtype=author&query=Kennea%2C+J+A">Jamie A. Kennea</a>, <a href="/search/astro-ph?searchtype=author&query=Parsotan%2C+T">Tyler Parsotan</a>, <a href="/search/astro-ph?searchtype=author&query=Raman%2C+G">Gayathri Raman</a>, <a href="/search/astro-ph?searchtype=author&query=Tohuvavohu%2C+A">Aaron Tohuvavohu</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">Naresh Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Bhat%2C+N+P">Narayana P. Bhat</a>, <a href="/search/astro-ph?searchtype=author&query=Biscoveanu%2C+S">Sylvia Biscoveanu</a>, <a href="/search/astro-ph?searchtype=author&query=Bissaldi%2C+E">Elisabetta Bissaldi</a>, <a href="/search/astro-ph?searchtype=author&query=Burns%2C+E">Eric Burns</a>, <a href="/search/astro-ph?searchtype=author&query=Campana%2C+S">Sergio Campana</a>, <a href="/search/astro-ph?searchtype=author&query=Chandra%2C+K">Koustav Chandra</a>, <a href="/search/astro-ph?searchtype=author&query=Cleveland%2C+W+H">William H. Cleveland</a>, <a href="/search/astro-ph?searchtype=author&query=Dalessi%2C+S">Sarah Dalessi</a>, <a href="/search/astro-ph?searchtype=author&query=De+Pasquale%2C+M">Massimiliano De Pasquale</a>, <a href="/search/astro-ph?searchtype=author&query=Garc%C3%ADa-Bellido%2C+J">Juan Garc铆a-Bellido</a>, <a href="/search/astro-ph?searchtype=author&query=Gasbarra%2C+C">Claudio Gasbarra</a>, <a href="/search/astro-ph?searchtype=author&query=Giles%2C+M+M">Misty M. Giles</a>, <a href="/search/astro-ph?searchtype=author&query=Gupta%2C+I">Ish Gupta</a>, <a href="/search/astro-ph?searchtype=author&query=Hartmann%2C+D">Dieter Hartmann</a>, <a href="/search/astro-ph?searchtype=author&query=Hristov%2C+B+A">Boyan A. Hristov</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.10752v1-abstract-short" style="display: inline;"> GW230529 is the first compact binary coalescence detected by the LIGO-Virgo-KAGRA collaboration with at least one component mass confidently in the lower mass-gap, corresponding to the range 3-5$M_{\odot}$. If interpreted as a neutron star-black hole merger, this event has the most symmetric mass ratio detected so far and therefore has a relatively high probability of producing electromagnetic (EM… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.10752v1-abstract-full').style.display = 'inline'; document.getElementById('2405.10752v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.10752v1-abstract-full" style="display: none;"> GW230529 is the first compact binary coalescence detected by the LIGO-Virgo-KAGRA collaboration with at least one component mass confidently in the lower mass-gap, corresponding to the range 3-5$M_{\odot}$. If interpreted as a neutron star-black hole merger, this event has the most symmetric mass ratio detected so far and therefore has a relatively high probability of producing electromagnetic (EM) emission. However, no EM counterpart has been reported. At the merger time $t_0$, Swift-BAT and Fermi-GBM together covered 100$\%$ of the sky. Performing a targeted search in a time window $[t_0-20 \text{s},t_0+20 \text{s}]$, we report no detection by the Swift-BAT and the Fermi-GBM instruments. Combining the position-dependent $纬-$ray flux upper limits and the gravitational-wave posterior distribution of luminosity distance, sky localization and inclination angle of the binary, we derive constraints on the characteristic luminosity and structure of the jet possibly launched during the merger. Assuming a top-hat jet structure, we exclude at 90$\%$ credibility the presence of a jet which has at the same time an on-axis isotropic luminosity $\gtrsim 10^{48}$ erg s$^{-1}$, in the bolometric band 1 keV-10 MeV, and a jet opening angle $\gtrsim 15$ deg. Similar constraints are derived testing other assumptions about the jet structure profile. Excluding GRB 170817A, the luminosity upper limits derived here are below the luminosity of any GRB observed so far. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.10752v1-abstract-full').style.display = 'none'; document.getElementById('2405.10752v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 1 table, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.05316">arXiv:2402.05316</a> <span> [<a href="https://arxiv.org/pdf/2402.05316">pdf</a>, <a href="https://arxiv.org/format/2402.05316">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Birefringence tests of gravity with multi-messenger binaries </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Lagos%2C+M">Macarena Lagos</a>, <a href="/search/astro-ph?searchtype=author&query=Jenks%2C+L">Leah Jenks</a>, <a href="/search/astro-ph?searchtype=author&query=Isi%2C+M">Maximiliano Isi</a>, <a href="/search/astro-ph?searchtype=author&query=Hotokezaka%2C+K">Kenta Hotokezaka</a>, <a href="/search/astro-ph?searchtype=author&query=Metzger%2C+B+D">Brian D. Metzger</a>, <a href="/search/astro-ph?searchtype=author&query=Burns%2C+E">Eric Burns</a>, <a href="/search/astro-ph?searchtype=author&query=Farr%2C+W+M">Will M. Farr</a>, <a href="/search/astro-ph?searchtype=author&query=Perkins%2C+S">Scott Perkins</a>, <a href="/search/astro-ph?searchtype=author&query=Wong%2C+K+W+K">Kaze W. K. Wong</a>, <a href="/search/astro-ph?searchtype=author&query=Yunes%2C+N">Nicolas Yunes</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.05316v1-abstract-short" style="display: inline;"> Extensions to General Relativity (GR) allow the polarization of gravitational waves (GW) from astrophysical sources to suffer from amplitude and velocity birefringence, which respectively induce changes in the ellipticity and orientation of the polarization tensor. We introduce a multi-messenger approach to test this polarization behavior of GWs during their cosmological propagation using binary s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.05316v1-abstract-full').style.display = 'inline'; document.getElementById('2402.05316v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.05316v1-abstract-full" style="display: none;"> Extensions to General Relativity (GR) allow the polarization of gravitational waves (GW) from astrophysical sources to suffer from amplitude and velocity birefringence, which respectively induce changes in the ellipticity and orientation of the polarization tensor. We introduce a multi-messenger approach to test this polarization behavior of GWs during their cosmological propagation using binary sources, for which the initial polarization is determined by the inclination and orientation angles of the orbital angular momentum vector with respect to the line of sight. In particular, we use spatially-resolved radio imaging of the jet from a binary neutron star (BNS) merger to constrain the orientation angle and hence the emitted polarization orientation of the GW signal at the site of the merger, and compare to that observed on Earth by GW detectors. For GW170817 we constrain the deviation from GR due to amplitude birefringence to $魏_A = -0.12^{+0.60}_{-0.61}$, while the velocity birefringence parameter $魏_V$ remains unconstrained. The inability to constrain $魏_V$ is due to the fact that Virgo did not detect GW170817, and measurements of the polarization orientation require information from a combination of multiple detectors with different alignments. For this reason, we also mock future BNS mergers with resolved afterglow proper motion and project that $魏_V$ could be constrained to a precision of $5\,$rad (corresponding to an angular shift of the GW polarization of $未蠁_V\approx 0.2\,$rad for a BNS at $100\,$Mpc) by a future network of third-generation ground-based GW detectors such as Cosmic Explorer and the radio High Sensitivity Array. Crucially, this velocity birefringence effect cannot be constrained with dark binary mergers as it requires polarization information at the emission time, which can be provided only by electromagnetic emission. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.05316v1-abstract-full').style.display = 'none'; document.getElementById('2402.05316v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.16470">arXiv:2401.16470</a> <span> [<a href="https://arxiv.org/pdf/2401.16470">pdf</a>, <a href="https://arxiv.org/ps/2401.16470">ps</a>, <a href="https://arxiv.org/format/2401.16470">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> AT2019pim: A Luminous Orphan Afterglow from a Moderately Relativistic Outflow </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Perley%2C+D+A">Daniel A. Perley</a>, <a href="/search/astro-ph?searchtype=author&query=Ho%2C+A+Y+Q">Anna Y. Q. Ho</a>, <a href="/search/astro-ph?searchtype=author&query=Fausnaugh%2C+M">Michael Fausnaugh</a>, <a href="/search/astro-ph?searchtype=author&query=Lamb%2C+G+P">Gavin P. Lamb</a>, <a href="/search/astro-ph?searchtype=author&query=Kasliwal%2C+M+M">Mansi M. Kasliwal</a>, <a href="/search/astro-ph?searchtype=author&query=Ahumada%2C+T">Tomas Ahumada</a>, <a href="/search/astro-ph?searchtype=author&query=Anand%2C+S">Shreya Anand</a>, <a href="/search/astro-ph?searchtype=author&query=Andreoni%2C+I">Igor Andreoni</a>, <a href="/search/astro-ph?searchtype=author&query=Bellm%2C+E">Eric Bellm</a>, <a href="/search/astro-ph?searchtype=author&query=Bhalerao%2C+V">Varun Bhalerao</a>, <a href="/search/astro-ph?searchtype=author&query=Bolin%2C+B">Bryce Bolin</a>, <a href="/search/astro-ph?searchtype=author&query=Brink%2C+T+G">Thomas G. Brink</a>, <a href="/search/astro-ph?searchtype=author&query=Burns%2C+E">Eric Burns</a>, <a href="/search/astro-ph?searchtype=author&query=Cenko%2C+S+B">S. Bradley Cenko</a>, <a href="/search/astro-ph?searchtype=author&query=Corsi%2C+A">Alessandra Corsi</a>, <a href="/search/astro-ph?searchtype=author&query=Filippenko%2C+A+V">Alexei V. Filippenko</a>, <a href="/search/astro-ph?searchtype=author&query=Frederiks%2C+D">Dmitry Frederiks</a>, <a href="/search/astro-ph?searchtype=author&query=Goldstein%2C+A">Adam Goldstein</a>, <a href="/search/astro-ph?searchtype=author&query=Hamburg%2C+R">Rachel Hamburg</a>, <a href="/search/astro-ph?searchtype=author&query=Jayaraman%2C+R">Rahul Jayaraman</a>, <a href="/search/astro-ph?searchtype=author&query=Jonker%2C+P+G">Peter G. Jonker</a>, <a href="/search/astro-ph?searchtype=author&query=Kool%2C+E+C">Erik C. Kool</a>, <a href="/search/astro-ph?searchtype=author&query=Kulkarni%2C+S">Shrinivas Kulkarni</a>, <a href="/search/astro-ph?searchtype=author&query=Kumar%2C+H">Harsh Kumar</a>, <a href="/search/astro-ph?searchtype=author&query=Laher%2C+R">Russ Laher</a> , et al. (12 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.16470v1-abstract-short" style="display: inline;"> Classical gamma-ray bursts (GRBs) have two distinct emission episodes: prompt emission from ultra-relativistic ejecta and afterglow from shocked circumstellar material. While both components are extremely luminous in known GRBs, a variety of scenarios predict the existence of luminous afterglow emission with little or no associated high-energy prompt emission. We present AT 2019pim, the first secu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.16470v1-abstract-full').style.display = 'inline'; document.getElementById('2401.16470v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.16470v1-abstract-full" style="display: none;"> Classical gamma-ray bursts (GRBs) have two distinct emission episodes: prompt emission from ultra-relativistic ejecta and afterglow from shocked circumstellar material. While both components are extremely luminous in known GRBs, a variety of scenarios predict the existence of luminous afterglow emission with little or no associated high-energy prompt emission. We present AT 2019pim, the first secure example of this phenomenon to be identified. Serendipitously discovered during follow-up observations of a gravitational-wave trigger and located in a contemporaneous TESS sector, it is hallmarked by a fast-rising (t ~ 2 hr), luminous (M_UV,peak ~ -24.4 mag) optical transient with accompanying luminous X-ray and radio emission. No gamma-ray emission consistent with the time and location of the transient was detected by Fermi-GBM or by Konus, placing strong limits on an accompanying GRB. We investigate several independent observational aspects of the afterglow in the context of constraints on relativistic motion and find all of them are consistent with an initial Lorentz factor of Gamma_0 ~ 30-50, significantly lower than in any well-observed GRB and consistent with the theoretically-predicted "dirty fireball" scenario in which the high-energy prompt emission is stifled by pair production. However, we cannot rule out a structured jet model in which only the line-of-sight material was ejected at low-Gamma, off-axis from a classical high-Gamma jet core. This event represents a milestone in orphan afterglow searches, demonstrating that luminous afterglows with weak or no detectable gamma-ray radiation exist in nature and can be discovered by high-cadence optical surveys. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.16470v1-abstract-full').style.display = 'none'; document.getElementById('2401.16470v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.02063">arXiv:2401.02063</a> <span> [<a href="https://arxiv.org/pdf/2401.02063">pdf</a>, <a href="https://arxiv.org/format/2401.02063">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Windows on the Universe: Establishing the Infrastructure for a Collaborative Multi-messenger Ecosystem </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+2023+Windows+on+the+Universe+Workshop+White+Paper+Working+Group"> The 2023 Windows on the Universe Workshop White Paper Working Group</a>, <a href="/search/astro-ph?searchtype=author&query=Ahumada%2C+T">T. Ahumada</a>, <a href="/search/astro-ph?searchtype=author&query=Andrews%2C+J+E">J. E. Andrews</a>, <a href="/search/astro-ph?searchtype=author&query=Antier%2C+S">S. Antier</a>, <a href="/search/astro-ph?searchtype=author&query=Blaufuss%2C+E">E. Blaufuss</a>, <a href="/search/astro-ph?searchtype=author&query=Brady%2C+P+R">P. R. Brady</a>, <a href="/search/astro-ph?searchtype=author&query=Brazier%2C+A+M">A. M. Brazier</a>, <a href="/search/astro-ph?searchtype=author&query=Burns%2C+E">E. Burns</a>, <a href="/search/astro-ph?searchtype=author&query=Cenko%2C+S+B">S. B. Cenko</a>, <a href="/search/astro-ph?searchtype=author&query=Chandra%2C+P">P. Chandra</a>, <a href="/search/astro-ph?searchtype=author&query=Chatterjee%2C+D">D. Chatterjee</a>, <a href="/search/astro-ph?searchtype=author&query=Corsi%2C+A">A. Corsi</a>, <a href="/search/astro-ph?searchtype=author&query=Coughlin%2C+M+W">M. W. Coughlin</a>, <a href="/search/astro-ph?searchtype=author&query=Coulter%2C+D+A">D. A. Coulter</a>, <a href="/search/astro-ph?searchtype=author&query=Fu%2C+S">S. Fu</a>, <a href="/search/astro-ph?searchtype=author&query=Goldstein%2C+A">A. Goldstein</a>, <a href="/search/astro-ph?searchtype=author&query=Guy%2C+L+P">L. P. Guy</a>, <a href="/search/astro-ph?searchtype=author&query=Hooper%2C+E+J">E. J. Hooper</a>, <a href="/search/astro-ph?searchtype=author&query=Howell%2C+S+B">S. B. Howell</a>, <a href="/search/astro-ph?searchtype=author&query=Humensky%2C+T+B">T. B. Humensky</a>, <a href="/search/astro-ph?searchtype=author&query=Kennea%2C+J+A">J. A. Kennea</a>, <a href="/search/astro-ph?searchtype=author&query=Jarrett%2C+S+M">S. M. Jarrett</a>, <a href="/search/astro-ph?searchtype=author&query=Lau%2C+R+M">R. M. Lau</a>, <a href="/search/astro-ph?searchtype=author&query=Lewis%2C+T+R">T. R. Lewis</a>, <a href="/search/astro-ph?searchtype=author&query=Lu%2C+L">L. Lu</a> , et al. (21 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.02063v2-abstract-short" style="display: inline;"> In this White Paper, we present recommendations for the scientific community and funding agencies to foster the infrastructure for a collaborative multi-messenger and time-domain astronomy (MMA/TDA) ecosystem. MMA/TDA is poised for breakthrough discoveries in the coming decade. In much the same way that expanding beyond the optical bandpass revealed entirely new and unexpected discoveries, cosmic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.02063v2-abstract-full').style.display = 'inline'; document.getElementById('2401.02063v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.02063v2-abstract-full" style="display: none;"> In this White Paper, we present recommendations for the scientific community and funding agencies to foster the infrastructure for a collaborative multi-messenger and time-domain astronomy (MMA/TDA) ecosystem. MMA/TDA is poised for breakthrough discoveries in the coming decade. In much the same way that expanding beyond the optical bandpass revealed entirely new and unexpected discoveries, cosmic messengers beyond light (i.e., gravitational waves, neutrinos, and cosmic rays) open entirely new windows to answer some of the most fundamental questions in (astro)physics: heavy element synthesis, equation of state of dense matter, particle acceleration, etc. This field was prioritized as a frontier scientific pursuit in the 2020 Decadal Survey on Astronomy and Astrophysics via its "New Windows on the Dynamic Universe" theme. MMA/TDA science presents technical challenges distinct from those experienced in other disciplines. Successful observations require coordination across myriad boundaries -- different cosmic messengers, ground vs. space, international borders, etc. -- all for sources that may not be well localized, and whose brightness may be changing rapidly with time. Add that all of this work is undertaken by real human beings, with distinct backgrounds, experiences, cultures, and expectations, that often conflict. To address these challenges and help MMA/TDA realize its full scientific potential in the coming decade (and beyond), the second in a series of community workshops sponsored by the U.S. National Science Foundation (NSF) and NASA titled "Windows on the Universe: Establishing the Infrastructure for a Collaborative Multi-Messenger Ecosystem" was held on October 16-18, 2023 in Tucson, AZ. Here we present the primary recommendations from this workshop focused on three key topics -- hardware, software, and people and policy. [abridged] <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.02063v2-abstract-full').style.display = 'none'; document.getElementById('2401.02063v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Workshop white paper</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.09362">arXiv:2311.09362</a> <span> [<a href="https://arxiv.org/pdf/2311.09362">pdf</a>, <a href="https://arxiv.org/format/2311.09362">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202348858">10.1051/0004-6361/202348858 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> GRB 180128A: A Second Magnetar Giant Flare Candidate from the Sculptor Galaxy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Trigg%2C+A+C">Aaron C. Trigg</a>, <a href="/search/astro-ph?searchtype=author&query=Burns%2C+E">Eric Burns</a>, <a href="/search/astro-ph?searchtype=author&query=Roberts%2C+O+J">Oliver J. Roberts</a>, <a href="/search/astro-ph?searchtype=author&query=Negro%2C+M">Michela Negro</a>, <a href="/search/astro-ph?searchtype=author&query=Svinkin%2C+D+S">Dmitry S. Svinkin</a>, <a href="/search/astro-ph?searchtype=author&query=Baring%2C+M+G">Matthew G. Baring</a>, <a href="/search/astro-ph?searchtype=author&query=Wadiasingh%2C+Z">Zorawar Wadiasingh</a>, <a href="/search/astro-ph?searchtype=author&query=Christensen%2C+N+L">Nelson L. Christensen</a>, <a href="/search/astro-ph?searchtype=author&query=Andreoni%2C+I">Igor Andreoni</a>, <a href="/search/astro-ph?searchtype=author&query=Briggs%2C+M+S">Michael S. Briggs</a>, <a href="/search/astro-ph?searchtype=author&query=Di+Lalla%2C+N">Niccolo Di Lalla</a>, <a href="/search/astro-ph?searchtype=author&query=Frederiks%2C+D+D">Dmitry D. Frederiks</a>, <a href="/search/astro-ph?searchtype=author&query=Lipunov%2C+V+M">Vladimir M. Lipunov</a>, <a href="/search/astro-ph?searchtype=author&query=Omodei%2C+N">Nicola Omodei</a>, <a href="/search/astro-ph?searchtype=author&query=Ridnaia%2C+A+V">Anna V. Ridnaia</a>, <a href="/search/astro-ph?searchtype=author&query=Veres%2C+P">Peter Veres</a>, <a href="/search/astro-ph?searchtype=author&query=Lysenko%2C+A+L">Alexandra L. Lysenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.09362v1-abstract-short" style="display: inline;"> Magnetars are slowly rotating neutron stars that possess the strongest magnetic fields ($10^{14}-10^{15} \mathrm{G}$) known in the cosmos. They display a range of transient high-energy electromagnetic activity. The brightest and most energetic of these events are the gamma-ray bursts (GRBs) known as magnetar giant flares (MGFs), with isotropic energy $E\approx10^{44}-10^{46} \mathrm{erg}$. There a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.09362v1-abstract-full').style.display = 'inline'; document.getElementById('2311.09362v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.09362v1-abstract-full" style="display: none;"> Magnetars are slowly rotating neutron stars that possess the strongest magnetic fields ($10^{14}-10^{15} \mathrm{G}$) known in the cosmos. They display a range of transient high-energy electromagnetic activity. The brightest and most energetic of these events are the gamma-ray bursts (GRBs) known as magnetar giant flares (MGFs), with isotropic energy $E\approx10^{44}-10^{46} \mathrm{erg}$. There are only seven detections identified as MGFs to date: three unambiguous events occurred in our Galaxy and the Magellanic Clouds, and the other four MGF candidates are associated with nearby star-forming galaxies. As all seven identified MGFs are bright at Earth, additional weaker events remain unidentified in archival data. We conducted a search of the Fermi Gamma-ray Burst Monitor (GBM) database for candidate extragalactic MGFs and, when possible, collected localization data from the Interplanetary Network (IPN) satellites. Our search yielded one convincing event, GRB 180128A. IPN localizes this burst with NGC 253, commonly known as the Sculptor Galaxy. This event is the second MGF in modern astronomy to be associated with this galaxy and the first time two bursts are associated with a single galaxy outside our own. Here, we detail the archival search criteria that uncovered this event and its spectral and temporal properties, which are consistent with expectations for a MGF. We also discuss the theoretical implications and finer burst structures resolved from various binning methods. Our analysis provides observational evidence for an eighth identified MGF. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.09362v1-abstract-full').style.display = 'none'; document.getElementById('2311.09362v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 687, A173 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.14310">arXiv:2310.14310</a> <span> [<a href="https://arxiv.org/pdf/2310.14310">pdf</a>, <a href="https://arxiv.org/format/2310.14310">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Multi-band analyses of the bright GRB 230812B and the associated SN2023pel </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Hussenot-Desenonges%2C+T">T. Hussenot-Desenonges</a>, <a href="/search/astro-ph?searchtype=author&query=Wouters%2C+T">T. Wouters</a>, <a href="/search/astro-ph?searchtype=author&query=Guessoum%2C+N">N. Guessoum</a>, <a href="/search/astro-ph?searchtype=author&query=Abdi%2C+I">I. Abdi</a>, <a href="/search/astro-ph?searchtype=author&query=Abulwfa%2C+A">A. Abulwfa</a>, <a href="/search/astro-ph?searchtype=author&query=Adami%2C+C">C. Adami</a>, <a href="/search/astro-ph?searchtype=author&query=Fern%C3%A1ndez%2C+J+F+A">J. F. Ag眉铆 Fern谩ndez</a>, <a href="/search/astro-ph?searchtype=author&query=Ahumada%2C+T">T. Ahumada</a>, <a href="/search/astro-ph?searchtype=author&query=Aivazyan%2C+V">V. Aivazyan</a>, <a href="/search/astro-ph?searchtype=author&query=Akl%2C+D">D. Akl</a>, <a href="/search/astro-ph?searchtype=author&query=Anand%2C+S">S. Anand</a>, <a href="/search/astro-ph?searchtype=author&query=Andrade%2C+C+M">C. M. Andrade</a>, <a href="/search/astro-ph?searchtype=author&query=Antier%2C+S">S. Antier</a>, <a href="/search/astro-ph?searchtype=author&query=Ata%2C+S+A">S. A. Ata</a>, <a href="/search/astro-ph?searchtype=author&query=D%27Avanzo%2C+P">P. D'Avanzo</a>, <a href="/search/astro-ph?searchtype=author&query=Azzam%2C+Y+A">Y. A. Azzam</a>, <a href="/search/astro-ph?searchtype=author&query=Baransky%2C+A">A. Baransky</a>, <a href="/search/astro-ph?searchtype=author&query=Basa%2C+S">S. Basa</a>, <a href="/search/astro-ph?searchtype=author&query=Blazek%2C+M">M. Blazek</a>, <a href="/search/astro-ph?searchtype=author&query=Bendjoya%2C+P">P. Bendjoya</a>, <a href="/search/astro-ph?searchtype=author&query=Beradze%2C+S">S. Beradze</a>, <a href="/search/astro-ph?searchtype=author&query=Boumis%2C+P">P. Boumis</a>, <a href="/search/astro-ph?searchtype=author&query=Bremer%2C+M">M. Bremer</a>, <a href="/search/astro-ph?searchtype=author&query=Brivio%2C+R">R. Brivio</a>, <a href="/search/astro-ph?searchtype=author&query=Buat%2C+V">V. Buat</a> , et al. (87 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.14310v2-abstract-short" style="display: inline;"> GRB~230812B is a bright and relatively nearby ($z =0.36$) long gamma-ray burst (GRB) that has generated significant interest in the community and has thus been observed over the entire electromagnetic spectrum. We report over 80 observations in X-ray, ultraviolet, optical, infrared, and sub-millimeter bands from the GRANDMA (Global Rapid Advanced Network for Multi-messenger Addicts) network of obs… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.14310v2-abstract-full').style.display = 'inline'; document.getElementById('2310.14310v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.14310v2-abstract-full" style="display: none;"> GRB~230812B is a bright and relatively nearby ($z =0.36$) long gamma-ray burst (GRB) that has generated significant interest in the community and has thus been observed over the entire electromagnetic spectrum. We report over 80 observations in X-ray, ultraviolet, optical, infrared, and sub-millimeter bands from the GRANDMA (Global Rapid Advanced Network for Multi-messenger Addicts) network of observatories and from observational partners. Adding complementary data from the literature, we then derive essential physical parameters associated with the ejecta and external properties (i.e. the geometry and environment) of the GRB and compare with other analyses of this event. We spectroscopically confirm the presence of an associated supernova, SN2023pel, and we derive a photospheric expansion velocity of v $\sim$ 17$\times10^3$ km s$^{-1}$. We analyze the photometric data first using empirical fits of the flux and then with full Bayesian Inference. We again strongly establish the presence of a supernova in the data, with a maximum (pseudo-)bolometric luminosity of $5.75 \times 10^{42}$ erg/s, at $15.76^{+0.81}_{-1.21}$ days (in the observer frame) after the trigger, with a half-max time width of 22.0 days. We compare these values with those of SN1998bw, SN2006aj, and SN2013dx. Our best-fit model favours a very low density environment ($\log_{10}({n_{\rm ISM}/{\rm cm}^{-3}}) = -2.38^{+1.45}_{-1.60}$) and small values for the jet's core angle $胃_{\rm core} = 1.54^{+1.02}_{-0.81} \ \rm{deg}$ and viewing angle $胃_{\rm obs} = 0.76^{+1.29}_{-0.76} \ \rm{deg}$. GRB 230812B is thus one of the best observed afterglows with a distinctive supernova bump. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.14310v2-abstract-full').style.display = 'none'; document.getElementById('2310.14310v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.13666">arXiv:2308.13666</a> <span> [<a href="https://arxiv.org/pdf/2308.13666">pdf</a>, <a href="https://arxiv.org/format/2308.13666">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> A Joint Fermi-GBM and Swift-BAT Analysis of Gravitational-Wave Candidates from the Third Gravitational-wave Observing Run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Fletcher%2C+C">C. Fletcher</a>, <a href="/search/astro-ph?searchtype=author&query=Wood%2C+J">J. Wood</a>, <a href="/search/astro-ph?searchtype=author&query=Hamburg%2C+R">R. Hamburg</a>, <a href="/search/astro-ph?searchtype=author&query=Veres%2C+P">P. Veres</a>, <a href="/search/astro-ph?searchtype=author&query=Hui%2C+C+M">C. M. Hui</a>, <a href="/search/astro-ph?searchtype=author&query=Bissaldi%2C+E">E. Bissaldi</a>, <a href="/search/astro-ph?searchtype=author&query=Briggs%2C+M+S">M. S. Briggs</a>, <a href="/search/astro-ph?searchtype=author&query=Burns%2C+E">E. Burns</a>, <a href="/search/astro-ph?searchtype=author&query=Cleveland%2C+W+H">W. H. Cleveland</a>, <a href="/search/astro-ph?searchtype=author&query=Giles%2C+M+M">M. M. Giles</a>, <a href="/search/astro-ph?searchtype=author&query=Goldstein%2C+A">A. Goldstein</a>, <a href="/search/astro-ph?searchtype=author&query=Hristov%2C+B+A">B. A. Hristov</a>, <a href="/search/astro-ph?searchtype=author&query=Kocevski%2C+D">D. Kocevski</a>, <a href="/search/astro-ph?searchtype=author&query=Lesage%2C+S">S. Lesage</a>, <a href="/search/astro-ph?searchtype=author&query=Mailyan%2C+B">B. Mailyan</a>, <a href="/search/astro-ph?searchtype=author&query=Malacaria%2C+C">C. Malacaria</a>, <a href="/search/astro-ph?searchtype=author&query=Poolakkil%2C+S">S. Poolakkil</a>, <a href="/search/astro-ph?searchtype=author&query=von+Kienlin%2C+A">A. von Kienlin</a>, <a href="/search/astro-ph?searchtype=author&query=Wilson-Hodge%2C+C+A">C. A. Wilson-Hodge</a>, <a href="/search/astro-ph?searchtype=author&query=Team%2C+T+F+G+B+M">The Fermi Gamma-ray Burst Monitor Team</a>, <a href="/search/astro-ph?searchtype=author&query=Crnogor%C4%8Devi%C4%87%2C+M">M. Crnogor膷evi膰</a>, <a href="/search/astro-ph?searchtype=author&query=DeLaunay%2C+J">J. DeLaunay</a>, <a href="/search/astro-ph?searchtype=author&query=Tohuvavohu%2C+A">A. Tohuvavohu</a>, <a href="/search/astro-ph?searchtype=author&query=Caputo%2C+R">R. Caputo</a>, <a href="/search/astro-ph?searchtype=author&query=Cenko%2C+S+B">S. B. Cenko</a> , et al. (1674 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.13666v1-abstract-short" style="display: inline;"> We present Fermi Gamma-ray Burst Monitor (Fermi-GBM) and Swift Burst Alert Telescope (Swift-BAT) searches for gamma-ray/X-ray counterparts to gravitational wave (GW) candidate events identified during the third observing run of the Advanced LIGO and Advanced Virgo detectors. Using Fermi-GBM on-board triggers and sub-threshold gamma-ray burst (GRB) candidates found in the Fermi-GBM ground analyses,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.13666v1-abstract-full').style.display = 'inline'; document.getElementById('2308.13666v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.13666v1-abstract-full" style="display: none;"> We present Fermi Gamma-ray Burst Monitor (Fermi-GBM) and Swift Burst Alert Telescope (Swift-BAT) searches for gamma-ray/X-ray counterparts to gravitational wave (GW) candidate events identified during the third observing run of the Advanced LIGO and Advanced Virgo detectors. Using Fermi-GBM on-board triggers and sub-threshold gamma-ray burst (GRB) candidates found in the Fermi-GBM ground analyses, the Targeted Search and the Untargeted Search, we investigate whether there are any coincident GRBs associated with the GWs. We also search the Swift-BAT rate data around the GW times to determine whether a GRB counterpart is present. No counterparts are found. Using both the Fermi-GBM Targeted Search and the Swift-BAT search, we calculate flux upper limits and present joint upper limits on the gamma-ray luminosity of each GW. Given these limits, we constrain theoretical models for the emission of gamma-rays from binary black hole mergers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.13666v1-abstract-full').style.display = 'none'; document.getElementById('2308.13666v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.12396">arXiv:2308.12396</a> <span> [<a href="https://arxiv.org/pdf/2308.12396">pdf</a>, <a href="https://arxiv.org/format/2308.12396">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Detecting Magnetar Giant Flares with MoonBEAM </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Roberts%2C+O+J">O. J. Roberts</a>, <a href="/search/astro-ph?searchtype=author&query=Burns%2C+E">E. Burns</a>, <a href="/search/astro-ph?searchtype=author&query=Goldstein%2C+A">A. Goldstein</a>, <a href="/search/astro-ph?searchtype=author&query=Hui%2C+C+M">C. M. Hui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.12396v1-abstract-short" style="display: inline;"> Magnetars are slowly-rotating neutron stars with extremely strong magnetic fields that rarely produce extremely bright, energetic giant flares. Magnetar Giant Flares (MGFs) begin with a short (200 ms) intense flash, followed by fainter emission lasting several minutes that is modulated by the magnetar spin period (typically 2-12 s). Over the last 40 years, only three MGFs have been observed within… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.12396v1-abstract-full').style.display = 'inline'; document.getElementById('2308.12396v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.12396v1-abstract-full" style="display: none;"> Magnetars are slowly-rotating neutron stars with extremely strong magnetic fields that rarely produce extremely bright, energetic giant flares. Magnetar Giant Flares (MGFs) begin with a short (200 ms) intense flash, followed by fainter emission lasting several minutes that is modulated by the magnetar spin period (typically 2-12 s). Over the last 40 years, only three MGFs have been observed within our Galaxy and the Magellanic Clouds, which all suffered from instrumental saturation due to their extreme intensity. It has been proposed, that extragalactic MGFs masquerade as a small subset of short Gamma-ray Bursts (GRBs), noting that the sensitivity of current instrumentation prevents us from detecting the pulsating tail to distances slightly beyond the Magellanic Clouds. However, their initial bright flash is readily observable out to distances of < 25 Mpc. In this presentation, we will evaluate the spectral and temporal behaviors of MGFs using recent observations from events such as GRB200415A, to differentiate them from other progenitors, such as short GRBs. We then present an overview of the Moon Burst Energetics All-sky Monitor (MoonBEAM), which will attempt to discover more of these events, providing highly sensitive data that will help unravel the nature of these phenomena further in an attempt to better understand their emission mechanisms comparatively with GRBs. In doing so, MoonBEAM will help provide a comprehensive picture of energetic astrophysical phenomena, a key goal of the Astro2020 decadal survey. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.12396v1-abstract-full').style.display = 'none'; document.getElementById('2308.12396v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 1 figure, 38th International Cosmic Ray Conference (ICRC2023), 26 July - 3 August, 2023</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.12362">arXiv:2308.12362</a> <span> [<a href="https://arxiv.org/pdf/2308.12362">pdf</a>, <a href="https://arxiv.org/format/2308.12362">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> The Compton Spectrometer and Imager </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Tomsick%2C+J+A">John A. Tomsick</a>, <a href="/search/astro-ph?searchtype=author&query=Boggs%2C+S+E">Steven E. Boggs</a>, <a href="/search/astro-ph?searchtype=author&query=Zoglauer%2C+A">Andreas Zoglauer</a>, <a href="/search/astro-ph?searchtype=author&query=Hartmann%2C+D">Dieter Hartmann</a>, <a href="/search/astro-ph?searchtype=author&query=Ajello%2C+M">Marco Ajello</a>, <a href="/search/astro-ph?searchtype=author&query=Burns%2C+E">Eric Burns</a>, <a href="/search/astro-ph?searchtype=author&query=Fryer%2C+C">Chris Fryer</a>, <a href="/search/astro-ph?searchtype=author&query=Karwin%2C+C">Chris Karwin</a>, <a href="/search/astro-ph?searchtype=author&query=Kierans%2C+C">Carolyn Kierans</a>, <a href="/search/astro-ph?searchtype=author&query=Lowell%2C+A">Alexander Lowell</a>, <a href="/search/astro-ph?searchtype=author&query=Malzac%2C+J">Julien Malzac</a>, <a href="/search/astro-ph?searchtype=author&query=Roberts%2C+J">Jarred Roberts</a>, <a href="/search/astro-ph?searchtype=author&query=Saint-Hilaire%2C+P">Pascal Saint-Hilaire</a>, <a href="/search/astro-ph?searchtype=author&query=Shih%2C+A">Albert Shih</a>, <a href="/search/astro-ph?searchtype=author&query=Siegert%2C+T">Thomas Siegert</a>, <a href="/search/astro-ph?searchtype=author&query=Sleator%2C+C">Clio Sleator</a>, <a href="/search/astro-ph?searchtype=author&query=Takahashi%2C+T">Tadayuki Takahashi</a>, <a href="/search/astro-ph?searchtype=author&query=Tavecchio%2C+F">Fabrizio Tavecchio</a>, <a href="/search/astro-ph?searchtype=author&query=Wulf%2C+E">Eric Wulf</a>, <a href="/search/astro-ph?searchtype=author&query=Beechert%2C+J">Jacqueline Beechert</a>, <a href="/search/astro-ph?searchtype=author&query=Gulick%2C+H">Hannah Gulick</a>, <a href="/search/astro-ph?searchtype=author&query=Joens%2C+A">Alyson Joens</a>, <a href="/search/astro-ph?searchtype=author&query=Lazar%2C+H">Hadar Lazar</a>, <a href="/search/astro-ph?searchtype=author&query=Neights%2C+E">Eliza Neights</a>, <a href="/search/astro-ph?searchtype=author&query=Oliveros%2C+J+C+M">Juan Carlos Martinez Oliveros</a> , et al. (50 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.12362v1-abstract-short" style="display: inline;"> The Compton Spectrometer and Imager (COSI) is a NASA Small Explorer (SMEX) satellite mission in development with a planned launch in 2027. COSI is a wide-field gamma-ray telescope designed to survey the entire sky at 0.2-5 MeV. It provides imaging, spectroscopy, and polarimetry of astrophysical sources, and its germanium detectors provide excellent energy resolution for emission line measurements.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.12362v1-abstract-full').style.display = 'inline'; document.getElementById('2308.12362v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.12362v1-abstract-full" style="display: none;"> The Compton Spectrometer and Imager (COSI) is a NASA Small Explorer (SMEX) satellite mission in development with a planned launch in 2027. COSI is a wide-field gamma-ray telescope designed to survey the entire sky at 0.2-5 MeV. It provides imaging, spectroscopy, and polarimetry of astrophysical sources, and its germanium detectors provide excellent energy resolution for emission line measurements. Science goals for COSI include studies of 0.511 MeV emission from antimatter annihilation in the Galaxy, mapping radioactive elements from nucleosynthesis, determining emission mechanisms and source geometries with polarization measurements, and detecting and localizing multimessenger sources. The instantaneous field of view for the germanium detectors is >25% of the sky, and they are surrounded on the sides and bottom by active shields, providing background rejection as well as allowing for detection of gamma-ray bursts and other gamma-ray flares over most of the sky. In the following, we provide an overview of the COSI mission, including the science, the technical design, and the project status. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.12362v1-abstract-full').style.display = 'none'; document.getElementById('2308.12362v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS(ICRC2023)745 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.11436">arXiv:2308.11436</a> <span> [<a href="https://arxiv.org/pdf/2308.11436">pdf</a>, <a href="https://arxiv.org/format/2308.11436">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.22323/1.444.0858">10.22323/1.444.0858 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The cosipy library: COSI's high-level analysis software </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Martinez-Castellanos%2C+I">Israel Martinez-Castellanos</a>, <a href="/search/astro-ph?searchtype=author&query=Gallego%2C+S">Savitri Gallego</a>, <a href="/search/astro-ph?searchtype=author&query=Huang%2C+C">Chien-You Huang</a>, <a href="/search/astro-ph?searchtype=author&query=Karwin%2C+C">Chris Karwin</a>, <a href="/search/astro-ph?searchtype=author&query=Kierans%2C+C">Carolyn Kierans</a>, <a href="/search/astro-ph?searchtype=author&query=Lommler%2C+J+P">Jan Peter Lommler</a>, <a href="/search/astro-ph?searchtype=author&query=Mittal%2C+S">Saurabh Mittal</a>, <a href="/search/astro-ph?searchtype=author&query=Negro%2C+M">Michela Negro</a>, <a href="/search/astro-ph?searchtype=author&query=Neights%2C+E">Eliza Neights</a>, <a href="/search/astro-ph?searchtype=author&query=Pike%2C+S+N">Sean N. Pike</a>, <a href="/search/astro-ph?searchtype=author&query=Sheng%2C+Y">Yong Sheng</a>, <a href="/search/astro-ph?searchtype=author&query=Siegert%2C+T">Thomas Siegert</a>, <a href="/search/astro-ph?searchtype=author&query=Yoneda%2C+H">Hiroki Yoneda</a>, <a href="/search/astro-ph?searchtype=author&query=Zoglauer%2C+A">Andreas Zoglauer</a>, <a href="/search/astro-ph?searchtype=author&query=Tomsick%2C+J+A">John A. Tomsick</a>, <a href="/search/astro-ph?searchtype=author&query=Boggs%2C+S+E">Steven E. Boggs</a>, <a href="/search/astro-ph?searchtype=author&query=Hartmann%2C+D">Dieter Hartmann</a>, <a href="/search/astro-ph?searchtype=author&query=Ajello%2C+M">Marco Ajello</a>, <a href="/search/astro-ph?searchtype=author&query=Burns%2C+E">Eric Burns</a>, <a href="/search/astro-ph?searchtype=author&query=Fryer%2C+C">Chris Fryer</a>, <a href="/search/astro-ph?searchtype=author&query=Lowell%2C+A">Alexander Lowell</a>, <a href="/search/astro-ph?searchtype=author&query=Malzac%2C+J">Julien Malzac</a>, <a href="/search/astro-ph?searchtype=author&query=Roberts%2C+J">Jarred Roberts</a>, <a href="/search/astro-ph?searchtype=author&query=Saint-Hilaire%2C+P">Pascal Saint-Hilaire</a>, <a href="/search/astro-ph?searchtype=author&query=Shih%2C+A">Albert Shih</a> , et al. (50 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.11436v1-abstract-short" style="display: inline;"> The Compton Spectrometer and Imager (COSI) is a selected Small Explorer (SMEX) mission launching in 2027. It consists of a large field-of-view Compton telescope that will probe with increased sensitivity the under-explored MeV gamma-ray sky (0.2-5 MeV). We will present the current status of cosipy, a Python library that will perform spectral and polarization fits, image deconvolution, and all high… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.11436v1-abstract-full').style.display = 'inline'; document.getElementById('2308.11436v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.11436v1-abstract-full" style="display: none;"> The Compton Spectrometer and Imager (COSI) is a selected Small Explorer (SMEX) mission launching in 2027. It consists of a large field-of-view Compton telescope that will probe with increased sensitivity the under-explored MeV gamma-ray sky (0.2-5 MeV). We will present the current status of cosipy, a Python library that will perform spectral and polarization fits, image deconvolution, and all high-level analysis tasks required by COSI's broad science goals: uncovering the origin of the Galactic positrons, mapping the sites of Galactic nucleosynthesis, improving our models of the jet and emission mechanism of gamma-ray bursts (GRBs) and active galactic nuclei (AGNs), and detecting and localizing gravitational wave and neutrino sources. The cosipy library builds on the experience gained during the COSI balloon campaigns and will bring the analysis of data in the Compton regime to a modern open-source likelihood-based code, capable of performing coherent joint fits with other instruments using the Multi-Mission Maximum Likelihood framework (3ML). In this contribution, we will also discuss our plans to receive feedback from the community by having yearly software releases accompanied by publicly-available data challenges. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.11436v1-abstract-full').style.display = 'none'; document.getElementById('2308.11436v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Martinez, Israel. The cosipy library: COSI's high-level analysis software. PoS ICRC2023 (2023) 444-858 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.04485">arXiv:2308.04485</a> <span> [<a href="https://arxiv.org/pdf/2308.04485">pdf</a>, <a href="https://arxiv.org/format/2308.04485">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Gamma-ray Transient Network Science Analysis Group Report </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Burns%2C+E">Eric Burns</a>, <a href="/search/astro-ph?searchtype=author&query=Coughlin%2C+M">Michael Coughlin</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">Kendall Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Andreoni%2C+I">Igor Andreoni</a>, <a href="/search/astro-ph?searchtype=author&query=Bizouard%2C+M">Marie-Anne Bizouard</a>, <a href="/search/astro-ph?searchtype=author&query=Broekgaarden%2C+F">Floor Broekgaarden</a>, <a href="/search/astro-ph?searchtype=author&query=Christensen%2C+N+L">Nelson L. Christensen</a>, <a href="/search/astro-ph?searchtype=author&query=D%27Ammando%2C+F">Filippo D'Ammando</a>, <a href="/search/astro-ph?searchtype=author&query=DeLaunay%2C+J">James DeLaunay</a>, <a href="/search/astro-ph?searchtype=author&query=Fleischhack%2C+H">Henrike Fleischhack</a>, <a href="/search/astro-ph?searchtype=author&query=Frey%2C+R">Raymond Frey</a>, <a href="/search/astro-ph?searchtype=author&query=Fryer%2C+C+L">Chris L. Fryer</a>, <a href="/search/astro-ph?searchtype=author&query=Goldstein%2C+A">Adam Goldstein</a>, <a href="/search/astro-ph?searchtype=author&query=Grossan%2C+B">Bruce Grossan</a>, <a href="/search/astro-ph?searchtype=author&query=Hamburg%2C+R">Rachel Hamburg</a>, <a href="/search/astro-ph?searchtype=author&query=Hartmann%2C+D+H">Dieter H. Hartmann</a>, <a href="/search/astro-ph?searchtype=author&query=Ho%2C+A+Y+Q">Anna Y. Q. Ho</a>, <a href="/search/astro-ph?searchtype=author&query=Howell%2C+E+J">Eric J. Howell</a>, <a href="/search/astro-ph?searchtype=author&query=Hui%2C+C+M">C. Michelle Hui</a>, <a href="/search/astro-ph?searchtype=author&query=Jenks%2C+L">Leah Jenks</a>, <a href="/search/astro-ph?searchtype=author&query=Joens%2C+A">Alyson Joens</a>, <a href="/search/astro-ph?searchtype=author&query=Lesage%2C+S">Stephen Lesage</a>, <a href="/search/astro-ph?searchtype=author&query=Levan%2C+A+J">Andrew J. Levan</a>, <a href="/search/astro-ph?searchtype=author&query=Lien%2C+A">Amy Lien</a>, <a href="/search/astro-ph?searchtype=author&query=Meli%2C+A">Athina Meli</a> , et al. (12 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.04485v2-abstract-short" style="display: inline;"> The Interplanetary Network (IPN) is a detection, localization and alert system that utilizes the arrival time of transient signals in gamma-ray detectors on spacecraft separated by planetary baselines to geometrically locate the origin of these transients. Due to the changing astrophysical landscape and the new emphasis on time domain and multi-messenger astrophysics (TDAMM) from the Pathways to D… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.04485v2-abstract-full').style.display = 'inline'; document.getElementById('2308.04485v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.04485v2-abstract-full" style="display: none;"> The Interplanetary Network (IPN) is a detection, localization and alert system that utilizes the arrival time of transient signals in gamma-ray detectors on spacecraft separated by planetary baselines to geometrically locate the origin of these transients. Due to the changing astrophysical landscape and the new emphasis on time domain and multi-messenger astrophysics (TDAMM) from the Pathways to Discovery in Astronomy and Astrophysics for the 2020s, this Gamma-ray Transient Network Science Analysis Group was tasked to understand the role of the IPN and high-energy monitors in this new era. The charge includes describing the science made possible with these facilities, tracing the corresponding requirements and capabilities, and highlighting where improved operations of existing instruments and the IPN would enhance TDAMM science. While this study considers the full multiwavelength and multimessenger context, the findings are specific to space-based high-energy monitors. These facilities are important both for full characterization of these transients as well as facilitating follow-up observations through discovery and localization. The full document reports a brief history of this field, followed by our detailed analyses and findings in some 68 pages, providing a holistic overview of the role of the IPN and high-energy monitors in the coming decades. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.04485v2-abstract-full').style.display = 'none'; document.getElementById('2308.04485v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Terms of Reference and additional information on the Science Analysis Group are available at https://pcos.gsfc.nasa.gov/sags/gtn-sag.php</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.09511">arXiv:2307.09511</a> <span> [<a href="https://arxiv.org/pdf/2307.09511">pdf</a>, <a href="https://arxiv.org/format/2307.09511">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> Enabling Kilonova Science with Nancy Grace Roman Space Telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Andreoni%2C+I">Igor Andreoni</a>, <a href="/search/astro-ph?searchtype=author&query=Coughlin%2C+M+W">Michael W. Coughlin</a>, <a href="/search/astro-ph?searchtype=author&query=Criswell%2C+A+W">Alexander W. Criswell</a>, <a href="/search/astro-ph?searchtype=author&query=Bulla%2C+M">Mattia Bulla</a>, <a href="/search/astro-ph?searchtype=author&query=Toivonen%2C+A">Andrew Toivonen</a>, <a href="/search/astro-ph?searchtype=author&query=Singer%2C+L+P">Leo P. Singer</a>, <a href="/search/astro-ph?searchtype=author&query=Palmese%2C+A">Antonella Palmese</a>, <a href="/search/astro-ph?searchtype=author&query=Burns%2C+E">E. Burns</a>, <a href="/search/astro-ph?searchtype=author&query=Gezari%2C+S">Suvi Gezari</a>, <a href="/search/astro-ph?searchtype=author&query=Kasliwal%2C+M+M">Mansi M. Kasliwal</a>, <a href="/search/astro-ph?searchtype=author&query=Kiendrebeogo%2C+R+W">R. Weizmann Kiendrebeogo</a>, <a href="/search/astro-ph?searchtype=author&query=Mahabal%2C+A">Ashish Mahabal</a>, <a href="/search/astro-ph?searchtype=author&query=Moriya%2C+T+J">Takashi J. Moriya</a>, <a href="/search/astro-ph?searchtype=author&query=Rest%2C+A">Armin Rest</a>, <a href="/search/astro-ph?searchtype=author&query=Scolnic%2C+D">Dan Scolnic</a>, <a href="/search/astro-ph?searchtype=author&query=Simcoe%2C+R+A">Robert A. Simcoe</a>, <a href="/search/astro-ph?searchtype=author&query=Soon%2C+J">Jamie Soon</a>, <a href="/search/astro-ph?searchtype=author&query=Stein%2C+R">Robert Stein</a>, <a href="/search/astro-ph?searchtype=author&query=Travouillon%2C+T">Tony Travouillon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.09511v2-abstract-short" style="display: inline;"> Binary neutron star mergers and neutron star-black hole mergers are multi-messenger sources that can be detected in gravitational waves and in electromagnetic radiation. The low electron fraction of neutron star merger ejecta favors the production of heavy elements such as lanthanides and actinides via rapid neutron capture (r-process). The decay of these unstable nuclei powers an infrared-bright… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.09511v2-abstract-full').style.display = 'inline'; document.getElementById('2307.09511v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.09511v2-abstract-full" style="display: none;"> Binary neutron star mergers and neutron star-black hole mergers are multi-messenger sources that can be detected in gravitational waves and in electromagnetic radiation. The low electron fraction of neutron star merger ejecta favors the production of heavy elements such as lanthanides and actinides via rapid neutron capture (r-process). The decay of these unstable nuclei powers an infrared-bright transient called a "kilonova". The discovery of a population of kilonovae will allow us to determine if neutron star mergers are the dominant sites for r-process element nucleosynthesis, constrain the equation of state of nuclear matter, and make independent measurements of the Hubble constant. The Nancy Grace Roman Space Telescope (Roman) will have a unique combination of depth, near-infrared sensitivity, and wide field of view. These characteristics will enable Roman's discovery of GW counterparts that will be missed by optical telescopes, such as kilonova that are associated with large distances, high lanthanide fractions, high binary mass-ratios, large dust extinction in the line of sight, or that are observed from equatorial viewing angles. Our analysis suggests to (i) make available a rapid (about 1 week) Target of Opportunity mode for GW follow-up; (ii) include observations of the High Latitude Time-Domain survey footprint in at least two filters (preferably the F158 and F213 filters) with a cadence of < 8 days; (iii) operate in synergy with Rubin Observatory. Following these recommendations, we expect that 1-6 kilonovae can be identified by Roman via ToO observations of well localized (A < 10 sq. deg., 90% C.I.) neutron star mergers during 1.5 years of the LIGO-Virgo-KAGRA fifth (or about 4-21 in during the sixth) observing run. A sample of 5-40 serendipitously discovered kilonovae can be collected in a 5-year high latitude survey. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.09511v2-abstract-full').style.display = 'none'; document.getElementById('2307.09511v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted for publication in Astroparticle Physics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.02098">arXiv:2307.02098</a> <span> [<a href="https://arxiv.org/pdf/2307.02098">pdf</a>, <a href="https://arxiv.org/format/2307.02098">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-023-06759-1">10.1038/s41586-023-06759-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> JWST detection of heavy neutron capture elements in a compact object merger </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Levan%2C+A">A. Levan</a>, <a href="/search/astro-ph?searchtype=author&query=Gompertz%2C+B+P">B. P. Gompertz</a>, <a href="/search/astro-ph?searchtype=author&query=Salafia%2C+O+S">O. S. Salafia</a>, <a href="/search/astro-ph?searchtype=author&query=Bulla%2C+M">M. Bulla</a>, <a href="/search/astro-ph?searchtype=author&query=Burns%2C+E">E. Burns</a>, <a href="/search/astro-ph?searchtype=author&query=Hotokezaka%2C+K">K. Hotokezaka</a>, <a href="/search/astro-ph?searchtype=author&query=Izzo%2C+L">L. Izzo</a>, <a href="/search/astro-ph?searchtype=author&query=Lamb%2C+G+P">G. P. Lamb</a>, <a href="/search/astro-ph?searchtype=author&query=Malesani%2C+D+B">D. B. Malesani</a>, <a href="/search/astro-ph?searchtype=author&query=Oates%2C+S+R">S. R. Oates</a>, <a href="/search/astro-ph?searchtype=author&query=Ravasio%2C+M+E">M. E. Ravasio</a>, <a href="/search/astro-ph?searchtype=author&query=Escorial%2C+A+R">A. Rouco Escorial</a>, <a href="/search/astro-ph?searchtype=author&query=Schneider%2C+B">B. Schneider</a>, <a href="/search/astro-ph?searchtype=author&query=Sarin%2C+N">N. Sarin</a>, <a href="/search/astro-ph?searchtype=author&query=Schulze%2C+S">S. Schulze</a>, <a href="/search/astro-ph?searchtype=author&query=Tanvir%2C+N+R">N. R. Tanvir</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Anderson%2C+G">G. Anderson</a>, <a href="/search/astro-ph?searchtype=author&query=Brammer%2C+G+B">G. B. Brammer</a>, <a href="/search/astro-ph?searchtype=author&query=Christensen%2C+L">L. Christensen</a>, <a href="/search/astro-ph?searchtype=author&query=Dhillon%2C+V+S">V. S. Dhillon</a>, <a href="/search/astro-ph?searchtype=author&query=Evans%2C+P+A">P. A. Evans</a>, <a href="/search/astro-ph?searchtype=author&query=Fausnaugh%2C+M">M. Fausnaugh</a>, <a href="/search/astro-ph?searchtype=author&query=Fong%2C+W+-">W. -F. Fong</a>, <a href="/search/astro-ph?searchtype=author&query=Fruchter%2C+A+S">A. S. Fruchter</a> , et al. (58 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.02098v1-abstract-short" style="display: inline;"> The mergers of binary compact objects such as neutron stars and black holes are of central interest to several areas of astrophysics, including as the progenitors of gamma-ray bursts (GRBs), sources of high-frequency gravitational waves and likely production sites for heavy element nucleosynthesis via rapid neutron capture (the r-process). These heavy elements include some of great geophysical, bi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.02098v1-abstract-full').style.display = 'inline'; document.getElementById('2307.02098v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.02098v1-abstract-full" style="display: none;"> The mergers of binary compact objects such as neutron stars and black holes are of central interest to several areas of astrophysics, including as the progenitors of gamma-ray bursts (GRBs), sources of high-frequency gravitational waves and likely production sites for heavy element nucleosynthesis via rapid neutron capture (the r-process). These heavy elements include some of great geophysical, biological and cultural importance, such as thorium, iodine and gold. Here we present observations of the exceptionally bright gamma-ray burst GRB 230307A. We show that GRB 230307A belongs to the class of long-duration gamma-ray bursts associated with compact object mergers, and contains a kilonova similar to AT2017gfo, associated with the gravitational-wave merger GW170817. We obtained James Webb Space Telescope mid-infrared (mid-IR) imaging and spectroscopy 29 and 61 days after the burst. The spectroscopy shows an emission line at 2.15 microns which we interpret as tellurium (atomic mass A=130), and a very red source, emitting most of its light in the mid-IR due to the production of lanthanides. These observations demonstrate that nucleosynthesis in GRBs can create r-process elements across a broad atomic mass range and play a central role in heavy element nucleosynthesis across the Universe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.02098v1-abstract-full').style.display = 'none'; document.getElementById('2307.02098v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted. Comments welcome! Nature (2023)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.14974">arXiv:2306.14974</a> <span> [<a href="https://arxiv.org/pdf/2306.14974">pdf</a>, <a href="https://arxiv.org/format/2306.14974">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2515-5172/ace258">10.3847/2515-5172/ace258 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An observational upper limit on the rate of gamma-ray bursts with neutron star-black hole merger progenitors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Biscoveanu%2C+S">Sylvia Biscoveanu</a>, <a href="/search/astro-ph?searchtype=author&query=Burns%2C+E">Eric Burns</a>, <a href="/search/astro-ph?searchtype=author&query=Landry%2C+P">Philippe Landry</a>, <a href="/search/astro-ph?searchtype=author&query=Vitale%2C+S">Salvatore Vitale</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.14974v1-abstract-short" style="display: inline;"> Compact-object binary mergers consisting of one neutron star and one black hole (NSBHs) have long been considered promising progenitors for gamma-ray bursts, whose central engine remains poorly understood. Using gravitational-wave constraints on the population-level NSBH mass and spin distributions we find that at most $20~\mathrm{Gpc}^{-3}\mathrm{yr}^{-1}$ of gamma-ray bursts in the local univers… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.14974v1-abstract-full').style.display = 'inline'; document.getElementById('2306.14974v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.14974v1-abstract-full" style="display: none;"> Compact-object binary mergers consisting of one neutron star and one black hole (NSBHs) have long been considered promising progenitors for gamma-ray bursts, whose central engine remains poorly understood. Using gravitational-wave constraints on the population-level NSBH mass and spin distributions we find that at most $20~\mathrm{Gpc}^{-3}\mathrm{yr}^{-1}$ of gamma-ray bursts in the local universe can have NSBH progenitors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.14974v1-abstract-full').style.display = 'none'; document.getElementById('2306.14974v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to RNAAS</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2300187 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Res. Notes AAS 7 136 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.04373">arXiv:2306.04373</a> <span> [<a href="https://arxiv.org/pdf/2306.04373">pdf</a>, <a href="https://arxiv.org/format/2306.04373">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acf458">10.3847/1538-4357/acf458 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Deep Multimessenger Search for Compact Binary Mergers in LIGO, Virgo, and Fermi/GBM Data from 2016-2017 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Pillas%2C+M">M. Pillas</a>, <a href="/search/astro-ph?searchtype=author&query=Canton%2C+T+D">T. Dal Canton</a>, <a href="/search/astro-ph?searchtype=author&query=Stachie%2C+C">C. Stachie</a>, <a href="/search/astro-ph?searchtype=author&query=Piotrzkowski%2C+B">B. Piotrzkowski</a>, <a href="/search/astro-ph?searchtype=author&query=Hayes%2C+F">F. Hayes</a>, <a href="/search/astro-ph?searchtype=author&query=Hamburg%2C+R">R. Hamburg</a>, <a href="/search/astro-ph?searchtype=author&query=Burns%2C+E">E. Burns</a>, <a href="/search/astro-ph?searchtype=author&query=Wood%2C+J">J. Wood</a>, <a href="/search/astro-ph?searchtype=author&query=Duverne%2C+P+A">P. A. Duverne</a>, <a href="/search/astro-ph?searchtype=author&query=Christensen%2C+N">N. Christensen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.04373v3-abstract-short" style="display: inline;"> GW170817-GRB 170817A provided the first observation of gravitational waves from a neutron star merger with associated transient counterparts across the entire electromagnetic spectrum. This discovery demonstrated the long-hypothesized association between short gamma-ray bursts and neutron star mergers. More joint detections are needed to explore the relation between the parameters inferred from th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.04373v3-abstract-full').style.display = 'inline'; document.getElementById('2306.04373v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.04373v3-abstract-full" style="display: none;"> GW170817-GRB 170817A provided the first observation of gravitational waves from a neutron star merger with associated transient counterparts across the entire electromagnetic spectrum. This discovery demonstrated the long-hypothesized association between short gamma-ray bursts and neutron star mergers. More joint detections are needed to explore the relation between the parameters inferred from the gravitational wave and the properties of the gamma-ray burst signal. We developed a joint multimessenger analysis of LIGO, Virgo, and Fermi/GBM data designed for detecting weak gravitational-wave transients associated with weak gamma-ray bursts. As such, it does not start from confident (GWTC-1) events only. Instead, we take the full list of existing compact binary coalescence triggers generated with the PyCBC pipeline from the second Gravitational-Wave Observing Run (O2), and reanalyze the entire set of public Fermi/GBM data covering this observing run to generate a corresponding set of gamma-ray burst candidate triggers. We then search for coincidences between the gravitational-wave and gamma-ray burst triggers without requiring a confident detection in any channel. The candidate coincidences are ranked according to a statistic combining each candidate's strength in gravitational-wave and gamma-ray data, their time proximity, and the overlap of their sky localization. The ranking is then converted to a false alarm rate using time shifts between the gravitational-wave and gamma-ray burst triggers. We present the results using O2 triggers, which allowed us to check the validity of our method against GW170817-GRB 170817A. We also discuss the different configurations tested to maximize the significance of the joint detection. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.04373v3-abstract-full').style.display = 'none'; document.getElementById('2306.04373v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 16 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJ 956 56 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.12262">arXiv:2305.12262</a> <span> [<a href="https://arxiv.org/pdf/2305.12262">pdf</a>, <a href="https://arxiv.org/format/2305.12262">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/ace82d">10.3847/2041-8213/ace82d <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Extreme Variability in a Long Duration Gamma-ray Burst Associated with a Kilonova </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Veres%2C+P">P. Veres</a>, <a href="/search/astro-ph?searchtype=author&query=Bhat%2C+P+N">P. N. Bhat</a>, <a href="/search/astro-ph?searchtype=author&query=Burns%2C+E">E. Burns</a>, <a href="/search/astro-ph?searchtype=author&query=Hamburg%2C+R">R. Hamburg</a>, <a href="/search/astro-ph?searchtype=author&query=Fraija%2C+N">N. Fraija</a>, <a href="/search/astro-ph?searchtype=author&query=Kocevski%2C+D">D. Kocevski</a>, <a href="/search/astro-ph?searchtype=author&query=Preece%2C+R">R. Preece</a>, <a href="/search/astro-ph?searchtype=author&query=Poolakkil%2C+S">S. Poolakkil</a>, <a href="/search/astro-ph?searchtype=author&query=Christensen%2C+N">N. Christensen</a>, <a href="/search/astro-ph?searchtype=author&query=Bizouard%2C+M+A">M. A. Bizouard</a>, <a href="/search/astro-ph?searchtype=author&query=Canton%2C+T+D">T. Dal Canton</a>, <a href="/search/astro-ph?searchtype=author&query=Bala%2C+S">S. Bala</a>, <a href="/search/astro-ph?searchtype=author&query=Bissaldi%2C+E">E. Bissaldi</a>, <a href="/search/astro-ph?searchtype=author&query=Briggs%2C+M+S">M. S. Briggs</a>, <a href="/search/astro-ph?searchtype=author&query=Cleveland%2C+W">W. Cleveland</a>, <a href="/search/astro-ph?searchtype=author&query=Goldstein%2C+A">A. Goldstein</a>, <a href="/search/astro-ph?searchtype=author&query=Hristov%2C+B+A">B. A. Hristov</a>, <a href="/search/astro-ph?searchtype=author&query=Hui%2C+C+M">C. M. Hui</a>, <a href="/search/astro-ph?searchtype=author&query=Lesage%2C+S">S. Lesage</a>, <a href="/search/astro-ph?searchtype=author&query=Mailyan%2C+B">B. Mailyan</a>, <a href="/search/astro-ph?searchtype=author&query=Roberts%2C+O+J">O. J. Roberts</a>, <a href="/search/astro-ph?searchtype=author&query=Wilson-Hodge%2C+C+A">C. A. Wilson-Hodge</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.12262v1-abstract-short" style="display: inline;"> The recent discovery of a kilonova from the long duration gamma-ray burst, GRB 211211A, challenges classification schemes based on temporal information alone. Gamma-ray properties of GRB 211211A reveal an extreme event, which stands out among both short and long GRBs. We find very short variations (few ms) in the lightcurve of GRB 211211A and estimate ~1000 for the Lorentz factor of the outflow. W… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.12262v1-abstract-full').style.display = 'inline'; document.getElementById('2305.12262v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.12262v1-abstract-full" style="display: none;"> The recent discovery of a kilonova from the long duration gamma-ray burst, GRB 211211A, challenges classification schemes based on temporal information alone. Gamma-ray properties of GRB 211211A reveal an extreme event, which stands out among both short and long GRBs. We find very short variations (few ms) in the lightcurve of GRB 211211A and estimate ~1000 for the Lorentz factor of the outflow. We discuss the relevance of the short variations in identifying similar long GRBs resulting from compact mergers. Our findings indicate that in future gravitational wave follow-up campaigns, some long duration GRBs should be treated as possible strong gravitational wave counterparts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.12262v1-abstract-full').style.display = 'none'; document.getElementById('2305.12262v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages 5 figures, submitted to AAS journals</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJL 954 L5 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.06134">arXiv:2305.06134</a> <span> [<a href="https://arxiv.org/pdf/2305.06134">pdf</a>, <a href="https://arxiv.org/format/2305.06134">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Multi-Messenger Diagnostics of the Engine behind Core-Collapse Supernovae </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Fryer%2C+C+L">Christopher L. Fryer</a>, <a href="/search/astro-ph?searchtype=author&query=Burns%2C+E">Eric Burns</a>, <a href="/search/astro-ph?searchtype=author&query=Hungerford%2C+A">Aimee Hungerford</a>, <a href="/search/astro-ph?searchtype=author&query=Safi-Harb%2C+S">Samar Safi-Harb</a>, <a href="/search/astro-ph?searchtype=author&query=Wollaeger%2C+R+T">R. T. Wollaeger</a>, <a href="/search/astro-ph?searchtype=author&query=Miller%2C+R+S">Richard S. Miller</a>, <a href="/search/astro-ph?searchtype=author&query=Negro%2C+M">Michela Negro</a>, <a href="/search/astro-ph?searchtype=author&query=Anandagoda%2C+S">Samalka Anandagoda</a>, <a href="/search/astro-ph?searchtype=author&query=Hartmann%2C+D+H">Dieter H. Hartmann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.06134v2-abstract-short" style="display: inline;"> Core-collapse supernova explosions play a wide role in astrophysics by producing compact remnants (neutron stars, black holes) and the synthesis and injection of many heavy elements into their host Galaxy. Because they are produced in some of the most extreme conditions in the universe, they can also probe physics in extreme conditions (matter at nuclear densities and extreme temperatures and magn… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.06134v2-abstract-full').style.display = 'inline'; document.getElementById('2305.06134v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.06134v2-abstract-full" style="display: none;"> Core-collapse supernova explosions play a wide role in astrophysics by producing compact remnants (neutron stars, black holes) and the synthesis and injection of many heavy elements into their host Galaxy. Because they are produced in some of the most extreme conditions in the universe, they can also probe physics in extreme conditions (matter at nuclear densities and extreme temperatures and magnetic fields). To quantify the impact of supernovae on both fundamental physics and our understanding of the Universe, we must leverage a broad set of observables of this engine. In this paper, we study a subset of these probes using a suite of 1-dimensional, parameterized mixing models: ejecta remnants from supernovae, ultraviolet, optical and infra-red lightcurves, and transient gamma-ray emission. We review the other diagnostics and show how the different probes tie together to provide a more clear picture of the supernova engine. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.06134v2-abstract-full').style.display = 'none'; document.getElementById('2305.06134v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LA-UR-23-23611 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.10934">arXiv:2304.10934</a> <span> [<a href="https://arxiv.org/pdf/2304.10934">pdf</a>, <a href="https://arxiv.org/format/2304.10934">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acd172">10.3847/1538-4357/acd172 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Cross-correlation Study between IceCube Neutrino Events and the Fermi Unresolved Gamma-ray Sky </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Negro%2C+M">Michela Negro</a>, <a href="/search/astro-ph?searchtype=author&query=Crnogor%C4%8Devi%C4%87%2C+M">Milena Crnogor膷evi膰</a>, <a href="/search/astro-ph?searchtype=author&query=Burns%2C+E">Eric Burns</a>, <a href="/search/astro-ph?searchtype=author&query=Charles%2C+E">Eric Charles</a>, <a href="/search/astro-ph?searchtype=author&query=Marcotulli%2C+L">Lea Marcotulli</a>, <a href="/search/astro-ph?searchtype=author&query=Caputo%2C+R">Regina Caputo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.10934v2-abstract-short" style="display: inline;"> With the coincident detections of electromagnetic radiation together with gravitational waves (GW170817) or neutrinos (TXS 0506+056), the new era of multimessenger astrophysics has begun. Of particular interest are the searches for correlation between the high-energy astrophysical neutrinos detected by the IceCube Observatory and gamma-ray photons detected by the Fermi Large Area Telescope (LAT).… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.10934v2-abstract-full').style.display = 'inline'; document.getElementById('2304.10934v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.10934v2-abstract-full" style="display: none;"> With the coincident detections of electromagnetic radiation together with gravitational waves (GW170817) or neutrinos (TXS 0506+056), the new era of multimessenger astrophysics has begun. Of particular interest are the searches for correlation between the high-energy astrophysical neutrinos detected by the IceCube Observatory and gamma-ray photons detected by the Fermi Large Area Telescope (LAT). So far, only sources detected by the LAT have been considered in correlation with IceCube neutrinos, neglecting any emission from sources too faint to be resolved individually. Here, we present the first cross-correlation analysis considering the unresolved gamma-ray background (UGRB) and IceCube events. We perform a thorough sensitivity study and, given the lack of identified correlation, we place upper limits on the fraction of the observed neutrinos that would be produced in proton-proton or proton-gamma interactions from the population of sources contributing to the UGRB emission and dominating its spatial anisotropy (aka blazars). Our analysis suggests that, under the assumption that there is no intrinsic cutoff and/or hardening of the spectrum above Fermi-LAT energies, and that all gamma-rays from the unresolved blazars dominating the UGRB fluctuation field are produced by neutral pions from p-p (p-gamma) interactions, up to 60% (30%) of such population may contribute to the total neutrino events observed by IceCube. This translates into a O(1%) maximum contribution to the astrophysical high-energy neutrino flux observed by IceCube at 100 TeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.10934v2-abstract-full').style.display = 'none'; document.getElementById('2304.10934v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJ 951 83 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.14172">arXiv:2303.14172</a> <span> [<a href="https://arxiv.org/pdf/2303.14172">pdf</a>, <a href="https://arxiv.org/format/2303.14172">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/ace5b4">10.3847/2041-8213/ace5b4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fermi-GBM Discovery of GRB 221009A: An Extraordinarily Bright GRB from Onset to Afterglow </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Lesage%2C+S">S. Lesage</a>, <a href="/search/astro-ph?searchtype=author&query=Veres%2C+P">P. Veres</a>, <a href="/search/astro-ph?searchtype=author&query=Briggs%2C+M+S">M. S. Briggs</a>, <a href="/search/astro-ph?searchtype=author&query=Goldstein%2C+A">A. Goldstein</a>, <a href="/search/astro-ph?searchtype=author&query=Kocevski%2C+D">D. Kocevski</a>, <a href="/search/astro-ph?searchtype=author&query=Burns%2C+E">E. Burns</a>, <a href="/search/astro-ph?searchtype=author&query=Wilson-Hodge%2C+C+A">C. A. Wilson-Hodge</a>, <a href="/search/astro-ph?searchtype=author&query=Bhat%2C+P+N">P. N. Bhat</a>, <a href="/search/astro-ph?searchtype=author&query=Huppenkothen%2C+D">D. Huppenkothen</a>, <a href="/search/astro-ph?searchtype=author&query=Fryer%2C+C+L">C. L. Fryer</a>, <a href="/search/astro-ph?searchtype=author&query=Hamburg%2C+R">R. Hamburg</a>, <a href="/search/astro-ph?searchtype=author&query=Racusin%2C+J">J. Racusin</a>, <a href="/search/astro-ph?searchtype=author&query=Bissaldi%2C+E">E. Bissaldi</a>, <a href="/search/astro-ph?searchtype=author&query=Cleveland%2C+W+H">W. H. Cleveland</a>, <a href="/search/astro-ph?searchtype=author&query=Dalessi%2C+S">S. Dalessi</a>, <a href="/search/astro-ph?searchtype=author&query=Fletcher%2C+C">C. Fletcher</a>, <a href="/search/astro-ph?searchtype=author&query=Giles%2C+M+M">M. M. Giles</a>, <a href="/search/astro-ph?searchtype=author&query=Hristov%2C+B+A">B. A. Hristov</a>, <a href="/search/astro-ph?searchtype=author&query=Hui%2C+C+M">C. M. Hui</a>, <a href="/search/astro-ph?searchtype=author&query=Mailyan%2C+B">B. Mailyan</a>, <a href="/search/astro-ph?searchtype=author&query=Malacaria%2C+C">C. Malacaria</a>, <a href="/search/astro-ph?searchtype=author&query=Poolakkil%2C+S">S. Poolakkil</a>, <a href="/search/astro-ph?searchtype=author&query=Roberts%2C+O+J">O. J. Roberts</a>, <a href="/search/astro-ph?searchtype=author&query=von+Kienlin%2C+A">A. von Kienlin</a>, <a href="/search/astro-ph?searchtype=author&query=Wood%2C+J">J. Wood</a> , et al. (115 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.14172v2-abstract-short" style="display: inline;"> We report the discovery of GRB 221009A, the highest flux gamma-ray burst ever observed by the Fermi Gamma-ray Burst Monitor (GBM). This GRB has continuous prompt emission lasting more than 600 seconds which smoothly transitions to afterglow visible in the GBM energy range (8 keV--40 MeV), and total energetics higher than any other burst in the GBM sample. By using a variety of new and existing ana… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.14172v2-abstract-full').style.display = 'inline'; document.getElementById('2303.14172v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.14172v2-abstract-full" style="display: none;"> We report the discovery of GRB 221009A, the highest flux gamma-ray burst ever observed by the Fermi Gamma-ray Burst Monitor (GBM). This GRB has continuous prompt emission lasting more than 600 seconds which smoothly transitions to afterglow visible in the GBM energy range (8 keV--40 MeV), and total energetics higher than any other burst in the GBM sample. By using a variety of new and existing analysis techniques we probe the spectral and temporal evolution of GRB 221009A. We find no emission prior to the GBM trigger time (t0; 2022 October 9 at 13:16:59.99 UTC), indicating that this is the time of prompt emission onset. The triggering pulse exhibits distinct spectral and temporal properties suggestive of the thermal, photospheric emission of shock-breakout, with significant emission up to $\sim$15 MeV. We characterize the onset of external shock at t0+600 s and find evidence of a plateau region in the early-afterglow phase which transitions to a slope consistent with Swift-XRT afterglow measurements. We place the total energetics of GRB 221009A in context with the rest of the GBM sample and find that this GRB has the highest total isotropic-equivalent energy ($\textrm{E}_{纬,\textrm{iso}}=1.0\times10^{55}$ erg) and second highest isotropic-equivalent luminosity ($\textrm{L}_{纬,\textrm{iso}}=9.9\times10^{53}$ erg/s) based on redshift of z = 0.151. These extreme energetics are what allowed us to observe the continuously emitting central engine of GBM from the beginning of the prompt emission phase through the onset of early afterglow. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.14172v2-abstract-full').style.display = 'none'; document.getElementById('2303.14172v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages 7 figures - accepted for publication in ApJL</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.07319">arXiv:2303.07319</a> <span> [<a href="https://arxiv.org/pdf/2303.07319">pdf</a>, <a href="https://arxiv.org/format/2303.07319">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Observations of GRB 230307A by TESS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Fausnaugh%2C+M+M">Michael M. Fausnaugh</a>, <a href="/search/astro-ph?searchtype=author&query=Jayaraman%2C+R">Rahul Jayaraman</a>, <a href="/search/astro-ph?searchtype=author&query=Vanderspek%2C+R">Roland Vanderspek</a>, <a href="/search/astro-ph?searchtype=author&query=Ricker%2C+G+R">George R. Ricker</a>, <a href="/search/astro-ph?searchtype=author&query=Burke%2C+C+J">Christopher J. Burke</a>, <a href="/search/astro-ph?searchtype=author&query=Colon%2C+K+D">Knicole D. Colon</a>, <a href="/search/astro-ph?searchtype=author&query=Fleming%2C+S+W">Scott W. Fleming</a>, <a href="/search/astro-ph?searchtype=author&query=Lewis%2C+H+M">Hannah M. Lewis</a>, <a href="/search/astro-ph?searchtype=author&query=Mullally%2C+S">Susan Mullally</a>, <a href="/search/astro-ph?searchtype=author&query=Youngblood%2C+A">Allison Youngblood</a>, <a href="/search/astro-ph?searchtype=author&query=Barclay%2C+T">Thomas Barclay</a>, <a href="/search/astro-ph?searchtype=author&query=Burns%2C+E">Eric Burns</a>, <a href="/search/astro-ph?searchtype=author&query=Latham%2C+D+W">David W. Latham</a>, <a href="/search/astro-ph?searchtype=author&query=Seager%2C+S">S. Seager</a>, <a href="/search/astro-ph?searchtype=author&query=Winn%2C+J+N">Joshua N. Winn</a>, <a href="/search/astro-ph?searchtype=author&query=Jenkins%2C+J+M">Jon M. Jenkins</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.07319v2-abstract-short" style="display: inline;"> We present the TESS light curve of GRB 230307A. We find two distinct components: a bright, prompt optical component at the time of the Fermi observation that peaked at TESS magnitude 14.49 (averaged over 200 seconds), followed by a gradual rise and fall over 0.5 days, likely associated with the afterglow, that peaked at 17.65 mag. The prompt component is observed in a single 200s Full Frame Image… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.07319v2-abstract-full').style.display = 'inline'; document.getElementById('2303.07319v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.07319v2-abstract-full" style="display: none;"> We present the TESS light curve of GRB 230307A. We find two distinct components: a bright, prompt optical component at the time of the Fermi observation that peaked at TESS magnitude 14.49 (averaged over 200 seconds), followed by a gradual rise and fall over 0.5 days, likely associated with the afterglow, that peaked at 17.65 mag. The prompt component is observed in a single 200s Full Frame Image and was undetectable in the next TESS image ($T_{\rm mag} > 17.79$). Assuming that the onset of the optical transient was coincident with the gamma-ray emission, the prompt emission lasted less than 73.6 seconds, which implies the true peak was actually brighter than $T_{\rm mag} =$ 13.40. We also fit parametric models to the afterglow to characterize its shape. The TESS light curve can be retrieved at https://tess.mit.edu/public/tesstransients/light_curves/lc_grb230307A_cleaned.txt. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.07319v2-abstract-full').style.display = 'none'; document.getElementById('2303.07319v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published as a Research Notes of the AAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.14037">arXiv:2302.14037</a> <span> [<a href="https://arxiv.org/pdf/2302.14037">pdf</a>, <a href="https://arxiv.org/format/2302.14037">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/acc39c">10.3847/2041-8213/acc39c <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> GRB 221009A, The BOAT </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Burns%2C+E">Eric Burns</a>, <a href="/search/astro-ph?searchtype=author&query=Svinkin%2C+D">Dmitry Svinkin</a>, <a href="/search/astro-ph?searchtype=author&query=Fenimore%2C+E">Edward Fenimore</a>, <a href="/search/astro-ph?searchtype=author&query=Kann%2C+D+A">D. Alexander Kann</a>, <a href="/search/astro-ph?searchtype=author&query=Fern%C3%A1ndez%2C+J+F+A">Jos茅 Feliciano Ag眉铆 Fern谩ndez</a>, <a href="/search/astro-ph?searchtype=author&query=Frederiks%2C+D">Dmitry Frederiks</a>, <a href="/search/astro-ph?searchtype=author&query=Hamburg%2C+R">Rachel Hamburg</a>, <a href="/search/astro-ph?searchtype=author&query=Lesage%2C+S">Stephen Lesage</a>, <a href="/search/astro-ph?searchtype=author&query=Temiraev%2C+Y">Yuri Temiraev</a>, <a href="/search/astro-ph?searchtype=author&query=Tsvetkova%2C+A">Anastasia Tsvetkova</a>, <a href="/search/astro-ph?searchtype=author&query=Bissaldi%2C+E">Elisabetta Bissaldi</a>, <a href="/search/astro-ph?searchtype=author&query=Briggs%2C+M+S">Michael S. Briggs</a>, <a href="/search/astro-ph?searchtype=author&query=Fletcher%2C+C">Cori Fletcher</a>, <a href="/search/astro-ph?searchtype=author&query=Goldstein%2C+A">Adam Goldstein</a>, <a href="/search/astro-ph?searchtype=author&query=Hui%2C+C+M">C. Michelle Hui</a>, <a href="/search/astro-ph?searchtype=author&query=Hristov%2C+B+A">Boyan A. Hristov</a>, <a href="/search/astro-ph?searchtype=author&query=Kocevski%2C+D">Daniel Kocevski</a>, <a href="/search/astro-ph?searchtype=author&query=Lysenko%2C+A+L">Alexandra L. Lysenko</a>, <a href="/search/astro-ph?searchtype=author&query=Mailyan%2C+B">Bagrat Mailyan</a>, <a href="/search/astro-ph?searchtype=author&query=Racusin%2C+J">Judith Racusin</a>, <a href="/search/astro-ph?searchtype=author&query=Ridnaia%2C+A">Anna Ridnaia</a>, <a href="/search/astro-ph?searchtype=author&query=Roberts%2C+O+J">Oliver J. Roberts</a>, <a href="/search/astro-ph?searchtype=author&query=Ulanov%2C+M">Mikhail Ulanov</a>, <a href="/search/astro-ph?searchtype=author&query=Veres%2C+P">Peter Veres</a>, <a href="/search/astro-ph?searchtype=author&query=Wilson-Hodge%2C+C+A">Colleen A. Wilson-Hodge</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.14037v3-abstract-short" style="display: inline;"> GRB 221009A has been referred to as the Brightest Of All Time (the BOAT). We investigate the veracity of this statement by comparing it with a half century of prompt gamma-ray burst observations. This burst is the brightest ever detected by the measures of peak flux and fluence. Unexpectedly, GRB 221009A has the highest isotropic-equivalent total energy ever identified, while the peak luminosity i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.14037v3-abstract-full').style.display = 'inline'; document.getElementById('2302.14037v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.14037v3-abstract-full" style="display: none;"> GRB 221009A has been referred to as the Brightest Of All Time (the BOAT). We investigate the veracity of this statement by comparing it with a half century of prompt gamma-ray burst observations. This burst is the brightest ever detected by the measures of peak flux and fluence. Unexpectedly, GRB 221009A has the highest isotropic-equivalent total energy ever identified, while the peak luminosity is at the $\sim99$th percentile of the known distribution. We explore how such a burst can be powered and discuss potential implications for ultra-long and high-redshift gamma-ray bursts. By geometric extrapolation of the total fluence and peak flux distributions GRB 221009A appears to be a once in 10,000 year event. Thus, while it almost certainly not the BOAT over all of cosmic history, it may be the brightest gamma-ray burst since human civilization began. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.14037v3-abstract-full').style.display = 'none'; document.getElementById('2302.14037v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Version accepted to ApJL. Also adds proper acknowledgements</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.07761">arXiv:2302.07761</a> <span> [<a href="https://arxiv.org/pdf/2302.07761">pdf</a>, <a href="https://arxiv.org/format/2302.07761">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/acc2c1">10.3847/2041-8213/acc2c1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The first JWST spectrum of a GRB afterglow: No bright supernova in observations of the brightest GRB of all time, GRB 221009A </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Levan%2C+A+J">A. J. Levan</a>, <a href="/search/astro-ph?searchtype=author&query=Lamb%2C+G+P">G. P. Lamb</a>, <a href="/search/astro-ph?searchtype=author&query=Schneider%2C+B">B. Schneider</a>, <a href="/search/astro-ph?searchtype=author&query=Hjorth%2C+J">J. Hjorth</a>, <a href="/search/astro-ph?searchtype=author&query=Zafar%2C+T">T. Zafar</a>, <a href="/search/astro-ph?searchtype=author&query=Postigo%2C+A+d+U">A. de Ugarte Postigo</a>, <a href="/search/astro-ph?searchtype=author&query=Sargent%2C+B">B. Sargent</a>, <a href="/search/astro-ph?searchtype=author&query=Mullally%2C+S+E">S. E. Mullally</a>, <a href="/search/astro-ph?searchtype=author&query=Izzo%2C+L">L. Izzo</a>, <a href="/search/astro-ph?searchtype=author&query=D%27Avanzo%2C+P">P. D'Avanzo</a>, <a href="/search/astro-ph?searchtype=author&query=Burns%2C+E">E. Burns</a>, <a href="/search/astro-ph?searchtype=author&query=Fern%C3%A1ndez%2C+J+F+A">J. F. Ag眉铆 Fern谩ndez</a>, <a href="/search/astro-ph?searchtype=author&query=Barclay%2C+T">T. Barclay</a>, <a href="/search/astro-ph?searchtype=author&query=Bernardini%2C+M+G">M. G. Bernardini</a>, <a href="/search/astro-ph?searchtype=author&query=Bhirombhakdi%2C+K">K. Bhirombhakdi</a>, <a href="/search/astro-ph?searchtype=author&query=Bremer%2C+M">M. Bremer</a>, <a href="/search/astro-ph?searchtype=author&query=Brivio%2C+R">R. Brivio</a>, <a href="/search/astro-ph?searchtype=author&query=Campana%2C+S">S. Campana</a>, <a href="/search/astro-ph?searchtype=author&query=Chrimes%2C+A+A">A. A. Chrimes</a>, <a href="/search/astro-ph?searchtype=author&query=D%27Elia%2C+V">V. D'Elia</a>, <a href="/search/astro-ph?searchtype=author&query=Della+Valle%2C+M">M. Della Valle</a>, <a href="/search/astro-ph?searchtype=author&query=De+Pasquale%2C+M">M. De Pasquale</a>, <a href="/search/astro-ph?searchtype=author&query=Ferro%2C+M">M. Ferro</a>, <a href="/search/astro-ph?searchtype=author&query=Fong%2C+W">W. Fong</a>, <a href="/search/astro-ph?searchtype=author&query=Fruchter%2C+A+S">A. S. Fruchter</a> , et al. (35 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.07761v2-abstract-short" style="display: inline;"> We present JWST and Hubble Space Telescope (HST) observations of the afterglow of GRB 221009A, the brightest gamma-ray burst (GRB) ever observed. This includes the first mid-IR spectra of any GRB, obtained with JWST/NIRSPEC (0.6-5.5 micron) and MIRI (5-12 micron), 12 days after the burst. Assuming that the intrinsic spectral slope is a single power-law, with $F_谓 \propto 谓^{-尾}$, we obtain… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.07761v2-abstract-full').style.display = 'inline'; document.getElementById('2302.07761v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.07761v2-abstract-full" style="display: none;"> We present JWST and Hubble Space Telescope (HST) observations of the afterglow of GRB 221009A, the brightest gamma-ray burst (GRB) ever observed. This includes the first mid-IR spectra of any GRB, obtained with JWST/NIRSPEC (0.6-5.5 micron) and MIRI (5-12 micron), 12 days after the burst. Assuming that the intrinsic spectral slope is a single power-law, with $F_谓 \propto 谓^{-尾}$, we obtain $尾\approx 0.35$, modified by substantial dust extinction with $A_V = 4.9$. This suggests extinction above the notional Galactic value, possibly due to patchy extinction within the Milky Way or dust in the GRB host galaxy. It further implies that the X-ray and optical/IR regimes are not on the same segment of the synchrotron spectrum of the afterglow. If the cooling break lies between the X-ray and optical/IR, then the temporal decay rates would only match a post jet-break model, with electron index $p<2$, and with the jet expanding into a uniform ISM medium. The shape of the JWST spectrum is near-identical in the optical/nIR to X-shooter spectroscopy obtained at 0.5 days and to later time observations with HST. The lack of spectral evolution suggests that any accompanying supernova (SN) is either substantially fainter or bluer than SN 1998bw, the proto-type GRB-SN. Our HST observations also reveal a disc-like host galaxy, viewed close to edge-on, that further complicates the isolation of any supernova component. The host galaxy appears rather typical amongst long-GRB hosts and suggests that the extreme properties of GRB 221009A are not directly tied to its galaxy-scale environment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.07761v2-abstract-full').style.display = 'none'; document.getElementById('2302.07761v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication to the Astrophysical Journal Letters for the GRB 221009A Special Issue. The results of this paper are under press embargo until March 28, 18 UT. 19 pages, 8 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.06225">arXiv:2302.06225</a> <span> [<a href="https://arxiv.org/pdf/2302.06225">pdf</a>, <a href="https://arxiv.org/format/2302.06225">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/acc8d0">10.3847/2041-8213/acc8d0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> GRANDMA and HXMT Observations of GRB 221009A -- the Standard-Luminosity Afterglow of a Hyper-Luminous Gamma-Ray Burst </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Kann%2C+D+A">D. A. Kann</a>, <a href="/search/astro-ph?searchtype=author&query=Agayeva%2C+S">S. Agayeva</a>, <a href="/search/astro-ph?searchtype=author&query=Aivazyan%2C+V">V. Aivazyan</a>, <a href="/search/astro-ph?searchtype=author&query=Alishov%2C+S">S. Alishov</a>, <a href="/search/astro-ph?searchtype=author&query=Andrade%2C+C+M">C. M. Andrade</a>, <a href="/search/astro-ph?searchtype=author&query=Antier%2C+S">S. Antier</a>, <a href="/search/astro-ph?searchtype=author&query=Baransky%2C+A">A. Baransky</a>, <a href="/search/astro-ph?searchtype=author&query=Bendjoya%2C+P">P. Bendjoya</a>, <a href="/search/astro-ph?searchtype=author&query=Benkhaldoun%2C+Z">Z. Benkhaldoun</a>, <a href="/search/astro-ph?searchtype=author&query=Beradze%2C+S">S. Beradze</a>, <a href="/search/astro-ph?searchtype=author&query=Berezin%2C+D">D. Berezin</a>, <a href="/search/astro-ph?searchtype=author&query=Bo%C3%ABr%2C+M">M. Bo毛r</a>, <a href="/search/astro-ph?searchtype=author&query=Broens%2C+E">E. Broens</a>, <a href="/search/astro-ph?searchtype=author&query=Brunier%2C+S">S. Brunier</a>, <a href="/search/astro-ph?searchtype=author&query=Bulla%2C+M">M. Bulla</a>, <a href="/search/astro-ph?searchtype=author&query=Burkhonov%2C+O">O. Burkhonov</a>, <a href="/search/astro-ph?searchtype=author&query=Burns%2C+E">E. Burns</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+Y">Y. Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+Y+P">Y. P. Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Conti%2C+M">M. Conti</a>, <a href="/search/astro-ph?searchtype=author&query=Coughlin%2C+M+W">M. W. Coughlin</a>, <a href="/search/astro-ph?searchtype=author&query=Cui%2C+W+W">W. W. Cui</a>, <a href="/search/astro-ph?searchtype=author&query=Daigne%2C+F">F. Daigne</a>, <a href="/search/astro-ph?searchtype=author&query=Delaveau%2C+B">B. Delaveau</a>, <a href="/search/astro-ph?searchtype=author&query=Devillepoix%2C+H+A+R">H. A. R. Devillepoix</a> , et al. (91 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.06225v2-abstract-short" style="display: inline;"> GRB 221009A is the brightest Gamma-Ray Burst (GRB) detected in more than 50 years of study. In this paper, we present observations in the X-ray and optical domains after the GRB obtained by the GRANDMA Collaboration (which includes observations from more than 30 professional and amateur telescopes) and the Insight-HXMT Collaboration. We study the optical afterglow with empirical fitting from GRAND… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.06225v2-abstract-full').style.display = 'inline'; document.getElementById('2302.06225v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.06225v2-abstract-full" style="display: none;"> GRB 221009A is the brightest Gamma-Ray Burst (GRB) detected in more than 50 years of study. In this paper, we present observations in the X-ray and optical domains after the GRB obtained by the GRANDMA Collaboration (which includes observations from more than 30 professional and amateur telescopes) and the Insight-HXMT Collaboration. We study the optical afterglow with empirical fitting from GRANDMA+HXMT data, augmented with data from the literature up to 60 days. We then model numerically, using a Bayesian approach, the GRANDMA and HXMT-LE afterglow observations, that we augment with Swift-XRT and additional optical/NIR observations reported in the literature. We find that the GRB afterglow, extinguished by a large dust column, is most likely behind a combination of a large Milky-Way dust column combined with moderate low-metallicity dust in the host galaxy. Using the GRANDMA+HXMT-LE+XRT dataset, we find that the simplest model, where the observed afterglow is produced by synchrotron radiation at the forward external shock during the deceleration of a top-hat relativistic jet by a uniform medium, fits the multi-wavelength observations only moderately well, with a tension between the observed temporal and spectral evolution. This tension is confirmed when using the extended dataset. We find that the consideration of a jet structure (Gaussian or power-law), the inclusion of synchrotron self-Compton emission, or the presence of an underlying supernova do not improve the predictions, showing that the modelling of GRB22109A will require going beyond the most standard GRB afterglow model. Placed in the global context of GRB optical afterglows, we find the afterglow of GRB 221009A is luminous but not extraordinarily so, highlighting that some aspects of this GRB do not deviate from the global known sample despite its extreme energetics and the peculiar afterglow evolution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.06225v2-abstract-full').style.display = 'none'; document.getElementById('2302.06225v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to ApJL for the special issue, 37 pages, 23 pages main text, 6 tables, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.01798">arXiv:2301.01798</a> <span> [<a href="https://arxiv.org/pdf/2301.01798">pdf</a>, <a href="https://arxiv.org/format/2301.01798">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/acba17">10.3847/2041-8213/acba17 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The IXPE view of GRB 221009A </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Negro%2C+M">Michela Negro</a>, <a href="/search/astro-ph?searchtype=author&query=Di+Lalla%2C+N">Niccol贸 Di Lalla</a>, <a href="/search/astro-ph?searchtype=author&query=Omodei%2C+N">Nicola Omodei</a>, <a href="/search/astro-ph?searchtype=author&query=Veres%2C+P">P茅ter Veres</a>, <a href="/search/astro-ph?searchtype=author&query=Silvestri%2C+S">Stefano Silvestri</a>, <a href="/search/astro-ph?searchtype=author&query=Manfreda%2C+A">Alberto Manfreda</a>, <a href="/search/astro-ph?searchtype=author&query=Burns%2C+E">Eric Burns</a>, <a href="/search/astro-ph?searchtype=author&query=Baldini%2C+L">Luca Baldini</a>, <a href="/search/astro-ph?searchtype=author&query=Costa%2C+E">Enrico Costa</a>, <a href="/search/astro-ph?searchtype=author&query=Ehlert%2C+S+R">Steven R. Ehlert</a>, <a href="/search/astro-ph?searchtype=author&query=Kennea%2C+J+A">Jamie A. Kennea</a>, <a href="/search/astro-ph?searchtype=author&query=Liodakis%2C+I">Ioannis Liodakis</a>, <a href="/search/astro-ph?searchtype=author&query=Marshall%2C+H+L">Herman L. Marshall</a>, <a href="/search/astro-ph?searchtype=author&query=Mereghetti%2C+S">Sandro Mereghetti</a>, <a href="/search/astro-ph?searchtype=author&query=Middei%2C+R">Riccardo Middei</a>, <a href="/search/astro-ph?searchtype=author&query=Muleri%2C+F">Fabio Muleri</a>, <a href="/search/astro-ph?searchtype=author&query=O%27Dell%2C+S+L">Stephen L. O'Dell</a>, <a href="/search/astro-ph?searchtype=author&query=Roberts%2C+O+J">Oliver J. Roberts</a>, <a href="/search/astro-ph?searchtype=author&query=Romani%2C+R+W">Roger W. Romani</a>, <a href="/search/astro-ph?searchtype=author&query=Sgr%C3%B3%2C+C">Carmelo Sgr贸</a>, <a href="/search/astro-ph?searchtype=author&query=Di+Marco%2C+A">Alessandro Di Marco</a>, <a href="/search/astro-ph?searchtype=author&query=Puccetti%2C+S">Simonetta Puccetti</a>, <a href="/search/astro-ph?searchtype=author&query=Terashima%2C+M">Masanobu Terashima</a>, <a href="/search/astro-ph?searchtype=author&query=Tiengo%2C+A">Andrea Tiengo</a>, <a href="/search/astro-ph?searchtype=author&query=Viscolo%2C+D">Domenico Viscolo</a> , et al. (86 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.01798v2-abstract-short" style="display: inline;"> We present the IXPE observation of GRB 221009A which includes upper limits on the linear polarization degree of both prompt and afterglow emission in the soft X-ray energy band. GRB 221009A is an exceptionally bright gamma-ray burst (GRB) that reached Earth on 2022 October 9 after travelling through the dust of the Milky Way. The Imaging X-ray Polarimetry Explorer (IXPE) pointed at GRB 221009A on… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.01798v2-abstract-full').style.display = 'inline'; document.getElementById('2301.01798v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.01798v2-abstract-full" style="display: none;"> We present the IXPE observation of GRB 221009A which includes upper limits on the linear polarization degree of both prompt and afterglow emission in the soft X-ray energy band. GRB 221009A is an exceptionally bright gamma-ray burst (GRB) that reached Earth on 2022 October 9 after travelling through the dust of the Milky Way. The Imaging X-ray Polarimetry Explorer (IXPE) pointed at GRB 221009A on October 11 to observe, for the first time, the 2-8 keV X-ray polarization of a GRB afterglow. We set an upper limit to the polarization degree of the afterglow emission of 13.8% at a 99% confidence level. This result provides constraints on the jet opening angle and the viewing angle of the GRB, or alternatively, other properties of the emission region. Additionally, IXPE captured halo-rings of dust-scattered photons which are echoes of the GRB prompt emission. The 99% confidence level upper limit to the prompt polarization degree depends on the background model assumption and it ranges between ~55% to ~82%. This single IXPE pointing provides both the first assessment of X-ray polarization of a GRB afterglow and the first GRB study with polarization observations of both the prompt and afterglow phases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.01798v2-abstract-full').style.display = 'none'; document.getElementById('2301.01798v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by Astrophysical Journal Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2023, ApJ Letters, 946, L21 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.01607">arXiv:2301.01607</a> <span> [<a href="https://arxiv.org/pdf/2301.01607">pdf</a>, <a href="https://arxiv.org/format/2301.01607">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/acbb6a">10.3847/1538-4365/acbb6a <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Fermi-LAT Light Curve Repository </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Abdollahi%2C+S">S. Abdollahi</a>, <a href="/search/astro-ph?searchtype=author&query=Ajello%2C+M">M. Ajello</a>, <a href="/search/astro-ph?searchtype=author&query=Baldini%2C+L">L. Baldini</a>, <a href="/search/astro-ph?searchtype=author&query=Ballet%2C+J">J. Ballet</a>, <a href="/search/astro-ph?searchtype=author&query=Bastieri%2C+D">D. Bastieri</a>, <a href="/search/astro-ph?searchtype=author&query=Gonzalez%2C+J+B">J. Becerra Gonzalez</a>, <a href="/search/astro-ph?searchtype=author&query=Bellazzini%2C+R">R. Bellazzini</a>, <a href="/search/astro-ph?searchtype=author&query=Berretta%2C+A">A. Berretta</a>, <a href="/search/astro-ph?searchtype=author&query=Bissaldi%2C+E">E. Bissaldi</a>, <a href="/search/astro-ph?searchtype=author&query=Bonino%2C+R">R. Bonino</a>, <a href="/search/astro-ph?searchtype=author&query=Brill%2C+A">A. Brill</a>, <a href="/search/astro-ph?searchtype=author&query=Bruel%2C+P">P. Bruel</a>, <a href="/search/astro-ph?searchtype=author&query=Burns%2C+E">E. Burns</a>, <a href="/search/astro-ph?searchtype=author&query=Buson%2C+S">S. Buson</a>, <a href="/search/astro-ph?searchtype=author&query=Cameron%2C+A">A. Cameron</a>, <a href="/search/astro-ph?searchtype=author&query=Caputo%2C+R">R. Caputo</a>, <a href="/search/astro-ph?searchtype=author&query=Caraveo%2C+P+A">P. A. Caraveo</a>, <a href="/search/astro-ph?searchtype=author&query=Cibrario%2C+N">N. Cibrario</a>, <a href="/search/astro-ph?searchtype=author&query=Ciprini%2C+S">S. Ciprini</a>, <a href="/search/astro-ph?searchtype=author&query=Orestano%2C+P+C">P. Cristarella Orestano</a>, <a href="/search/astro-ph?searchtype=author&query=Crnogorcevic%2C+M">M. Crnogorcevic</a>, <a href="/search/astro-ph?searchtype=author&query=Cutini%2C+S">S. Cutini</a>, <a href="/search/astro-ph?searchtype=author&query=D%27Ammando%2C+F">F. D'Ammando</a>, <a href="/search/astro-ph?searchtype=author&query=De+Gaetano%2C+S">S. De Gaetano</a>, <a href="/search/astro-ph?searchtype=author&query=Digel%2C+S+W">S. W. Digel</a> , et al. (88 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.01607v2-abstract-short" style="display: inline;"> The Fermi Large Area Telescope (LAT) light curve repository (LCR) is a publicly available, continually updated library of gamma-ray light curves of variable Fermi-LAT sources generated over multiple timescales. The Fermi-LAT LCR aims to provide publication-quality light curves binned on timescales of 3 days, 7 days, and 30 days for 1525 sources deemed variable in the source catalog of the first 10… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.01607v2-abstract-full').style.display = 'inline'; document.getElementById('2301.01607v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.01607v2-abstract-full" style="display: none;"> The Fermi Large Area Telescope (LAT) light curve repository (LCR) is a publicly available, continually updated library of gamma-ray light curves of variable Fermi-LAT sources generated over multiple timescales. The Fermi-LAT LCR aims to provide publication-quality light curves binned on timescales of 3 days, 7 days, and 30 days for 1525 sources deemed variable in the source catalog of the first 10 years of Fermi-LAT observations. The repository consists of light curves generated through full likelihood analyses that model the sources and the surrounding region, providing fluxes and photon indices for each time bin. The LCR is intended as a resource for the time-domain and multi-messenger communities by allowing users to quickly search LAT data to identify correlated variability and flaring emission episodes from gamma-ray sources. We describe the sample selection and analysis employed by the LCR and provide an overview of the associated data access portal. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.01607v2-abstract-full').style.display = 'none'; document.getElementById('2301.01607v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in ApJ Supplement Series</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.16530">arXiv:2211.16530</a> <span> [<a href="https://arxiv.org/pdf/2211.16530">pdf</a>, <a href="https://arxiv.org/format/2211.16530">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-022-05465-8">10.1038/s41586-022-05465-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A very luminous jet from the disruption of a star by a massive black hole </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Andreoni%2C+I">Igor Andreoni</a>, <a href="/search/astro-ph?searchtype=author&query=Coughlin%2C+M+W">Michael W. Coughlin</a>, <a href="/search/astro-ph?searchtype=author&query=Perley%2C+D+A">Daniel A. Perley</a>, <a href="/search/astro-ph?searchtype=author&query=Yao%2C+Y">Yuhan Yao</a>, <a href="/search/astro-ph?searchtype=author&query=Lu%2C+W">Wenbin Lu</a>, <a href="/search/astro-ph?searchtype=author&query=Cenko%2C+S+B">S. Bradley Cenko</a>, <a href="/search/astro-ph?searchtype=author&query=Kumar%2C+H">Harsh Kumar</a>, <a href="/search/astro-ph?searchtype=author&query=Anand%2C+S">Shreya Anand</a>, <a href="/search/astro-ph?searchtype=author&query=Ho%2C+A+Y+Q">Anna Y. Q. Ho</a>, <a href="/search/astro-ph?searchtype=author&query=Kasliwal%2C+M+M">Mansi M. Kasliwal</a>, <a href="/search/astro-ph?searchtype=author&query=Postigo%2C+A+d+U">Antonio de Ugarte Postigo</a>, <a href="/search/astro-ph?searchtype=author&query=Sagues-Carracedo%2C+A">Ana Sagues-Carracedo</a>, <a href="/search/astro-ph?searchtype=author&query=Schulze%2C+S">Steve Schulze</a>, <a href="/search/astro-ph?searchtype=author&query=Kann%2C+D+A">D. Alexander Kann</a>, <a href="/search/astro-ph?searchtype=author&query=Kulkarni%2C+S+R">S. R. Kulkarni</a>, <a href="/search/astro-ph?searchtype=author&query=Sollerman%2C+J">Jesper Sollerman</a>, <a href="/search/astro-ph?searchtype=author&query=Tanvir%2C+N">Nial Tanvir</a>, <a href="/search/astro-ph?searchtype=author&query=Rest%2C+A">Armin Rest</a>, <a href="/search/astro-ph?searchtype=author&query=Izzo%2C+L">Luca Izzo</a>, <a href="/search/astro-ph?searchtype=author&query=Somalwar%2C+J+J">Jean J. Somalwar</a>, <a href="/search/astro-ph?searchtype=author&query=Kaplan%2C+D+L">David L. Kaplan</a>, <a href="/search/astro-ph?searchtype=author&query=Ahumada%2C+T">Tomas Ahumada</a>, <a href="/search/astro-ph?searchtype=author&query=Anupama%2C+G+C">G. C. Anupama</a>, <a href="/search/astro-ph?searchtype=author&query=Auchettl%2C+K">Katie Auchettl</a>, <a href="/search/astro-ph?searchtype=author&query=Barway%2C+S">Sudhanshu Barway</a> , et al. (56 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.16530v1-abstract-short" style="display: inline;"> Tidal disruption events (TDEs) are bursts of electromagnetic energy released when supermassive black holes (SMBHs) at the centers of galaxies violently disrupt a star that passes too close. TDEs provide a new window to study accretion onto SMBHs; in some rare cases, this accretion leads to launching of a relativistic jet, but the necessary conditions are not fully understood. The best studied jett… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.16530v1-abstract-full').style.display = 'inline'; document.getElementById('2211.16530v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.16530v1-abstract-full" style="display: none;"> Tidal disruption events (TDEs) are bursts of electromagnetic energy released when supermassive black holes (SMBHs) at the centers of galaxies violently disrupt a star that passes too close. TDEs provide a new window to study accretion onto SMBHs; in some rare cases, this accretion leads to launching of a relativistic jet, but the necessary conditions are not fully understood. The best studied jetted TDE to date is Swift J1644+57, which was discovered in gamma-rays, but was too obscured by dust to be seen at optical wavelengths. Here we report the optical discovery of AT2022cmc, a rapidly fading source at cosmological distance (redshift z=1.19325) whose unique lightcurve transitioned into a luminous plateau within days. Observations of a bright counterpart at other wavelengths, including X-rays, sub-millimeter, and radio, supports the interpretation of AT2022cmc as a jetted TDE containing a synchrotron "afterglow", likely launched by a SMBH with spin $a \gtrsim 0.3$. Using 4 years of Zwicky Transient Facility (ZTF) survey data, we calculate a rate of $0.02 ^{+ 0.04 }_{- 0.01 }$ Gpc$^{-3}$ yr$^{-1}$ for on-axis jetted TDEs based on the luminous, fast-fading red component, thus providing a measurement complementary to the rates derived from X-ray and radio observations. Correcting for the beaming angle effects, this rate confirms that about 1% of TDEs have relativistic jets. Optical surveys can use AT2022cmc as a prototype to unveil a population of jetted TDEs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.16530v1-abstract-full').style.display = 'none'; document.getElementById('2211.16530v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Nature</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.04990">arXiv:2208.04990</a> <span> [<a href="https://arxiv.org/pdf/2208.04990">pdf</a>, <a href="https://arxiv.org/format/2208.04990">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/1.JATIS.8.4.044003">10.1117/1.JATIS.8.4.044003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The All-sky Medium Energy Gamma-ray Observatory eXplorer (AMEGO-X) Mission Concept </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Caputo%2C+R">Regina Caputo</a>, <a href="/search/astro-ph?searchtype=author&query=Ajello%2C+M">Marco Ajello</a>, <a href="/search/astro-ph?searchtype=author&query=Kierans%2C+C">Carolyn Kierans</a>, <a href="/search/astro-ph?searchtype=author&query=Perkins%2C+J">Jeremy Perkins</a>, <a href="/search/astro-ph?searchtype=author&query=Racusin%2C+J">Judith Racusin</a>, <a href="/search/astro-ph?searchtype=author&query=Baldini%2C+L">Luca Baldini</a>, <a href="/search/astro-ph?searchtype=author&query=Barring%2C+M">Matthew Barring</a>, <a href="/search/astro-ph?searchtype=author&query=Bissaldi%2C+E">Elisabetta Bissaldi</a>, <a href="/search/astro-ph?searchtype=author&query=Burns%2C+E">Eric Burns</a>, <a href="/search/astro-ph?searchtype=author&query=Cannady%2C+N">Nicolas Cannady</a>, <a href="/search/astro-ph?searchtype=author&query=Charles%2C+E">Eric Charles</a>, <a href="/search/astro-ph?searchtype=author&query=da+Silva%2C+R+C">Rui Curado da Silva</a>, <a href="/search/astro-ph?searchtype=author&query=Fang%2C+K">Ke Fang</a>, <a href="/search/astro-ph?searchtype=author&query=Fleischhack%2C+H">Henrike Fleischhack</a>, <a href="/search/astro-ph?searchtype=author&query=Fryer%2C+C">Chris Fryer</a>, <a href="/search/astro-ph?searchtype=author&query=Fukazawa%2C+Y">Yasushi Fukazawa</a>, <a href="/search/astro-ph?searchtype=author&query=Grove%2C+J+E">J. Eric Grove</a>, <a href="/search/astro-ph?searchtype=author&query=Hartmann%2C+D">Dieter Hartmann</a>, <a href="/search/astro-ph?searchtype=author&query=Howell%2C+E">Eric Howell</a>, <a href="/search/astro-ph?searchtype=author&query=Jadhav%2C+M">Manoj Jadhav</a>, <a href="/search/astro-ph?searchtype=author&query=Karwin%2C+C">Christopher Karwin</a>, <a href="/search/astro-ph?searchtype=author&query=Kocevski%2C+D">Daniel Kocevski</a>, <a href="/search/astro-ph?searchtype=author&query=Kurahashi%2C+N">Naoko Kurahashi</a>, <a href="/search/astro-ph?searchtype=author&query=Latronico%2C+L">Luca Latronico</a>, <a href="/search/astro-ph?searchtype=author&query=Lewis%2C+T">Tiffany Lewis</a> , et al. (30 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.04990v2-abstract-short" style="display: inline;"> The All-sky Medium Energy Gamma-ray Observatory eXplorer (AMEGO-X) is designed to identify and characterize gamma rays from extreme explosions and accelerators. The main science themes include: supermassive black holes and their connections to neutrinos and cosmic rays; binary neutron star mergers and the relativistic jets they produce; cosmic ray particle acceleration sources including Galactic s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.04990v2-abstract-full').style.display = 'inline'; document.getElementById('2208.04990v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.04990v2-abstract-full" style="display: none;"> The All-sky Medium Energy Gamma-ray Observatory eXplorer (AMEGO-X) is designed to identify and characterize gamma rays from extreme explosions and accelerators. The main science themes include: supermassive black holes and their connections to neutrinos and cosmic rays; binary neutron star mergers and the relativistic jets they produce; cosmic ray particle acceleration sources including Galactic supernovae; and continuous monitoring of other astrophysical events and sources over the full sky in this important energy range. AMEGO-X will probe the medium energy gamma-ray band using a single instrument with sensitivity up to an order of magnitude greater than previous telescopes in the energy range 100 keV to 1 GeV that can be only realized in space. During its three-year baseline mission, AMEGO-X will observe nearly the entire sky every two orbits, building up a sensitive all-sky map of gamma-ray sources and emission. AMEGO-X was submitted in the recent 2021 NASA MIDEX Announcement of Opportunity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.04990v2-abstract-full').style.display = 'none'; document.getElementById('2208.04990v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 16 figures, Published Journal of Astronomical Telescopes, Instruments, and Systems</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Astronomical Telescopes, Instruments, and Systems, Vol. 8, Issue 4, 044003 (October 2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.10178">arXiv:2207.10178</a> <span> [<a href="https://arxiv.org/pdf/2207.10178">pdf</a>, <a href="https://arxiv.org/format/2207.10178">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> The GRANDMA network in preparation for the fourth gravitational-wave observing run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Agayeva%2C+S">S. Agayeva</a>, <a href="/search/astro-ph?searchtype=author&query=Aivazyan%2C+V">V. Aivazyan</a>, <a href="/search/astro-ph?searchtype=author&query=Alishov%2C+S">S. Alishov</a>, <a href="/search/astro-ph?searchtype=author&query=Almualla%2C+M">M. Almualla</a>, <a href="/search/astro-ph?searchtype=author&query=Andrade%2C+C">C. Andrade</a>, <a href="/search/astro-ph?searchtype=author&query=Antier%2C+S">S. Antier</a>, <a href="/search/astro-ph?searchtype=author&query=Bai%2C+J+-">J. -M. Bai</a>, <a href="/search/astro-ph?searchtype=author&query=Baransky%2C+A">A. Baransky</a>, <a href="/search/astro-ph?searchtype=author&query=Basa%2C+S">S. Basa</a>, <a href="/search/astro-ph?searchtype=author&query=Bendjoya%2C+P">P. Bendjoya</a>, <a href="/search/astro-ph?searchtype=author&query=Benkhaldoun%2C+Z">Z. Benkhaldoun</a>, <a href="/search/astro-ph?searchtype=author&query=Beradze%2C+S">S. Beradze</a>, <a href="/search/astro-ph?searchtype=author&query=Berezin%2C+D">D. Berezin</a>, <a href="/search/astro-ph?searchtype=author&query=Bhardwaj%2C+U">U. Bhardwaj</a>, <a href="/search/astro-ph?searchtype=author&query=Blazek%2C+M">M. Blazek</a>, <a href="/search/astro-ph?searchtype=author&query=Burkhonov%2C+O">O. Burkhonov</a>, <a href="/search/astro-ph?searchtype=author&query=Burns%2C+E">E. Burns</a>, <a href="/search/astro-ph?searchtype=author&query=Caudill%2C+S">S. Caudill</a>, <a href="/search/astro-ph?searchtype=author&query=Christensen%2C+N">N. Christensen</a>, <a href="/search/astro-ph?searchtype=author&query=Colas%2C+F">F. Colas</a>, <a href="/search/astro-ph?searchtype=author&query=Coleiro%2C+A">A. Coleiro</a>, <a href="/search/astro-ph?searchtype=author&query=Corradi%2C+W">W. Corradi</a>, <a href="/search/astro-ph?searchtype=author&query=Coughlin%2C+M+W">M. W. Coughlin</a>, <a href="/search/astro-ph?searchtype=author&query=Culino%2C+T">T. Culino</a>, <a href="/search/astro-ph?searchtype=author&query=Darson%2C+D">D. Darson</a> , et al. (76 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.10178v2-abstract-short" style="display: inline;"> GRANDMA is a world-wide collaboration with the primary scientific goal of studying gravitational-wave sources, discovering their electromagnetic counterparts and characterizing their emission. GRANDMA involves astronomers, astrophysicists, gravitational-wave physicists, and theorists. GRANDMA is now a truly global network of telescopes, with (so far) 30 telescopes in both hemispheres. It incorpora… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.10178v2-abstract-full').style.display = 'inline'; document.getElementById('2207.10178v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.10178v2-abstract-full" style="display: none;"> GRANDMA is a world-wide collaboration with the primary scientific goal of studying gravitational-wave sources, discovering their electromagnetic counterparts and characterizing their emission. GRANDMA involves astronomers, astrophysicists, gravitational-wave physicists, and theorists. GRANDMA is now a truly global network of telescopes, with (so far) 30 telescopes in both hemispheres. It incorporates a citizen science programme (Kilonova-Catcher) which constitutes an opportunity to spread the interest in time-domain astronomy. The telescope network is an heterogeneous set of already-existing observing facilities that operate coordinated as a single observatory. Within the network there are wide-field imagers that can observe large areas of the sky to search for optical counterparts, narrow-field instruments that do targeted searches within a predefined list of host-galaxy candidates, and larger telescopes that are devoted to characterization and follow-up of the identified counterparts. Here we present an overview of GRANDMA after the third observing run of the LIGO/VIRGO gravitational-wave observatories in $2019-2020$ and its ongoing preparation for the forthcoming fourth observational campaign (O4). Additionally, we review the potential of GRANDMA for the discovery and follow-up of other types of astronomical transients. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.10178v2-abstract-full').style.display = 'none'; document.getElementById('2207.10178v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to the Proceedings of the SPIE, Astronomical Telescopes and Instrumentation 2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.05226">arXiv:2204.05226</a> <span> [<a href="https://arxiv.org/pdf/2204.05226">pdf</a>, <a href="https://arxiv.org/format/2204.05226">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.abm3231">10.1126/science.abm3231 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Gamma-ray Pulsar Timing Array Constrains the Nanohertz Gravitational Wave Background </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Ajello%2C+M">M. Ajello</a>, <a href="/search/astro-ph?searchtype=author&query=Atwood%2C+W+B">W. B. Atwood</a>, <a href="/search/astro-ph?searchtype=author&query=Baldini%2C+L">L. Baldini</a>, <a href="/search/astro-ph?searchtype=author&query=Ballet%2C+J">J. Ballet</a>, <a href="/search/astro-ph?searchtype=author&query=Barbiellini%2C+G">G. Barbiellini</a>, <a href="/search/astro-ph?searchtype=author&query=Bastieri%2C+D">D. Bastieri</a>, <a href="/search/astro-ph?searchtype=author&query=Bellazzini%2C+R">R. Bellazzini</a>, <a href="/search/astro-ph?searchtype=author&query=Berretta%2C+A">A. Berretta</a>, <a href="/search/astro-ph?searchtype=author&query=Bhattacharyya%2C+B">B. Bhattacharyya</a>, <a href="/search/astro-ph?searchtype=author&query=Bissaldi%2C+E">E. Bissaldi</a>, <a href="/search/astro-ph?searchtype=author&query=Blandford%2C+R+D">R. D. Blandford</a>, <a href="/search/astro-ph?searchtype=author&query=Bloom%2C+E">E. Bloom</a>, <a href="/search/astro-ph?searchtype=author&query=Bonino%2C+R">R. Bonino</a>, <a href="/search/astro-ph?searchtype=author&query=Bruel%2C+P">P. Bruel</a>, <a href="/search/astro-ph?searchtype=author&query=Buehler%2C+R">R. Buehler</a>, <a href="/search/astro-ph?searchtype=author&query=Burns%2C+E">E. Burns</a>, <a href="/search/astro-ph?searchtype=author&query=Buson%2C+S">S. Buson</a>, <a href="/search/astro-ph?searchtype=author&query=Cameron%2C+R+A">R. A. Cameron</a>, <a href="/search/astro-ph?searchtype=author&query=Caraveo%2C+P+A">P. A. Caraveo</a>, <a href="/search/astro-ph?searchtype=author&query=Cavazzuti%2C+E">E. Cavazzuti</a>, <a href="/search/astro-ph?searchtype=author&query=Cibrario%2C+N">N. Cibrario</a>, <a href="/search/astro-ph?searchtype=author&query=Ciprini%2C+S">S. Ciprini</a>, <a href="/search/astro-ph?searchtype=author&query=Clark%2C+C+J">C. J. Clark</a>, <a href="/search/astro-ph?searchtype=author&query=Cognard%2C+I">I. Cognard</a>, <a href="/search/astro-ph?searchtype=author&query=Coronado-Bl%C3%A1zquez%2C+J">J. Coronado-Bl谩zquez</a> , et al. (107 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.05226v1-abstract-short" style="display: inline;"> After large galaxies merge, their central supermassive black holes are expected to form binary systems whose orbital motion generates a gravitational wave background (GWB) at nanohertz frequencies. Searches for this background utilize pulsar timing arrays, which perform long-term monitoring of millisecond pulsars (MSPs) at radio wavelengths. We use 12.5 years of Fermi Large Area Telescope data to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.05226v1-abstract-full').style.display = 'inline'; document.getElementById('2204.05226v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.05226v1-abstract-full" style="display: none;"> After large galaxies merge, their central supermassive black holes are expected to form binary systems whose orbital motion generates a gravitational wave background (GWB) at nanohertz frequencies. Searches for this background utilize pulsar timing arrays, which perform long-term monitoring of millisecond pulsars (MSPs) at radio wavelengths. We use 12.5 years of Fermi Large Area Telescope data to form a gamma-ray pulsar timing array. Results from 35 bright gamma-ray pulsars place a 95\% credible limit on the GWB characteristic strain of $1.0\times10^{-14}$ at 1 yr$^{-1}$, which scales as the observing time span $t_{\mathrm{obs}}^{-13/6}$. This direct measurement provides an independent probe of the GWB while offering a check on radio noise models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.05226v1-abstract-full').style.display = 'none'; document.getElementById('2204.05226v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 figures in the main text. 3 figures and 8 tables are in the supplementary material</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.11787">arXiv:2203.11787</a> <span> [<a href="https://arxiv.org/pdf/2203.11787">pdf</a>, <a href="https://arxiv.org/format/2203.11787">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac6c29">10.3847/1538-4357/ac6c29 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> In search of short gamma-ray burst optical counterpart with the Zwicky Transient Facility </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Ahumada%2C+T">Tom谩s Ahumada</a>, <a href="/search/astro-ph?searchtype=author&query=Anand%2C+S">Shreya Anand</a>, <a href="/search/astro-ph?searchtype=author&query=Coughlin%2C+M+W">Michael W. Coughlin</a>, <a href="/search/astro-ph?searchtype=author&query=Andreoni%2C+I">Igor Andreoni</a>, <a href="/search/astro-ph?searchtype=author&query=Kool%2C+E+C">Erik C. Kool</a>, <a href="/search/astro-ph?searchtype=author&query=Kumar%2C+H">Harsh Kumar</a>, <a href="/search/astro-ph?searchtype=author&query=Reusch%2C+S">Simeon Reusch</a>, <a href="/search/astro-ph?searchtype=author&query=Sagu%C3%A9s-Carracedo%2C+A">Ana Sagu茅s-Carracedo</a>, <a href="/search/astro-ph?searchtype=author&query=Stein%2C+R">Robert Stein</a>, <a href="/search/astro-ph?searchtype=author&query=Cenko%2C+S+B">S. Bradley Cenko</a>, <a href="/search/astro-ph?searchtype=author&query=Kasliwal%2C+M+M">Mansi M. Kasliwal</a>, <a href="/search/astro-ph?searchtype=author&query=Singer%2C+L+P">Leo P. Singer</a>, <a href="/search/astro-ph?searchtype=author&query=Dunwoody%2C+R">Rachel Dunwoody</a>, <a href="/search/astro-ph?searchtype=author&query=Mangan%2C+J">Joseph Mangan</a>, <a href="/search/astro-ph?searchtype=author&query=Bhalerao%2C+V">Varun Bhalerao</a>, <a href="/search/astro-ph?searchtype=author&query=Bulla%2C+M">Mattia Bulla</a>, <a href="/search/astro-ph?searchtype=author&query=Burns%2C+E">Eric Burns</a>, <a href="/search/astro-ph?searchtype=author&query=Graham%2C+M+J">Matthew J. Graham</a>, <a href="/search/astro-ph?searchtype=author&query=Kaplan%2C+D+L">David L. Kaplan</a>, <a href="/search/astro-ph?searchtype=author&query=Perley%2C+D">Daniel Perley</a>, <a href="/search/astro-ph?searchtype=author&query=Almualla%2C+M">Mouza Almualla</a>, <a href="/search/astro-ph?searchtype=author&query=Bloom%2C+J+S">Joshua S. Bloom</a>, <a href="/search/astro-ph?searchtype=author&query=Cunningham%2C+V">Virginia Cunningham</a>, <a href="/search/astro-ph?searchtype=author&query=De%2C+K">Kishalay De</a>, <a href="/search/astro-ph?searchtype=author&query=Gatkine%2C+P">Pradip Gatkine</a> , et al. (24 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.11787v1-abstract-short" style="display: inline;"> The Fermi Gamma-ray Burst Monitor (GBM) triggers on-board in response to $\sim$ 40 short gamma-ray bursts (SGRBs) per year; however, their large localization regions have made the search for optical counterparts a challenging endeavour. We have developed and executed an extensive program with the wide field of view of the Zwicky Transient Facility (ZTF) camera, mounted on the Palomar 48 inch Oschi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.11787v1-abstract-full').style.display = 'inline'; document.getElementById('2203.11787v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.11787v1-abstract-full" style="display: none;"> The Fermi Gamma-ray Burst Monitor (GBM) triggers on-board in response to $\sim$ 40 short gamma-ray bursts (SGRBs) per year; however, their large localization regions have made the search for optical counterparts a challenging endeavour. We have developed and executed an extensive program with the wide field of view of the Zwicky Transient Facility (ZTF) camera, mounted on the Palomar 48 inch Oschin telescope (P48), to perform target-of-opportunity (ToO) observations on 10 Fermi-GBM SGRBs during 2018 and 2020-2021. Bridging the large sky areas with small field of view optical telescopes in order to track the evolution of potential candidates, we look for the elusive SGRB afterglows and kilonovae (KNe) associated with these high-energy events. No counterpart has yet been found, even though more than 10 ground based telescopes, part of the Global Relay of Observatories Watching Transients Happen (GROWTH) network, have taken part in these efforts. The candidate selection procedure and the follow-up strategy have shown that ZTF is an efficient instrument for searching for poorly localized SGRBs, retrieving a reasonable number of candidates to follow-up and showing promising capabilities as the community approaches the multi-messenger era. Based on the median limiting magnitude of ZTF, our searches would have been able to retrieve a GW170817-like event up to $\sim$ 200 Mpc and SGRB afterglows to z = 0.16 or 0.4, depending on the assumed underlying energy model. Future ToOs will expand the horizon to z = 0.2 and 0.7 respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.11787v1-abstract-full').style.display = 'none'; document.getElementById('2203.11787v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.10074">arXiv:2203.10074</a> <span> [<a href="https://arxiv.org/pdf/2203.10074">pdf</a>, <a href="https://arxiv.org/format/2203.10074">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Advancing the Landscape of Multimessenger Science in the Next Decade </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Engel%2C+K">Kristi Engel</a>, <a href="/search/astro-ph?searchtype=author&query=Lewis%2C+T">Tiffany Lewis</a>, <a href="/search/astro-ph?searchtype=author&query=Muzio%2C+M+S">Marco Stein Muzio</a>, <a href="/search/astro-ph?searchtype=author&query=Venters%2C+T+M">Tonia M. Venters</a>, <a href="/search/astro-ph?searchtype=author&query=Ahlers%2C+M">Markus Ahlers</a>, <a href="/search/astro-ph?searchtype=author&query=Albert%2C+A">Andrea Albert</a>, <a href="/search/astro-ph?searchtype=author&query=Allen%2C+A">Alice Allen</a>, <a href="/search/astro-ph?searchtype=author&query=Solares%2C+H+A+A">Hugo Alberto Ayala Solares</a>, <a href="/search/astro-ph?searchtype=author&query=Anandagoda%2C+S">Samalka Anandagoda</a>, <a href="/search/astro-ph?searchtype=author&query=Andersen%2C+T">Thomas Andersen</a>, <a href="/search/astro-ph?searchtype=author&query=Antier%2C+S">Sarah Antier</a>, <a href="/search/astro-ph?searchtype=author&query=Alvarez-Castillo%2C+D">David Alvarez-Castillo</a>, <a href="/search/astro-ph?searchtype=author&query=Bar%2C+O">Olaf Bar</a>, <a href="/search/astro-ph?searchtype=author&query=Beznosko%2C+D">Dmitri Beznosko</a>, <a href="/search/astro-ph?searchtype=author&query=Bibrzyck%2C+%C5%81">艁ukasz Bibrzyck</a>, <a href="/search/astro-ph?searchtype=author&query=Brazier%2C+A">Adam Brazier</a>, <a href="/search/astro-ph?searchtype=author&query=Brisbois%2C+C">Chad Brisbois</a>, <a href="/search/astro-ph?searchtype=author&query=Brose%2C+R">Robert Brose</a>, <a href="/search/astro-ph?searchtype=author&query=Brown%2C+D+A">Duncan A. Brown</a>, <a href="/search/astro-ph?searchtype=author&query=Bulla%2C+M">Mattia Bulla</a>, <a href="/search/astro-ph?searchtype=author&query=Burgess%2C+J+M">J. Michael Burgess</a>, <a href="/search/astro-ph?searchtype=author&query=Burns%2C+E">Eric Burns</a>, <a href="/search/astro-ph?searchtype=author&query=Chirenti%2C+C">Cecilia Chirenti</a>, <a href="/search/astro-ph?searchtype=author&query=Ciprini%2C+S">Stefano Ciprini</a>, <a href="/search/astro-ph?searchtype=author&query=Clay%2C+R">Roger Clay</a> , et al. (69 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.10074v1-abstract-short" style="display: inline;"> The last decade has brought about a profound transformation in multimessenger science. Ten years ago, facilities had been built or were under construction that would eventually discover the nature of objects in our universe could be detected through multiple messengers. Nonetheless, multimessenger science was hardly more than a dream. The rewards for our foresight were finally realized through Ice… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.10074v1-abstract-full').style.display = 'inline'; document.getElementById('2203.10074v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.10074v1-abstract-full" style="display: none;"> The last decade has brought about a profound transformation in multimessenger science. Ten years ago, facilities had been built or were under construction that would eventually discover the nature of objects in our universe could be detected through multiple messengers. Nonetheless, multimessenger science was hardly more than a dream. The rewards for our foresight were finally realized through IceCube's discovery of the diffuse astrophysical neutrino flux, the first observation of gravitational waves by LIGO, and the first joint detections in gravitational waves and photons and in neutrinos and photons. Today we live in the dawn of the multimessenger era. The successes of the multimessenger campaigns of the last decade have pushed multimessenger science to the forefront of priority science areas in both the particle physics and the astrophysics communities. Multimessenger science provides new methods of testing fundamental theories about the nature of matter and energy, particularly in conditions that are not reproducible on Earth. This white paper will present the science and facilities that will provide opportunities for the particle physics community renew its commitment and maintain its leadership in multimessenger science. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.10074v1-abstract-full').style.display = 'none'; document.getElementById('2203.10074v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">174 pages, 12 figures. Contribution to Snowmass 2021. Solicited white paper from CF07. Comments and endorsers welcome. Still accepting contributions (contact editors)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.08738">arXiv:2203.08738</a> <span> [<a href="https://arxiv.org/pdf/2203.08738">pdf</a>, <a href="https://arxiv.org/format/2203.08738">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/ac4607">10.3847/1538-4365/ac4607 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Second Catalog of Interplanetary Network Localizations of Konus Short Duration Gamma-Ray Bursts </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Svinkin%2C+D">D. Svinkin</a>, <a href="/search/astro-ph?searchtype=author&query=Hurley%2C+K">K. Hurley</a>, <a href="/search/astro-ph?searchtype=author&query=Ridnaia%2C+A">A. Ridnaia</a>, <a href="/search/astro-ph?searchtype=author&query=Lysenko%2C+A">A. Lysenko</a>, <a href="/search/astro-ph?searchtype=author&query=Frederiks%2C+D">D. Frederiks</a>, <a href="/search/astro-ph?searchtype=author&query=Golenetskii%2C+S">S. Golenetskii</a>, <a href="/search/astro-ph?searchtype=author&query=Tsvetkova%2C+A">A. Tsvetkova</a>, <a href="/search/astro-ph?searchtype=author&query=Ulanov%2C+M">M. Ulanov</a>, <a href="/search/astro-ph?searchtype=author&query=Kokomov%2C+A">A. Kokomov</a>, <a href="/search/astro-ph?searchtype=author&query=Cline%2C+T+L">T. L. Cline</a>, <a href="/search/astro-ph?searchtype=author&query=Mitrofanov%2C+I">I. Mitrofanov</a>, <a href="/search/astro-ph?searchtype=author&query=Golovin%2C+D">D. Golovin</a>, <a href="/search/astro-ph?searchtype=author&query=Kozyrev%2C+A">A. Kozyrev</a>, <a href="/search/astro-ph?searchtype=author&query=Litvak%2C+M">M. Litvak</a>, <a href="/search/astro-ph?searchtype=author&query=Sanin%2C+A">A. Sanin</a>, <a href="/search/astro-ph?searchtype=author&query=Goldstein%2C+A">A. Goldstein</a>, <a href="/search/astro-ph?searchtype=author&query=Briggs%2C+M+S">M. S. Briggs</a>, <a href="/search/astro-ph?searchtype=author&query=Wilson-Hodge%2C+C">C. Wilson-Hodge</a>, <a href="/search/astro-ph?searchtype=author&query=Burns%2C+E">E. Burns</a>, <a href="/search/astro-ph?searchtype=author&query=von+Kienlin%2C+A">A. von Kienlin</a>, <a href="/search/astro-ph?searchtype=author&query=Zhang%2C+X+-">X. -L. Zhang</a>, <a href="/search/astro-ph?searchtype=author&query=Rau%2C+A">A. Rau</a>, <a href="/search/astro-ph?searchtype=author&query=Savchenko%2C+V">V. Savchenko</a>, <a href="/search/astro-ph?searchtype=author&query=Bozzo%2C+E">E. Bozzo</a>, <a href="/search/astro-ph?searchtype=author&query=Ferrigno%2C+C">C. Ferrigno</a> , et al. (50 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.08738v1-abstract-short" style="display: inline;"> We present the catalog of Interplanetary Network (IPN) localizations for 199 short-duration gamma-ray bursts (sGRBs) detected by the Konus-Wind (KW) experiment between 2011 January 1 and 2021 August 31, which extends the initial sample of IPN localized KW sGRBs (arXiv:1301.3740) to 495 events. We present the most comprehensive IPN localization data on these events, including probability sky maps i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.08738v1-abstract-full').style.display = 'inline'; document.getElementById('2203.08738v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.08738v1-abstract-full" style="display: none;"> We present the catalog of Interplanetary Network (IPN) localizations for 199 short-duration gamma-ray bursts (sGRBs) detected by the Konus-Wind (KW) experiment between 2011 January 1 and 2021 August 31, which extends the initial sample of IPN localized KW sGRBs (arXiv:1301.3740) to 495 events. We present the most comprehensive IPN localization data on these events, including probability sky maps in HEALPix format. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.08738v1-abstract-full').style.display = 'none'; document.getElementById('2203.08738v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in ApJS</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJS 259, 34 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.07360">arXiv:2203.07360</a> <span> [<a href="https://arxiv.org/pdf/2203.07360">pdf</a>, <a href="https://arxiv.org/format/2203.07360">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> The Future of Gamma-Ray Experiments in the MeV-EeV Range </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Engel%2C+K">Kristi Engel</a>, <a href="/search/astro-ph?searchtype=author&query=Goodman%2C+J">Jordan Goodman</a>, <a href="/search/astro-ph?searchtype=author&query=Huentemeyer%2C+P">Petra Huentemeyer</a>, <a href="/search/astro-ph?searchtype=author&query=Kierans%2C+C">Carolyn Kierans</a>, <a href="/search/astro-ph?searchtype=author&query=Lewis%2C+T+R">Tiffany R. Lewis</a>, <a href="/search/astro-ph?searchtype=author&query=Negro%2C+M">Michela Negro</a>, <a href="/search/astro-ph?searchtype=author&query=Santander%2C+M">Marcos Santander</a>, <a href="/search/astro-ph?searchtype=author&query=Williams%2C+D+A">David A. Williams</a>, <a href="/search/astro-ph?searchtype=author&query=Allen%2C+A">Alice Allen</a>, <a href="/search/astro-ph?searchtype=author&query=Aramaki%2C+T">Tsuguo Aramaki</a>, <a href="/search/astro-ph?searchtype=author&query=Batista%2C+R+A">Rafael Alves Batista</a>, <a href="/search/astro-ph?searchtype=author&query=Benoit%2C+M">Mathieu Benoit</a>, <a href="/search/astro-ph?searchtype=author&query=Bloser%2C+P">Peter Bloser</a>, <a href="/search/astro-ph?searchtype=author&query=Bohon%2C+J">Jennifer Bohon</a>, <a href="/search/astro-ph?searchtype=author&query=Bolotnikov%2C+A+E">Aleksey E. Bolotnikov</a>, <a href="/search/astro-ph?searchtype=author&query=Brewer%2C+I">Isabella Brewer</a>, <a href="/search/astro-ph?searchtype=author&query=Briggs%2C+M+S">Michael S. Briggs</a>, <a href="/search/astro-ph?searchtype=author&query=Brisbois%2C+C">Chad Brisbois</a>, <a href="/search/astro-ph?searchtype=author&query=Burgess%2C+J+M">J. Michael Burgess</a>, <a href="/search/astro-ph?searchtype=author&query=Burns%2C+E">Eric Burns</a>, <a href="/search/astro-ph?searchtype=author&query=Caputo%2C+R">Regina Caputo</a>, <a href="/search/astro-ph?searchtype=author&query=Carini%2C+G+A">Gabriella A. Carini</a>, <a href="/search/astro-ph?searchtype=author&query=Cenko%2C+S+B">S. Bradley Cenko</a>, <a href="/search/astro-ph?searchtype=author&query=Charles%2C+E">Eric Charles</a>, <a href="/search/astro-ph?searchtype=author&query=Ciprini%2C+S">Stefano Ciprini</a> , et al. (74 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.07360v1-abstract-short" style="display: inline;"> Gamma-rays, the most energetic photons, carry information from the far reaches of extragalactic space with minimal interaction or loss of information. They bring messages about particle acceleration in environments so extreme they cannot be reproduced on earth for a closer look. Gamma-ray astrophysics is so complementary with collider work that particle physicists and astroparticle physicists are… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07360v1-abstract-full').style.display = 'inline'; document.getElementById('2203.07360v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.07360v1-abstract-full" style="display: none;"> Gamma-rays, the most energetic photons, carry information from the far reaches of extragalactic space with minimal interaction or loss of information. They bring messages about particle acceleration in environments so extreme they cannot be reproduced on earth for a closer look. Gamma-ray astrophysics is so complementary with collider work that particle physicists and astroparticle physicists are often one in the same. Gamma-ray instruments, especially the Fermi Gamma-ray Space Telescope, have been pivotal in major multi-messenger discoveries over the past decade. There is presently a great deal of interest and scientific expertise available to push forward new technologies, to plan and build space- and ground-based gamma-ray facilities, and to build multi-messenger networks with gamma rays at their core. It is therefore concerning that before the community comes together for planning exercises again, much of that infrastructure could be lost to a lack of long-term planning for support of gamma-ray astrophysics. Gamma-rays with energies from the MeV to the EeV band are therefore central to multiwavelength and multi-messenger studies to everything from astroparticle physics with compact objects, to dark matter studies with diffuse large scale structure. These goals and new discoveries have generated a wave of new gamma-ray facility proposals and programs. This paper highlights new and proposed gamma-ray technologies and facilities that have each been designed to address specific needs in the measurement of extreme astrophysical sources that probe some of the most pressing questions in fundamental physics for the next decade. The proposed instrumentation would also address the priorities laid out in the recent Astro2020 Decadal Survey, a complementary study by the astrophysics community that provides opportunities also relevant to Snowmass. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07360v1-abstract-full').style.display = 'none'; document.getElementById('2203.07360v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to Snowmass 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.12366">arXiv:2201.12366</a> <span> [<a href="https://arxiv.org/pdf/2201.12366">pdf</a>, <a href="https://arxiv.org/format/2201.12366">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac8bd0">10.3847/1538-4357/ac8bd0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cosmological Fast Optical Transients with the Zwicky Transient Facility: A Search for Dirty Fireballs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Ho%2C+A+Y+Q">Anna Y. Q. Ho</a>, <a href="/search/astro-ph?searchtype=author&query=Perley%2C+D+A">Daniel A. Perley</a>, <a href="/search/astro-ph?searchtype=author&query=Yao%2C+Y">Yuhan Yao</a>, <a href="/search/astro-ph?searchtype=author&query=Svinkin%2C+D">Dmitry Svinkin</a>, <a href="/search/astro-ph?searchtype=author&query=Postigo%2C+A+d+U">A. de Ugarte Postigo</a>, <a href="/search/astro-ph?searchtype=author&query=Perley%2C+R+A">R. A. Perley</a>, <a href="/search/astro-ph?searchtype=author&query=Kann%2C+D+A">D. Alexander Kann</a>, <a href="/search/astro-ph?searchtype=author&query=Burns%2C+E">Eric Burns</a>, <a href="/search/astro-ph?searchtype=author&query=Andreoni%2C+I">Igor Andreoni</a>, <a href="/search/astro-ph?searchtype=author&query=Bellm%2C+E+C">Eric C. Bellm</a>, <a href="/search/astro-ph?searchtype=author&query=Bissaldi%2C+E">Elisabetta Bissaldi</a>, <a href="/search/astro-ph?searchtype=author&query=Bloom%2C+J+S">Joshua S. Bloom</a>, <a href="/search/astro-ph?searchtype=author&query=Dekany%2C+R">Richard Dekany</a>, <a href="/search/astro-ph?searchtype=author&query=Drake%2C+A+J">Andrew J. Drake</a>, <a href="/search/astro-ph?searchtype=author&query=Fern%C3%A1ndez%2C+J+F+A">Jos茅 Feliciano Ag眉铆 Fern谩ndez</a>, <a href="/search/astro-ph?searchtype=author&query=Frederiks%2C+D">Dmitry Frederiks</a>, <a href="/search/astro-ph?searchtype=author&query=Graham%2C+M+J">Matthew J. Graham</a>, <a href="/search/astro-ph?searchtype=author&query=Hristov%2C+B+A">Boyan A. Hristov</a>, <a href="/search/astro-ph?searchtype=author&query=Kasliwal%2C+M+M">Mansi M. Kasliwal</a>, <a href="/search/astro-ph?searchtype=author&query=Kulkarni%2C+S+R">S. R. Kulkarni</a>, <a href="/search/astro-ph?searchtype=author&query=Kumar%2C+H">Harsh Kumar</a>, <a href="/search/astro-ph?searchtype=author&query=Laher%2C+R+R">Russ R. Laher</a>, <a href="/search/astro-ph?searchtype=author&query=Lysenko%2C+A+L">Alexandra L. Lysenko</a>, <a href="/search/astro-ph?searchtype=author&query=Mailyan%2C+B">Bagrat Mailyan</a>, <a href="/search/astro-ph?searchtype=author&query=Malacaria%2C+C">Christian Malacaria</a> , et al. (11 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.12366v2-abstract-short" style="display: inline;"> Dirty fireballs are a hypothesized class of relativistic massive-star explosions with an initial Lorentz factor $螕_\mathrm{init}$ below the $螕_\mathrm{init}\sim100$ required to produce a long-duration gamma-ray burst (LGRB), but which could still produce optical emission resembling LGRB afterglows. Here we present the results of a search for on-axis optical afterglows using the Zwicky Transient Fa… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.12366v2-abstract-full').style.display = 'inline'; document.getElementById('2201.12366v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.12366v2-abstract-full" style="display: none;"> Dirty fireballs are a hypothesized class of relativistic massive-star explosions with an initial Lorentz factor $螕_\mathrm{init}$ below the $螕_\mathrm{init}\sim100$ required to produce a long-duration gamma-ray burst (LGRB), but which could still produce optical emission resembling LGRB afterglows. Here we present the results of a search for on-axis optical afterglows using the Zwicky Transient Facility (ZTF). Our search yielded seven optical transients that resemble on-axis LGRB afterglows in terms of their red colors ($g-r>0$ mag), faint host galaxy ($r>23$ mag), and rapid fading ($dr/dt>1$ mag/day). Spectroscopy of the transient emission within a few days of discovery established cosmological distances ($z=0.876$ to $z=2.9$) for six events, tripling the number of afterglows with redshift measurements discovered by optical surveys without a $纬$-ray trigger. Upon a retrospective search, four events (ZTF20abbiixp/AT2020kym, ZTF21aagwbjr/AT2021buv, ZTF21aakruew/AT2021cwd, ZTF21abfmpwn/AT2021qbd) turned out to have a likely associated LGRB (GRB200524A, GRB210204A, GRB210212B, GRB210610B), while three did not (ZTF20aajnksq/AT2020blt, ZTF21aaeyldq/AT2021any, ZTF21aayokph/AT2021lfa). Our search revealed no definitive new class of events: the simplest explanation for the apparently "orphan" events is that they were regular LGRBs missed by high-energy satellites due to detector sensitivity and duty cycle, although it is possible that they were intrinsically faint in $纬$-rays or viewed slightly off-axis. We rule out a scenario in which dirty fireballs have a similar energy per solid angle to LGRBs and are an order of magnitude more common. In addition, we set the first direct constraint on the ratio of the opening angles of the material producing $纬$-rays and the material producing early optical afterglow emission, finding that they must be comparable. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.12366v2-abstract-full').style.display = 'none'; document.getElementById('2201.12366v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages, 12 figures. Accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.04555">arXiv:2112.04555</a> <span> [<a href="https://arxiv.org/pdf/2112.04555">pdf</a>, <a href="https://arxiv.org/format/2112.04555">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac5f53">10.3847/1538-4357/ac5f53 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Searches for Modulated 纬-Ray Precursors to Compact Binary Mergers in Fermi-GBM Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Stachie%2C+C">Cosmin Stachie</a>, <a href="/search/astro-ph?searchtype=author&query=Canton%2C+T+D">Tito Dal Canton</a>, <a href="/search/astro-ph?searchtype=author&query=Christensen%2C+N">Nelson Christensen</a>, <a href="/search/astro-ph?searchtype=author&query=Bizouard%2C+M">Marie-Anne Bizouard</a>, <a href="/search/astro-ph?searchtype=author&query=Briggs%2C+M">Michael Briggs</a>, <a href="/search/astro-ph?searchtype=author&query=Burns%2C+E">Eric Burns</a>, <a href="/search/astro-ph?searchtype=author&query=Camp%2C+J">Jordan Camp</a>, <a href="/search/astro-ph?searchtype=author&query=Coughlin%2C+M">Michael Coughlin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.04555v2-abstract-short" style="display: inline;"> GW170817 is the only gravitational-wave (GW) event, for which a confirmed 纬-ray counterpart, GRB 170817A, has been detected. Here we present a method to search for another type of 纬-ray signal, a 纬-ray burst precursor, associated with a compact binary merger. If emitted shortly before the coalescence, a high-energy electromagnetic (EM) flash travels through a highly dynamical and relativistic envi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.04555v2-abstract-full').style.display = 'inline'; document.getElementById('2112.04555v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.04555v2-abstract-full" style="display: none;"> GW170817 is the only gravitational-wave (GW) event, for which a confirmed 纬-ray counterpart, GRB 170817A, has been detected. Here we present a method to search for another type of 纬-ray signal, a 纬-ray burst precursor, associated with a compact binary merger. If emitted shortly before the coalescence, a high-energy electromagnetic (EM) flash travels through a highly dynamical and relativistic environment, created by the two compact objects orbiting each other. Thus, the EM signal arriving at an Earth observer could present a somewhat predictable time-dependent modulation. We describe a targeted search method for lightcurves exhibiting such a modulation, parameterized by the observer-frame component masses and binary merger time, using Fermi-GBM data. The sensitivity of the method is assessed based on simulated signals added to GBM data. The method is then applied to a selection of potentially interesting compact binary mergers detected during the second (O2) and third (O3) observing runs of Advanced LIGO and Advanced Virgo. We find no significant modulated 纬-ray precursor signal associated with any of the considered events. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.04555v2-abstract-full').style.display = 'none'; document.getElementById('2112.04555v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astrophysical Journal, 930, 2022, 45 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.11240">arXiv:2111.11240</a> <span> [<a href="https://arxiv.org/pdf/2111.11240">pdf</a>, <a href="https://arxiv.org/format/2111.11240">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-3881/ac6260">10.3847/1538-3881/ac6260 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multi-Resolution HEALPix Maps for Multi-Wavelength and Multi-Messenger Astronomy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Martinez-Castellanos%2C+I">I. Martinez-Castellanos</a>, <a href="/search/astro-ph?searchtype=author&query=Singer%2C+L+P">Leo P. Singer</a>, <a href="/search/astro-ph?searchtype=author&query=Burns%2C+E">E. Burns</a>, <a href="/search/astro-ph?searchtype=author&query=Tak%2C+D">D. Tak</a>, <a href="/search/astro-ph?searchtype=author&query=Joens%2C+A">Alyson Joens</a>, <a href="/search/astro-ph?searchtype=author&query=Racusin%2C+J+L">Judith L. Racusin</a>, <a href="/search/astro-ph?searchtype=author&query=Perkins%2C+J+S">Jeremy S. Perkins</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.11240v1-abstract-short" style="display: inline;"> HEALPix -- the Hierarchical Equal Area isoLatitude Pixelization -- has become a standard in high-energy and gravitational wave astronomy. Originally developed to improve the efficiency of all-sky Fourier analyses, it is now also utilized to share sky localization information. When used for this purpose the need for a homogeneous all-sky grid represents a limitation that hinders a broader community… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.11240v1-abstract-full').style.display = 'inline'; document.getElementById('2111.11240v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.11240v1-abstract-full" style="display: none;"> HEALPix -- the Hierarchical Equal Area isoLatitude Pixelization -- has become a standard in high-energy and gravitational wave astronomy. Originally developed to improve the efficiency of all-sky Fourier analyses, it is now also utilized to share sky localization information. When used for this purpose the need for a homogeneous all-sky grid represents a limitation that hinders a broader community adoption. This work presents mhealpy, a Python library able to create, handle and analyze multi-resolution maps, a solution to this problem. It supports efficient pixel querying, arithmetic operations between maps, adaptive mesh refinement, plotting and serialization into FITS -- Flexible Image Transport System -- files. This HEALPix extension makes it suitable to represent highly resolved regions, resulting in a convenient common format to share spatial information for joint multi-wavelength and multi-messenger analyses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.11240v1-abstract-full').style.display = 'none'; document.getElementById('2111.11240v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to the AAS journals. mhealpy is an open-source project. Documentation is available at https://mhealpy.readthedocs.io</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.09209">arXiv:2111.09209</a> <span> [<a href="https://arxiv.org/pdf/2111.09209">pdf</a>, <a href="https://arxiv.org/format/2111.09209">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac7ab2">10.3847/1538-4357/ac7ab2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Improving the low-energy transient sensitivity of AMEGO-X using single-site events </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Martinez-Castellanos%2C+I">I. Martinez-Castellanos</a>, <a href="/search/astro-ph?searchtype=author&query=Fleischhack%2C+H">H. Fleischhack</a>, <a href="/search/astro-ph?searchtype=author&query=Karwin%2C+C">C. Karwin</a>, <a href="/search/astro-ph?searchtype=author&query=Negro%2C+M">M. Negro</a>, <a href="/search/astro-ph?searchtype=author&query=Tak%2C+D">D. Tak</a>, <a href="/search/astro-ph?searchtype=author&query=Lien%2C+A">Amy Lien</a>, <a href="/search/astro-ph?searchtype=author&query=Kierans%2C+C+A">C. A. Kierans</a>, <a href="/search/astro-ph?searchtype=author&query=Wadiasingh%2C+Z">Zorawar Wadiasingh</a>, <a href="/search/astro-ph?searchtype=author&query=Fukazawa%2C+Y">Yasushi Fukazawa</a>, <a href="/search/astro-ph?searchtype=author&query=Ajello%2C+M">Marco Ajello</a>, <a href="/search/astro-ph?searchtype=author&query=Baring%2C+M+G">Matthew G. Baring</a>, <a href="/search/astro-ph?searchtype=author&query=Burns%2C+E">E. Burns</a>, <a href="/search/astro-ph?searchtype=author&query=Caputo%2C+R">R. Caputo</a>, <a href="/search/astro-ph?searchtype=author&query=Hartmann%2C+D+H">Dieter H. Hartmann</a>, <a href="/search/astro-ph?searchtype=author&query=Perkins%2C+J+S">Jeremy S. Perkins</a>, <a href="/search/astro-ph?searchtype=author&query=Racusin%2C+J+L">Judith L. Racusin</a>, <a href="/search/astro-ph?searchtype=author&query=Sheng%2C+Y">Yong Sheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.09209v3-abstract-short" style="display: inline;"> AMEGO-X, the All-sky Medium Energy Gamma-Ray Observatory eXplorer, is a proposed instrument designed to bridge the so-called "MeV gap" by surveying the sky with unprecedented sensitivity from ~100 keV to about one GeV. This energy band is of key importance for multi-messenger and multi-wavelength studies but it is nevertheless currently under-explored. AMEGO-X addresses this situation by proposing… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.09209v3-abstract-full').style.display = 'inline'; document.getElementById('2111.09209v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.09209v3-abstract-full" style="display: none;"> AMEGO-X, the All-sky Medium Energy Gamma-Ray Observatory eXplorer, is a proposed instrument designed to bridge the so-called "MeV gap" by surveying the sky with unprecedented sensitivity from ~100 keV to about one GeV. This energy band is of key importance for multi-messenger and multi-wavelength studies but it is nevertheless currently under-explored. AMEGO-X addresses this situation by proposing a design capable of detecting and imaging gamma rays via both Compton interactions and pair production processes. However, some of the objects that AMEGO-X will study, such as gamma-ray bursts and magnetars, extend to energies below ~100 keV where the dominant interaction becomes photoelectric absorption. These events deposit their energy in a single pixel of the detector. In this work we show how the ~3500 cm^2 effective area of the AMEGO-X tracker to events between ~25 keV to ~100 keV will be utilized to significantly improve its sensitivity and expand the energy range for transient phenomena. Although imaging is not possible for single-site events, we show how we will localize a transient source in the sky using their aggregate signal to within a few degrees. This technique will more than double the number of cosmological gamma-ray bursts seen by AMEGO-X, allow us to detect and resolve the pulsating tails of extragalactic magnetar giant flares, and increase the number of detected less-energetic magnetar bursts -- some possibly associated with fast radio bursts. Overall, single-site events will increase the sensitive energy range, expand the science program, and promptly alert the community of fainter transient events. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.09209v3-abstract-full').style.display = 'none'; document.getElementById('2111.09209v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in ApJ. Version changes: Added some minor clarifications</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.06497">arXiv:2111.06497</a> <span> [<a href="https://arxiv.org/pdf/2111.06497">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.2599293">10.1117/12.2599293 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Gamow Explorer: A gamma-ray burst observatory to study the high redshift universe and enable multi-messenger astrophysics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=White%2C+N+E">N. E. White</a>, <a href="/search/astro-ph?searchtype=author&query=Bauer%2C+F+E">F. E. Bauer</a>, <a href="/search/astro-ph?searchtype=author&query=Baumgartner%2C+W">W. Baumgartner</a>, <a href="/search/astro-ph?searchtype=author&query=Bautz%2C+M">M. Bautz</a>, <a href="/search/astro-ph?searchtype=author&query=Berger%2C+E">E. Berger</a>, <a href="/search/astro-ph?searchtype=author&query=Cenko%2C+S+B">S. B. Cenko</a>, <a href="/search/astro-ph?searchtype=author&query=Chang%2C+T+-">T. -C. Chang</a>, <a href="/search/astro-ph?searchtype=author&query=Falcone%2C+A">A. Falcone</a>, <a href="/search/astro-ph?searchtype=author&query=Fausey%2C+H">H. Fausey</a>, <a href="/search/astro-ph?searchtype=author&query=Feldman%2C+C">C. Feldman</a>, <a href="/search/astro-ph?searchtype=author&query=Fox%2C+D">D. Fox</a>, <a href="/search/astro-ph?searchtype=author&query=Fox%2C+O">O. Fox</a>, <a href="/search/astro-ph?searchtype=author&query=Fruchter%2C+A">A. Fruchter</a>, <a href="/search/astro-ph?searchtype=author&query=Fryer%2C+C">C. Fryer</a>, <a href="/search/astro-ph?searchtype=author&query=Ghirlanda%2C+G">G. Ghirlanda</a>, <a href="/search/astro-ph?searchtype=author&query=Gorski%2C+K">K. Gorski</a>, <a href="/search/astro-ph?searchtype=author&query=Grant%2C+K">K. Grant</a>, <a href="/search/astro-ph?searchtype=author&query=Guiriec%2C+S">S. Guiriec</a>, <a href="/search/astro-ph?searchtype=author&query=Hart%2C+M">M. Hart</a>, <a href="/search/astro-ph?searchtype=author&query=Hartmann%2C+D">D. Hartmann</a>, <a href="/search/astro-ph?searchtype=author&query=Hennawi%2C+J">J. Hennawi</a>, <a href="/search/astro-ph?searchtype=author&query=Kann%2C+D+A">D. A. Kann</a>, <a href="/search/astro-ph?searchtype=author&query=Kaplan%2C+D">D. Kaplan</a>, <a href="/search/astro-ph?searchtype=author&query=J."> J.</a>, <a href="/search/astro-ph?searchtype=author&query=Kennea%2C+A">A. Kennea</a> , et al. (41 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.06497v2-abstract-short" style="display: inline;"> The Gamow Explorer will use Gamma Ray Bursts (GRBs) to: 1) probe the high redshift universe (z > 6) when the first stars were born, galaxies formed and Hydrogen was reionized; and 2) enable multi-messenger astrophysics by rapidly identifying Electro-Magnetic (IR/Optical/X-ray) counterparts to Gravitational Wave (GW) events. GRBs have been detected out to z ~ 9 and their afterglows are a bright bea… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.06497v2-abstract-full').style.display = 'inline'; document.getElementById('2111.06497v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.06497v2-abstract-full" style="display: none;"> The Gamow Explorer will use Gamma Ray Bursts (GRBs) to: 1) probe the high redshift universe (z > 6) when the first stars were born, galaxies formed and Hydrogen was reionized; and 2) enable multi-messenger astrophysics by rapidly identifying Electro-Magnetic (IR/Optical/X-ray) counterparts to Gravitational Wave (GW) events. GRBs have been detected out to z ~ 9 and their afterglows are a bright beacon lasting a few days that can be used to observe the spectral fingerprints of the host galaxy and intergalactic medium to map the period of reionization and early metal enrichment. Gamow Explorer is optimized to quickly identify high-z events to trigger follow-up observations with JWST and large ground-based telescopes. A wide field of view Lobster Eye X-ray Telescope (LEXT) will search for GRBs and locate them with arc-minute precision. When a GRB is detected, the rapidly slewing spacecraft will point the 5 photometric channel Photo-z Infra-Red Telescope (PIRT) to identify high redshift (z > 6) long GRBs within 100s and send an alert within 1000s of the GRB trigger. An L2 orbit provides > 95% observing efficiency with pointing optimized for follow up by the James Webb Space Telescope (JWST) and ground observatories. The predicted Gamow Explorer high-z rate is >10 times that of the Neil Gehrels Swift Observatory. The instrument and mission capabilities also enable rapid identification of short GRBs and their afterglows associated with GW events. The Gamow Explorer will be proposed to the 2021 NASA MIDEX call and if approved, launched in 2028. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.06497v2-abstract-full').style.display = 'none'; document.getElementById('2111.06497v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 8 Figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proc. SPIE 11821, UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XXII, 1182109 (24 August 2021) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Burns%2C+E&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Burns%2C+E&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Burns%2C+E&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Burns%2C+E&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>