CINXE.COM

Nuclear binding energy - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Nuclear binding energy - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"17b6711c-4c72-4920-8815-62f2cf49814c","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Nuclear_binding_energy","wgTitle":"Nuclear binding energy","wgCurRevisionId":1257999831,"wgRevisionId":1257999831,"wgArticleId":3043836,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","Articles needing additional references from October 2014","All articles needing additional references","Commons category link from Wikidata","Nuclear physics","Nuclear chemistry","Nuclear fusion","Binding energy"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Nuclear_binding_energy","wgRelevantArticleId":3043836, "wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":50000,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q6750062","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled": false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin", "mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.15"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/4/4b/NuclearReaction.svg/1200px-NuclearReaction.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="764"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/4/4b/NuclearReaction.svg/800px-NuclearReaction.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="509"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/4/4b/NuclearReaction.svg/640px-NuclearReaction.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="407"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Nuclear binding energy - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Nuclear_binding_energy"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Nuclear_binding_energy&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Nuclear_binding_energy"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Nuclear_binding_energy rootpage-Nuclear_binding_energy skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" title="Main menu" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Nuclear+binding+energy" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Nuclear+binding+energy" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Nuclear+binding+energy" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Nuclear+binding+energy" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Introduction" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Introduction"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Introduction</span> </div> </a> <button aria-controls="toc-Introduction-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Introduction subsection</span> </button> <ul id="toc-Introduction-sublist" class="vector-toc-list"> <li id="toc-Nuclear_energy" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Nuclear_energy"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Nuclear energy</span> </div> </a> <ul id="toc-Nuclear_energy-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-The_nuclear_force" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#The_nuclear_force"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>The nuclear force</span> </div> </a> <ul id="toc-The_nuclear_force-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Physics_of_nuclei" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Physics_of_nuclei"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.3</span> <span>Physics of nuclei</span> </div> </a> <ul id="toc-Physics_of_nuclei-sublist" class="vector-toc-list"> <li id="toc-Mass_defect" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Mass_defect"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.3.1</span> <span>Mass defect</span> </div> </a> <ul id="toc-Mass_defect-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Nuclear_reactions_in_the_Sun" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Nuclear_reactions_in_the_Sun"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.3.2</span> <span>Nuclear reactions in the Sun</span> </div> </a> <ul id="toc-Nuclear_reactions_in_the_Sun-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Combining_nuclei" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Combining_nuclei"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.3.3</span> <span>Combining nuclei</span> </div> </a> <ul id="toc-Combining_nuclei-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Nuclear_binding_energy" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Nuclear_binding_energy"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.4</span> <span>Nuclear binding energy</span> </div> </a> <ul id="toc-Nuclear_binding_energy-sublist" class="vector-toc-list"> <li id="toc-Nuclear_fusion" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Nuclear_fusion"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.4.1</span> <span>Nuclear fusion</span> </div> </a> <ul id="toc-Nuclear_fusion-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-The_binding_energy_maximum_and_ways_to_approach_it_by_decay" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#The_binding_energy_maximum_and_ways_to_approach_it_by_decay"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.4.2</span> <span>The binding energy maximum and ways to approach it by decay</span> </div> </a> <ul id="toc-The_binding_energy_maximum_and_ways_to_approach_it_by_decay-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-Calculation_of_nuclear_binding_energy" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Calculation_of_nuclear_binding_energy"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Calculation of nuclear binding energy</span> </div> </a> <button aria-controls="toc-Calculation_of_nuclear_binding_energy-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Calculation of nuclear binding energy subsection</span> </button> <ul id="toc-Calculation_of_nuclear_binding_energy-sublist" class="vector-toc-list"> <li id="toc-Conversion_of_nuclear_mass_defect_into_energy" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Conversion_of_nuclear_mass_defect_into_energy"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Conversion of nuclear mass defect into energy</span> </div> </a> <ul id="toc-Conversion_of_nuclear_mass_defect_into_energy-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Fission_and_fusion" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Fission_and_fusion"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Fission and fusion</span> </div> </a> <ul id="toc-Fission_and_fusion-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Binding_energy_for_atoms" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Binding_energy_for_atoms"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Binding energy for atoms</span> </div> </a> <ul id="toc-Binding_energy_for_atoms-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Nuclear_binding_energy_curve" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Nuclear_binding_energy_curve"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Nuclear binding energy curve</span> </div> </a> <button aria-controls="toc-Nuclear_binding_energy_curve-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Nuclear binding energy curve subsection</span> </button> <ul id="toc-Nuclear_binding_energy_curve-sublist" class="vector-toc-list"> <li id="toc-Binding_energy_and_nuclide_masses" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Binding_energy_and_nuclide_masses"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Binding energy and nuclide masses</span> </div> </a> <ul id="toc-Binding_energy_and_nuclide_masses-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Semiempirical_formula_for_nuclear_binding_energy" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Semiempirical_formula_for_nuclear_binding_energy"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Semiempirical formula for nuclear binding energy</span> </div> </a> <ul id="toc-Semiempirical_formula_for_nuclear_binding_energy-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Example_values_deduced_from_experimentally_measured_atom_nuclide_masses" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Example_values_deduced_from_experimentally_measured_atom_nuclide_masses"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Example values deduced from experimentally measured atom nuclide masses</span> </div> </a> <ul id="toc-Example_values_deduced_from_experimentally_measured_atom_nuclide_masses-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" title="Table of Contents" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Nuclear binding energy</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 42 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-42" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">42 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%B7%D8%A7%D9%82%D8%A9_%D8%A7%D9%84%D8%AA%D8%B1%D8%A7%D8%A8%D8%B7_%D8%A7%D9%84%D9%86%D9%88%D9%88%D9%8A" title="طاقة الترابط النووي – Arabic" lang="ar" hreflang="ar" data-title="طاقة الترابط النووي" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/N%C3%BCv%C9%99_enerjisi" title="Nüvə enerjisi – Azerbaijani" lang="az" hreflang="az" data-title="Nüvə enerjisi" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbaijani" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%A8%E0%A6%BF%E0%A6%89%E0%A6%95%E0%A7%8D%E0%A6%B2%E0%A7%80%E0%A6%AF%E0%A6%BC_%E0%A6%AC%E0%A6%A8%E0%A7%8D%E0%A6%A7%E0%A6%A8_%E0%A6%B6%E0%A6%95%E0%A7%8D%E0%A6%A4%E0%A6%BF" title="নিউক্লীয় বন্ধন শক্তি – Bangla" lang="bn" hreflang="bn" data-title="নিউক্লীয় বন্ধন শক্তি" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D0%AF%D0%B4%D1%80%D0%BE_%D1%8D%D0%BD%D0%B5%D1%80%D0%B3%D0%B8%D1%8F%D2%BB%D1%8B" title="Ядро энергияһы – Bashkir" lang="ba" hreflang="ba" data-title="Ядро энергияһы" data-language-autonym="Башҡортса" data-language-local-name="Bashkir" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%AF%D0%B4%D0%B7%D0%B5%D1%80%D0%BD%D0%B0%D1%8F_%D1%8D%D0%BD%D0%B5%D1%80%D0%B3%D1%96%D1%8F" title="Ядзерная энергія – Belarusian" lang="be" hreflang="be" data-title="Ядзерная энергія" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://be-tarask.wikipedia.org/wiki/%D0%AF%D0%B4%D0%B7%D0%B5%D1%80%D0%BD%D0%B0%D1%8F_%D1%8D%D0%BD%D1%8D%D1%80%D0%B3%D1%96%D1%8F" title="Ядзерная энэргія – Belarusian (Taraškievica orthography)" lang="be-tarask" hreflang="be-tarask" data-title="Ядзерная энэргія" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Belarusian (Taraškievica orthography)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%AF%D0%B4%D1%80%D0%B5%D0%BD%D0%B0_%D0%B5%D0%BD%D0%B5%D1%80%D0%B3%D0%B8%D1%8F" title="Ядрена енергия – Bulgarian" lang="bg" hreflang="bg" data-title="Ядрена енергия" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Energia_d%27uni%C3%B3_nuclear" title="Energia d&#039;unió nuclear – Catalan" lang="ca" hreflang="ca" data-title="Energia d&#039;unió nuclear" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%9D%D1%83%D0%BA%D0%BB%D0%BE%D0%BD%D1%81%D0%B0%D1%80_%D1%8D%D0%BD%D0%B5%D1%80%D0%B3%D0%B8%D0%B9%C4%95" title="Нуклонсар энергийĕ – Chuvash" lang="cv" hreflang="cv" data-title="Нуклонсар энергийĕ" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Jadern%C3%A1_energie" title="Jaderná energie – Czech" lang="cs" hreflang="cs" data-title="Jaderná energie" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Kernefysisk_bindingsenergi" title="Kernefysisk bindingsenergi – Danish" lang="da" hreflang="da" data-title="Kernefysisk bindingsenergi" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Energ%C3%ADa_de_enlace_nuclear" title="Energía de enlace nuclear – Spanish" lang="es" hreflang="es" data-title="Energía de enlace nuclear" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%A7%D9%86%D8%B1%DA%98%DB%8C_%D8%A8%D8%B3%D8%AA%DA%AF%DB%8C_%D9%87%D8%B3%D8%AA%D9%87" title="انرژی بستگی هسته – Persian" lang="fa" hreflang="fa" data-title="انرژی بستگی هسته" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Liaison_nucl%C3%A9aire" title="Liaison nucléaire – French" lang="fr" hreflang="fr" data-title="Liaison nucléaire" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%84%D5%AB%D5%BB%D5%B8%D6%82%D5%AF%D5%A1%D5%B5%D5%AB%D5%B6_%D5%A7%D5%B6%D5%A5%D6%80%D5%A3%D5%AB%D5%A1" title="Միջուկային էներգիա – Armenian" lang="hy" hreflang="hy" data-title="Միջուկային էներգիա" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Nuklearna_energija_vezanja" title="Nuklearna energija vezanja – Croatian" lang="hr" hreflang="hr" data-title="Nuklearna energija vezanja" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Energi_pengikatan_inti" title="Energi pengikatan inti – Indonesian" lang="id" hreflang="id" data-title="Energi pengikatan inti" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%90%D7%A0%D7%A8%D7%92%D7%99%D7%99%D7%AA_%D7%A7%D7%A9%D7%A8_%D7%92%D7%A8%D7%A2%D7%99%D7%A0%D7%99%D7%AA" title="אנרגיית קשר גרעינית – Hebrew" lang="he" hreflang="he" data-title="אנרגיית קשר גרעינית" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%AF%D0%B4%D1%80%D0%BE%D0%BB%D1%8B%D2%9B_%D1%8D%D0%BD%D0%B5%D1%80%D0%B3%D0%B8%D1%8F" title="Ядролық энергия – Kazakh" lang="kk" hreflang="kk" data-title="Ядролық энергия" data-language-autonym="Қазақша" data-language-local-name="Kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-sw mw-list-item"><a href="https://sw.wikipedia.org/wiki/Nishati_ya_nyuklia" title="Nishati ya nyuklia – Swahili" lang="sw" hreflang="sw" data-title="Nishati ya nyuklia" data-language-autonym="Kiswahili" data-language-local-name="Swahili" class="interlanguage-link-target"><span>Kiswahili</span></a></li><li class="interlanguage-link interwiki-ky mw-list-item"><a href="https://ky.wikipedia.org/wiki/%D0%AF%D0%B4%D1%80%D0%BE_%D1%8D%D0%BD%D0%B5%D1%80%D0%B3%D0%B8%D1%8F%D1%81%D1%8B" title="Ядро энергиясы – Kyrgyz" lang="ky" hreflang="ky" data-title="Ядро энергиясы" data-language-autonym="Кыргызча" data-language-local-name="Kyrgyz" class="interlanguage-link-target"><span>Кыргызча</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%95%D0%BD%D0%B5%D1%80%D0%B3%D0%B8%D1%98%D0%B0_%D0%BD%D0%B0_%D1%81%D0%B2%D1%80%D0%B7%D1%83%D0%B2%D0%B0%D1%9A%D0%B5" title="Енергија на сврзување – Macedonian" lang="mk" hreflang="mk" data-title="Енергија на сврзување" data-language-autonym="Македонски" data-language-local-name="Macedonian" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%86%E0%B4%A3%E0%B4%B5%E0%B5%8B%E0%B5%BC%E0%B4%9C%E0%B5%8D%E0%B4%9C%E0%B4%82" title="ആണവോർജ്ജം – Malayalam" lang="ml" hreflang="ml" data-title="ആണവോർജ്ജം" data-language-autonym="മലയാളം" data-language-local-name="Malayalam" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Tenaga_pengikatan_nuklear" title="Tenaga pengikatan nuklear – Malay" lang="ms" hreflang="ms" data-title="Tenaga pengikatan nuklear" data-language-autonym="Bahasa Melayu" data-language-local-name="Malay" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-mn mw-list-item"><a href="https://mn.wikipedia.org/wiki/%D0%A6%D3%A9%D0%BC%D0%B8%D0%B9%D0%BD_%D1%85%D0%BE%D0%BB%D0%B1%D0%BE%D0%BB%D1%82%D1%8B%D0%BD_%D1%8D%D0%BD%D0%B5%D1%80%D0%B3%D0%B8" title="Цөмийн холболтын энерги – Mongolian" lang="mn" hreflang="mn" data-title="Цөмийн холболтын энерги" data-language-autonym="Монгол" data-language-local-name="Mongolian" class="interlanguage-link-target"><span>Монгол</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Kjernefysisk_bindingsenergi" title="Kjernefysisk bindingsenergi – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Kjernefysisk bindingsenergi" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Atom_energiyasi" title="Atom energiyasi – Uzbek" lang="uz" hreflang="uz" data-title="Atom energiyasi" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Uzbek" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-pnb mw-list-item"><a href="https://pnb.wikipedia.org/wiki/%D8%A8%D8%A7%D8%A6%D9%86%DA%88%D9%86%DA%AF_%D8%A7%D9%86%D8%B1%D8%AC%DB%8C" title="بائنڈنگ انرجی – Western Punjabi" lang="pnb" hreflang="pnb" data-title="بائنڈنگ انرجی" data-language-autonym="پنجابی" data-language-local-name="Western Punjabi" class="interlanguage-link-target"><span>پنجابی</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Energia_j%C4%85drowa" title="Energia jądrowa – Polish" lang="pl" hreflang="pl" data-title="Energia jądrowa" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%AF%D0%B4%D0%B5%D1%80%D0%BD%D0%B0%D1%8F_%D1%8D%D0%BD%D0%B5%D1%80%D0%B3%D0%B8%D1%8F" title="Ядерная энергия – Russian" lang="ru" hreflang="ru" data-title="Ядерная энергия" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Nuclear_binding_energy" title="Nuclear binding energy – Simple English" lang="en-simple" hreflang="en-simple" data-title="Nuclear binding energy" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Jadrov%C3%A1_energia" title="Jadrová energia – Slovak" lang="sk" hreflang="sk" data-title="Jadrová energia" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%D9%88%D8%B2%DB%95%DB%8C_%D8%A8%DB%95%DB%8C%DB%95%DA%A9%DB%95%D9%88%DB%95%D8%A8%DB%95%D8%B3%D8%AA%D9%86%DB%8C_%D9%86%D8%A7%D9%88%DA%A9%DB%8C" title="وزەی بەیەکەوەبەستنی ناوکی – Central Kurdish" lang="ckb" hreflang="ckb" data-title="وزەی بەیەکەوەبەستنی ناوکی" data-language-autonym="کوردی" data-language-local-name="Central Kurdish" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/Nuklearna_energija_vezanja" title="Nuklearna energija vezanja – Serbian" lang="sr" hreflang="sr" data-title="Nuklearna energija vezanja" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Nuklearna_energija_vezanja" title="Nuklearna energija vezanja – Serbo-Croatian" lang="sh" hreflang="sh" data-title="Nuklearna energija vezanja" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/K%C3%A4rnenergi" title="Kärnenergi – Swedish" lang="sv" hreflang="sv" data-title="Kärnenergi" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/N%C3%BCkleer_ba%C4%9Flanma_enerjisi" title="Nükleer bağlanma enerjisi – Turkish" lang="tr" hreflang="tr" data-title="Nükleer bağlanma enerjisi" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%AF%D0%B4%D0%B5%D1%80%D0%BD%D0%B0_%D0%B5%D0%BD%D0%B5%D1%80%D0%B3%D1%96%D1%8F" title="Ядерна енергія – Ukrainian" lang="uk" hreflang="uk" data-title="Ядерна енергія" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D8%A8%D8%A7%D8%A6%D9%86%DA%88%D9%86%DA%AF_%D8%A7%D9%86%D8%B1%D8%AC%DB%8C" title="بائنڈنگ انرجی – Urdu" lang="ur" hreflang="ur" data-title="بائنڈنگ انرجی" data-language-autonym="اردو" data-language-local-name="Urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/N%C4%83ng_l%C6%B0%E1%BB%A3ng_li%C3%AAn_k%E1%BA%BFt_h%E1%BA%A1t_nh%C3%A2n" title="Năng lượng liên kết hạt nhân – Vietnamese" lang="vi" hreflang="vi" data-title="Năng lượng liên kết hạt nhân" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E6%A0%B8%E7%BB%93%E5%90%88%E8%83%BD" title="核结合能 – Chinese" lang="zh" hreflang="zh" data-title="核结合能" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-dtp mw-list-item"><a href="https://dtp.wikipedia.org/wiki/Tenaga_nuklear" title="Tenaga nuklear – Central Dusun" lang="dtp" hreflang="dtp" data-title="Tenaga nuklear" data-language-autonym="Kadazandusun" data-language-local-name="Central Dusun" class="interlanguage-link-target"><span>Kadazandusun</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q6750062#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Nuclear_binding_energy" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Nuclear_binding_energy" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Nuclear_binding_energy"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Nuclear_binding_energy&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Nuclear_binding_energy&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Nuclear_binding_energy"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Nuclear_binding_energy&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Nuclear_binding_energy&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Nuclear_binding_energy" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Nuclear_binding_energy" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Nuclear_binding_energy&amp;oldid=1257999831" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Nuclear_binding_energy&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Nuclear_binding_energy&amp;id=1257999831&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FNuclear_binding_energy"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FNuclear_binding_energy"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Nuclear_binding_energy&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Nuclear_binding_energy&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Nuclear_binding_energy" hreflang="en"><span>Wikimedia Commons</span></a></li><li class="wb-otherproject-link wb-otherproject-wikibooks mw-list-item"><a href="https://en.wikibooks.org/wiki/Nuclear_Physics/Nuclear_Binding_Energies" hreflang="en"><span>Wikibooks</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q6750062" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Minimum energy required to separate particles within a nucleus</div> <style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><table class="box-More_citations_needed plainlinks metadata ambox ambox-content ambox-Refimprove" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Question_book-new.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This article <b>needs additional citations for <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">verification</a></b>.<span class="hide-when-compact"> Please help <a href="/wiki/Special:EditPage/Nuclear_binding_energy" title="Special:EditPage/Nuclear binding energy">improve this article</a> by <a href="/wiki/Help:Referencing_for_beginners" title="Help:Referencing for beginners">adding citations to reliable sources</a>. Unsourced material may be challenged and removed.<br /><small><span class="plainlinks"><i>Find sources:</i>&#160;<a rel="nofollow" class="external text" href="https://www.google.com/search?as_eq=wikipedia&amp;q=%22Nuclear+binding+energy%22">"Nuclear binding energy"</a>&#160;–&#160;<a rel="nofollow" class="external text" href="https://www.google.com/search?tbm=nws&amp;q=%22Nuclear+binding+energy%22+-wikipedia&amp;tbs=ar:1">news</a>&#160;<b>·</b> <a rel="nofollow" class="external text" href="https://www.google.com/search?&amp;q=%22Nuclear+binding+energy%22&amp;tbs=bkt:s&amp;tbm=bks">newspapers</a>&#160;<b>·</b> <a rel="nofollow" class="external text" href="https://www.google.com/search?tbs=bks:1&amp;q=%22Nuclear+binding+energy%22+-wikipedia">books</a>&#160;<b>·</b> <a rel="nofollow" class="external text" href="https://scholar.google.com/scholar?q=%22Nuclear+binding+energy%22">scholar</a>&#160;<b>·</b> <a rel="nofollow" class="external text" href="https://www.jstor.org/action/doBasicSearch?Query=%22Nuclear+binding+energy%22&amp;acc=on&amp;wc=on">JSTOR</a></span></small></span> <span class="date-container"><i>(<span class="date">October 2014</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><table class="sidebar sidebar-collapse nomobile nowraplinks"><tbody><tr><th class="sidebar-title"><a href="/wiki/Nuclear_physics" title="Nuclear physics">Nuclear physics</a></th></tr><tr><td class="sidebar-image"><span typeof="mw:File"><a href="/wiki/File:NuclearReaction.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4b/NuclearReaction.svg/200px-NuclearReaction.svg.png" decoding="async" width="200" height="127" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4b/NuclearReaction.svg/300px-NuclearReaction.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4b/NuclearReaction.svg/400px-NuclearReaction.svg.png 2x" data-file-width="550" data-file-height="350" /></a></span></td></tr><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Atomic_nucleus" title="Atomic nucleus">Nucleus</a></li> <li><a href="/wiki/Nucleon" title="Nucleon">Nucleons</a> <ul><li><a href="/wiki/Proton" title="Proton">p</a></li> <li><a href="/wiki/Neutron" title="Neutron">n</a></li></ul></li> <li><a href="/wiki/Nuclear_matter" title="Nuclear matter">Nuclear matter</a></li> <li><a href="/wiki/Nuclear_force" title="Nuclear force">Nuclear force</a></li> <li><a href="/wiki/Nuclear_structure" title="Nuclear structure">Nuclear structure</a></li> <li><a href="/wiki/Nuclear_reaction" title="Nuclear reaction">Nuclear reaction</a></li></ul></td> </tr><tr><td class="sidebar-content hlist"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)"><a href="/wiki/Nuclear_model" class="mw-redirect" title="Nuclear model">Models of the nucleus</a></div><div class="sidebar-list-content mw-collapsible-content"> <ul><li><a href="/wiki/Semi-empirical_mass_formula" title="Semi-empirical mass formula">Liquid drop</a></li> <li><a href="/wiki/Nuclear_shell_model" title="Nuclear shell model">Nuclear shell model</a></li> <li><a href="/wiki/Interacting_boson_model" title="Interacting boson model">Interacting boson model</a></li> <li><a href="/wiki/Ab_initio_methods_(nuclear_physics)" title="Ab initio methods (nuclear physics)">Ab initio</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content hlist"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)"><a href="/wiki/Nuclide" title="Nuclide">Nuclides</a>' classification</div><div class="sidebar-list-content mw-collapsible-content"> <ul><li><a href="/wiki/Isotope" title="Isotope">Isotopes</a> – equal <a href="/wiki/Atomic_number" title="Atomic number"><i>Z</i></a><br /></li></ul> <ul><li><a href="/wiki/Isobar_(nuclide)" title="Isobar (nuclide)">Isobars</a> – equal <a href="/wiki/Mass_number" title="Mass number"><i>A</i></a></li></ul> <ul><li><a href="/wiki/Isotone" title="Isotone">Isotones</a> – equal <a href="/wiki/Neutron_number" title="Neutron number"><i>N</i></a></li></ul> <ul><li><a href="/wiki/Isodiapher" class="mw-redirect" title="Isodiapher">Isodiaphers</a> – equal <a href="/wiki/Neutron_excess" class="mw-redirect" title="Neutron excess"><i>N</i>&#160;−&#160;<i>Z</i></a></li></ul> <ul><li><a href="/wiki/Nuclear_isomer" title="Nuclear isomer">Isomers</a> – equal all the above</li></ul> <ul><li><a href="/wiki/Mirror_nuclei" title="Mirror nuclei">Mirror nuclei</a>&#160;– <i>Z</i> ↔ <i>N</i></li></ul> <ul><li><a href="/wiki/Stable_isotope" class="mw-redirect" title="Stable isotope">Stable</a></li> <li><a href="/wiki/Magic_number_(physics)" title="Magic number (physics)">Magic</a></li> <li><a href="/wiki/Even_and_odd_atomic_nuclei" title="Even and odd atomic nuclei">Even/odd</a></li> <li><a href="/wiki/Halo_nucleus" title="Halo nucleus">Halo</a> <ul><li><a href="/wiki/Borromean_nucleus" title="Borromean nucleus">Borromean</a></li></ul></li></ul></div></div></td> </tr><tr><td class="sidebar-content hlist"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)">Nuclear stability</div><div class="sidebar-list-content mw-collapsible-content"> <ul><li><a class="mw-selflink selflink">Binding energy</a></li> <li><a href="/wiki/Proton%E2%80%93neutron_ratio" class="mw-redirect" title="Proton–neutron ratio">p–n ratio</a></li> <li><a href="/wiki/Nuclear_drip_line" title="Nuclear drip line">Drip line</a></li> <li><a href="/wiki/Island_of_stability" title="Island of stability">Island of stability</a></li> <li><a href="/wiki/Valley_of_stability" title="Valley of stability">Valley of stability</a></li> <li><a href="/wiki/Stable_nuclide" title="Stable nuclide">Stable nuclide</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content hlist"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)"><a href="/wiki/Radioactive_decay" title="Radioactive decay">Radioactive decay</a></div><div class="sidebar-list-content mw-collapsible-content"> <ul><li><a href="/wiki/Alpha_decay" title="Alpha decay">Alpha&#160;α</a></li> <li><a href="/wiki/Beta_decay" title="Beta decay">Beta&#160;β</a> <ul><li><a href="/wiki/Double_beta_decay" title="Double beta decay">2β</a> <ul><li><a href="/wiki/Neutrinoless_double_beta_decay" title="Neutrinoless double beta decay">0v</a></li></ul></li> <li><a href="/wiki/Positron_emission" title="Positron emission">β<sup>+</sup></a></li></ul></li> <li><a href="/wiki/Electron_capture" title="Electron capture">K/L capture</a></li> <li><a href="/wiki/Isomeric_transition" class="mw-redirect" title="Isomeric transition">Isomeric</a> <ul><li><a href="/wiki/Gamma_ray" title="Gamma ray">Gamma γ</a></li> <li><a href="/wiki/Internal_conversion" title="Internal conversion">Internal conversion</a></li></ul></li> <li><a href="/wiki/Spontaneous_fission" title="Spontaneous fission">Spontaneous fission</a></li> <li><a href="/wiki/Cluster_decay" title="Cluster decay">Cluster decay</a></li> <li><a href="/wiki/Neutron_emission" title="Neutron emission">Neutron emission</a></li> <li><a href="/wiki/Proton_emission" title="Proton emission">Proton emission</a></li></ul> <ul><li><a href="/wiki/Decay_energy" title="Decay energy">Decay energy</a></li> <li><a href="/wiki/Decay_chain" title="Decay chain">Decay chain</a></li> <li><a href="/wiki/Decay_product" title="Decay product">Decay product</a></li> <li><a href="/wiki/Radiogenic_nuclide" title="Radiogenic nuclide">Radiogenic nuclide</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content hlist"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)"><a href="/wiki/Nuclear_fission" title="Nuclear fission">Nuclear fission</a></div><div class="sidebar-list-content mw-collapsible-content"> <ul><li><a href="/wiki/Spontaneous_fission" title="Spontaneous fission">Spontaneous</a></li> <li><a href="/wiki/Nuclear_fission_product" title="Nuclear fission product">Products</a> <ul><li><a href="/wiki/Nucleon_pair_breaking_in_fission" title="Nucleon pair breaking in fission">pair breaking</a></li></ul></li> <li><a href="/wiki/Photofission" title="Photofission">Photofission</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content hlist"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)">Capturing processes</div><div class="sidebar-list-content mw-collapsible-content"> <ul><li><a href="/wiki/Electron_capture" title="Electron capture">electron</a> <ul><li><a href="/wiki/Double_electron_capture" title="Double electron capture">2×</a></li></ul></li> <li><a href="/wiki/Neutron_capture" title="Neutron capture">neutron</a> <ul><li><a href="/wiki/S-process" title="S-process">s</a></li> <li><a href="/wiki/R-process" title="R-process">r</a></li></ul></li> <li><a href="/wiki/Proton_capture" title="Proton capture">proton</a> <ul><li><a href="/wiki/P-process" title="P-process">p</a></li> <li><a href="/wiki/Rp-process" title="Rp-process">rp</a></li></ul></li></ul></div></div></td> </tr><tr><td class="sidebar-content hlist"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)">High-energy processes</div><div class="sidebar-list-content mw-collapsible-content"> <ul><li><a href="/wiki/Spallation" title="Spallation">Spallation</a> <ul><li><a href="/wiki/Cosmic_ray_spallation" title="Cosmic ray spallation">by cosmic ray</a></li></ul></li> <li><a href="/wiki/Photodisintegration" title="Photodisintegration">Photodisintegration</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content hlist"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)"><a href="/wiki/Nucleosynthesis" title="Nucleosynthesis">Nucleosynthesis</a> and<br /> <a href="/wiki/Nuclear_astrophysics" title="Nuclear astrophysics">nuclear astrophysics</a></div><div class="sidebar-list-content mw-collapsible-content"> <ul><li><a href="/wiki/Nuclear_fusion" title="Nuclear fusion">Nuclear fusion</a></li></ul> <ul><li><small>Processes:</small> <ul><li><a href="/wiki/Stellar_nucleosynthesis" title="Stellar nucleosynthesis">Stellar</a></li> <li><a href="/wiki/Big_Bang_nucleosynthesis" title="Big Bang nucleosynthesis">Big Bang</a></li> <li><a href="/wiki/Supernova_nucleosynthesis" title="Supernova nucleosynthesis">Supernova</a></li></ul></li></ul> <ul><li>Nuclides: <ul><li><a href="/wiki/Primordial_nuclide" title="Primordial nuclide">Primordial</a></li> <li><a href="/wiki/Cosmogenic_nuclide" title="Cosmogenic nuclide">Cosmogenic</a></li> <li><a href="/wiki/Synthetic_element" title="Synthetic element">Artificial</a></li></ul></li></ul></div></div></td> </tr><tr><td class="sidebar-content hlist"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)"><a href="/wiki/High-energy_nuclear_physics" title="High-energy nuclear physics">High-energy nuclear physics</a></div><div class="sidebar-list-content mw-collapsible-content"> <ul><li><a href="/wiki/Quark%E2%80%93gluon_plasma" title="Quark–gluon plasma">Quark–gluon plasma</a></li> <li><a href="/wiki/Relativistic_Heavy_Ion_Collider" title="Relativistic Heavy Ion Collider">RHIC</a></li> <li><a href="/wiki/Large_Hadron_Collider" title="Large Hadron Collider">LHC</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content hlist"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)"><a href="/wiki/Category:Nuclear_physicists" title="Category:Nuclear physicists">Scientists</a></div><div class="sidebar-list-content mw-collapsible-content"> <ul><li><a href="/wiki/Luis_Walter_Alvarez" title="Luis Walter Alvarez">Alvarez</a></li> <li><a href="/wiki/Henri_Becquerel" title="Henri Becquerel">Becquerel</a></li> <li><a href="/wiki/Hans_Bethe" title="Hans Bethe">Bethe</a></li> <li><a href="/wiki/Aage_Bohr" title="Aage Bohr">A. Bohr</a></li> <li><a href="/wiki/Niels_Bohr" title="Niels Bohr">N. Bohr</a></li> <li><a href="/wiki/James_Chadwick" title="James Chadwick">Chadwick</a></li> <li><a href="/wiki/John_Cockcroft" title="John Cockcroft">Cockcroft</a></li> <li><a href="/wiki/Ir%C3%A8ne_Joliot-Curie" title="Irène Joliot-Curie">Ir. Curie</a></li> <li><a href="/wiki/Fr%C3%A9d%C3%A9ric_Joliot-Curie" title="Frédéric Joliot-Curie">Fr. Curie</a></li> <li><a href="/wiki/Pierre_Curie" title="Pierre Curie">Pi. Curie</a></li> <li><a href="/wiki/Marie_Curie" title="Marie Curie">Skłodowska-Curie</a></li> <li><a href="/wiki/Clinton_Davisson" title="Clinton Davisson">Davisson</a></li> <li><a href="/wiki/Enrico_Fermi" title="Enrico Fermi">Fermi</a></li> <li><a href="/wiki/Otto_Hahn" title="Otto Hahn">Hahn</a></li> <li><a href="/wiki/J._Hans_D._Jensen" title="J. Hans D. Jensen">Jensen</a></li> <li><a href="/wiki/Ernest_Lawrence" title="Ernest Lawrence">Lawrence</a></li> <li><a href="/wiki/Maria_Goeppert-Mayer" class="mw-redirect" title="Maria Goeppert-Mayer">Mayer</a></li> <li><a href="/wiki/Lise_Meitner" title="Lise Meitner">Meitner</a></li> <li><a href="/wiki/Mark_Oliphant" title="Mark Oliphant">Oliphant</a></li> <li><a href="/wiki/J._Robert_Oppenheimer" title="J. Robert Oppenheimer">Oppenheimer</a></li> <li><a href="/wiki/Alexandru_Proca" title="Alexandru Proca">Proca</a></li> <li><a href="/wiki/Edward_Mills_Purcell" title="Edward Mills Purcell">Purcell</a></li> <li><a href="/wiki/Isidor_Isaac_Rabi" title="Isidor Isaac Rabi">Rabi</a></li> <li><a href="/wiki/Ernest_Rutherford" title="Ernest Rutherford">Rutherford</a></li> <li><a href="/wiki/Frederick_Soddy" title="Frederick Soddy">Soddy</a></li> <li><a href="/wiki/Fritz_Strassmann" title="Fritz Strassmann">Strassmann</a></li> <li><a href="/wiki/W%C5%82adys%C5%82aw_%C5%9Awi%C4%85tecki_(physicist)" title="Władysław Świątecki (physicist)">Świątecki</a></li> <li><a href="/wiki/Le%C3%B3_Szil%C3%A1rd" class="mw-redirect" title="Leó Szilárd">Szilárd</a></li> <li><a href="/wiki/Edward_Teller" title="Edward Teller">Teller</a></li> <li><a href="/wiki/J._J._Thomson" title="J. J. Thomson">Thomson</a></li> <li><a href="/wiki/Ernest_Walton" title="Ernest Walton">Walton</a></li> <li><a href="/wiki/Eugene_Wigner" title="Eugene Wigner">Wigner</a></li></ul></div></div></td> </tr><tr><td class="sidebar-below hlist" style="background-color: transparent; border-color: #A2B8BF"> <ul><li><span class="nowrap"><span class="nowrap"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg/14px-Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg.png" decoding="async" width="14" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg/21px-Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg/28px-Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg.png 2x" data-file-width="530" data-file-height="600" /></a></span> </span><a href="/wiki/Portal:Physics" title="Portal:Physics">Physics&#32;portal</a></span></li> <li><span class="nowrap"><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span>&#160;<a href="/wiki/Category:Nuclear_physics" title="Category:Nuclear physics">Category</a></span></li></ul></td></tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Nuclear_physics" title="Template:Nuclear physics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Nuclear_physics" title="Template talk:Nuclear physics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Nuclear_physics" title="Special:EditPage/Template:Nuclear physics"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <p><b>Nuclear binding energy</b> in <a href="/wiki/Experimental_physics" title="Experimental physics">experimental physics</a> is the minimum <a href="/wiki/Energy" title="Energy">energy</a> that is required to disassemble the <a href="/wiki/Atomic_nucleus" title="Atomic nucleus">nucleus</a> of an <a href="/wiki/Atom" title="Atom">atom</a> into its constituent <a href="/wiki/Proton" title="Proton">protons</a> and <a href="/wiki/Neutron" title="Neutron">neutrons</a>, known collectively as <a href="/wiki/Nucleon" title="Nucleon">nucleons</a>. The binding energy for stable nuclei is always a positive number, as the nucleus must gain energy for the nucleons to move apart from each other. Nucleons are attracted to each other by the <a href="/wiki/Strong_nuclear_force" class="mw-redirect" title="Strong nuclear force">strong nuclear force</a>. In theoretical nuclear physics, the nuclear binding energy is considered a negative number. In this context it represents the energy of the nucleus relative to the energy of the constituent nucleons when they are infinitely far apart. Both the experimental and theoretical views are equivalent, with slightly different emphasis on what the binding energy means. </p><p>The <a href="/wiki/Mass" title="Mass">mass</a> of an atomic nucleus is less than the sum of the individual masses of the free <a href="https://en.wiktionary.org/wiki/constituent" class="extiw" title="wiktionary:constituent">constituent</a> protons and neutrons. The difference in mass can be calculated by the <a href="/wiki/Mass%E2%80%93energy_equivalence" title="Mass–energy equivalence">Einstein equation</a>, <span class="nowrap"><i>E</i> = <i>mc</i><sup>2</sup></span>, where <i>E</i> is the nuclear binding energy, <i>c</i> is the speed of light, and <i>m</i> is the difference in mass. This 'missing mass' is known as the mass defect, and represents the energy that was released when the nucleus was formed.<sup id="cite_ref-Purdue-U_1-0" class="reference"><a href="#cite_note-Purdue-U-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </p><p>The term "nuclear binding energy" may also refer to the energy balance in processes in which the nucleus splits into fragments composed of more than one nucleon. If new <a href="/wiki/Binding_energy" title="Binding energy">binding energy</a> is available when light nuclei fuse (<a href="/wiki/Nuclear_fusion" title="Nuclear fusion">nuclear fusion</a>), or when heavy nuclei split (<a href="/wiki/Nuclear_fission" title="Nuclear fission">nuclear fission</a>), either process can result in release of this binding energy. This energy may be made available as <i>nuclear energy</i> and can be used to produce electricity, as in <a href="/wiki/Nuclear_power" title="Nuclear power">nuclear power</a>, or in a <a href="/wiki/Nuclear_weapon" title="Nuclear weapon">nuclear weapon</a>. When a large nucleus <a href="/wiki/Nuclear_transmutation" title="Nuclear transmutation">splits</a> into pieces, excess energy is emitted as gamma rays and the kinetic energy of various ejected particles (<a href="/wiki/Nuclear_fission" title="Nuclear fission">nuclear fission</a> products). </p><p>These nuclear binding energies and forces are on the order of one million times greater than the <a href="/wiki/Ionization_energy" title="Ionization energy">electron binding energies</a> of light atoms like <a href="/wiki/Hydrogen" title="Hydrogen">hydrogen</a>.<sup id="cite_ref-GSU-bindEnergy_2-0" class="reference"><a href="#cite_note-GSU-bindEnergy-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Introduction">Introduction</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nuclear_binding_energy&amp;action=edit&amp;section=1" title="Edit section: Introduction"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Nuclear_energy">Nuclear energy</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nuclear_binding_energy&amp;action=edit&amp;section=2" title="Edit section: Nuclear energy"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>An absorption or release of nuclear energy occurs in <a href="/wiki/Nuclear_reaction" title="Nuclear reaction">nuclear reactions</a> or <a href="/wiki/Radioactive_decay" title="Radioactive decay">radioactive decay</a>; those that absorb energy are called <a href="/wiki/Endothermic" class="mw-redirect" title="Endothermic">endothermic</a> reactions and those that release energy are <a href="/wiki/Exothermic" class="mw-redirect" title="Exothermic">exothermic</a> reactions. Energy is consumed or released because of differences in the nuclear binding energy between the incoming and outgoing products of the nuclear transmutation.<sup id="cite_ref-nuclearEnergy-tx_3-0" class="reference"><a href="#cite_note-nuclearEnergy-tx-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> </p><p>The best-known classes of exothermic nuclear transmutations are <a href="/wiki/Nuclear_fission" title="Nuclear fission">nuclear fission</a> and <a href="/wiki/Nuclear_fusion" title="Nuclear fusion">nuclear fusion</a>. Nuclear energy may be released by fission, when heavy atomic nuclei (like uranium and plutonium) are broken apart into lighter nuclei. The energy from fission is used to generate electric power in hundreds of locations worldwide. Nuclear energy is also released during fusion, when light <a href="/wiki/Atomic_nucleus" title="Atomic nucleus">nuclei</a> like <a href="/wiki/Hydrogen" title="Hydrogen">hydrogen</a> are combined to form heavier nuclei such as helium. The Sun and other stars use nuclear fusion to generate thermal energy which is later radiated from the surface, a type of stellar nucleosynthesis. In any exothermic nuclear process, nuclear mass might ultimately be converted to thermal energy, emitted as heat. </p><p>In order to quantify the energy released or absorbed in any nuclear transmutation, one must know the nuclear binding energies of the nuclear components involved in the transmutation. </p> <div class="mw-heading mw-heading3"><h3 id="The_nuclear_force">The nuclear force</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nuclear_binding_energy&amp;action=edit&amp;section=3" title="Edit section: The nuclear force"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Electrons" class="mw-redirect" title="Electrons">Electrons</a> and nuclei are kept together by <a href="/wiki/Electric_charge" title="Electric charge">electrostatic attraction</a> (negative attracts positive). Furthermore, electrons are sometimes <a href="/wiki/Covalent_bond" title="Covalent bond">shared by neighboring atoms</a> or transferred to them (by processes of <a href="/wiki/Quantum_physics" class="mw-redirect" title="Quantum physics">quantum physics</a>); this link between atoms is referred to as a <a href="/wiki/Chemical_bond" title="Chemical bond">chemical bond</a> and is responsible for the formation of all <a href="/wiki/Chemical_compounds" class="mw-redirect" title="Chemical compounds">chemical compounds</a>.<sup id="cite_ref-NucPhys_4-0" class="reference"><a href="#cite_note-NucPhys-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p><p>The <a href="/wiki/Electromagnetism" title="Electromagnetism">electric force</a> does not hold nuclei together, because all <a href="/wiki/Protons" class="mw-redirect" title="Protons">protons</a> carry a positive charge and repel each other. If two protons were touching, their repulsion force would be almost 40 newtons. Because each of the <a href="/wiki/Neutrons" class="mw-redirect" title="Neutrons">neutrons</a> carries total charge zero, a proton could electrically attract a neutron if the proton could induce the neutron to become <a href="/wiki/Dielectric_polarization" class="mw-redirect" title="Dielectric polarization">electrically polarized</a>. However, having the neutron between two protons (so their mutual repulsion decreases to 10 N) would attract the neutron only for an electric quadrupole <span class="nowrap">(− + + −)</span> arrangement. Higher multipoles, needed to satisfy more protons, cause weaker attraction, and quickly become implausible. </p><p>After the <a href="/wiki/Nucleon_magnetic_moment" title="Nucleon magnetic moment">proton and neutron magnetic moments</a> were <a href="/wiki/Otto_Stern" title="Otto Stern">measured</a> and <a href="/wiki/Isidor_Isaac_Rabi" title="Isidor Isaac Rabi">verified</a>, it was apparent that their magnetic forces might be 20 or 30 newtons, attractive if properly oriented. A pair of protons would do 10<sup>−13</sup> joules of work to each other as they approach – that is, they would need to release energy of 0.5&#160;MeV in order to stick together. On the other hand, once a pair of nucleons magnetically stick, their external fields are greatly reduced, so it is difficult for many nucleons to accumulate much magnetic energy. </p><p>Therefore, another force, called the <i><a href="/wiki/Nuclear_force" title="Nuclear force">nuclear force</a></i> (or <i>residual strong force</i>) holds the <a href="/wiki/Nucleon" title="Nucleon">nucleons</a> of nuclei together. This force is a residuum of the <a href="/wiki/Strong_interaction" title="Strong interaction">strong interaction</a>, which binds quarks into nucleons at an even smaller level of distance. </p><p>The fact that nuclei do not clump together (fuse) under normal conditions suggests that the nuclear force must be weaker than the electric repulsion at larger distances, but stronger at close range. Therefore, it has short-range characteristics. An analogy to the nuclear force is the force between two small magnets: magnets are very difficult to separate when stuck together, but once pulled a short distance apart, the force between them drops almost to zero.<sup id="cite_ref-NucPhys_4-1" class="reference"><a href="#cite_note-NucPhys-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p><p>Unlike <a href="/wiki/Gravity" title="Gravity">gravity</a> or electrical forces, the nuclear force is effective only at very short distances. At greater distances, the electrostatic force dominates: the protons repel each other because they are positively charged, and like charges repel. For that reason, the protons forming the nuclei of ordinary <a href="/wiki/Hydrogen" title="Hydrogen">hydrogen</a>—for instance, in a balloon filled with hydrogen—do not combine to form <a href="/wiki/Helium" title="Helium">helium</a> (a process that also would require some protons to combine with electrons and become <a href="/wiki/Neutrons" class="mw-redirect" title="Neutrons">neutrons</a>). They cannot get close enough for the nuclear force, which attracts them to each other, to become important. Only under conditions of extreme <a href="/wiki/Pressure" title="Pressure">pressure</a> and <a href="/wiki/Temperature" title="Temperature">temperature</a> (for example, within the core of a <a href="/wiki/Star" title="Star">star</a>), can such a process take place.<sup id="cite_ref-RevNucStr_5-0" class="reference"><a href="#cite_note-RevNucStr-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Physics_of_nuclei">Physics of nuclei</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nuclear_binding_energy&amp;action=edit&amp;section=4" title="Edit section: Physics of nuclei"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Atomic_nucleus" title="Atomic nucleus">Atomic nucleus</a></div> <p>There are around 94 naturally occurring <a href="/wiki/Chemical_element" title="Chemical element">elements</a> on Earth. The <a href="/wiki/Atom" title="Atom">atoms</a> of each element have a <a href="/wiki/Atomic_nucleus" title="Atomic nucleus">nucleus</a> containing a specific number of <a href="/wiki/Proton" title="Proton">protons</a> (always the same number for a given element), and some number of <a href="/wiki/Neutron" title="Neutron">neutrons</a>, which is often roughly a similar number. Two atoms of the same element having different numbers of neutrons are known as <a href="/wiki/Isotope" title="Isotope">isotopes</a> of the element. Different isotopes may have different properties – for example one might be stable and another might be unstable, and gradually undergo <a href="/wiki/Radioactive_decay" title="Radioactive decay">radioactive decay</a> to become another element. </p><p>The hydrogen nucleus contains just one proton. Its isotope <a href="/wiki/Deuterium" title="Deuterium">deuterium, or heavy hydrogen</a>, contains a proton and a neutron. The most common isotope of helium contains two protons and two neutrons, and those of carbon, nitrogen and oxygen – six, seven and eight of each particle, respectively. However, a helium nucleus weighs less than the sum of the weights of the two heavy hydrogen nuclei which combine to make it.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> The same is true for carbon, nitrogen and oxygen. For example, the carbon nucleus is slightly lighter than three helium nuclei, which can combine to make a carbon nucleus. This difference is known as the mass defect. </p> <div class="mw-heading mw-heading4"><h4 id="Mass_defect">Mass defect</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nuclear_binding_energy&amp;action=edit&amp;section=5" title="Edit section: Mass defect"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Not to be confused with <a href="/wiki/Mass_excess" title="Mass excess">mass excess</a> in nuclear physics or <a href="/wiki/Mass_defect_(mass_spectrometry)" class="mw-redirect" title="Mass defect (mass spectrometry)">mass defect</a> in mass spectrometry.</div> <p>Mass defect (also called "mass deficit") is the difference between the mass of an object and the sum of the masses of its constituent particles. Discovered by <a href="/wiki/Albert_Einstein" title="Albert Einstein">Albert Einstein</a> in 1905, it can be explained using his formula <a href="/wiki/Mass%E2%80%93energy_equivalence" title="Mass–energy equivalence"><i>E</i>&#160;=&#160;<i>mc</i><sup>2</sup></a>, which describes the <a href="/wiki/Mass%E2%80%93energy_equivalence" title="Mass–energy equivalence">equivalence of energy and mass</a>. The decrease in mass is equal to the energy emitted in the reaction of an atom's creation divided by <i>c</i><sup>2</sup>.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> By this formula, adding energy also increases mass (both weight and inertia), whereas removing energy decreases mass. For example, a helium atom containing four nucleons has a mass about 0.8% less than the total mass of four hydrogen atoms (each containing one nucleon). The helium nucleus has four nucleons bound together, and the <a href="/wiki/Binding_energy" title="Binding energy">binding energy</a> which holds them together is, in effect, the missing 0.8% of mass.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> </p><p>For lighter elements, the energy that can be released by assembling them from lighter elements decreases, and energy can be released when they fuse. This is true for nuclei lighter than <a href="/wiki/Iron" title="Iron">iron</a>/<a href="/wiki/Nickel" title="Nickel">nickel</a>. For heavier nuclei, more energy is needed to bind them, and that energy may be released by breaking them up into fragments (known as <a href="/wiki/Nuclear_fission" title="Nuclear fission">nuclear fission</a>). Nuclear power is generated at present by breaking up uranium nuclei in nuclear power reactors, and capturing the released energy as heat, which is converted to electricity. </p><p>As a rule, very light elements can fuse comparatively easily, and very heavy elements can break up via fission very easily; elements in the middle are more stable and it is difficult to make them undergo either fusion or fission in an environment such as a laboratory. </p><p>The reason the trend reverses after iron is the growing positive charge of the nuclei, which tends to force nuclei to break up. It is resisted by the <a href="/wiki/Strong_nuclear_interaction" class="mw-redirect" title="Strong nuclear interaction">strong nuclear interaction</a>, which holds nucleons together. The electric force may be weaker than the strong nuclear force, but the strong force has a much more limited range: in an iron nucleus, each proton repels the other 25 protons, while the nuclear force only binds close neighbors. So for larger nuclei, the electrostatic forces tend to dominate and the nucleus will tend over time to break up. </p><p>As nuclei grow bigger still, this disruptive effect becomes steadily more significant. By the time <a href="/wiki/Polonium" title="Polonium">polonium</a> is reached (84 protons), nuclei can no longer accommodate their large positive charge, but emit their excess protons quite rapidly in the process of alpha radioactivity—the emission of helium nuclei, each containing two protons and two neutrons. (Helium nuclei are an especially stable combination.) Because of this process, nuclei with more than 94 protons are not found naturally on Earth (see <a href="/wiki/Periodic_table" title="Periodic table">periodic table</a>). The isotopes beyond uranium (atomic number 92) with the longest half-lives are plutonium-244 (80 million years) and curium-247 (16 million years). </p> <div class="mw-heading mw-heading4"><h4 id="Nuclear_reactions_in_the_Sun">Nuclear reactions in the Sun</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nuclear_binding_energy&amp;action=edit&amp;section=6" title="Edit section: Nuclear reactions in the Sun"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Nuclear_fusion" title="Nuclear fusion">nuclear fusion</a> process works as follows: five billion years ago, the new Sun formed when gravity pulled together a vast cloud of <a href="/wiki/Interstellar_gas" class="mw-redirect" title="Interstellar gas">hydrogen</a> and dust, from which the Earth and other planets also arose. The gravitational pull released energy and heated the early Sun, much in the way <a href="/wiki/Helmholtz" class="mw-redirect" title="Helmholtz">Helmholtz</a> proposed.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> </p><p>Thermal energy appears as the motion of atoms and molecules: the higher the temperature of a collection of particles, the greater is their velocity and the more violent are their collisions. When the temperature at the center of the newly formed Sun became great enough for collisions between hydrogen nuclei to overcome their electric repulsion, and bring them into the short range of the attractive <a href="/wiki/Nuclear_force" title="Nuclear force">nuclear force</a>, nuclei began to stick together. When this began to happen, protons combined into deuterium and then helium, with some protons changing in the process to neutrons (plus positrons, positive electrons, which combine with electrons and annihilate into gamma-ray photons). This released nuclear energy now keeps up the high temperature of the Sun's core, and the heat also keeps the gas pressure high, keeping the Sun at its present size, and stopping gravity from compressing it any more. There is now a stable balance between gravity and pressure. </p><p>Different nuclear reactions may predominate at different stages of the Sun's existence, including the proton–proton reaction and the carbon–nitrogen cycle—which involves heavier nuclei, but whose final product is still the combination of protons to form helium. </p><p>A branch of physics, <i>the study of <a href="/wiki/Nuclear_power" title="Nuclear power">controlled nuclear fusion</a></i>, has tried since the 1950s to derive useful power from nuclear fusion reactions that combine small nuclei into bigger ones, typically to heat boilers, whose steam could turn turbines and produce electricity. No earthly laboratory can match one feature of the solar powerhouse: the great mass of the Sun, whose weight keeps the hot plasma compressed and confines the nuclear furnace to the Sun's core. Instead, physicists use strong magnetic fields to confine the plasma, and for fuel they use heavy forms of hydrogen, which burn more easily. Magnetic traps can be rather unstable, and any plasma hot enough and dense enough to undergo nuclear fusion tends to slip out of them after a short time. Even with ingenious tricks, the confinement in most cases lasts only a small fraction of a second. </p> <div class="mw-heading mw-heading4"><h4 id="Combining_nuclei">Combining nuclei</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nuclear_binding_energy&amp;action=edit&amp;section=7" title="Edit section: Combining nuclei"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Small nuclei that are larger than hydrogen can combine into bigger ones and release energy, but in combining such nuclei, the amount of energy released is much smaller compared to hydrogen fusion. The reason is that while the overall process releases energy from letting the nuclear attraction do its work, energy must first be injected to force together positively charged protons, which also repel each other with their electric charge.<sup id="cite_ref-RevNucStr_5-1" class="reference"><a href="#cite_note-RevNucStr-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p><p>For elements that weigh more than <a href="/wiki/Iron" title="Iron">iron</a> (a nucleus with 26 protons), the fusion process no longer releases energy. In even heavier nuclei energy is consumed, not released, by combining similarly sized nuclei. With such large nuclei, overcoming the electric repulsion (which affects all protons in the nucleus) requires more energy than is released by the nuclear attraction (which is effective mainly between close neighbors). Conversely, energy could actually be released by breaking apart nuclei heavier than iron.<sup id="cite_ref-RevNucStr_5-2" class="reference"><a href="#cite_note-RevNucStr-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p><p>With the nuclei of elements heavier than <a href="/wiki/Lead" title="Lead">lead</a>, the electric repulsion is so strong that some of them spontaneously eject positive fragments, usually nuclei of helium that form stable <a href="/wiki/Alpha_particles" class="mw-redirect" title="Alpha particles">alpha particles</a>. This spontaneous break-up is one of the forms of <a href="/wiki/Radioactivity" class="mw-redirect" title="Radioactivity">radioactivity</a> exhibited by some nuclei.<sup id="cite_ref-RevNucStr_5-3" class="reference"><a href="#cite_note-RevNucStr-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p><p>Nuclei heavier than lead (except for <a href="/wiki/Bismuth" title="Bismuth">bismuth</a>, <a href="/wiki/Thorium" title="Thorium">thorium</a>, and <a href="/wiki/Uranium" title="Uranium">uranium</a>) spontaneously break up too quickly to appear in nature as <a href="/wiki/Primordial_element" class="mw-redirect" title="Primordial element">primordial elements</a>, though they can be produced artificially or as intermediates in the <a href="/wiki/Decay_chain" title="Decay chain">decay chains</a> of heavier elements. Generally, the heavier the nuclei are, the faster they spontaneously decay.<sup id="cite_ref-RevNucStr_5-4" class="reference"><a href="#cite_note-RevNucStr-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p><p>Iron nuclei are the most stable nuclei (in particular <a href="/wiki/Iron-56" title="Iron-56">iron-56</a>), and the best sources of energy are therefore nuclei whose weights are as far removed from iron as possible. One can combine the lightest ones—nuclei of hydrogen (protons)—to form nuclei of helium, and that is how the Sun generates its energy. Alternatively, one can break up the heaviest ones—nuclei of uranium or plutonium—into smaller fragments, and that is what <a href="/wiki/Nuclear_reactor" title="Nuclear reactor">nuclear reactors</a> do.<sup id="cite_ref-RevNucStr_5-5" class="reference"><a href="#cite_note-RevNucStr-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Nuclear_binding_energy">Nuclear binding energy</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nuclear_binding_energy&amp;action=edit&amp;section=8" title="Edit section: Nuclear binding energy"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>An example that illustrates nuclear binding energy is the nucleus of <sup>12</sup>C (carbon-12), which contains 6 protons and 6 neutrons. The protons are all positively charged and repel each other, but the <a href="/wiki/Nuclear_force" title="Nuclear force">nuclear force</a> overcomes the repulsion and causes them to stick together. The nuclear force is a close-range force (it is strongly attractive at a distance of 1.0&#160;fm and becomes extremely small beyond a distance of 2.5&#160;fm), and virtually no effect of this force is observed outside the nucleus. The nuclear force also pulls neutrons together, or neutrons and protons.<sup id="cite_ref-BindEnergy_11-0" class="reference"><a href="#cite_note-BindEnergy-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> </p><p>The energy of the nucleus is negative with regard to the energy of the particles pulled apart to infinite distance (just like the gravitational energy of planets of the Solar System), because energy must be utilized to split a nucleus into its individual protons and neutrons. <a href="/wiki/Mass_spectrometers" class="mw-redirect" title="Mass spectrometers">Mass spectrometers</a> have measured the masses of nuclei, which are always less than the sum of the masses of protons and neutrons that form them, and the difference—by the formula <span class="nowrap"><i>E</i> = <i>mc</i><sup>2</sup></span>—gives the binding energy of the nucleus.<sup id="cite_ref-BindEnergy_11-1" class="reference"><a href="#cite_note-BindEnergy-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Nuclear_fusion">Nuclear fusion</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nuclear_binding_energy&amp;action=edit&amp;section=9" title="Edit section: Nuclear fusion"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The binding energy of helium is the energy source of the Sun and of most stars.<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> The sun is composed of 74 percent hydrogen (measured by mass), an element having a nucleus consisting of a single proton. Energy is released in the Sun when 4 protons combine into a helium nucleus, a process in which two of them are also converted to neutrons.<sup id="cite_ref-BindEnergy_11-2" class="reference"><a href="#cite_note-BindEnergy-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> </p><p>The conversion of protons to neutrons is the result of another nuclear force, known as the <a href="/wiki/Weak_force" class="mw-redirect" title="Weak force">weak (nuclear) force</a>. The weak force, like the strong force, has a short range, but is much weaker than the strong force. The weak force tries to make the number of neutrons and protons into the most energetically stable configuration. For nuclei containing less than 40 particles, these numbers are usually about equal. Protons and neutrons are closely related and are collectively known as nucleons. As the number of particles increases toward a maximum of about 209, the number of neutrons to maintain stability begins to outstrip the number of protons, until the ratio of neutrons to protons is about three to two.<sup id="cite_ref-BindEnergy_11-3" class="reference"><a href="#cite_note-BindEnergy-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> </p><p>The protons of hydrogen combine to helium only if they have enough velocity to overcome each other's mutual repulsion sufficiently to get within range of the strong nuclear attraction. This means that fusion only occurs within a very hot gas. Hydrogen hot enough for combining to helium requires an enormous pressure to keep it confined, but suitable conditions exist in the <a href="/wiki/Solar_core" title="Solar core">central regions</a> of the Sun, where such pressure is provided by the enormous weight of the layers above the core, pressed inwards by the Sun's strong gravity. The process of combining protons to form helium is an example of nuclear fusion.<sup id="cite_ref-BindEnergy_11-4" class="reference"><a href="#cite_note-BindEnergy-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> </p><p>Producing helium from normal hydrogen would be practically impossible on earth because of the difficulty in creating <a href="/wiki/Deuterium" title="Deuterium">deuterium</a>. Research is being undertaken on developing a process using deuterium and <a href="/wiki/Tritium" title="Tritium">tritium</a>. The Earth's oceans contain a large amount of deuterium that could be used and tritium can be made in the reactor itself from <a href="/wiki/Lithium" title="Lithium">lithium</a>, and furthermore the helium product does not harm the environment, so some consider nuclear fusion a good alternative to supply our energy needs. Experiments to carry out this form of fusion have so far only partially succeeded. Sufficiently hot deuterium and tritium must be confined. One technique is to use very strong magnetic fields, because charged particles (like those trapped in the Earth's radiation belt) are guided by magnetic field lines.<sup id="cite_ref-BindEnergy_11-5" class="reference"><a href="#cite_note-BindEnergy-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="The_binding_energy_maximum_and_ways_to_approach_it_by_decay">The binding energy maximum and ways to approach it by decay</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nuclear_binding_energy&amp;action=edit&amp;section=10" title="Edit section: The binding energy maximum and ways to approach it by decay"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In the main <a href="/wiki/Isotope" title="Isotope">isotopes</a> of light elements, such as carbon, nitrogen and oxygen, the most stable combination of neutrons and of protons occurs when the numbers are equal (this continues to element 20, calcium). However, in heavier nuclei, the disruptive energy of protons increases, since they are confined to a tiny volume and repel each other. The energy of the strong force holding the nucleus together also increases, but at a slower rate, as if inside the nucleus, only nucleons close to each other are tightly bound, not ones more widely separated.<sup id="cite_ref-BindEnergy_11-6" class="reference"><a href="#cite_note-BindEnergy-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> </p><p>The net binding energy of a nucleus is that of the nuclear attraction, minus the disruptive energy of the electric force. As nuclei get heavier than helium, their net binding energy per nucleon (deduced from the difference in mass between the nucleus and the sum of masses of component nucleons) grows more and more slowly, reaching its peak at iron. As nucleons are added, the total nuclear binding energy always increases—but the total disruptive energy of electric forces (positive protons repelling other protons) also increases, and past iron, the second increase outweighs the first. <a href="/wiki/Iron-56" title="Iron-56">Iron-56</a> (<sup>56</sup>Fe) is the most efficiently bound nucleus<sup id="cite_ref-BindEnergy_11-7" class="reference"><a href="#cite_note-BindEnergy-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> meaning that it has the least average mass per nucleon. However, <a href="/wiki/Nickel-62" title="Nickel-62">nickel-62</a> is the most tightly bound nucleus in terms of binding energy per nucleon.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> (Nickel-62's higher binding energy does not translate to a larger mean mass loss than <sup>56</sup>Fe, because <sup>62</sup>Ni has a slightly higher ratio of neutrons/protons than does iron-56, and the presence of the heavier neutrons increases nickel-62's average mass per nucleon). </p><p>To reduce the disruptive energy, the weak interaction allows the number of neutrons to exceed that of protons—for instance, the main isotope of iron has 26 protons and 30 neutrons. Isotopes also exist where the number of neutrons differs from the most stable number for that number of nucleons. If changing one proton into a neutron or one neutron into a proton increases the stability (lowering the mass), then this will happen through <a href="/wiki/Beta_decay" title="Beta decay">beta decay</a>, meaning the nuclide will be radioactive. </p><p>The two methods for this conversion are mediated by the weak force, and involve types of <a href="/wiki/Beta_decay" title="Beta decay">beta decay</a>. In the simplest beta decay, neutrons are converted to protons by emitting a negative electron and an antineutrino. This is always possible outside a nucleus because neutrons are more massive than protons by an equivalent of about 2.5 electrons. In the opposite process, which only happens within a nucleus, and not to free particles, a proton may become a neutron by ejecting a <a href="/wiki/Positron" title="Positron">positron</a> and an electron neutrino. This is permitted if enough energy is available between parent and daughter nuclides to do this (the required energy difference is equal to 1.022&#160;MeV, which is the mass of 2 electrons). If the mass difference between parent and daughter is less than this, a proton-rich nucleus may still convert protons to neutrons by the process of <a href="/wiki/Electron_capture" title="Electron capture">electron capture</a>, in which a proton simply electron captures one of the atom's K orbital electrons, emits a neutrino, and becomes a neutron.<sup id="cite_ref-BindEnergy_11-8" class="reference"><a href="#cite_note-BindEnergy-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> </p><p>Among the heaviest nuclei, starting with tellurium nuclei (element 52) containing 104 or more nucleons, electric forces may be so destabilizing that entire chunks of the nucleus may be ejected, usually as <a href="/wiki/Alpha_particles" class="mw-redirect" title="Alpha particles">alpha particles</a>, which consist of two protons and two neutrons (alpha particles are fast helium nuclei). (<a href="/wiki/Beryllium-8" title="Beryllium-8">Beryllium-8</a> also decays, very quickly, into two alpha particles.) This type of decay becomes more and more probable as elements rise in atomic weight past 104. </p><p>The curve of binding energy is a graph that plots the binding energy per nucleon against atomic mass. This curve has its main peak at iron and nickel and then slowly decreases again, and also a narrow isolated peak at helium, which is more stable than other low-mass nuclides. The heaviest nuclei in more than trace quantities in nature, uranium <sup>238</sup>U, are unstable, but having a half-life of 4.5 billion years, close to the age of the Earth, they are still relatively abundant; they (and other nuclei heavier than helium) have formed in stellar evolution events like supernova explosions <sup id="cite_ref-Turning_Lead_into_Gold_14-0" class="reference"><a href="#cite_note-Turning_Lead_into_Gold-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> preceding the <a href="/wiki/Formation_of_the_Solar_System" class="mw-redirect" title="Formation of the Solar System">formation of the Solar System</a>. The most common isotope of thorium, <sup>232</sup>Th, also undergoes alpha particle emission, and its half-life (time over which half a number of atoms decays) is even longer, by several times. In each of these, radioactive decay produces daughter isotopes that are also unstable, starting a <a href="/wiki/Decay_chain#Actinide_alpha_decay_chains" title="Decay chain">chain of decays</a> that ends in some stable isotope of lead.<sup id="cite_ref-BindEnergy_11-9" class="reference"><a href="#cite_note-BindEnergy-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Calculation_of_nuclear_binding_energy">Calculation of nuclear binding energy</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nuclear_binding_energy&amp;action=edit&amp;section=11" title="Edit section: Calculation of nuclear binding energy"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Calculation can be employed to determine the nuclear binding energy of nuclei. The calculation involves determining the <i>nuclear mass defect</i>, converting it into energy, and expressing the result as energy per mole of atoms, or as energy per nucleon.<sup id="cite_ref-Purdue-U_1-1" class="reference"><a href="#cite_note-Purdue-U-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Conversion_of_nuclear_mass_defect_into_energy">Conversion of nuclear mass defect into energy</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nuclear_binding_energy&amp;action=edit&amp;section=12" title="Edit section: Conversion of nuclear mass defect into energy"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Nuclear mass defect is defined as the difference between the <a href="/wiki/Nuclear_mass" class="mw-redirect" title="Nuclear mass">nuclear mass</a>, and the sum of the masses of the constituent nucleons. It is given by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta m=Zm_{p}+(A-Z)m_{n}-M=Zm_{p}+Nm_{n}-M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>m</mi> <mo>=</mo> <mi>Z</mi> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>+</mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2212;<!-- − --></mo> <mi>Z</mi> <mo stretchy="false">)</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>M</mi> <mo>=</mo> <mi>Z</mi> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>+</mo> <mi>N</mi> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta m=Zm_{p}+(A-Z)m_{n}-M=Zm_{p}+Nm_{n}-M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e86175f567a923a90f39bcd9ff1ee7ed346bf63c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:52.634ex; height:3.009ex;" alt="{\displaystyle \Delta m=Zm_{p}+(A-Z)m_{n}-M=Zm_{p}+Nm_{n}-M}"></span> </p><p>where: </p> <ul><li><i>Z</i> is the <a href="/wiki/Proton_number" class="mw-redirect" title="Proton number">proton number</a> (atomic number).</li> <li><i>A</i> is the <a href="/wiki/Nucleon_number" class="mw-redirect" title="Nucleon number">nucleon number</a> (mass number).</li> <li><i>m</i><sub><i>p</i></sub> is the <a href="/wiki/Mass_of_proton" class="mw-redirect" title="Mass of proton">mass of proton</a>.</li> <li><i>m</i><sub><i>n</i></sub> is the <a href="/wiki/Mass_of_neutron" class="mw-redirect" title="Mass of neutron">mass of neutron</a>.</li> <li><i>M</i> is the nuclear mass.</li> <li><i>N</i> is the <a href="/wiki/Neutron_number" title="Neutron number">neutron number</a>.</li></ul> <p>The nuclear mass defect is usually converted into nuclear binding energy, which is the minimum energy required to disassemble the nucleus into its constituent nucleons. This conversion is done with the <a href="/wiki/Mass-energy_equivalence" class="mw-redirect" title="Mass-energy equivalence">mass-energy equivalence</a>: <span class="texhtml"><i>E</i> = ∆<i>mc</i><sup>2</sup></span>. However it must be expressed as energy per mole of atoms or as energy per nucleon.<sup id="cite_ref-Purdue-U_1-2" class="reference"><a href="#cite_note-Purdue-U-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Fission_and_fusion">Fission and fusion</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nuclear_binding_energy&amp;action=edit&amp;section=13" title="Edit section: Fission and fusion"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Nuclear energy is released by the splitting (fission) or merging (fusion) of the <a href="/wiki/Atomic_nucleus" title="Atomic nucleus">nuclei</a> of <a href="/wiki/Atom" title="Atom">atom</a>(s). The conversion of nuclear <a href="/wiki/Mass" title="Mass">mass</a>–<a href="/wiki/Energy" title="Energy">energy</a> to a form of energy, which can remove some mass when the energy is removed, is consistent with the <a href="/wiki/Mass%E2%80%93energy_equivalence" title="Mass–energy equivalence">mass–energy equivalence</a> formula: </p> <dl><dd>Δ<i>E</i>&#160;=&#160;Δ<i>m</i>&#160;<i>c</i><sup>2</sup>,</dd></dl> <p>where </p> <dl><dd>Δ<i>E</i> = energy release,</dd> <dd>Δ<i>m</i> = <a href="#Mass_defect">mass defect</a>,</dd></dl> <p>and <i>c</i> = the <a href="/wiki/Speed_of_light" title="Speed of light">speed of light</a> in <a href="/wiki/Vacuum" title="Vacuum">vacuum</a>. </p><p>Nuclear energy was first discovered by <a href="/wiki/France" title="France">French</a> physicist <a href="/wiki/Henri_Becquerel" title="Henri Becquerel">Henri Becquerel</a> in 1896, when he found that photographic plates stored in the dark near <a href="/wiki/Uranium" title="Uranium">uranium</a> were blackened like <a href="/wiki/X-ray" title="X-ray">X-ray</a> plates (X-rays had recently been discovered in 1895).<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> </p><p><a href="/wiki/Nickel-62" title="Nickel-62">Nickel-62</a> has the highest binding energy per <a href="/wiki/Nucleon" title="Nucleon">nucleon</a> of any <a href="/wiki/Isotope" title="Isotope">isotope</a>. If an atom of lower average binding energy per nucleon is changed into two atoms of higher average binding energy per nucleon, energy is emitted. (The average here is the weighted average.) Also, if two atoms of lower average binding energy fuse into an atom of higher average binding energy, energy is emitted. The chart shows that fusion, or combining, of <a href="/wiki/Hydrogen" title="Hydrogen">hydrogen</a> nuclei to form heavier atoms releases energy, as does fission of uranium, the breaking up of a larger nucleus into smaller parts. </p><p>Nuclear energy is released by three <i>exoenergetic</i> (or <a href="/wiki/Exothermic" class="mw-redirect" title="Exothermic">exothermic</a>) processes: </p> <ul><li><a href="/wiki/Radioactive_decay" title="Radioactive decay">Radioactive decay</a>, where a neutron or proton in the <a href="/wiki/Radioactive" class="mw-redirect" title="Radioactive">radioactive</a> nucleus decays spontaneously by emitting either particles, <a href="/wiki/Electromagnetic_radiation" title="Electromagnetic radiation">electromagnetic radiation</a> (gamma rays), or both. Note that for radioactive decay, it is not strictly necessary for the binding energy to increase. What is strictly necessary is that the mass decrease. If a neutron turns into a proton and the energy of the decay is less than 0.782343&#160;MeV, the difference between the masses of the neutron and proton multiplied by the speed of light squared, (such as <a href="/wiki/Rubidium-87" class="mw-redirect" title="Rubidium-87">rubidium-87</a> decaying to <a href="/wiki/Strontium-87" class="mw-redirect" title="Strontium-87">strontium-87</a>), the average binding energy per nucleon will actually decrease.</li> <li><a href="/wiki/Nuclear_fusion" title="Nuclear fusion">Fusion</a>, two atomic nuclei fuse together to form a heavier nucleus</li> <li><a href="/wiki/Nuclear_fission" title="Nuclear fission">Fission</a>, the breaking of a heavy nucleus into two (or more rarely three) lighter nuclei, and some neutrons</li></ul> <p>The energy-producing nuclear interaction of light elements requires some clarification. Frequently, all light element energy-producing nuclear interactions are classified as fusion, however by the given definition above fusion requires that the products include a nucleus that is heavier than the reactants. Light elements can undergo energy-producing nuclear interactions by fusion or fission. All energy-producing nuclear interactions between two hydrogen isotopes and between hydrogen and helium-3 are fusion, as the product of these interactions include a heavier nucleus. However, the energy-producing nuclear interaction of a neutron with lithium–6 produces Hydrogen-3 and Helium-4, each a lighter nucleus. By the definition above, this nuclear interaction is fission, not fusion. When fission is caused by a neutron, as in this case, it is called induced fission. </p> <table> <caption><b>Light element energy-producing nuclear interactions</b> </caption> <tbody><tr> <td valign="top"> <table class="wikitable"> <caption>Fusion </caption> <tbody><tr> <th>Reaction</th> <th>Approx. Q (MeV) </th></tr> <tr> <td><sup>1</sup>H + <sup>1</sup>H &#8594; <sup>2</sup>He</td> <td>1.44 </td></tr> <tr> <td><sup>1</sup>H + <sup>2</sup>H &#8594; <sup>3</sup>He</td> <td>5.52 </td></tr> <tr> <td><sup>2</sup>H + <sup>2</sup>H &#8594; <sup>3</sup>H + p<sup>+</sup></td> <td>4.08 </td></tr> <tr> <td><sup>2</sup>H + <sup>2</sup>H &#8594; <sup>3</sup>He + n</td> <td>3.27 </td></tr> <tr> <td><sup>2</sup>H + <sup>3</sup>H &#8594; <sup>4</sup>He + n</td> <td>17.53 </td></tr> <tr> <td><sup>2</sup>H + <sup>3</sup>He &#8594; <sup>4</sup>He + p<sup>+</sup></td> <td>18.34 </td></tr> <tr> <td><sup>3</sup>He + <sup>3</sup>He &#8594; <sup>4</sup>He + p<sup>+</sup> + p<sup>+</sup></td> <td>12.85 </td></tr> <tr> <td><sup>3</sup>He + <sup>6</sup>Li &#8594; <sup>4</sup>He + <sup>4</sup>He + p<sup>+</sup></td> <td>22.36 </td></tr></tbody></table> </td> <td valign="top"> <table class="wikitable"> <caption>Fission </caption> <tbody><tr> <th>Reaction</th> <th>Approx. Q (MeV) </th></tr> <tr> <td><sup>6</sup>Li + p<sup>+</sup> &#8594; <sup>4</sup>He + <sup>3</sup>He</td> <td>4.02 </td></tr> <tr> <td><sup>6</sup>Li + <sup>2</sup>H &#8594; <sup>4</sup>He + <sup>4</sup>He</td> <td>11.18 </td></tr> <tr> <td><sup>6</sup>Li + <sup>3</sup>He &#8594; <sup>4</sup>He + <sup>4</sup>He + p<sup>+</sup></td> <td>0.94 </td></tr> <tr> <td><sup>7</sup>Li + p<sup>+</sup> &#8594; <sup>4</sup>He + <sup>4</sup>He</td> <td>17.34 </td></tr> <tr> <td><sup>7</sup>Li + <sup>2</sup>H &#8594; <sup>4</sup>He + <sup>4</sup>He + n</td> <td>15.11 </td></tr> <tr> <td><sup>11</sup>B + p<sup>+</sup> &#8594; <sup>4</sup>He + <sup>4</sup>He + <sup>4</sup>He</td> <td>8.68 </td></tr></tbody></table> </td></tr></tbody></table> <div class="mw-heading mw-heading2"><h2 id="Binding_energy_for_atoms">Binding energy for atoms</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nuclear_binding_energy&amp;action=edit&amp;section=14" title="Edit section: Binding energy for atoms"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The binding energy of an atom (including its electrons) is not exactly the same as the binding energy of the atom's nucleus. The measured mass deficits of <a href="/wiki/Isotopes" class="mw-redirect" title="Isotopes">isotopes</a> are always listed as mass deficits of the <a href="/wiki/Neutral_particle" title="Neutral particle">neutral</a> <a href="/wiki/Atom" title="Atom">atoms</a> of that isotope, and mostly in <span class="nowrap"><a href="/wiki/Electronvolt#Mass" title="Electronvolt">MeV/<i>c</i><sup>2</sup></a></span>. As a consequence, the listed mass deficits are not a measure of the stability or binding energy of isolated nuclei, but for the whole atoms. There is a very practical reason for this, namely that it is very hard to totally <a href="/wiki/Ion" title="Ion">ionize</a> heavy elements, i.e. strip them of all of their <a href="/wiki/Electron" title="Electron">electrons</a>. </p><p>This practice is useful for other reasons, too: stripping all the electrons from a heavy unstable nucleus (thus producing a bare nucleus) changes the lifetime of the nucleus, or the nucleus of a stable neutral atom can likewise become unstable after stripping, indicating that the nucleus cannot be treated independently. Examples of this have been shown in <a href="/wiki/Beta_decay#Bound-state_β−_decay" title="Beta decay">bound-state β decay</a> experiments performed at the <a href="/wiki/GSI_Helmholtz_Centre_for_Heavy_Ion_Research" title="GSI Helmholtz Centre for Heavy Ion Research">GSI</a> heavy ion accelerator.<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> This is also evident from phenomena like <a href="/wiki/Electron_capture" title="Electron capture">electron capture</a>. Theoretically, in <a href="/wiki/Atomic_orbital" title="Atomic orbital">orbital</a> models of heavy atoms, the electron orbits partially inside the nucleus (it does not <i>orbit</i> in a strict sense, but has a non-vanishing probability of being located inside the nucleus). </p><p>A <a href="/wiki/Nuclear_decay" class="mw-redirect" title="Nuclear decay">nuclear decay</a> happens to the nucleus, meaning that properties ascribed to the nucleus change in the event. In the field of physics the concept of "mass deficit" as a measure for "binding energy" means "mass deficit of the neutral atom" (not just the nucleus) and is a measure for stability of the whole atom. </p> <div class="mw-heading mw-heading2"><h2 id="Nuclear_binding_energy_curve">Nuclear binding energy curve</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nuclear_binding_energy&amp;action=edit&amp;section=15" title="Edit section: Nuclear binding energy curve"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-center" typeof="mw:File/Thumb"><a href="/wiki/File:Binding_energy_curve_-_common_isotopes.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/53/Binding_energy_curve_-_common_isotopes.svg/600px-Binding_energy_curve_-_common_isotopes.svg.png" decoding="async" width="600" height="394" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/53/Binding_energy_curve_-_common_isotopes.svg/900px-Binding_energy_curve_-_common_isotopes.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/53/Binding_energy_curve_-_common_isotopes.svg/1200px-Binding_energy_curve_-_common_isotopes.svg.png 2x" data-file-width="671" data-file-height="441" /></a><figcaption>Binding energy per nucleon for a selection of nuclides. The nuclide with the highest value, <sup>62</sup>Ni, does not appear. The horizontal lines are at 8 and 8.5 MeV.</figcaption></figure> <p>In the <a href="/wiki/Periodic_table_of_elements" class="mw-redirect" title="Periodic table of elements">periodic&#160;table of elements</a>, the series of light elements from <a href="/wiki/Hydrogen" title="Hydrogen">hydrogen</a> up to <a href="/wiki/Sodium" title="Sodium">sodium</a> is observed to exhibit generally increasing binding energy per nucleon as the <a href="/wiki/Atomic_mass" title="Atomic mass">atomic mass</a> increases. This increase is generated by increasing forces per nucleon in the nucleus, as each additional nucleon is attracted by other nearby nucleons, and thus more tightly bound to the whole. Helium-4 and oxygen-16 are particularly stable exceptions to the trend (see figure on the right). This is because they are <a href="/wiki/Doubly_magic" class="mw-redirect" title="Doubly magic">doubly magic</a>, meaning their protons and neutrons both fill their respective nuclear shells. </p><p>The region of increasing binding energy is followed by a region of relative stability (saturation) in the sequence from about mass 30 through about mass 90. In this region, the nucleus has become large enough that nuclear forces no longer completely extend efficiently across its width. Attractive nuclear forces in this region, as atomic mass increases, are nearly balanced by repellent electromagnetic forces between protons, as the <a href="/wiki/Atomic_number" title="Atomic number">atomic number</a> increases. </p><p>Finally, in the heavier elements, there is a gradual decrease in binding energy per nucleon as atomic number increases. In this region of nuclear size, electromagnetic repulsive forces are beginning to overcome the strong nuclear force attraction. </p><p>At the peak of binding energy, <a href="/wiki/Nickel-62" title="Nickel-62">nickel-62</a> is the most tightly bound nucleus (per nucleon), followed by <a href="/wiki/Iron-58" class="mw-redirect" title="Iron-58">iron-58</a> and <a href="/wiki/Iron-56" title="Iron-56">iron-56</a>.<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> This is the approximate basic reason why iron and nickel are very common metals in planetary cores, since they are produced profusely as end products in <a href="/wiki/Supernova" title="Supernova">supernovae</a> and in the final stages of <a href="/wiki/Silicon_burning" class="mw-redirect" title="Silicon burning">silicon burning</a> in stars. However, it is not binding energy per defined nucleon (as defined above), which controls exactly which nuclei are made, because within stars, neutrons and protons can inter-convert to release even more energy per generic nucleon. In fact, it has been argued that <a href="/wiki/Photodisintegration" title="Photodisintegration">photodisintegration</a> of <sup>62</sup>Ni to form <sup>56</sup>Fe may be energetically possible in an extremely hot star core, due to this beta decay conversion of neutrons to protons.<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> This favors the creation of <sup>56</sup>Fe, the nuclide with the lowest mass per nucleon. However, at high temperatures not all matter will be in the lowest energy state. This energetic maximum should also hold for ambient conditions, say <span class="nowrap"><i>T</i> = 298 K</span> and <span class="nowrap"><i>p</i> = 1 atm</span>, for neutral condensed matter consisting of <sup>56</sup>Fe atoms—however, in these conditions nuclei of atoms are inhibited from fusing into the most stable and low energy state of matter. </p><p>Elements with high binding energy per nucleon, like iron and nickel, cannot undergo fission, but they can theoretically undergo fusion with hydrogen, deuterium, helium, and carbon, for instance:<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><sup>62</sup>Ni + <sup>12</sup>C → <sup>74</sup>Se <span style="padding-left:7.3em;">&#160;</span>Q = 5.467 MeV</dd></dl> <p>It is generally believed that iron-56 is more common than nickel isotopes in the universe for mechanistic reasons, because its unstable progenitor <a href="/wiki/Nickel-56" class="mw-redirect" title="Nickel-56">nickel-56</a> is copiously made by staged build-up of 14 helium nuclei inside supernovas, where it has no time to decay to iron before being released into the interstellar medium in a matter of a few minutes, as the supernova explodes. However, nickel-56 then decays to <a href="/wiki/Cobalt-56" class="mw-redirect" title="Cobalt-56">cobalt-56</a> within a few weeks, then this radioisotope finally decays to iron-56 with a half life of about 77.3 days. The radioactive decay-powered light curve of such a process has been observed to happen in <a href="/wiki/Type_II_supernova" title="Type II supernova">type II supernovae</a>, such as <a href="/wiki/SN_1987A" title="SN 1987A">SN 1987A</a>. In a star, there are no good ways to create nickel-62 by alpha-addition processes, or else there would presumably be more of this highly stable nuclide in the universe. </p> <div class="mw-heading mw-heading3"><h3 id="Binding_energy_and_nuclide_masses">Binding energy and nuclide masses</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nuclear_binding_energy&amp;action=edit&amp;section=16" title="Edit section: Binding energy and nuclide masses"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1251242444"><table class="box-Unreferenced_section plainlinks metadata ambox ambox-content ambox-Unreferenced" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Question_book-new.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This section <b>does not <a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources">cite</a> any <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">sources</a></b>.<span class="hide-when-compact"> Please help <a href="/wiki/Special:EditPage/Nuclear_binding_energy" title="Special:EditPage/Nuclear binding energy">improve this section</a> by <a href="/wiki/Help:Referencing_for_beginners" title="Help:Referencing for beginners">adding citations to reliable sources</a>. Unsourced material may be challenged and <a href="/wiki/Wikipedia:Verifiability#Burden_of_evidence" title="Wikipedia:Verifiability">removed</a>.</span> <span class="date-container"><i>(<span class="date">October 2014</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <p>The fact that the maximum binding energy is found in medium-sized nuclei is a consequence of the trade-off in the effects of two opposing forces that have different range characteristics. The attractive nuclear force (<a href="/wiki/Strong_nuclear_force" class="mw-redirect" title="Strong nuclear force">strong nuclear force</a>), which binds protons and neutrons equally to each other, has a limited range due to a rapid exponential decrease in this force with distance. However, the repelling electromagnetic force, which acts between protons to force nuclei apart, falls off with distance much more slowly (as the inverse square of distance). For nuclei larger than about four nucleons in diameter, the additional repelling force of additional protons more than offsets any binding energy that results between further added nucleons as a result of additional strong force interactions. Such nuclei become increasingly less tightly bound as their size increases, though most of them are still stable. Finally, nuclei containing more than 209 nucleons (larger than about 6 nucleons in diameter) are all too large to be stable, and are subject to spontaneous decay to smaller nuclei. </p><p><a href="/wiki/Nuclear_fusion" title="Nuclear fusion">Nuclear fusion</a> produces energy by combining the very lightest elements into more tightly bound elements (such as hydrogen into <a href="/wiki/Helium" title="Helium">helium</a>), and <a href="/wiki/Nuclear_fission" title="Nuclear fission">nuclear fission</a> produces energy by splitting the heaviest elements (such as <a href="/wiki/Uranium" title="Uranium">uranium</a> and <a href="/wiki/Plutonium" title="Plutonium">plutonium</a>) into more tightly bound elements (such as <a href="/wiki/Barium" title="Barium">barium</a> and <a href="/wiki/Krypton" title="Krypton">krypton</a>). The nuclear fission of a few light elements (such as Lithium) occurs because Helium-4 is a product and a more tightly bound element than slightly heavier elements. Both processes produce energy as the sum of the masses of the products is less than the sum of the masses of the reacting nuclei. </p><p>As seen above in the example of deuterium, nuclear binding energies are large enough that they may be easily measured as fractional <a href="/wiki/Mass" title="Mass">mass</a> deficits, according to the equivalence of mass and energy. The atomic binding energy is simply the amount of energy (and mass) released, when a collection of free <a href="/wiki/Nucleons" class="mw-redirect" title="Nucleons">nucleons</a> are joined to form a <a href="/wiki/Atomic_nucleus" title="Atomic nucleus">nucleus</a>. </p><p>Nuclear binding energy can be computed from the difference in mass of a nucleus, and the sum of the masses of the number of free neutrons and protons that make up the nucleus. Once this mass difference, called the mass defect or mass deficiency, is known, Einstein's <a href="/wiki/Mass%E2%80%93energy_equivalence" title="Mass–energy equivalence">mass–energy equivalence</a> formula <span class="nowrap"><i>E</i> = <i>mc</i><sup>2</sup></span> can be used to compute the binding energy of any nucleus. Early nuclear physicists used to refer to computing this value as a "packing fraction" calculation. </p><p>For example, the <a href="/wiki/Dalton_(unit)" title="Dalton (unit)">dalton</a> (1&#160;Da) is defined as 1/12 of the mass of a <sup>12</sup>C atom—but the atomic mass of a <sup>1</sup>H atom (which is a proton plus electron) is 1.007825&#160;Da, so each nucleon in <sup>12</sup>C has lost, on average, about 0.8% of its mass in the form of binding energy. </p> <div class="mw-heading mw-heading3"><h3 id="Semiempirical_formula_for_nuclear_binding_energy">Semiempirical formula for nuclear binding energy</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nuclear_binding_energy&amp;action=edit&amp;section=17" title="Edit section: Semiempirical formula for nuclear binding energy"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Semi-empirical_mass_formula" title="Semi-empirical mass formula">Semi-empirical mass formula</a></div> <p>For a nucleus with <i>A</i> nucleons, including <i>Z</i> protons and <i>N</i> neutrons, a <a href="/wiki/Semi-empirical_mass_formula" title="Semi-empirical mass formula">semi-empirical formula</a> for the binding energy (<i>E</i><sub>B</sub>) per nucleon is: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {E_{\text{B}}}{A\cdot {\text{MeV}}}}=a-{\frac {b}{A^{1/3}}}-{\frac {cZ^{2}}{A^{4/3}}}-{\frac {d\left(N-Z\right)^{2}}{A^{2}}}\pm {\frac {e}{A^{7/4}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>B</mtext> </mrow> </msub> <mrow> <mi>A</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>MeV</mtext> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mi>a</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>b</mi> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>3</mn> </mrow> </msup> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>c</mi> <msup> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>3</mn> </mrow> </msup> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <msup> <mrow> <mo>(</mo> <mrow> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mi>Z</mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>&#x00B1;<!-- ± --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>e</mi> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>4</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {E_{\text{B}}}{A\cdot {\text{MeV}}}}=a-{\frac {b}{A^{1/3}}}-{\frac {cZ^{2}}{A^{4/3}}}-{\frac {d\left(N-Z\right)^{2}}{A^{2}}}\pm {\frac {e}{A^{7/4}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/571d3c154a0d56f07705a693d6bd2ae7fb6d9524" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:52.187ex; height:6.343ex;" alt="{\displaystyle {\frac {E_{\text{B}}}{A\cdot {\text{MeV}}}}=a-{\frac {b}{A^{1/3}}}-{\frac {cZ^{2}}{A^{4/3}}}-{\frac {d\left(N-Z\right)^{2}}{A^{2}}}\pm {\frac {e}{A^{7/4}}}}"></span> where the coefficients are given by: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a=14.0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>=</mo> <mn>14.0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a=14.0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3982295d6eae0880a111b4b0486349d5f989440" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.462ex; height:2.176ex;" alt="{\displaystyle a=14.0}"></span>; <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b=13.0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mo>=</mo> <mn>13.0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b=13.0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b4e35310b0a83a79dce56c1ac044f4f1654a1ec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.23ex; height:2.176ex;" alt="{\displaystyle b=13.0}"></span>; <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c=0.585}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>=</mo> <mn>0.585</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c=0.585}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78e8d5861e9bc461cc56837577ccdd4587a8f7ea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.402ex; height:2.176ex;" alt="{\displaystyle c=0.585}"></span>; <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d=19.3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo>=</mo> <mn>19.3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d=19.3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af8a06f8b3484197877214fb735309fcd4805406" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.449ex; height:2.176ex;" alt="{\displaystyle d=19.3}"></span>; <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e=33}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>e</mi> <mo>=</mo> <mn>33</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e=33}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4b923411b6c92cd7ecbee9bbb07614ac528db12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.507ex; height:2.176ex;" alt="{\displaystyle e=33}"></span>. </p><p>The first term <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> is called the saturation contribution and ensures that the binding energy per nucleon is the same for all nuclei to a first approximation. The term <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -b/A^{1/3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -b/A^{1/3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a2f70efd5fc8608524fcb85725e9cd6e72f6bf6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.409ex; height:3.343ex;" alt="{\displaystyle -b/A^{1/3}}"></span> is a surface tension effect and is proportional to the number of nucleons that are situated on the nuclear surface; it is largest for light nuclei. The term <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -cZ^{2}/A^{4/3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mi>c</mi> <msup> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -cZ^{2}/A^{4/3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51325267012b7c2fbd702909a207378be9914b78" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.181ex; height:3.343ex;" alt="{\displaystyle -cZ^{2}/A^{4/3}}"></span> is the Coulomb electrostatic repulsion; this becomes more important as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1cc6b75e09a8aa3f04d8584b11db534f88fb56bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.68ex; height:2.176ex;" alt="{\displaystyle Z}"></span> increases. The symmetry correction term <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -d(N-Z)^{2}/A^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mi>Z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -d(N-Z)^{2}/A^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41fbcfb2b75bbfe74ae7f46b985e8fc68882cf4b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.432ex; height:3.176ex;" alt="{\displaystyle -d(N-Z)^{2}/A^{2}}"></span> takes into account the fact that in the absence of other effects the most stable arrangement has equal numbers of protons and neutrons; this is because the n–p interaction in a nucleus is stronger than either the n−n or p−p interaction. The pairing term <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pm e/A^{7/4}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x00B1;<!-- ± --></mo> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>4</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pm e/A^{7/4}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/572afd74955a90f6710d6249b6b173e2ead20b8e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.495ex; height:3.343ex;" alt="{\displaystyle \pm e/A^{7/4}}"></span> is purely empirical; it is + for <a href="/wiki/Even-even_nucleus" class="mw-redirect" title="Even-even nucleus">even–even nuclei</a> and − for <a href="/wiki/Odd%E2%80%93odd_nuclei" class="mw-redirect" title="Odd–odd nuclei">odd–odd nuclei</a>. When A is odd, the pairing term is identically zero. </p> <figure class="mw-halign-left" typeof="mw:File/Thumb"><a href="/wiki/File:Bethe-Weizs%C3%A4cker.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3b/Bethe-Weizs%C3%A4cker.png/500px-Bethe-Weizs%C3%A4cker.png" decoding="async" width="500" height="375" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3b/Bethe-Weizs%C3%A4cker.png/750px-Bethe-Weizs%C3%A4cker.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3b/Bethe-Weizs%C3%A4cker.png/1000px-Bethe-Weizs%C3%A4cker.png 2x" data-file-width="1920" data-file-height="1440" /></a><figcaption>A graphical representation of the semi-empirical binding energy formula. The binding energy per nucleon in MeV (highest numbers in yellow, in excess of 8.5 MeV per nucleon) is plotted for various <a href="/wiki/Nuclide" title="Nuclide">nuclides</a> as a function of <i>Z</i>, the <a href="/wiki/Atomic_number" title="Atomic number">atomic number</a> (y-axis), vs. <i>N</i>, the number of <a href="/wiki/Neutrons" class="mw-redirect" title="Neutrons">neutrons</a> (x-axis). The highest numbers are seen for <span class="nowrap"><i>Z</i> = 26</span> (iron).</figcaption></figure> <div style="clear:both;" class=""></div> <div class="mw-heading mw-heading2"><h2 id="Example_values_deduced_from_experimentally_measured_atom_nuclide_masses">Example values deduced from experimentally measured atom nuclide masses</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nuclear_binding_energy&amp;action=edit&amp;section=18" title="Edit section: Example values deduced from experimentally measured atom nuclide masses"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The following table lists some binding energies and mass defect values.<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> Notice also that we use 1&#160;<a href="/wiki/Dalton_(unit)" title="Dalton (unit)">Da</a>&#160;=&#160;<span class="nowrap"><span data-sort-value="7002931494028000000♠"></span>931.494<span style="margin-left:.25em;">028</span>(23)&#160;MeV/<i>c</i><sup>2</sup></span>. To calculate the binding energy we use the formula <i>Z</i>&#160;(<i>m</i><sub>p</sub>&#160;+&#160;<i>m</i><sub>e</sub>)&#160;+&#160;<i>N</i>&#160;<i>m</i><sub>n</sub>&#160;&#8722;&#160;<i>m</i><sub>nuclide</sub> where <i>Z</i> denotes the number of protons in the nuclides and <i>N</i> their number of neutrons. We take <span class="nowrap"><i>m</i><sub>p</sub> = <span class="nowrap"><span data-sort-value="7002938272081300000♠"></span>938.272<span style="margin-left:.25em;">0813</span>(58)&#160;MeV/<i>c</i><sup>2</sup></span></span>, <span class="nowrap"><i>m</i><sub>e</sub> = <span class="nowrap"><span data-sort-value="6999510998946099999♠"></span>0.510<span style="margin-left:.25em;">998</span><span style="margin-left:.25em;">9461</span>(30)&#160;MeV/<i>c</i><sup>2</sup></span></span> and <span class="nowrap"><i>m</i><sub>n</sub> = <span class="nowrap"><span data-sort-value="7002939565413300000♠"></span>939.565<span style="margin-left:.25em;">4133</span>(58)&#160;MeV/<i>c</i><sup>2</sup></span></span>. The letter <i>A</i> denotes the sum of <i>Z</i> and <i>N</i> (number of nucleons in the nuclide). If we assume the reference nucleon has the mass of a neutron (so that all "total" binding energies calculated are maximal) we could define the total binding energy as the difference from the mass of the nucleus, and the mass of a collection of <i>A</i> free neutrons. In other words, it would be (<i>Z</i>&#160;+&#160;<i>N</i>)&#160;<i>m</i><sub>n</sub>&#160;&#8722;&#160;<i>m</i><sub>nuclide</sub>. The "<i>total</i> binding energy per nucleon" would be this value divided by <i>A</i>. </p> <table class="wikitable"> <caption>Most strongly bound nuclides atoms </caption> <tbody><tr> <th>nuclide</th> <th><i>Z</i></th> <th><i>N</i></th> <th>mass excess</th> <th>total mass</th> <th>total mass / <i>A</i></th> <th>total binding energy / <i>A</i></th> <th>mass defect</th> <th>binding energy</th> <th>binding energy / <i>A</i> </th></tr> <tr> <td><a href="/wiki/Iron-56" title="Iron-56"><sup>56</sup>Fe</a></td> <td>26</td> <td>30</td> <td>&#8722;60.6054 MeV</td> <td>55.934937 Da</td> <td>0.9988372 Da</td> <td>9.1538 MeV</td> <td>0.528479 Da</td> <td>492.275 MeV</td> <td>8.7906 MeV </td></tr> <tr> <td><sup>58</sup>Fe</td> <td>26</td> <td>32</td> <td>&#8722;62.1534 MeV</td> <td>57.932276 Da</td> <td>0.9988496 Da</td> <td>9.1432 MeV</td> <td>0.547471 Da</td> <td>509.966 MeV</td> <td>8.7925 MeV </td></tr> <tr> <td><sup>60</sup>Ni</td> <td>28</td> <td>32</td> <td>&#8722;64.472 MeV</td> <td>59.93079 Da</td> <td>0.9988464 Da</td> <td>9.1462 MeV</td> <td>0.565612 Da</td> <td>526.864 MeV</td> <td>8.7811 MeV </td></tr> <tr> <td><a href="/wiki/Nickel-62" title="Nickel-62"><sup>62</sup>Ni</a></td> <td>28</td> <td>34</td> <td>&#8722;66.7461 MeV</td> <td>61.928345 Da</td> <td>0.9988443 Da</td> <td>9.1481 MeV</td> <td>0.585383 Da</td> <td>545.281 MeV</td> <td>8.7948 MeV </td></tr></tbody></table> <p><sup>56</sup>Fe has the lowest nucleon-specific mass of the four nuclides listed in this table, but this does not imply it is the strongest bound atom per hadron, unless the choice of beginning hadrons is completely free. Iron releases the largest energy if any 56 nucleons are allowed to build a nuclide—changing one to another if necessary. The highest binding energy per hadron, with the hadrons starting as the same number of protons <i>Z</i> and total nucleons <i>A</i> as in the bound nucleus, is <sup>62</sup>Ni. Thus, the true absolute value of the total binding energy of a nucleus depends on what we are allowed to construct the nucleus out of. If all nuclei of mass number <i>A</i> were to be allowed to be constructed of <i>A</i> neutrons, then <sup>56</sup>Fe would release the most energy per nucleon, since it has a larger fraction of protons than <sup>62</sup>Ni. However, if nuclei are required to be constructed of only the same number of protons and neutrons that they contain, then nickel-62 is the most tightly bound nucleus, per nucleon. </p> <table class="wikitable"> <caption>Some light nuclides resp. atoms </caption> <tbody><tr> <th>nuclide</th> <th><i>Z</i></th> <th><i>N</i></th> <th>mass excess</th> <th>total mass</th> <th>total mass / <i>A</i></th> <th>total binding energy / <i>A</i></th> <th>mass defect</th> <th>binding energy</th> <th>binding energy / <i>A</i> </th></tr> <tr> <td><a href="/wiki/Neutron" title="Neutron">n</a></td> <td>0</td> <td>1</td> <td>8.0716 MeV</td> <td>1.008665 Da</td> <td>1.008665 Da</td> <td>0.0000 MeV</td> <td>0 Da</td> <td>0 MeV</td> <td>0 MeV </td></tr> <tr> <td><a href="/wiki/Hydrogen-1" class="mw-redirect" title="Hydrogen-1"><sup>1</sup>H</a></td> <td>1</td> <td>0</td> <td>7.2890 MeV</td> <td>1.007825 Da</td> <td>1.007825 Da</td> <td>0.7826 MeV</td> <td>0.0000000146 Da</td> <td>0.0000136 MeV</td> <td>13.6 eV </td></tr> <tr> <td><a href="/wiki/Deuterium" title="Deuterium"><sup>2</sup>H</a></td> <td>1</td> <td>1</td> <td>13.13572 MeV</td> <td>2.014102 Da</td> <td>1.007051 Da</td> <td>1.50346 MeV</td> <td>0.002388 Da</td> <td>2.22452 MeV</td> <td>1.11226 MeV </td></tr> <tr> <td><a href="/wiki/Tritium" title="Tritium"><sup>3</sup>H</a></td> <td>1</td> <td>2</td> <td>14.9498 MeV</td> <td>3.016049 Da</td> <td>1.005350 Da</td> <td>3.08815 MeV</td> <td>0.0091058 Da</td> <td>8.4820 MeV</td> <td>2.8273 MeV </td></tr> <tr> <td><a href="/wiki/Helium-3" title="Helium-3"><sup>3</sup>He</a></td> <td>2</td> <td>1</td> <td>14.9312 MeV</td> <td>3.016029 Da</td> <td>1.005343 Da</td> <td>3.09433 MeV</td> <td>0.0082857 Da</td> <td>7.7181 MeV</td> <td>2.5727 MeV </td></tr></tbody></table> <p>In the table above it can be seen that the decay of a neutron, as well as the transformation of tritium into helium-3, releases energy; hence, it manifests a stronger bound new state when measured against the mass of an equal number of neutrons (and also a lighter state per number of total hadrons). Such reactions are not driven by changes in binding energies as calculated from previously fixed <i>N</i> and <i>Z</i> numbers of neutrons and protons, but rather in decreases in the total mass of the nuclide/per nucleon, with the reaction. (Note that the Binding Energy given above for hydrogen-1 is the atomic binding energy, not the nuclear binding energy which would be zero.) </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nuclear_binding_energy&amp;action=edit&amp;section=19" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Gravitational_binding_energy" title="Gravitational binding energy">Gravitational binding energy</a></li> <li><a href="/wiki/Bond-dissociation_energy" title="Bond-dissociation energy">Bond-dissociation energy</a> (binding energy between the atoms in a chemical bond)</li> <li><a href="/wiki/Electron_binding_energy" class="mw-redirect" title="Electron binding energy">Electron binding energy</a> (energy required to free an electron from its atomic orbital or from a solid)</li> <li><a href="/wiki/Atomic_binding_energy" class="mw-redirect" title="Atomic binding energy">Atomic binding energy</a> (energy required to disassemble an atom into free electrons and a nucleus)</li> <li><a href="/wiki/Quantum_chromodynamics_binding_energy" title="Quantum chromodynamics binding energy">Quantum chromodynamics binding energy</a> (addresses the mass and kinetic energy of the parts that bind the various quarks together inside a hadron)</li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nuclear_binding_energy&amp;action=edit&amp;section=20" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-Purdue-U-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-Purdue-U_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Purdue-U_1-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Purdue-U_1-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.chem.purdue.edu/gchelp/howtosolveit/Nuclear/nuclear_binding_energy.htm">"Nuclear binding energy"</a>. <i>How to solve for nuclear binding energy. Guides to solving many of the types of quantitative problems found in Chemistry 116</i>. Purdue University. July 2010<span class="reference-accessdate">. Retrieved <span class="nowrap">2010-07-10</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=How+to+solve+for+nuclear+binding+energy.+Guides+to+solving+many+of+the+types+of+quantitative+problems+found+in+Chemistry+116.&amp;rft.atitle=Nuclear+binding+energy&amp;rft.date=2010-07&amp;rft_id=https%3A%2F%2Fwww.chem.purdue.edu%2Fgchelp%2Fhowtosolveit%2FNuclear%2Fnuclear_binding_energy.htm&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANuclear+binding+energy" class="Z3988"></span></span> </li> <li id="cite_note-GSU-bindEnergy-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-GSU-bindEnergy_2-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNave2010" class="citation web cs1">Nave, Rod (July 2010). <a rel="nofollow" class="external text" href="http://hyperphysics.phy-astr.gsu.edu/hbase/nucene/nucbin.html#c1">"Nuclear Binding Energy"</a>. <i>Hyperphysics – a free web resource from GSU</i>. <a href="/wiki/Georgia_State_University" title="Georgia State University">Georgia State University</a><span class="reference-accessdate">. Retrieved <span class="nowrap">2010-07-11</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Hyperphysics+%E2%80%93+a+free+web+resource+from+GSU&amp;rft.atitle=Nuclear+Binding+Energy&amp;rft.date=2010-07&amp;rft.aulast=Nave&amp;rft.aufirst=Rod&amp;rft_id=http%3A%2F%2Fhyperphysics.phy-astr.gsu.edu%2Fhbase%2Fnucene%2Fnucbin.html%23c1&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANuclear+binding+energy" class="Z3988"></span></span> </li> <li id="cite_note-nuclearEnergy-tx-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-nuclearEnergy-tx_3-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20110226114158/http://www.energyeducation.tx.gov/energy/section_1/topics/forms_of_energy/nuclear_energy.html">"Nuclear Energy"</a>. <i>Energy Education is an interactive curriculum supplement for secondary-school science students, funded by the U. S. Department of Energy and the Texas State Energy Conservation Office (SECO)</i>. <a href="/wiki/U._S._Department_of_Energy" class="mw-redirect" title="U. S. Department of Energy">U. S. Department of Energy</a> and the Texas State Energy Conservation Office (SECO). July 2010. Archived from <a rel="nofollow" class="external text" href="http://www.energyeducation.tx.gov/energy/section_1/topics/forms_of_energy/nuclear_energy.html">the original</a> on 2011-02-26<span class="reference-accessdate">. Retrieved <span class="nowrap">2010-07-10</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Energy+Education+is+an+interactive+curriculum+supplement+for+secondary-school+science+students%2C+funded+by+the+U.+S.+Department+of+Energy+and+the+Texas+State+Energy+Conservation+Office+%28SECO%29&amp;rft.atitle=Nuclear+Energy&amp;rft.date=2010-07&amp;rft_id=http%3A%2F%2Fwww.energyeducation.tx.gov%2Fenergy%2Fsection_1%2Ftopics%2Fforms_of_energy%2Fnuclear_energy.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANuclear+binding+energy" class="Z3988"></span></span> </li> <li id="cite_note-NucPhys-4"><span class="mw-cite-backlink">^ <a href="#cite_ref-NucPhys_4-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-NucPhys_4-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStern2004" class="citation web cs1">Stern, Dr. David P. (September 23, 2004). <a rel="nofollow" class="external text" href="https://www-istp.gsfc.nasa.gov/stargaze/Sun7enrg.htm">"Nuclear Physics"</a>. <i>"From Stargazers to Starships" Public domain content</i>. NASA website<span class="reference-accessdate">. Retrieved <span class="nowrap">2010-07-11</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=%22From+Stargazers+to+Starships%22+Public+domain+content.&amp;rft.atitle=Nuclear+Physics&amp;rft.date=2004-09-23&amp;rft.aulast=Stern&amp;rft.aufirst=Dr.+David+P.&amp;rft_id=http%3A%2F%2Fwww-istp.gsfc.nasa.gov%2Fstargaze%2FSun7enrg.htm&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANuclear+binding+energy" class="Z3988"></span></span> </li> <li id="cite_note-RevNucStr-5"><span class="mw-cite-backlink">^ <a href="#cite_ref-RevNucStr_5-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-RevNucStr_5-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-RevNucStr_5-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-RevNucStr_5-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-RevNucStr_5-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-RevNucStr_5-5"><sup><i><b>f</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStern2004" class="citation web cs1">Stern, Dr. David P. (November 15, 2004). <a rel="nofollow" class="external text" href="https://www-istp.gsfc.nasa.gov/stargaze/Snuclear.htm">"A Review of Nuclear Structure"</a>. <i>"From Stargazers to Starships" Public domain content</i>. NASA website<span class="reference-accessdate">. Retrieved <span class="nowrap">2010-07-11</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=%22From+Stargazers+to+Starships%22+Public+domain+content.&amp;rft.atitle=A+Review+of+Nuclear+Structure&amp;rft.date=2004-11-15&amp;rft.aulast=Stern&amp;rft.aufirst=Dr.+David+P.&amp;rft_id=http%3A%2F%2Fwww-istp.gsfc.nasa.gov%2Fstargaze%2FSnuclear.htm&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANuclear+binding+energy" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://education.jlab.org/itselemental/ele002.html">"It's Elemental – The Element Helium"</a>. <i>education.jlab.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2019-11-05</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=education.jlab.org&amp;rft.atitle=It%27s+Elemental+%E2%80%93+The+Element+Helium&amp;rft_id=https%3A%2F%2Feducation.jlab.org%2Fitselemental%2Fele002.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANuclear+binding+energy" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFrischThorndike1964" class="citation book cs1"><a href="/wiki/David_H._Frisch" title="David H. Frisch">Frisch, David H.</a>; Thorndike, Alan M. (1964). <i>Elementary Particles</i>. Princeton, New Jersey: <a href="/wiki/David_Van_Nostrand" title="David Van Nostrand">David Van Nostrand</a>. pp.&#160;<span class="nowrap">11–</span>12.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Elementary+Particles&amp;rft.place=Princeton%2C+New+Jersey&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E11-%3C%2Fspan%3E12&amp;rft.pub=David+Van+Nostrand&amp;rft.date=1964&amp;rft.aulast=Frisch&amp;rft.aufirst=David+H.&amp;rft.au=Thorndike%2C+Alan+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANuclear+binding+energy" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://chem.libretexts.org/Bookshelves/General_Chemistry/Map%3A_A_Molecular_Approach_(Tro)/20%3A_Radioactivity_and_Nuclear_Chemistry/20.08%3A_Converting_Mass_to_Energy%3A_Mass_Defect_and_Nuclear_Binding_Energy">"20.8: Converting Mass to Energy: Mass Defect and Nuclear Binding Energy"</a>. <i>Chemistry LibreTexts</i>. 2016-03-11<span class="reference-accessdate">. Retrieved <span class="nowrap">2019-11-05</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Chemistry+LibreTexts&amp;rft.atitle=20.8%3A+Converting+Mass+to+Energy%3A+Mass+Defect+and+Nuclear+Binding+Energy&amp;rft.date=2016-03-11&amp;rft_id=https%3A%2F%2Fchem.libretexts.org%2FBookshelves%2FGeneral_Chemistry%2FMap%253A_A_Molecular_Approach_%28Tro%29%2F20%253A_Radioactivity_and_Nuclear_Chemistry%2F20.08%253A_Converting_Mass_to_Energy%253A_Mass_Defect_and_Nuclear_Binding_Energy&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANuclear+binding+energy" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPourshahian2017" class="citation journal cs1">Pourshahian, Soheil (2017-09-01). "Mass Defect from Nuclear Physics to Mass Spectral Analysis". <i>Journal of the American Society for Mass Spectrometry</i>. <b>28</b> (9): <span class="nowrap">1836–</span>1843. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017JASMS..28.1836P">2017JASMS..28.1836P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs13361-017-1741-9">10.1007/s13361-017-1741-9</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1879-1123">1879-1123</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/28733967">28733967</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:34178643">34178643</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+the+American+Society+for+Mass+Spectrometry&amp;rft.atitle=Mass+Defect+from+Nuclear+Physics+to+Mass+Spectral+Analysis&amp;rft.volume=28&amp;rft.issue=9&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1836-%3C%2Fspan%3E1843&amp;rft.date=2017-09-01&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A34178643%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2017JASMS..28.1836P&amp;rft.issn=1879-1123&amp;rft_id=info%3Adoi%2F10.1007%2Fs13361-017-1741-9&amp;rft_id=info%3Apmid%2F28733967&amp;rft.aulast=Pourshahian&amp;rft.aufirst=Soheil&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANuclear+binding+energy" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://archive.org/details/popularlectureso00helmuoft/page/176/mode/2up">"On the Interaction of Natural Forces"</a>. 1854<span class="reference-accessdate">. Retrieved <span class="nowrap">2022-12-24</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=On+the+Interaction+of+Natural+Forces&amp;rft.date=1854&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fpopularlectureso00helmuoft%2Fpage%2F176%2Fmode%2F2up&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANuclear+binding+energy" class="Z3988"></span></span> </li> <li id="cite_note-BindEnergy-11"><span class="mw-cite-backlink">^ <a href="#cite_ref-BindEnergy_11-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-BindEnergy_11-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-BindEnergy_11-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-BindEnergy_11-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-BindEnergy_11-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-BindEnergy_11-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-BindEnergy_11-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-BindEnergy_11-7"><sup><i><b>h</b></i></sup></a> <a href="#cite_ref-BindEnergy_11-8"><sup><i><b>i</b></i></sup></a> <a href="#cite_ref-BindEnergy_11-9"><sup><i><b>j</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStern2009" class="citation web cs1">Stern, Dr. David P. (February 11, 2009). <a rel="nofollow" class="external text" href="https://www-istp.gsfc.nasa.gov/stargaze/SnucEnerA-2.htm">"Nuclear Binding Energy"</a>. <i>"From Stargazers to Starships" Public domain content</i>. NASA website<span class="reference-accessdate">. Retrieved <span class="nowrap">2010-07-11</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=%22From+Stargazers+to+Starships%22+Public+domain+content&amp;rft.atitle=Nuclear+Binding+Energy&amp;rft.date=2009-02-11&amp;rft.aulast=Stern&amp;rft.aufirst=Dr.+David+P.&amp;rft_id=http%3A%2F%2Fwww-istp.gsfc.nasa.gov%2Fstargaze%2FSnucEnerA-2.htm&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANuclear+binding+energy" class="Z3988"></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text">The energy released is slightly less than the binding energy of helium because the starting point is four protons, rather than two protons and two neutrons.</span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text">N R Sree Harsha, "The tightly bound nuclei in the liquid drop model", Eur. J. Phys. 39 035802 (2018), <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F1361-6404%2Faaa345">10.1088/1361-6404/aaa345</a></span> </li> <li id="cite_note-Turning_Lead_into_Gold-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-Turning_Lead_into_Gold_14-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20110717130203/http://chemistry.about.com/cs/generalchemistry/a/aa050601a.htm">"Turning Lead into Gold"</a>. Archived from <a rel="nofollow" class="external text" href="http://chemistry.about.com/cs/generalchemistry/a/aa050601a.htm">the original</a> on 2011-07-17<span class="reference-accessdate">. Retrieved <span class="nowrap">2010-05-04</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Turning+Lead+into+Gold&amp;rft_id=http%3A%2F%2Fchemistry.about.com%2Fcs%2Fgeneralchemistry%2Fa%2Faa050601a.htm&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANuclear+binding+energy" class="Z3988"></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.aip.org/history/curie/resbr1.htm">"Marie Curie – X-rays and Uranium Rays"</a>. aip.org<span class="reference-accessdate">. Retrieved <span class="nowrap">2006-04-10</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Marie+Curie+%E2%80%93+X-rays+and+Uranium+Rays&amp;rft.pub=aip.org&amp;rft_id=http%3A%2F%2Fwww.aip.org%2Fhistory%2Fcurie%2Fresbr1.htm&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANuclear+binding+energy" class="Z3988"></span></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJung1992" class="citation journal cs1">Jung, M.; et&#160;al. (1992). "First observation of bound-state β<sup>&#8722;</sup> decay". <i><a href="/wiki/Physical_Review_Letters" title="Physical Review Letters">Physical Review Letters</a></i>. <b>69</b> (15): <span class="nowrap">2164–</span>2167. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1992PhRvL..69.2164J">1992PhRvL..69.2164J</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.69.2164">10.1103/PhysRevLett.69.2164</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/10046415">10046415</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+Letters&amp;rft.atitle=First+observation+of+bound-state+%CE%B2%3Csup%3E%26minus%3B%3C%2Fsup%3E+decay&amp;rft.volume=69&amp;rft.issue=15&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E2164-%3C%2Fspan%3E2167&amp;rft.date=1992&amp;rft_id=info%3Apmid%2F10046415&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.69.2164&amp;rft_id=info%3Abibcode%2F1992PhRvL..69.2164J&amp;rft.aulast=Jung&amp;rft.aufirst=M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANuclear+binding+energy" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBosch1996" class="citation journal cs1">Bosch, F.; et&#160;al. (1996). "Observation of bound-state beta minus decay of fully ionized <sup>187</sup>Re: <sup>187</sup>Re–<sup>187</sup>Os Cosmochronometry". <i><a href="/wiki/Physical_Review_Letters" title="Physical Review Letters">Physical Review Letters</a></i>. <b>77</b> (26): <span class="nowrap">5190–</span>5193. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1996PhRvL..77.5190B">1996PhRvL..77.5190B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.77.5190">10.1103/PhysRevLett.77.5190</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/10062738">10062738</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+Letters&amp;rft.atitle=Observation+of+bound-state+beta+minus+decay+of+fully+ionized+%3Csup%3E187%3C%2Fsup%3ERe%3A+%3Csup%3E187%3C%2Fsup%3ERe%E2%80%93%3Csup%3E187%3C%2Fsup%3EOs+Cosmochronometry&amp;rft.volume=77&amp;rft.issue=26&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E5190-%3C%2Fspan%3E5193&amp;rft.date=1996&amp;rft_id=info%3Apmid%2F10062738&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.77.5190&amp;rft_id=info%3Abibcode%2F1996PhRvL..77.5190B&amp;rft.aulast=Bosch&amp;rft.aufirst=F.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANuclear+binding+energy" class="Z3988"></span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFewell1995" class="citation journal cs1">Fewell, M. P. (1995). "The atomic nuclide with the highest mean binding energy". <i>American Journal of Physics</i>. <b>63</b> (7): <span class="nowrap">653–</span>658. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1995AmJPh..63..653F">1995AmJPh..63..653F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1119%2F1.17828">10.1119/1.17828</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=American+Journal+of+Physics&amp;rft.atitle=The+atomic+nuclide+with+the+highest+mean+binding+energy&amp;rft.volume=63&amp;rft.issue=7&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E653-%3C%2Fspan%3E658&amp;rft.date=1995&amp;rft_id=info%3Adoi%2F10.1119%2F1.17828&amp;rft_id=info%3Abibcode%2F1995AmJPh..63..653F&amp;rft.aulast=Fewell&amp;rft.aufirst=M.+P.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANuclear+binding+energy" class="Z3988"></span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text">M.P. Fewell, 1995</span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text">From the difference of binding energy, 5.467 = 642.891 − 545.262 − 92.162, values from <a rel="nofollow" class="external text" href="https://web.archive.org/web/20060309210852/http://www.einstein-online.info/en/spotlights/binding_energy/binding_energy/index.txt">"Mass number, number of protons, name of isotope, mass &#91;MeV/c^2&#93;, binding energy &#91;MeV&#93; and binding energy per nucleus &#91;MeV&#93; for different atomic nuclei"</a> at <i><a href="/wiki/Einstein_Online" class="mw-redirect" title="Einstein Online">Einstein Online</a></i>, <a href="/wiki/Max_Planck_Institute_for_Gravitational_Physics" title="Max Planck Institute for Gravitational Physics">Max Planck Institute for Gravitational Physics</a>.</span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text">Jagdish K. Tuli, Nuclear Wallet Cards, 7th edition, April 2005, Brookhaven National Laboratory, US National Nuclear Data Center</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nuclear_binding_energy&amp;action=edit&amp;section=21" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Commons-logo.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></a></span> Media related to <a href="https://commons.wikimedia.org/wiki/Category:Nuclear_binding_energy" class="extiw" title="commons:Category:Nuclear binding energy">Nuclear binding energy</a> at Wikimedia Commons</li></ul> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox authority-control" aria-label="Navbox419" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q6750062#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="http://esu.com.ua/search_articles.php?id=44609">Encyclopedia of Modern Ukraine</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐api‐int.codfw.main‐7d7c8f785d‐zjpjt Cached time: 20250211200650 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.614 seconds Real time usage: 0.841 seconds Preprocessor visited node count: 2162/1000000 Post‐expand include size: 77477/2097152 bytes Template argument size: 2146/2097152 bytes Highest expansion depth: 12/100 Expensive parser function count: 5/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 85600/5000000 bytes Lua time usage: 0.350/10.000 seconds Lua memory usage: 10129935/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 593.873 1 -total 31.60% 187.667 1 Template:Reflist 21.05% 124.995 11 Template:Cite_web 17.79% 105.676 1 Template:Nuclear_physics 17.34% 102.956 1 Template:Sidebar_with_collapsible_lists 12.22% 72.573 1 Template:Short_description 10.10% 59.967 1 Template:More_citations_needed 9.68% 57.484 2 Template:Ambox 8.16% 48.447 2 Template:Pagetype 8.07% 47.945 1 Template:Authority_control --> <!-- Saved in parser cache with key enwiki:pcache:3043836:|#|:idhash:canonical and timestamp 20250211200650 and revision id 1257999831. Rendering was triggered because: api-parse --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?useformat=desktop&amp;type=1x1&amp;usesul3=0" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Nuclear_binding_energy&amp;oldid=1257999831">https://en.wikipedia.org/w/index.php?title=Nuclear_binding_energy&amp;oldid=1257999831</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Nuclear_physics" title="Category:Nuclear physics">Nuclear physics</a></li><li><a href="/wiki/Category:Nuclear_chemistry" title="Category:Nuclear chemistry">Nuclear chemistry</a></li><li><a href="/wiki/Category:Nuclear_fusion" title="Category:Nuclear fusion">Nuclear fusion</a></li><li><a href="/wiki/Category:Binding_energy" title="Category:Binding energy">Binding energy</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Articles_needing_additional_references_from_October_2014" title="Category:Articles needing additional references from October 2014">Articles needing additional references from October 2014</a></li><li><a href="/wiki/Category:All_articles_needing_additional_references" title="Category:All articles needing additional references">All articles needing additional references</a></li><li><a href="/wiki/Category:Commons_category_link_from_Wikidata" title="Category:Commons category link from Wikidata">Commons category link from Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 17 November 2024, at 16:43<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Nuclear_binding_energy&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" lang="en" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-header-container vector-sticky-header-container"> <div id="vector-sticky-header" class="vector-sticky-header"> <div class="vector-sticky-header-start"> <div class="vector-sticky-header-icon-start vector-button-flush-left vector-button-flush-right" aria-hidden="true"> <button class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-sticky-header-search-toggle" tabindex="-1" data-event-name="ui.vector-sticky-search-form.icon"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </button> </div> <div role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box"> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail"> <form action="/w/index.php" id="vector-sticky-search-form" class="cdx-search-input cdx-search-input--has-end-button"> <div class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia"> <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <div class="vector-sticky-header-context-bar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-sticky-header-toc" class="vector-dropdown mw-portlet mw-portlet-sticky-header-toc vector-sticky-header-toc vector-button-flush-left" > <input type="checkbox" id="vector-sticky-header-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-sticky-header-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-sticky-header-toc-label" for="vector-sticky-header-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-sticky-header-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div class="vector-sticky-header-context-bar-primary" aria-hidden="true" ><span class="mw-page-title-main">Nuclear binding energy</span></div> </div> </div> <div class="vector-sticky-header-end" aria-hidden="true"> <div class="vector-sticky-header-icons"> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-talk-sticky-header" tabindex="-1" data-event-name="talk-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbles mw-ui-icon-wikimedia-speechBubbles"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-subject-sticky-header" tabindex="-1" data-event-name="subject-sticky-header"><span class="vector-icon mw-ui-icon-article mw-ui-icon-wikimedia-article"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-history-sticky-header" tabindex="-1" data-event-name="history-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-history mw-ui-icon-wikimedia-wikimedia-history"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only mw-watchlink" id="ca-watchstar-sticky-header" tabindex="-1" data-event-name="watch-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-star mw-ui-icon-wikimedia-wikimedia-star"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-edit-sticky-header" tabindex="-1" data-event-name="wikitext-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-wikiText mw-ui-icon-wikimedia-wikimedia-wikiText"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-ve-edit-sticky-header" tabindex="-1" data-event-name="ve-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-edit mw-ui-icon-wikimedia-wikimedia-edit"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-viewsource-sticky-header" tabindex="-1" data-event-name="ve-edit-protected-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-editLock mw-ui-icon-wikimedia-wikimedia-editLock"></span> <span></span> </a> </div> <div class="vector-sticky-header-buttons"> <button class="cdx-button cdx-button--weight-quiet mw-interlanguage-selector" id="p-lang-btn-sticky-header" tabindex="-1" data-event-name="ui.dropdown-p-lang-btn-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-language mw-ui-icon-wikimedia-wikimedia-language"></span> <span>42 languages</span> </button> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive" id="ca-addsection-sticky-header" tabindex="-1" data-event-name="addsection-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbleAdd-progressive mw-ui-icon-wikimedia-speechBubbleAdd-progressive"></span> <span>Add topic</span> </a> </div> <div class="vector-sticky-header-icon-end"> <div class="vector-user-links"> </div> </div> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-5f467697bf-lkgrz","wgBackendResponseTime":126,"wgPageParseReport":{"limitreport":{"cputime":"0.614","walltime":"0.841","ppvisitednodes":{"value":2162,"limit":1000000},"postexpandincludesize":{"value":77477,"limit":2097152},"templateargumentsize":{"value":2146,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":5,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":85600,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 593.873 1 -total"," 31.60% 187.667 1 Template:Reflist"," 21.05% 124.995 11 Template:Cite_web"," 17.79% 105.676 1 Template:Nuclear_physics"," 17.34% 102.956 1 Template:Sidebar_with_collapsible_lists"," 12.22% 72.573 1 Template:Short_description"," 10.10% 59.967 1 Template:More_citations_needed"," 9.68% 57.484 2 Template:Ambox"," 8.16% 48.447 2 Template:Pagetype"," 8.07% 47.945 1 Template:Authority_control"]},"scribunto":{"limitreport-timeusage":{"value":"0.350","limit":"10.000"},"limitreport-memusage":{"value":10129935,"limit":52428800},"limitreport-logs":"table#1 {\n [\"size\"] = \"tiny\",\n}\n"},"cachereport":{"origin":"mw-api-int.codfw.main-7d7c8f785d-zjpjt","timestamp":"20250211200650","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Nuclear binding energy","url":"https:\/\/en.wikipedia.org\/wiki\/Nuclear_binding_energy","sameAs":"http:\/\/www.wikidata.org\/entity\/Q6750062","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q6750062","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2005-10-31T08:42:51Z","dateModified":"2024-11-17T16:43:56Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/4\/4b\/NuclearReaction.svg","headline":"energy required to split an atom's nucleus into its component parts"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10