CINXE.COM
Search results for: austenite phase
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: austenite phase</title> <meta name="description" content="Search results for: austenite phase"> <meta name="keywords" content="austenite phase"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="austenite phase" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="austenite phase"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4465</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: austenite phase</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4465</span> The Study of Aluminum Effects Layer Austenite Twins Adjacent to K-Carbide Plates in the Cellular Structure of a Mn-Al Alloy Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wu%20Wei-Ting">Wu Wei-Ting</a>, <a href="https://publications.waset.org/abstracts/search?q=Liu%20Po-Yen"> Liu Po-Yen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang%20Chin-Tzu"> Chang Chin-Tzu</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng%20Wei-Chun"> Cheng Wei-Chun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Three types of low-temperature phase transformations in an Fe-12.5 Mn-6.53 Al-1.28 C (wt %) alloy have been studied. The steel underwent solution heat treatment at 1100℃ and isothermal holding at low temperatures. γ’ phase appears in the austenite matrix in the air-cooled steel. Coherent ultra-fine particles of γ’ phase precipitated uniformly in the austenite matrix after the air-cooling process. These ultra-fine particles were very small and only could be detected by TEM through dark-field images. After short periods of isothermal holding at low temperatures these particles of γ’ phase grew and could be easily detected by TEM. A pro-eutectoid reaction happened after isothermal holding at temperatures below 875 ℃. Proeutectoid κ-carbide and ferrite appear in the austenite matrix as grain boundary precipitates and cellular precipitates. The cellular precipitates are composed of lamellar κ-carbide and austenite. The lamellar κ-carbide grains are always accompanied by layers of austenite twins. The presence of twin layers adhering to the κ-carbide plates might be attributed to the lower activation energy for the precipitation of κ-carbide plates in the austenite. The final form of phase transformation is the eutectoid reaction for the decomposition of supersaturated austenite into stable κ-carbide and ferrite phases at temperatures below 700℃. The ferrite and κ-carbide are in the form of pearlite lamellae. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=austenite" title="austenite">austenite</a>, <a href="https://publications.waset.org/abstracts/search?q=austenite%20twin%20layers" title=" austenite twin layers"> austenite twin layers</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%BA-carbide" title=" κ-carbide"> κ-carbide</a>, <a href="https://publications.waset.org/abstracts/search?q=twins" title=" twins"> twins</a> </p> <a href="https://publications.waset.org/abstracts/72110/the-study-of-aluminum-effects-layer-austenite-twins-adjacent-to-k-carbide-plates-in-the-cellular-structure-of-a-mn-al-alloy-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72110.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4464</span> The Austenite Role in Duplex Stainless Steel Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farej%20Ahmed%20Emhmmed%20Alhegagi">Farej Ahmed Emhmmed Alhegagi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Duplex stainless steels are attractive material for apparatus working with sea water, petroleum, refineries, chemical plants,vessels, and pipes operating at high temperatures and/or pressures. The role of austenite phase in duplex stainless steels performance was investigated. Zeron 100, stainless steels with 50/50 ferrite / austenite %, specimens were tested for strength, toughness, embrittlement susceptibility, and assisted environmental cracking (AEC) resistance. Specimens were heat treated at 475°C for different times and loaded to well- selected values of load. The load values were chosen to be within the range of higher / lower than the expected toughness. Sodium chloride solution 3.5wt% environment with polarity of -900mV / SCE was used to investigate the material susceptibility to (AEC). Results showed important effect of austenite on specimens overall mechanical properties. Strength was affected by the ductile nature of austenite phase leading to plastic deformation accommodated by austenite slip system. Austenite embrittlement, either by decomposition or nucleation and growth process, was not observed to take place during specimens heat treatment. Cracking due to (AEC) took place in the ferrite grains and avoided the austenite phase. Specimens showed the austenite to act as a crack arrestor during (AEC) of duplex stainless steels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=austenite%20phase" title="austenite phase">austenite phase</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=embrittlement%20susceptibility" title=" embrittlement susceptibility"> embrittlement susceptibility</a>, <a href="https://publications.waset.org/abstracts/search?q=duplex%20stainless%20steels" title=" duplex stainless steels"> duplex stainless steels</a> </p> <a href="https://publications.waset.org/abstracts/33093/the-austenite-role-in-duplex-stainless-steel-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33093.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4463</span> Effect of Retained Austenite Stability in Corrosion Mechanism of Dual Phase High Carbon Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20Handoko">W. Handoko</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Pahlevani"> F. Pahlevani</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Sahajwalla"> V. Sahajwalla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dual-phase high carbon steels (DHCS) are commonly known for their improved strength, hardness, and abrasive resistance properties due to co-presence of retained austenite and martensite at the same time. Retained austenite is a meta-stable phase at room temperature, and stability of this phase governs the response of DHCS at different conditions. This research paper studies the effect of RA stability on corrosion behaviour of high carbon steels after they have been immersed into 1.0 M NaCl solution for various times. For this purpose, two different steels with different RA stabilities have been investigated. The surface morphology of the samples before and after corrosion attack was observed by secondary electron microscopy (SEM) and atomic force microscopy (AFM), along with the weight loss and Vickers hardness analysis. Microstructural investigations proved the preferential attack to retained austenite phase during corrosion. Hence, increase in the stability of retained austenite in dual-phase steels led to decreasing the weight loss rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20carbon%20steel" title="high carbon steel">high carbon steel</a>, <a href="https://publications.waset.org/abstracts/search?q=austenite%20stability" title=" austenite stability"> austenite stability</a>, <a href="https://publications.waset.org/abstracts/search?q=atomic%20force%20microscopy" title=" atomic force microscopy"> atomic force microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a> </p> <a href="https://publications.waset.org/abstracts/75437/effect-of-retained-austenite-stability-in-corrosion-mechanism-of-dual-phase-high-carbon-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4462</span> Effect of Heating Rate on Microstructural Developments in Cold Heading Quality Steel Used for Automotive Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahid%20Hussain%20Abro">Shahid Hussain Abro</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Mufadi"> F. Mufadi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Boodi"> A. Boodi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microstructural study and phase transformation in steels is a basic and important step during the design of structural steel. There are huge efforts and study has been done so far on phase transformations, due to so many steel grades available commercially the phase development in steel has different consequences. In the present work an effort has been made to study the effect of heating rate on microstructural features of cold heading quality steel. The SEM, optical microscopy, and heat treatment techniques have been applied to observe the microstructural features in the experimental steel. It was observed that heating rate has the strong influence on phase transformation of CHQ steel under investigation. Heating rate increases the austenite formation kinetics with respect to holding time, and this austenite has been transformed to martensite upon cooling. Heating rate also plays a vital role on nucleation sites of austenite formation in the experimental steel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CHQ%20steel" title="CHQ steel">CHQ steel</a>, <a href="https://publications.waset.org/abstracts/search?q=austenite%20formation" title=" austenite formation"> austenite formation</a>, <a href="https://publications.waset.org/abstracts/search?q=heating%20rate" title=" heating rate"> heating rate</a>, <a href="https://publications.waset.org/abstracts/search?q=nucleation" title=" nucleation"> nucleation</a> </p> <a href="https://publications.waset.org/abstracts/66565/effect-of-heating-rate-on-microstructural-developments-in-cold-heading-quality-steel-used-for-automotive-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66565.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4461</span> Modelling the Growth of σ-Phase in AISI 347H FG Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yohanes%20Chekol%20Malede">Yohanes Chekol Malede</a> </p> <p class="card-text"><strong>Abstract:</strong></p> σ-phase has negative effects on the corrosion responses and the mechanical properties of steels. The growth of σ-phase in the austenite matrix of AISI 347H FG steel was simulated using DICTRA software using CALPHAD method. The simulation work included the influence of both volume diffusion and grain boundary diffusion. The simulation results showed a good agreement with the experimental findings. The simulation results revealed a Cr-depleted and a Ni-enriched σ-phase/austenite interface. Effects of temperature, grain size, and composition of alloying elements on the growth kinetics of σ-phase were assessed. The simulated results were fitted to the JMAK equation and a good correlation was obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AISI%20347H%20FG%20austenitic%20steel" title="AISI 347H FG austenitic steel">AISI 347H FG austenitic steel</a>, <a href="https://publications.waset.org/abstracts/search?q=CALPHAD" title=" CALPHAD"> CALPHAD</a>, <a href="https://publications.waset.org/abstracts/search?q=sigma%20phase" title=" sigma phase"> sigma phase</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure%20evolution" title=" microstructure evolution"> microstructure evolution</a> </p> <a href="https://publications.waset.org/abstracts/123442/modelling-the-growth-of-s-phase-in-aisi-347h-fg-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123442.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4460</span> Austenite Transformation in Duplex Stainless Steels under Fast Cooling Rates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20O.%20Luengas">L. O. Luengas</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20V.%20Morales"> E. V. Morales</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20F.%20G.%20De%20Souza"> L. F. G. De Souza</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20S.%20Bott"> I. S. Bott</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Duplex Stainless Steels are well known for its good mechanical properties, and corrosion resistance. However, when submitted to heating, these features can be lost since the good properties are strongly dependent on the austenite-ferrite phase ratio which has to be approximately 1:1 to keep the phase balance. In a welded joint, the transformation kinetics at the heat affected zone (HAZ) is a function of the cooling rates applied which in turn are dependent on the heat input. The HAZ is usually ferritized at these temperatures, and it has been argued that small variations of the chemical composition can play a role in the solid state transformation sequence of ferrite to austenite during cooling. The δ → γ transformation has been reported to be massive and diffusionless due to the fast cooling rate, but it is also considered a diffusion controlled transformation. The aim of this work is to evaluate the effect of different heat inputs on the HAZ of two duplex stainless steels UNS S32304 and S32750, obtained by physical simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=duplex%20stainless%20steels" title="duplex stainless steels">duplex stainless steels</a>, <a href="https://publications.waset.org/abstracts/search?q=HAZ" title=" HAZ"> HAZ</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructural%20characterization" title=" microstructural characterization"> microstructural characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20simulation" title=" physical simulation"> physical simulation</a> </p> <a href="https://publications.waset.org/abstracts/87241/austenite-transformation-in-duplex-stainless-steels-under-fast-cooling-rates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87241.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4459</span> Grain Growth Behavior of High Carbon Microalloyed Steels Containing Very Low Amounts of Niobium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huseyin%20Zengin">Huseyin Zengin</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammet%20Emre%20Turan"> Muhammet Emre Turan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yunus%20Turen"> Yunus Turen</a>, <a href="https://publications.waset.org/abstracts/search?q=Hayrettin%20Ahlatci"> Hayrettin Ahlatci</a>, <a href="https://publications.waset.org/abstracts/search?q=Yavuz%20Sun"> Yavuz Sun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed for understanding the effects of dilute Nb additions on the austenite microstructure of microalloyed steels at five different reheating temperatures from 950 °C to 1300 °C. Four microalloyed high-carbon steels having 0.8 %wt C were examined in which three of them had varying Nb concentrations from 0.005 wt% to 0.02 wt% and one of them had no Nb concentration. The quantitative metallographic techniques were used to measure the average prior austenite grain size in order to compare the grain growth pinning effects of Nb precipitates as a function of reheating temperature. Due to the higher stability of the precipitates with increasing Nb concentrations, the grain coarsening temperature that resulted in inefficient grain growth impediment and a bimodal grain distribution in the microstructure, showed an increase with increasing Nb concentration. The respective grain coarsening temperatures (T_GC) in an ascending order for the steels having 0.005 wt% Nb, 0.01 wt% Nb and 0.02 wt% Nb were 950 °C, 1050 °C and 1150 °C. According to these observed grain coarsening temperatures, an approximation was made considering the complete dissolution temperature (T_DISS) of second phase particles as T_GC=T_DISS-300. On the other hand, the plain carbon steel did not show abnormal grain growth behaviour due to the absence of second phase particles. It was also observed that the higher the Nb concentration, the smaller the average prior austenite grain size although the small increments in Nb concenration did not change the average grain size considerably. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microalloyed%20steels" title="microalloyed steels">microalloyed steels</a>, <a href="https://publications.waset.org/abstracts/search?q=prior%20austenite%20grains" title=" prior austenite grains"> prior austenite grains</a>, <a href="https://publications.waset.org/abstracts/search?q=second%20phase%20particles" title=" second phase particles"> second phase particles</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20coarsening%20temperature" title=" grain coarsening temperature"> grain coarsening temperature</a> </p> <a href="https://publications.waset.org/abstracts/50132/grain-growth-behavior-of-high-carbon-microalloyed-steels-containing-very-low-amounts-of-niobium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4458</span> Cracking Mode and Path in Duplex Stainless Steels Failure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faraj%20A.%20E.%20Alhegagi">Faraj A. E. Alhegagi</a>, <a href="https://publications.waset.org/abstracts/search?q=Bassam%20F.%20A.%20Alhajaji"> Bassam F. A. Alhajaji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ductile and brittle fractures are the two main modes for the failure of engineering components. Fractures are classified with respect to several characteristics, such as strain to fracture, ductile or brittle crystallographic mode, shear or cleavage, and the appearance of fracture, granular or transgranular. Cleavage is a brittle fracture involves transcrystalline fracture along specific crystallographic planes and in certain directions. Fracture of duplex stainless steels takes place transgranularly by cleavage of the ferrite phase. On the other hand, ductile fracture occurs after considerable plastic deformation prior to failure and takes place by void nucleation, growth, and coalescence to provide an easy fracture path. Twinning causes depassivation more readily than slip and appears at stress lower than the theoretical yield stress. Consequently, damage due to twinning can occur well before that due to slip. Stainless steels are clean materials with the low efficiency of second particles phases on the fracture mechanism. The ferrite cleavage and austenite tear off are the main mode by which duplex stainless steels fails. In this study, the cracking mode and path of specimens of duplex stainless steels were investigated. Zeron 100 specimens were heat treated to different times cooled down and pulled to failure. The fracture surface was investigated by scanning electron microscopy (SEM) concentrating on the cracking mechanism, path, and origin. Cracking mechanisms were studied for those grains either as ferrite or austenite grains identified according to fracture surface features. Cracks propagated through the ferrite and the austenite two phases were investigated. Cracks arrested at the grain boundary were studied as well. For specimens aged for 100h, the ferrite phase was noted to crack by cleavage along well-defined planes while austenite ridges were clearly observed within the ferrite grains. Some grains were observed to fail with topographic features that were not clearly identifiable as ferrite cleavage or austenite tearing. Transgranular cracking was observed taking place in the ferrite phase on well-defined planes. No intergranular cracks were observed for the tested material. The austenite phase was observed to serve as a crack bridge and crack arrester. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=austenite%20ductile%20tear%20off" title="austenite ductile tear off">austenite ductile tear off</a>, <a href="https://publications.waset.org/abstracts/search?q=cracking%20mode" title=" cracking mode"> cracking mode</a>, <a href="https://publications.waset.org/abstracts/search?q=ferrite%20cleavage" title=" ferrite cleavage"> ferrite cleavage</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steels%20failure" title=" stainless steels failure"> stainless steels failure</a> </p> <a href="https://publications.waset.org/abstracts/99349/cracking-mode-and-path-in-duplex-stainless-steels-failure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99349.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4457</span> Pre-Transformation Phase Reconstruction for Deformation-Induced Transformation in AISI 304 Austenitic Stainless Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manendra%20Singh%20Parihar">Manendra Singh Parihar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandip%20Ghosh%20Chowdhury"> Sandip Ghosh Chowdhury</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Austenitic stainless steels are widely used and give a good combination of properties. When this steel is plastically deformed, a phase transformation of the metastable Face Centred Cubic Austenite to the stable Body Centred Cubic (α’) or to the Hexagonal close packed (ԑ) martensite may occur, leading to the enhancement in the mechanical properties like strength. The work was based on variant selection and corresponding texture analysis for the strain induced martensitic transformation during deformation of the parent austenite FCC phase to form the product HCP and the BCC martensite phases separately, obeying their respective orientation relationships. The automated method for reconstruction of the parent phase orientation using the EBSD data of the product phase orientation is done using the MATLAB and TSL-OIM software. The method of triplets was used which involves the formation of a triplet of neighboring product grains having a common variant and linking them using a misorientation-based criterion. This led to the proper reconstruction of the pre-transformation phase orientation data and thus to its microstructure and texture. The computational speed of current method is better compared to the previously used methods of reconstruction. The reconstruction of austenite from ԑ and α’ martensite was carried out for multiple samples and their IPF images, pole figures, inverse pole figures and ODFs were compared. Similar type of results was observed for all samples. The comparison gives the idea for estimating the correct sequence of the transformation i.e. γ → ε → α’ or γ → α’, during deformation of AISI 304 austenitic stainless steel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=variant%20selection" title="variant selection">variant selection</a>, <a href="https://publications.waset.org/abstracts/search?q=reconstruction" title=" reconstruction"> reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=EBSD" title=" EBSD"> EBSD</a>, <a href="https://publications.waset.org/abstracts/search?q=austenitic%20stainless%20steel" title=" austenitic stainless steel"> austenitic stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=martensitic%20transformation" title=" martensitic transformation"> martensitic transformation</a> </p> <a href="https://publications.waset.org/abstracts/28354/pre-transformation-phase-reconstruction-for-deformation-induced-transformation-in-aisi-304-austenitic-stainless-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">497</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4456</span> Variant Selection and Pre-transformation Phase Reconstruction for Deformation-Induced Transformation in AISI 304 Austenitic Stainless Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manendra%20Singh%20Parihar">Manendra Singh Parihar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandip%20Ghosh%20Chowdhury"> Sandip Ghosh Chowdhury</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Austenitic stainless steels are widely used and give a good combination of properties. When this steel is plastically deformed, a phase transformation of the metastable Face Centred Cubic Austenite to the stable Body Centred Cubic (α’) or to the Hexagonal close packed (ԑ) martensite may occur, leading to the enhancement in the mechanical properties like strength. The work was based on variant selection and corresponding texture analysis for the strain induced martensitic transformation during deformation of the parent austenite FCC phase to form the product HCP and the BCC martensite phases separately, obeying their respective orientation relationships. The automated method for reconstruction of the parent phase orientation using the EBSD data of the product phase orientation is done using the MATLAB and TSL-OIM software. The method of triplets was used which involves the formation of a triplet of neighboring product grains having a common variant and linking them using a misorientation-based criterion. This led to the proper reconstruction of the pre-transformation phase orientation data and thus to its micro structure and texture. The computational speed of current method is better compared to the previously used methods of reconstruction. The reconstruction of austenite from ԑ and α’ martensite was carried out for multiple samples and their IPF images, pole figures, inverse pole figures and ODFs were compared. Similar type of results was observed for all samples. The comparison gives the idea for estimating the correct sequence of the transformation i.e. γ → ε → α’ or γ → α’, during deformation of AISI 304 austenitic stainless steel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=variant%20selection" title="variant selection">variant selection</a>, <a href="https://publications.waset.org/abstracts/search?q=reconstruction" title=" reconstruction"> reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=EBSD" title=" EBSD"> EBSD</a>, <a href="https://publications.waset.org/abstracts/search?q=austenitic%20stainless%20steel" title=" austenitic stainless steel"> austenitic stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=martensitic%20transformation" title=" martensitic transformation"> martensitic transformation</a> </p> <a href="https://publications.waset.org/abstracts/24633/variant-selection-and-pre-transformation-phase-reconstruction-for-deformation-induced-transformation-in-aisi-304-austenitic-stainless-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24633.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">489</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4455</span> Designing, Processing and Isothermal Transformation of Al-Si High Carbon Ultrafine High Strength Bainitic Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20K.%20El-Fawkhry">Mohamed K. El-Fawkhry</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Shash"> Ahmed Shash</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Ismail%20Zaki%20Farahat"> Ahmed Ismail Zaki Farahat</a>, <a href="https://publications.waset.org/abstracts/search?q=Sherif%20Ali%20Abd%20El%20Rahman"> Sherif Ali Abd El Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Taha%20Mattar"> Taha Mattar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High-carbon, silicon-rich steels are commonly suggested to obtain very fine bainitic microstructure at low temperature ranged from 200 to 300°C. Thereby, the resulted microstructure consists of slender of bainitic-ferritic plates interwoven with retained austenite. The advanced strength and ductility package of this steel is much dependent on the fineness of bainitic ferrite, as well as the retained austenite phase. In this article, Aluminum to Silicon ratio, and the isothermal transformation temperature have been adopted to obtain ultra high strength high carbon steel. Optical and SEM investigation of the produced steels have been performed. XRD has been used to track the retained austenite development as a result of the change in the chemical composition of developed steels and heat treatment process. Mechanical properties in terms of hardness and microhardness of obtained phases and structure were investigated. It was observed that the increment of aluminum to silicon ratio has a great effect in promoting the bainitic transformation, in tandem with improving the stability and the fineness of retained austenite. Such advanced structure leads to enhancement in the whole mechanical properties of the high carbon steel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high-carbon%20steel" title="high-carbon steel">high-carbon steel</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon-rich%20steels" title=" silicon-rich steels"> silicon-rich steels</a>, <a href="https://publications.waset.org/abstracts/search?q=fine%20bainitic%20microstructure" title=" fine bainitic microstructure"> fine bainitic microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=retained%20austenite" title=" retained austenite"> retained austenite</a>, <a href="https://publications.waset.org/abstracts/search?q=isothermal%20transformation" title=" isothermal transformation"> isothermal transformation</a> </p> <a href="https://publications.waset.org/abstracts/57724/designing-processing-and-isothermal-transformation-of-al-si-high-carbon-ultrafine-high-strength-bainitic-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57724.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4454</span> Effect of Plastic Deformation on the Carbide-Free Bainite Transformation in Medium C-Si Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mufath%20Zorgani">Mufath Zorgani</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Garcia-Mateo"> Carlos Garcia-Mateo</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Jahazi"> Mohammad Jahazi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the influence of pre-strained austenite on the extent of isothermal bainite transformation in medium-carbon, high-silicon steel was investigated. Different amounts of deformations were applied at 600°C on the austenite right before quenching to the region, where isothermal bainitic transformation is activated. Four different temperatures of 325, 350, 375, and 400°C considering similar holding time 1800s at each temperature, were selected to investigate the extent of isothermal bainitic transformation. The results showed that the deformation-free austenite transforms to the higher volume fraction of CFB bainite when the isothermal transformation temperature reduced from 400 to 325°C, the introduction of plastic deformation in austenite prior to the formation of bainite invariably involves a delay of the same or identical isothermal treatment. On the other side, when the isothermal transformation temperature and deformation increases, the volume fraction and the plate thickness of bainite decreases and the amount of retained austenite increases. The shape of retained austenite is mostly representing blocky-shape one due to the less amount of transformed bainite. Moreover, the plate-like shape bainite cannot be resolved when the deformation amount reached 30%, and the isothermal transformation temperatures are of 375 and 400°C. The amount of retained austenite and the percentage of its transformation to martensite during the final cooling stage play a significant role in the variation of hardness level for different thermomechanical regimes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ausforming" title="ausforming">ausforming</a>, <a href="https://publications.waset.org/abstracts/search?q=carbide%20free%20bainite" title=" carbide free bainite"> carbide free bainite</a>, <a href="https://publications.waset.org/abstracts/search?q=dilatometry" title=" dilatometry"> dilatometry</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/117105/effect-of-plastic-deformation-on-the-carbide-free-bainite-transformation-in-medium-c-si-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117105.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4453</span> The Effect of Austempering Temperature on Anisotropy of TRIP Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdolreza%20Heidari%20Noosh%20Abad">Abdolreza Heidari Noosh Abad</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Abedi"> Amir Abedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Davood%20Mirahmadi%20khaki"> Davood Mirahmadi khaki </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The high strength and flexibility of TRIP steels are the major reasons for them being widely used in the automobile industry. Deep drawing is regarded as a common metal sheet manufacturing process is used extensively in the modern industry, particularly automobile industry. To investigate the potential of deep drawing characteristic of materials, steel sheet anisotropy is studied and expressed as R-Value. The TRIP steels have a multi-phase microstructure consisting typically of ferrite, bainite and retained austenite. The retained austenite appears to be the most effective phase in the microstructure of the TRIP steels. In the present research, Taguchi method has been employed to study investigates the effect of austempering temperature parameters on the anisotropy property of the TRIP steel. To achieve this purpose, a steel with chemical composition of 0.196C -1.42Si-1.41Mn, has been used and annealed at 810oC, and then austempered at 340-460oC for 3, 6, and 9 minutes. The results shows that the austempering temperature has a direct relationship with R-value, respectively. With increasing austempering temperature, residual austenite grain size increases as well as increased solubility, which increases the amount of R-value. According to the results of the Taguchi method, austempering temperature’s p-value less than 0.05 is due to effective on R-value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title="Taguchi method">Taguchi method</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20rolling" title=" hot rolling"> hot rolling</a>, <a href="https://publications.waset.org/abstracts/search?q=thermomechanical%20process" title=" thermomechanical process"> thermomechanical process</a>, <a href="https://publications.waset.org/abstracts/search?q=anisotropy" title=" anisotropy"> anisotropy</a>, <a href="https://publications.waset.org/abstracts/search?q=R-value" title=" R-value"> R-value</a> </p> <a href="https://publications.waset.org/abstracts/33313/the-effect-of-austempering-temperature-on-anisotropy-of-trip-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33313.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4452</span> Influence of Aluminium on Grain Refinement in As-Rolled Vanadium-Microalloyed Steels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kevin%20Mark%20Banks">Kevin Mark Banks</a>, <a href="https://publications.waset.org/abstracts/search?q=Dannis%20Rorisang%20Nkarapa%20Maubane"> Dannis Rorisang Nkarapa Maubane</a>, <a href="https://publications.waset.org/abstracts/search?q=Carel%20Coetzee"> Carel Coetzee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The influence of aluminium content, reheating temperature, and sizing (final) strain on the as-rolled microstructure was systematically investigated in vanadium-microalloyed and C-Mn plate steels. Reheating, followed by hot rolling and air cooling simulations were performed on steels containing a range of aluminium and nitrogen contents. Natural air cooling profiles, corresponding to 6 and 20mm thick plates, were applied. The austenite and ferrite/pearlite microstructures were examined using light optical microscopy. Precipitate species and volume fraction were determined on selected specimens. No influence of aluminium content was found below 0.08% on the as-rolled grain size in all steels studied. A low Al-V-steel produced the coarsest initial austenite grain size due to AlN dissolution at low temperatures leading to abnormal grain growth. An Al-free V-N steel had the finest initial microstructure. Although the as-rolled grain size for 20mm plate was similar in all steels tested, the grain distribution was relatively mixed. The final grain size in 6mm plate was similar for most compositions; the exception was an as-cast V low N steel, where the size of the second phase was inversely proportional to the sizing strain. This was attributed to both segregation and a low VN volume fraction available for effective pinning of austenite grain boundaries during cooling. Increasing the sizing strain refined the microstructure significantly in all steels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminium" title="aluminium">aluminium</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20size" title=" grain size"> grain size</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen" title=" nitrogen"> nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=reheating" title=" reheating"> reheating</a>, <a href="https://publications.waset.org/abstracts/search?q=sizing%20strain" title=" sizing strain"> sizing strain</a>, <a href="https://publications.waset.org/abstracts/search?q=steel" title=" steel"> steel</a>, <a href="https://publications.waset.org/abstracts/search?q=vanadium" title=" vanadium"> vanadium</a> </p> <a href="https://publications.waset.org/abstracts/109135/influence-of-aluminium-on-grain-refinement-in-as-rolled-vanadium-microalloyed-steels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109135.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4451</span> Characterization Microstructural Dual Phase Steel for Application In Civil Engineering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Habibi">S. Habibi</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20E.%20Guarcia"> T. E. Guarcia</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Megueni"> A. Megueni</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ziadi"> A. Ziadi</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Aminallah"> L. Aminallah</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Bouchikhi"> A. S. Bouchikhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The characterization of the microstructure of Dual Phase steel in various low-carbon, with a yield stress between 400 and 900 MPa were conducted .In order to assess the mechanical properties of steel, we examined the influence of their chemical compositions interictal and heat treatments (austenite + ferrite area) on their micro structures. In this work, we have taken a number of commercial DP steels, micro structurally characterized and used the conventional tensile testing of these steels for mechanical characterization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=characterization" title="characterization">characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20in%20civil%20engineering" title=" construction in civil engineering"> construction in civil engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20structure" title=" micro structure"> micro structure</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20DP%20steel" title=" tensile DP steel "> tensile DP steel </a> </p> <a href="https://publications.waset.org/abstracts/19557/characterization-microstructural-dual-phase-steel-for-application-in-civil-engineering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19557.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4450</span> Fatigue Influence on the Residual Stress State in Shot Peened Duplex Stainless Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20D.%20Pedrosa">P. D. Pedrosa</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20A.%20Rebello"> J. M. A. Rebello</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20P.%20Cindra%20Fonseca"> M. P. Cindra Fonseca</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Duplex stainless steels (DSS) exhibit a biphasic microstructure consisting of austenite and delta ferrite. Their high resistance to oxidation, and corrosion, even in H2S containing environments, allied to low cost when compared to conventional stainless steel, are some properties which make this material very attractive for several industrial applications. However, several of these industrial applications imposes cyclic loading to the equipments and in consequence fatigue damage needs to be a concern. A well-known way of improving the fatigue life of a component is by introducing compressive residual stress in its surface. Shot peening is an industrial working process which brings the material directly beneath component surface in a high mechanical compressive state, so inhibiting fatigue crack initiation. However, one must take into account the fact that the cyclic loading itself can reduce and even suppress these residual stresses, thus having undesirable consequences in the process of improving fatigue life by the introduction of compressive residual stresses. In the present work, shot peening was used to introduce residual stresses in several DSS samples. These were thereafter submitted to three different fatigue regimes: low, medium and high cycle fatigue. The evolution of the residual stress during loading were then examined on both surface and subsurface of the samples. It was used the DSS UNS S31803, with microstructure composed of 49% austenite and 51% ferrite. The treatment of shot peening was accomplished by the application of blasting in two Almen intensities of 0.25 and 0.39A. The residual stresses were measured by X-ray diffraction using the double exposure method and a portable equipment with CrK radiation and the (211) diffracting plane for the austenite phase and the (220) plane for the ferrite phase. It is known that residual stresses may arise when two regions of the same material experienced different degrees of plastic deformation. When these regions are separated in respect to each other on a scale that is large compared to the material's microstructure they are called macro stresses. In contrast, microstresses can largely vary over distances which are small comparable to the scale of the material's microstructure and must balance zero between the phases present. In the present work, special attention will be paid to the measurement of residual microstresses. Residual stress measurements were carried out in test pieces submitted to low, medium and high-cycle fatigue, in both longitudinal and transverse direction of the test pieces. It was found that after shot peening, the residual microstress is tensile in the austenite and compressive in the ferrite phases. It was hypothesized that the hardening behavior of the austenite after shot peening was probably due to its higher nitrogen content. Fatigue cycling can effectively change this stress state but this effect was found to be dependent of the shot peening intensity was well as the fatigue range. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=residual%20stresses" title="residual stresses">residual stresses</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue" title=" fatigue"> fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=duplex%20steel" title=" duplex steel"> duplex steel</a>, <a href="https://publications.waset.org/abstracts/search?q=shot%20peening" title=" shot peening"> shot peening</a> </p> <a href="https://publications.waset.org/abstracts/63124/fatigue-influence-on-the-residual-stress-state-in-shot-peened-duplex-stainless-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63124.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4449</span> Thermal Ageing of a 316 Nb Stainless Steel: From Mechanical and Microstructural Analyses to Thermal Ageing Models for Long Time Prediction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Julien%20Monnier">Julien Monnier</a>, <a href="https://publications.waset.org/abstracts/search?q=Isabelle%20Mouton"> Isabelle Mouton</a>, <a href="https://publications.waset.org/abstracts/search?q=Francois%20Buy"> Francois Buy</a>, <a href="https://publications.waset.org/abstracts/search?q=Adrien%20Michel"> Adrien Michel</a>, <a href="https://publications.waset.org/abstracts/search?q=Sylvain%20Ringeval"> Sylvain Ringeval</a>, <a href="https://publications.waset.org/abstracts/search?q=Joel%20Malaplate"> Joel Malaplate</a>, <a href="https://publications.waset.org/abstracts/search?q=Caroline%20Toffolon"> Caroline Toffolon</a>, <a href="https://publications.waset.org/abstracts/search?q=Bernard%20Marini"> Bernard Marini</a>, <a href="https://publications.waset.org/abstracts/search?q=Audrey%20Lechartier"> Audrey Lechartier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chosen to design and assemble massive components for nuclear industry, the 316 Nb austenitic stainless steel (also called 316 Nb) suits well this function thanks to its mechanical, heat and corrosion handling properties. However, these properties might change during steel’s life due to thermal ageing causing changes within its microstructure. Our main purpose is to determine if the 316 Nb will keep its mechanical properties after an exposition to industrial temperatures (around 300 °C) during a long period of time (< 10 years). The 316 Nb is composed by different phases, which are austenite as main phase, niobium-carbides, and ferrite remaining from the ferrite to austenite transformation during the process. Our purpose is to understand thermal ageing effects on the material microstructure and properties and to submit a model predicting the evolution of 316 Nb properties as a function of temperature and time. To do so, based on Fe-Cr and 316 Nb phase diagrams, we studied the thermal ageing of 316 Nb steel alloys (1%v of ferrite) and welds (10%v of ferrite) for various temperatures (350, 400, and 450 °C) and ageing time (from 1 to 10.000 hours). Higher temperatures have been chosen to reduce thermal treatment time by exploiting a kinetic effect of temperature on 316 Nb ageing without modifying reaction mechanisms. Our results from early times of ageing show no effect on steel’s global properties linked to austenite stability, but an increase of ferrite hardness during thermal ageing has been observed. It has been shown that austenite’s crystalline structure (cfc) grants it a thermal stability, however, ferrite crystalline structure (bcc) favours iron-chromium demixion and formation of iron-rich and chromium-rich phases within ferrite. Observations of thermal ageing effects on ferrite’s microstructure were necessary to understand the changes caused by the thermal treatment. Analyses have been performed by using different techniques like Atomic Probe Tomography (APT) and Differential Scanning Calorimetry (DSC). A demixion of alloy’s elements leading to formation of iron-rich (α phase, bcc structure), chromium-rich (α’ phase, bcc structure), and nickel-rich (fcc structure) phases within the ferrite have been observed and associated to the increase of ferrite’s hardness. APT results grant information about phases’ volume fraction and composition, allowing to associate hardness measurements to the volume fractions of the different phases and to set up a way to calculate α’ and nickel-rich particles’ growth rate depending on temperature. The same methodology has been applied to DSC results, which allowed us to measure the enthalpy of α’ phase dissolution between 500 and 600_°C. To resume, we started from mechanical and macroscopic measurements and explained the results through microstructural study. The data obtained has been match to CALPHAD models’ prediction and used to improve these calculations and employ them to predict 316 Nb properties’ change during the industrial process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel%20characterization" title="stainless steel characterization">stainless steel characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=atom%20probe%20tomography%20APT" title=" atom probe tomography APT"> atom probe tomography APT</a>, <a href="https://publications.waset.org/abstracts/search?q=vickers%20hardness" title=" vickers hardness"> vickers hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20scanning%20calorimetry%20DSC" title=" differential scanning calorimetry DSC"> differential scanning calorimetry DSC</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20ageing" title=" thermal ageing"> thermal ageing</a> </p> <a href="https://publications.waset.org/abstracts/156512/thermal-ageing-of-a-316-nb-stainless-steel-from-mechanical-and-microstructural-analyses-to-thermal-ageing-models-for-long-time-prediction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156512.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4448</span> Effect of Welding Current on Mechanical Properties and Microstructure of Tungsten Inert Gas Welding of Type-304 Austenite Stainless Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Ogundimu">Emmanuel Ogundimu</a>, <a href="https://publications.waset.org/abstracts/search?q=Esther%20Akinlabi"> Esther Akinlabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mutiu%20Erinosho"> Mutiu Erinosho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to study the effect of welding current on the microstructure and the mechanical properties. Material characterizations were conducted on a 6 mm thick plates of type-304 austenite stainless steel, welded by TIG welding process at two different welding currents of 150 A (Sample F3) and 170 A (Sample F4). The tensile strength and the elongation obtained from sample F4 weld were approximately 584 MPa and 19.3 %; which were higher than sample F3 weld. The average microhardness value of sample F4 weld was found to be 235.7 HV, while that of sample F3 weld was 233.4 HV respectively. Homogenous distribution of iron (Fe), chromium (Cr) and nickel (Ni) were observed at the welded joint of the two samples. The energy dispersive spectroscopy (EDS) analysis revealed that Fe, Cr, and Ni made up the composition formed in the weld zone. The optimum welding current of 170 A for TIG welding of type-304 austenite stainless steel can be recommended for high-tech industrial applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microhardness" title="microhardness">microhardness</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile" title=" tensile"> tensile</a>, <a href="https://publications.waset.org/abstracts/search?q=MIG%20welding" title=" MIG welding"> MIG welding</a>, <a href="https://publications.waset.org/abstracts/search?q=process" title=" process"> process</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile" title=" tensile"> tensile</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20stress%20TIG%20welding" title=" shear stress TIG welding"> shear stress TIG welding</a>, <a href="https://publications.waset.org/abstracts/search?q=TIG-MIG%20welding" title=" TIG-MIG welding"> TIG-MIG welding</a> </p> <a href="https://publications.waset.org/abstracts/104566/effect-of-welding-current-on-mechanical-properties-and-microstructure-of-tungsten-inert-gas-welding-of-type-304-austenite-stainless-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104566.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4447</span> Corrosion Behavior of Austempered Ductile Iron Microalloyed with Boron in Rainwater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Gvazava">S. Gvazava</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Khidasheli"> N. Khidasheli</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Tediashvili"> V. Tediashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Donadze"> M. Donadze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The work presented in this paper studied the of austempered ductile iron (ADI) with different combinations of structural composition (upper bainite, lower bainite, retained austenite) in rainwater. A range of structural states of the metal matrix was obtained by changing the regimes of thermal treantments of a high-strength cast iron. The specimens were austenised at 900 0C for 30, 60, 90, 120 minutes. Afterwards, isothermal quenching was performed at 280 and 400 0C for40 seconds. The study was carried out using weight-change (WC), cyclic potentiodynamic polarization (CPP), open-circuit potential (OCP), and electrochemical impedance spectroscopy (EIS) measurements and complemented by scanning electron microscopy (SEM-EDS). According to the results, corrosion resistance of the boron microallyedbainitic ADI greatly depends on the type of the bainitic matrix and the amount of the retained austenite, which is driven by diffusion permeability of interphase and intergrain boundaries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=austempered%20ductile%20iron" title="austempered ductile iron">austempered ductile iron</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20behaviour" title=" corrosion behaviour"> corrosion behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=retained%20austenite" title=" retained austenite"> retained austenite</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20rate" title=" corrosion rate"> corrosion rate</a>, <a href="https://publications.waset.org/abstracts/search?q=interphase%20boundary" title=" interphase boundary"> interphase boundary</a>, <a href="https://publications.waset.org/abstracts/search?q=upper%20bainite" title=" upper bainite"> upper bainite</a>, <a href="https://publications.waset.org/abstracts/search?q=lower%20bainite" title=" lower bainite"> lower bainite</a> </p> <a href="https://publications.waset.org/abstracts/143874/corrosion-behavior-of-austempered-ductile-iron-microalloyed-with-boron-in-rainwater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143874.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4446</span> Tribocorrosion Behavior of Austempered Ductile Iron Microalloyed with Boron</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Gvazava">S. Gvazava</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Khidasheli"> N. Khidasheli</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Gordeziani"> G. Gordeziani</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20DL.%20Batako"> A. DL. Batako</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The work presented in this paper studied the tribological characteristics (wear resistance, friction coefficient) of austempered ductile iron (ADI) with different combinations of structural composition (upper bainite, lower bainite, retained austenite) in dry sliding friction. A range of structural states of the metal matrix was obtained by changing the regimes of isothermal quenching of high-strength cast iron. The tribological tests were carried out using two sets of isothermal quenched cast irons. After austenitization at 900°С for 60 minutes, the specimens from the first group were isothermally quenched at the 300°С temperature and the specimens from the second set – at 400°С. The investigations showed that the isothermal quenching increases the friction coefficient of high-strength cast irons. The friction coefficient was found to be in the range from 0.4 to 0.55 for cast irons, depending on the structures of the metal matrix. The quenched cast irons having lower bainite demonstrate higher wear resistance in dry friction conditions. The dependence of wear resistance on the amount of retained austenite in isothermal quenched cast irons has a nonlinear characteristic and reaches its maximum value when the content of retained austenite is about 15-22%. The boron micro-additives allowed to reduce the friction coefficient of ADI and increase their wear resistance by 1.5-1.7 times. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wear%20resistance" title="wear resistance">wear resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=dry%20sliding" title=" dry sliding"> dry sliding</a>, <a href="https://publications.waset.org/abstracts/search?q=austempering" title=" austempering"> austempering</a>, <a href="https://publications.waset.org/abstracts/search?q=ADI" title=" ADI"> ADI</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20coefficient" title=" friction coefficient"> friction coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=retained%20austenite" title=" retained austenite"> retained austenite</a>, <a href="https://publications.waset.org/abstracts/search?q=isothermal%20quenching" title=" isothermal quenching"> isothermal quenching</a> </p> <a href="https://publications.waset.org/abstracts/143702/tribocorrosion-behavior-of-austempered-ductile-iron-microalloyed-with-boron" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143702.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4445</span> Effect of Quenching Medium on the Hardness of Dual Phase Steel Heat Treated at a High Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tebogo%20Mabotsa">Tebogo Mabotsa</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamba%20Jamiru"> Tamba Jamiru</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Ibrahim"> David Ibrahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dual phase(DP) steel consists essentially of fine grained equiaxial ferrite and a dispersion of martensite. Martensite is the primary precipitate in DP steels, it is the main resistance to dislocation motion within the material. The objective of this paper is to present a relation between the intercritical annealing holding time and the hardness of a dual phase steel. The initial heat treatment involved heating the specimens to 1000oC and holding the sample at that temperature for 30 minutes. After the initial heat treatment, the samples were heated to 770oC and held for a varying amount of time at constant temperature. The samples were held at 30, 60, and 90 minutes respectively. After heating and holding the samples at the austenite-ferrite phase field, the samples were quenched in water, brine, and oil for each holding time. The experimental results proved that an equation for predicting the hardness of a dual phase steel as a function of the intercritical holding time is possible. The relation between intercritical annealing holding time and hardness of a dual phase steel heat treated at high temperatures is parabolic in nature. Theoretically, the model isdependent on the cooling rate because the model differs for each quenching medium; therefore, a universal hardness equation can be derived where the cooling rate is a variable factor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quenching%20medium" title="quenching medium">quenching medium</a>, <a href="https://publications.waset.org/abstracts/search?q=annealing%20temperature" title=" annealing temperature"> annealing temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=dual%20phase%20steel" title=" dual phase steel"> dual phase steel</a>, <a href="https://publications.waset.org/abstracts/search?q=martensite" title=" martensite"> martensite</a> </p> <a href="https://publications.waset.org/abstracts/154442/effect-of-quenching-medium-on-the-hardness-of-dual-phase-steel-heat-treated-at-a-high-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154442.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4444</span> Investigation of Microstructure of Differently Sub-Zero Treated Vanadis 6 Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Pta%C4%8Dinov%C3%A1">J. Ptačinová</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20%C4%8Eurica"> J. Ďurica</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Jur%C4%8Di"> P. Jurči</a>, <a href="https://publications.waset.org/abstracts/search?q=M%20Kus%C3%BD"> M Kusý</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ledeburitic tool steel Vanadis 6 has been subjected to sub-zero treatment (SZT) at -140 °C and -196 °C, for different durations up to 48 h. The microstructure and hardness have been examined with reference to the same material after room temperature quenching, by using the light microscopy, scanning electron microscopy, X-ray diffraction, and Vickers hardness testing method. The microstructure of the material consists of the martensitic matrix with certain amount of retained austenite, and of several types of carbides – eutectic carbides, secondary carbides, and small globular carbides. SZT reduces the retained austenite amount – this is more effective at -196 °C than at -140 °C. Alternatively, the amount of small globular carbides increases more rapidly after SZT at -140 °C than after the treatment at -140 °C. The hardness of sub-zero treated material is higher than that of conventionally treated steel when tempered at low temperature. Compressive hydrostatic stresses are developed in the retained austenite due to the application of SZT, as a result of more complete martensitic transformation. This is also why the population density of small globular carbides is substantially increased due to the SZT. In contrast, the hardness of sub-zero treated samples decreases more rapidly compared to that of conventionally treated steel, and in addition, sub-zero treated material induces a loss the secondary hardening peak. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microstructure" title="microstructure">microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=Vanadis%206%20tool%20steel" title=" Vanadis 6 tool steel"> Vanadis 6 tool steel</a>, <a href="https://publications.waset.org/abstracts/search?q=sub-zero%20treatment" title=" sub-zero treatment"> sub-zero treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=carbides" title=" carbides"> carbides</a> </p> <a href="https://publications.waset.org/abstracts/81094/investigation-of-microstructure-of-differently-sub-zero-treated-vanadis-6-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81094.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4443</span> Microstructural Evolution of Maraging Steels from Powder Particles to Additively Manufactured Samples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyedamirreza%20Shamsdini">Seyedamirreza Shamsdini</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Mohammadi"> Mohsen Mohammadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, 18Ni-300 maraging steel powder particles are investigated by studying particle size distribution along with their morphology and grain structure. The powder analysis shows mostly spherical morphologies with cellular structures. A laser-based additive manufacturing process, selective laser melting (SLM) is used to produce samples for further investigation of mechanical properties and microstructure. Several uniaxial tensile tests are performed on the as-built parts to evaluate the mechanical properties. The macroscopic properties, as well as microscopic studies, are then investigated on the printed parts. Hardness measurements, as well as porosity levels, are measured for each sample and are correlated with microstructures through electron microscopy techniques such as Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The grain structure is studied for the as-printed specimens and compared to the powder particle microstructure. The cellular structure of the printed samples is observed to have dendritic forms with dendrite width dimensions similar to the powder particle cells. The process parameter is changed, and the study is performed for different powder layer thickness, and the resultant mechanical properties and grain structure are shown to be similar. A phase study is conducted both on the powder and the printed samples using X-Ray Diffraction (XRD) techniques, and the austenite phase is observed to at first decrease due to the manufacturing process and again during the uniaxial tensile deformation. The martensitic structure is formed in the first stage based on the heating cycles of the manufacturing process and the remaining austenite is shown to be transformed to martensite due to different deformation mechanisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=maraging%20steel" title=" maraging steel"> maraging steel</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/123896/microstructural-evolution-of-maraging-steels-from-powder-particles-to-additively-manufactured-samples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4442</span> Effect of Different Thermomechanical Cycles on Microstructure of AISI 4140 Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.L.%20Costa">L.L. Costa</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20G.%20Brito"> A. M. G. Brito</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Khan"> S. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Schaeffer"> L. Schaeffer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microstructure resulting from the forging process is studied as a function of variables such as temperature, deformation, austenite grain size and cooling rate. The purpose of this work is to study the thermomechanical behavior of DIN 42CrMo4 (AISI 4140) steel maintained at the temperatures of 900°, 1000°, 1100° and 1200°C for the austenization times of 22, 66 and 200 minutes each and subsequently forged. These samples were quenched in water in order to study the austenite grain and to investigate the microstructure instead of quenching the annealed samples after forging they were cooled down naturally in the air. The morphologies and properties of the materials such as hardness; prepared by these two different routes have been compared. In addition to the forging experiments, the numerical simulation using the finite element model (FEM), microhardness profiles and metallography images have been presented. Forging force vs position curves has been compared with metallographic results for each annealing condition. The microstructural phenomena resulting from the hot conformation proved that longer austenization time and higher temperature decrease the forging force in the curves. The complete recrystallization phenomenon (static, dynamic and meta dynamic) was observed at the highest temperature and longest time i.e., the samples austenized for 200 minutes at 1200ºC. However, higher hardness of the quenched samples was obtained when the temperature was 900ºC for 66 minutes. The phases observed in naturally cooled samples were exclusively ferrite and perlite, but the continuous cooling diagram indicates the presence of austenite and bainite. The morphology of the phases of naturally cooled samples has shown that the phase arrangement and the previous austenitic grain size are the reasons to high hardness in obtained samples when temperature were 900ºC and 1100ºC austenization times of 22 and 66 minutes, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=austenization%20time" title="austenization time">austenization time</a>, <a href="https://publications.waset.org/abstracts/search?q=thermomechanical%20effects" title=" thermomechanical effects"> thermomechanical effects</a>, <a href="https://publications.waset.org/abstracts/search?q=forging%20process" title=" forging process"> forging process</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20AISI%204140" title=" steel AISI 4140"> steel AISI 4140</a> </p> <a href="https://publications.waset.org/abstracts/89602/effect-of-different-thermomechanical-cycles-on-microstructure-of-aisi-4140-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4441</span> Lattice Twinning and Detwinning Processes in Phase Transformation in Shape Memory Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Osman%20Adiguzel">Osman Adiguzel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shape memory effect is a peculiar property exhibited by certain alloy systems and based on martensitic transformation, and shape memory properties are closely related to the microstructures of the material. Shape memory effect is linked with martensitic transformation, which is a solid state phase transformation and occurs with the cooperative movement of atoms by means of lattice invariant shears on cooling from high-temperature parent phase. Lattice twinning and detwinning can be considered as elementary processes activated during the transformation. Thermally induced martensite occurs as martensite variants, in self-accommodating manner and consists of lattice twins. Also, this martensite is called the twinned martensite or multivariant martensite. Deformation of shape memory alloys in martensitic state proceeds through a martensite variant reorientation. The martensite variants turn into the reoriented single variants with deformation, and the reorientation process has great importance for the shape memory behavior. Copper based alloys exhibit this property in metastable β- phase region, which has DO3 –type ordered lattice in ternary case at high temperature, and these structures martensiticaly turn into the layered complex structures with lattice twinning mechanism, on cooling from high temperature parent phase region. The twinning occurs as martensite variants with lattice invariant shears in two opposite directions, <110 > -type directions on the {110}- type plane of austenite matrix. Lattice invariant shear is not uniform in copper based ternary alloys and gives rise to the formation of unusual layered structures, like 3R, 9R, or 18R depending on the stacking sequences on the close-packed planes of the ordered lattice. The unit cell and periodicity are completed through 18 atomic layers in case of 18R-structure. On the other hand, the deformed material recovers the original shape on heating above the austenite finish temperature. Meanwhile, the material returns to the twinned martensite structures (thermally induced martensite structure) in one way (irreversible) shape memory effect on cooling below the martensite finish temperature, whereas the material returns to the detwinned martensite structure (deformed martensite) in two-way (reversible) shape memory effect. Shortly one can say that the microstructural mechanisms, responsible for the shape memory effect are the twinning and detwinning processes as well as martensitic transformation. In the present contribution, x-ray diffraction, transmission electron microscopy (TEM) and differential scanning calorimetry (DSC) studies were carried out on two copper-based ternary alloys, CuZnAl, and CuAlMn. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shape%20memory%20effect" title="shape memory effect">shape memory effect</a>, <a href="https://publications.waset.org/abstracts/search?q=martensitic%20transformation" title=" martensitic transformation"> martensitic transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=twinning%20and%20detwinning" title=" twinning and detwinning"> twinning and detwinning</a>, <a href="https://publications.waset.org/abstracts/search?q=layered%20structures" title=" layered structures"> layered structures</a> </p> <a href="https://publications.waset.org/abstracts/33194/lattice-twinning-and-detwinning-processes-in-phase-transformation-in-shape-memory-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4440</span> Thermo-Mechanical Treatment of Chromium Alloyed Low Carbon Steel </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Ku%C4%8Derov%C3%A1">L. Kučerová</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bystriansk%C3%BD"> M. Bystrianský</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Kot%C4%9B%C5%A1ovec"> V. Kotěšovec</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermo-mechanical processing with various processing parameters was applied to 0.2%C-0.6%Mn-2S%i-0.8%Cr low alloyed high strength steel. The aim of the processing was to achieve the microstructures typical for transformation induced plasticity (TRIP) steels. Thermo-mechanical processing used in this work incorporated two or three deformation steps. The deformations were in all the cases carried out during the cooling from soaking temperatures to various bainite hold temperatures. In this way, 4-10% of retained austenite were retained in the final microstructures, consisting further of ferrite, bainite, martensite and pearlite. The complex character of TRIP steel microstructure is responsible for its good strength and ductility. The strengths achieved in this work were in the range of 740 MPa – 836 MPa with ductility A<sub>5mm</sub> of 31-41%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pearlite" title="pearlite">pearlite</a>, <a href="https://publications.waset.org/abstracts/search?q=retained%20austenite" title=" retained austenite"> retained austenite</a>, <a href="https://publications.waset.org/abstracts/search?q=thermo-mechanical%20treatment" title=" thermo-mechanical treatment"> thermo-mechanical treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=TRIP%20steel" title=" TRIP steel"> TRIP steel</a> </p> <a href="https://publications.waset.org/abstracts/66495/thermo-mechanical-treatment-of-chromium-alloyed-low-carbon-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66495.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4439</span> Keying Effect During Fracture of Stainless Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farej%20Ahmed%20Emhmmed">Farej Ahmed Emhmmed </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fracture of duplex stainless steels (DSS) was investigated in air and in 3.5 wt % NaCl solution. Tow sets of fatigued specimens were heat treated at 475ºC for different times and pulled to failure either in air or after kept in 3.5% NaCl with polarization of -900 mV/ SCE. Fracture took place in general by ferrite cleavage and austenite ductile fracture in transgranular mode. Specimens measured stiffness (Ms) was affected by the aging time, with higher values measured for specimens aged for longer times. Microstructural features played a role in "blocking" the crack propagation process leading to lower the CTOD values specially for specimens aged for short times. Unbroken ligaments/ austenite were observed at the crack wake. These features may exerted a bridging stress, blocking effect, at the crack tip giving resistance to the crack propagation process i.e the crack mouth opening was reduced. Higher stress intensity factor Kıc values were observed with increased amounts of crack growth suggesting longer zone of unbroken ligaments in the crack wake. The bridging zone was typically several mm in length. Attempt to model the bridge stress was suggested to understand the role of ligaments/unbroken austenite in increasing the fracture toughness factor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stainless%20steels" title="stainless steels">stainless steels</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20toughness" title=" fracture toughness"> fracture toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20keying%20effect" title=" crack keying effect"> crack keying effect</a>, <a href="https://publications.waset.org/abstracts/search?q=ligaments" title=" ligaments"> ligaments</a> </p> <a href="https://publications.waset.org/abstracts/17862/keying-effect-during-fracture-of-stainless-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17862.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4438</span> Effect of Crystallographic Characteristics on Toughness of Coarse Grain Heat Affected Zone for Different Heat Inputs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Trishita%20Ray">Trishita Ray</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashok%20Perka"> Ashok Perka</a>, <a href="https://publications.waset.org/abstracts/search?q=Arnab%20Karani"> Arnab Karani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Shome"> M. Shome</a>, <a href="https://publications.waset.org/abstracts/search?q=Saurabh%20Kundu"> Saurabh Kundu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Line pipe steels are used for long distance transportation of crude oil and gas under extreme environmental conditions. Welding is necessary to lay large scale pipelines. Coarse Grain Heat Affected Zone (CGHAZ) of a welded joint exhibits worst toughness because of excessive grain growth and brittle microstructures like bainite and martensite, leading to early failure. Therefore, it is necessary to investigate microstructures and properties of the CGHAZ for different welding heat inputs. In the present study, CGHAZ for two heat inputs of 10 kJ/cm and 50 kJ/cm were simulated in Gleeble 3800, and the microstructures were investigated in detail by means of Scanning Electron Microscopy (SEM) and Electron Backscattered Diffraction (EBSD). Charpy Impact Tests were also done to evaluate the impact properties. High heat input was characterized with very low toughness and massive prior austenite grains. With the crystallographic information from EBSD, the area of a single prior austenite grain was traced out for both the welding conditions. Analysis of the prior austenite grains showed the formation of high angle boundaries between the crystallographic packets. Effect of these packet boundaries on secondary cleavage crack propagation was discussed. It was observed that in the low heat input condition, formation of finer packets with a criss-cross morphology inside prior austenite grains was effective in crack arrest whereas, in the high heat input condition, formation of larger packets with higher volume of low angle boundaries failed to resist crack propagation resulting in a brittle fracture. Thus, the characteristics in a crystallographic packet and impact properties are related and should be controlled to obtain optimum properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coarse%20grain%20heat%20affected%20zone" title="coarse grain heat affected zone">coarse grain heat affected zone</a>, <a href="https://publications.waset.org/abstracts/search?q=crystallographic%20packet" title=" crystallographic packet"> crystallographic packet</a>, <a href="https://publications.waset.org/abstracts/search?q=toughness" title=" toughness"> toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=line%20pipe%20steel" title=" line pipe steel"> line pipe steel</a> </p> <a href="https://publications.waset.org/abstracts/72858/effect-of-crystallographic-characteristics-on-toughness-of-coarse-grain-heat-affected-zone-for-different-heat-inputs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72858.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4437</span> Mechanical Properties of D2 Tool Steel Cryogenically Treated Using Controllable Cooling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Rabin">A. Rabin</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Mazor"> G. Mazor</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Ladizhenski"> I. Ladizhenski</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Shneck"> R. Shneck</a>, <a href="https://publications.waset.org/abstracts/search?q=Z."> Z.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The hardness and hardenability of AISI D2 cold work tool steel with conventional quenching (CQ), deep cryogenic quenching (DCQ) and rapid deep cryogenic quenching heat treatments caused by temporary porous coating based on magnesium sulfate was investigated. Each of the cooling processes was examined from the perspective of the full process efficiency, heat flux in the austenite-martensite transformation range followed by characterization of the temporary porous layer made of magnesium sulfate using confocal laser scanning microscopy (CLSM), surface and core hardness and hardenability using Vickr’s hardness technique. The results show that the cooling rate (CR) at the austenite-martensite transformation range have a high influence on the hardness of the studied steel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AISI%20D2" title="AISI D2">AISI D2</a>, <a href="https://publications.waset.org/abstracts/search?q=controllable%20cooling" title=" controllable cooling"> controllable cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium%20sulfate%20coating" title=" magnesium sulfate coating"> magnesium sulfate coating</a>, <a href="https://publications.waset.org/abstracts/search?q=rapid%20cryogenic%20heat%20treatment" title=" rapid cryogenic heat treatment"> rapid cryogenic heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=temporary%20porous%20layer" title=" temporary porous layer"> temporary porous layer</a> </p> <a href="https://publications.waset.org/abstracts/153436/mechanical-properties-of-d2-tool-steel-cryogenically-treated-using-controllable-cooling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4436</span> Finite Element Modeling of Two-Phase Microstructure during Metal Cutting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Junior%20Nomani">Junior Nomani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a novel approach to modelling the metal cutting of duplex stainless steels, a two-phase alloy regarded as a difficult-to-machine material. Calculation and control of shear strain and stresses during cutting are essential to achievement of ideal cutting conditions. Too low or too high leads to higher required cutting force or excessive heat generation causing premature tool wear failure. A 2D finite element cutting model was created based on electron backscatter diffraction (EBSD) data imagery of duplex microstructure. A mesh was generated using ‘object-oriented’ software OOF2 version V2.1.11, converting microstructural images to quadrilateral elements. A virtual workpiece was created on ABAQUS modelling software where a rigid body toolpiece advanced towards workpiece simulating chip formation, generating serrated edge chip formation cutting. Model results found calculated stress strain contour plots correlated well with similar finite element models tied with austenite stainless steel alloys. Virtual chip form profile is also similar compared experimental frozen machining chip samples. The output model data provides new insight description of strain behavior of two phase material on how it transitions from workpiece into the chip. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Duplex%20stainless%20steel" title="Duplex stainless steel">Duplex stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=ABAQUS" title=" ABAQUS"> ABAQUS</a>, <a href="https://publications.waset.org/abstracts/search?q=OOF2" title=" OOF2"> OOF2</a>, <a href="https://publications.waset.org/abstracts/search?q=Chip%20formation" title=" Chip formation"> Chip formation</a> </p> <a href="https://publications.waset.org/abstracts/119901/finite-element-modeling-of-two-phase-microstructure-during-metal-cutting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119901.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=austenite%20phase&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=austenite%20phase&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=austenite%20phase&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=austenite%20phase&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=austenite%20phase&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=austenite%20phase&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=austenite%20phase&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=austenite%20phase&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=austenite%20phase&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=austenite%20phase&page=148">148</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=austenite%20phase&page=149">149</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=austenite%20phase&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>