CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 145 results for author: <span class="mathjax">Towsley, D</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cs" aria-role="search"> Searching in archive <strong>cs</strong>. <a href="/search/?searchtype=author&amp;query=Towsley%2C+D">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Towsley, D"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Towsley%2C+D&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Towsley, D"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Towsley%2C+D&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Towsley%2C+D&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Towsley%2C+D&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Towsley%2C+D&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.08980">arXiv:2410.08980</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.08980">pdf</a>, <a href="https://arxiv.org/format/2410.08980">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> </div> </div> <p class="title is-5 mathjax"> Leveraging Internet Principles to Build a Quantum Network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Bacciottini%2C+L">Leonardo Bacciottini</a>, <a href="/search/cs?searchtype=author&amp;query=Chandra%2C+A">Aparimit Chandra</a>, <a href="/search/cs?searchtype=author&amp;query=De+Andrade%2C+M+G">Matheus Guedes De Andrade</a>, <a href="/search/cs?searchtype=author&amp;query=Panigrahy%2C+N+K">Nitish K. Panigrahy</a>, <a href="/search/cs?searchtype=author&amp;query=Pouryousef%2C+S">Shahrooz Pouryousef</a>, <a href="/search/cs?searchtype=author&amp;query=Rao%2C+N+S+V">Nageswara S. V. Rao</a>, <a href="/search/cs?searchtype=author&amp;query=Van+Milligen%2C+E">Emily Van Milligen</a>, <a href="/search/cs?searchtype=author&amp;query=Vardoyan%2C+G">Gayane Vardoyan</a>, <a href="/search/cs?searchtype=author&amp;query=Towsley%2C+D">Don Towsley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.08980v1-abstract-short" style="display: inline;"> Designing an operational architecture for the Quantum Internet is a challenging task in light of both fundamental limitations imposed by the laws of physics and technological constraints. Here, we propose a method to abstract away most of the quantum-specific elements and formulate a best-effort quantum network architecture based on packet-switching, akin to that of the classical Internet. Such re&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.08980v1-abstract-full').style.display = 'inline'; document.getElementById('2410.08980v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.08980v1-abstract-full" style="display: none;"> Designing an operational architecture for the Quantum Internet is a challenging task in light of both fundamental limitations imposed by the laws of physics and technological constraints. Here, we propose a method to abstract away most of the quantum-specific elements and formulate a best-effort quantum network architecture based on packet-switching, akin to that of the classical Internet. Such reframing provides an opportunity to exploit the many tools and protocols available and well-understood within the Internet. As an illustration, we tailor and adapt classical congestion control and active queue management protocols to quantum networks, comprising an architecture wherein quantum end- and intermediate nodes effectively regulate demand and resource utilization, respectively. Results show that these classical networking tools can be effectively used to combat quantum memory decoherence and keep end-to-end fidelity around a target value. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.08980v1-abstract-full').style.display = 'none'; document.getElementById('2410.08980v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.06152">arXiv:2409.06152</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.06152">pdf</a>, <a href="https://arxiv.org/format/2409.06152">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> </div> </div> <p class="title is-5 mathjax"> Comparing One- and Two-way Quantum Repeater Architectures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Mantri%2C+P">Prateek Mantri</a>, <a href="/search/cs?searchtype=author&amp;query=Goodenough%2C+K">Kenneth Goodenough</a>, <a href="/search/cs?searchtype=author&amp;query=Towsley%2C+D">Don Towsley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.06152v1-abstract-short" style="display: inline;"> Quantum repeaters are an essential building block for realizing long-distance quantum communications. However, due to the fragile nature of quantum information, these repeaters suffer from loss and operational errors. Prior works have classified repeaters into three broad categories based on their use of probabilistic or near-deterministic methods to mitigate these errors. Besides differences in c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06152v1-abstract-full').style.display = 'inline'; document.getElementById('2409.06152v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.06152v1-abstract-full" style="display: none;"> Quantum repeaters are an essential building block for realizing long-distance quantum communications. However, due to the fragile nature of quantum information, these repeaters suffer from loss and operational errors. Prior works have classified repeaters into three broad categories based on their use of probabilistic or near-deterministic methods to mitigate these errors. Besides differences in classical communication times, these approaches also vary in technological complexity, with near-deterministic methods requiring more advanced technology. Recent increases in the number of available memories, and introduction of entanglement generation through multiplexing motivate a re-comparison of one-way and two-way repeater architectures. In this work, we propose a novel protocol that optimizes multiplexed elementary link generation and distillation in memory-unconstrained &#39;connection-oriented&#39; two-way repeaters to boost the entanglement generation rates. We introduce a recursive formulation to derive the probability distribution of the number of Bell pairs in multiplexed two-way repeater architectures, compatible with probabilistic $n$-to-$k$ distillation protocols. We then compare the performance of this new protocol with one-way schemes in the parameter regime where one-way schemes have previously been shown to be advantageous, and find that the multiplexed two-way protocol provides better performance with lower resource and technology requirements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06152v1-abstract-full').style.display = 'none'; document.getElementById('2409.06152v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.04536">arXiv:2408.04536</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.04536">pdf</a>, <a href="https://arxiv.org/format/2408.04536">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> </div> </div> <p class="title is-5 mathjax"> Role of Error Syndromes in Teleportation Scheduling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Chandra%2C+A">Aparimit Chandra</a>, <a href="/search/cs?searchtype=author&amp;query=Rozp%C4%99dek%2C+F">Filip Rozp臋dek</a>, <a href="/search/cs?searchtype=author&amp;query=Towsley%2C+D">Don Towsley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.04536v1-abstract-short" style="display: inline;"> Quantum teleportation enables quantum information transmission, but requires distribution of entangled resource states. Unfortunately, decoherence, caused by environmental interference during quantum state storage, can degrade quantum states, leading to entanglement loss in the resource state and reduction of the fidelity of the teleported information. In this work, we investigate the use of error&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.04536v1-abstract-full').style.display = 'inline'; document.getElementById('2408.04536v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.04536v1-abstract-full" style="display: none;"> Quantum teleportation enables quantum information transmission, but requires distribution of entangled resource states. Unfortunately, decoherence, caused by environmental interference during quantum state storage, can degrade quantum states, leading to entanglement loss in the resource state and reduction of the fidelity of the teleported information. In this work, we investigate the use of error correction and error syndrome information in scheduling teleportation at a quantum network node in the presence of multiple teleportation requests and a finite rate of remote entanglement distribution. Specifically, we focus on the scenario where stored qubits undergo decoherence over time due to imperfect memories. To protect the qubits from the resulting errors, we employ quantum encodings, and the stored qubits undergo repeated error correction, generating error syndromes in each round. These error syndromes can provide additional benefits, as they can be used to calculate qubit-specific error likelihoods, which can then be utilized to make better scheduling decisions. By integrating error correction techniques into the scheduling process, our goal is to minimize errors and decoherence effects, thereby enhancing the fidelity and efficiency of teleportation in a quantum network setting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.04536v1-abstract-full').style.display = 'none'; document.getElementById('2408.04536v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.13898">arXiv:2407.13898</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.13898">pdf</a>, <a href="https://arxiv.org/format/2407.13898">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> </div> <p class="title is-5 mathjax"> Fundamental Scaling Laws of Covert Communication in the Presence of Block Fading </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Ramtin%2C+A+R">Amir Reza Ramtin</a>, <a href="/search/cs?searchtype=author&amp;query=Goeckel%2C+D">Dennis Goeckel</a>, <a href="/search/cs?searchtype=author&amp;query=Towsley%2C+D">Don Towsley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.13898v1-abstract-short" style="display: inline;"> Covert communication is the undetected transmission of sensitive information over a communication channel. In wireless communication systems, channel impairments such as signal fading present challenges in the effective implementation and analysis of covert communication systems. This paper generalizes early work in the covert communication field by considering asymptotic results for the number of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13898v1-abstract-full').style.display = 'inline'; document.getElementById('2407.13898v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.13898v1-abstract-full" style="display: none;"> Covert communication is the undetected transmission of sensitive information over a communication channel. In wireless communication systems, channel impairments such as signal fading present challenges in the effective implementation and analysis of covert communication systems. This paper generalizes early work in the covert communication field by considering asymptotic results for the number of bits that can be covertly transmitted in $n$ channel uses on a block fading channel. Critical to the investigation is characterizing the performance of optimal detectors at the adversary. Matching achievable and converse results are presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13898v1-abstract-full').style.display = 'none'; document.getElementById('2407.13898v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.11396">arXiv:2405.11396</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.11396">pdf</a>, <a href="https://arxiv.org/format/2405.11396">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> </div> </div> <p class="title is-5 mathjax"> Quantum Network Tomography </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=de+Andrade%2C+M+G">Matheus Guedes de Andrade</a>, <a href="/search/cs?searchtype=author&amp;query=Navas%2C+J">Jake Navas</a>, <a href="/search/cs?searchtype=author&amp;query=Guha%2C+S">Saikat Guha</a>, <a href="/search/cs?searchtype=author&amp;query=Monta%C3%B1o%2C+I">In猫s Monta帽o</a>, <a href="/search/cs?searchtype=author&amp;query=Raymer%2C+M">Michael Raymer</a>, <a href="/search/cs?searchtype=author&amp;query=Smith%2C+B">Brian Smith</a>, <a href="/search/cs?searchtype=author&amp;query=Towsley%2C+D">Don Towsley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.11396v1-abstract-short" style="display: inline;"> Errors are the fundamental barrier to the development of quantum systems. Quantum networks are complex systems formed by the interconnection of multiple components and suffer from error accumulation. Characterizing errors introduced by quantum network components becomes a fundamental task to overcome their depleting effects in quantum communication. Quantum Network Tomography (QNT) addresses end-t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.11396v1-abstract-full').style.display = 'inline'; document.getElementById('2405.11396v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.11396v1-abstract-full" style="display: none;"> Errors are the fundamental barrier to the development of quantum systems. Quantum networks are complex systems formed by the interconnection of multiple components and suffer from error accumulation. Characterizing errors introduced by quantum network components becomes a fundamental task to overcome their depleting effects in quantum communication. Quantum Network Tomography (QNT) addresses end-to-end characterization of link errors in quantum networks. It is a tool for building error-aware applications, network management, and system validation. We provide an overview of QNT and its initial results for characterizing quantum star networks. We apply a previously defined QNT protocol for estimating bit-flip channels to estimate depolarizing channels. We analyze the performance of our estimators numerically by assessing the Quantum Cram猫r-Rao Bound (QCRB) and the Mean Square Error (MSE) in the finite sample regime. Finally, we provide a discussion on current challenges in the field of QNT and elicit exciting research directions for future investigation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.11396v1-abstract-full').style.display = 'none'; document.getElementById('2405.11396v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures, accepted for publication at IEEE Network</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.09464">arXiv:2405.09464</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.09464">pdf</a>, <a href="https://arxiv.org/format/2405.09464">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Performance">cs.PF</span> </div> </div> <p class="title is-5 mathjax"> Scalable Scheduling Policies for Quantum Satellite Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Williams%2C+A">Albert Williams</a>, <a href="/search/cs?searchtype=author&amp;query=Panigrahy%2C+N+K">Nitish K. Panigrahy</a>, <a href="/search/cs?searchtype=author&amp;query=McGregor%2C+A">Andrew McGregor</a>, <a href="/search/cs?searchtype=author&amp;query=Towsley%2C+D">Don Towsley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.09464v1-abstract-short" style="display: inline;"> As Low Earth Orbit (LEO) satellite mega constellations continue to be deployed for satellite internet and recent successful experiments in satellite-based quantum entanglement distribution emerge, a natural question arises: How should we coordinate transmissions and design scalable scheduling policies for a quantum satellite internet? In this work, we consider the problem of transmission schedulin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.09464v1-abstract-full').style.display = 'inline'; document.getElementById('2405.09464v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.09464v1-abstract-full" style="display: none;"> As Low Earth Orbit (LEO) satellite mega constellations continue to be deployed for satellite internet and recent successful experiments in satellite-based quantum entanglement distribution emerge, a natural question arises: How should we coordinate transmissions and design scalable scheduling policies for a quantum satellite internet? In this work, we consider the problem of transmission scheduling in quantum satellite networks subject to resource constraints at the satellites and ground stations. We show that the most general problem of assigning satellites to ground station pairs for entanglement distribution is NP-hard. We then propose four heuristic algorithms and evaluate their performance for Starlink mega constellation under various amount of resources and placements of the ground stations. We find that the maximum number of receivers necessary per ground station grows very slowly with the total number of deployed ground stations. Our proposed algorithms, leveraging optimal weighted b-matching and the global greedy heuristic, outperform others in entanglement distribution rate, entanglement fidelity, and handover cost metrics. While we develop these scheduling algorithms, we have also designed a software system to simulate, visualize, and evaluate satellite mega-constellations for entanglement distribution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.09464v1-abstract-full').style.display = 'none'; document.getElementById('2405.09464v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.09034">arXiv:2405.09034</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.09034">pdf</a>, <a href="https://arxiv.org/ps/2405.09034">ps</a>, <a href="https://arxiv.org/format/2405.09034">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> </div> </div> <p class="title is-5 mathjax"> Entanglement Distribution Delay Optimization in Quantum Networks with Distillation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Chehimi%2C+M">Mahdi Chehimi</a>, <a href="/search/cs?searchtype=author&amp;query=Goodenough%2C+K">Kenneth Goodenough</a>, <a href="/search/cs?searchtype=author&amp;query=Saad%2C+W">Walid Saad</a>, <a href="/search/cs?searchtype=author&amp;query=Towsley%2C+D">Don Towsley</a>, <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+T+X">Tony X. Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.09034v1-abstract-short" style="display: inline;"> Quantum networks (QNs) distribute entangled states to enable distributed quantum computing and sensing applications. However, in such QNs, quantum switches (QSs) have limited resources that are highly sensitive to noise and losses and must be carefully allocated to minimize entanglement distribution delay. In this paper, a QS resource allocation framework is proposed, which jointly optimizes the a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.09034v1-abstract-full').style.display = 'inline'; document.getElementById('2405.09034v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.09034v1-abstract-full" style="display: none;"> Quantum networks (QNs) distribute entangled states to enable distributed quantum computing and sensing applications. However, in such QNs, quantum switches (QSs) have limited resources that are highly sensitive to noise and losses and must be carefully allocated to minimize entanglement distribution delay. In this paper, a QS resource allocation framework is proposed, which jointly optimizes the average entanglement distribution delay and entanglement distillation operations, to enhance the end-to-end (e2e) fidelity and satisfy minimum rate and fidelity requirements. The proposed framework considers realistic QN noise and includes the derivation of the analytical expressions for the average quantum memory decoherence noise parameter, and the resulting e2e fidelity after distillation. Finally, practical QN deployment aspects are considered, where QSs can control 1) nitrogen-vacancy (NV) center SPS types based on their isotopic decomposition, and 2) nuclear spin regions based on their distance and coupling strength with the electron spin of NV centers. A simulated annealing metaheuristic algorithm is proposed to solve the QS resource allocation optimization problem. Simulation results show that the proposed framework manages to satisfy all users rate and fidelity requirements, unlike existing distillation-agnostic (DA), minimal distillation (MD), and physics-agnostic (PA) frameworks which do not perform distillation, perform minimal distillation, and does not control the physics-based NV center characteristics, respectively. Furthermore, the proposed framework results in around 30% and 50% reductions in the average e2e entanglement distribution delay compared to existing PA and MD frameworks, respectively. Moreover, the proposed framework results in around 5%, 7%, and 11% reductions in the average e2e fidelity compared to existing DA, PA, and MD frameworks, respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.09034v1-abstract-full').style.display = 'none'; document.getElementById('2405.09034v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.02406">arXiv:2405.02406</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.02406">pdf</a>, <a href="https://arxiv.org/format/2405.02406">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> </div> </div> <p class="title is-5 mathjax"> Analysis of Asynchronous Protocols for Entanglement Distribution in Quantum Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Pouryousef%2C+S">Shahrooz Pouryousef</a>, <a href="/search/cs?searchtype=author&amp;query=Shapourian%2C+H">Hassan Shapourian</a>, <a href="/search/cs?searchtype=author&amp;query=Towsley%2C+D">Don Towsley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.02406v2-abstract-short" style="display: inline;"> The distribution of entanglement in quantum networks is typically approached under idealized assumptions such as perfect synchronization and centralized control, while classical communication is often neglected. However, these assumptions prove impractical in large-scale networks. In this paper, we present a pragmatic perspective by exploring two minimal asynchronous protocols: a parallel scheme g&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.02406v2-abstract-full').style.display = 'inline'; document.getElementById('2405.02406v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.02406v2-abstract-full" style="display: none;"> The distribution of entanglement in quantum networks is typically approached under idealized assumptions such as perfect synchronization and centralized control, while classical communication is often neglected. However, these assumptions prove impractical in large-scale networks. In this paper, we present a pragmatic perspective by exploring two minimal asynchronous protocols: a parallel scheme generating entanglement independently at the link level, and a sequential scheme extending entanglement iteratively from one party to the other. Our analysis incorporates non-uniform repeater spacings and classical communications and accounts for quantum memory decoherence. We evaluate network performance using metrics such as entanglement bit rate, end-to-end fidelity, and secret key rate for entanglement-based quantum key distribution. Our findings suggest the sequential scheme&#39;s superiority due to comparable performance with the parallel scheme, coupled with simpler implementation. Additionally, we impose a cutoff strategy to improve performance by discarding attempts with prolonged memory idle time, effectively eliminating low-quality entanglement links. Finally, we apply our methods to the real-world topology of SURFnet and report the performance as a function of memory coherence time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.02406v2-abstract-full').style.display = 'none'; document.getElementById('2405.02406v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.00842">arXiv:2405.00842</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.00842">pdf</a>, <a href="https://arxiv.org/format/2405.00842">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistics Theory">math.ST</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> </div> </div> <p class="title is-5 mathjax"> Quickest Change Detection with Confusing Change </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Chen%2C+Y+J">Yu-Zhen Janice Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Zuo%2C+J">Jinhang Zuo</a>, <a href="/search/cs?searchtype=author&amp;query=Veeravalli%2C+V+V">Venugopal V. Veeravalli</a>, <a href="/search/cs?searchtype=author&amp;query=Towsley%2C+D">Don Towsley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.00842v1-abstract-short" style="display: inline;"> In the problem of quickest change detection (QCD), a change occurs at some unknown time in the distribution of a sequence of independent observations. This work studies a QCD problem where the change is either a bad change, which we aim to detect, or a confusing change, which is not of our interest. Our objective is to detect a bad change as quickly as possible while avoiding raising a false alarm&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.00842v1-abstract-full').style.display = 'inline'; document.getElementById('2405.00842v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.00842v1-abstract-full" style="display: none;"> In the problem of quickest change detection (QCD), a change occurs at some unknown time in the distribution of a sequence of independent observations. This work studies a QCD problem where the change is either a bad change, which we aim to detect, or a confusing change, which is not of our interest. Our objective is to detect a bad change as quickly as possible while avoiding raising a false alarm for pre-change or a confusing change. We identify a specific set of pre-change, bad change, and confusing change distributions that pose challenges beyond the capabilities of standard Cumulative Sum (CuSum) procedures. Proposing novel CuSum-based detection procedures, S-CuSum and J-CuSum, leveraging two CuSum statistics, we offer solutions applicable across all kinds of pre-change, bad change, and confusing change distributions. For both S-CuSum and J-CuSum, we provide analytical performance guarantees and validate them by numerical results. Furthermore, both procedures are computationally efficient as they only require simple recursive updates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.00842v1-abstract-full').style.display = 'none'; document.getElementById('2405.00842v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.10823">arXiv:2401.10823</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.10823">pdf</a>, <a href="https://arxiv.org/ps/2401.10823">ps</a>, <a href="https://arxiv.org/format/2401.10823">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Reconfigurable Intelligent Surface (RIS)-Assisted Entanglement Distribution in FSO Quantum Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Chehimi%2C+M">Mahdi Chehimi</a>, <a href="/search/cs?searchtype=author&amp;query=Elhattab%2C+M">Mohamed Elhattab</a>, <a href="/search/cs?searchtype=author&amp;query=Saad%2C+W">Walid Saad</a>, <a href="/search/cs?searchtype=author&amp;query=Vardoyan%2C+G">Gayane Vardoyan</a>, <a href="/search/cs?searchtype=author&amp;query=Panigrahy%2C+N+K">Nitish K. Panigrahy</a>, <a href="/search/cs?searchtype=author&amp;query=Assi%2C+C">Chadi Assi</a>, <a href="/search/cs?searchtype=author&amp;query=Towsley%2C+D">Don Towsley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.10823v1-abstract-short" style="display: inline;"> Quantum networks (QNs) relying on free-space optical (FSO) quantum channels can support quantum applications in environments wherein establishing an optical fiber infrastructure is challenging and costly. However, FSO-based QNs require a clear line-of-sight (LoS) between users, which is challenging due to blockages and natural obstacles. In this paper, a reconfigurable intelligent surface (RIS)-as&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.10823v1-abstract-full').style.display = 'inline'; document.getElementById('2401.10823v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.10823v1-abstract-full" style="display: none;"> Quantum networks (QNs) relying on free-space optical (FSO) quantum channels can support quantum applications in environments wherein establishing an optical fiber infrastructure is challenging and costly. However, FSO-based QNs require a clear line-of-sight (LoS) between users, which is challenging due to blockages and natural obstacles. In this paper, a reconfigurable intelligent surface (RIS)-assisted FSO-based QN is proposed as a cost-efficient framework providing a virtual LoS between users for entanglement distribution. A novel modeling of the quantum noise and losses experienced by quantum states over FSO channels defined by atmospheric losses, turbulence, and pointing errors is derived. Then, the joint optimization of entanglement distribution and RIS placement problem is formulated, under heterogeneous entanglement rate and fidelity constraints. This problem is solved using a simulated annealing metaheuristic algorithm. Simulation results show that the proposed framework effectively meets the minimum fidelity requirements of all users&#39; quantum applications. This is in stark contrast to baseline algorithms that lead to a drop of at least 83% in users&#39; end-to-end fidelities. The proposed framework also achieves a 64% enhancement in the fairness level between users compared to baseline rate maximizing frameworks. Finally, the weather conditions, e.g., rain, are observed to have a more significant effect than pointing errors and turbulence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.10823v1-abstract-full').style.display = 'none'; document.getElementById('2401.10823v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 7 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.14516">arXiv:2310.14516</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.14516">pdf</a>, <a href="https://arxiv.org/format/2310.14516">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Foundations of Quantum Federated Learning Over Classical and Quantum Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Chehimi%2C+M">Mahdi Chehimi</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+S+Y">Samuel Yen-Chi Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Saad%2C+W">Walid Saad</a>, <a href="/search/cs?searchtype=author&amp;query=Towsley%2C+D">Don Towsley</a>, <a href="/search/cs?searchtype=author&amp;query=Debbah%2C+M">M茅rouane Debbah</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.14516v1-abstract-short" style="display: inline;"> Quantum federated learning (QFL) is a novel framework that integrates the advantages of classical federated learning (FL) with the computational power of quantum technologies. This includes quantum computing and quantum machine learning (QML), enabling QFL to handle high-dimensional complex data. QFL can be deployed over both classical and quantum communication networks in order to benefit from in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.14516v1-abstract-full').style.display = 'inline'; document.getElementById('2310.14516v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.14516v1-abstract-full" style="display: none;"> Quantum federated learning (QFL) is a novel framework that integrates the advantages of classical federated learning (FL) with the computational power of quantum technologies. This includes quantum computing and quantum machine learning (QML), enabling QFL to handle high-dimensional complex data. QFL can be deployed over both classical and quantum communication networks in order to benefit from information-theoretic security levels surpassing traditional FL frameworks. In this paper, we provide the first comprehensive investigation of the challenges and opportunities of QFL. We particularly examine the key components of QFL and identify the unique challenges that arise when deploying it over both classical and quantum networks. We then develop novel solutions and articulate promising research directions that can help address the identified challenges. We also provide actionable recommendations to advance the practical realization of QFL. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.14516v1-abstract-full').style.display = 'none'; document.getElementById('2310.14516v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 2 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.16264">arXiv:2308.16264</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.16264">pdf</a>, <a href="https://arxiv.org/format/2308.16264">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> </div> </div> <p class="title is-5 mathjax"> Resource Placement for Rate and Fidelity Maximization in Quantum Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Pouryousef%2C+S">Shahrooz Pouryousef</a>, <a href="/search/cs?searchtype=author&amp;query=Shapourian%2C+H">Hassan Shapourian</a>, <a href="/search/cs?searchtype=author&amp;query=Shabani%2C+A">Alireza Shabani</a>, <a href="/search/cs?searchtype=author&amp;query=Kompella%2C+R">Ramana Kompella</a>, <a href="/search/cs?searchtype=author&amp;query=Towsley%2C+D">Don Towsley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.16264v3-abstract-short" style="display: inline;"> Existing classical optical network infrastructure cannot be immediately used for quantum network applications due to photon loss. The first step towards enabling quantum networks is the integration of quantum repeaters into optical networks. However, the expenses and intrinsic noise inherent in quantum hardware underscore the need for an efficient deployment strategy that optimizes the allocation&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.16264v3-abstract-full').style.display = 'inline'; document.getElementById('2308.16264v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.16264v3-abstract-full" style="display: none;"> Existing classical optical network infrastructure cannot be immediately used for quantum network applications due to photon loss. The first step towards enabling quantum networks is the integration of quantum repeaters into optical networks. However, the expenses and intrinsic noise inherent in quantum hardware underscore the need for an efficient deployment strategy that optimizes the allocation of quantum repeaters and memories. In this paper, we present a comprehensive framework for network planning, aiming to efficiently distributing quantum repeaters across existing infrastructure, with the objective of maximizing quantum network utility within an entanglement distribution network. We apply our framework to several cases including a preliminary illustration of a dumbbell network topology and real-world cases of the SURFnet and ESnet. We explore the effect of quantum memory multiplexing within quantum repeaters, as well as the influence of memory coherence time on quantum network utility. We further examine the effects of different fairness assumptions on network planning, uncovering their impacts on real-time network performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.16264v3-abstract-full').style.display = 'none'; document.getElementById('2308.16264v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 8 figures, 3 appendices</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.13700">arXiv:2308.13700</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.13700">pdf</a>, <a href="https://arxiv.org/format/2308.13700">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Structures and Algorithms">cs.DS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> </div> </div> <p class="title is-5 mathjax"> Multipartite Entanglement Distribution in Quantum Networks using Subgraph Complementations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Sen%2C+A">Aniruddha Sen</a>, <a href="/search/cs?searchtype=author&amp;query=Goodenough%2C+K">Kenneth Goodenough</a>, <a href="/search/cs?searchtype=author&amp;query=Towsley%2C+D">Don Towsley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.13700v4-abstract-short" style="display: inline;"> Quantum networks are important for quantum communication and allow for several tasks such as quantum teleportation, quantum key distribution, quantum sensing, and quantum error correction. Graph states are a specific class of multipartite entangled states that can be represented by graphs. We propose a novel approach for distributing graph states across a quantum network. We show that the distribu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.13700v4-abstract-full').style.display = 'inline'; document.getElementById('2308.13700v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.13700v4-abstract-full" style="display: none;"> Quantum networks are important for quantum communication and allow for several tasks such as quantum teleportation, quantum key distribution, quantum sensing, and quantum error correction. Graph states are a specific class of multipartite entangled states that can be represented by graphs. We propose a novel approach for distributing graph states across a quantum network. We show that the distribution of graph states can be characterized by a system of subgraph complementations, which we also relate to the minimum rank of the underlying graph and the degree of entanglement quantified by the Schmidt-rank of the quantum state. We analyze resource usage for our algorithm and show that it improves on the number of qubits, bits for classical communication, and EPR pairs utilized, as compared to prior work. In fact, the number of local operations and resource consumption for our approach scales linearly in the number of vertices. This produces a quadratic improvement in completion time for several classes of graph states represented by dense graphs, which translates into an exponential improvement by allowing parallelization of gate operations. This leads to improved fidelities in the presence of noisy operations, as we show through simulation in the presence of noisy operations. Common classes of graph states are classified along with their optimal distribution time using subgraph complementations. We find a close to optimal sequence of subgraph complementation operations to distribute an arbitrary graph state, and establish upper bounds on distribution time along with providing approximate greedy algorithms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.13700v4-abstract-full').style.display = 'none'; document.getElementById('2308.13700v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Substantial updates in this version, including simulations in the presence of noisy operations (section VII) and algorithm analysis with parallelized gate operations (section VI). Initially presented as a poster paper at the 2023 IEEE International Conference on Quantum Computing and Engineering (QCE23)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.04314">arXiv:2308.04314</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.04314">pdf</a>, <a href="https://arxiv.org/format/2308.04314">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Cooperative Multi-agent Bandits: Distributed Algorithms with Optimal Individual Regret and Constant Communication Costs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Yang%2C+L">Lin Yang</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+X">Xuchuang Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Hajiesmaili%2C+M">Mohammad Hajiesmaili</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+L">Lijun Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Lui%2C+J+C+S">John C. S. Lui</a>, <a href="/search/cs?searchtype=author&amp;query=Towsley%2C+D">Don Towsley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.04314v1-abstract-short" style="display: inline;"> Recently, there has been extensive study of cooperative multi-agent multi-armed bandits where a set of distributed agents cooperatively play the same multi-armed bandit game. The goal is to develop bandit algorithms with the optimal group and individual regrets and low communication between agents. The prior work tackled this problem using two paradigms: leader-follower and fully distributed algor&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.04314v1-abstract-full').style.display = 'inline'; document.getElementById('2308.04314v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.04314v1-abstract-full" style="display: none;"> Recently, there has been extensive study of cooperative multi-agent multi-armed bandits where a set of distributed agents cooperatively play the same multi-armed bandit game. The goal is to develop bandit algorithms with the optimal group and individual regrets and low communication between agents. The prior work tackled this problem using two paradigms: leader-follower and fully distributed algorithms. Prior algorithms in both paradigms achieve the optimal group regret. The leader-follower algorithms achieve constant communication costs but fail to achieve optimal individual regrets. The state-of-the-art fully distributed algorithms achieve optimal individual regrets but fail to achieve constant communication costs. This paper presents a simple yet effective communication policy and integrates it into a learning algorithm for cooperative bandits. Our algorithm achieves the best of both paradigms: optimal individual regret and constant communication costs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.04314v1-abstract-full').style.display = 'none'; document.getElementById('2308.04314v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.06492">arXiv:2307.06492</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.06492">pdf</a>, <a href="https://arxiv.org/format/2307.06492">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> </div> </div> <p class="title is-5 mathjax"> Universal Quantum Walk Control Plane for Quantum Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=de+Andrade%2C+M+G">Matheus Guedes de Andrade</a>, <a href="/search/cs?searchtype=author&amp;query=Panigrahy%2C+N+K">Nitish K. Panigrahy</a>, <a href="/search/cs?searchtype=author&amp;query=Dai%2C+W">Wenhan Dai</a>, <a href="/search/cs?searchtype=author&amp;query=Guha%2C+S">Saikat Guha</a>, <a href="/search/cs?searchtype=author&amp;query=Towsley%2C+D">Don Towsley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.06492v1-abstract-short" style="display: inline;"> Quantum networks are complex systems formed by the interaction among quantum processors through quantum channels. Analogous to classical computer networks, quantum networks allow for the distribution of quantum operations among quantum processors. In this work, we describe a Quantum Walk Control Protocol (QWCP) to perform distributed quantum operations in a quantum network. We consider a generaliz&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.06492v1-abstract-full').style.display = 'inline'; document.getElementById('2307.06492v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.06492v1-abstract-full" style="display: none;"> Quantum networks are complex systems formed by the interaction among quantum processors through quantum channels. Analogous to classical computer networks, quantum networks allow for the distribution of quantum operations among quantum processors. In this work, we describe a Quantum Walk Control Protocol (QWCP) to perform distributed quantum operations in a quantum network. We consider a generalization of the discrete-time coined quantum walk model that accounts for the interaction between quantum walks in the network graph with quantum registers inside the network nodes. QWCP allows for the implementation of networked quantum services, such as distributed quantum computing and entanglement distribution, abstracting hardware implementation and the transmission of quantum information through channels. Multiple interacting quantum walks can be used to propagate entangled control signals across the network in parallel. We demonstrate how to use QWCP to perform distributed multi-qubit controlled gates, which shows the universality of the protocol for distributed quantum computing. Furthermore, we apply the QWCP to the task of entanglement distribution in a quantum network. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.06492v1-abstract-full').style.display = 'none'; document.getElementById('2307.06492v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages; 2 figures. A preliminary version of this work was presented at IEEE International Conference on Quantum Computing and Engineering 2021 (QCE21). arXiv admin note: text overlap with arXiv:2106.09839</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.06442">arXiv:2307.06442</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.06442">pdf</a>, <a href="https://arxiv.org/ps/2307.06442">ps</a>, <a href="https://arxiv.org/format/2307.06442">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Multiagent Systems">cs.MA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> On Collaboration in Distributed Parameter Estimation with Resource Constraints </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Chen%2C+Y+J">Yu-Zhen Janice Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Menasch%C3%A9%2C+D+S">Daniel S. Menasch茅</a>, <a href="/search/cs?searchtype=author&amp;query=Towsley%2C+D">Don Towsley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.06442v2-abstract-short" style="display: inline;"> Effective resource allocation in sensor networks, IoT systems, and distributed computing is essential for applications such as environmental monitoring, surveillance, and smart infrastructure. Sensors or agents must optimize their resource allocation to maximize the accuracy of parameter estimation. In this work, we consider a group of sensors or agents, each sampling from a different variable of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.06442v2-abstract-full').style.display = 'inline'; document.getElementById('2307.06442v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.06442v2-abstract-full" style="display: none;"> Effective resource allocation in sensor networks, IoT systems, and distributed computing is essential for applications such as environmental monitoring, surveillance, and smart infrastructure. Sensors or agents must optimize their resource allocation to maximize the accuracy of parameter estimation. In this work, we consider a group of sensors or agents, each sampling from a different variable of a multivariate Gaussian distribution and having a different estimation objective. We formulate a sensor or agent&#39;s data collection and collaboration policy design problem as a Fisher information maximization (or Cramer-Rao bound minimization) problem. This formulation captures a novel trade-off in energy use, between locally collecting univariate samples and collaborating to produce multivariate samples. When knowledge of the correlation between variables is available, we analytically identify two cases: (1) where the optimal data collection policy entails investing resources to transfer information for collaborative sampling, and (2) where knowledge of the correlation between samples cannot enhance estimation efficiency. When knowledge of certain correlations is unavailable, but collaboration remains potentially beneficial, we propose novel approaches that apply multi-armed bandit algorithms to learn the optimal data collection and collaboration policy in our sequential distributed parameter estimation problem. We illustrate the effectiveness of the proposed algorithms, DOUBLE-F, DOUBLE-Z, UCB-F, UCB-Z, through simulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.06442v2-abstract-full').style.display = 'none'; document.getElementById('2307.06442v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.05854">arXiv:2307.05854</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.05854">pdf</a>, <a href="https://arxiv.org/format/2307.05854">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> </div> </div> <p class="title is-5 mathjax"> On the Characterization of Quantum Flip Stars with Quantum Network Tomography </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=de+Andrade%2C+M+G">Matheus Guedes de Andrade</a>, <a href="/search/cs?searchtype=author&amp;query=Navas%2C+J">Jake Navas</a>, <a href="/search/cs?searchtype=author&amp;query=Monta%C3%B1o%2C+I">In猫s Monta帽o</a>, <a href="/search/cs?searchtype=author&amp;query=Towsley%2C+D">Don Towsley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.05854v1-abstract-short" style="display: inline;"> The experimental realization of quantum information systems will be difficult due to how sensitive quantum information is to noise. Overcoming this sensitivity is central to designing quantum networks capable of transmitting quantum information reliably over large distances. Moreover, the ability to characterize communication noise in quantum networks is crucial in developing network protocols cap&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.05854v1-abstract-full').style.display = 'inline'; document.getElementById('2307.05854v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.05854v1-abstract-full" style="display: none;"> The experimental realization of quantum information systems will be difficult due to how sensitive quantum information is to noise. Overcoming this sensitivity is central to designing quantum networks capable of transmitting quantum information reliably over large distances. Moreover, the ability to characterize communication noise in quantum networks is crucial in developing network protocols capable of overcoming the effects of noise in quantum networks. In this context, quantum network tomography refers to the characterization of channel noise in a quantum network through end-to-end measurements. In this work, we propose network tomography protocols for quantum star networks formed by quantum channels characterized by a single, non-trivial Pauli operator. Our results further the end-to-end characterization of quantum bit-flip star networks by introducing tomography protocols where state distribution and measurements are designed separately. We build upon previously proposed quantum network tomography protocols, as well as provide novel methods for the unique characterization of bit-flip probabilities in stars. We introduce a theoretical benchmark based on the Quantum Fisher Information matrix to compare the efficiency of quantum network protocols. We apply our techniques to the protocols proposed, and provide an initial analysis on the potential benefits of entanglement for Quantum Network Tomography. Furthermore, we simulate the proposed protocols using NetSquid to assess the convergence properties of the estimators obtained for particular parameter regimes. Our findings show that the efficiency of protocols depend on parameter values and motivate the search for adaptive quantum network tomography protocols. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.05854v1-abstract-full').style.display = 'none'; document.getElementById('2307.05854v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 3 figures. Accepted for publication in IEEE QCE23 proceedings</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.04477">arXiv:2307.04477</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.04477">pdf</a>, <a href="https://arxiv.org/format/2307.04477">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/tqe.2024.3366696">10.1109/tqe.2024.3366696 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On the Bipartite Entanglement Capacity of Quantum Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Vardoyan%2C+G">Gayane Vardoyan</a>, <a href="/search/cs?searchtype=author&amp;query=van+Milligen%2C+E">Emily van Milligen</a>, <a href="/search/cs?searchtype=author&amp;query=Guha%2C+S">Saikat Guha</a>, <a href="/search/cs?searchtype=author&amp;query=Wehner%2C+S">Stephanie Wehner</a>, <a href="/search/cs?searchtype=author&amp;query=Towsley%2C+D">Don Towsley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.04477v2-abstract-short" style="display: inline;"> We consider the problem of multi-path entanglement distribution to a pair of nodes in a quantum network consisting of devices with non-deterministic entanglement swapping capabilities. Multi-path entanglement distribution enables a network to establish end-to-end entangled links across any number of available paths with pre-established link-level entanglement. Probabilistic entanglement swapping,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.04477v2-abstract-full').style.display = 'inline'; document.getElementById('2307.04477v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.04477v2-abstract-full" style="display: none;"> We consider the problem of multi-path entanglement distribution to a pair of nodes in a quantum network consisting of devices with non-deterministic entanglement swapping capabilities. Multi-path entanglement distribution enables a network to establish end-to-end entangled links across any number of available paths with pre-established link-level entanglement. Probabilistic entanglement swapping, on the other hand, limits the amount of entanglement that is shared between the nodes; this is especially the case when, due to architectural and other practical constraints, swaps must be performed in temporal proximity to each other. Limiting our focus to the case where only bipartite entangled states are generated across the network, we cast the problem as an instance of generalized flow maximization between two quantum end nodes wishing to communicate. We propose a mixed-integer quadratically constrained program (MIQCP) to solve this flow problem for networks with arbitrary topology. We then compute the overall network capacity, defined as the maximum number of EPR states distributed to users per time unit, by solving the flow problem for all possible network states generated by probabilistic entangled link presence and absence, and subsequently by averaging over all network state capacities. The MIQCP can also be applied to networks with multiplexed links. While our approach for computing the overall network capacity has the undesirable property that the total number of states grows exponentially with link multiplexing capability, it nevertheless yields an exact solution that serves as an upper bound comparison basis for the throughput performance of easily-implementable yet non-optimal entanglement routing algorithms. We apply our capacity computation method to several networks, including a topology based on SURFnet -- a backbone network used for research purposes in the Netherlands. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.04477v2-abstract-full').style.display = 'none'; document.getElementById('2307.04477v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.12682">arXiv:2305.12682</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.12682">pdf</a>, <a href="https://arxiv.org/format/2305.12682">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Matching Game for Optimized Association in Quantum Communication Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Chehimi%2C+M">Mahdi Chehimi</a>, <a href="/search/cs?searchtype=author&amp;query=Simon%2C+B">Bernd Simon</a>, <a href="/search/cs?searchtype=author&amp;query=Saad%2C+W">Walid Saad</a>, <a href="/search/cs?searchtype=author&amp;query=Klein%2C+A">Anja Klein</a>, <a href="/search/cs?searchtype=author&amp;query=Towsley%2C+D">Don Towsley</a>, <a href="/search/cs?searchtype=author&amp;query=Debbah%2C+M">M茅rouane Debbah</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.12682v1-abstract-short" style="display: inline;"> Enabling quantum switches (QSs) to serve requests submitted by quantum end nodes in quantum communication networks (QCNs) is a challenging problem due to the heterogeneous fidelity requirements of the submitted requests and the limited resources of the QCN. Effectively determining which requests are served by a given QS is fundamental to foster developments in practical QCN applications, like quan&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.12682v1-abstract-full').style.display = 'inline'; document.getElementById('2305.12682v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.12682v1-abstract-full" style="display: none;"> Enabling quantum switches (QSs) to serve requests submitted by quantum end nodes in quantum communication networks (QCNs) is a challenging problem due to the heterogeneous fidelity requirements of the submitted requests and the limited resources of the QCN. Effectively determining which requests are served by a given QS is fundamental to foster developments in practical QCN applications, like quantum data centers. However, the state-of-the-art on QS operation has overlooked this association problem, and it mainly focused on QCNs with a single QS. In this paper, the request-QS association problem in QCNs is formulated as a matching game that captures the limited QCN resources, heterogeneous application-specific fidelity requirements, and scheduling of the different QS operations. To solve this game, a swap-stable request-QS association (RQSA) algorithm is proposed while considering partial QCN information availability. Extensive simulations are conducted to validate the effectiveness of the proposed RQSA algorithm. Simulation results show that the proposed RQSA algorithm achieves a near-optimal (within 5%) performance in terms of the percentage of served requests and overall achieved fidelity, while outperforming benchmark greedy solutions by over 13%. Moreover, the proposed RQSA algorithm is shown to be scalable and maintain its near-optimal performance even when the size of the QCN increases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.12682v1-abstract-full').style.display = 'none'; document.getElementById('2305.12682v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.08696">arXiv:2305.08696</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.08696">pdf</a>, <a href="https://arxiv.org/format/2305.08696">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Scaling Limits of Quantum Repeater Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Chehimi%2C+M">Mahdi Chehimi</a>, <a href="/search/cs?searchtype=author&amp;query=Pouryousef%2C+S">Shahrooz Pouryousef</a>, <a href="/search/cs?searchtype=author&amp;query=Panigrahy%2C+N+K">Nitish K. Panigrahy</a>, <a href="/search/cs?searchtype=author&amp;query=Towsley%2C+D">Don Towsley</a>, <a href="/search/cs?searchtype=author&amp;query=Saad%2C+W">Walid Saad</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.08696v2-abstract-short" style="display: inline;"> Quantum networks (QNs) are a promising platform for secure communications, enhanced sensing, and efficient distributed quantum computing. However, due to the fragile nature of quantum states, these networks face significant challenges in terms of scalability. In this paper, the scaling limits of quantum repeater networks (QRNs) are analyzed. The goal of this work is to maximize the overall length,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.08696v2-abstract-full').style.display = 'inline'; document.getElementById('2305.08696v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.08696v2-abstract-full" style="display: none;"> Quantum networks (QNs) are a promising platform for secure communications, enhanced sensing, and efficient distributed quantum computing. However, due to the fragile nature of quantum states, these networks face significant challenges in terms of scalability. In this paper, the scaling limits of quantum repeater networks (QRNs) are analyzed. The goal of this work is to maximize the overall length, or scalability of QRNs such that long-distance quantum communications is achieved while application-specific quality-of-service (QoS) requirements are satisfied. In particular, a novel joint optimization framework that aims at maximizing QRN scalability, while satisfying QoS constraints on the end-to-end fidelity and rate is proposed. The proposed approach optimizes the number of QRN repeater nodes, their separation distance, and the number of distillation rounds to be performed at both link and end-to-end levels. Extensive simulations are conducted to analyze the tradeoffs between QRN scalability, rate, and fidelity under gate and measurement errors. The obtained results characterize the QRN scaling limits for a given QoS requirement. The proposed approach offers a promising solution and design guidelines for future QRN deployments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.08696v2-abstract-full').style.display = 'none'; document.getElementById('2305.08696v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.03231">arXiv:2305.03231</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.03231">pdf</a>, <a href="https://arxiv.org/format/2305.03231">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Performance">cs.PF</span> </div> </div> <p class="title is-5 mathjax"> Resource Management in Quantum Virtual Private Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Pouryousef%2C+S">Shahrooz Pouryousef</a>, <a href="/search/cs?searchtype=author&amp;query=Panigrahy%2C+N+K">Nitish K. Panigrahy</a>, <a href="/search/cs?searchtype=author&amp;query=Purkayastha%2C+M+D">Monimoy Deb Purkayastha</a>, <a href="/search/cs?searchtype=author&amp;query=Mukhopadhyay%2C+S">Sabyasachi Mukhopadhyay</a>, <a href="/search/cs?searchtype=author&amp;query=Grammel%2C+G">Gert Grammel</a>, <a href="/search/cs?searchtype=author&amp;query=Di+Mola%2C+D">Domenico Di Mola</a>, <a href="/search/cs?searchtype=author&amp;query=Towsley%2C+D">Don Towsley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.03231v3-abstract-short" style="display: inline;"> In this study, we develop a resource management framework for a quantum virtual private network (qVPN), which involves the sharing of an underlying public quantum network by multiple organizations for quantum entanglement distribution. Our approach involves resolving the issue of link entanglement resource allocation in a qVPN by utilizing a centralized optimization framework. We provide insights&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.03231v3-abstract-full').style.display = 'inline'; document.getElementById('2305.03231v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.03231v3-abstract-full" style="display: none;"> In this study, we develop a resource management framework for a quantum virtual private network (qVPN), which involves the sharing of an underlying public quantum network by multiple organizations for quantum entanglement distribution. Our approach involves resolving the issue of link entanglement resource allocation in a qVPN by utilizing a centralized optimization framework. We provide insights into the potential of genetic and learning-based algorithms for optimizing qVPNs, and emphasize the significance of path selection and distillation in enabling efficient and reliable quantum communication in multi-organizational settings. Our findings demonstrate that compared to traditional greedy based heuristics, genetic and learning-based algorithms can identify better paths. Furthermore, these algorithms can effectively identify good distillation strategies to mitigate potential noises in gates and quantum channels, while ensuring the necessary quality of service for end users. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.03231v3-abstract-full').style.display = 'none'; document.getElementById('2305.03231v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.00598">arXiv:2305.00598</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.00598">pdf</a>, <a href="https://arxiv.org/format/2305.00598">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.5753/sbc.5033.7.2">10.5753/sbc.5033.7.2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum Internet: The Future of Internetworking </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Abelem%2C+A">Antonio Abelem</a>, <a href="/search/cs?searchtype=author&amp;query=Towsley%2C+D">Don Towsley</a>, <a href="/search/cs?searchtype=author&amp;query=Vardoyan%2C+G">Gayane Vardoyan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.00598v1-abstract-short" style="display: inline;"> Quantum information, computation and communication, will have a great impact on our world. One important subfield will be quantum networking and the quantum Internet. The purpose of a quantum Internet is to enable applications that are fundamentally out of reach for the classical Internet. Quantum networks enable new capabilities to communication systems. This allows the parties to generate long d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00598v1-abstract-full').style.display = 'inline'; document.getElementById('2305.00598v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.00598v1-abstract-full" style="display: none;"> Quantum information, computation and communication, will have a great impact on our world. One important subfield will be quantum networking and the quantum Internet. The purpose of a quantum Internet is to enable applications that are fundamentally out of reach for the classical Internet. Quantum networks enable new capabilities to communication systems. This allows the parties to generate long distance quantum entanglement, which serves a number of tasks including the generation of multiparty shared secrets whose security relies only on the laws of physics, distributed quantum computing, improved sensing, quantum computing on encrypted data, and secure private-bid auctions. However, quantum signals are fragile, and, in general, cannot be copied or amplified. In order to enable widespread use and application development, it is essential to develop methods that allow quantum protocols to connect to the underlying hardware implementation transparently and to make fast and reactive decisions for generating entanglement in the network to mitigate limited qubit lifetimes. Architectures for large-scale quantum internetworking are in development, paralleling theoretical and experimental work on physical layers and low-level error management and connection technologies. This chapter aims to present the main concepts, challenges, and opportunities for research in quantum information, quantum computing and quantum networking. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00598v1-abstract-full').style.display = 'none'; document.getElementById('2305.00598v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Shortcourse presented in the XXXVIII Brazilian Symposium on Computer Networks and Distributed Systems (SBRC 2020). arXiv admin note: text overlap with arXiv:1912.06642, arXiv:1810.08421, arXiv:quant-ph/0607065, arXiv:1610.05238 by other authors</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Shortcourses&#39; Book of the XXXVIII Brazilian Symposium on Computer Networks and Distributed Systems (SBRC 2020). 1ed.: SBC, 2020, v.1, ISBN-13: 978-65-87003-33-7, p. 48-90 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.07446">arXiv:2302.07446</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.07446">pdf</a>, <a href="https://arxiv.org/format/2302.07446">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Multiagent Systems">cs.MA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> On-Demand Communication for Asynchronous Multi-Agent Bandits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Chen%2C+Y+J">Yu-Zhen Janice Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Yang%2C+L">Lin Yang</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+X">Xuchuang Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+X">Xutong Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Hajiesmaili%2C+M">Mohammad Hajiesmaili</a>, <a href="/search/cs?searchtype=author&amp;query=Lui%2C+J+C+S">John C. S. Lui</a>, <a href="/search/cs?searchtype=author&amp;query=Towsley%2C+D">Don Towsley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.07446v2-abstract-short" style="display: inline;"> This paper studies a cooperative multi-agent multi-armed stochastic bandit problem where agents operate asynchronously -- agent pull times and rates are unknown, irregular, and heterogeneous -- and face the same instance of a K-armed bandit problem. Agents can share reward information to speed up the learning process at additional communication costs. We propose ODC, an on-demand communication pro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.07446v2-abstract-full').style.display = 'inline'; document.getElementById('2302.07446v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.07446v2-abstract-full" style="display: none;"> This paper studies a cooperative multi-agent multi-armed stochastic bandit problem where agents operate asynchronously -- agent pull times and rates are unknown, irregular, and heterogeneous -- and face the same instance of a K-armed bandit problem. Agents can share reward information to speed up the learning process at additional communication costs. We propose ODC, an on-demand communication protocol that tailors the communication of each pair of agents based on their empirical pull times. ODC is efficient when the pull times of agents are highly heterogeneous, and its communication complexity depends on the empirical pull times of agents. ODC is a generic protocol that can be integrated into most cooperative bandit algorithms without degrading their performance. We then incorporate ODC into the natural extensions of UCB and AAE algorithms and propose two communication-efficient cooperative algorithms. Our analysis shows that both algorithms are near-optimal in regret. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.07446v2-abstract-full').style.display = 'none'; document.getElementById('2302.07446v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by AISTATS 2023</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.11155">arXiv:2212.11155</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.11155">pdf</a>, <a href="https://arxiv.org/format/2212.11155">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Performance">cs.PF</span> </div> </div> <p class="title is-5 mathjax"> Robust Path Selection in Software-defined WANs using Deep Reinforcement Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Pouryousef%2C+S">Shahrooz Pouryousef</a>, <a href="/search/cs?searchtype=author&amp;query=Gao%2C+L">Lixin Gao</a>, <a href="/search/cs?searchtype=author&amp;query=Towsley%2C+D">Don Towsley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.11155v2-abstract-short" style="display: inline;"> In the context of an efficient network traffic engineering process where the network continuously measures a new traffic matrix and updates the set of paths in the network, an automated process is required to quickly and efficiently identify when and what set of paths should be used. Unfortunately, the burden of finding the optimal solution for the network updating process in each given time inter&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.11155v2-abstract-full').style.display = 'inline'; document.getElementById('2212.11155v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.11155v2-abstract-full" style="display: none;"> In the context of an efficient network traffic engineering process where the network continuously measures a new traffic matrix and updates the set of paths in the network, an automated process is required to quickly and efficiently identify when and what set of paths should be used. Unfortunately, the burden of finding the optimal solution for the network updating process in each given time interval is high since the computation complexity of optimization approaches using linear programming increases significantly as the size of the network increases. In this paper, we use deep reinforcement learning to derive a data-driven algorithm that does the path selection in the network considering the overhead of route computation and path updates. Our proposed scheme leverages information about past network behavior to identify a set of robust paths to be used for multiple future time intervals to avoid the overhead of updating the forwarding behavior of routers frequently. We compare the results of our approach to other traffic engineering solutions through extensive simulations across real network topologies. Our results demonstrate that our scheme fares well by a factor of 40% with respect to reducing link utilization compared to traditional TE schemes such as ECMP. Our scheme provides a slightly higher link utilization (around 25%) compared to schemes that only minimize link utilization and do not care about path updating overhead. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.11155v2-abstract-full').style.display = 'none'; document.getElementById('2212.11155v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.01784">arXiv:2212.01784</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.01784">pdf</a>, <a href="https://arxiv.org/format/2212.01784">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Performance">cs.PF</span> </div> </div> <p class="title is-5 mathjax"> On the Analysis of a Multipartite Entanglement Distribution Switch </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Nain%2C+P">Philippe Nain</a>, <a href="/search/cs?searchtype=author&amp;query=Vardoyan%2C+G">Gayane Vardoyan</a>, <a href="/search/cs?searchtype=author&amp;query=Guha%2C+S">Saikat Guha</a>, <a href="/search/cs?searchtype=author&amp;query=Towsley%2C+D">Don Towsley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.01784v1-abstract-short" style="display: inline;"> We study a quantum switch that distributes maximally entangled multipartite states to sets of users. The entanglement switching process requires two steps: first, each user attempts to generate bipartite entanglement between itself and the switch; and second, the switch performs local operations and a measurement to create multipartite entanglement for a set of users. In this work, we study a simp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.01784v1-abstract-full').style.display = 'inline'; document.getElementById('2212.01784v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.01784v1-abstract-full" style="display: none;"> We study a quantum switch that distributes maximally entangled multipartite states to sets of users. The entanglement switching process requires two steps: first, each user attempts to generate bipartite entanglement between itself and the switch; and second, the switch performs local operations and a measurement to create multipartite entanglement for a set of users. In this work, we study a simple variant of this system, wherein the switch has infinite memory and the links that connect the users to the switch are identical. Further, we assume that all quantum states, if generated successfully, have perfect fidelity and that decoherence is negligible. This problem formulation is of interest to several distributed quantum applications, while the technical aspects of this work result in new contributions within queueing theory. Via extensive use of Lyapunov functions, we derive necessary and sufficient conditions for the stability of the system and closed-form expressions for the switch capacity and the expected number of qubits in memory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.01784v1-abstract-full').style.display = 'none'; document.getElementById('2212.01784v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.01694">arXiv:2212.01694</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.01694">pdf</a>, <a href="https://arxiv.org/format/2212.01694">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Performance">cs.PF</span> </div> </div> <p class="title is-5 mathjax"> A Quantum Overlay Network for Efficient Entanglement Distribution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Pouryousef%2C+S">Shahrooz Pouryousef</a>, <a href="/search/cs?searchtype=author&amp;query=Panigrahy%2C+N+K">Nitish K. Panigrahy</a>, <a href="/search/cs?searchtype=author&amp;query=Towsley%2C+D">Don Towsley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.01694v1-abstract-short" style="display: inline;"> Distributing quantum entanglements over long distances is essential for the realization of a global scale quantum Internet. Most of the prior work and proposals assume an on-demand distribution of entanglements which may result in significant network resource under-utilization. In this work, we introduce Quantum Overlay Networks (QONs) for efficient entanglement distribution in quantum networks. W&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.01694v1-abstract-full').style.display = 'inline'; document.getElementById('2212.01694v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.01694v1-abstract-full" style="display: none;"> Distributing quantum entanglements over long distances is essential for the realization of a global scale quantum Internet. Most of the prior work and proposals assume an on-demand distribution of entanglements which may result in significant network resource under-utilization. In this work, we introduce Quantum Overlay Networks (QONs) for efficient entanglement distribution in quantum networks. When the demand to create end-to-end user entanglements is low, QONs can generate and store maximally entangled Bell pairs (EPR pairs) at specific overlay storage nodes of the network. Later, during peak demands, requests can be served by performing entanglement swaps either over a direct path from the network or over a path using the storage nodes. We solve the link entanglement and storage resource allocation problem in such a QON using a centralized optimization framework. We evaluate the performance of our proposed QON architecture over a wide number of network topologies under various settings using extensive simulation experiments. Our results demonstrate that QONs fare well by a factor of 40% with respect to meeting surge and changing demands compared to traditional non-overlay proposals. QONs also show significant improvement in terms of average entanglement request service delay over non-overlay approaches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.01694v1-abstract-full').style.display = 'none'; document.getElementById('2212.01694v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.01463">arXiv:2212.01463</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.01463">pdf</a>, <a href="https://arxiv.org/format/2212.01463">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Performance">cs.PF</span> </div> </div> <p class="title is-5 mathjax"> On the Capacity Region of a Quantum Switch with Entanglement Purification </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Panigrahy%2C+N+K">Nitish K. Panigrahy</a>, <a href="/search/cs?searchtype=author&amp;query=Vasantam%2C+T">Thirupathaiah Vasantam</a>, <a href="/search/cs?searchtype=author&amp;query=Towsley%2C+D">Don Towsley</a>, <a href="/search/cs?searchtype=author&amp;query=Tassiulas%2C+L">Leandros Tassiulas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.01463v1-abstract-short" style="display: inline;"> Quantum switches are envisioned to be an integral component of future entanglement distribution networks. They can provide high quality entanglement distribution service to end-users by performing quantum operations such as entanglement swapping and entanglement purification. In this work, we characterize the capacity region of such a quantum switch under noisy channel transmissions and imperfect&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.01463v1-abstract-full').style.display = 'inline'; document.getElementById('2212.01463v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.01463v1-abstract-full" style="display: none;"> Quantum switches are envisioned to be an integral component of future entanglement distribution networks. They can provide high quality entanglement distribution service to end-users by performing quantum operations such as entanglement swapping and entanglement purification. In this work, we characterize the capacity region of such a quantum switch under noisy channel transmissions and imperfect quantum operations. We express the capacity region as a function of the channel and network parameters (link and entanglement swap success probability), entanglement purification yield and application level parameters (target fidelity threshold). In particular, we provide necessary conditions to verify if a set of request rates belong to the capacity region of the switch. We use these conditions to find the maximum achievable end-to-end user entanglement generation throughput by solving a set of linear optimization problems. We develop a max-weight scheduling policy and prove that the policy stabilizes the switch for all feasible request arrival rates. As we develop scheduling policies, we also generate new results for computing the conditional yield distribution of different classes of purification protocols. From numerical experiments, we discover that performing link-level entanglement purification followed by entanglement swaps provides a larger capacity region than doing entanglement swaps followed by end-to-end entanglement purification. The conclusions obtained in this work can yield useful guidelines for subsequent quantum switch designs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.01463v1-abstract-full').style.display = 'none'; document.getElementById('2212.01463v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures, accepted for a talk at the IEEE International Conference on Computer Communications (INFOCOM), 2023</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.11934">arXiv:2209.11934</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.11934">pdf</a>, <a href="https://arxiv.org/ps/2209.11934">ps</a>, <a href="https://arxiv.org/format/2209.11934">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Data Structures and Algorithms">cs.DS</span> </div> </div> <p class="title is-5 mathjax"> The Online Knapsack Problem with Departures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Sun%2C+B">Bo Sun</a>, <a href="/search/cs?searchtype=author&amp;query=Yang%2C+L">Lin Yang</a>, <a href="/search/cs?searchtype=author&amp;query=Hajiesmaili%2C+M">Mohammad Hajiesmaili</a>, <a href="/search/cs?searchtype=author&amp;query=Wierman%2C+A">Adam Wierman</a>, <a href="/search/cs?searchtype=author&amp;query=Lui%2C+J+C+S">John C. S. Lui</a>, <a href="/search/cs?searchtype=author&amp;query=Towsley%2C+D">Don Towsley</a>, <a href="/search/cs?searchtype=author&amp;query=Tsang%2C+D+H+K">Danny H. K. Tsang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.11934v3-abstract-short" style="display: inline;"> The online knapsack problem is a classic online resource allocation problem in networking and operations research. Its basic version studies how to pack online arriving items of different sizes and values into a capacity-limited knapsack. In this paper, we study a general version that includes item departures, while also considering multiple knapsacks and multi-dimensional item sizes. We design a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.11934v3-abstract-full').style.display = 'inline'; document.getElementById('2209.11934v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.11934v3-abstract-full" style="display: none;"> The online knapsack problem is a classic online resource allocation problem in networking and operations research. Its basic version studies how to pack online arriving items of different sizes and values into a capacity-limited knapsack. In this paper, we study a general version that includes item departures, while also considering multiple knapsacks and multi-dimensional item sizes. We design a threshold-based online algorithm and prove that the algorithm can achieve order-optimal competitive ratios. Beyond worst-case performance guarantees, we also aim to achieve near-optimal average performance under typical instances. Towards this goal, we propose a data-driven online algorithm that learns within a policy-class that guarantees a worst-case performance bound. In trace-driven experiments, we show that our data-driven algorithm outperforms other benchmark algorithms in an application of online knapsack to job scheduling for cloud computing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.11934v3-abstract-full').style.display = 'none'; document.getElementById('2209.11934v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.03205">arXiv:2206.03205</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.03205">pdf</a>, <a href="https://arxiv.org/format/2206.03205">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Performance">cs.PF</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.2616950">10.1117/12.2616950 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Throughput Optimal Scheduling Policy for a Quantum Switch </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Vasantam%2C+T">Thirupathaiah Vasantam</a>, <a href="/search/cs?searchtype=author&amp;query=Towsley%2C+D">Don Towsley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.03205v1-abstract-short" style="display: inline;"> We study a quantum switch that creates shared end-to-end entangled quantum states to multiple sets of users that are connected to it. Each user is connected to the switch via an optical link across which bipartite Bell-state entangled states are generated in each time-slot with certain probabilities, and the switch merges entanglements of links to create end-to-end entanglements for users. One qub&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.03205v1-abstract-full').style.display = 'inline'; document.getElementById('2206.03205v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.03205v1-abstract-full" style="display: none;"> We study a quantum switch that creates shared end-to-end entangled quantum states to multiple sets of users that are connected to it. Each user is connected to the switch via an optical link across which bipartite Bell-state entangled states are generated in each time-slot with certain probabilities, and the switch merges entanglements of links to create end-to-end entanglements for users. One qubit of an entanglement of a link is stored at the switch and the other qubit of the entanglement is stored at the user corresponding to the link. Assuming that qubits of entanglements of links decipher after one time-slot, we characterize the capacity region, which is defined as the set of arrival rates of requests for end-to-end entanglements for which there exists a scheduling policy that stabilizes the switch. We propose a Max-Weight scheduling policy and show that it stabilizes the switch for all arrival rates that lie in the capacity region. We also provide numerical results to support our analysis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.03205v1-abstract-full').style.display = 'none'; document.getElementById('2206.03205v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: text overlap with arXiv:2106.00831</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> C.2; C.4 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proc. SPIE 12015, Quantum Computing, Communication, and Simulation II, 1201505 (1 March 2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.00111">arXiv:2206.00111</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.00111">pdf</a>, <a href="https://arxiv.org/ps/2206.00111">ps</a>, <a href="https://arxiv.org/format/2206.00111">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> To Collaborate or Not in Distributed Statistical Estimation with Resource Constraints? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Chen%2C+Y+J">Yu-Zhen Janice Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Menasche%2C+D+S">Daniel S. Menasche</a>, <a href="/search/cs?searchtype=author&amp;query=Towsley%2C+D">Don Towsley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.00111v1-abstract-short" style="display: inline;"> We study how the amount of correlation between observations collected by distinct sensors/learners affects data collection and collaboration strategies by analyzing Fisher information and the Cramer-Rao bound. In particular, we consider a simple setting wherein two sensors sample from a bivariate Gaussian distribution, which already motivates the adoption of various strategies, depending on the co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.00111v1-abstract-full').style.display = 'inline'; document.getElementById('2206.00111v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.00111v1-abstract-full" style="display: none;"> We study how the amount of correlation between observations collected by distinct sensors/learners affects data collection and collaboration strategies by analyzing Fisher information and the Cramer-Rao bound. In particular, we consider a simple setting wherein two sensors sample from a bivariate Gaussian distribution, which already motivates the adoption of various strategies, depending on the correlation between the two variables and resource constraints. We identify two particular scenarios: (1) where the knowledge of the correlation between samples cannot be leveraged for collaborative estimation purposes and (2) where the optimal data collection strategy involves investing scarce resources to collaboratively sample and transfer information that is not of immediate interest and whose statistics are already known, with the sole goal of increasing the confidence on an estimate of the parameter of interest. We discuss two applications, IoT DDoS attack detection and distributed estimation in wireless sensor networks, that may benefit from our results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.00111v1-abstract-full').style.display = 'none'; document.getElementById('2206.00111v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">2021 55th Annual Conference on Information Sciences and Systems (CISS)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.12354">arXiv:2205.12354</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.12354">pdf</a>, <a href="https://arxiv.org/format/2205.12354">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> </div> </div> <p class="title is-5 mathjax"> Optimal Entanglement Distribution using Satellite Based Quantum Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Panigrahy%2C+N+K">Nitish K. Panigrahy</a>, <a href="/search/cs?searchtype=author&amp;query=Dhara%2C+P">Prajit Dhara</a>, <a href="/search/cs?searchtype=author&amp;query=Towsley%2C+D">Don Towsley</a>, <a href="/search/cs?searchtype=author&amp;query=Guha%2C+S">Saikat Guha</a>, <a href="/search/cs?searchtype=author&amp;query=Tassiulas%2C+L">Leandros Tassiulas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.12354v2-abstract-short" style="display: inline;"> Recent technological advancements in satellite based quantum communication has made it a promising technology for realizing global scale quantum networks. Due to better loss distance scaling compared to ground based fiber communication, satellite quantum communication can distribute high quality quantum entanglements among ground stations that are geographically separated at very long distances. T&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.12354v2-abstract-full').style.display = 'inline'; document.getElementById('2205.12354v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.12354v2-abstract-full" style="display: none;"> Recent technological advancements in satellite based quantum communication has made it a promising technology for realizing global scale quantum networks. Due to better loss distance scaling compared to ground based fiber communication, satellite quantum communication can distribute high quality quantum entanglements among ground stations that are geographically separated at very long distances. This work focuses on optimal distribution of bipartite entanglements to a set of pair of ground stations using a constellation of orbiting satellites. In particular, we characterize the optimal satellite-to-ground station transmission scheduling policy with respect to the aggregate entanglement distribution rate subject to various resource constraints at the satellites and ground stations. We cast the optimal transmission scheduling problem as an integer linear programming problem and solve it efficiently for some specific scenarios. Our framework can also be used as a benchmark tool to measure the performance of other potential transmission scheduling policies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.12354v2-abstract-full').style.display = 'none'; document.getElementById('2205.12354v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.09353">arXiv:2201.09353</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.09353">pdf</a>, <a href="https://arxiv.org/format/2201.09353">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> </div> </div> <p class="title is-5 mathjax"> Distributed Bandits with Heterogeneous Agents </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Yang%2C+L">Lin Yang</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+Y+J">Yu-zhen Janice Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Hajiesmaili%2C+M">Mohammad Hajiesmaili</a>, <a href="/search/cs?searchtype=author&amp;query=Lui%2C+J+C">John CS Lui</a>, <a href="/search/cs?searchtype=author&amp;query=Towsley%2C+D">Don Towsley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.09353v2-abstract-short" style="display: inline;"> This paper tackles a multi-agent bandit setting where $M$ agents cooperate together to solve the same instance of a $K$-armed stochastic bandit problem. The agents are \textit{heterogeneous}: each agent has limited access to a local subset of arms and the agents are asynchronous with different gaps between decision-making rounds. The goal for each agent is to find its optimal local arm, and agents&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.09353v2-abstract-full').style.display = 'inline'; document.getElementById('2201.09353v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.09353v2-abstract-full" style="display: none;"> This paper tackles a multi-agent bandit setting where $M$ agents cooperate together to solve the same instance of a $K$-armed stochastic bandit problem. The agents are \textit{heterogeneous}: each agent has limited access to a local subset of arms and the agents are asynchronous with different gaps between decision-making rounds. The goal for each agent is to find its optimal local arm, and agents can cooperate by sharing their observations with others. While cooperation between agents improves the performance of learning, it comes with an additional complexity of communication between agents. For this heterogeneous multi-agent setting, we propose two learning algorithms, \ucbo and \AAE. We prove that both algorithms achieve order-optimal regret, which is $O\left(\sum_{i:\tilde螖_i&gt;0} \log T/\tilde螖_i\right)$, where $\tilde螖_i$ is the minimum suboptimality gap between the reward mean of arm $i$ and any local optimal arm. In addition, a careful selection of the valuable information for cooperation, \AAE achieves a low communication complexity of $O(\log T)$. Last, numerical experiments verify the efficiency of both algorithms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.09353v2-abstract-full').style.display = 'none'; document.getElementById('2201.09353v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.10994">arXiv:2111.10994</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.10994">pdf</a>, <a href="https://arxiv.org/ps/2111.10994">ps</a>, <a href="https://arxiv.org/format/2111.10994">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> </div> </div> <p class="title is-5 mathjax"> Entanglement Swapping for Repeater Chains with Finite Memory Sizes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Dai%2C+W">Wenhan Dai</a>, <a href="/search/cs?searchtype=author&amp;query=Towsley%2C+D">Don Towsley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.10994v1-abstract-short" style="display: inline;"> We develop entanglement swapping protocols and memory allocation methods for quantum repeater chains. Unlike most of the existing studies, the memory size of each quantum repeater in this work is a parameter that can be optimized. Based on Markov chain modeling of the entanglement distribution process, we determine the trade-off between the entanglement distribution rate and the memory size for te&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.10994v1-abstract-full').style.display = 'inline'; document.getElementById('2111.10994v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.10994v1-abstract-full" style="display: none;"> We develop entanglement swapping protocols and memory allocation methods for quantum repeater chains. Unlike most of the existing studies, the memory size of each quantum repeater in this work is a parameter that can be optimized. Based on Markov chain modeling of the entanglement distribution process, we determine the trade-off between the entanglement distribution rate and the memory size for temporal multiplexing techniques. We then propose three memory allocation methods that achieve entanglement distribution rates decaying polynomially with respect to the distance while using constant average memory slots per node. We also quantify the average number of memory slots required due to classical communication delay, as well as the delay of entanglement distribution. Our results show that a moderate memory size suffices to achieve a polynomial decay of entanglement distribution rate with respect to the distance, which is the scaling achieved by the optimal protocol even with infinite memory size at each node. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.10994v1-abstract-full').style.display = 'none'; document.getElementById('2111.10994v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.04116">arXiv:2110.04116</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.04116">pdf</a>, <a href="https://arxiv.org/ps/2110.04116">ps</a>, <a href="https://arxiv.org/format/2110.04116">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> </div> </div> <p class="title is-5 mathjax"> Entanglement Swapping in Quantum Switches: Protocol Design and Stability Analysis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Dai%2C+W">Wenhan Dai</a>, <a href="/search/cs?searchtype=author&amp;query=Rinaldi%2C+A">Anthony Rinaldi</a>, <a href="/search/cs?searchtype=author&amp;query=Towsley%2C+D">Don Towsley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.04116v2-abstract-short" style="display: inline;"> Quantum switches are critical components in quantum networks, distributing maximally entangled pairs among end nodes by entanglement swapping. In this work, we design protocols that schedule entanglement swapping operations in quantum switches. Entanglement requests randomly arrive at the switch, and the goal of an entanglement swapping protocol is to stabilize the quantum switch so that the numbe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.04116v2-abstract-full').style.display = 'inline'; document.getElementById('2110.04116v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.04116v2-abstract-full" style="display: none;"> Quantum switches are critical components in quantum networks, distributing maximally entangled pairs among end nodes by entanglement swapping. In this work, we design protocols that schedule entanglement swapping operations in quantum switches. Entanglement requests randomly arrive at the switch, and the goal of an entanglement swapping protocol is to stabilize the quantum switch so that the number of unfinished entanglement requests is bounded with a high probability. We determine the capacity region for the rates of entanglement requests and develop entanglement swapping protocols to stabilize the switch. Among these protocols, the on-demand protocols are not only computationally efficient, but also achieve high fidelity and low latency demonstrated by results obtained using a quantum network discrete event simulator. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.04116v2-abstract-full').style.display = 'none'; document.getElementById('2110.04116v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.07362">arXiv:2108.07362</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.07362">pdf</a>, <a href="https://arxiv.org/format/2108.07362">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> </div> </div> <p class="title is-5 mathjax"> A Game-Theoretic Approach to Self-Stabilization with Selfish Agents </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Ramtin%2C+A+R">Amir Reza Ramtin</a>, <a href="/search/cs?searchtype=author&amp;query=Towsley%2C+D">Don Towsley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.07362v3-abstract-short" style="display: inline;"> Self-stabilization is an excellent approach for adding fault tolerance to a distributed multi-agent system. However, two properties of self-stabilization theory, convergence and closure, may not be satisfied if agents are selfish. To guarantee convergence, we formulate the problem as a stochastic Bayesian game and introduce probabilistic self-stabilization to adjust the probabilities of rules with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.07362v3-abstract-full').style.display = 'inline'; document.getElementById('2108.07362v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.07362v3-abstract-full" style="display: none;"> Self-stabilization is an excellent approach for adding fault tolerance to a distributed multi-agent system. However, two properties of self-stabilization theory, convergence and closure, may not be satisfied if agents are selfish. To guarantee convergence, we formulate the problem as a stochastic Bayesian game and introduce probabilistic self-stabilization to adjust the probabilities of rules with behavior strategies. This satisfies agents&#39; self-interests such that no agent deviates the rules. To guarantee closure in the presence of selfish agents, we propose fault-containment as a method to constrain legitimate configurations of the self-stabilizing system to be Nash equilibria. We also assume selfish agents as capable of performing unauthorized actions at any time, which threatens both properties, and present a stepwise solution to handle it. As a case study, we consider the problem of distributed clustering and propose five self-stabilizing algorithms for forming clusters. Simulation results show that our algorithms react correctly to rule deviations and outperform comparable schemes in terms of fairness and stabilization time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.07362v3-abstract-full').style.display = 'none'; document.getElementById('2108.07362v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.06457">arXiv:2106.06457</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.06457">pdf</a>, <a href="https://arxiv.org/format/2106.06457">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Performance">cs.PF</span> </div> </div> <p class="title is-5 mathjax"> A New Upper Bound on Cache Hit Probability for Non-anticipative Caching Policies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Panigrahy%2C+N+K">Nitish K. Panigrahy</a>, <a href="/search/cs?searchtype=author&amp;query=Nain%2C+P">Philippe Nain</a>, <a href="/search/cs?searchtype=author&amp;query=Neglia%2C+G">Giovanni Neglia</a>, <a href="/search/cs?searchtype=author&amp;query=Towsley%2C+D">Don Towsley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.06457v1-abstract-short" style="display: inline;"> Caching systems have long been crucial for improving the performance of a wide variety of network and web based online applications. In such systems, end-to-end application performance heavily depends on the fraction of objects transferred from the cache, also known as the cache hit probability. Many caching policies have been proposed and implemented to improve the hit probability. In this work,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.06457v1-abstract-full').style.display = 'inline'; document.getElementById('2106.06457v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.06457v1-abstract-full" style="display: none;"> Caching systems have long been crucial for improving the performance of a wide variety of network and web based online applications. In such systems, end-to-end application performance heavily depends on the fraction of objects transferred from the cache, also known as the cache hit probability. Many caching policies have been proposed and implemented to improve the hit probability. In this work, we propose a new method to compute an upper bound on hit probability for all non-anticipative caching policies, i.e., for policies that have no knowledge of future requests. Our key insight is to order the objects according to the ratio of their Hazard Rate (HR) function values to their sizes and place in the cache the objects with the largest ratios till the cache capacity is exhausted. Under some statistical assumptions, we prove that our proposed HR to size ratio based ordering model computes the maximum achievable hit probability and serves as an upper bound for all non-anticipative caching policies. We derive closed form expressions for the upper bound under some specific object request arrival processes. We also provide simulation results to validate its correctness and to compare it to the state-of-the-art upper bounds. We find it to be tighter than state-of-the-art upper bounds for a variety of object request arrival processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.06457v1-abstract-full').style.display = 'none'; document.getElementById('2106.06457v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">IFIP WG 7.3 Performance</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.00831">arXiv:2106.00831</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.00831">pdf</a>, <a href="https://arxiv.org/ps/2106.00831">ps</a>, <a href="https://arxiv.org/format/2106.00831">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Performance">cs.PF</span> </div> </div> <p class="title is-5 mathjax"> Stability Analysis of a Quantum Network with Max-Weight Scheduling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Vasantam%2C+T">Thirupathaiah Vasantam</a>, <a href="/search/cs?searchtype=author&amp;query=Towsley%2C+D">Don Towsley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.00831v1-abstract-short" style="display: inline;"> We study a quantum network that distributes entangled quantum states to multiple sets of users that are connected to the network. Each user is connected to a switch of the network via a link. All the links of the network generate bipartite Bell-state entangled states in each time-slot with certain probabilities, and each end node stores one qubit of the entanglement generated by the link. To creat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.00831v1-abstract-full').style.display = 'inline'; document.getElementById('2106.00831v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.00831v1-abstract-full" style="display: none;"> We study a quantum network that distributes entangled quantum states to multiple sets of users that are connected to the network. Each user is connected to a switch of the network via a link. All the links of the network generate bipartite Bell-state entangled states in each time-slot with certain probabilities, and each end node stores one qubit of the entanglement generated by the link. To create shared entanglements for a set of users, measurement operations are performed on qubits of link-level entanglements on a set of related links, and these operations are probabilistic in nature and are successful with certain probabilities. Requests arrive to the system seeking shared entanglements for different sets of users. Each request is for the creation of shared entanglements for a fixed set of users using link-level entanglements on a fixed set of links. Requests are processed according to First-Come-First-Served service discipline and unserved requests are stored in buffers. Once a request is selected for service, measurement operations are performed on qubits of link-level entanglements on related links to create a shared entanglement. For given set of request arrival rates and link-level entanglement generation rates, we obtain necessary conditions for the stability of queues of requests. In each time-slot, the scheduler has to schedule entanglement swapping operations for different sets of users to stabilize the network. Next, we propose a Max-Weight scheduling policy and show that this policy stabilizes the network for all feasible arrival rates. We also provide numerical results to support our analysis. The analysis of a single quantum switch that creates multipartite entanglements for different sets of users is a special case of our work. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.00831v1-abstract-full').style.display = 'none'; document.getElementById('2106.00831v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.00918">arXiv:2102.00918</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.00918">pdf</a>, <a href="https://arxiv.org/format/2102.00918">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> </div> <p class="title is-5 mathjax"> Robust Adversarial Attacks Against DNN-Based Wireless Communication Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Bahramali%2C+A">Alireza Bahramali</a>, <a href="/search/cs?searchtype=author&amp;query=Nasr%2C+M">Milad Nasr</a>, <a href="/search/cs?searchtype=author&amp;query=Houmansadr%2C+A">Amir Houmansadr</a>, <a href="/search/cs?searchtype=author&amp;query=Goeckel%2C+D">Dennis Goeckel</a>, <a href="/search/cs?searchtype=author&amp;query=Towsley%2C+D">Don Towsley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.00918v1-abstract-short" style="display: inline;"> Deep Neural Networks (DNNs) have become prevalent in wireless communication systems due to their promising performance. However, similar to other DNN-based applications, they are vulnerable to adversarial examples. In this work, we propose an input-agnostic, undetectable, and robust adversarial attack against DNN-based wireless communication systems in both white-box and black-box scenarios. We de&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.00918v1-abstract-full').style.display = 'inline'; document.getElementById('2102.00918v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.00918v1-abstract-full" style="display: none;"> Deep Neural Networks (DNNs) have become prevalent in wireless communication systems due to their promising performance. However, similar to other DNN-based applications, they are vulnerable to adversarial examples. In this work, we propose an input-agnostic, undetectable, and robust adversarial attack against DNN-based wireless communication systems in both white-box and black-box scenarios. We design tailored Universal Adversarial Perturbations (UAPs) to perform the attack. We also use a Generative Adversarial Network (GAN) to enforce an undetectability constraint for our attack. Furthermore, we investigate the robustness of our attack against countermeasures. We show that in the presence of defense mechanisms deployed by the communicating parties, our attack performs significantly better compared to existing attacks against DNN-based wireless systems. In particular, the results demonstrate that even when employing well-considered defenses, DNN-based wireless communications are vulnerable to adversarial attacks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.00918v1-abstract-full').style.display = 'none'; document.getElementById('2102.00918v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.01081">arXiv:2101.01081</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.01081">pdf</a>, <a href="https://arxiv.org/ps/2101.01081">ps</a>, <a href="https://arxiv.org/format/2101.01081">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> </div> </div> <p class="title is-5 mathjax"> Additive Link Metrics Identification: Proof of Selected Lemmas and Propositions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Ma%2C+L">Liang Ma</a>, <a href="/search/cs?searchtype=author&amp;query=He%2C+T">Ting He</a>, <a href="/search/cs?searchtype=author&amp;query=Leung%2C+K+K">Kin K. Leung</a>, <a href="/search/cs?searchtype=author&amp;query=Towsley%2C+D">Don Towsley</a>, <a href="/search/cs?searchtype=author&amp;query=Swami%2C+A">Ananthram Swami</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.01081v1-abstract-short" style="display: inline;"> This is a technical report, containing all the lemma and proposition proofs in paper &#34;Topological Constraints on Identifying Additive Link Metrics via End-to-end Paths Measurements&#34; by Liang Ma, Ting He, Kin K. Leung, Don Towsley, and Ananthram Swami, published in Annual Conference of The International Technology Alliance (ACITA), 2012. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.01081v1-abstract-full" style="display: none;"> This is a technical report, containing all the lemma and proposition proofs in paper &#34;Topological Constraints on Identifying Additive Link Metrics via End-to-end Paths Measurements&#34; by Liang Ma, Ting He, Kin K. Leung, Don Towsley, and Ananthram Swami, published in Annual Conference of The International Technology Alliance (ACITA), 2012. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.01081v1-abstract-full').style.display = 'none'; document.getElementById('2101.01081v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: substantial text overlap with arXiv:2012.12190</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.00082">arXiv:2101.00082</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.00082">pdf</a>, <a href="https://arxiv.org/format/2101.00082">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Bosonic Random Walk Networks for Graph Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Shankar%2C+S">Shiv Shankar</a>, <a href="/search/cs?searchtype=author&amp;query=Towsley%2C+D">Don Towsley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.00082v1-abstract-short" style="display: inline;"> The development of Graph Neural Networks (GNNs) has led to great progress in machine learning on graph-structured data. These networks operate via diffusing information across the graph nodes while capturing the structure of the graph. Recently there has also seen tremendous progress in quantum computing techniques. In this work, we explore applications of multi-particle quantum walks on diffusing&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.00082v1-abstract-full').style.display = 'inline'; document.getElementById('2101.00082v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.00082v1-abstract-full" style="display: none;"> The development of Graph Neural Networks (GNNs) has led to great progress in machine learning on graph-structured data. These networks operate via diffusing information across the graph nodes while capturing the structure of the graph. Recently there has also seen tremendous progress in quantum computing techniques. In this work, we explore applications of multi-particle quantum walks on diffusing information across graphs. Our model is based on learning the operators that govern the dynamics of quantum random walkers on graphs. We demonstrate the effectiveness of our method on classification and regression tasks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.00082v1-abstract-full').style.display = 'none'; document.getElementById('2101.00082v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.12191">arXiv:2012.12191</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.12191">pdf</a>, <a href="https://arxiv.org/ps/2012.12191">ps</a>, <a href="https://arxiv.org/format/2012.12191">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> </div> </div> <p class="title is-5 mathjax"> Efficient Identification of Additive Link Metrics: Theorem Proof and Evaluations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Ma%2C+L">Liang Ma</a>, <a href="/search/cs?searchtype=author&amp;query=He%2C+T">Ting He</a>, <a href="/search/cs?searchtype=author&amp;query=Leung%2C+K+K">Kin K. Leung</a>, <a href="/search/cs?searchtype=author&amp;query=Towsley%2C+D">Don Towsley</a>, <a href="/search/cs?searchtype=author&amp;query=Swami%2C+A">Ananthram Swami</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.12191v1-abstract-short" style="display: inline;"> This is a technical report, containing all the theorem proofs and additional evaluations in paper &#34;Efficient Identification of Additive Link Metrics via Network Tomography&#34; by Liang Ma, Ting He, Kin K. Leung, Don Towsley, and Ananthram Swami, published in IEEE ICDCS, 2013. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.12191v1-abstract-full" style="display: none;"> This is a technical report, containing all the theorem proofs and additional evaluations in paper &#34;Efficient Identification of Additive Link Metrics via Network Tomography&#34; by Liang Ma, Ting He, Kin K. Leung, Don Towsley, and Ananthram Swami, published in IEEE ICDCS, 2013. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.12191v1-abstract-full').style.display = 'none'; document.getElementById('2012.12191v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.12190">arXiv:2012.12190</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.12190">pdf</a>, <a href="https://arxiv.org/ps/2012.12190">ps</a>, <a href="https://arxiv.org/format/2012.12190">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> </div> </div> <p class="title is-5 mathjax"> Identification of Additive Link Metrics: Proof of Selected Theorems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Ma%2C+L">Liang Ma</a>, <a href="/search/cs?searchtype=author&amp;query=He%2C+T">Ting He</a>, <a href="/search/cs?searchtype=author&amp;query=Leung%2C+K+K">Kin K. Leung</a>, <a href="/search/cs?searchtype=author&amp;query=Swami%2C+A">Ananthram Swami</a>, <a href="/search/cs?searchtype=author&amp;query=Towsley%2C+D">Don Towsley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.12190v2-abstract-short" style="display: inline;"> This is a technical report, containing all the theorem proofs in the following two papers: (1) Liang Ma, Ting He, Kin K. Leung, Ananthram Swami, and Don Towsley, &#34;Identifiability of Link Metrics Based on End-to-end Path Measurements,&#34; in ACM IMC, 2013. (2) Liang Ma, Ting He, Kin K. Leung, Ananthram Swami, and Don Towsley, &#34;Inferring Link Metrics from End-to-end Path Measurements: Identifiability a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.12190v2-abstract-full').style.display = 'inline'; document.getElementById('2012.12190v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.12190v2-abstract-full" style="display: none;"> This is a technical report, containing all the theorem proofs in the following two papers: (1) Liang Ma, Ting He, Kin K. Leung, Ananthram Swami, and Don Towsley, &#34;Identifiability of Link Metrics Based on End-to-end Path Measurements,&#34; in ACM IMC, 2013. (2) Liang Ma, Ting He, Kin K. Leung, Ananthram Swami, and Don Towsley, &#34;Inferring Link Metrics from End-to-end Path Measurements: Identifiability and Monitor Placement,&#34; IEEE/ACM Transactions on Networking, vol. 22, no. 4, pp. 1351-1368, 2014. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.12190v2-abstract-full').style.display = 'none'; document.getElementById('2012.12190v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">References are updated</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.11378">arXiv:2012.11378</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.11378">pdf</a>, <a href="https://arxiv.org/ps/2012.11378">ps</a>, <a href="https://arxiv.org/format/2012.11378">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> </div> </div> <p class="title is-5 mathjax"> Partial Network Identifiability: Theorem Proof and Evaluation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Ma%2C+L">Liang Ma</a>, <a href="/search/cs?searchtype=author&amp;query=He%2C+T">Ting He</a>, <a href="/search/cs?searchtype=author&amp;query=Leung%2C+K+K">Kin K. Leung</a>, <a href="/search/cs?searchtype=author&amp;query=Swami%2C+A">Ananthram Swami</a>, <a href="/search/cs?searchtype=author&amp;query=Towsley%2C+D">Don Towsley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.11378v1-abstract-short" style="display: inline;"> This is a technical report, containing all the theorem proofs and additional evaluations in paper &#34;Monitor Placement for Maximal Identifiability in Network Tomography&#34; by Liang Ma, Ting He, Kin K. Leung, Ananthram Swami, Don Towsley, published in IEEE INFOCOM, 2014. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.11378v1-abstract-full" style="display: none;"> This is a technical report, containing all the theorem proofs and additional evaluations in paper &#34;Monitor Placement for Maximal Identifiability in Network Tomography&#34; by Liang Ma, Ting He, Kin K. Leung, Ananthram Swami, Don Towsley, published in IEEE INFOCOM, 2014. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.11378v1-abstract-full').style.display = 'none'; document.getElementById('2012.11378v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.09972">arXiv:2012.09972</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.09972">pdf</a>, <a href="https://arxiv.org/ps/2012.09972">ps</a>, <a href="https://arxiv.org/format/2012.09972">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> </div> </div> <p class="title is-5 mathjax"> Link Identifiability with Two Monitors: Proof of Selected Theorems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Ma%2C+L">Liang Ma</a>, <a href="/search/cs?searchtype=author&amp;query=He%2C+T">Ting He</a>, <a href="/search/cs?searchtype=author&amp;query=Leung%2C+K+K">Kin K. Leung</a>, <a href="/search/cs?searchtype=author&amp;query=Swami%2C+A">Ananthram Swami</a>, <a href="/search/cs?searchtype=author&amp;query=Towsley%2C+D">Don Towsley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.09972v2-abstract-short" style="display: inline;"> This is a technical report, containing all the theorem proofs in paper &#34;Link Identifiability in Communication Networks with Two Monitors&#34; by Liang Ma, Ting He, Kin K. Leung, Ananthram Swami, and Don Towsley, published in IEEE Globecom, 2013. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.09972v2-abstract-full" style="display: none;"> This is a technical report, containing all the theorem proofs in paper &#34;Link Identifiability in Communication Networks with Two Monitors&#34; by Liang Ma, Ting He, Kin K. Leung, Ananthram Swami, and Don Towsley, published in IEEE Globecom, 2013. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.09972v2-abstract-full').style.display = 'none'; document.getElementById('2012.09972v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Auxiliary algorithms are removed from this report as they exist in the main (IEEE Globecom&#39;13) paper. arXiv admin note: substantial text overlap with arXiv:2012.11378</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.09964">arXiv:2012.09964</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.09964">pdf</a>, <a href="https://arxiv.org/ps/2012.09964">ps</a>, <a href="https://arxiv.org/format/2012.09964">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> </div> </div> <p class="title is-5 mathjax"> Fundamental Theories in Node Failure Localization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Ma%2C+L">Liang Ma</a>, <a href="/search/cs?searchtype=author&amp;query=He%2C+T">Ting He</a>, <a href="/search/cs?searchtype=author&amp;query=Swami%2C+A">Ananthram Swami</a>, <a href="/search/cs?searchtype=author&amp;query=Towsley%2C+D">Don Towsley</a>, <a href="/search/cs?searchtype=author&amp;query=Leung%2C+K+K">Kin K. Leung</a>, <a href="/search/cs?searchtype=author&amp;query=Lowe%2C+J">Jessica Lowe</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.09964v1-abstract-short" style="display: inline;"> This is a technical report, containing all the theorem proofs in paper &#34;Node Failure Localization in Communication Networks via Network Tomography&#34; by Liang Ma, Ting He, Ananthram Swami, Don Towsley, Kin K. Leung, and Jessica Lowe, published in ITA Annual Fall Meeting, 2014. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.09964v1-abstract-full" style="display: none;"> This is a technical report, containing all the theorem proofs in paper &#34;Node Failure Localization in Communication Networks via Network Tomography&#34; by Liang Ma, Ting He, Ananthram Swami, Don Towsley, Kin K. Leung, and Jessica Lowe, published in ITA Annual Fall Meeting, 2014. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.09964v1-abstract-full').style.display = 'none'; document.getElementById('2012.09964v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: text overlap with arXiv:2012.09959</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.09959">arXiv:2012.09959</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.09959">pdf</a>, <a href="https://arxiv.org/ps/2012.09959">ps</a>, <a href="https://arxiv.org/format/2012.09959">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> </div> </div> <p class="title is-5 mathjax"> Failure Localization Capability: Theorem Proof and Evaluation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Ma%2C+L">Liang Ma</a>, <a href="/search/cs?searchtype=author&amp;query=He%2C+T">Ting He</a>, <a href="/search/cs?searchtype=author&amp;query=Swami%2C+A">Ananthram Swami</a>, <a href="/search/cs?searchtype=author&amp;query=Towsley%2C+D">Don Towsley</a>, <a href="/search/cs?searchtype=author&amp;query=Leung%2C+K+K">Kin K. Leung</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.09959v2-abstract-short" style="display: inline;"> This is a technical report, containing all the theorem proofs and additional evaluations in paper &#34;Network Capability in Localizing Node Failures via End-to-end Path Measurements&#34; by Liang Ma, Ting He, Ananthram Swami, Don Towsley, and Kin K. Leung, published in IEEE/ACM Transactions on Networking, vol. 25, no. 1, pp. 434-450, 2017. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.09959v2-abstract-full" style="display: none;"> This is a technical report, containing all the theorem proofs and additional evaluations in paper &#34;Network Capability in Localizing Node Failures via End-to-end Path Measurements&#34; by Liang Ma, Ting He, Ananthram Swami, Don Towsley, and Kin K. Leung, published in IEEE/ACM Transactions on Networking, vol. 25, no. 1, pp. 434-450, 2017. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.09959v2-abstract-full').style.display = 'none'; document.getElementById('2012.09959v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Updated references</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.09381">arXiv:2012.09381</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.09381">pdf</a>, <a href="https://arxiv.org/ps/2012.09381">ps</a>, <a href="https://arxiv.org/format/2012.09381">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> </div> </div> <p class="title is-5 mathjax"> Node Failure Localization: Theorem Proof </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Ma%2C+L">Liang Ma</a>, <a href="/search/cs?searchtype=author&amp;query=He%2C+T">Ting He</a>, <a href="/search/cs?searchtype=author&amp;query=Swami%2C+A">Ananthram Swami</a>, <a href="/search/cs?searchtype=author&amp;query=Towsley%2C+D">Don Towsley</a>, <a href="/search/cs?searchtype=author&amp;query=Leung%2C+K+K">Kin K. Leung</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.09381v1-abstract-short" style="display: inline;"> This is a technical report, containing all the theorem proofs in paper &#34;On Optimal Monitor Placement for Localizing Node Failures via Network Tomography&#34; by Liang Ma, Ting He, Ananthram Swami, Don Towsley, and Kin K. Leung, published in IFIP WG 7.3 Performance, 2015. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.09381v1-abstract-full" style="display: none;"> This is a technical report, containing all the theorem proofs in paper &#34;On Optimal Monitor Placement for Localizing Node Failures via Network Tomography&#34; by Liang Ma, Ting He, Ananthram Swami, Don Towsley, and Kin K. Leung, published in IFIP WG 7.3 Performance, 2015. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.09381v1-abstract-full').style.display = 'none'; document.getElementById('2012.09381v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.06767">arXiv:2011.06767</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.06767">pdf</a>, <a href="https://arxiv.org/format/2011.06767">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Data Structures and Algorithms">cs.DS</span> </div> </div> <p class="title is-5 mathjax"> Matching through Embedding in Dense Graphs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Panigrahy%2C+N+K">Nitish K. Panigrahy</a>, <a href="/search/cs?searchtype=author&amp;query=Basu%2C+P">Prithwish Basu</a>, <a href="/search/cs?searchtype=author&amp;query=Towsley%2C+D">Don Towsley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.06767v1-abstract-short" style="display: inline;"> Finding optimal matchings in dense graphs is of general interest and of particular importance in social, transportation and biological networks. While developing optimal solutions for various matching problems is important, the running times of the fastest available optimal matching algorithms are too costly. However, when the vertices of the graphs are point-sets in $R^d$ and edge weights corresp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.06767v1-abstract-full').style.display = 'inline'; document.getElementById('2011.06767v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.06767v1-abstract-full" style="display: none;"> Finding optimal matchings in dense graphs is of general interest and of particular importance in social, transportation and biological networks. While developing optimal solutions for various matching problems is important, the running times of the fastest available optimal matching algorithms are too costly. However, when the vertices of the graphs are point-sets in $R^d$ and edge weights correspond to the euclidean distances, the available optimal matching algorithms are substantially faster. In this paper, we propose a novel network embedding based heuristic algorithm to solve various matching problems in dense graphs. In particular, using existing network embedding techniques, we first find a low dimensional representation of the graph vertices in $R^d$ and then run faster available matching algorithms on the embedded vertices. To the best of our knowledge, this is the first work that applies network embedding to solve various matching problems. Experimental results validate the efficacy of our proposed algorithm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.06767v1-abstract-full').style.display = 'none'; document.getElementById('2011.06767v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.05716">arXiv:2011.05716</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.05716">pdf</a>, <a href="https://arxiv.org/format/2011.05716">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Filtered Manifold Alignment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Dernbach%2C+S">Stefan Dernbach</a>, <a href="/search/cs?searchtype=author&amp;query=Towsley%2C+D">Don Towsley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.05716v1-abstract-short" style="display: inline;"> Domain adaptation is an essential task in transfer learning to leverage data in one domain to bolster learning in another domain. In this paper, we present a new semi-supervised manifold alignment technique based on a two-step approach of projecting and filtering the source and target domains to low dimensional spaces followed by joining the two spaces. Our proposed approach, filtered manifold ali&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.05716v1-abstract-full').style.display = 'inline'; document.getElementById('2011.05716v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.05716v1-abstract-full" style="display: none;"> Domain adaptation is an essential task in transfer learning to leverage data in one domain to bolster learning in another domain. In this paper, we present a new semi-supervised manifold alignment technique based on a two-step approach of projecting and filtering the source and target domains to low dimensional spaces followed by joining the two spaces. Our proposed approach, filtered manifold alignment (FMA), reduces the computational complexity of previous manifold alignment techniques, is flexible enough to align domains with completely disparate sets of feature and demonstrates state-of-the-art classification accuracy on multiple benchmark domain adaptation tasks composed of classifying real world image datasets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.05716v1-abstract-full').style.display = 'none'; document.getElementById('2011.05716v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.04893">arXiv:2011.04893</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.04893">pdf</a>, <a href="https://arxiv.org/format/2011.04893">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Performance">cs.PF</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> </div> </div> <p class="title is-5 mathjax"> Resource Allocation in One-dimensional Distributed Service Networks with Applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Panigrahy%2C+N+K">Nitish K. Panigrahy</a>, <a href="/search/cs?searchtype=author&amp;query=Basu%2C+P">Prithwish Basu</a>, <a href="/search/cs?searchtype=author&amp;query=Nain%2C+P">Philippe Nain</a>, <a href="/search/cs?searchtype=author&amp;query=Towsley%2C+D">Don Towsley</a>, <a href="/search/cs?searchtype=author&amp;query=Swami%2C+A">Ananthram Swami</a>, <a href="/search/cs?searchtype=author&amp;query=Chan%2C+K+S">Kevin S. Chan</a>, <a href="/search/cs?searchtype=author&amp;query=Leung%2C+K+K">Kin K. Leung</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.04893v1-abstract-short" style="display: inline;"> We consider assignment policies that allocate resources to users, where both resources and users are located on a one-dimensional line. First, we consider unidirectional assignment policies that allocate resources only to users located to their left. We propose the Move to Right (MTR) policy, which scans from left to right assigning nearest rightmost available resource to a user, and contrast it t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.04893v1-abstract-full').style.display = 'inline'; document.getElementById('2011.04893v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.04893v1-abstract-full" style="display: none;"> We consider assignment policies that allocate resources to users, where both resources and users are located on a one-dimensional line. First, we consider unidirectional assignment policies that allocate resources only to users located to their left. We propose the Move to Right (MTR) policy, which scans from left to right assigning nearest rightmost available resource to a user, and contrast it to the Unidirectional Gale-Shapley (UGS) matching policy. While both policies among all unidirectional policies, minimize the expected distance traveled by a request (request distance), MTR is fairer. Moreover, we show that when user and resource locations are modeled by statistical point processes, and resources are allowed to satisfy more than one user, the spatial system under unidirectional policies can be mapped into bulk service queueing systems, thus allowing the application of many queueing theory results that yield closed form expressions. As we consider a case where different resources can satisfy different numbers of users, we also generate new results for bulk service queues. We also consider bidirectional policies where there are no directional restrictions on resource allocation and develop an algorithm for computing the optimal assignment which is more efficient than known algorithms in the literature when there are more resources than users. Numerical evaluation of performance of unidirectional and bidirectional allocation schemes yields design guidelines beneficial for resource placement. \np{Finally, we present a heuristic algorithm, which leverages the optimal dynamic programming scheme for one-dimensional inputs to obtain approximate solutions to the optimal assignment problem for the two-dimensional scenario and empirically yields request distances within a constant factor of the optimal solution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.04893v1-abstract-full').style.display = 'none'; document.getElementById('2011.04893v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: text overlap with arXiv:1901.02414</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Towsley%2C+D&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Towsley%2C+D&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Towsley%2C+D&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Towsley%2C+D&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10