CINXE.COM

Basel problem - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Basel problem - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"ed9400e5-8fad-491c-9121-f6c55f0dfe94","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Basel_problem","wgTitle":"Basel problem","wgCurRevisionId":1256783019,"wgRevisionId":1256783019,"wgArticleId":490303,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","Articles containing proofs","Mathematical problems","Number theory","Pi algorithms","Squares in number theory","Zeta and L-functions"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Basel_problem","wgRelevantArticleId":490303,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[], "wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":50000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q810431","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false, "wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init", "ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Basel problem - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Basel_problem"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Basel_problem&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Basel_problem"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Basel_problem rootpage-Basel_problem skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Basel+problem" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Basel+problem" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Basel+problem" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Basel+problem" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Euler&#039;s_approach" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Euler&#039;s_approach"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Euler's approach</span> </div> </a> <button aria-controls="toc-Euler&#039;s_approach-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Euler's approach subsection</span> </button> <ul id="toc-Euler&#039;s_approach-sublist" class="vector-toc-list"> <li id="toc-Generalizations_of_Euler&#039;s_method_using_elementary_symmetric_polynomials" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Generalizations_of_Euler&#039;s_method_using_elementary_symmetric_polynomials"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Generalizations of Euler's method using elementary symmetric polynomials</span> </div> </a> <ul id="toc-Generalizations_of_Euler&#039;s_method_using_elementary_symmetric_polynomials-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Consequences_of_Euler&#039;s_proof" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Consequences_of_Euler&#039;s_proof"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Consequences of Euler's proof</span> </div> </a> <ul id="toc-Consequences_of_Euler&#039;s_proof-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-The_Riemann_zeta_function" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#The_Riemann_zeta_function"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>The Riemann zeta function</span> </div> </a> <ul id="toc-The_Riemann_zeta_function-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-A_proof_using_Euler&#039;s_formula_and_L&#039;Hôpital&#039;s_rule" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#A_proof_using_Euler&#039;s_formula_and_L&#039;Hôpital&#039;s_rule"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>A proof using Euler's formula and L'Hôpital's rule</span> </div> </a> <ul id="toc-A_proof_using_Euler&#039;s_formula_and_L&#039;Hôpital&#039;s_rule-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-A_proof_using_Fourier_series" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#A_proof_using_Fourier_series"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>A proof using Fourier series</span> </div> </a> <ul id="toc-A_proof_using_Fourier_series-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Another_proof_using_Parseval&#039;s_identity" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Another_proof_using_Parseval&#039;s_identity"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Another proof using Parseval's identity</span> </div> </a> <button aria-controls="toc-Another_proof_using_Parseval&#039;s_identity-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Another proof using Parseval's identity subsection</span> </button> <ul id="toc-Another_proof_using_Parseval&#039;s_identity-sublist" class="vector-toc-list"> <li id="toc-Generalizations_and_recurrence_relations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Generalizations_and_recurrence_relations"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Generalizations and recurrence relations</span> </div> </a> <ul id="toc-Generalizations_and_recurrence_relations-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Proof_using_differentiation_under_the_integral_sign" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Proof_using_differentiation_under_the_integral_sign"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Proof using differentiation under the integral sign</span> </div> </a> <ul id="toc-Proof_using_differentiation_under_the_integral_sign-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Cauchy&#039;s_proof" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Cauchy&#039;s_proof"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Cauchy's proof</span> </div> </a> <button aria-controls="toc-Cauchy&#039;s_proof-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Cauchy's proof subsection</span> </button> <ul id="toc-Cauchy&#039;s_proof-sublist" class="vector-toc-list"> <li id="toc-History_of_this_proof" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#History_of_this_proof"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>History of this proof</span> </div> </a> <ul id="toc-History_of_this_proof-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-The_proof" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#The_proof"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2</span> <span>The proof</span> </div> </a> <ul id="toc-The_proof-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Proof_assuming_Weil&#039;s_conjecture_on_Tamagawa_numbers" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Proof_assuming_Weil&#039;s_conjecture_on_Tamagawa_numbers"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Proof assuming Weil's conjecture on Tamagawa numbers</span> </div> </a> <ul id="toc-Proof_assuming_Weil&#039;s_conjecture_on_Tamagawa_numbers-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Geometric_proof" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Geometric_proof"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Geometric proof</span> </div> </a> <ul id="toc-Geometric_proof-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Other_identities" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Other_identities"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Other identities</span> </div> </a> <button aria-controls="toc-Other_identities-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Other identities subsection</span> </button> <ul id="toc-Other_identities-sublist" class="vector-toc-list"> <li id="toc-Series_representations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Series_representations"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.1</span> <span>Series representations</span> </div> </a> <ul id="toc-Series_representations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Integral_representations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Integral_representations"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.2</span> <span>Integral representations</span> </div> </a> <ul id="toc-Integral_representations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Continued_fractions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Continued_fractions"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.3</span> <span>Continued fractions</span> </div> </a> <ul id="toc-Continued_fractions-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">14</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Basel problem</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 31 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-31" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">31 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-als mw-list-item"><a href="https://als.wikipedia.org/wiki/Basler_Problem" title="Basler Problem – Alemannic" lang="gsw" hreflang="gsw" data-title="Basler Problem" data-language-autonym="Alemannisch" data-language-local-name="Alemannic" class="interlanguage-link-target"><span>Alemannisch</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%85%D8%B9%D8%B6%D9%84%D8%A9_%D8%A8%D8%A7%D8%B2%D9%84" title="معضلة بازل – Arabic" lang="ar" hreflang="ar" data-title="معضلة بازل" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Bazel_problemi" title="Bazel problemi – Azerbaijani" lang="az" hreflang="az" data-title="Bazel problemi" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbaijani" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Problema_de_Basilea" title="Problema de Basilea – Catalan" lang="ca" hreflang="ca" data-title="Problema de Basilea" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%9A%D1%83%D1%82%C4%83%D0%BD%D0%BB%D0%B0_%D1%82%C4%83%D0%B2%D0%B0%D1%82%D0%BA%D0%B0%D0%BB%D1%81%D0%B5%D0%BD_%D1%80%D0%B5%D1%87%C4%95" title="Кутăнла тăваткалсен речĕ – Chuvash" lang="cv" hreflang="cv" data-title="Кутăнла тăваткалсен речĕ" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Basilejsk%C3%BD_probl%C3%A9m" title="Basilejský problém – Czech" lang="cs" hreflang="cs" data-title="Basilejský problém" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Baselproblemet" title="Baselproblemet – Danish" lang="da" hreflang="da" data-title="Baselproblemet" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Basler_Problem" title="Basler Problem – German" lang="de" hreflang="de" data-title="Basler Problem" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Problema_de_Basilea" title="Problema de Basilea – Spanish" lang="es" hreflang="es" data-title="Problema de Basilea" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%85%D8%B3%D8%A6%D9%84%D9%87_%D8%A8%D8%A7%D8%B2%D9%84" title="مسئله بازل – Persian" lang="fa" hreflang="fa" data-title="مسئله بازل" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Probl%C3%A8me_de_B%C3%A2le" title="Problème de Bâle – French" lang="fr" hreflang="fr" data-title="Problème de Bâle" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%B0%94%EC%A0%A4_%EB%AC%B8%EC%A0%9C" title="바젤 문제 – Korean" lang="ko" hreflang="ko" data-title="바젤 문제" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%AC%E0%A5%87%E0%A4%B8%E0%A4%B2_%E0%A4%B8%E0%A4%AE%E0%A4%B8%E0%A5%8D%E0%A4%AF%E0%A4%BE" title="बेसल समस्या – Hindi" lang="hi" hreflang="hi" data-title="बेसल समस्या" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Problema_di_Basilea" title="Problema di Basilea – Italian" lang="it" hreflang="it" data-title="Problema di Basilea" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%91%D7%A2%D7%99%D7%99%D7%AA_%D7%91%D7%96%D7%9C" title="בעיית בזל – Hebrew" lang="he" hreflang="he" data-title="בעיית בזל" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Basel-probl%C3%A9ma" title="Basel-probléma – Hungarian" lang="hu" hreflang="hu" data-title="Basel-probléma" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Bazel-probleem" title="Bazel-probleem – Dutch" lang="nl" hreflang="nl" data-title="Bazel-probleem" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%90%E3%83%BC%E3%82%BC%E3%83%AB%E5%95%8F%E9%A1%8C" title="バーゼル問題 – Japanese" lang="ja" hreflang="ja" data-title="バーゼル問題" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Basel-problemet" title="Basel-problemet – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Basel-problemet" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%AC%E0%A9%87%E0%A8%B8%E0%A8%B2_%E0%A8%B8%E0%A8%AE%E0%A9%B1%E0%A8%B8%E0%A8%BF%E0%A8%86" title="ਬੇਸਲ ਸਮੱਸਿਆ – Punjabi" lang="pa" hreflang="pa" data-title="ਬੇਸਲ ਸਮੱਸਿਆ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="Punjabi" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Problem_bazylejski" title="Problem bazylejski – Polish" lang="pl" hreflang="pl" data-title="Problem bazylejski" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Problema_de_Basileia" title="Problema de Basileia – Portuguese" lang="pt" hreflang="pt" data-title="Problema de Basileia" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru badge-Q17437798 badge-goodarticle mw-list-item" title="good article badge"><a href="https://ru.wikipedia.org/wiki/%D0%A0%D1%8F%D0%B4_%D0%BE%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D1%8B%D1%85_%D0%BA%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%BE%D0%B2" title="Ряд обратных квадратов – Russian" lang="ru" hreflang="ru" data-title="Ряд обратных квадратов" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Baselski_problem" title="Baselski problem – Slovenian" lang="sl" hreflang="sl" data-title="Baselski problem" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%91%D0%B0%D0%B7%D0%B5%D0%BB%D1%81%D0%BA%D0%B8_%D0%BF%D1%80%D0%BE%D0%B1%D0%BB%D0%B5%D0%BC" title="Базелски проблем – Serbian" lang="sr" hreflang="sr" data-title="Базелски проблем" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Baselproblemet" title="Baselproblemet – Swedish" lang="sv" hreflang="sv" data-title="Baselproblemet" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%9B%E0%B8%B1%E0%B8%8D%E0%B8%AB%E0%B8%B2%E0%B8%9A%E0%B8%B2%E0%B9%80%E0%B8%8B%E0%B8%B4%E0%B8%A5" title="ปัญหาบาเซิล – Thai" lang="th" hreflang="th" data-title="ปัญหาบาเซิล" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Basel_problemi" title="Basel problemi – Turkish" lang="tr" hreflang="tr" data-title="Basel problemi" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A0%D1%8F%D0%B4_%D0%BE%D0%B1%D0%B5%D1%80%D0%BD%D0%B5%D0%BD%D0%B8%D1%85_%D0%BA%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D1%96%D0%B2" title="Ряд обернених квадратів – Ukrainian" lang="uk" hreflang="uk" data-title="Ряд обернених квадратів" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D9%85%D8%B3%D8%A6%D9%84%DB%81_%D8%A8%D8%A7%D8%B2%DB%8C%D9%84" title="مسئلہ بازیل – Urdu" lang="ur" hreflang="ur" data-title="مسئلہ بازیل" data-language-autonym="اردو" data-language-local-name="Urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%B7%B4%E5%A1%9E%E5%B0%94%E9%97%AE%E9%A2%98" title="巴塞尔问题 – Chinese" lang="zh" hreflang="zh" data-title="巴塞尔问题" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q810431#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Basel_problem" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Basel_problem" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Basel_problem"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Basel_problem&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Basel_problem&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Basel_problem"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Basel_problem&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Basel_problem&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Basel_problem" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Basel_problem" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Basel_problem&amp;oldid=1256783019" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Basel_problem&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Basel_problem&amp;id=1256783019&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FBasel_problem"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FBasel_problem"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Basel_problem&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Basel_problem&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Basel_problem" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q810431" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Sum of inverse squares of natural numbers</div> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><table class="sidebar nomobile nowraplinks hlist"><tbody><tr><td class="sidebar-pretitle">Part of <a href="/wiki/Category:Pi" title="Category:Pi">a series of articles</a> on the</td></tr><tr><th class="sidebar-title-with-pretitle">mathematical constant <a href="/wiki/Pi" title="Pi"><span class="texhtml mvar" style="font-style:italic;">π</span></a></th></tr><tr><td class="sidebar-content"> <b><span style="white-space:nowrap">3.14159<span style="margin-left:0.25em">26535</span><span style="margin-left:0.25em">89793</span><span style="margin-left:0.25em">23846</span><span style="margin-left:0.25em">26433...</span></span></b></td> </tr><tr><th class="sidebar-heading"> Uses</th></tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Area_of_a_circle" title="Area of a circle">Area of a circle</a></li> <li><a href="/wiki/Circumference" title="Circumference">Circumference</a></li> <li><a href="/wiki/List_of_formulae_involving_%CF%80" title="List of formulae involving π">Use in other formulae</a></li></ul></td> </tr><tr><th class="sidebar-heading"> Properties</th></tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Proof_that_%CF%80_is_irrational" title="Proof that π is irrational">Irrationality</a></li> <li><a href="/wiki/Lindemann%E2%80%93Weierstrass_theorem" title="Lindemann–Weierstrass theorem">Transcendence</a></li></ul></td> </tr><tr><th class="sidebar-heading"> Value</th></tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Proof_that_22/7_exceeds_%CF%80" title="Proof that 22/7 exceeds π">Less than 22/7</a></li> <li><a href="/wiki/Approximations_of_%CF%80" title="Approximations of π">Approximations</a></li> <li><a href="/wiki/Madhava%27s_correction_term" title="Madhava&#39;s correction term">Madhava's correction term</a></li> <li><a href="/wiki/Piphilology" title="Piphilology">Memorization</a></li></ul></td> </tr><tr><th class="sidebar-heading"> People</th></tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Method_of_exhaustion#Archimedes" title="Method of exhaustion">Archimedes</a></li> <li><a href="/wiki/Liu_Hui%27s_%CF%80_algorithm" title="Liu Hui&#39;s π algorithm">Liu Hui</a></li> <li><a href="/wiki/Zu_Chongzhi" title="Zu Chongzhi">Zu Chongzhi</a></li> <li><a href="/wiki/Aryabhata" title="Aryabhata">Aryabhata</a></li> <li><a href="/wiki/Madhava_of_Sangamagrama" title="Madhava of Sangamagrama">Madhava</a></li> <li><a href="/wiki/Jamsh%C4%ABd_al-K%C4%81sh%C4%AB" class="mw-redirect" title="Jamshīd al-Kāshī">Jamshīd al-Kāshī</a></li> <li><a href="/wiki/Ludolph_van_Ceulen" title="Ludolph van Ceulen">Ludolph van Ceulen</a></li> <li><a href="/wiki/Fran%C3%A7ois_Vi%C3%A8te" title="François Viète">François Viète</a></li> <li><a href="/wiki/Seki_Takakazu#Calculation_of_Pi" title="Seki Takakazu">Seki Takakazu</a></li> <li><a href="/wiki/Takebe_Kenko#Legacy" class="mw-redirect" title="Takebe Kenko"> Takebe Kenko</a></li> <li><a href="/wiki/William_Jones_(mathematician)" title="William Jones (mathematician)">William Jones</a></li> <li><a href="/wiki/John_Machin" title="John Machin">John Machin</a></li> <li><a href="/wiki/William_Shanks" title="William Shanks">William Shanks</a></li> <li><a href="/wiki/Srinivasa_Ramanujan" title="Srinivasa Ramanujan">Srinivasa Ramanujan</a></li> <li><a href="/wiki/John_Wrench" title="John Wrench">John Wrench</a></li> <li><a href="/wiki/Chudnovsky_brothers" title="Chudnovsky brothers">Chudnovsky brothers</a></li> <li><a href="/wiki/Yasumasa_Kanada" title="Yasumasa Kanada">Yasumasa Kanada</a></li></ul></td> </tr><tr><th class="sidebar-heading"> History</th></tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Chronology_of_computation_of_%CF%80" title="Chronology of computation of π">Chronology</a></li> <li><i><a href="/wiki/A_History_of_Pi" title="A History of Pi">A History of Pi</a></i></li></ul></td> </tr><tr><th class="sidebar-heading"> In culture</th></tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Indiana_pi_bill" title="Indiana pi bill">Indiana pi bill</a></li> <li><a href="/wiki/Pi_Day" title="Pi Day">Pi Day</a></li></ul></td> </tr><tr><th class="sidebar-heading"> Related topics</th></tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Squaring_the_circle" title="Squaring the circle">Squaring the circle</a></li> <li><a class="mw-selflink selflink">Basel problem</a></li> <li><a href="/wiki/Six_nines_in_pi" title="Six nines in pi">Six nines in <span class="texhtml mvar" style="font-style:italic;">π</span></a></li> <li><a href="/wiki/List_of_topics_related_to_%CF%80" title="List of topics related to π">Other topics related to <span class="texhtml mvar" style="font-style:italic;">π</span></a></li></ul></td> </tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Pi_box" title="Template:Pi box"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Pi_box" title="Template talk:Pi box"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Pi_box" title="Special:EditPage/Template:Pi box"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <p>The <b>Basel problem</b> is a problem in <a href="/wiki/Mathematical_analysis" title="Mathematical analysis">mathematical analysis</a> with relevance to <a href="/wiki/Number_theory" title="Number theory">number theory</a>, concerning an infinite sum of inverse squares. It was first posed by <a href="/wiki/Pietro_Mengoli" title="Pietro Mengoli">Pietro Mengoli</a> in 1650 and solved by <a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a> in 1734,<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> and read on 5 December 1735 in <a href="/wiki/Russian_Academy_of_Sciences#History" title="Russian Academy of Sciences"><i>The Saint Petersburg Academy of Sciences</i></a>.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> Since the problem had withstood the attacks of the leading <a href="/wiki/Mathematician" title="Mathematician">mathematicians</a> of the day, Euler's solution brought him immediate fame when he was twenty-eight. Euler generalised the problem considerably, and his ideas were taken up more than a century later by <a href="/wiki/Bernhard_Riemann" title="Bernhard Riemann">Bernhard Riemann</a> in his seminal 1859 paper "<a href="/wiki/On_the_Number_of_Primes_Less_Than_a_Given_Magnitude" title="On the Number of Primes Less Than a Given Magnitude">On the Number of Primes Less Than a Given Magnitude</a>", in which he defined his <a href="/wiki/Riemann_zeta_function" title="Riemann zeta function">zeta function</a> and proved its basic properties. The problem is named after <a href="/wiki/Basel" title="Basel">Basel</a>, hometown of Euler as well as of the <a href="/wiki/Bernoulli_family" title="Bernoulli family">Bernoulli family</a> who unsuccessfully attacked the problem. </p><p>The Basel problem asks for the precise <a href="/wiki/Summation" title="Summation">summation</a> of the <a href="/wiki/Multiplicative_inverse" title="Multiplicative inverse">reciprocals</a> of the <a href="/wiki/Square_number" title="Square number">squares</a> of the <a href="/wiki/Natural_number" title="Natural number">natural numbers</a>, i.e. the precise sum of the <a href="/wiki/Series_(mathematics)" title="Series (mathematics)">infinite series</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{2}}}={\frac {1}{1^{2}}}+{\frac {1}{2^{2}}}+{\frac {1}{3^{2}}}+\cdots .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{2}}}={\frac {1}{1^{2}}}+{\frac {1}{2^{2}}}+{\frac {1}{3^{2}}}+\cdots .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/91d32041722723ec020e2d2db451fb5609d9b01d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:31.562ex; height:6.843ex;" alt="{\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{2}}}={\frac {1}{1^{2}}}+{\frac {1}{2^{2}}}+{\frac {1}{3^{2}}}+\cdots .}"></span> </p><p>The sum of the series is approximately equal to 1.644934.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> The Basel problem asks for the <i>exact</i> sum of this series (in <a href="/wiki/Closed-form_expression" title="Closed-form expression">closed form</a>), as well as a <a href="/wiki/Mathematical_proof" title="Mathematical proof">proof</a> that this sum is correct. Euler found the exact sum to be <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi ^{2}/6}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>6</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi ^{2}/6}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6738ed6913a24b8e1dc91fb19ec53f5f56b215d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.713ex; height:3.176ex;" alt="{\displaystyle \pi ^{2}/6}"></span> and announced this discovery in 1735. His arguments were based on manipulations that were not justified at the time, although he was later proven correct. He produced an accepted proof in 1741. </p><p>The solution to this problem can be used to estimate the probability that two large <a href="/wiki/Random_number" title="Random number">random numbers</a> are <a href="/wiki/Coprime" class="mw-redirect" title="Coprime">coprime</a>. Two random integers in the range from 1 to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>, in the limit as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> goes to infinity, are relatively prime with a probability that approaches <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 6/\pi ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>6</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 6/\pi ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c4a29a93991c7d0dfd47e0c5b4ea3468fc2e41f7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.713ex; height:3.176ex;" alt="{\displaystyle 6/\pi ^{2}}"></span>, the reciprocal of the solution to the Basel problem.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Euler's_approach"><span id="Euler.27s_approach"></span>Euler's approach</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Basel_problem&amp;action=edit&amp;section=1" title="Edit section: Euler&#039;s approach"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Euler's original derivation of the value <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi ^{2}/6}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>6</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi ^{2}/6}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6738ed6913a24b8e1dc91fb19ec53f5f56b215d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.713ex; height:3.176ex;" alt="{\displaystyle \pi ^{2}/6}"></span> essentially extended observations about finite <a href="/wiki/Polynomial" title="Polynomial">polynomials</a> and assumed that these same properties hold true for infinite series. </p><p>Of course, Euler's original reasoning requires justification (100 years later, <a href="/wiki/Karl_Weierstrass" title="Karl Weierstrass">Karl Weierstrass</a> proved that Euler's representation of the sine function as an infinite product is valid, by the <a href="/wiki/Weierstrass_factorization_theorem" title="Weierstrass factorization theorem">Weierstrass factorization theorem</a>), but even without justification, by simply obtaining the correct value, he was able to verify it numerically against partial sums of the series. The agreement he observed gave him sufficient confidence to announce his result to the mathematical community. </p><p>To follow Euler's argument, recall the <a href="/wiki/Taylor_series" title="Taylor series">Taylor series</a> expansion of the <a href="/wiki/Trigonometric_function" class="mw-redirect" title="Trigonometric function">sine function</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin x=x-{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}-{\frac {x^{7}}{7!}}+\cdots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mo>=</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mrow> <mn>3</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mrow> <mn>5</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </msup> <mrow> <mn>7</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin x=x-{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}-{\frac {x^{7}}{7!}}+\cdots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/15a9027c77b90e40215c01281b39d37730e7e537" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:32.746ex; height:5.843ex;" alt="{\displaystyle \sin x=x-{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}-{\frac {x^{7}}{7!}}+\cdots }"></span> Dividing through by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> gives <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\sin x}{x}}=1-{\frac {x^{2}}{3!}}+{\frac {x^{4}}{5!}}-{\frac {x^{6}}{7!}}+\cdots .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> </mrow> <mi>x</mi> </mfrac> </mrow> <mo>=</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>3</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mrow> <mn>5</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msup> <mrow> <mn>7</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\sin x}{x}}=1-{\frac {x^{2}}{3!}}+{\frac {x^{4}}{5!}}-{\frac {x^{6}}{7!}}+\cdots .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a4121d39479622dcacacee525409c6a84f17a306" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:34.448ex; height:5.843ex;" alt="{\displaystyle {\frac {\sin x}{x}}=1-{\frac {x^{2}}{3!}}+{\frac {x^{4}}{5!}}-{\frac {x^{6}}{7!}}+\cdots .}"></span> </p><p>The <a href="/wiki/Weierstrass_factorization_theorem" title="Weierstrass factorization theorem">Weierstrass factorization theorem</a> shows that the left-hand side is the product of linear factors given by its roots, just as for finite polynomials. Euler assumed this as a <a href="/wiki/Heuristic" title="Heuristic">heuristic</a> for expanding an infinite degree <a href="/wiki/Polynomial" title="Polynomial">polynomial</a> in terms of its roots, but in fact it is not always true for general <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89833156eff2c51bfb8750db3306a0544ce34e14" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.884ex; height:2.843ex;" alt="{\displaystyle P(x)}"></span>.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> This factorization expands the equation into: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\frac {\sin x}{x}}&amp;=\left(1-{\frac {x}{\pi }}\right)\left(1+{\frac {x}{\pi }}\right)\left(1-{\frac {x}{2\pi }}\right)\left(1+{\frac {x}{2\pi }}\right)\left(1-{\frac {x}{3\pi }}\right)\left(1+{\frac {x}{3\pi }}\right)\cdots \\&amp;=\left(1-{\frac {x^{2}}{\pi ^{2}}}\right)\left(1-{\frac {x^{2}}{4\pi ^{2}}}\right)\left(1-{\frac {x^{2}}{9\pi ^{2}}}\right)\cdots \end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> </mrow> <mi>x</mi> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mi>&#x03C0;<!-- π --></mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mi>&#x03C0;<!-- π --></mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mrow> <mn>3</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mrow> <mn>3</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>&#x22EF;<!-- ⋯ --></mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>4</mn> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>9</mn> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>&#x22EF;<!-- ⋯ --></mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\frac {\sin x}{x}}&amp;=\left(1-{\frac {x}{\pi }}\right)\left(1+{\frac {x}{\pi }}\right)\left(1-{\frac {x}{2\pi }}\right)\left(1+{\frac {x}{2\pi }}\right)\left(1-{\frac {x}{3\pi }}\right)\left(1+{\frac {x}{3\pi }}\right)\cdots \\&amp;=\left(1-{\frac {x^{2}}{\pi ^{2}}}\right)\left(1-{\frac {x^{2}}{4\pi ^{2}}}\right)\left(1-{\frac {x^{2}}{9\pi ^{2}}}\right)\cdots \end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b72f7074d8a7da75376fe6bb2b1c40410eea0b0" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.338ex; width:72.633ex; height:11.843ex;" alt="{\displaystyle {\begin{aligned}{\frac {\sin x}{x}}&amp;=\left(1-{\frac {x}{\pi }}\right)\left(1+{\frac {x}{\pi }}\right)\left(1-{\frac {x}{2\pi }}\right)\left(1+{\frac {x}{2\pi }}\right)\left(1-{\frac {x}{3\pi }}\right)\left(1+{\frac {x}{3\pi }}\right)\cdots \\&amp;=\left(1-{\frac {x^{2}}{\pi ^{2}}}\right)\left(1-{\frac {x^{2}}{4\pi ^{2}}}\right)\left(1-{\frac {x^{2}}{9\pi ^{2}}}\right)\cdots \end{aligned}}}"></span> </p><p>If we formally multiply out this product and collect all the <span class="texhtml"><i>x</i><sup>2</sup></span> terms (we are allowed to do so because of <a href="/wiki/Newton%27s_identities" title="Newton&#39;s identities">Newton's identities</a>), we see by induction that the <span class="texhtml"><i>x</i><sup>2</sup></span> coefficient of <span class="texhtml"><style data-mw-deduplicate="TemplateStyles:r1214402035">.mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num{display:block;line-height:1em;margin:0.0em 0.1em;border-bottom:1px solid}.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0.1em 0.1em}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);clip-path:polygon(0px 0px,0px 0px,0px 0px);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}</style><span class="sfrac">&#8288;<span class="tion"><span class="num">sin <i>x</i></span><span class="sr-only">/</span><span class="den"><i>x</i></span></span>&#8288;</span></span> is <sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -\left({\frac {1}{\pi ^{2}}}+{\frac {1}{4\pi ^{2}}}+{\frac {1}{9\pi ^{2}}}+\cdots \right)=-{\frac {1}{\pi ^{2}}}\sum _{n=1}^{\infty }{\frac {1}{n^{2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>4</mn> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>9</mn> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -\left({\frac {1}{\pi ^{2}}}+{\frac {1}{4\pi ^{2}}}+{\frac {1}{9\pi ^{2}}}+\cdots \right)=-{\frac {1}{\pi ^{2}}}\sum _{n=1}^{\infty }{\frac {1}{n^{2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92db33ce603239847a21c8cf28afd94cc677b040" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:45.052ex; height:6.843ex;" alt="{\displaystyle -\left({\frac {1}{\pi ^{2}}}+{\frac {1}{4\pi ^{2}}}+{\frac {1}{9\pi ^{2}}}+\cdots \right)=-{\frac {1}{\pi ^{2}}}\sum _{n=1}^{\infty }{\frac {1}{n^{2}}}.}"></span> </p><p>But from the original infinite series expansion of <span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">sin <i>x</i></span><span class="sr-only">/</span><span class="den"><i>x</i></span></span>&#8288;</span></span>, the coefficient of <span class="texhtml"><i>x</i><sup>2</sup></span> is <span class="texhtml">−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">3!</span></span>&#8288;</span> = −<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">6</span></span>&#8288;</span></span>. These two coefficients must be equal; thus, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\frac {1}{6}}=-{\frac {1}{\pi ^{2}}}\sum _{n=1}^{\infty }{\frac {1}{n^{2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -{\frac {1}{6}}=-{\frac {1}{\pi ^{2}}}\sum _{n=1}^{\infty }{\frac {1}{n^{2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c489f4efedd4ab7dd559f2f4c53690d4000b4a49" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:19.999ex; height:6.843ex;" alt="{\displaystyle -{\frac {1}{6}}=-{\frac {1}{\pi ^{2}}}\sum _{n=1}^{\infty }{\frac {1}{n^{2}}}.}"></span> </p><p>Multiplying both sides of this equation by −<span class="texhtml mvar" style="font-style:italic;">π</span><sup>2</sup> gives the sum of the reciprocals of the positive square integers. <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{2}}}={\frac {\pi ^{2}}{6}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>6</mn> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{2}}}={\frac {\pi ^{2}}{6}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/664617be29449b83fe4c47625907f1713ec4b523" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:13.997ex; height:6.843ex;" alt="{\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{2}}}={\frac {\pi ^{2}}{6}}.}"></span> </p><p>This method of calculating <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (2)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (2)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eff246e5aba5259593186618c576a3b7e14bc3c8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.067ex; height:2.843ex;" alt="{\displaystyle \zeta (2)}"></span> is detailed in expository fashion most notably in Havil's <i>Gamma</i> book which details many <a href="/wiki/Zeta_function" class="mw-redirect" title="Zeta function">zeta function</a> and <a href="/wiki/Logarithm" title="Logarithm">logarithm</a>-related series and integrals, as well as a historical perspective, related to the <a href="/wiki/Euler%E2%80%93Mascheroni_constant" class="mw-redirect" title="Euler–Mascheroni constant">Euler gamma constant</a>.<sup id="cite_ref-HAVIL-GAMMA_7-0" class="reference"><a href="#cite_note-HAVIL-GAMMA-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Generalizations_of_Euler's_method_using_elementary_symmetric_polynomials"><span id="Generalizations_of_Euler.27s_method_using_elementary_symmetric_polynomials"></span>Generalizations of Euler's method using elementary symmetric polynomials</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Basel_problem&amp;action=edit&amp;section=2" title="Edit section: Generalizations of Euler&#039;s method using elementary symmetric polynomials"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Using formulae obtained from <a href="/wiki/Elementary_symmetric_polynomial" title="Elementary symmetric polynomial">elementary symmetric polynomials</a>,<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> this same approach can be used to enumerate formulae for the even-indexed <a href="/wiki/Zeta_constants" class="mw-redirect" title="Zeta constants">even zeta constants</a> which have the following known formula expanded by the <a href="/wiki/Bernoulli_numbers" class="mw-redirect" title="Bernoulli numbers">Bernoulli numbers</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (2n)={\frac {(-1)^{n-1}(2\pi )^{2n}}{2\cdot (2n)!}}B_{2n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mrow> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (2n)={\frac {(-1)^{n-1}(2\pi )^{2n}}{2\cdot (2n)!}}B_{2n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/773ee844f4a1b2c5bd683e1f84f1e7fa8d4d5bdb" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:28.291ex; height:6.676ex;" alt="{\displaystyle \zeta (2n)={\frac {(-1)^{n-1}(2\pi )^{2n}}{2\cdot (2n)!}}B_{2n}.}"></span> </p><p>For example, let the partial product for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a990a5545cac26c1c6821dca95d898bc80fe3a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.995ex; height:2.843ex;" alt="{\displaystyle \sin(x)}"></span> expanded as above be defined by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {S_{n}(x)}{x}}:=\prod \limits _{k=1}^{n}\left(1-{\frac {x^{2}}{k^{2}\cdot \pi ^{2}}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mi>x</mi> </mfrac> </mrow> <mo>:=</mo> <munderover> <mo movablelimits="false">&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {S_{n}(x)}{x}}:=\prod \limits _{k=1}^{n}\left(1-{\frac {x^{2}}{k^{2}\cdot \pi ^{2}}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6cfdc744373abe56bcd3d4476eb0aec6a74b010d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:28.314ex; height:6.843ex;" alt="{\displaystyle {\frac {S_{n}(x)}{x}}:=\prod \limits _{k=1}^{n}\left(1-{\frac {x^{2}}{k^{2}\cdot \pi ^{2}}}\right)}"></span>. Then using known <a href="/wiki/Newton%27s_identities#Expressing_elementary_symmetric_polynomials_in_terms_of_power_sums" title="Newton&#39;s identities">formulas for elementary symmetric polynomials</a> (a.k.a., Newton's formulas expanded in terms of <a href="/wiki/Power_sum" class="mw-redirect" title="Power sum">power sum</a> identities), we can see (for example) that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\left[x^{4}\right]{\frac {S_{n}(x)}{x}}&amp;={\frac {1}{2\pi ^{4}}}\left(\left(H_{n}^{(2)}\right)^{2}-H_{n}^{(4)}\right)\qquad \xrightarrow {n\rightarrow \infty } \qquad {\frac {1}{2\pi ^{4}}}\left(\zeta (2)^{2}-\zeta (4)\right)\\[4pt]&amp;\qquad \implies \zeta (4)={\frac {\pi ^{4}}{90}}=-2\pi ^{4}\cdot [x^{4}]{\frac {\sin(x)}{x}}+{\frac {\pi ^{4}}{36}}\\[8pt]\left[x^{6}\right]{\frac {S_{n}(x)}{x}}&amp;=-{\frac {1}{6\pi ^{6}}}\left(\left(H_{n}^{(2)}\right)^{3}-2H_{n}^{(2)}H_{n}^{(4)}+2H_{n}^{(6)}\right)\qquad \xrightarrow {n\rightarrow \infty } \qquad {\frac {1}{6\pi ^{6}}}\left(\zeta (2)^{3}-3\zeta (2)\zeta (4)+2\zeta (6)\right)\\[4pt]&amp;\qquad \implies \zeta (6)={\frac {\pi ^{6}}{945}}=-3\cdot \pi ^{6}[x^{6}]{\frac {\sin(x)}{x}}-{\frac {2}{3}}{\frac {\pi ^{2}}{6}}{\frac {\pi ^{4}}{90}}+{\frac {\pi ^{6}}{216}},\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.7em 1.1em 0.7em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow> <mo>[</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo>]</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mi>x</mi> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msup> <mrow> <mo>(</mo> <msubsup> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </msubsup> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msubsup> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>4</mn> <mo stretchy="false">)</mo> </mrow> </msubsup> </mrow> <mo>)</mo> </mrow> <mspace width="2em" /> <mover> <mo>&#x2192;</mo> <mpadded width="+0.611em" lspace="0.278em" voffset=".15em"> <mi>n</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mpadded> </mover> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>4</mn> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mspace width="2em" /> <mspace width="thickmathspace" /> <mo stretchy="false">&#x27F9;<!-- ⟹ --></mo> <mspace width="thickmathspace" /> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>4</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mn>90</mn> </mfrac> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">[</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mi>x</mi> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mn>36</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>[</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msup> <mo>]</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mi>x</mi> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>6</mn> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msup> <mrow> <mo>(</mo> <msubsup> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </msubsup> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <msubsup> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </msubsup> <msubsup> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>4</mn> <mo stretchy="false">)</mo> </mrow> </msubsup> <mo>+</mo> <mn>2</mn> <msubsup> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>6</mn> <mo stretchy="false">)</mo> </mrow> </msubsup> </mrow> <mo>)</mo> </mrow> <mspace width="2em" /> <mover> <mo>&#x2192;</mo> <mpadded width="+0.611em" lspace="0.278em" voffset=".15em"> <mi>n</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mpadded> </mover> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>6</mn> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>4</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>2</mn> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>6</mn> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mspace width="2em" /> <mspace width="thickmathspace" /> <mo stretchy="false">&#x27F9;<!-- ⟹ --></mo> <mspace width="thickmathspace" /> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>6</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msup> <mn>945</mn> </mfrac> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msup> <mo stretchy="false">[</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mi>x</mi> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>6</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mn>90</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msup> <mn>216</mn> </mfrac> </mrow> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\left[x^{4}\right]{\frac {S_{n}(x)}{x}}&amp;={\frac {1}{2\pi ^{4}}}\left(\left(H_{n}^{(2)}\right)^{2}-H_{n}^{(4)}\right)\qquad \xrightarrow {n\rightarrow \infty } \qquad {\frac {1}{2\pi ^{4}}}\left(\zeta (2)^{2}-\zeta (4)\right)\\[4pt]&amp;\qquad \implies \zeta (4)={\frac {\pi ^{4}}{90}}=-2\pi ^{4}\cdot [x^{4}]{\frac {\sin(x)}{x}}+{\frac {\pi ^{4}}{36}}\\[8pt]\left[x^{6}\right]{\frac {S_{n}(x)}{x}}&amp;=-{\frac {1}{6\pi ^{6}}}\left(\left(H_{n}^{(2)}\right)^{3}-2H_{n}^{(2)}H_{n}^{(4)}+2H_{n}^{(6)}\right)\qquad \xrightarrow {n\rightarrow \infty } \qquad {\frac {1}{6\pi ^{6}}}\left(\zeta (2)^{3}-3\zeta (2)\zeta (4)+2\zeta (6)\right)\\[4pt]&amp;\qquad \implies \zeta (6)={\frac {\pi ^{6}}{945}}=-3\cdot \pi ^{6}[x^{6}]{\frac {\sin(x)}{x}}-{\frac {2}{3}}{\frac {\pi ^{2}}{6}}{\frac {\pi ^{4}}{90}}+{\frac {\pi ^{6}}{216}},\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f91d080beac592ba63a85e6980b68f7a1e0a0f1a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -13.258ex; margin-bottom: -0.247ex; width:103.174ex; height:28.176ex;" alt="{\displaystyle {\begin{aligned}\left[x^{4}\right]{\frac {S_{n}(x)}{x}}&amp;={\frac {1}{2\pi ^{4}}}\left(\left(H_{n}^{(2)}\right)^{2}-H_{n}^{(4)}\right)\qquad \xrightarrow {n\rightarrow \infty } \qquad {\frac {1}{2\pi ^{4}}}\left(\zeta (2)^{2}-\zeta (4)\right)\\[4pt]&amp;\qquad \implies \zeta (4)={\frac {\pi ^{4}}{90}}=-2\pi ^{4}\cdot [x^{4}]{\frac {\sin(x)}{x}}+{\frac {\pi ^{4}}{36}}\\[8pt]\left[x^{6}\right]{\frac {S_{n}(x)}{x}}&amp;=-{\frac {1}{6\pi ^{6}}}\left(\left(H_{n}^{(2)}\right)^{3}-2H_{n}^{(2)}H_{n}^{(4)}+2H_{n}^{(6)}\right)\qquad \xrightarrow {n\rightarrow \infty } \qquad {\frac {1}{6\pi ^{6}}}\left(\zeta (2)^{3}-3\zeta (2)\zeta (4)+2\zeta (6)\right)\\[4pt]&amp;\qquad \implies \zeta (6)={\frac {\pi ^{6}}{945}}=-3\cdot \pi ^{6}[x^{6}]{\frac {\sin(x)}{x}}-{\frac {2}{3}}{\frac {\pi ^{2}}{6}}{\frac {\pi ^{4}}{90}}+{\frac {\pi ^{6}}{216}},\end{aligned}}}"></span> </p><p>and so on for subsequent coefficients of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [x^{2k}]{\frac {S_{n}(x)}{x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> </mrow> </msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mi>x</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [x^{2k}]{\frac {S_{n}(x)}{x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a3c07fc900be3071114ae929c94d140627360614" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:11.153ex; height:5.676ex;" alt="{\displaystyle [x^{2k}]{\frac {S_{n}(x)}{x}}}"></span>. There are <a href="/wiki/Newton%27s_identities#Expressing_power_sums_in_terms_of_elementary_symmetric_polynomials" title="Newton&#39;s identities">other forms of Newton's identities</a> expressing the (finite) power sums <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H_{n}^{(2k)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H_{n}^{(2k)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca1abb456e28291338d1cfd57ae4e61e95c397ac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.294ex; height:3.343ex;" alt="{\displaystyle H_{n}^{(2k)}}"></span> in terms of the <a href="/wiki/Elementary_symmetric_polynomial" title="Elementary symmetric polynomial">elementary symmetric polynomials</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e_{i}\equiv e_{i}\left(-{\frac {\pi ^{2}}{1^{2}}},-{\frac {\pi ^{2}}{2^{2}}},-{\frac {\pi ^{2}}{3^{2}}},-{\frac {\pi ^{2}}{4^{2}}},\ldots \right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2261;<!-- ≡ --></mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>,</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>,</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>,</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e_{i}\equiv e_{i}\left(-{\frac {\pi ^{2}}{1^{2}}},-{\frac {\pi ^{2}}{2^{2}}},-{\frac {\pi ^{2}}{3^{2}}},-{\frac {\pi ^{2}}{4^{2}}},\ldots \right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29e9b84fc4a4f8b924c9e445b930efba7fb67084" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:38.697ex; height:6.343ex;" alt="{\displaystyle e_{i}\equiv e_{i}\left(-{\frac {\pi ^{2}}{1^{2}}},-{\frac {\pi ^{2}}{2^{2}}},-{\frac {\pi ^{2}}{3^{2}}},-{\frac {\pi ^{2}}{4^{2}}},\ldots \right),}"></span> but we can go a more direct route to expressing non-recursive formulas for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (2k)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (2k)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac9ebbd6626d0067b0ff7efc16d6a39a7fe3ae67" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.278ex; height:2.843ex;" alt="{\displaystyle \zeta (2k)}"></span> using the method of <a href="/wiki/Elementary_symmetric_polynomial" title="Elementary symmetric polynomial">elementary symmetric polynomials</a>. Namely, we have a recurrence relation between the elementary symmetric polynomials and the <a href="/wiki/Power_sum_symmetric_polynomial" title="Power sum symmetric polynomial">power sum polynomials</a> given as on <a href="/wiki/Newton%27s_identities#Comparing_coefficients_in_series" title="Newton&#39;s identities">this page</a> by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (-1)^{k}ke_{k}(x_{1},\ldots ,x_{n})=\sum _{j=1}^{k}(-1)^{k-j-1}p_{j}(x_{1},\ldots ,x_{n})e_{k-j}(x_{1},\ldots ,x_{n}),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mi>k</mi> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mi>j</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mi>j</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (-1)^{k}ke_{k}(x_{1},\ldots ,x_{n})=\sum _{j=1}^{k}(-1)^{k-j-1}p_{j}(x_{1},\ldots ,x_{n})e_{k-j}(x_{1},\ldots ,x_{n}),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb8b92dc2dd353a25c8c454dcf84711630cac126" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:68.244ex; height:7.676ex;" alt="{\displaystyle (-1)^{k}ke_{k}(x_{1},\ldots ,x_{n})=\sum _{j=1}^{k}(-1)^{k-j-1}p_{j}(x_{1},\ldots ,x_{n})e_{k-j}(x_{1},\ldots ,x_{n}),}"></span> </p><p>which in our situation equates to the limiting recurrence relation (or <a href="/wiki/Generating_function" title="Generating function">generating function</a> convolution, or <a href="/wiki/Cauchy_product" title="Cauchy product">product</a>) expanded as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\pi ^{2k}}{2}}\cdot {\frac {(2k)\cdot (-1)^{k}}{(2k+1)!}}=-[x^{2k}]{\frac {\sin(\pi x)}{\pi x}}\times \sum _{i\geq 1}\zeta (2i)x^{i}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> </mrow> </msup> <mn>2</mn> </mfrac> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">[</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> </mrow> </msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C0;<!-- π --></mi> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>&#x03C0;<!-- π --></mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>&#x00D7;<!-- × --></mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>1</mn> </mrow> </munder> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>i</mi> <mo stretchy="false">)</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\pi ^{2k}}{2}}\cdot {\frac {(2k)\cdot (-1)^{k}}{(2k+1)!}}=-[x^{2k}]{\frac {\sin(\pi x)}{\pi x}}\times \sum _{i\geq 1}\zeta (2i)x^{i}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/627342ba82e4ca460fab6aa5a11c4e2cd9335ad2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:50.158ex; height:7.176ex;" alt="{\displaystyle {\frac {\pi ^{2k}}{2}}\cdot {\frac {(2k)\cdot (-1)^{k}}{(2k+1)!}}=-[x^{2k}]{\frac {\sin(\pi x)}{\pi x}}\times \sum _{i\geq 1}\zeta (2i)x^{i}.}"></span> </p><p>Then by differentiation and rearrangement of the terms in the previous equation, we obtain that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (2k)=[x^{2k}]{\frac {1}{2}}\left(1-\pi x\cot(\pi x)\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">[</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> </mrow> </msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C0;<!-- π --></mi> <mi>x</mi> <mi>cot</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C0;<!-- π --></mi> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (2k)=[x^{2k}]{\frac {1}{2}}\left(1-\pi x\cot(\pi x)\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b9f005eae1d7e5b32d0649321611f51b2173057" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:32.762ex; height:5.176ex;" alt="{\displaystyle \zeta (2k)=[x^{2k}]{\frac {1}{2}}\left(1-\pi x\cot(\pi x)\right).}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Consequences_of_Euler's_proof"><span id="Consequences_of_Euler.27s_proof"></span>Consequences of Euler's proof</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Basel_problem&amp;action=edit&amp;section=3" title="Edit section: Consequences of Euler&#039;s proof"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>By the above results, we can conclude that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (2k)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (2k)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac9ebbd6626d0067b0ff7efc16d6a39a7fe3ae67" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.278ex; height:2.843ex;" alt="{\displaystyle \zeta (2k)}"></span> is <i>always</i> a <a href="/wiki/Rational" class="mw-redirect" title="Rational">rational</a> multiple of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi ^{2k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi ^{2k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05085ddc6125f1e14f3595589f319b023ae9e412" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.245ex; height:2.676ex;" alt="{\displaystyle \pi ^{2k}}"></span>. In particular, since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9be4ba0bb8df3af72e90a0535fabcc17431e540a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.332ex; height:1.676ex;" alt="{\displaystyle \pi }"></span> and integer powers of it are <a href="/wiki/Transcendental_number" title="Transcendental number">transcendental</a>, we can conclude at this point that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (2k)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (2k)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac9ebbd6626d0067b0ff7efc16d6a39a7fe3ae67" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.278ex; height:2.843ex;" alt="{\displaystyle \zeta (2k)}"></span> is <a href="/wiki/Irrational" class="mw-redirect" title="Irrational">irrational</a>, and more precisely, <a href="/wiki/Transcendental_number" title="Transcendental number">transcendental</a> for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k\geq 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k\geq 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d30d7dcf305b7bce39d36df72fe3985b47aa9961" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.472ex; height:2.343ex;" alt="{\displaystyle k\geq 1}"></span>. By contrast, the properties of the odd-indexed <a href="/wiki/Zeta_constants" class="mw-redirect" title="Zeta constants">zeta constants</a>, including <a href="/wiki/Ap%C3%A9ry%27s_constant" title="Apéry&#39;s constant">Apéry's constant</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (3)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (3)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3088978098c7b90b2754a9d9b0b994d873e1755c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.067ex; height:2.843ex;" alt="{\displaystyle \zeta (3)}"></span>, are almost completely unknown. </p> <div class="mw-heading mw-heading2"><h2 id="The_Riemann_zeta_function">The Riemann zeta function</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Basel_problem&amp;action=edit&amp;section=4" title="Edit section: The Riemann zeta function"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Riemann_zeta_function" title="Riemann zeta function">Riemann zeta function</a> <span class="texhtml"><i>ζ</i>(<i>s</i>)</span> is one of the most significant functions in mathematics because of its relationship to the distribution of the <a href="/wiki/Prime_number" title="Prime number">prime numbers</a>. The zeta function is defined for any <a href="/wiki/Complex_number" title="Complex number">complex number</a> <span class="texhtml"><i>s</i></span> with real part greater than 1 by the following formula: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (s)=\sum _{n=1}^{\infty }{\frac {1}{n^{s}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msup> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (s)=\sum _{n=1}^{\infty }{\frac {1}{n^{s}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d93c8e1855ade032db5645a862e1c82ff1c0e6d8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:14.716ex; height:6.843ex;" alt="{\displaystyle \zeta (s)=\sum _{n=1}^{\infty }{\frac {1}{n^{s}}}.}"></span> </p><p><span class="anchor" id="zeta_2"></span>Taking <span class="texhtml"><i>s</i> = 2</span>, we see that <span class="texhtml"><i>ζ</i>(2)</span> is equal to the sum of the reciprocals of the squares of all positive integers: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (2)=\sum _{n=1}^{\infty }{\frac {1}{n^{2}}}={\frac {1}{1^{2}}}+{\frac {1}{2^{2}}}+{\frac {1}{3^{2}}}+{\frac {1}{4^{2}}}+\cdots ={\frac {\pi ^{2}}{6}}\approx 1.644934.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>6</mn> </mfrac> </mrow> <mo>&#x2248;<!-- ≈ --></mo> <mn>1.644934.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (2)=\sum _{n=1}^{\infty }{\frac {1}{n^{2}}}={\frac {1}{1^{2}}}+{\frac {1}{2^{2}}}+{\frac {1}{3^{2}}}+{\frac {1}{4^{2}}}+\cdots ={\frac {\pi ^{2}}{6}}\approx 1.644934.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11c56d2e87a1ad02b5514257d399ab415802415" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:62.439ex; height:6.843ex;" alt="{\displaystyle \zeta (2)=\sum _{n=1}^{\infty }{\frac {1}{n^{2}}}={\frac {1}{1^{2}}}+{\frac {1}{2^{2}}}+{\frac {1}{3^{2}}}+{\frac {1}{4^{2}}}+\cdots ={\frac {\pi ^{2}}{6}}\approx 1.644934.}"></span> </p><p>Convergence can be proven by the <a href="/wiki/Integral_test_for_convergence#Applications" title="Integral test for convergence">integral test</a>, or by the following inequality: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\sum _{n=1}^{N}{\frac {1}{n^{2}}}&amp;&lt;1+\sum _{n=2}^{N}{\frac {1}{n(n-1)}}\\&amp;=1+\sum _{n=2}^{N}\left({\frac {1}{n-1}}-{\frac {1}{n}}\right)\\&amp;=1+1-{\frac {1}{N}}\;{\stackrel {N\to \infty }{\longrightarrow }}\;2.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>&lt;</mo> <mn>1</mn> <mo>+</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>n</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mn>1</mn> <mo>+</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> </mrow> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo stretchy="false">&#x27F6;<!-- ⟶ --></mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </mover> </mrow> </mrow> <mspace width="thickmathspace" /> <mn>2.</mn> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\sum _{n=1}^{N}{\frac {1}{n^{2}}}&amp;&lt;1+\sum _{n=2}^{N}{\frac {1}{n(n-1)}}\\&amp;=1+\sum _{n=2}^{N}\left({\frac {1}{n-1}}-{\frac {1}{n}}\right)\\&amp;=1+1-{\frac {1}{N}}\;{\stackrel {N\to \infty }{\longrightarrow }}\;2.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf007455e34071374e147374b77fe62680f10a5d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -9.505ex; width:33.348ex; height:20.176ex;" alt="{\displaystyle {\begin{aligned}\sum _{n=1}^{N}{\frac {1}{n^{2}}}&amp;&lt;1+\sum _{n=2}^{N}{\frac {1}{n(n-1)}}\\&amp;=1+\sum _{n=2}^{N}\left({\frac {1}{n-1}}-{\frac {1}{n}}\right)\\&amp;=1+1-{\frac {1}{N}}\;{\stackrel {N\to \infty }{\longrightarrow }}\;2.\end{aligned}}}"></span> </p><p>This gives us the <a href="/wiki/Upper_bound" class="mw-redirect" title="Upper bound">upper bound</a> 2, and because the infinite sum contains no negative terms, it must converge to a value strictly between 0 and 2. It can be shown that <span class="texhtml"><i>ζ</i>(<i>s</i>)</span> has a simple expression in terms of the <a href="/wiki/Bernoulli_number" title="Bernoulli number">Bernoulli numbers</a> whenever <span class="texhtml"><i>s</i></span> is a positive even integer. With <span class="texhtml"><i>s</i> = 2<i>n</i></span>:<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (2n)={\frac {(2\pi )^{2n}(-1)^{n+1}B_{2n}}{2\cdot (2n)!}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msub> </mrow> <mrow> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (2n)={\frac {(2\pi )^{2n}(-1)^{n+1}B_{2n}}{2\cdot (2n)!}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/69ac1d38750ffb1e54eff04b9f61fb53b58086da" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:28.291ex; height:6.676ex;" alt="{\displaystyle \zeta (2n)={\frac {(2\pi )^{2n}(-1)^{n+1}B_{2n}}{2\cdot (2n)!}}.}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="A_proof_using_Euler's_formula_and_L'Hôpital's_rule"><span id="A_proof_using_Euler.27s_formula_and_L.27H.C3.B4pital.27s_rule"></span>A proof using Euler's formula and L'Hôpital's rule</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Basel_problem&amp;action=edit&amp;section=5" title="Edit section: A proof using Euler&#039;s formula and L&#039;Hôpital&#039;s rule"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The normalized <a href="/wiki/Sinc_function" title="Sinc function">sinc function</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{sinc}}(x)={\frac {\sin(\pi x)}{\pi x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtext>sinc</mtext> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C0;<!-- π --></mi> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>&#x03C0;<!-- π --></mi> <mi>x</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\text{sinc}}(x)={\frac {\sin(\pi x)}{\pi x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68b4a28c0ae9c8a7e09fa57a93991f6783f08e93" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:18.288ex; height:5.676ex;" alt="{\displaystyle {\text{sinc}}(x)={\frac {\sin(\pi x)}{\pi x}}}"></span> has a <a href="/wiki/Weierstrass_factorization_theorem" title="Weierstrass factorization theorem">Weierstrass factorization</a> representation as an infinite product: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\sin(\pi x)}{\pi x}}=\prod _{n=1}^{\infty }\left(1-{\frac {x^{2}}{n^{2}}}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C0;<!-- π --></mi> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>&#x03C0;<!-- π --></mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\sin(\pi x)}{\pi x}}=\prod _{n=1}^{\infty }\left(1-{\frac {x^{2}}{n^{2}}}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bcf53fc4beb9342fe647b94998b194cfada03239" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:26.478ex; height:6.843ex;" alt="{\displaystyle {\frac {\sin(\pi x)}{\pi x}}=\prod _{n=1}^{\infty }\left(1-{\frac {x^{2}}{n^{2}}}\right).}"></span> </p><p>The infinite product is <a href="/wiki/Analytic_function" title="Analytic function">analytic</a>, so taking the <a href="/wiki/Natural_logarithm" title="Natural logarithm">natural logarithm</a> of both sides and differentiating yields <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\pi \cos(\pi x)}{\sin(\pi x)}}-{\frac {1}{x}}=-\sum _{n=1}^{\infty }{\frac {2x}{n^{2}-x^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03C0;<!-- π --></mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C0;<!-- π --></mi> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C0;<!-- π --></mi> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>x</mi> </mfrac> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>x</mi> </mrow> <mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\pi \cos(\pi x)}{\sin(\pi x)}}-{\frac {1}{x}}=-\sum _{n=1}^{\infty }{\frac {2x}{n^{2}-x^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/afec9242b23b29b44f6aa73bff1098ccd981ba20" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:32.689ex; height:6.843ex;" alt="{\displaystyle {\frac {\pi \cos(\pi x)}{\sin(\pi x)}}-{\frac {1}{x}}=-\sum _{n=1}^{\infty }{\frac {2x}{n^{2}-x^{2}}}}"></span> </p><p>(by <a href="/wiki/Uniform_convergence#To_differentiability" title="Uniform convergence">uniform convergence</a>, the interchange of the derivative and infinite series is permissible). After dividing the equation by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e50b849d3a7cd902f0ae3fa6ad6d1cad49987c39" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.492ex; height:2.176ex;" alt="{\displaystyle 2x}"></span> and regrouping one gets <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{2x^{2}}}-{\frac {\pi \cot(\pi x)}{2x}}=\sum _{n=1}^{\infty }{\frac {1}{n^{2}-x^{2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03C0;<!-- π --></mi> <mi>cot</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C0;<!-- π --></mi> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>2</mn> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{2x^{2}}}-{\frac {\pi \cot(\pi x)}{2x}}=\sum _{n=1}^{\infty }{\frac {1}{n^{2}-x^{2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9bf166b6d91ba1b4cd0a114e3c7e9fc3c3958f4f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:33.345ex; height:6.843ex;" alt="{\displaystyle {\frac {1}{2x^{2}}}-{\frac {\pi \cot(\pi x)}{2x}}=\sum _{n=1}^{\infty }{\frac {1}{n^{2}-x^{2}}}.}"></span> </p><p>We make a change of variables (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=-it}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=-it}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16356135c3514e2bccf8838c7333d8dadb07f7fe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.878ex; height:2.343ex;" alt="{\displaystyle x=-it}"></span>): <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\frac {1}{2t^{2}}}+{\frac {\pi \cot(-\pi it)}{2it}}=\sum _{n=1}^{\infty }{\frac {1}{n^{2}+t^{2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03C0;<!-- π --></mi> <mi>cot</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C0;<!-- π --></mi> <mi>i</mi> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>2</mn> <mi>i</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -{\frac {1}{2t^{2}}}+{\frac {\pi \cot(-\pi it)}{2it}}=\sum _{n=1}^{\infty }{\frac {1}{n^{2}+t^{2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f842bdc277bbab67c8f98e788e449154f7b2e391" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:36.294ex; height:6.843ex;" alt="{\displaystyle -{\frac {1}{2t^{2}}}+{\frac {\pi \cot(-\pi it)}{2it}}=\sum _{n=1}^{\infty }{\frac {1}{n^{2}+t^{2}}}.}"></span> </p><p><a href="/wiki/Euler%27s_formula" title="Euler&#39;s formula">Euler's formula</a> can be used to deduce that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\pi \cot(-\pi it)}{2it}}={\frac {\pi }{2it}}{\frac {i\left(e^{2\pi t}+1\right)}{e^{2\pi t}-1}}={\frac {\pi }{2t}}+{\frac {\pi }{t\left(e^{2\pi t}-1\right)}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03C0;<!-- π --></mi> <mi>cot</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C0;<!-- π --></mi> <mi>i</mi> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>2</mn> <mi>i</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mrow> <mn>2</mn> <mi>i</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>i</mi> <mrow> <mo>(</mo> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>t</mi> </mrow> </msup> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>t</mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mrow> <mn>2</mn> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mrow> <mi>t</mi> <mrow> <mo>(</mo> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>t</mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\pi \cot(-\pi it)}{2it}}={\frac {\pi }{2it}}{\frac {i\left(e^{2\pi t}+1\right)}{e^{2\pi t}-1}}={\frac {\pi }{2t}}+{\frac {\pi }{t\left(e^{2\pi t}-1\right)}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec294d5d9e367da367de295b1be903e37257ab6b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:51.789ex; height:6.843ex;" alt="{\displaystyle {\frac {\pi \cot(-\pi it)}{2it}}={\frac {\pi }{2it}}{\frac {i\left(e^{2\pi t}+1\right)}{e^{2\pi t}-1}}={\frac {\pi }{2t}}+{\frac {\pi }{t\left(e^{2\pi t}-1\right)}}.}"></span> or using the corresponding <a href="/wiki/Hyperbolic_function" class="mw-redirect" title="Hyperbolic function">hyperbolic function</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\pi \cot(-\pi it)}{2it}}={\frac {\pi }{2t}}{i\cot(\pi it)}={\frac {\pi }{2t}}\coth(\pi t).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03C0;<!-- π --></mi> <mi>cot</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C0;<!-- π --></mi> <mi>i</mi> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>2</mn> <mi>i</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mrow> <mn>2</mn> <mi>t</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>cot</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C0;<!-- π --></mi> <mi>i</mi> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mrow> <mn>2</mn> <mi>t</mi> </mrow> </mfrac> </mrow> <mi>coth</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C0;<!-- π --></mi> <mi>t</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\pi \cot(-\pi it)}{2it}}={\frac {\pi }{2t}}{i\cot(\pi it)}={\frac {\pi }{2t}}\coth(\pi t).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8277efcfa9e93b8146c19f580ace623e0f8e3836" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:42.599ex; height:5.676ex;" alt="{\displaystyle {\frac {\pi \cot(-\pi it)}{2it}}={\frac {\pi }{2t}}{i\cot(\pi it)}={\frac {\pi }{2t}}\coth(\pi t).}"></span> </p><p>Then <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{2}+t^{2}}}={\frac {\pi \left(te^{2\pi t}+t\right)-e^{2\pi t}+1}{2\left(t^{2}e^{2\pi t}-t^{2}\right)}}=-{\frac {1}{2t^{2}}}+{\frac {\pi }{2t}}\coth(\pi t).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03C0;<!-- π --></mi> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>t</mi> </mrow> </msup> <mo>+</mo> <mi>t</mi> </mrow> <mo>)</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>t</mi> </mrow> </msup> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mrow> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>t</mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mrow> <mn>2</mn> <mi>t</mi> </mrow> </mfrac> </mrow> <mi>coth</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C0;<!-- π --></mi> <mi>t</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{2}+t^{2}}}={\frac {\pi \left(te^{2\pi t}+t\right)-e^{2\pi t}+1}{2\left(t^{2}e^{2\pi t}-t^{2}\right)}}=-{\frac {1}{2t^{2}}}+{\frac {\pi }{2t}}\coth(\pi t).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/187c208548d04509cde7503ca66e216be376c8b4" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:62.139ex; height:7.176ex;" alt="{\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{2}+t^{2}}}={\frac {\pi \left(te^{2\pi t}+t\right)-e^{2\pi t}+1}{2\left(t^{2}e^{2\pi t}-t^{2}\right)}}=-{\frac {1}{2t^{2}}}+{\frac {\pi }{2t}}\coth(\pi t).}"></span> </p><p>Now we take the <a href="/wiki/Limit_(mathematics)" title="Limit (mathematics)">limit</a> as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span> approaches zero and use <a href="/wiki/L%27H%C3%B4pital%27s_rule" title="L&#39;Hôpital&#39;s rule">L'Hôpital's rule</a> thrice. By <a href="/wiki/Tannery%27s_theorem" title="Tannery&#39;s theorem">Tannery's theorem</a> applied to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \lim _{t\to \infty }\sum _{n=1}^{\infty }1/(n^{2}+1/t^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \lim _{t\to \infty }\sum _{n=1}^{\infty }1/(n^{2}+1/t^{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b33da64f81b51b3f6129d701483c30e90514b89" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:27.531ex; height:3.176ex;" alt="{\textstyle \lim _{t\to \infty }\sum _{n=1}^{\infty }1/(n^{2}+1/t^{2})}"></span>, we can <a href="/wiki/Interchange_of_limiting_operations" title="Interchange of limiting operations">interchange the limit and infinite series</a> so that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \lim _{t\to 0}\sum _{n=1}^{\infty }1/(n^{2}+t^{2})=\sum _{n=1}^{\infty }1/n^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>0</mn> </mrow> </munder> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \lim _{t\to 0}\sum _{n=1}^{\infty }1/(n^{2}+t^{2})=\sum _{n=1}^{\infty }1/n^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86b41d110490f6d85516e21214e34baa9236bb70" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:38.417ex; height:3.176ex;" alt="{\textstyle \lim _{t\to 0}\sum _{n=1}^{\infty }1/(n^{2}+t^{2})=\sum _{n=1}^{\infty }1/n^{2}}"></span> and by L'Hôpital's rule <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\sum _{n=1}^{\infty }{\frac {1}{n^{2}}}&amp;=\lim _{t\to 0}{\frac {\pi }{4}}{\frac {2\pi te^{2\pi t}-e^{2\pi t}+1}{\pi t^{2}e^{2\pi t}+te^{2\pi t}-t}}\\[6pt]&amp;=\lim _{t\to 0}{\frac {\pi ^{3}te^{2\pi t}}{2\pi \left(\pi t^{2}e^{2\pi t}+2te^{2\pi t}\right)+e^{2\pi t}-1}}\\[6pt]&amp;=\lim _{t\to 0}{\frac {\pi ^{2}(2\pi t+1)}{4\pi ^{2}t^{2}+12\pi t+6}}\\[6pt]&amp;={\frac {\pi ^{2}}{6}}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.9em 0.9em 0.9em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>4</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>t</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>t</mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>t</mi> </mrow> </msup> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <mi>&#x03C0;<!-- π --></mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>t</mi> </mrow> </msup> <mo>+</mo> <mi>t</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>t</mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mi>t</mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mi>t</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>t</mi> </mrow> </msup> </mrow> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mrow> <mo>(</mo> <mrow> <mi>&#x03C0;<!-- π --></mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>t</mi> </mrow> </msup> <mo>+</mo> <mn>2</mn> <mi>t</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>t</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>t</mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>4</mn> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>12</mn> <mi>&#x03C0;<!-- π --></mi> <mi>t</mi> <mo>+</mo> <mn>6</mn> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>6</mn> </mfrac> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\sum _{n=1}^{\infty }{\frac {1}{n^{2}}}&amp;=\lim _{t\to 0}{\frac {\pi }{4}}{\frac {2\pi te^{2\pi t}-e^{2\pi t}+1}{\pi t^{2}e^{2\pi t}+te^{2\pi t}-t}}\\[6pt]&amp;=\lim _{t\to 0}{\frac {\pi ^{3}te^{2\pi t}}{2\pi \left(\pi t^{2}e^{2\pi t}+2te^{2\pi t}\right)+e^{2\pi t}-1}}\\[6pt]&amp;=\lim _{t\to 0}{\frac {\pi ^{2}(2\pi t+1)}{4\pi ^{2}t^{2}+12\pi t+6}}\\[6pt]&amp;={\frac {\pi ^{2}}{6}}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e67725cab9ac01fd21cb29fd19e1150144ad53a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -14.338ex; width:45.952ex; height:29.843ex;" alt="{\displaystyle {\begin{aligned}\sum _{n=1}^{\infty }{\frac {1}{n^{2}}}&amp;=\lim _{t\to 0}{\frac {\pi }{4}}{\frac {2\pi te^{2\pi t}-e^{2\pi t}+1}{\pi t^{2}e^{2\pi t}+te^{2\pi t}-t}}\\[6pt]&amp;=\lim _{t\to 0}{\frac {\pi ^{3}te^{2\pi t}}{2\pi \left(\pi t^{2}e^{2\pi t}+2te^{2\pi t}\right)+e^{2\pi t}-1}}\\[6pt]&amp;=\lim _{t\to 0}{\frac {\pi ^{2}(2\pi t+1)}{4\pi ^{2}t^{2}+12\pi t+6}}\\[6pt]&amp;={\frac {\pi ^{2}}{6}}.\end{aligned}}}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="A_proof_using_Fourier_series">A proof using Fourier series</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Basel_problem&amp;action=edit&amp;section=6" title="Edit section: A proof using Fourier series"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Use <a href="/wiki/Parseval%27s_identity" title="Parseval&#39;s identity">Parseval's identity</a> (applied to the function <span class="texhtml"><i>f</i>(<i>x</i>) = <i>x</i></span>) to obtain <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=-\infty }^{\infty }|c_{n}|^{2}={\frac {1}{2\pi }}\int _{-\pi }^{\pi }x^{2}\,dx,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C0;<!-- π --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C0;<!-- π --></mi> </mrow> </msubsup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=-\infty }^{\infty }|c_{n}|^{2}={\frac {1}{2\pi }}\int _{-\pi }^{\pi }x^{2}\,dx,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb9cc965ad3d22fdbac8404dca3c830f927723fa" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:27.059ex; height:6.843ex;" alt="{\displaystyle \sum _{n=-\infty }^{\infty }|c_{n}|^{2}={\frac {1}{2\pi }}\int _{-\pi }^{\pi }x^{2}\,dx,}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}c_{n}&amp;={\frac {1}{2\pi }}\int _{-\pi }^{\pi }xe^{-inx}\,dx\\[4pt]&amp;={\frac {n\pi \cos(n\pi )-\sin(n\pi )}{\pi n^{2}}}i\\[4pt]&amp;={\frac {\cos(n\pi )}{n}}i\\[4pt]&amp;={\frac {(-1)^{n}}{n}}i\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.7em 0.7em 0.7em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C0;<!-- π --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C0;<!-- π --></mi> </mrow> </msubsup> <mi>x</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi>n</mi> <mi>x</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mi>&#x03C0;<!-- π --></mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mi>&#x03C0;<!-- π --></mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mi>&#x03C0;<!-- π --></mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>&#x03C0;<!-- π --></mi> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mi>i</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mi>&#x03C0;<!-- π --></mi> <mo stretchy="false">)</mo> </mrow> <mi>n</mi> </mfrac> </mrow> <mi>i</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mi>n</mi> </mfrac> </mrow> <mi>i</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}c_{n}&amp;={\frac {1}{2\pi }}\int _{-\pi }^{\pi }xe^{-inx}\,dx\\[4pt]&amp;={\frac {n\pi \cos(n\pi )-\sin(n\pi )}{\pi n^{2}}}i\\[4pt]&amp;={\frac {\cos(n\pi )}{n}}i\\[4pt]&amp;={\frac {(-1)^{n}}{n}}i\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc6502963860a1f5685ee7ff62078af11aa7f79c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -12.671ex; width:28.707ex; height:26.509ex;" alt="{\displaystyle {\begin{aligned}c_{n}&amp;={\frac {1}{2\pi }}\int _{-\pi }^{\pi }xe^{-inx}\,dx\\[4pt]&amp;={\frac {n\pi \cos(n\pi )-\sin(n\pi )}{\pi n^{2}}}i\\[4pt]&amp;={\frac {\cos(n\pi )}{n}}i\\[4pt]&amp;={\frac {(-1)^{n}}{n}}i\end{aligned}}}"></span> </p><p>for <span class="texhtml"><i>n</i> ≠ 0</span>, and <span class="texhtml"><i>c</i><sub>0</sub> = 0</span>. Thus, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |c_{n}|^{2}={\begin{cases}{\dfrac {1}{n^{2}}},&amp;{\text{for }}n\neq 0,\\0,&amp;{\text{for }}n=0,\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mn>1</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mstyle> </mrow> <mo>,</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>for&#xA0;</mtext> </mrow> <mi>n</mi> <mo>&#x2260;<!-- ≠ --></mo> <mn>0</mn> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> <mo>,</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>for&#xA0;</mtext> </mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |c_{n}|^{2}={\begin{cases}{\dfrac {1}{n^{2}}},&amp;{\text{for }}n\neq 0,\\0,&amp;{\text{for }}n=0,\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0623217e33d0b1788dda6f3fcf0e89772db7646" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:26.413ex; height:8.176ex;" alt="{\displaystyle |c_{n}|^{2}={\begin{cases}{\dfrac {1}{n^{2}}},&amp;{\text{for }}n\neq 0,\\0,&amp;{\text{for }}n=0,\end{cases}}}"></span> </p><p>and <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=-\infty }^{\infty }|c_{n}|^{2}=2\sum _{n=1}^{\infty }{\frac {1}{n^{2}}}={\frac {1}{2\pi }}\int _{-\pi }^{\pi }x^{2}\,dx.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>2</mn> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C0;<!-- π --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C0;<!-- π --></mi> </mrow> </msubsup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=-\infty }^{\infty }|c_{n}|^{2}=2\sum _{n=1}^{\infty }{\frac {1}{n^{2}}}={\frac {1}{2\pi }}\int _{-\pi }^{\pi }x^{2}\,dx.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26b0fcdda4a0876335cbcf3f6303ab08ec1c62ec" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:38.734ex; height:6.843ex;" alt="{\displaystyle \sum _{n=-\infty }^{\infty }|c_{n}|^{2}=2\sum _{n=1}^{\infty }{\frac {1}{n^{2}}}={\frac {1}{2\pi }}\int _{-\pi }^{\pi }x^{2}\,dx.}"></span> </p><p>Therefore, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{2}}}={\frac {1}{4\pi }}\int _{-\pi }^{\pi }x^{2}\,dx={\frac {\pi ^{2}}{6}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C0;<!-- π --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C0;<!-- π --></mi> </mrow> </msubsup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>6</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{2}}}={\frac {1}{4\pi }}\int _{-\pi }^{\pi }x^{2}\,dx={\frac {\pi ^{2}}{6}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/683511cdb78e6f4121cd8cc86bc871e6347ba973" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:29.615ex; height:6.843ex;" alt="{\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{2}}}={\frac {1}{4\pi }}\int _{-\pi }^{\pi }x^{2}\,dx={\frac {\pi ^{2}}{6}}}"></span> as required. </p> <div class="mw-heading mw-heading2"><h2 id="Another_proof_using_Parseval's_identity"><span id="Another_proof_using_Parseval.27s_identity"></span>Another proof using Parseval's identity</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Basel_problem&amp;action=edit&amp;section=7" title="Edit section: Another proof using Parseval&#039;s identity"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Given a <a href="/wiki/Complete_orthonormal_basis" class="mw-redirect" title="Complete orthonormal basis">complete orthonormal basis</a> in the space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L_{\operatorname {per} }^{2}(0,1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>per</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L_{\operatorname {per} }^{2}(0,1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09a66c7e3041693c3ecfc4911287c0222f8ea578" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:9.272ex; height:3.176ex;" alt="{\displaystyle L_{\operatorname {per} }^{2}(0,1)}"></span> of <a href="/wiki/Lp_space#Special_cases" title="Lp space">L2</a> <a href="/wiki/Periodic_function" title="Periodic function">periodic functions</a> over <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (0,1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (0,1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c79c6838e423c1ed3c7ea532a56dc9f9dae8290b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.168ex; height:2.843ex;" alt="{\displaystyle (0,1)}"></span> (i.e., the subspace of <a href="/wiki/Square-integrable_function" title="Square-integrable function">square-integrable functions</a> which are also <a href="/wiki/Periodic_function" title="Periodic function">periodic</a>), denoted by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{e_{i}\}_{i=-\infty }^{\infty }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msubsup> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{e_{i}\}_{i=-\infty }^{\infty }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/91925907cebd9afd8c5e7fdbed179563da230c4b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:9.208ex; height:3.176ex;" alt="{\displaystyle \{e_{i}\}_{i=-\infty }^{\infty }}"></span>, <a href="/wiki/Parseval%27s_identity" title="Parseval&#39;s identity">Parseval's identity</a> tells us that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|x\|^{2}=\sum _{i=-\infty }^{\infty }|\langle e_{i},x\rangle |^{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>x</mi> <msup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <mi>x</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|x\|^{2}=\sum _{i=-\infty }^{\infty }|\langle e_{i},x\rangle |^{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d737796e4357ac356f72af50548c92f78b430701" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:22.013ex; height:7.009ex;" alt="{\displaystyle \|x\|^{2}=\sum _{i=-\infty }^{\infty }|\langle e_{i},x\rangle |^{2},}"></span> </p><p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|x\|:={\sqrt {\langle x,x\rangle }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mo>:=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>x</mi> <mo>,</mo> <mi>x</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|x\|:={\sqrt {\langle x,x\rangle }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b88962fe036ffc5c2e2ca411c7be8d38c12b9f2d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:15.226ex; height:4.843ex;" alt="{\displaystyle \|x\|:={\sqrt {\langle x,x\rangle }}}"></span> is defined in terms of the <a href="/wiki/Inner_product" class="mw-redirect" title="Inner product">inner product</a> on this <a href="/wiki/Hilbert_space" title="Hilbert space">Hilbert space</a> given by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle f,g\rangle =\int _{0}^{1}f(x){\overline {g(x)}}\,dx,\ f,g\in L_{\operatorname {per} }^{2}(0,1).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>f</mi> <mo>,</mo> <mi>g</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>,</mo> <mtext>&#xA0;</mtext> <mi>f</mi> <mo>,</mo> <mi>g</mi> <mo>&#x2208;<!-- ∈ --></mo> <msubsup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>per</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle f,g\rangle =\int _{0}^{1}f(x){\overline {g(x)}}\,dx,\ f,g\in L_{\operatorname {per} }^{2}(0,1).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4427b9a29826c48be1849f22b607c718a1730c87" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:41.764ex; height:6.176ex;" alt="{\displaystyle \langle f,g\rangle =\int _{0}^{1}f(x){\overline {g(x)}}\,dx,\ f,g\in L_{\operatorname {per} }^{2}(0,1).}"></span> </p><p>We can consider the <a href="/wiki/Orthonormal_basis" title="Orthonormal basis">orthonormal basis</a> on this space defined by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e_{k}\equiv e_{k}(\vartheta ):=\exp(2\pi \imath k\vartheta )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>&#x2261;<!-- ≡ --></mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03D1;<!-- ϑ --></mi> <mo stretchy="false">)</mo> <mo>:=</mo> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x0131;<!-- ı --></mi> <mi>k</mi> <mi>&#x03D1;<!-- ϑ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e_{k}\equiv e_{k}(\vartheta ):=\exp(2\pi \imath k\vartheta )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/467e8a6be681d5cc9145b8a7afb3afbe65d031f2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.606ex; height:2.843ex;" alt="{\displaystyle e_{k}\equiv e_{k}(\vartheta ):=\exp(2\pi \imath k\vartheta )}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle e_{k},e_{j}\rangle =\int _{0}^{1}e^{2\pi \imath (k-j)\vartheta }\,d\vartheta =\delta _{k,j}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msubsup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x0131;<!-- ı --></mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mi>j</mi> <mo stretchy="false">)</mo> <mi>&#x03D1;<!-- ϑ --></mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03D1;<!-- ϑ --></mi> <mo>=</mo> <msub> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle e_{k},e_{j}\rangle =\int _{0}^{1}e^{2\pi \imath (k-j)\vartheta }\,d\vartheta =\delta _{k,j}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/babdb752ab8348426b321e092263f785d5e882c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:32.048ex; height:6.176ex;" alt="{\displaystyle \langle e_{k},e_{j}\rangle =\int _{0}^{1}e^{2\pi \imath (k-j)\vartheta }\,d\vartheta =\delta _{k,j}}"></span>. Then if we take <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(\vartheta ):=\vartheta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>&#x03D1;<!-- ϑ --></mi> <mo stretchy="false">)</mo> <mo>:=</mo> <mi>&#x03D1;<!-- ϑ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(\vartheta ):=\vartheta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce2bd4c063778adcd0b112ba5614e035259e28a5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.581ex; height:2.843ex;" alt="{\displaystyle f(\vartheta ):=\vartheta }"></span>, we can compute both that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\|f\|^{2}&amp;=\int _{0}^{1}\vartheta ^{2}\,d\vartheta ={\frac {1}{3}}\\\langle f,e_{k}\rangle &amp;=\int _{0}^{1}\vartheta e^{-2\pi \imath k\vartheta }\,d\vartheta ={\Biggl \{}{\begin{array}{ll}{\frac {1}{2}},&amp;k=0\\-{\frac {1}{2\pi \imath k}}&amp;k\neq 0,\end{array}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>f</mi> <msup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msubsup> <msup> <mi>&#x03D1;<!-- ϑ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03D1;<!-- ϑ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>f</mi> <mo>,</mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msubsup> <mi>&#x03D1;<!-- ϑ --></mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x0131;<!-- ı --></mi> <mi>k</mi> <mi>&#x03D1;<!-- ϑ --></mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03D1;<!-- ϑ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.470em" minsize="2.470em">{</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="left left" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>,</mo> </mtd> <mtd> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x0131;<!-- ı --></mi> <mi>k</mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mi>k</mi> <mo>&#x2260;<!-- ≠ --></mo> <mn>0</mn> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\|f\|^{2}&amp;=\int _{0}^{1}\vartheta ^{2}\,d\vartheta ={\frac {1}{3}}\\\langle f,e_{k}\rangle &amp;=\int _{0}^{1}\vartheta e^{-2\pi \imath k\vartheta }\,d\vartheta ={\Biggl \{}{\begin{array}{ll}{\frac {1}{2}},&amp;k=0\\-{\frac {1}{2\pi \imath k}}&amp;k\neq 0,\end{array}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f7786dda1c0970d9c32844919f6c7d8f3284504d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.237ex; margin-bottom: -0.268ex; width:45.137ex; height:14.176ex;" alt="{\displaystyle {\begin{aligned}\|f\|^{2}&amp;=\int _{0}^{1}\vartheta ^{2}\,d\vartheta ={\frac {1}{3}}\\\langle f,e_{k}\rangle &amp;=\int _{0}^{1}\vartheta e^{-2\pi \imath k\vartheta }\,d\vartheta ={\Biggl \{}{\begin{array}{ll}{\frac {1}{2}},&amp;k=0\\-{\frac {1}{2\pi \imath k}}&amp;k\neq 0,\end{array}}\end{aligned}}}"></span> </p><p>by elementary <a href="/wiki/Calculus" title="Calculus">calculus</a> and <a href="/wiki/Integration_by_parts" title="Integration by parts">integration by parts</a>, respectively. Finally, by <a href="/wiki/Parseval%27s_identity" title="Parseval&#39;s identity">Parseval's identity</a> stated in the form above, we obtain that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\|f\|^{2}={\frac {1}{3}}&amp;=\sum _{\stackrel {k=-\infty }{k\neq 0}}^{\infty }{\frac {1}{(2\pi k)^{2}}}+{\frac {1}{4}}=2\sum _{k=1}^{\infty }{\frac {1}{(2\pi k)^{2}}}+{\frac {1}{4}}\\&amp;\implies {\frac {\pi ^{2}}{6}}={\frac {2\pi ^{2}}{3}}-{\frac {\pi ^{2}}{2}}=\zeta (2).\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>f</mi> <msup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mi>k</mi> <mo>&#x2260;<!-- ≠ --></mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>k</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mrow> <mo>=</mo> <mn>2</mn> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>k</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mspace width="thickmathspace" /> <mo stretchy="false">&#x27F9;<!-- ⟹ --></mo> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>6</mn> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mn>3</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>2</mn> </mfrac> </mrow> <mo>=</mo> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\|f\|^{2}={\frac {1}{3}}&amp;=\sum _{\stackrel {k=-\infty }{k\neq 0}}^{\infty }{\frac {1}{(2\pi k)^{2}}}+{\frac {1}{4}}=2\sum _{k=1}^{\infty }{\frac {1}{(2\pi k)^{2}}}+{\frac {1}{4}}\\&amp;\implies {\frac {\pi ^{2}}{6}}={\frac {2\pi ^{2}}{3}}-{\frac {\pi ^{2}}{2}}=\zeta (2).\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/546304d502d2aec77793ed8085af98358b77c178" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.671ex; width:50.976ex; height:14.509ex;" alt="{\displaystyle {\begin{aligned}\|f\|^{2}={\frac {1}{3}}&amp;=\sum _{\stackrel {k=-\infty }{k\neq 0}}^{\infty }{\frac {1}{(2\pi k)^{2}}}+{\frac {1}{4}}=2\sum _{k=1}^{\infty }{\frac {1}{(2\pi k)^{2}}}+{\frac {1}{4}}\\&amp;\implies {\frac {\pi ^{2}}{6}}={\frac {2\pi ^{2}}{3}}-{\frac {\pi ^{2}}{2}}=\zeta (2).\end{aligned}}}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Generalizations_and_recurrence_relations">Generalizations and recurrence relations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Basel_problem&amp;action=edit&amp;section=8" title="Edit section: Generalizations and recurrence relations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Note that by considering higher-order powers of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{j}(\vartheta ):=\vartheta ^{j}\in L_{\operatorname {per} }^{2}(0,1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03D1;<!-- ϑ --></mi> <mo stretchy="false">)</mo> <mo>:=</mo> <msup> <mi>&#x03D1;<!-- ϑ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msup> <mo>&#x2208;<!-- ∈ --></mo> <msubsup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>per</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{j}(\vartheta ):=\vartheta ^{j}\in L_{\operatorname {per} }^{2}(0,1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/950b95fe226746ce480ef2beca01b2b98fc0e0d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:23.373ex; height:3.343ex;" alt="{\displaystyle f_{j}(\vartheta ):=\vartheta ^{j}\in L_{\operatorname {per} }^{2}(0,1)}"></span> we can use <a href="/wiki/Integration_by_parts" title="Integration by parts">integration by parts</a> to extend this method to enumerating formulas for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (2j)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>j</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (2j)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/00aed6a4e4006332f72564f70bd27c86fec53c9e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.025ex; height:2.843ex;" alt="{\displaystyle \zeta (2j)}"></span> when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j&gt;1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>j</mi> <mo>&gt;</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j&gt;1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a6971f271c10e6ec38d282709411f63a3875d104" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.027ex; width:5.246ex; height:2.509ex;" alt="{\displaystyle j&gt;1}"></span>. In particular, suppose we let <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{j,k}:=\int _{0}^{1}\vartheta ^{j}e^{-2\pi \imath k\vartheta }\,d\vartheta ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>:=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msubsup> <msup> <mi>&#x03D1;<!-- ϑ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x0131;<!-- ı --></mi> <mi>k</mi> <mi>&#x03D1;<!-- ϑ --></mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03D1;<!-- ϑ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I_{j,k}:=\int _{0}^{1}\vartheta ^{j}e^{-2\pi \imath k\vartheta }\,d\vartheta ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/953a501ea156c7f4734190756890b6520340ffe3" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:23.552ex; height:6.176ex;" alt="{\displaystyle I_{j,k}:=\int _{0}^{1}\vartheta ^{j}e^{-2\pi \imath k\vartheta }\,d\vartheta ,}"></span> </p><p>so that <a href="/wiki/Integration_by_parts" title="Integration by parts">integration by parts</a> yields the <a href="/wiki/Recurrence_relation" title="Recurrence relation">recurrence relation</a> that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}I_{j,k}&amp;={\begin{cases}{\frac {1}{j+1}},&amp;k=0;\\[4pt]-{\frac {1}{2\pi \imath \cdot k}}+{\frac {j}{2\pi \imath \cdot k}}I_{j-1,k},&amp;k\neq 0\end{cases}}\\[6pt]&amp;={\begin{cases}{\frac {1}{j+1}},&amp;k=0;\\[4pt]-\sum \limits _{m=1}^{j}{\frac {j!}{(j+1-m)!}}\cdot {\frac {1}{(2\pi \imath \cdot k)^{m}}},&amp;k\neq 0.\end{cases}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.9em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing="0.6em 0.2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>,</mo> </mtd> <mtd> <mi>k</mi> <mo>=</mo> <mn>0</mn> <mo>;</mo> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x0131;<!-- ı --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>k</mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>j</mi> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x0131;<!-- ı --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>k</mi> </mrow> </mfrac> </mrow> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>,</mo> </mtd> <mtd> <mi>k</mi> <mo>&#x2260;<!-- ≠ --></mo> <mn>0</mn> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing="0.6em 0.2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>,</mo> </mtd> <mtd> <mi>k</mi> <mo>=</mo> <mn>0</mn> <mo>;</mo> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <munderover> <mo movablelimits="false">&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>j</mi> <mo>!</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>j</mi> <mo>+</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x0131;<!-- ı --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>k</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>,</mo> </mtd> <mtd> <mi>k</mi> <mo>&#x2260;<!-- ≠ --></mo> <mn>0.</mn> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}I_{j,k}&amp;={\begin{cases}{\frac {1}{j+1}},&amp;k=0;\\[4pt]-{\frac {1}{2\pi \imath \cdot k}}+{\frac {j}{2\pi \imath \cdot k}}I_{j-1,k},&amp;k\neq 0\end{cases}}\\[6pt]&amp;={\begin{cases}{\frac {1}{j+1}},&amp;k=0;\\[4pt]-\sum \limits _{m=1}^{j}{\frac {j!}{(j+1-m)!}}\cdot {\frac {1}{(2\pi \imath \cdot k)^{m}}},&amp;k\neq 0.\end{cases}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78be0e9339fde479359987bfc3f9c5105e1e9eaa" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -10.338ex; width:41.969ex; height:21.843ex;" alt="{\displaystyle {\begin{aligned}I_{j,k}&amp;={\begin{cases}{\frac {1}{j+1}},&amp;k=0;\\[4pt]-{\frac {1}{2\pi \imath \cdot k}}+{\frac {j}{2\pi \imath \cdot k}}I_{j-1,k},&amp;k\neq 0\end{cases}}\\[6pt]&amp;={\begin{cases}{\frac {1}{j+1}},&amp;k=0;\\[4pt]-\sum \limits _{m=1}^{j}{\frac {j!}{(j+1-m)!}}\cdot {\frac {1}{(2\pi \imath \cdot k)^{m}}},&amp;k\neq 0.\end{cases}}\end{aligned}}}"></span> </p><p>Then by applying <a href="/wiki/Parseval%27s_identity" title="Parseval&#39;s identity">Parseval's identity</a> as we did for the first case above along with the linearity of the <a href="/wiki/Inner_product" class="mw-redirect" title="Inner product">inner product</a> yields that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\|f_{j}\|^{2}={\frac {1}{2j+1}}&amp;=2\sum _{k\geq 1}I_{j,k}{\bar {I}}_{j,k}+{\frac {1}{(j+1)^{2}}}\\[6pt]&amp;=2\sum _{m=1}^{j}\sum _{r=1}^{j}{\frac {j!^{2}}{(j+1-m)!(j+1-r)!}}{\frac {(-1)^{r}}{\imath ^{m+r}}}{\frac {\zeta (m+r)}{(2\pi )^{m+r}}}+{\frac {1}{(j+1)^{2}}}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.9em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <msup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>2</mn> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>1</mn> </mrow> </munder> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>I</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mi>j</mi> <mo>+</mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mn>2</mn> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </munderover> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>j</mi> <msup> <mo>!</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>j</mi> <mo>+</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> <mo stretchy="false">)</mo> <mo>!</mo> <mo stretchy="false">(</mo> <mi>j</mi> <mo>+</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>r</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msup> </mrow> <msup> <mi>&#x0131;<!-- ı --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mi>r</mi> </mrow> </msup> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>r</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mi>r</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mi>j</mi> <mo>+</mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\|f_{j}\|^{2}={\frac {1}{2j+1}}&amp;=2\sum _{k\geq 1}I_{j,k}{\bar {I}}_{j,k}+{\frac {1}{(j+1)^{2}}}\\[6pt]&amp;=2\sum _{m=1}^{j}\sum _{r=1}^{j}{\frac {j!^{2}}{(j+1-m)!(j+1-r)!}}{\frac {(-1)^{r}}{\imath ^{m+r}}}{\frac {\zeta (m+r)}{(2\pi )^{m+r}}}+{\frac {1}{(j+1)^{2}}}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aaed3a56fe3869e3897f90fe9156397440df4318" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.995ex; margin-bottom: -0.176ex; width:81.406ex; height:15.509ex;" alt="{\displaystyle {\begin{aligned}\|f_{j}\|^{2}={\frac {1}{2j+1}}&amp;=2\sum _{k\geq 1}I_{j,k}{\bar {I}}_{j,k}+{\frac {1}{(j+1)^{2}}}\\[6pt]&amp;=2\sum _{m=1}^{j}\sum _{r=1}^{j}{\frac {j!^{2}}{(j+1-m)!(j+1-r)!}}{\frac {(-1)^{r}}{\imath ^{m+r}}}{\frac {\zeta (m+r)}{(2\pi )^{m+r}}}+{\frac {1}{(j+1)^{2}}}.\end{aligned}}}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="Proof_using_differentiation_under_the_integral_sign">Proof using differentiation under the integral sign</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Basel_problem&amp;action=edit&amp;section=9" title="Edit section: Proof using differentiation under the integral sign"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>It's possible to prove the result using elementary calculus by applying the <a href="/wiki/Leibniz_integral_rule" title="Leibniz integral rule">differentiation under the integral sign</a> technique to an integral due to Freitas:<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I(\alpha )=\int _{0}^{\infty }\ln \left(1+\alpha e^{-x}+e^{-2x}\right)dx.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mi>&#x03B1;<!-- α --></mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> </mrow> </msup> <mo>+</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>x</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mi>d</mi> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I(\alpha )=\int _{0}^{\infty }\ln \left(1+\alpha e^{-x}+e^{-2x}\right)dx.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bfe346ff77d96e87ae7f0d4200951f18559370b1" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:35.777ex; height:5.843ex;" alt="{\displaystyle I(\alpha )=\int _{0}^{\infty }\ln \left(1+\alpha e^{-x}+e^{-2x}\right)dx.}"></span> </p><p>While the <a href="/wiki/Primitive_function" class="mw-redirect" title="Primitive function">primitive function</a> of the integrand cannot be expressed in terms of elementary functions, by differentiating with respect to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b79333175c8b3f0840bfb4ec41b8072c83ea88d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:1.676ex;" alt="{\displaystyle \alpha }"></span> we arrive at </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {dI}{d\alpha }}=\int _{0}^{\infty }{\frac {e^{-x}}{1+\alpha e^{-x}+e^{-2x}}}dx,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>I</mi> </mrow> <mrow> <mi>d</mi> <mi>&#x03B1;<!-- α --></mi> </mrow> </mfrac> </mrow> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> </mrow> </msup> <mrow> <mn>1</mn> <mo>+</mo> <mi>&#x03B1;<!-- α --></mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> </mrow> </msup> <mo>+</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>x</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mi>d</mi> <mi>x</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {dI}{d\alpha }}=\int _{0}^{\infty }{\frac {e^{-x}}{1+\alpha e^{-x}+e^{-2x}}}dx,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fd2c6222d253ead360fd2dcc8d8f45687701f093" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:31.615ex; height:6.009ex;" alt="{\displaystyle {\frac {dI}{d\alpha }}=\int _{0}^{\infty }{\frac {e^{-x}}{1+\alpha e^{-x}+e^{-2x}}}dx,}"></span> which can be integrated by <a href="/wiki/Integration_by_substitution" title="Integration by substitution">substituting</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u=e^{-x}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>u</mi> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u=e^{-x}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7639fdcb424cd4d25863678b49039d742c3f2803" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.963ex; height:2.509ex;" alt="{\displaystyle u=e^{-x}}"></span> and decomposing into <a href="/wiki/Partial_fractions" class="mw-redirect" title="Partial fractions">partial fractions</a>. In the range <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -2\leq \alpha \leq 2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2264;<!-- ≤ --></mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -2\leq \alpha \leq 2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8caa33625c9d23cb1478559e8c167d0fd6117569" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:11.818ex; height:2.343ex;" alt="{\displaystyle -2\leq \alpha \leq 2}"></span> the definite integral reduces to </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {dI}{d\alpha }}={\frac {2}{\sqrt {4-\alpha ^{2}}}}\left[\arctan \left({\frac {\alpha +2}{\sqrt {4-\alpha ^{2}}}}\right)-\arctan \left({\frac {\alpha }{\sqrt {4-\alpha ^{2}}}}\right)\right].}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>I</mi> </mrow> <mrow> <mi>d</mi> <mi>&#x03B1;<!-- α --></mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <msqrt> <mn>4</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mrow> <mo>[</mo> <mrow> <mi>arctan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03B1;<!-- α --></mi> <mo>+</mo> <mn>2</mn> </mrow> <msqrt> <mn>4</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>arctan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B1;<!-- α --></mi> <msqrt> <mn>4</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {dI}{d\alpha }}={\frac {2}{\sqrt {4-\alpha ^{2}}}}\left[\arctan \left({\frac {\alpha +2}{\sqrt {4-\alpha ^{2}}}}\right)-\arctan \left({\frac {\alpha }{\sqrt {4-\alpha ^{2}}}}\right)\right].}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f2e0093ed84e09c9e9bbb9baf5a6601466456ec" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:63.019ex; height:7.509ex;" alt="{\displaystyle {\frac {dI}{d\alpha }}={\frac {2}{\sqrt {4-\alpha ^{2}}}}\left[\arctan \left({\frac {\alpha +2}{\sqrt {4-\alpha ^{2}}}}\right)-\arctan \left({\frac {\alpha }{\sqrt {4-\alpha ^{2}}}}\right)\right].}"></span> </p><p>The expression can be simplified using the <a href="/wiki/Inverse_trigonometric_functions#Arctangent_addition_formula" title="Inverse trigonometric functions">arctangent addition formula</a> and integrated with respect to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b79333175c8b3f0840bfb4ec41b8072c83ea88d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:1.676ex;" alt="{\displaystyle \alpha }"></span> by means of <a href="/wiki/Trigonometric_substitution" title="Trigonometric substitution">trigonometric substitution</a>, resulting in </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I(\alpha )=-{\frac {1}{2}}\arccos \left({\frac {\alpha }{2}}\right)^{2}+c.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mi>arccos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B1;<!-- α --></mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>c</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I(\alpha )=-{\frac {1}{2}}\arccos \left({\frac {\alpha }{2}}\right)^{2}+c.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9dc9fa5009123e2c25279d32af5932c24576107" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:29.013ex; height:5.176ex;" alt="{\displaystyle I(\alpha )=-{\frac {1}{2}}\arccos \left({\frac {\alpha }{2}}\right)^{2}+c.}"></span> </p><p>The <a href="/wiki/Integration_constant" class="mw-redirect" title="Integration constant">integration constant</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span> can be determined by noticing that two distinct values of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I(\alpha )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I(\alpha )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6985abc0cae80c8b32782caa6526fe274e5196f5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.469ex; height:2.843ex;" alt="{\displaystyle I(\alpha )}"></span> are related by </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I(2)=4I(0),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>4</mn> <mi>I</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I(2)=4I(0),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a95528fc209ff4190c7185faac11fc1bbaa72604" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.195ex; height:2.843ex;" alt="{\displaystyle I(2)=4I(0),}"></span> because when calculating <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I(2)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I(2)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/49c4936f29ccbc77e5287075dda58d46e4fdce05" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.143ex; height:2.843ex;" alt="{\displaystyle I(2)}"></span> we can <a href="/wiki/Factorization" title="Factorization">factor</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1+2e^{-x}+e^{-2x}=(1+e^{-x})^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>+</mo> <mn>2</mn> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> </mrow> </msup> <mo>+</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>x</mi> </mrow> </msup> <mo>=</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1+2e^{-x}+e^{-2x}=(1+e^{-x})^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f612a251521a47e3fbb6f7e433487c126f8d760" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:29.396ex; height:3.176ex;" alt="{\displaystyle 1+2e^{-x}+e^{-2x}=(1+e^{-x})^{2}}"></span> and express it in terms of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I(0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I(0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/94b472ae3bdc6118a8cd37d1e9a1f366a64a04f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.143ex; height:2.843ex;" alt="{\displaystyle I(0)}"></span> using the <a href="/wiki/List_of_logarithmic_identities#Logarithm_of_a_power" title="List of logarithmic identities">logarithm of a power identity</a> and the <a href="/wiki/Integration_by_substitution" title="Integration by substitution">substitution</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u=x/2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>u</mi> <mo>=</mo> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u=x/2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/56c9bcd275a62910182b2fc9e5d77d88e858a2bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.083ex; height:2.843ex;" alt="{\displaystyle u=x/2}"></span>. This makes it possible to determine <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c={\frac {\pi ^{2}}{6}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>6</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c={\frac {\pi ^{2}}{6}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5cdca94187f16c5131d05870d956595d73f9a9ec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:7.33ex; height:5.676ex;" alt="{\displaystyle c={\frac {\pi ^{2}}{6}}}"></span>, and it follows that </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I(-2)=2\int _{0}^{\infty }\ln(1-e^{-x})dx=-{\frac {\pi ^{2}}{3}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>2</mn> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>3</mn> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I(-2)=2\int _{0}^{\infty }\ln(1-e^{-x})dx=-{\frac {\pi ^{2}}{3}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/859d02ae663a682db3063c9f51538d92e1140456" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:37.936ex; height:6.176ex;" alt="{\displaystyle I(-2)=2\int _{0}^{\infty }\ln(1-e^{-x})dx=-{\frac {\pi ^{2}}{3}}.}"></span> </p><p>This final integral can be evaluated by expanding the natural logarithm into its <a href="/wiki/Mercator_series" title="Mercator series">Taylor series</a>: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{0}^{\infty }\ln(1-e^{-x})dx=-\sum _{n=1}^{\infty }\int _{0}^{\infty }{\frac {e^{-nx}}{n}}dx=-\sum _{n=1}^{\infty }{\frac {1}{n^{2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> <mi>x</mi> </mrow> </msup> <mi>n</mi> </mfrac> </mrow> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{0}^{\infty }\ln(1-e^{-x})dx=-\sum _{n=1}^{\infty }\int _{0}^{\infty }{\frac {e^{-nx}}{n}}dx=-\sum _{n=1}^{\infty }{\frac {1}{n^{2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74d77b0cdea30ae2ed49e34bb0b0618edc184a9c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:53.191ex; height:6.843ex;" alt="{\displaystyle \int _{0}^{\infty }\ln(1-e^{-x})dx=-\sum _{n=1}^{\infty }\int _{0}^{\infty }{\frac {e^{-nx}}{n}}dx=-\sum _{n=1}^{\infty }{\frac {1}{n^{2}}}.}"></span> </p><p>The last two identities imply </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{2}}}={\frac {\pi ^{2}}{6}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>6</mn> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{2}}}={\frac {\pi ^{2}}{6}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/664617be29449b83fe4c47625907f1713ec4b523" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:13.997ex; height:6.843ex;" alt="{\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{2}}}={\frac {\pi ^{2}}{6}}.}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="Cauchy's_proof"><span id="Cauchy.27s_proof"></span>Cauchy's proof</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Basel_problem&amp;action=edit&amp;section=10" title="Edit section: Cauchy&#039;s proof"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>While most proofs use results from advanced <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, such as <a href="/wiki/Fourier_analysis" title="Fourier analysis">Fourier analysis</a>, <a href="/wiki/Complex_analysis" title="Complex analysis">complex analysis</a>, and <a href="/wiki/Multivariable_calculus" title="Multivariable calculus">multivariable calculus</a>, the following does not even require single-variable <a href="/wiki/Calculus" title="Calculus">calculus</a> (until a single <a href="/wiki/Limit_of_a_function" title="Limit of a function">limit</a> is taken at the end). </p><p>For a proof using the residue theorem, see <a href="/wiki/Residue_theorem#Evaluating_zeta_functions" title="Residue theorem">here</a>. </p> <div class="mw-heading mw-heading3"><h3 id="History_of_this_proof">History of this proof</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Basel_problem&amp;action=edit&amp;section=11" title="Edit section: History of this proof"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The proof goes back to <a href="/wiki/Augustin_Louis_Cauchy" class="mw-redirect" title="Augustin Louis Cauchy">Augustin Louis Cauchy</a> (Cours d'Analyse, 1821, Note VIII). In 1954, this proof appeared in the book of <a href="/wiki/Akiva_Yaglom" title="Akiva Yaglom">Akiva</a> and <a href="/wiki/Isaak_Yaglom" title="Isaak Yaglom">Isaak Yaglom</a> "Nonelementary Problems in an Elementary Exposition". Later, in 1982, it appeared in the journal <i>Eureka</i>,<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> attributed to John Scholes, but Scholes claims he learned the proof from <a href="/wiki/Peter_Swinnerton-Dyer" title="Peter Swinnerton-Dyer">Peter Swinnerton-Dyer</a>, and in any case he maintains the proof was "common knowledge at <a href="/wiki/University_of_Cambridge" title="University of Cambridge">Cambridge</a> in the late 1960s".<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="The_proof">The proof</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Basel_problem&amp;action=edit&amp;section=12" title="Edit section: The proof"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Limit_circle_FbN.jpeg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/96/Limit_circle_FbN.jpeg/220px-Limit_circle_FbN.jpeg" decoding="async" width="220" height="287" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/96/Limit_circle_FbN.jpeg/330px-Limit_circle_FbN.jpeg 1.5x, //upload.wikimedia.org/wikipedia/commons/9/96/Limit_circle_FbN.jpeg 2x" data-file-width="414" data-file-height="540" /></a><figcaption>The inequality<br /> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {1}{2}}r^{2}\tan \theta &gt;{\tfrac {1}{2}}r^{2}\theta &gt;{\tfrac {1}{2}}r^{2}\sin \theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mo>&gt;</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>&#x03B8;<!-- θ --></mi> <mo>&gt;</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {1}{2}}r^{2}\tan \theta &gt;{\tfrac {1}{2}}r^{2}\theta &gt;{\tfrac {1}{2}}r^{2}\sin \theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/37f2068a09167604b086d15739057bebba00e9cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:28.515ex; height:3.509ex;" alt="{\displaystyle {\tfrac {1}{2}}r^{2}\tan \theta &gt;{\tfrac {1}{2}}r^{2}\theta &gt;{\tfrac {1}{2}}r^{2}\sin \theta }"></span><br /> is shown pictorially for any <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta \in (0,\pi /2)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B8;<!-- θ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta \in (0,\pi /2)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/805c14a7723e5a749cce25d214da68fff97f63d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.594ex; height:2.843ex;" alt="{\displaystyle \theta \in (0,\pi /2)}"></span>. The three terms are the areas of the triangle OAC, circle section OAB, and the triangle OAB. Taking reciprocals and squaring gives<br /> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cot ^{2}\theta &lt;{\tfrac {1}{\theta ^{2}}}&lt;\csc ^{2}\theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>cot</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mo>&lt;</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <msup> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mstyle> </mrow> <mo>&lt;</mo> <msup> <mi>csc</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cot ^{2}\theta &lt;{\tfrac {1}{\theta ^{2}}}&lt;\csc ^{2}\theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16c2bffe1b34656348e151b6cc76ea55a33987c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:19.78ex; height:4.009ex;" alt="{\displaystyle \cot ^{2}\theta &lt;{\tfrac {1}{\theta ^{2}}}&lt;\csc ^{2}\theta }"></span>.</figcaption></figure> <p>The main idea behind the proof is to bound the partial (finite) sums <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{k=1}^{m}{\frac {1}{k^{2}}}={\frac {1}{1^{2}}}+{\frac {1}{2^{2}}}+\cdots +{\frac {1}{m^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{k=1}^{m}{\frac {1}{k^{2}}}={\frac {1}{1^{2}}}+{\frac {1}{2^{2}}}+\cdots +{\frac {1}{m^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9afbce6d74ff38101967e217387c8e873a4dfa30" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:31.223ex; height:6.843ex;" alt="{\displaystyle \sum _{k=1}^{m}{\frac {1}{k^{2}}}={\frac {1}{1^{2}}}+{\frac {1}{2^{2}}}+\cdots +{\frac {1}{m^{2}}}}"></span> between two expressions, each of which will tend to <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num"><span class="texhtml mvar" style="font-style:italic;">π</span><sup>2</sup></span><span class="sr-only">/</span><span class="den">6</span></span>&#8288;</span> as <span class="texhtml"><i>m</i></span> approaches infinity. The two expressions are derived from identities involving the <a href="/wiki/Cotangent" class="mw-redirect" title="Cotangent">cotangent</a> and <a href="/wiki/Cosecant" class="mw-redirect" title="Cosecant">cosecant</a> functions. These identities are in turn derived from <a href="/wiki/De_Moivre%27s_formula" title="De Moivre&#39;s formula">de Moivre's formula</a>, and we now turn to establishing these identities. </p><p>Let <span class="texhtml"><i>x</i></span> be a real number with <span class="texhtml">0 &lt; <i>x</i> &lt; <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num"><span class="texhtml mvar" style="font-style:italic;">π</span></span><span class="sr-only">/</span><span class="den">2</span></span>&#8288;</span></span>, and let <span class="texhtml"><i>n</i></span> be a positive odd integer. Then from de Moivre's formula and the definition of the cotangent function, we have <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\frac {\cos(nx)+i\sin(nx)}{\sin ^{n}x}}&amp;={\frac {(\cos x+i\sin x)^{n}}{\sin ^{n}x}}\\[4pt]&amp;=\left({\frac {\cos x+i\sin x}{\sin x}}\right)^{n}\\[4pt]&amp;=(\cot x+i)^{n}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.7em 0.7em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>i</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mo>+</mo> <mi>i</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mrow> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mo>+</mo> <mi>i</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> </mrow> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>cot</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mo>+</mo> <mi>i</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\frac {\cos(nx)+i\sin(nx)}{\sin ^{n}x}}&amp;={\frac {(\cos x+i\sin x)^{n}}{\sin ^{n}x}}\\[4pt]&amp;=\left({\frac {\cos x+i\sin x}{\sin x}}\right)^{n}\\[4pt]&amp;=(\cot x+i)^{n}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/58f1f266a199733100b0bb030b8b6a1a415f7474" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -8.005ex; width:42.656ex; height:17.176ex;" alt="{\displaystyle {\begin{aligned}{\frac {\cos(nx)+i\sin(nx)}{\sin ^{n}x}}&amp;={\frac {(\cos x+i\sin x)^{n}}{\sin ^{n}x}}\\[4pt]&amp;=\left({\frac {\cos x+i\sin x}{\sin x}}\right)^{n}\\[4pt]&amp;=(\cot x+i)^{n}.\end{aligned}}}"></span> </p><p>From the <a href="/wiki/Binomial_theorem" title="Binomial theorem">binomial theorem</a>, we have <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}(\cot x+i)^{n}=&amp;{n \choose 0}\cot ^{n}x+{n \choose 1}(\cot ^{n-1}x)i+\cdots +{n \choose {n-1}}(\cot x)i^{n-1}+{n \choose n}i^{n}\\[6pt]=&amp;{\Bigg (}{n \choose 0}\cot ^{n}x-{n \choose 2}\cot ^{n-2}x\pm \cdots {\Bigg )}\;+\;i{\Bigg (}{n \choose 1}\cot ^{n-1}x-{n \choose 3}\cot ^{n-3}x\pm \cdots {\Bigg )}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.9em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mo stretchy="false">(</mo> <mi>cot</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mo>+</mo> <mi>i</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mn>0</mn> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msup> <mi>cot</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mn>1</mn> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mo stretchy="false">(</mo> <msup> <mi>cot</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>i</mi> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>cot</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>n</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msup> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mo>=</mo> </mtd> <mtd> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="2.470em" minsize="2.470em">(</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mn>0</mn> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msup> <mi>cot</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mn>2</mn> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msup> <mi>cot</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mo>&#x00B1;<!-- ± --></mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="2.470em" minsize="2.470em">)</mo> </mrow> </mrow> <mspace width="thickmathspace" /> <mo>+</mo> <mspace width="thickmathspace" /> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="2.470em" minsize="2.470em">(</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mn>1</mn> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msup> <mi>cot</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mn>3</mn> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msup> <mi>cot</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mo>&#x00B1;<!-- ± --></mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="2.470em" minsize="2.470em">)</mo> </mrow> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}(\cot x+i)^{n}=&amp;{n \choose 0}\cot ^{n}x+{n \choose 1}(\cot ^{n-1}x)i+\cdots +{n \choose {n-1}}(\cot x)i^{n-1}+{n \choose n}i^{n}\\[6pt]=&amp;{\Bigg (}{n \choose 0}\cot ^{n}x-{n \choose 2}\cot ^{n-2}x\pm \cdots {\Bigg )}\;+\;i{\Bigg (}{n \choose 1}\cot ^{n-1}x-{n \choose 3}\cot ^{n-3}x\pm \cdots {\Bigg )}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0419e4a7570a6a71abb683f2800f1631c0654227" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.005ex; width:96.469ex; height:15.176ex;" alt="{\displaystyle {\begin{aligned}(\cot x+i)^{n}=&amp;{n \choose 0}\cot ^{n}x+{n \choose 1}(\cot ^{n-1}x)i+\cdots +{n \choose {n-1}}(\cot x)i^{n-1}+{n \choose n}i^{n}\\[6pt]=&amp;{\Bigg (}{n \choose 0}\cot ^{n}x-{n \choose 2}\cot ^{n-2}x\pm \cdots {\Bigg )}\;+\;i{\Bigg (}{n \choose 1}\cot ^{n-1}x-{n \choose 3}\cot ^{n-3}x\pm \cdots {\Bigg )}.\end{aligned}}}"></span> </p><p>Combining the two equations and equating imaginary parts gives the identity <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\sin(nx)}{\sin ^{n}x}}={\Bigg (}{n \choose 1}\cot ^{n-1}x-{n \choose 3}\cot ^{n-3}x\pm \cdots {\Bigg )}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="2.470em" minsize="2.470em">(</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mn>1</mn> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msup> <mi>cot</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mn>3</mn> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msup> <mi>cot</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mo>&#x00B1;<!-- ± --></mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="2.470em" minsize="2.470em">)</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\sin(nx)}{\sin ^{n}x}}={\Bigg (}{n \choose 1}\cot ^{n-1}x-{n \choose 3}\cot ^{n-3}x\pm \cdots {\Bigg )}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/69c9beda59522cb4872821c062a72a51ee1cad1c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:51.12ex; height:7.509ex;" alt="{\displaystyle {\frac {\sin(nx)}{\sin ^{n}x}}={\Bigg (}{n \choose 1}\cot ^{n-1}x-{n \choose 3}\cot ^{n-3}x\pm \cdots {\Bigg )}.}"></span> </p><p>We take this identity, fix a positive integer <span class="texhtml"><i>m</i></span>, set <span class="texhtml"><i>n</i> = 2<i>m</i> + 1</span>, and consider <span class="texhtml"><i>x<sub>r</sub></i> = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num"><i>r</i><span class="texhtml mvar" style="font-style:italic;">π</span></span><span class="sr-only">/</span><span class="den">2<i>m</i> + 1</span></span>&#8288;</span></span> for <span class="texhtml"><i>r</i> = 1, 2, ..., <i>m</i></span>. Then <span class="texhtml"><i>nx<sub>r</sub></i></span> is a multiple of <span class="texhtml mvar" style="font-style:italic;">π</span> and therefore <span class="texhtml">sin(<i>nx<sub>r</sub></i>) = 0</span>. So, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0={{2m+1} \choose 1}\cot ^{2m}x_{r}-{{2m+1} \choose 3}\cot ^{2m-2}x_{r}\pm \cdots +(-1)^{m}{{2m+1} \choose {2m+1}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>1</mn> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msup> <mi>cot</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>m</mi> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>3</mn> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msup> <mi>cot</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> <mo>&#x00B1;<!-- ± --></mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0={{2m+1} \choose 1}\cot ^{2m}x_{r}-{{2m+1} \choose 3}\cot ^{2m-2}x_{r}\pm \cdots +(-1)^{m}{{2m+1} \choose {2m+1}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/539b7f5e5f0f0ef1b0e0fa160fea00462a25ecb1" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:73.29ex; height:6.176ex;" alt="{\displaystyle 0={{2m+1} \choose 1}\cot ^{2m}x_{r}-{{2m+1} \choose 3}\cot ^{2m-2}x_{r}\pm \cdots +(-1)^{m}{{2m+1} \choose {2m+1}}}"></span> </p><p>for every <span class="texhtml"><i>r</i> = 1, 2, ..., <i>m</i></span>. The values <span class="texhtml"><i>x<sub>r</sub></i> = <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ..., <i>x<sub>m</sub></i></span> are distinct numbers in the interval <span class="texhtml">0 &lt; <span class="texhtml"><i>x<sub>r</sub></i></span> &lt; <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num"><span class="texhtml mvar" style="font-style:italic;">π</span></span><span class="sr-only">/</span><span class="den">2</span></span>&#8288;</span></span>. Since the function <span class="texhtml">cot<sup>2</sup> <i>x</i></span> is <a href="/wiki/Injective_function" title="Injective function">one-to-one</a> on this interval, the numbers <span class="texhtml"><i>t<sub>r</sub></i> = cot<sup>2</sup> <i>x<sub>r</sub></i></span> are distinct for <span class="texhtml"><i>r</i> = 1, 2, ..., <i>m</i></span>. By the above equation, these <span class="texhtml"><i>m</i></span> numbers are the roots of the <span class="texhtml"><i>m</i></span>th degree polynomial <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p(t)={{2m+1} \choose 1}t^{m}-{{2m+1} \choose 3}t^{m-1}\pm \cdots +(-1)^{m}{{2m+1} \choose {2m+1}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>1</mn> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>3</mn> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x00B1;<!-- ± --></mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p(t)={{2m+1} \choose 1}t^{m}-{{2m+1} \choose 3}t^{m-1}\pm \cdots +(-1)^{m}{{2m+1} \choose {2m+1}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44e08df8b29b26693b26c11ec9ff6ca6390cd4b2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; margin-left: -0.089ex; width:64.363ex; height:6.176ex;" alt="{\displaystyle p(t)={{2m+1} \choose 1}t^{m}-{{2m+1} \choose 3}t^{m-1}\pm \cdots +(-1)^{m}{{2m+1} \choose {2m+1}}.}"></span> </p><p>By <a href="/wiki/Vieta%27s_formulas" title="Vieta&#39;s formulas">Vieta's formulas</a> we can calculate the sum of the roots directly by examining the first two coefficients of the polynomial, and this comparison shows that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cot ^{2}x_{1}+\cot ^{2}x_{2}+\cdots +\cot ^{2}x_{m}={\frac {\binom {2m+1}{3}}{\binom {2m+1}{1}}}={\frac {2m(2m-1)}{6}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>cot</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msup> <mi>cot</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msup> <mi>cot</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mn>2</mn> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>3</mn> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mn>2</mn> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>1</mn> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>m</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mn>6</mn> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cot ^{2}x_{1}+\cot ^{2}x_{2}+\cdots +\cot ^{2}x_{m}={\frac {\binom {2m+1}{3}}{\binom {2m+1}{1}}}={\frac {2m(2m-1)}{6}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6724bcddd653c94666079135cc3d39d114e2af0e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:59.868ex; height:7.676ex;" alt="{\displaystyle \cot ^{2}x_{1}+\cot ^{2}x_{2}+\cdots +\cot ^{2}x_{m}={\frac {\binom {2m+1}{3}}{\binom {2m+1}{1}}}={\frac {2m(2m-1)}{6}}.}"></span> </p><p>Substituting the <a href="/wiki/List_of_trigonometric_identities" title="List of trigonometric identities">identity</a> <span class="texhtml">csc<sup>2</sup> <i>x</i> = cot<sup>2</sup> <i>x</i> + 1</span>, we have <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \csc ^{2}x_{1}+\csc ^{2}x_{2}+\cdots +\csc ^{2}x_{m}={\frac {2m(2m-1)}{6}}+m={\frac {2m(2m+2)}{6}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>csc</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msup> <mi>csc</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msup> <mi>csc</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>m</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mn>6</mn> </mfrac> </mrow> <mo>+</mo> <mi>m</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>m</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> <mn>6</mn> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \csc ^{2}x_{1}+\csc ^{2}x_{2}+\cdots +\csc ^{2}x_{m}={\frac {2m(2m-1)}{6}}+m={\frac {2m(2m+2)}{6}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0786c25b2f5720d8c37eb21d45ae6e1584df86e4" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:70.117ex; height:5.676ex;" alt="{\displaystyle \csc ^{2}x_{1}+\csc ^{2}x_{2}+\cdots +\csc ^{2}x_{m}={\frac {2m(2m-1)}{6}}+m={\frac {2m(2m+2)}{6}}.}"></span> </p><p>Now consider the inequality <span class="texhtml">cot<sup>2</sup> <i>x</i> &lt; <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den"><i>x</i><sup>2</sup></span></span>&#8288;</span> &lt; csc<sup>2</sup> <i>x</i></span> (illustrated geometrically above). If we add up all these inequalities for each of the numbers <span class="texhtml"><i>x<sub>r</sub></i> = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num"><i>r</i><span class="texhtml mvar" style="font-style:italic;">π</span></span><span class="sr-only">/</span><span class="den">2<i>m</i> + 1</span></span>&#8288;</span></span>, and if we use the two identities above, we get <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {2m(2m-1)}{6}}&lt;\left({\frac {2m+1}{\pi }}\right)^{2}+\left({\frac {2m+1}{2\pi }}\right)^{2}+\cdots +\left({\frac {2m+1}{m\pi }}\right)^{2}&lt;{\frac {2m(2m+2)}{6}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>m</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mn>6</mn> </mfrac> </mrow> <mo>&lt;</mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>&#x03C0;<!-- π --></mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <mi>m</mi> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&lt;</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>m</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> <mn>6</mn> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {2m(2m-1)}{6}}&lt;\left({\frac {2m+1}{\pi }}\right)^{2}+\left({\frac {2m+1}{2\pi }}\right)^{2}+\cdots +\left({\frac {2m+1}{m\pi }}\right)^{2}&lt;{\frac {2m(2m+2)}{6}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d5ff7d2b5ab4a810fed3d14c8a33f21bc94173d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:81.748ex; height:6.509ex;" alt="{\displaystyle {\frac {2m(2m-1)}{6}}&lt;\left({\frac {2m+1}{\pi }}\right)^{2}+\left({\frac {2m+1}{2\pi }}\right)^{2}+\cdots +\left({\frac {2m+1}{m\pi }}\right)^{2}&lt;{\frac {2m(2m+2)}{6}}.}"></span> </p><p>Multiplying through by <span class="texhtml"><big><big>(</big></big><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num"><span class="texhtml mvar" style="font-style:italic;">π</span></span><span class="sr-only">/</span><span class="den">2<i>m</i> + 1</span></span>&#8288;</span><big><big>)</big></big><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.8em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span></span>, this becomes <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\pi ^{2}}{6}}\left({\frac {2m}{2m+1}}\right)\left({\frac {2m-1}{2m+1}}\right)&lt;{\frac {1}{1^{2}}}+{\frac {1}{2^{2}}}+\cdots +{\frac {1}{m^{2}}}&lt;{\frac {\pi ^{2}}{6}}\left({\frac {2m}{2m+1}}\right)\left({\frac {2m+2}{2m+1}}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>6</mn> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>m</mi> </mrow> <mrow> <mn>2</mn> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mrow> <mn>2</mn> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>&lt;</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>&lt;</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>6</mn> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>m</mi> </mrow> <mrow> <mn>2</mn> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>m</mi> <mo>+</mo> <mn>2</mn> </mrow> <mrow> <mn>2</mn> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\pi ^{2}}{6}}\left({\frac {2m}{2m+1}}\right)\left({\frac {2m-1}{2m+1}}\right)&lt;{\frac {1}{1^{2}}}+{\frac {1}{2^{2}}}+\cdots +{\frac {1}{m^{2}}}&lt;{\frac {\pi ^{2}}{6}}\left({\frac {2m}{2m+1}}\right)\left({\frac {2m+2}{2m+1}}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee6465e07d34d609cdb1810f31261c4c9a2d8cd6" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:82.361ex; height:6.343ex;" alt="{\displaystyle {\frac {\pi ^{2}}{6}}\left({\frac {2m}{2m+1}}\right)\left({\frac {2m-1}{2m+1}}\right)&lt;{\frac {1}{1^{2}}}+{\frac {1}{2^{2}}}+\cdots +{\frac {1}{m^{2}}}&lt;{\frac {\pi ^{2}}{6}}\left({\frac {2m}{2m+1}}\right)\left({\frac {2m+2}{2m+1}}\right).}"></span> </p><p>As <span class="texhtml"><i>m</i></span> approaches infinity, the left and right hand expressions each approach <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num"><span class="texhtml mvar" style="font-style:italic;">π</span><sup>2</sup></span><span class="sr-only">/</span><span class="den">6</span></span>&#8288;</span>, so by the <a href="/wiki/Squeeze_theorem" title="Squeeze theorem">squeeze theorem</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (2)=\sum _{k=1}^{\infty }{\frac {1}{k^{2}}}=\lim _{m\to \infty }\left({\frac {1}{1^{2}}}+{\frac {1}{2^{2}}}+\cdots +{\frac {1}{m^{2}}}\right)={\frac {\pi ^{2}}{6}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>6</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (2)=\sum _{k=1}^{\infty }{\frac {1}{k^{2}}}=\lim _{m\to \infty }\left({\frac {1}{1^{2}}}+{\frac {1}{2^{2}}}+\cdots +{\frac {1}{m^{2}}}\right)={\frac {\pi ^{2}}{6}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc4c3b614c578fcadc7d10a63e231f0f779ba513" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:53.249ex; height:6.843ex;" alt="{\displaystyle \zeta (2)=\sum _{k=1}^{\infty }{\frac {1}{k^{2}}}=\lim _{m\to \infty }\left({\frac {1}{1^{2}}}+{\frac {1}{2^{2}}}+\cdots +{\frac {1}{m^{2}}}\right)={\frac {\pi ^{2}}{6}}}"></span> </p><p>and this completes the proof. </p> <div class="mw-heading mw-heading2"><h2 id="Proof_assuming_Weil's_conjecture_on_Tamagawa_numbers"><span id="Proof_assuming_Weil.27s_conjecture_on_Tamagawa_numbers"></span>Proof assuming Weil's conjecture on Tamagawa numbers</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Basel_problem&amp;action=edit&amp;section=13" title="Edit section: Proof assuming Weil&#039;s conjecture on Tamagawa numbers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A proof is also possible assuming <a href="/wiki/Weil%27s_conjecture_on_Tamagawa_numbers" title="Weil&#39;s conjecture on Tamagawa numbers">Weil's conjecture on Tamagawa numbers</a>.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> The conjecture asserts for the case of the <a href="/wiki/Algebraic_group" title="Algebraic group">algebraic group</a> SL<sub>2</sub>(<b>R</b>) that the <a href="/wiki/Tamagawa_number" title="Tamagawa number">Tamagawa number</a> of the group is one. That is, the quotient of the special linear group over the rational <a href="/wiki/Adele_ring" title="Adele ring">adeles</a> by the special linear group of the rationals (a <a href="/wiki/Compact_set" class="mw-redirect" title="Compact set">compact set</a>, because <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle SL_{2}(\mathbb {Q} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle SL_{2}(\mathbb {Q} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/705d80d950b750480af83f17695c914540e3540b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.754ex; height:2.843ex;" alt="{\displaystyle SL_{2}(\mathbb {Q} )}"></span> is a lattice in the adeles) has Tamagawa measure 1: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau (SL_{2}(\mathbb {Q} )\setminus SL_{2}(A_{\mathbb {Q} }))=1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">(</mo> <mi>S</mi> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> <mo stretchy="false">)</mo> <mo class="MJX-variant">&#x2216;<!-- ∖ --></mo> <mi>S</mi> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau (SL_{2}(\mathbb {Q} )\setminus SL_{2}(A_{\mathbb {Q} }))=1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eff8cc8ccc4b342472752b21d1cc388d372667ed" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.067ex; height:2.843ex;" alt="{\displaystyle \tau (SL_{2}(\mathbb {Q} )\setminus SL_{2}(A_{\mathbb {Q} }))=1.}"></span> </p><p>To determine a Tamagawa measure, the group <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle SL_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle SL_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d45feacad731d7c70ac71ea68ec41db9e05e3fec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.136ex; height:2.509ex;" alt="{\displaystyle SL_{2}}"></span> consists of matrices <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}x&amp;y\\z&amp;t\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>x</mi> </mtd> <mtd> <mi>y</mi> </mtd> </mtr> <mtr> <mtd> <mi>z</mi> </mtd> <mtd> <mi>t</mi> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}x&amp;y\\z&amp;t\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a48f34a7df62dee8b74b695d0238dcddd4b6c1f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:8.014ex; height:6.176ex;" alt="{\displaystyle {\begin{bmatrix}x&amp;y\\z&amp;t\end{bmatrix}}}"></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle xt-yz=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>y</mi> <mi>z</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle xt-yz=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/118611ac227d2056065dad3ae5beb809aecdaff8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.514ex; height:2.509ex;" alt="{\displaystyle xt-yz=1}"></span>. An invariant <a href="/wiki/Volume_form" title="Volume form">volume form</a> on the group is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega ={\frac {1}{x}}dx\wedge dy\wedge dz.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C9;<!-- ω --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>x</mi> </mfrac> </mrow> <mi>d</mi> <mi>x</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>d</mi> <mi>y</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>d</mi> <mi>z</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega ={\frac {1}{x}}dx\wedge dy\wedge dz.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc75db4b3adf2305ec0344618657ed1c8675ad83" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:19.743ex; height:5.176ex;" alt="{\displaystyle \omega ={\frac {1}{x}}dx\wedge dy\wedge dz.}"></span> </p><p>The measure of the quotient is the product of the measures of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle SL_{2}(\mathbb {Z} )\setminus SL_{2}(\mathbb {R} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo stretchy="false">)</mo> <mo class="MJX-variant">&#x2216;<!-- ∖ --></mo> <mi>S</mi> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle SL_{2}(\mathbb {Z} )\setminus SL_{2}(\mathbb {R} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac2d2d05402373ae66c350ed0c3a6a46c5f94de7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.314ex; height:2.843ex;" alt="{\displaystyle SL_{2}(\mathbb {Z} )\setminus SL_{2}(\mathbb {R} )}"></span> corresponding to the infinite place, and the measures of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle SL_{2}(\mathbb {Z} _{p})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle SL_{2}(\mathbb {Z} _{p})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5c666837db10a788a7c054b2cde00cc5dc91d7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.555ex; height:3.009ex;" alt="{\displaystyle SL_{2}(\mathbb {Z} _{p})}"></span> in each finite place, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} _{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} _{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dbc1df7227ef11fe88dccd2dae3adc7bbdeae5f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.609ex; height:2.843ex;" alt="{\displaystyle \mathbb {Z} _{p}}"></span> is the <a href="/wiki/P-adic_integers" class="mw-redirect" title="P-adic integers">p-adic integers</a>. </p><p>For the local factors, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega (SL_{2}(\mathbb {Z} _{p}))=|SL_{2}(F_{p})|\omega (SL_{2}(\mathbb {Z} _{p},p))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">(</mo> <mi>S</mi> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>S</mi> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">(</mo> <mi>S</mi> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>,</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega (SL_{2}(\mathbb {Z} _{p}))=|SL_{2}(F_{p})|\omega (SL_{2}(\mathbb {Z} _{p},p))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c895b471d1a4ba566300ec1129fe05d3b1f0391" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:38.715ex; height:3.009ex;" alt="{\displaystyle \omega (SL_{2}(\mathbb {Z} _{p}))=|SL_{2}(F_{p})|\omega (SL_{2}(\mathbb {Z} _{p},p))}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b2662434791194da8930c0a1c6d194e189a4470b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.554ex; height:2.843ex;" alt="{\displaystyle F_{p}}"></span> is the field with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> elements, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle SL_{2}(\mathbb {Z} _{p},p)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>,</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle SL_{2}(\mathbb {Z} _{p},p)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5d6fa64a5cc2c060c2158e74f4273d49d1aaf6b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:10.758ex; height:3.009ex;" alt="{\displaystyle SL_{2}(\mathbb {Z} _{p},p)}"></span> is the <a href="/wiki/Congruence_subgroup" title="Congruence subgroup">congruence subgroup</a> modulo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span>. Since each of the coordinates <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x,y,z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x,y,z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bbeca34b28f569a407ef74a955d041df9f360268" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.641ex; height:2.009ex;" alt="{\displaystyle x,y,z}"></span> map the latter group onto <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p\mathbb {Z} _{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p\mathbb {Z} _{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c9fa7ff949ec9787a352b51905ac05050e22cf08" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; margin-left: -0.089ex; width:3.868ex; height:2.843ex;" alt="{\displaystyle p\mathbb {Z} _{p}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left|{\frac {1}{x}}\right|_{p}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow> <mo>|</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>x</mi> </mfrac> </mrow> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left|{\frac {1}{x}}\right|_{p}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d41add766f3940dc469c38d08dbb901a43e74856" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:8.78ex; height:6.009ex;" alt="{\displaystyle \left|{\frac {1}{x}}\right|_{p}=1}"></span>, the measure of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle SL_{2}(\mathbb {Z} _{p},p)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>,</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle SL_{2}(\mathbb {Z} _{p},p)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5d6fa64a5cc2c060c2158e74f4273d49d1aaf6b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:10.758ex; height:3.009ex;" alt="{\displaystyle SL_{2}(\mathbb {Z} _{p},p)}"></span> is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu _{p}(p\mathbb {Z} _{p})^{3}=p^{-3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>p</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu _{p}(p\mathbb {Z} _{p})^{3}=p^{-3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d30a95ef9a75a7be33a66c063d3cc83d65c6ebf0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:15.704ex; height:3.343ex;" alt="{\displaystyle \mu _{p}(p\mathbb {Z} _{p})^{3}=p^{-3}}"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu _{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu _{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e782847d35f4106a4c7468b38da2bdcf1ce24f5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.461ex; height:2.343ex;" alt="{\displaystyle \mu _{p}}"></span> is the normalized <a href="/wiki/Haar_measure" title="Haar measure">Haar measure</a> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} _{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} _{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dbc1df7227ef11fe88dccd2dae3adc7bbdeae5f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.609ex; height:2.843ex;" alt="{\displaystyle \mathbb {Z} _{p}}"></span>. Also, a standard computation shows that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |SL_{2}(F_{p})|=p(p^{2}-1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>S</mi> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mi>p</mi> <mo stretchy="false">(</mo> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |SL_{2}(F_{p})|=p(p^{2}-1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/104e42b17caab8c7cfc516a1847a997bb02010c2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:22.097ex; height:3.343ex;" alt="{\displaystyle |SL_{2}(F_{p})|=p(p^{2}-1)}"></span>. Putting these together gives <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega (SL_{2}(\mathbb {Z} _{p}))=(1-1/p^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">(</mo> <mi>S</mi> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega (SL_{2}(\mathbb {Z} _{p}))=(1-1/p^{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a82005c89af884c6bd2c5b8c8478da7b32808062" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:25.269ex; height:3.343ex;" alt="{\displaystyle \omega (SL_{2}(\mathbb {Z} _{p}))=(1-1/p^{2})}"></span>. </p><p>At the infinite place, an integral computation over the fundamental domain of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle SL_{2}(\mathbb {Z} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle SL_{2}(\mathbb {Z} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3b036312486fabaa4a90953a39d8b7fcb88d6dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.496ex; height:2.843ex;" alt="{\displaystyle SL_{2}(\mathbb {Z} )}"></span> shows that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega (SL_{2}(\mathbb {Z} )\setminus SL_{2}(\mathbb {R} )=\pi ^{2}/6}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">(</mo> <mi>S</mi> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo stretchy="false">)</mo> <mo class="MJX-variant">&#x2216;<!-- ∖ --></mo> <mi>S</mi> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>6</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega (SL_{2}(\mathbb {Z} )\setminus SL_{2}(\mathbb {R} )=\pi ^{2}/6}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a4abbe30f54dce0325f9bce4a52aed45c9d0f87" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.477ex; height:3.176ex;" alt="{\displaystyle \omega (SL_{2}(\mathbb {Z} )\setminus SL_{2}(\mathbb {R} )=\pi ^{2}/6}"></span>, and therefore the Weil conjecture finally gives <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1={\frac {\pi ^{2}}{6}}\prod _{p}\left(1-{\frac {1}{p^{2}}}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>6</mn> </mfrac> </mrow> <munder> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </munder> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1={\frac {\pi ^{2}}{6}}\prod _{p}\left(1-{\frac {1}{p^{2}}}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/71c8fa2c46524eaa4b08199ecb456ec4acce1f6a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:22.747ex; height:7.009ex;" alt="{\displaystyle 1={\frac {\pi ^{2}}{6}}\prod _{p}\left(1-{\frac {1}{p^{2}}}\right).}"></span> On the right-hand side, we recognize the <a href="/wiki/Euler_product" title="Euler product">Euler product</a> for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1/\zeta (2)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1/\zeta (2)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d886d64b89345d6364c63b19e1d2121c86476cb0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.392ex; height:2.843ex;" alt="{\displaystyle 1/\zeta (2)}"></span>, and so this gives the solution to the Basel problem. </p><p>This approach shows the connection between (hyperbolic) geometry and arithmetic, and can be inverted to give a proof of the Weil conjecture for the special case of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle SL_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle SL_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d45feacad731d7c70ac71ea68ec41db9e05e3fec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.136ex; height:2.509ex;" alt="{\displaystyle SL_{2}}"></span>, contingent on an independent proof that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (2)=\pi ^{2}/6}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>6</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (2)=\pi ^{2}/6}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/780b5b024e5d868b7e89ce95dd4cb682919623f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.879ex; height:3.176ex;" alt="{\displaystyle \zeta (2)=\pi ^{2}/6}"></span>. </p><p><br /> </p> <div class="mw-heading mw-heading2"><h2 id="Geometric_proof">Geometric proof</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Basel_problem&amp;action=edit&amp;section=14" title="Edit section: Geometric proof"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Basel problem can be proved with <a href="/wiki/Euclidean_geometry" title="Euclidean geometry">Euclidean geometry</a>, using the insight that <i>the real line can be seen as a circle of infinite radius</i>. An intuitive, if not completely rigorous sketch is given here. </p> <ul><li>Choose an integer <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span>, and take <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span> equally spaced points on a circle with <i>circumference</i> equal to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eacbd5b0e609e1f3d7da751ac0d50113d27d22aa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.226ex; height:2.176ex;" alt="{\displaystyle 2N}"></span>. The radius of the circle is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N/\pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N/\pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b86c72038856102e17f6472d287df3ec82348c5b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.558ex; height:2.843ex;" alt="{\displaystyle N/\pi }"></span> and the length of each <a href="/wiki/Circular_arc" title="Circular arc">arc</a> between two points is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/901fc910c19990d0dbaaefe4726ceb1a4e217a0f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 2}"></span>. Call the points <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{1..N}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1..</mn> <mi>N</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{1..N}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eadaa071ebea1dc91cd4cfa3f9d84da446b8805d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.92ex; height:2.509ex;" alt="{\displaystyle P_{1..N}}"></span>.</li> <li>Take another generic point <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8752c7023b4b3286800fe3238271bbca681219ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.838ex; height:2.509ex;" alt="{\displaystyle Q}"></span> on the circle, which will lie at a fraction <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0&lt;\alpha &lt;1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&lt;</mo> <mi>&#x03B1;<!-- α --></mi> <mo>&lt;</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0&lt;\alpha &lt;1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b43eb26b3586c8f17272d05089e2ce832c274dea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.009ex; height:2.176ex;" alt="{\displaystyle 0&lt;\alpha &lt;1}"></span> of the arc between two consecutive points (say <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/398f438d75434e6fbf48dc232c1ad7228a738568" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.547ex; height:2.509ex;" alt="{\displaystyle P_{1}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87858df7457aa93caaef5a316db87a7240cc8c29" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.547ex; height:2.509ex;" alt="{\displaystyle P_{2}}"></span> without loss of generality).</li> <li>Draw all the <a href="/wiki/Chord_(geometry)" title="Chord (geometry)">chords</a> joining <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8752c7023b4b3286800fe3238271bbca681219ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.838ex; height:2.509ex;" alt="{\displaystyle Q}"></span> with each of the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{1..N}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1..</mn> <mi>N</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{1..N}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eadaa071ebea1dc91cd4cfa3f9d84da446b8805d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.92ex; height:2.509ex;" alt="{\displaystyle P_{1..N}}"></span> points. Now (this is the key to the proof), compute the <i>sum of the inverse squares</i> of the lengths of all these chords, call it <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle sisc}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mi>i</mi> <mi>s</mi> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle sisc}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c9f9cc06312711a79e71f3ee8a1406e68bae132" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.99ex; height:2.176ex;" alt="{\displaystyle sisc}"></span>.</li> <li>The proof relies on the notable fact that (for a fixed <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b79333175c8b3f0840bfb4ec41b8072c83ea88d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:1.676ex;" alt="{\displaystyle \alpha }"></span>), <i>the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle sisc}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mi>i</mi> <mi>s</mi> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle sisc}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c9f9cc06312711a79e71f3ee8a1406e68bae132" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.99ex; height:2.176ex;" alt="{\displaystyle sisc}"></span> does not depend on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span>.</i> Note that intuitively, as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span> increases, the number of chords increases, but their length increases too (as the circle gets bigger), so their inverse square decreases.</li> <li>In particular, take the case where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha =1/2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> <mo>=</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha =1/2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34c4cf68ca8870e08f68c602153b0e32bde0326a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.073ex; height:2.843ex;" alt="{\displaystyle \alpha =1/2}"></span>, meaning that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8752c7023b4b3286800fe3238271bbca681219ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.838ex; height:2.509ex;" alt="{\displaystyle Q}"></span> is the midpoint of the arc between two consecutive <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span>'s. The <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle sisc}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mi>i</mi> <mi>s</mi> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle sisc}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c9f9cc06312711a79e71f3ee8a1406e68bae132" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.99ex; height:2.176ex;" alt="{\displaystyle sisc}"></span> can then be found trivially from the case <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85982022b9eb1f295b44de55023687a490db0a39" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.325ex; height:2.176ex;" alt="{\displaystyle N=1}"></span>, where there is only one <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span>, and one <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8752c7023b4b3286800fe3238271bbca681219ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.838ex; height:2.509ex;" alt="{\displaystyle Q}"></span> on the opposite side of the circle. Then the chord is the diameter of the circle, of length <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2/\pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2/\pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5eff7f0c1780309e1d539f5a699693aedd5fcbc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.657ex; height:2.843ex;" alt="{\displaystyle 2/\pi }"></span>. The <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle sisc}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mi>i</mi> <mi>s</mi> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle sisc}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c9f9cc06312711a79e71f3ee8a1406e68bae132" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.99ex; height:2.176ex;" alt="{\displaystyle sisc}"></span> is then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi ^{2}/4}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>4</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi ^{2}/4}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6ebe8d6576736c2f07437ae5ab00e26e34b363f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.713ex; height:3.176ex;" alt="{\displaystyle \pi ^{2}/4}"></span>.</li> <li>When <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span> goes to infinity, the circle approaches the real line. If you set the origin at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8752c7023b4b3286800fe3238271bbca681219ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.838ex; height:2.509ex;" alt="{\displaystyle Q}"></span>, the points <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{1..N}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1..</mn> <mi>N</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{1..N}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eadaa071ebea1dc91cd4cfa3f9d84da446b8805d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.92ex; height:2.509ex;" alt="{\displaystyle P_{1..N}}"></span> are positioned at the <i>odd</i> integer positions (positive and negative), since the arcs have length 1 from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8752c7023b4b3286800fe3238271bbca681219ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.838ex; height:2.509ex;" alt="{\displaystyle Q}"></span> to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/398f438d75434e6fbf48dc232c1ad7228a738568" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.547ex; height:2.509ex;" alt="{\displaystyle P_{1}}"></span>, and 2 onward. You hence get this variation of the Basel Problem:</li></ul> <p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{z=-\infty }^{\infty }{\frac {1}{(2z-1)^{2}}}={\frac {\pi ^{2}}{4}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>z</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>4</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{z=-\infty }^{\infty }{\frac {1}{(2z-1)^{2}}}={\frac {\pi ^{2}}{4}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5dabde672e0bd9df77807ae518798459b9d52e60" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:21.633ex; height:6.843ex;" alt="{\displaystyle \sum _{z=-\infty }^{\infty }{\frac {1}{(2z-1)^{2}}}={\frac {\pi ^{2}}{4}}}"></span> </p> <ul><li>From here, you can recover the original formulation with a bit of algebra, as:</li></ul> <p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{2}}}=\sum _{n=1}^{\infty }{\frac {1}{(2n-1)^{2}}}+\sum _{n=1}^{\infty }{\frac {1}{(2n)^{2}}}={\frac {1}{2}}\sum _{z=-\infty }^{\infty }{\frac {1}{(2z-1)^{2}}}+{\frac {1}{4}}\sum _{n=1}^{\infty }{\frac {1}{n^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>z</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{2}}}=\sum _{n=1}^{\infty }{\frac {1}{(2n-1)^{2}}}+\sum _{n=1}^{\infty }{\frac {1}{(2n)^{2}}}={\frac {1}{2}}\sum _{z=-\infty }^{\infty }{\frac {1}{(2z-1)^{2}}}+{\frac {1}{4}}\sum _{n=1}^{\infty }{\frac {1}{n^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16839909d817833765f32f22c966fa8e3b7ba662" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:70.014ex; height:6.843ex;" alt="{\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{2}}}=\sum _{n=1}^{\infty }{\frac {1}{(2n-1)^{2}}}+\sum _{n=1}^{\infty }{\frac {1}{(2n)^{2}}}={\frac {1}{2}}\sum _{z=-\infty }^{\infty }{\frac {1}{(2z-1)^{2}}}+{\frac {1}{4}}\sum _{n=1}^{\infty }{\frac {1}{n^{2}}}}"></span> </p><p>that is, </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {3}{4}}\sum _{n=1}^{\infty }{\frac {1}{n^{2}}}={\frac {\pi ^{2}}{8}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>8</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {3}{4}}\sum _{n=1}^{\infty }{\frac {1}{n^{2}}}={\frac {\pi ^{2}}{8}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a7840d5aa2d7aa81777164ef54f877c292a59f0d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:15.736ex; height:6.843ex;" alt="{\displaystyle {\frac {3}{4}}\sum _{n=1}^{\infty }{\frac {1}{n^{2}}}={\frac {\pi ^{2}}{8}}}"></span> </p><p>or </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{2}}}={\frac {\pi ^{2}}{6}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>6</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{2}}}={\frac {\pi ^{2}}{6}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26a915462f991c41d6da8e006e857aed0ee427cf" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:13.35ex; height:6.843ex;" alt="{\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{2}}}={\frac {\pi ^{2}}{6}}}"></span>. </p><p>The independence of the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle sisc}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mi>i</mi> <mi>s</mi> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle sisc}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c9f9cc06312711a79e71f3ee8a1406e68bae132" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.99ex; height:2.176ex;" alt="{\displaystyle sisc}"></span> from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span> can be proved easily with Euclidean geometry for the more restrictive case where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span> is a power of 2, i.e. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N=2^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mo>=</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N=2^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d47454e9a8a33d7f62a8b689ecda44afd41e51be" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.543ex; height:2.343ex;" alt="{\displaystyle N=2^{n}}"></span>, which still allows the limiting argument to be applied. The proof proceeds by <a href="/wiki/Mathematical_induction" title="Mathematical induction">induction</a> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>, and uses the <a href="/wiki/Inverse_Pythagorean_theorem" title="Inverse Pythagorean theorem">Inverse Pythagorean Theorem</a>, which states that: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{a^{2}}}+{\frac {1}{b^{2}}}={\frac {1}{h^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{a^{2}}}+{\frac {1}{b^{2}}}={\frac {1}{h^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a413cbc4bc610e521b03aa3605abacb37ed9b554" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:15.176ex; height:5.509ex;" alt="{\displaystyle {\frac {1}{a^{2}}}+{\frac {1}{b^{2}}}={\frac {1}{h^{2}}}}"></span> </p><p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> are the cathetes and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b26be3e694314bc90c3215047e4a2010c6ee184a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.339ex; height:2.176ex;" alt="{\displaystyle h}"></span> is the height of a right triangle. </p> <ul><li>In the base case of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26819344e55f5e671c76c07c18eb4291fcec85ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n=0}"></span>, there is only 1 chord. In the case of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha =1/2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> <mo>=</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha =1/2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34c4cf68ca8870e08f68c602153b0e32bde0326a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.073ex; height:2.843ex;" alt="{\displaystyle \alpha =1/2}"></span>, it corresponds to the diameter and the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle sisc}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mi>i</mi> <mi>s</mi> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle sisc}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c9f9cc06312711a79e71f3ee8a1406e68bae132" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.99ex; height:2.176ex;" alt="{\displaystyle sisc}"></span> is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi ^{2}/4}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>4</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi ^{2}/4}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6ebe8d6576736c2f07437ae5ab00e26e34b363f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.713ex; height:3.176ex;" alt="{\displaystyle \pi ^{2}/4}"></span> as stated above.</li> <li>Now, assume that you have <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8226f30650ee4fe4e640c6d2798127e80e9c160d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.381ex; height:2.343ex;" alt="{\displaystyle 2^{n}}"></span> points on a circle with radius <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{n}/\pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{n}/\pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e5753903dd877205de8e3115d23dcd541647cc0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.875ex; height:2.843ex;" alt="{\displaystyle 2^{n}/\pi }"></span> and center <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d70e1d0d87e2ef1092ea1ffe2923d9933ff18fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.773ex; height:2.176ex;" alt="{\displaystyle O}"></span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{n+1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{n+1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87ec7da881b9da391c503b68a69a46ba3c43e189" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.481ex; height:2.676ex;" alt="{\displaystyle 2^{n+1}}"></span> points on a circle with radius <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{n+1}/\pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{n+1}/\pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6bab655b755ec2acf3c2a9e79b2fdc45c01774df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.976ex; height:3.176ex;" alt="{\displaystyle 2^{n+1}/\pi }"></span> and center <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span>. The induction step consists in showing that these 2 circles have the same <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle sisc}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mi>i</mi> <mi>s</mi> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle sisc}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c9f9cc06312711a79e71f3ee8a1406e68bae132" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.99ex; height:2.176ex;" alt="{\displaystyle sisc}"></span> for a given <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b79333175c8b3f0840bfb4ec41b8072c83ea88d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:1.676ex;" alt="{\displaystyle \alpha }"></span>.</li></ul> <ul><li>Start by drawing the circles so that they share point <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8752c7023b4b3286800fe3238271bbca681219ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.838ex; height:2.509ex;" alt="{\displaystyle Q}"></span>. Note that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> lies on the smaller circle. Then, note that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{n+1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{n+1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87ec7da881b9da391c503b68a69a46ba3c43e189" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.481ex; height:2.676ex;" alt="{\displaystyle 2^{n+1}}"></span> is always even, and a simple geometric argument shows that you can pick <i>pairs</i> of opposite points <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/398f438d75434e6fbf48dc232c1ad7228a738568" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.547ex; height:2.509ex;" alt="{\displaystyle P_{1}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87858df7457aa93caaef5a316db87a7240cc8c29" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.547ex; height:2.509ex;" alt="{\displaystyle P_{2}}"></span> on the larger circle by joining each pair with a diameter. Furthermore, for each pair, one of the points will be in the "lower" half of the circle (closer to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8752c7023b4b3286800fe3238271bbca681219ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.838ex; height:2.509ex;" alt="{\displaystyle Q}"></span>) and the other in the "upper" half.</li></ul> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Induction_step_1728668638527.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Induction_step_1728668638527.jpg/220px-Induction_step_1728668638527.jpg" decoding="async" width="220" height="197" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Induction_step_1728668638527.jpg/330px-Induction_step_1728668638527.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Induction_step_1728668638527.jpg/440px-Induction_step_1728668638527.jpg 2x" data-file-width="1364" data-file-height="1224" /></a><figcaption>The sum of inverse squares of distances of P1 and P2 from Q equals the inverse square distance from P to Q.</figcaption></figure> <ul><li>The diameter of the bigger circle <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{1}P_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{1}P_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76d9794d001a7d37e056defea5cdc8c99055fc56" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.093ex; height:2.509ex;" alt="{\displaystyle P_{1}P_{2}}"></span> cuts the smaller circle at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> and at another point <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span>. You can then make the following considerations: <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{1}{\widehat {Q}}P_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>Q</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{1}{\widehat {Q}}P_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5c233c9f80ceb71e3980d0b5951c1e5457c784ac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.931ex; height:3.343ex;" alt="{\displaystyle P_{1}{\widehat {Q}}P_{2}}"></span> is a right angle, since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{1}P_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{1}P_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76d9794d001a7d37e056defea5cdc8c99055fc56" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.093ex; height:2.509ex;" alt="{\displaystyle P_{1}P_{2}}"></span> is a diameter.</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q{\widehat {P}}R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>P</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q{\widehat {P}}R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0480c94ccfe38a930da2a82907181942c26a342a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.479ex; height:3.176ex;" alt="{\displaystyle Q{\widehat {P}}R}"></span> is a right angle, since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle QR}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle QR}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4c0be452888cb847f7d6bb430de156f3957657c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.602ex; height:2.509ex;" alt="{\displaystyle QR}"></span> is a diameter.</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q{\widehat {R}}P_{2}=Q{\widehat {R}}P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>R</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>R</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q{\widehat {R}}P_{2}=Q{\widehat {R}}P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8009656c1734100ab37f49e464cf98b523f8de1c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.595ex; height:3.176ex;" alt="{\displaystyle Q{\widehat {R}}P_{2}=Q{\widehat {R}}P}"></span> is half of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q{\widehat {O}}P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>O</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q{\widehat {O}}P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04401bfdc7d7dd30f8cde805eca7f7937eab9990" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.357ex; height:3.343ex;" alt="{\displaystyle Q{\widehat {O}}P}"></span> for the <a href="/wiki/Inscribed_angle" title="Inscribed angle">Inscribed Angle Theorem</a>.</li> <li>Hence, the arc <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle QP}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle QP}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5179a9addbf6eaadccdc3e7e94611a898671c54b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.584ex; height:2.509ex;" alt="{\displaystyle QP}"></span> is equal to the arc <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle QP_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle QP_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d311e42a2b3ad9b62b0d7dd951dc0e3115f840e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.385ex; height:2.509ex;" alt="{\displaystyle QP_{2}}"></span>, again because the radius is half.</li> <li>The chord <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle QP}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle QP}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5179a9addbf6eaadccdc3e7e94611a898671c54b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.584ex; height:2.509ex;" alt="{\displaystyle QP}"></span> is the height of the right triangle <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle QP_{1}P_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle QP_{1}P_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/105e465dafb7084a54854fda0e1312fd8a5b89e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.931ex; height:2.509ex;" alt="{\displaystyle QP_{1}P_{2}}"></span>, hence for the Inverse Pythagorean Theorem:</li></ul></li></ul> <p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{{\overline {QP}}^{2}}}={\frac {1}{{\overline {QP_{1}}}^{2}}}+{\frac {1}{{\overline {QP_{2}}}^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>Q</mi> <mi>P</mi> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>Q</mi> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>Q</mi> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{{\overline {QP}}^{2}}}={\frac {1}{{\overline {QP_{1}}}^{2}}}+{\frac {1}{{\overline {QP_{2}}}^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2d9e37cad9aea5df00068c7f470cbd4b570de357" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.671ex; width:24.473ex; height:7.009ex;" alt="{\displaystyle {\frac {1}{{\overline {QP}}^{2}}}={\frac {1}{{\overline {QP_{1}}}^{2}}}+{\frac {1}{{\overline {QP_{2}}}^{2}}}}"></span> </p><p><br /> </p> <ul><li>Hence for half of the points on the bigger circle (the ones in the lower half) there is a corresponding point on the smaller circle with the same arc distance from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8752c7023b4b3286800fe3238271bbca681219ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.838ex; height:2.509ex;" alt="{\displaystyle Q}"></span> (since the circumference of the smaller circle is half the one of the bigger circle, the last two points closer to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> must have arc distance 2 as well). Vice versa, for each of the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8226f30650ee4fe4e640c6d2798127e80e9c160d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.381ex; height:2.343ex;" alt="{\displaystyle 2^{n}}"></span> points on the smaller circle, we can build a pair of points on the bigger circle, and all of these points are equidistant and have the same arc distance from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8752c7023b4b3286800fe3238271bbca681219ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.838ex; height:2.509ex;" alt="{\displaystyle Q}"></span>.</li> <li>Furthermore, the total <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle sisc}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mi>i</mi> <mi>s</mi> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle sisc}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c9f9cc06312711a79e71f3ee8a1406e68bae132" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.99ex; height:2.176ex;" alt="{\displaystyle sisc}"></span> for the bigger circle is the same as the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle sisc}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mi>i</mi> <mi>s</mi> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle sisc}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c9f9cc06312711a79e71f3ee8a1406e68bae132" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.99ex; height:2.176ex;" alt="{\displaystyle sisc}"></span> for the smaller circle, since each pair of points on the bigger circle has the same inverse square sum as the corresponding point on the smaller circle.<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup></li></ul> <div class="mw-heading mw-heading2"><h2 id="Other_identities">Other identities</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Basel_problem&amp;action=edit&amp;section=15" title="Edit section: Other identities"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>See the special cases of the identities for the <a href="/wiki/Riemann_zeta_function#Representations" title="Riemann zeta function">Riemann zeta function</a> when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s=2.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>=</mo> <mn>2.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s=2.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ddd25907e8ecac812d5fa5160b2fd1252c6a0fc0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.998ex; height:2.176ex;" alt="{\displaystyle s=2.}"></span> Other notably special identities and representations of this constant appear in the sections below. </p> <div class="mw-heading mw-heading3"><h3 id="Series_representations">Series representations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Basel_problem&amp;action=edit&amp;section=16" title="Edit section: Series representations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The following are series representations of the constant:<sup id="cite_ref-MWZETA2_15-0" class="reference"><a href="#cite_note-MWZETA2-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\zeta (2)&amp;=3\sum _{k=1}^{\infty }{\frac {1}{k^{2}{\binom {2k}{k}}}}\\[6pt]&amp;=\sum _{i=1}^{\infty }\sum _{j=1}^{\infty }{\frac {(i-1)!(j-1)!}{(i+j)!}}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.9em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>3</mn> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mn>2</mn> <mi>k</mi> </mrow> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> </mrow> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>i</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> <mo stretchy="false">(</mo> <mi>j</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>i</mi> <mo>+</mo> <mi>j</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\zeta (2)&amp;=3\sum _{k=1}^{\infty }{\frac {1}{k^{2}{\binom {2k}{k}}}}\\[6pt]&amp;=\sum _{i=1}^{\infty }\sum _{j=1}^{\infty }{\frac {(i-1)!(j-1)!}{(i+j)!}}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b0907546e6180844e32993c0d6fde8982108e20" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.338ex; width:31.562ex; height:15.843ex;" alt="{\displaystyle {\begin{aligned}\zeta (2)&amp;=3\sum _{k=1}^{\infty }{\frac {1}{k^{2}{\binom {2k}{k}}}}\\[6pt]&amp;=\sum _{i=1}^{\infty }\sum _{j=1}^{\infty }{\frac {(i-1)!(j-1)!}{(i+j)!}}.\end{aligned}}}"></span> </p><p>There are also <a href="/wiki/Bailey%E2%80%93Borwein%E2%80%93Plouffe_formula" title="Bailey–Borwein–Plouffe formula">BBP-type</a> series expansions for <span class="texhtml"><i>&#950;</i>(2)</span>.<sup id="cite_ref-MWZETA2_15-1" class="reference"><a href="#cite_note-MWZETA2-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Integral_representations">Integral representations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Basel_problem&amp;action=edit&amp;section=17" title="Edit section: Integral representations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The following are integral representations of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (2){\text{:}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>:</mtext> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (2){\text{:}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e19dbfdf66d3a1cd402b86ab5a76c23559a903d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.714ex; height:2.843ex;" alt="{\displaystyle \zeta (2){\text{:}}}"></span><sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\zeta (2)&amp;=-\int _{0}^{1}{\frac {\log x}{1-x}}\,dx\\[6pt]&amp;=\int _{0}^{\infty }{\frac {x}{e^{x}-1}}\,dx\\[6pt]&amp;=\int _{0}^{1}{\frac {(\log x)^{2}}{(1+x)^{2}}}\,dx\\[6pt]&amp;=2+2\int _{1}^{\infty }{\frac {\lfloor x\rfloor -x}{x^{3}}}\,dx\\[6pt]&amp;=\exp \left(2\int _{2}^{\infty }{\frac {\pi (x)}{x(x^{2}-1)}}\,dx\right)\\[6pt]&amp;=\int _{0}^{1}\int _{0}^{1}{\frac {dx\,dy}{1-xy}}\\[6pt]&amp;={\frac {4}{3}}\int _{0}^{1}\int _{0}^{1}{\frac {dx\,dy}{1-(xy)^{2}}}\\[6pt]&amp;=\int _{0}^{1}\int _{0}^{1}{\frac {1-x}{1-xy}}\,dx\,dy+{\frac {2}{3}}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.9em 0.9em 0.9em 0.9em 0.9em 0.9em 0.9em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> </mrow> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mn>2</mn> <mo>+</mo> <mn>2</mn> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo fence="false" stretchy="false">&#x230A;<!-- ⌊ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">&#x230B;<!-- ⌋ --></mo> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03C0;<!-- π --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>x</mi> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msubsup> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>x</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mi>y</mi> </mrow> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <mi>y</mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>4</mn> <mn>3</mn> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msubsup> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>x</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mi>y</mi> </mrow> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mi>y</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msubsup> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> </mrow> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <mi>y</mi> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mi>y</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\zeta (2)&amp;=-\int _{0}^{1}{\frac {\log x}{1-x}}\,dx\\[6pt]&amp;=\int _{0}^{\infty }{\frac {x}{e^{x}-1}}\,dx\\[6pt]&amp;=\int _{0}^{1}{\frac {(\log x)^{2}}{(1+x)^{2}}}\,dx\\[6pt]&amp;=2+2\int _{1}^{\infty }{\frac {\lfloor x\rfloor -x}{x^{3}}}\,dx\\[6pt]&amp;=\exp \left(2\int _{2}^{\infty }{\frac {\pi (x)}{x(x^{2}-1)}}\,dx\right)\\[6pt]&amp;=\int _{0}^{1}\int _{0}^{1}{\frac {dx\,dy}{1-xy}}\\[6pt]&amp;={\frac {4}{3}}\int _{0}^{1}\int _{0}^{1}{\frac {dx\,dy}{1-(xy)^{2}}}\\[6pt]&amp;=\int _{0}^{1}\int _{0}^{1}{\frac {1-x}{1-xy}}\,dx\,dy+{\frac {2}{3}}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26f620c0956799fa7eb5638d04d58ed301bf9858" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -30.171ex; width:34.461ex; height:61.509ex;" alt="{\displaystyle {\begin{aligned}\zeta (2)&amp;=-\int _{0}^{1}{\frac {\log x}{1-x}}\,dx\\[6pt]&amp;=\int _{0}^{\infty }{\frac {x}{e^{x}-1}}\,dx\\[6pt]&amp;=\int _{0}^{1}{\frac {(\log x)^{2}}{(1+x)^{2}}}\,dx\\[6pt]&amp;=2+2\int _{1}^{\infty }{\frac {\lfloor x\rfloor -x}{x^{3}}}\,dx\\[6pt]&amp;=\exp \left(2\int _{2}^{\infty }{\frac {\pi (x)}{x(x^{2}-1)}}\,dx\right)\\[6pt]&amp;=\int _{0}^{1}\int _{0}^{1}{\frac {dx\,dy}{1-xy}}\\[6pt]&amp;={\frac {4}{3}}\int _{0}^{1}\int _{0}^{1}{\frac {dx\,dy}{1-(xy)^{2}}}\\[6pt]&amp;=\int _{0}^{1}\int _{0}^{1}{\frac {1-x}{1-xy}}\,dx\,dy+{\frac {2}{3}}.\end{aligned}}}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Continued_fractions">Continued fractions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Basel_problem&amp;action=edit&amp;section=18" title="Edit section: Continued fractions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In van der Poorten's classic article chronicling <a href="/wiki/Ap%C3%A9ry%27s_constant" title="Apéry&#39;s constant">Apéry's proof of the irrationality of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (3)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (3)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3088978098c7b90b2754a9d9b0b994d873e1755c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.067ex; height:2.843ex;" alt="{\displaystyle \zeta (3)}"></span></a>,<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> the author notes as "a red herring" the similarity of a <a href="/wiki/Simple_continued_fraction" title="Simple continued fraction">simple continued fraction</a> for Apery's constant, and the following one for the Basel constant: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\zeta (2)}{5}}={\cfrac {1}{{\widetilde {v}}_{1}-{\cfrac {1^{4}}{{\widetilde {v}}_{2}-{\cfrac {2^{4}}{{\widetilde {v}}_{3}-{\cfrac {3^{4}}{{\widetilde {v}}_{4}-\ddots }}}}}}}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> <mn>5</mn> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mo>&#x22F1;<!-- ⋱ --></mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\zeta (2)}{5}}={\cfrac {1}{{\widetilde {v}}_{1}-{\cfrac {1^{4}}{{\widetilde {v}}_{2}-{\cfrac {2^{4}}{{\widetilde {v}}_{3}-{\cfrac {3^{4}}{{\widetilde {v}}_{4}-\ddots }}}}}}}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/142c95d696d1e86c234043226239e4db56ad02d2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -15.338ex; width:35.458ex; height:19.509ex;" alt="{\displaystyle {\frac {\zeta (2)}{5}}={\cfrac {1}{{\widetilde {v}}_{1}-{\cfrac {1^{4}}{{\widetilde {v}}_{2}-{\cfrac {2^{4}}{{\widetilde {v}}_{3}-{\cfrac {3^{4}}{{\widetilde {v}}_{4}-\ddots }}}}}}}},}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widetilde {v}}_{n}=11n^{2}-11n+3\mapsto \{3,25,69,135,\ldots \}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mn>11</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>11</mn> <mi>n</mi> <mo>+</mo> <mn>3</mn> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>3</mn> <mo>,</mo> <mn>25</mn> <mo>,</mo> <mn>69</mn> <mo>,</mo> <mn>135</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widetilde {v}}_{n}=11n^{2}-11n+3\mapsto \{3,25,69,135,\ldots \}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2e7f3bddf64ca7732ac89b679729201ee5acb2c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:42.978ex; height:3.176ex;" alt="{\displaystyle {\widetilde {v}}_{n}=11n^{2}-11n+3\mapsto \{3,25,69,135,\ldots \}}"></span>. Another continued fraction of a similar form is:<sup id="cite_ref-Berndt_20-0" class="reference"><a href="#cite_note-Berndt-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\zeta (2)}{2}}={\cfrac {1}{v_{1}-{\cfrac {1^{4}}{v_{2}-{\cfrac {2^{4}}{v_{3}-{\cfrac {3^{4}}{v_{4}-\ddots }}}}}}}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mo>&#x22F1;<!-- ⋱ --></mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\zeta (2)}{2}}={\cfrac {1}{v_{1}-{\cfrac {1^{4}}{v_{2}-{\cfrac {2^{4}}{v_{3}-{\cfrac {3^{4}}{v_{4}-\ddots }}}}}}}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b312b7b7a1e9de49852c181e12ea53b30419669" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -15.338ex; width:35.061ex; height:19.509ex;" alt="{\displaystyle {\frac {\zeta (2)}{2}}={\cfrac {1}{v_{1}-{\cfrac {1^{4}}{v_{2}-{\cfrac {2^{4}}{v_{3}-{\cfrac {3^{4}}{v_{4}-\ddots }}}}}}}},}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{n}=2n-1\mapsto \{1,3,5,7,9,\ldots \}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mn>2</mn> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>1</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>5</mn> <mo>,</mo> <mn>7</mn> <mo>,</mo> <mn>9</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v_{n}=2n-1\mapsto \{1,3,5,7,9,\ldots \}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7514e4cbad3e415f98f61c3bb89b5f47d01a4db5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:31.649ex; height:2.843ex;" alt="{\displaystyle v_{n}=2n-1\mapsto \{1,3,5,7,9,\ldots \}}"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Basel_problem&amp;action=edit&amp;section=19" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/List_of_sums_of_reciprocals" title="List of sums of reciprocals">List of sums of reciprocals</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Basel_problem&amp;action=edit&amp;section=20" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFWeil1983" class="citation cs2"><a href="/wiki/Andr%C3%A9_Weil" title="André Weil">Weil, André</a> (1983), <i>Number Theory: An Approach Through History</i>, Springer-Verlag, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-8176-3141-0" title="Special:BookSources/0-8176-3141-0"><bdi>0-8176-3141-0</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Number+Theory%3A+An+Approach+Through+History&amp;rft.pub=Springer-Verlag&amp;rft.date=1983&amp;rft.isbn=0-8176-3141-0&amp;rft.aulast=Weil&amp;rft.aufirst=Andr%C3%A9&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABasel+problem" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDunham1999" class="citation cs2"><a href="/wiki/William_Dunham_(mathematician)" title="William Dunham (mathematician)">Dunham, William</a> (1999), <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/eulermasterofusa0000dunh"><i>Euler: The Master of Us All</i></a></span>, <a href="/wiki/Mathematical_Association_of_America" title="Mathematical Association of America">Mathematical Association of America</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-88385-328-0" title="Special:BookSources/0-88385-328-0"><bdi>0-88385-328-0</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Euler%3A+The+Master+of+Us+All&amp;rft.pub=Mathematical+Association+of+America&amp;rft.date=1999&amp;rft.isbn=0-88385-328-0&amp;rft.aulast=Dunham&amp;rft.aufirst=William&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Feulermasterofusa0000dunh&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABasel+problem" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDerbyshire2003" class="citation cs2"><a href="/wiki/John_Derbyshire" title="John Derbyshire">Derbyshire, John</a> (2003), <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/primeobsessionbe00derb_0"><i>Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics</i></a></span>, Joseph Henry Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-309-08549-7" title="Special:BookSources/0-309-08549-7"><bdi>0-309-08549-7</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Prime+Obsession%3A+Bernhard+Riemann+and+the+Greatest+Unsolved+Problem+in+Mathematics&amp;rft.pub=Joseph+Henry+Press&amp;rft.date=2003&amp;rft.isbn=0-309-08549-7&amp;rft.aulast=Derbyshire&amp;rft.aufirst=John&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fprimeobsessionbe00derb_0&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABasel+problem" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEdwards2001" class="citation cs2"><a href="/wiki/Harold_Edwards_(mathematician)" title="Harold Edwards (mathematician)">Edwards, Harold M.</a> (2001), <i>Riemann's Zeta Function</i>, Dover, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-486-41740-9" title="Special:BookSources/0-486-41740-9"><bdi>0-486-41740-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Riemann%27s+Zeta+Function&amp;rft.pub=Dover&amp;rft.date=2001&amp;rft.isbn=0-486-41740-9&amp;rft.aulast=Edwards&amp;rft.aufirst=Harold+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABasel+problem" class="Z3988"></span>.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Basel_problem&amp;action=edit&amp;section=21" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAyoub1974" class="citation cs2">Ayoub, Raymond (1974), <a rel="nofollow" class="external text" href="https://www.maa.org/programs/maa-awards/writing-awards/euler-and-the-zeta-function">"Euler and the zeta function"</a>, <i>Amer. Math. Monthly</i>, <b>81</b> (10): 1067–86, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2319041">10.2307/2319041</a>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2319041">2319041</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Amer.+Math.+Monthly&amp;rft.atitle=Euler+and+the+zeta+function&amp;rft.volume=81&amp;rft.issue=10&amp;rft.pages=1067-86&amp;rft.date=1974&amp;rft_id=info%3Adoi%2F10.2307%2F2319041&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2319041%23id-name%3DJSTOR&amp;rft.aulast=Ayoub&amp;rft.aufirst=Raymond&amp;rft_id=https%3A%2F%2Fwww.maa.org%2Fprograms%2Fmaa-awards%2Fwriting-awards%2Feuler-and-the-zeta-function&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABasel+problem" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://scholarlycommons.pacific.edu/euler-works/41/">E41 – De summis serierum reciprocarum</a></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSloane_&quot;A013661&quot;" class="citation web cs2"><a href="/wiki/Neil_Sloane" title="Neil Sloane">Sloane, N.&#160;J.&#160;A.</a> (ed.), <a rel="nofollow" class="external text" href="https://oeis.org/A013661">"Sequence&#x20;A013661"</a>, <i>The <a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">On-Line Encyclopedia of Integer Sequences</a></i>, OEIS Foundation</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=The+On-Line+Encyclopedia+of+Integer+Sequences&amp;rft.atitle=Sequence%26%23x20%3BA013661&amp;rft_id=https%3A%2F%2Foeis.org%2FA013661&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABasel+problem" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVandervelde2009" class="citation cs2">Vandervelde, Sam (2009), "Chapter 9: Sneaky segments", <i>Circle in a Box</i>, MSRI Mathematical Circles Library, Mathematical Sciences Research Institute and American Mathematical Society, pp.&#160;101–106</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Chapter+9%3A+Sneaky+segments&amp;rft.btitle=Circle+in+a+Box&amp;rft.series=MSRI+Mathematical+Circles+Library&amp;rft.pages=101-106&amp;rft.pub=Mathematical+Sciences+Research+Institute+and+American+Mathematical+Society&amp;rft.date=2009&amp;rft.aulast=Vandervelde&amp;rft.aufirst=Sam&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABasel+problem" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text">A priori, since the left-hand-side is a <a href="/wiki/Polynomial" title="Polynomial">polynomial</a> (of infinite degree) we can write it as a product of its roots as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\sin(x)&amp;=x(x^{2}-\pi ^{2})(x^{2}-4\pi ^{2})(x^{2}-9\pi ^{2})\cdots \\&amp;=Ax\left(1-{\frac {x^{2}}{\pi ^{2}}}\right)\left(1-{\frac {x^{2}}{4\pi ^{2}}}\right)\left(1-{\frac {x^{2}}{9\pi ^{2}}}\right)\cdots .\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>x</mi> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>4</mn> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>9</mn> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>&#x22EF;<!-- ⋯ --></mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mi>A</mi> <mi>x</mi> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>4</mn> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>9</mn> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\sin(x)&amp;=x(x^{2}-\pi ^{2})(x^{2}-4\pi ^{2})(x^{2}-9\pi ^{2})\cdots \\&amp;=Ax\left(1-{\frac {x^{2}}{\pi ^{2}}}\right)\left(1-{\frac {x^{2}}{4\pi ^{2}}}\right)\left(1-{\frac {x^{2}}{9\pi ^{2}}}\right)\cdots .\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/96d79ae5b2ca5a392061210fc6f8d2f38595b9bf" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.171ex; width:52.494ex; height:9.509ex;" alt="{\displaystyle {\begin{aligned}\sin(x)&amp;=x(x^{2}-\pi ^{2})(x^{2}-4\pi ^{2})(x^{2}-9\pi ^{2})\cdots \\&amp;=Ax\left(1-{\frac {x^{2}}{\pi ^{2}}}\right)\left(1-{\frac {x^{2}}{4\pi ^{2}}}\right)\left(1-{\frac {x^{2}}{9\pi ^{2}}}\right)\cdots .\end{aligned}}}"></span> Then since we know from elementary <a href="/wiki/Calculus" title="Calculus">calculus</a> that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{x\rightarrow 0}{\frac {\sin(x)}{x}}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mi>x</mi> </mfrac> </mrow> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{x\rightarrow 0}{\frac {\sin(x)}{x}}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd52f8cb7bb453e6f3748079936274ea1f2879f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:14.884ex; height:5.843ex;" alt="{\displaystyle \lim _{x\rightarrow 0}{\frac {\sin(x)}{x}}=1}"></span>, we conclude that the leading constant must satisfy <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9c93fa532d5efee9437dc500521e334e7ea26a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.004ex; height:2.176ex;" alt="{\displaystyle A=1}"></span>.</span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text">In particular, letting <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H_{n}^{(2)}:=\sum _{k=1}^{n}k^{-2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </msubsup> <mo>:=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H_{n}^{(2)}:=\sum _{k=1}^{n}k^{-2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8ae34e3053febe3741af72e2a4b8addbaea77ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:15.468ex; height:6.843ex;" alt="{\displaystyle H_{n}^{(2)}:=\sum _{k=1}^{n}k^{-2}}"></span> denote a <a href="/wiki/Generalized_harmonic_number" class="mw-redirect" title="Generalized harmonic number">generalized second-order harmonic number</a>, we can easily prove by <a href="/wiki/Mathematical_induction" title="Mathematical induction">induction</a> that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [x^{2}]\prod _{k=1}^{n}\left(1-{\frac {x^{2}}{\pi ^{2}}}\right)=-{\frac {H_{n}^{(2)}}{\pi ^{2}}}\rightarrow -{\frac {\zeta (2)}{\pi ^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">]</mo> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </msubsup> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [x^{2}]\prod _{k=1}^{n}\left(1-{\frac {x^{2}}{\pi ^{2}}}\right)=-{\frac {H_{n}^{(2)}}{\pi ^{2}}}\rightarrow -{\frac {\zeta (2)}{\pi ^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a98d719153958492556d70a26872fd298e954cd3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:38.575ex; height:7.343ex;" alt="{\displaystyle [x^{2}]\prod _{k=1}^{n}\left(1-{\frac {x^{2}}{\pi ^{2}}}\right)=-{\frac {H_{n}^{(2)}}{\pi ^{2}}}\rightarrow -{\frac {\zeta (2)}{\pi ^{2}}}}"></span> as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\rightarrow \infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\rightarrow \infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9702f04f2d0e5b887b99faeeffb0c4cfd8263eee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.333ex; height:1.843ex;" alt="{\displaystyle n\rightarrow \infty }"></span>.</span> </li> <li id="cite_note-HAVIL-GAMMA-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-HAVIL-GAMMA_7-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHavil2003" class="citation cs2">Havil, J. (2003), <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://archive.org/details/gammaexploringeu00havi_882"><i>Gamma: Exploring Euler's Constant</i></a></span>, Princeton, New Jersey: Princeton University Press, pp.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/gammaexploringeu00havi_882/page/n60">37</a>–42 (Chapter 4), <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-691-09983-9" title="Special:BookSources/0-691-09983-9"><bdi>0-691-09983-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Gamma%3A+Exploring+Euler%27s+Constant&amp;rft.place=Princeton%2C+New+Jersey&amp;rft.pages=37-42+%28Chapter+4%29&amp;rft.pub=Princeton+University+Press&amp;rft.date=2003&amp;rft.isbn=0-691-09983-9&amp;rft.aulast=Havil&amp;rft.aufirst=J.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fgammaexploringeu00havi_882&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABasel+problem" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text">Cf., the formulae for generalized Stirling numbers proved in: <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchmidt2018" class="citation cs2">Schmidt, M. D. (2018), <a rel="nofollow" class="external text" href="https://cs.uwaterloo.ca/journals/JIS/VOL21/Schmidt/schmidt18.html">"Combinatorial Identities for Generalized Stirling Numbers Expanding f-Factorial Functions and the f-Harmonic Numbers"</a>, <i>J. Integer Seq.</i>, <b>21</b> (Article 18.2.7)</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=J.+Integer+Seq.&amp;rft.atitle=Combinatorial+Identities+for+Generalized+Stirling+Numbers+Expanding+f-Factorial+Functions+and+the+f-Harmonic+Numbers&amp;rft.volume=21&amp;rft.issue=Article+18.2.7&amp;rft.date=2018&amp;rft.aulast=Schmidt&amp;rft.aufirst=M.+D.&amp;rft_id=https%3A%2F%2Fcs.uwaterloo.ca%2Fjournals%2FJIS%2FVOL21%2FSchmidt%2Fschmidt18.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABasel+problem" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFArakawaIbukiyamaKaneko2014" class="citation cs2">Arakawa, Tsuneo; Ibukiyama, Tomoyoshi; Kaneko, Masanobu (2014), <i>Bernoulli Numbers and Zeta Functions</i>, Springer, p.&#160;61, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-4-431-54919-2" title="Special:BookSources/978-4-431-54919-2"><bdi>978-4-431-54919-2</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Bernoulli+Numbers+and+Zeta+Functions&amp;rft.pages=61&amp;rft.pub=Springer&amp;rft.date=2014&amp;rft.isbn=978-4-431-54919-2&amp;rft.aulast=Arakawa&amp;rft.aufirst=Tsuneo&amp;rft.au=Ibukiyama%2C+Tomoyoshi&amp;rft.au=Kaneko%2C+Masanobu&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABasel+problem" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFreitas2023" class="citation arxiv cs2">Freitas, F. L. (2023), "Solution of the Basel problem using the Feynman integral trick", <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2312.04608">2312.04608</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/math.CA">math.CA</a>]</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=Solution+of+the+Basel+problem+using+the+Feynman+integral+trick&amp;rft.date=2023&amp;rft_id=info%3Aarxiv%2F2312.04608&amp;rft.aulast=Freitas&amp;rft.aufirst=F.+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABasel+problem" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRansford1982" class="citation cs2">Ransford, T J (Summer 1982), <a rel="nofollow" class="external text" href="https://www.archim.org.uk/eureka/archive/Eureka-42.pdf">"An Elementary Proof of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{1}^{\infty }{\frac {1}{n^{2}}}={\frac {\pi ^{2}}{6}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>6</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{1}^{\infty }{\frac {1}{n^{2}}}={\frac {\pi ^{2}}{6}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff21173e912fc20dfff5a9e77b9ac14968471ecd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:13.35ex; height:6.843ex;" alt="{\displaystyle \sum _{1}^{\infty }{\frac {1}{n^{2}}}={\frac {\pi ^{2}}{6}}}"></span>"</a> <span class="cs1-format">(PDF)</span>, <i>Eureka</i>, <b>42</b> (1): 3–4</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Eureka&amp;rft.atitle=An+Elementary+Proof+of+MATH+RENDER+ERROR&amp;rft.ssn=summer&amp;rft.volume=42&amp;rft.issue=1&amp;rft.pages=3-4&amp;rft.date=1982&amp;rft.aulast=Ransford&amp;rft.aufirst=T+J&amp;rft_id=https%3A%2F%2Fwww.archim.org.uk%2Feureka%2Farchive%2FEureka-42.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABasel+problem" class="Z3988"></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAignerZiegler2001" class="citation cs2"><a href="/wiki/Martin_Aigner" title="Martin Aigner">Aigner, Martin</a>; <a href="/wiki/G%C3%BCnter_M._Ziegler" title="Günter M. Ziegler">Ziegler, Günter M.</a> (2001), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=QETtCAAAQBAJ&amp;pg=PA32"><i>Proofs from THE BOOK</i></a> (2nd&#160;ed.), Springer, p.&#160;32, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9783662043158" title="Special:BookSources/9783662043158"><bdi>9783662043158</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Proofs+from+THE+BOOK&amp;rft.pages=32&amp;rft.edition=2nd&amp;rft.pub=Springer&amp;rft.date=2001&amp;rft.isbn=9783662043158&amp;rft.aulast=Aigner&amp;rft.aufirst=Martin&amp;rft.au=Ziegler%2C+G%C3%BCnter+M.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DQETtCAAAQBAJ%26pg%3DPA32&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABasel+problem" class="Z3988"></span>; this anecdote is missing from later editions of this book, which replace it with earlier history of the same proof.</span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVladimir_PlatonovAndrei_Rapinchuk1994" class="citation cs2"><a href="/wiki/Vladimir_Platonov" title="Vladimir Platonov">Vladimir Platonov</a>; Andrei Rapinchuk (1994), <i>Algebraic groups and number theory</i>, translated by Rachel Rowen, Academic Press</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Algebraic+groups+and+number+theory&amp;rft.pub=Academic+Press&amp;rft.date=1994&amp;rft.au=Vladimir+Platonov&amp;rft.au=Andrei+Rapinchuk&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABasel+problem" class="Z3988"></span>|</span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJohan_Wästlund2010" class="citation web cs1">Johan Wästlund (December 8, 2010). <a rel="nofollow" class="external text" href="https://www.math.chalmers.se/~wastlund/Cosmic.pdf">"Summing Inverse Squares by Euclidean Geometry"</a> <span class="cs1-format">(PDF)</span>. <i>Chalmers University of Technology</i>. Department of Mathematics, Chalmers University<span class="reference-accessdate">. Retrieved <span class="nowrap">2024-10-11</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Chalmers+University+of+Technology&amp;rft.atitle=Summing+Inverse+Squares+by+Euclidean+Geometry&amp;rft.date=2010-12-08&amp;rft.au=Johan+W%C3%A4stlund&amp;rft_id=https%3A%2F%2Fwww.math.chalmers.se%2F~wastlund%2FCosmic.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABasel+problem" class="Z3988"></span></span> </li> <li id="cite_note-MWZETA2-15"><span class="mw-cite-backlink">^ <a href="#cite_ref-MWZETA2_15-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-MWZETA2_15-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><span class="citation mathworld" id="Reference-Mathworld-Riemann_Zeta_Function_\zeta(2)"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs2"><a href="/wiki/Eric_W._Weisstein" title="Eric W. Weisstein">Weisstein, Eric W.</a>, <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/RiemannZetaFunctionZeta2.html">"Riemann Zeta Function \zeta(2)"</a>, <i><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></i></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=MathWorld&amp;rft.atitle=Riemann+Zeta+Function+%5Czeta%282%29&amp;rft.au=Weisstein%2C+Eric+W.&amp;rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FRiemannZetaFunctionZeta2.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABasel+problem" class="Z3988"></span></span></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFConnon2007" class="citation arxiv cs2">Connon, D. F. (2007), "Some series and integrals involving the Riemann zeta function, binomial coefficients and the harmonic numbers (Volume I)", <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0710.4022">0710.4022</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/math.HO">math.HO</a>]</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=Some+series+and+integrals+involving+the+Riemann+zeta+function%2C+binomial+coefficients+and+the+harmonic+numbers+%28Volume+I%29&amp;rft.date=2007&amp;rft_id=info%3Aarxiv%2F0710.4022&amp;rft.aulast=Connon&amp;rft.aufirst=D.+F.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABasel+problem" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><span class="citation mathworld" id="Reference-Mathworld-Double_Integral"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs2"><a href="/wiki/Eric_W._Weisstein" title="Eric W. Weisstein">Weisstein, Eric W.</a>, <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/DoubleIntegral.html">"Double Integral"</a>, <i><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></i></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=MathWorld&amp;rft.atitle=Double+Integral&amp;rft.au=Weisstein%2C+Eric+W.&amp;rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FDoubleIntegral.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABasel+problem" class="Z3988"></span></span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><span class="citation mathworld" id="Reference-Mathworld-Hadjicostas&#39;s_Formula"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs2"><a href="/wiki/Eric_W._Weisstein" title="Eric W. Weisstein">Weisstein, Eric W.</a>, <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/HadjicostassFormula.html.html">"Hadjicostas's Formula"</a>, <i><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></i></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=MathWorld&amp;rft.atitle=Hadjicostas%27s+Formula&amp;rft.au=Weisstein%2C+Eric+W.&amp;rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FHadjicostassFormula.html.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABasel+problem" class="Z3988"></span></span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFvan_der_Poorten1979" class="citation cs2"><a href="/wiki/Alfred_van_der_Poorten" title="Alfred van der Poorten">van der Poorten, Alfred</a> (1979), <a rel="nofollow" class="external text" href="https://web.archive.org/web/20110706114957/http://www.maths.mq.edu.au/~alf/45.pdf">"A proof that Euler missed ... Apéry's proof of the irrationality of <span class="texhtml"><i>ζ</i>(3)</span>"</a> <span class="cs1-format">(PDF)</span>, <i><a href="/wiki/The_Mathematical_Intelligencer" title="The Mathematical Intelligencer">The Mathematical Intelligencer</a></i>, <b>1</b> (4): 195–203, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF03028234">10.1007/BF03028234</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:121589323">121589323</a>, archived from <a rel="nofollow" class="external text" href="http://www.maths.mq.edu.au/~alf/45.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2011-07-06</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Mathematical+Intelligencer&amp;rft.atitle=A+proof+that+Euler+missed+...+Ap%C3%A9ry%27s+proof+of+the+irrationality+of+%3Cspan+class%3D%22texhtml+%22+%3E%CE%B6%283%29%3C%2Fspan%3E&amp;rft.volume=1&amp;rft.issue=4&amp;rft.pages=195-203&amp;rft.date=1979&amp;rft_id=info%3Adoi%2F10.1007%2FBF03028234&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A121589323%23id-name%3DS2CID&amp;rft.aulast=van+der+Poorten&amp;rft.aufirst=Alfred&amp;rft_id=http%3A%2F%2Fwww.maths.mq.edu.au%2F~alf%2F45.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABasel+problem" class="Z3988"></span></span> </li> <li id="cite_note-Berndt-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-Berndt_20-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBerndt1989" class="citation cs2">Berndt, Bruce C. (1989), <i>Ramanujan's Notebooks: Part II</i>, Springer-Verlag, p.&#160;150, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-96794-3" title="Special:BookSources/978-0-387-96794-3"><bdi>978-0-387-96794-3</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Ramanujan%27s+Notebooks%3A+Part+II&amp;rft.pages=150&amp;rft.pub=Springer-Verlag&amp;rft.date=1989&amp;rft.isbn=978-0-387-96794-3&amp;rft.aulast=Berndt&amp;rft.aufirst=Bruce+C.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABasel+problem" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Basel_problem&amp;action=edit&amp;section=22" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external text" href="https://plus.maths.org/content/infinite-series-surprises">An infinite series of surprises</a> by C. J. Sangwin</li> <li><a rel="nofollow" class="external text" href="https://fylux.github.io/2017/03/30/Pi/">From <i>ζ</i>(2) to Π. The Proof.</a> step-by-step proof</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="http://eulerarchive.maa.org//docs/translations/E352.pdf"><i>Remarques sur un beau rapport entre les series des puissances tant directes que reciproques</i></a> <span class="cs1-format">(PDF)</span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Remarques+sur+un+beau+rapport+entre+les+series+des+puissances+tant+directes+que+reciproques&amp;rft_id=http%3A%2F%2Feulerarchive.maa.org%2F%2Fdocs%2Ftranslations%2FE352.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABasel+problem" class="Z3988"></span>, English translation with notes of Euler's paper by Lucas Willis and Thomas J. Osler</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEd_Sandifer" class="citation cs2">Ed Sandifer, <a rel="nofollow" class="external text" href="http://eulerarchive.maa.org/hedi/HEDI-2003-12.pdf"><i>How Euler did it</i></a> <span class="cs1-format">(PDF)</span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=How+Euler+did+it&amp;rft.au=Ed+Sandifer&amp;rft_id=http%3A%2F%2Feulerarchive.maa.org%2Fhedi%2FHEDI-2003-12.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABasel+problem" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJames_A._Sellers2002" class="citation cs2">James A. Sellers (February 5, 2002), <a rel="nofollow" class="external text" href="http://www.personal.psu.edu/jxs23/p25.pdf"><i>Beyond Mere Convergence</i></a> <span class="cs1-format">(PDF)</span><span class="reference-accessdate">, retrieved <span class="nowrap">2004-02-27</span></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Beyond+Mere+Convergence&amp;rft.date=2002-02-05&amp;rft.au=James+A.+Sellers&amp;rft_id=http%3A%2F%2Fwww.personal.psu.edu%2Fjxs23%2Fp25.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABasel+problem" class="Z3988"></span></li> <li>Robin Chapman, <a rel="nofollow" class="external text" href="http://empslocal.ex.ac.uk/people/staff/rjchapma/etc/zeta2.pdf"><i>Evaluating</i> <span class="texhtml"><i>ζ</i>(2)</span></a> (fourteen proofs)</li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20181130113058/https://giphy.com/gifs/math-visualization-algorithm-xThuW9Pyh8jXvfbrUc">Visualization of Euler's factorization of the sine function</a></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJohan_W_Ästlund2010" class="citation cs2">Johan W Ästlund (December 8, 2010), <a rel="nofollow" class="external text" href="http://www.math.chalmers.se/~wastlund/Cosmic.pdf"><i>Summing inverse squares by Euclidean geometry</i></a> <span class="cs1-format">(PDF)</span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Summing+inverse+squares+by+Euclidean+geometry&amp;rft.date=2010-12-08&amp;rft.au=Johan+W+%C3%84stlund&amp;rft_id=http%3A%2F%2Fwww.math.chalmers.se%2F~wastlund%2FCosmic.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABasel+problem" class="Z3988"></span> <ul><li><a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=d-o3eB9sfls"><span class="plainlinks">Why is pi here? And why is it squared? A geometric answer to the Basel problem</span></a> on <a href="/wiki/YouTube_video_(identifier)" class="mw-redirect" title="YouTube video (identifier)">YouTube</a> (animated proof based on the above)</li></ul></li></ul> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐5dc468848‐8nvzv Cached time: 20241122140627 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.916 seconds Real time usage: 1.197 seconds Preprocessor visited node count: 5463/1000000 Post‐expand include size: 74711/2097152 bytes Template argument size: 8299/2097152 bytes Highest expansion depth: 18/100 Expensive parser function count: 1/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 103925/5000000 bytes Lua time usage: 0.429/10.000 seconds Lua memory usage: 6246665/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 697.516 1 -total 25.39% 177.099 18 Template:Citation 22.64% 157.888 1 Template:Short_description 20.32% 141.757 1 Template:Pi_box 19.92% 138.924 1 Template:Sidebar 19.63% 136.942 1 Template:Reflist 16.73% 116.660 2 Template:Pagetype 11.51% 80.260 43 Template:Math 5.10% 35.582 48 Template:Main_other 3.90% 27.210 12 Template:Sfrac --> <!-- Saved in parser cache with key enwiki:pcache:idhash:490303-0!canonical and timestamp 20241122140627 and revision id 1256783019. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Basel_problem&amp;oldid=1256783019">https://en.wikipedia.org/w/index.php?title=Basel_problem&amp;oldid=1256783019</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Mathematical_problems" title="Category:Mathematical problems">Mathematical problems</a></li><li><a href="/wiki/Category:Number_theory" title="Category:Number theory">Number theory</a></li><li><a href="/wiki/Category:Pi_algorithms" title="Category:Pi algorithms">Pi algorithms</a></li><li><a href="/wiki/Category:Squares_in_number_theory" title="Category:Squares in number theory">Squares in number theory</a></li><li><a href="/wiki/Category:Zeta_and_L-functions" title="Category:Zeta and L-functions">Zeta and L-functions</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Articles_containing_proofs" title="Category:Articles containing proofs">Articles containing proofs</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 11 November 2024, at 15:12<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Basel_problem&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-jqmcq","wgBackendResponseTime":183,"wgPageParseReport":{"limitreport":{"cputime":"0.916","walltime":"1.197","ppvisitednodes":{"value":5463,"limit":1000000},"postexpandincludesize":{"value":74711,"limit":2097152},"templateargumentsize":{"value":8299,"limit":2097152},"expansiondepth":{"value":18,"limit":100},"expensivefunctioncount":{"value":1,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":103925,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 697.516 1 -total"," 25.39% 177.099 18 Template:Citation"," 22.64% 157.888 1 Template:Short_description"," 20.32% 141.757 1 Template:Pi_box"," 19.92% 138.924 1 Template:Sidebar"," 19.63% 136.942 1 Template:Reflist"," 16.73% 116.660 2 Template:Pagetype"," 11.51% 80.260 43 Template:Math"," 5.10% 35.582 48 Template:Main_other"," 3.90% 27.210 12 Template:Sfrac"]},"scribunto":{"limitreport-timeusage":{"value":"0.429","limit":"10.000"},"limitreport-memusage":{"value":6246665,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-5dc468848-8nvzv","timestamp":"20241122140627","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Basel problem","url":"https:\/\/en.wikipedia.org\/wiki\/Basel_problem","sameAs":"http:\/\/www.wikidata.org\/entity\/Q810431","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q810431","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2004-02-25T11:15:05Z","dateModified":"2024-11-11T15:12:52Z","headline":"mathematical problem"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10