CINXE.COM

Search results for: staggered arrangement

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: staggered arrangement</title> <meta name="description" content="Search results for: staggered arrangement"> <meta name="keywords" content="staggered arrangement"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="staggered arrangement" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="staggered arrangement"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 541</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: staggered arrangement</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">541</span> Air Flow Characteristics and Pressure Distributions for Staggered Wing Shaped Tubes Bundle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sayed%20A.%20Elsayed">Sayed A. Elsayed</a>, <a href="https://publications.waset.org/abstracts/search?q=Emad%20Z.%20Ibrahim"> Emad Z. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Osama%20M.%20Mesalhy"> Osama M. Mesalhy</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20A.%20Abdelatief"> Mohamed A. Abdelatief</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experimental and numerical study has been conducted to clarify fluid flow characteristics and pressure drop distributions of a cross-flow heat exchanger employing staggered wing-shaped tubes at different angels of attack. The water-side Rew and the air-side Rea were at 5 x 102 and at from 1.8 x 103 to 9.7 x 103, respectively. Three cases of the tubes arrangements with various angles of attack, row angles of attack and 90° cone angles were employed at the considered Rea range. Correlation of pressure drop coefficient Pdc in terms of Rea, design parameters for the studied cases were presented. The flow pattern around the staggered wing-shaped tubes bundle were predicted by using commercial CFD FLUENT 6.3.26 software package. Results indicated that the values of Pdc were increased by increasing the angle of attack from 0° to 45°, while the opposite was true for angles of attack from 135° to 180°. Comparisons between the experimental and numerical results of the present study and those, previously, obtained for similar available studies showed good agreements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wing-shaped%20tubes" title="wing-shaped tubes">wing-shaped tubes</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-flow%20cooling" title=" cross-flow cooling"> cross-flow cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=staggered%20arrangement" title=" staggered arrangement"> staggered arrangement</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a> </p> <a href="https://publications.waset.org/abstracts/16278/air-flow-characteristics-and-pressure-distributions-for-staggered-wing-shaped-tubes-bundle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">540</span> Lattice Boltzmann Simulation of Fluid Flow and Heat Transfer Through Porous Media by Means of Pore-Scale Approach: Effect of Obstacles Size and Arrangement on Tortuosity and Heat Transfer for a Porosity Degree</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Annunziata%20D%E2%80%99Orazio">Annunziata D’Orazio</a>, <a href="https://publications.waset.org/abstracts/search?q=Arash%20Karimipour"> Arash Karimipour</a>, <a href="https://publications.waset.org/abstracts/search?q=Iman%20Moradi"> Iman Moradi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The size and arrangement of the obstacles in the porous media has an influential effect on the fluid flow and heat transfer, even in the same porosity. Regarding to this, in the present study, several different amounts of obstacles, in both regular and stagger arrangements, in the analogous porosity have been simulated through a channel. In order to compare the effect of stagger and regular arrangements, as well as different quantity of obstacles in the same porosity, on fluid flow and heat transfer. In the present study, the Single Relaxation Time Lattice Boltzmann Method, with Bhatnagar-Gross-Ktook (BGK) approximation and D2Q9 model, is implemented for the numerical simulation. Also, the temperature field is modeled through a Double Distribution Function (DDF) approach. Results are presented in terms of velocity and temperature fields, streamlines, percentage of pressure drop and Nusselt number of the obstacles walls. Also, the correlation between tortuosity and Nusselt number of the obstacles walls, for both regular and staggered arrangements, has been proposed. On the other hand, the results illustrated that by increasing the amount of obstacles, as well as changing their arrangement from regular to staggered, in the same porosity, the rate of tortuosity and Nusselt number of the obstacles walls increased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lattice%20boltzmann%20method" title="lattice boltzmann method">lattice boltzmann method</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20media" title=" porous media"> porous media</a>, <a href="https://publications.waset.org/abstracts/search?q=pore-scale" title=" pore-scale"> pore-scale</a>, <a href="https://publications.waset.org/abstracts/search?q=porosity" title=" porosity"> porosity</a>, <a href="https://publications.waset.org/abstracts/search?q=tortuosity" title=" tortuosity"> tortuosity</a> </p> <a href="https://publications.waset.org/abstracts/165353/lattice-boltzmann-simulation-of-fluid-flow-and-heat-transfer-through-porous-media-by-means-of-pore-scale-approach-effect-of-obstacles-size-and-arrangement-on-tortuosity-and-heat-transfer-for-a-porosity-degree" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165353.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">539</span> Schrödinger Equation with Position-Dependent Mass: Staggered Mass Distributions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20J.%20Pe%C3%B1a">J. J. Peña</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Morales"> J. Morales</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Garc%C3%ADa-Ravelo"> J. García-Ravelo</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Arcos-D%C3%ADaz"> L. Arcos-Díaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Point canonical transformation method is applied for solving the Schr&ouml;dinger equation with position-dependent mass. This class of problem has been solved for continuous mass distributions. In this work, a staggered mass distribution for the case of a free particle in an infinite square well potential has been proposed. The continuity conditions as well as normalization for the wave function are also considered. The proposal can be used for dealing with other kind of staggered mass distributions in the Schr&ouml;dinger equation with different quantum potentials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=free%20particle" title="free particle">free particle</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20canonical%20transformation%20method" title=" point canonical transformation method"> point canonical transformation method</a>, <a href="https://publications.waset.org/abstracts/search?q=position-dependent%20mass" title=" position-dependent mass"> position-dependent mass</a>, <a href="https://publications.waset.org/abstracts/search?q=staggered%20mass%20distribution" title=" staggered mass distribution"> staggered mass distribution</a> </p> <a href="https://publications.waset.org/abstracts/71082/schrodinger-equation-with-position-dependent-mass-staggered-mass-distributions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71082.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">538</span> Performance of Staggered Wall Buildings Subjected to Low to Medium Earthquake Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Younghoo%20Choi">Younghoo Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Jun"> Yong Jun</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinkoo%20Kim"> Jinkoo Kim </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study seismic performance of typical reinforced concrete staggered wall system structures was evaluated through nonlinear static and incremental dynamic analyses. To this end, and 15-story SWS structures were designed and were analyzed to obtain their nonlinear force-displacement relationships. The analysis results showed that the 5-story SWS structures failed due to yielding of columns and walls located in the lower stories, whereas in the 15-story structures plastic hinges were more widely distributed throughout the stories. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=staggered%20wall%20systems" title="staggered wall systems">staggered wall systems</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete" title=" reinforced concrete"> reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20performance" title=" seismic performance"> seismic performance</a> </p> <a href="https://publications.waset.org/abstracts/15060/performance-of-staggered-wall-buildings-subjected-to-low-to-medium-earthquake-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15060.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">537</span> Application of Artificial Neural Network for Single Horizontal Bare Tube and Bare Tube Bundles (Staggered) of Large Particles: Heat Transfer Prediction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Ravindranath">G. Ravindranath</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Savitha"> S. Savitha </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents heat transfer analysis of single horizontal bare tube and heat transfer analysis of staggered arrangement of bare tube bundles bare tube bundles in gas-solid (air-solid) fluidized bed and predictions are done by using Artificial Neural Network (ANN) based on experimental data. Fluidized bed provide nearly isothermal environment with high heat transfer rate to submerged objects i.e. due to through mixing and large contact area between the gas and the particle, a fully fluidized bed has little temperature variation and gas leaves at a temperature which is close to that of the bed. Measurement of average heat transfer coefficient was made by local thermal simulation technique in a cold bubbling air-fluidized bed of size 0.305 m. x 0.305 m. Studies were conducted for single horizontal Bare Tube of length 305mm and 28.6mm outer diameter and for bare tube bundles of staggered arrangement using beds of large (average particle diameter greater than 1 mm) particle (raagi and mustard). Within the range of experimental conditions influence of bed particle diameter ( Dp), Fluidizing Velocity (U) were studied, which are significant parameters affecting heat transfer. Artificial Neural Networks (ANNs) have been receiving an increasing attention for simulating engineering systems due to some interesting characteristics such as learning capability, fault tolerance, and non-linearity. Here, feed-forward architecture and trained by back-propagation technique is adopted to predict heat transfer analysis found from experimental results. The ANN is designed to suit the present system which has 3 inputs and 2 out puts. The network predictions are found to be in very good agreement with the experimental observed values of bare heat transfer coefficient (hb) and nusselt number of bare tube (Nub). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluidized%20bed" title="fluidized bed">fluidized bed</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20particles" title=" large particles"> large particles</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20diameter" title=" particle diameter"> particle diameter</a>, <a href="https://publications.waset.org/abstracts/search?q=ANN" title=" ANN"> ANN</a> </p> <a href="https://publications.waset.org/abstracts/23637/application-of-artificial-neural-network-for-single-horizontal-bare-tube-and-bare-tube-bundles-staggered-of-large-particles-heat-transfer-prediction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23637.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">536</span> Numerical Homogenization of Nacre</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Arunachalam">M. Arunachalam</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Pandey"> M. Pandey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nacre, a biological material that forms the inner-layer of sea shells can achieve high toughness and strength by way of staggered arrangement of strong tablets with soft and weak organic interface. Under applied loads the tablets slide over the adjacent tablets, thus generating inelastic deformation and toughness on macroscopic scale. A two dimensional finite element based homogenization methodology is adopted for obtaining the effective material properties of Nacre using a representative volume element (RVE) at finite deformations. In this work, the material behaviour for tablet and interface are assumed to be Isotropic elastic and Isotropic elastic-perfectly plastic with strain softening respectively. Numerical experiments such as uniaxial tension test along X, Y directions and simple shear test are performed on the RVE with uniform displacement and periodic constraints applied at the RVE boundaries to obtain the anisotropic homogenized response and maximum local stresses within each constituents of Nacre. Homogenized material model is then tested for macroscopic structure under three point bending condition and the results obtained are comparable with the results obtained for detailed microstructure based structure, thus homogenization provides a bridge between macroscopic scale and microscopic scale and homogenized material properties obtained from microstructural (RVE) analysis could be used in large scale structural analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title="finite element">finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=homogenization" title=" homogenization"> homogenization</a>, <a href="https://publications.waset.org/abstracts/search?q=inelastic%20deformation" title=" inelastic deformation"> inelastic deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=staggered%20arrangement" title=" staggered arrangement"> staggered arrangement</a> </p> <a href="https://publications.waset.org/abstracts/37390/numerical-homogenization-of-nacre" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37390.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">535</span> Dynamic Behavior of the Nanostructure of Load-Bearing Biological Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahan%20Qwamizadeh">Mahan Qwamizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Kun%20Zhou"> Kun Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Zuoqi%20Zhang"> Zuoqi Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Wei%20Zhang"> Yong Wei Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Typical load-bearing biological materials like bone, mineralized tendon and shell, are biocomposites made from both organic (collagen) and inorganic (biomineral) materials. This amazing class of materials with intrinsic internally designed hierarchical structures show superior mechanical properties with regard to their weak components from which they are formed. Extensive investigations concentrating on static loading conditions have been done to study the biological materials failure. However, most of the damage and failure mechanisms in load-bearing biological materials will occur whenever their structures are exposed to dynamic loading conditions. The main question needed to be answered here is: What is the relation between the layout and architecture of the load-bearing biological materials and their dynamic behavior? In this work, a staggered model has been developed based on the structure of natural materials at nanoscale and Finite Element Analysis (FEA) has been used to study the dynamic behavior of the structure of load-bearing biological materials to answer why the staggered arrangement has been selected by nature to make the nanocomposite structure of most of the biological materials. The results showed that the staggered structures will efficiently attenuate the stress wave rather than the layered structure. Furthermore, such staggered architecture is effectively in charge of utilizing the capacity of the biostructure to resist both normal and shear loads. In this work, the geometrical parameters of the model like the thickness and aspect ratio of the mineral inclusions selected from the typical range of the experimentally observed feature sizes and layout dimensions of the biological materials such as bone and mineralized tendon. Furthermore, the numerical results validated with existing theoretical solutions. Findings of the present work emphasize on the significant effects of dynamic behavior on the natural evolution of load-bearing biological materials and can help scientists to design bioinspired materials in the laboratories. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=load-bearing%20biological%20materials" title="load-bearing biological materials">load-bearing biological materials</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructure" title=" nanostructure"> nanostructure</a>, <a href="https://publications.waset.org/abstracts/search?q=staggered%20structure" title=" staggered structure"> staggered structure</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20wave%20decay" title=" stress wave decay"> stress wave decay</a> </p> <a href="https://publications.waset.org/abstracts/31314/dynamic-behavior-of-the-nanostructure-of-load-bearing-biological-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31314.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">534</span> Numerical Simulations of Electronic Cooling with In-Line and Staggered Pin Fin Heat Sinks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yue-Tzu%20Yang">Yue-Tzu Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsiang-Wen%20Tang"> Hsiang-Wen Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jian-Zhang%20Yin"> Jian-Zhang Yin</a>, <a href="https://publications.waset.org/abstracts/search?q=Chao-Han%20Wu"> Chao-Han Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Three-dimensional incompressible turbulent fluid flow and heat transfer of pin fin heat sinks using air as a cooling fluid are numerically studied in this study. Two different kinds of pin fins are compared in the thermal performance, including circular and square cross sections, both are in-line and staggered arrangements. The turbulent governing equations are solved using a control-volume- based finite-difference method. Subsequently, numerical computations are performed with the realizable <em>k - ԑ</em> turbulence for the parameters studied, the fin height<em> H</em>, fin diameter<em> D</em>, and Reynolds number (Re) in the range of 7 &le; <em>H</em> &le; 10<em>, </em>0.75 &le; <em>D</em> &le; 2, 2000 &le; Re &le; 126000 respectively. The numerical results are validated with available experimental data in the literature and good agreement has been found. It indicates that circular pin fins are streamlined in comparing with the square pin fins, the pressure drop is small than that of square pin fins, and heat transfer is not as good as the square pin fins. The thermal performance of the staggered pin fins is better than that of in-line pin fins because the staggered arrangements produce large disturbance. Both in-line and staggered arrangements show the same behavior for thermal resistance, pressure drop, and the entropy generation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pin-fin" title="pin-fin">pin-fin</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20sinks" title=" heat sinks"> heat sinks</a>, <a href="https://publications.waset.org/abstracts/search?q=simulations" title=" simulations"> simulations</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20flow" title=" turbulent flow"> turbulent flow</a> </p> <a href="https://publications.waset.org/abstracts/46324/numerical-simulations-of-electronic-cooling-with-in-line-and-staggered-pin-fin-heat-sinks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46324.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">533</span> Study on the Central Differencing Scheme with the Staggered Version (STG) for Solving the Hyperbolic Partial Differential Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Narumol%20Chintaganun">Narumol Chintaganun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we present the second-order central differencing scheme with the staggered version (STG) for solving the advection equation and Burger's equation. This scheme based on staggered evolution of the re-constructed cell averages. This scheme results in the second-order central differencing scheme, an extension along the lines of the first-order central scheme of Lax-Friedrichs (LxF) scheme. All numerical simulations presented in this paper are obtained by finite difference method (FDM) and STG. Numerical results are shown that the STG gives very good results and higher accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=central%20differencing%20scheme" title="central differencing scheme">central differencing scheme</a>, <a href="https://publications.waset.org/abstracts/search?q=STG" title=" STG"> STG</a>, <a href="https://publications.waset.org/abstracts/search?q=advection%20equation" title=" advection equation"> advection equation</a>, <a href="https://publications.waset.org/abstracts/search?q=burgers%20equation" title=" burgers equation"> burgers equation</a> </p> <a href="https://publications.waset.org/abstracts/23076/study-on-the-central-differencing-scheme-with-the-staggered-version-stg-for-solving-the-hyperbolic-partial-differential-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23076.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">557</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">532</span> Effect of Longitudinal Fins on Air-Flow Characteristics for Wing-Shaped Tubes in Cross Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sayed%20Ahmed%20El%20Sayed">Sayed Ahmed El Sayed</a>, <a href="https://publications.waset.org/abstracts/search?q=Osama%20M.%20Mesalhy"> Osama M. Mesalhy</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20A.%20Abdelatief"> Mohamed A. Abdelatief</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A numerical study has been conducted to clarify fluid flow characteristics, pressure distributions, and skin friction coefficient over a wing-shaped tubes bundle in staggered arrangement with the placement of longitudinal fins (LF) at downstream position of the tube. The air-side Rea were at 1.8 x 103 to 9.7 x 103. The tubes bundle were employed with various fin height [hf] and fin thickness (δ) from (2 mm ≤ hf ≤ 12 mm) and (1.5 mm ≤ δ ≤ 3.5 mm) respectively at the considered Rea range. The flow pattern around the staggered wing-shaped tubes bundle was predicted using the commercial CFD FLUENT 6.3.26 software package. The distribution of average skin friction coefficient around wing-shaped tubes bundle is studied. Correlation of pressure drop coefficient Pdc and skin friction coefficient (Cf) in terms of Rea, design parameters for the studied cases were presented. Results indicated that the values of Pdc for hf = 6 mm are lower than these of NOF and hf = 2 mm by about 11 % and 13 % respectively for considered Rea range. Cf decreases as Rea increases. LFTH with hf = 6 mm offers lower form drag than that with hf = 12 mm and that of NOF. The lowest values of the pumping power are achieved for arrangements of hf = 6 mm for the considered Rea range. δ has negligible effect on skin friction coefficient, while has a slightly variation in ∆Pa. The wing-shaped tubes bundle heat exchanger with hf = 6 mm has the lowest values of ∆Pa, Pdc, Cf, and pumping power and hence the best performance comparing with the other bundles. Comparisons between the experimental and numerical results of the present study and those obtained by similar previous studies showed good agreements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=longitudinal%20fins" title="longitudinal fins">longitudinal fins</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20friction" title=" skin friction"> skin friction</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20characteristics" title=" flow characteristics"> flow characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=FLUENT" title=" FLUENT"> FLUENT</a>, <a href="https://publications.waset.org/abstracts/search?q=wing-shaped%20tubes" title=" wing-shaped tubes"> wing-shaped tubes</a> </p> <a href="https://publications.waset.org/abstracts/35320/effect-of-longitudinal-fins-on-air-flow-characteristics-for-wing-shaped-tubes-in-cross-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35320.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">539</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">531</span> Numerical Investigation of Flow Past in a Staggered Tube Bundle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kerkouri%20Abdelkadir">Kerkouri Abdelkadir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical calculations of turbulent flows are one of the most prominent modern interests in various engineering applications. Due to the difficulty of predicting, following up and studying this flow for computational fluid dynamic (CFD), in this paper, we simulated numerical study of a flow past in a staggered tube bundle, using CFD Code ANSYS FLUENT with several models of turbulence following: k-ε, k-ω and SST approaches. The flow is modeled based on the experimental studies. The predictions of mean velocities are in very good agreement with detailed LDA (Laser Doppler Anemometry) measurements performed in 8 stations along the depth of the array. The sizes of the recirculation zones behind the cylinders are also predicted. The simulations are conducted for Reynolds numbers of 12858. The Reynolds number is set to depend experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flow" title="flow">flow</a>, <a href="https://publications.waset.org/abstracts/search?q=tube%20bundle" title=" tube bundle"> tube bundle</a>, <a href="https://publications.waset.org/abstracts/search?q=ANSYS%20Fluent" title=" ANSYS Fluent"> ANSYS Fluent</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence" title=" turbulence"> turbulence</a>, <a href="https://publications.waset.org/abstracts/search?q=LDA" title=" LDA"> LDA</a>, <a href="https://publications.waset.org/abstracts/search?q=RANS%20%28k-%CE%B5" title=" RANS (k-ε"> RANS (k-ε</a>, <a href="https://publications.waset.org/abstracts/search?q=k-%CF%89" title=" k-ω"> k-ω</a>, <a href="https://publications.waset.org/abstracts/search?q=SST%29" title=" SST)"> SST)</a> </p> <a href="https://publications.waset.org/abstracts/99718/numerical-investigation-of-flow-past-in-a-staggered-tube-bundle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99718.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">530</span> Numerical and Experimental Investigation of the Turbulence Level Influence on the Flow through the Staggered Smooth Tube Bundle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Adjlout">L. Adjlout</a>, <a href="https://publications.waset.org/abstracts/search?q=N.Benharrat"> N.Benharrat</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Ladjdel"> O. Ladjdel</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Djemil"> F. Djemil</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Adjlout"> A. Adjlout</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Yahiaoui"> T. Yahiaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present investigation is an experimental and numerical studies of the turbulence level influence on the flow in a smooth staggered tube bundle. The experiments were carried out in a closed circuit wind tunnel of subsonic type (TE44). Three turbulence levels at the inlet namely 1%, 4.6% and 6.3% and two Reynolds numbers Re = 9300 and Re = 13950 were performed. The obtained results for the central tube show that there are two minimum values for the angles 70° and 280° corresponding to the separation points. The pressure coefficient distributions seem to have constant values between 120° and 240° resulting in Von Karman street configuration in the wake. These remarks were valid for the tests carried out. The numerical study was performed by the ANSYS FLUENT code which solves the averaged Navier-Stokes equations (RANS). Two turbulence models (k-ε RNG and k-ε realizable), two types of grids and two levels of turbulence at the entrance of 4.6% and 6.3% for Reynolds numbers of 9300 and 13950 were considered. The obtained results for the central tube were compared with the present experimental results. It is concluded that the K-ε realizable is more suitable for the pressure distribution prediction than the K-ε RNG model compared to the present experimental results for this studied case. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tube%20bundle" title="tube bundle">tube bundle</a>, <a href="https://publications.waset.org/abstracts/search?q=staggered%20configuration" title=" staggered configuration"> staggered configuration</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence%20level" title=" turbulence level"> turbulence level</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical" title=" numerical"> numerical</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental" title=" experimental"> experimental</a> </p> <a href="https://publications.waset.org/abstracts/158745/numerical-and-experimental-investigation-of-the-turbulence-level-influence-on-the-flow-through-the-staggered-smooth-tube-bundle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158745.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">529</span> Aerodynamic Analysis of Multiple Winglets for Aircrafts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Pooja%20Pragati">S. Pooja Pragati</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Sudarsan"> B. Sudarsan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Raj%20Kumar"> S. Raj Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper provides a practical design of a new concept of massive Induced Drag reductions of stream vise staggered multiple winglets. It is designed to provide an optimum performance of a winglet from conventional designs. In preparing for a mechanical design, aspects such as shape, dimensions are analyzed to yield a huge amount of reduction in fuel consumption and increased performance. Owing to its simplicity of application and effectiveness we believe that it will enable us to consider its enhanced version for the grid effect of the staggered multiple winglets on the deflected mass flow of the wing system. The objective of the analysis were to compare the aerodynamic characteristics of two winglet configuration and to investigate the performance of two winglets shape simulated at selected cant angle of 0,45,60 degree. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multiple%20winglets" title="multiple winglets">multiple winglets</a>, <a href="https://publications.waset.org/abstracts/search?q=induced%20drag" title=" induced drag"> induced drag</a>, <a href="https://publications.waset.org/abstracts/search?q=aerodynamics%20analysis" title=" aerodynamics analysis"> aerodynamics analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20speed%20aircrafts" title=" low speed aircrafts"> low speed aircrafts</a> </p> <a href="https://publications.waset.org/abstracts/29408/aerodynamic-analysis-of-multiple-winglets-for-aircrafts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29408.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">480</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">528</span> Numerical Simulation of Multiple Arrays Arrangement of Micro Hydro Power Turbines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20At-Tasneem">M. A. At-Tasneem</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20T.%20Rao"> N. T. Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20M.%20Y.%20S.%20Tuan%20Ya"> T. M. Y. S. Tuan Ya</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Idris"> M. S. Idris</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ammar"> M. Ammar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> River flow over micro hydro power (MHP) turbines of multiple arrays arrangement is simulated with computational fluid dynamics (CFD) software to obtain the flow characteristics. In this paper, CFD software is used to simulate the water flow over MHP turbines as they are placed in a river. Multiple arrays arrangement of MHP turbines lead to generate large amount of power. In this study, a river model is created and simulated in CFD software to obtain the water flow characteristic. The process then continued by simulating different types of arrays arrangement in the river model. A MHP turbine model consists of a turbine outer body and static propeller blade in it. Five types of arrangements are used which are parallel, series, triangular, square and rhombus with different spacing sizes. The velocity profiles on each MHP turbines are identified at the mouth of each turbine bodies. This study is required to obtain the arrangement with increasing spacing sizes that can produce highest power density through the water flow variation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=micro%20hydro%20power" title="micro hydro power">micro hydro power</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=arrays%20arrangement" title=" arrays arrangement"> arrays arrangement</a>, <a href="https://publications.waset.org/abstracts/search?q=spacing%20sizes" title=" spacing sizes"> spacing sizes</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20profile" title=" velocity profile"> velocity profile</a>, <a href="https://publications.waset.org/abstracts/search?q=power" title=" power"> power</a> </p> <a href="https://publications.waset.org/abstracts/5348/numerical-simulation-of-multiple-arrays-arrangement-of-micro-hydro-power-turbines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5348.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">527</span> Evaluation of Non-Staggered Body-Fitted Grid Based Solution Method in Application to Supercritical Fluid Flows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suresh%20Sahu">Suresh Sahu</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhijeet%20M.%20Vaidya"> Abhijeet M. Vaidya</a>, <a href="https://publications.waset.org/abstracts/search?q=Naresh%20K.%20Maheshwari"> Naresh K. Maheshwari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The efforts to understand the heat transfer behavior of supercritical water in supercritical water cooled reactor (SCWR) are ongoing worldwide to fulfill the future energy demand. The higher thermal efficiency of these reactors compared to a conventional nuclear reactor is one of the driving forces for attracting the attention of nuclear scientists. In this work, a solution procedure has been described for solving supercritical fluid flow problems in complex geometries. The solution procedure is based on non-staggered grid. All governing equations are discretized by finite volume method (FVM) in curvilinear coordinate system. Convective terms are discretized by first-order upwind scheme and central difference approximation has been used to discretize the diffusive parts. <em>k</em>-&epsilon; turbulence model with standard wall function has been employed. SIMPLE solution procedure has been implemented for the curvilinear coordinate system. Based on this solution method, 3-D Computational Fluid Dynamics (CFD) code has been developed. In order to demonstrate the capability of this CFD code in supercritical fluid flows, heat transfer to supercritical water in circular tubes has been considered as a test problem. Results obtained by code have been compared with experimental results reported in literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curvilinear%20coordinate" title="curvilinear coordinate">curvilinear coordinate</a>, <a href="https://publications.waset.org/abstracts/search?q=body-fitted%20mesh" title=" body-fitted mesh"> body-fitted mesh</a>, <a href="https://publications.waset.org/abstracts/search?q=momentum%20interpolation" title=" momentum interpolation"> momentum interpolation</a>, <a href="https://publications.waset.org/abstracts/search?q=non-staggered%20grid" title=" non-staggered grid"> non-staggered grid</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20fluids" title=" supercritical fluids"> supercritical fluids</a> </p> <a href="https://publications.waset.org/abstracts/97327/evaluation-of-non-staggered-body-fitted-grid-based-solution-method-in-application-to-supercritical-fluid-flows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97327.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">526</span> Numerical Study of Heat Transfer in Square Duct with Turbulators </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Alhajeri">M. H. Alhajeri</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamad%20M.%20Alhajeri"> Hamad M. Alhajeri</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20Alenezi"> A. H. Alenezi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Computational fluid dynamics (CFD) investigation of heat transfer in U-duct with turbulators is presented in this paper. The duct passages used to cool internally the blades in gas turbine. The study is focused in the flow behavior and the Nusselt number (Nu) distributions. The model of the u-duct contains two square legs that are connected by 180* turn. Four turbulators are located in each surface of the leg and distributed in a staggered arrangement. The turbulator height and width are equal to 0.1 of the duct width, and the turbulator height is 0.1 of the distance between the turbulators. The Reynolds number (Re) used in this study is 95000 and the inlet velocity is 10 m/s. It was noticed that, after the flow resettles from the interruptions generated by the first turbulator or the turn, the flow construct two eddies, one large and the other is small after and before the turbulator, respectively. The maximum values of the Nu are found at a distance of approximately one turbulator width w before of the flow reattachment point. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title="computational fluid dynamics">computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=rib" title=" rib"> rib</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=blade" title=" blade"> blade</a> </p> <a href="https://publications.waset.org/abstracts/109523/numerical-study-of-heat-transfer-in-square-duct-with-turbulators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109523.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">525</span> Cadaveric Study of Lung Anatomy: A Surgical Overview</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arthi%20Ganapathy">Arthi Ganapathy</a>, <a href="https://publications.waset.org/abstracts/search?q=Rati%20Tandon"> Rati Tandon</a>, <a href="https://publications.waset.org/abstracts/search?q=Saroj%20Kaler"> Saroj Kaler</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: A thorough knowledge of variations in lung anatomy is of prime significance during surgical procedures like lobectomy, pneumonectomy, and segmentectomy of lungs. The arrangement of structures in the lung hilum act as a guide in performing such procedures. The normal pattern of arrangement of hilar structures in the right lung is eparterial bronchus, pulmonary artery, hyparterial bronchus and pulmonary veins from above downwards. In the left lung, it is pulmonary artery, principal bronchus and pulmonary vein from above downwards. The arrangement of hilar structures from anterior to posterior in both the lungs is pulmonary vein, pulmonary artery, and principal bronchus. The bronchial arteries are very small and usually the posterior most structures in the hilum of lungs. Aim: The present study aims at reporting the variations in hilar anatomy (arrangement and number) of lungs. Methodology: 75 adult formalin fixed cadaveric lungs from the department of Anatomy AIIMS New Delhi were observed for variations in the lobar anatomy. Arrangement of pulmonary hilar structures was meticulously observed, and any deviation in the pattern of presentation was recorded. Results: Among the 75 adult lung specimens observed 36 specimens were of right lung and the rest of left lung. Seven right lung specimens showed only 2 lobes with an oblique fissure dividing them and one left lung showed 3 lobes. The normal pattern of arrangement of hilar structures was seen in 22 right lungs and 23 left lungs. Rest of the lung specimens (14 right and 16 left) showed a varied pattern of arrangement of hilar structures. Some of them showed alterations in the sequence of arrangement of pulmonary artery, pulmonary veins, bronchus, and others in the number of these structures. Conclusion: Alterations in the pattern of arrangement of structures in the lung hilum are quite frequent. A compromise in knowledge of such variations will result in inadvertent complications like intraoperative bleeding during surgical procedures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fissures" title="fissures">fissures</a>, <a href="https://publications.waset.org/abstracts/search?q=hilum" title=" hilum"> hilum</a>, <a href="https://publications.waset.org/abstracts/search?q=lobes" title=" lobes"> lobes</a>, <a href="https://publications.waset.org/abstracts/search?q=pulmonary" title=" pulmonary"> pulmonary</a> </p> <a href="https://publications.waset.org/abstracts/77925/cadaveric-study-of-lung-anatomy-a-surgical-overview" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77925.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">524</span> 3D Numerical Simulation on Annular Diffuser Temperature Distribution Enhancement by Different Twist Arrangement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehan%20Sabah%20Shukri">Ehan Sabah Shukri</a>, <a href="https://publications.waset.org/abstracts/search?q=Wirachman%20Wisnoe"> Wirachman Wisnoe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The influence of twist arrangement on the temperature distribution in an annular diffuser fitted with twisted rectangular hub is investigated. Different pitches (Y = 120 mm, 100 mm, 80 mm, and 60 mm) for the twist arrangements are simulated to be compared. The geometry of the annular diffuser and the inlet condition for the hub arrangements are kept constant. The result reveals that using twisted rectangular hub insert with different pitches will force the temperature to distribute in a circular direction. However, temperature distribution will be enhanced with the length pitch increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title="numerical simulation">numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=twist%20arrangement" title=" twist arrangement"> twist arrangement</a>, <a href="https://publications.waset.org/abstracts/search?q=annular%20diffuser" title=" annular diffuser"> annular diffuser</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20distribution" title=" temperature distribution"> temperature distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=swirl%20flow" title=" swirl flow"> swirl flow</a>, <a href="https://publications.waset.org/abstracts/search?q=pitches" title=" pitches"> pitches</a> </p> <a href="https://publications.waset.org/abstracts/12978/3d-numerical-simulation-on-annular-diffuser-temperature-distribution-enhancement-by-different-twist-arrangement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12978.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">523</span> An Analysis on Thermal Energy Storage in Paraffin-Wax Using Tube Array on a Shell and Tube Heat Exchanger</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syukri%20Himran">Syukri Himran</a>, <a href="https://publications.waset.org/abstracts/search?q=Rustan%20Taraka"> Rustan Taraka</a>, <a href="https://publications.waset.org/abstracts/search?q=Anto%20Duma"> Anto Duma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the study is to improve the understanding of latent and sensible thermal energy storage within a paraffin wax media by an array of cylindrical tubes arranged both in in-line and staggered layouts. An analytical and experimental study was carried out in a horizontal shell-and-tube type system during the melting process. Pertamina paraffin-wax was used as a phase change material (PCM), where as the tubes are embedded in the PCM. From analytical study we can obtain the useful information in designing a thermal energy storage such as : the motion of interface, amount of material melted at any time in the process, and the heat storage characteristic during melting. The use of staggered tubes is proposed as superior to in-line layout for thermal storage. The experimental study was used to verify the validity of the analytical predictions. From the comparisons, the analytical and experimental data are in a good agreement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=latent" title="latent">latent</a>, <a href="https://publications.waset.org/abstracts/search?q=sensible" title=" sensible"> sensible</a>, <a href="https://publications.waset.org/abstracts/search?q=paraffin-wax" title=" paraffin-wax"> paraffin-wax</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20energy%20storage" title=" thermal energy storage"> thermal energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=conduction" title=" conduction"> conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title=" natural convection"> natural convection</a> </p> <a href="https://publications.waset.org/abstracts/35962/an-analysis-on-thermal-energy-storage-in-paraffin-wax-using-tube-array-on-a-shell-and-tube-heat-exchanger" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35962.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">568</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">522</span> Determination of Flow Arrangement for Optimum Performance in Heat Exchangers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Salisu%20Atiku">Ahmed Salisu Atiku</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This task involves the determination of the flow arrangement for optimum performance and the calculation of total heat transfer of two identical double pipe heat exchangers in series. The inner pipe contains the cold water stream at 27°C, whilst the outer pipe contains the two hot stream of water at 50°C and 90 °C which can be mixed in any way desired. The analysis was carried out using counter flow arrangement due to its good heat transfer ability. The best way of heating this cold stream was found out to be passing the 90°C hot stream through the two heat exchangers. The outlet temperature of the cold stream was found to be 39.6°C and overall heat transfer of 131.3 kW. Though starting with 50°C hot stream in the first heat exchanger followed by 90°C hot stream in the second heat exchanger gives an outlet temperature almost the same as 90°C hot stream alone, but the heat transfer is low. The reason for the low heat transfer was that only the heat transfer in the second heat exchanger is considered. Whilst the reason behind high outlet temperature was that the cold stream was already preheated by the first stream. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cold%20stream" title="cold stream">cold stream</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20arrangement" title=" flow arrangement"> flow arrangement</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20exchanger" title=" heat exchanger"> heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20stream" title=" hot stream"> hot stream</a> </p> <a href="https://publications.waset.org/abstracts/51973/determination-of-flow-arrangement-for-optimum-performance-in-heat-exchangers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51973.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">521</span> Longitudinal Vortices Mixing in Three-Stream Micromixers with Two Inlets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yi-Tun%20Huang">Yi-Tun Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chih-Yang%20Wu"> Chih-Yang Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Shu-Wei%20Huang"> Shu-Wei Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we examine fluid mixing in a full three-stream mixing channel with longitudinal vortex generators (LVGs) built on the channel bottom by numerical simulation and experiment. The effects of the asymmetrical arrangement and the attack angle of the LVGs on fluid mixing are investigated. The results show that the micromixer with LVGs at a small asymmetry index (defined by the ratio of the distance from the center plane of the gap between the winglets to the center plane of the main channel to the width of the main channel) is superior to the micromixer with symmetric LVGs and that with LVGs at a large asymmetry index. The micromixer using five mixing modules of the LVGs with an attack angle between 16.5 degrees and 22.5 degrees can achieve excellent mixing over a wide range of Reynolds numbers. Here, we call a section of channel with two pairs of staggered asymmetrical LVGs a mixing module. Besides, the micromixer with LVGs at a small attack angle is more efficient than that with a larger attack angle when pressure losses are taken into account. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microfluidics" title="microfluidics">microfluidics</a>, <a href="https://publications.waset.org/abstracts/search?q=mixing" title=" mixing"> mixing</a>, <a href="https://publications.waset.org/abstracts/search?q=longitudinal%20vortex%20generators" title=" longitudinal vortex generators"> longitudinal vortex generators</a>, <a href="https://publications.waset.org/abstracts/search?q=two%20stream%20interfaces" title=" two stream interfaces"> two stream interfaces</a> </p> <a href="https://publications.waset.org/abstracts/7216/longitudinal-vortices-mixing-in-three-stream-micromixers-with-two-inlets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7216.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">520</span> Experimental Investigation of the Failure Behavior of a Retaining Wall Constructed with Soil Bags</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kewei%20Fan">Kewei Fan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sihong%20Liu"> Sihong Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi%20Pik%20Cheng"> Yi Pik Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to analyse the failure behaviour of the retaining wall constructed with soil bags that are formed by filling river sand into woven bags (geosynthetics). Model tests were conducted to obtain the failure mode of the wall, and shear tests on two-layers and five-layers of soil bags were designed to investigate the mechanical characteristics of the interface of soil bags. The test results show that the slip surface in the soil bags-constructed retaining wall is ladder-like due to the inter-layer insertion of soil bags, and the wall above the ladder-like surface undergoes a rigid body translation. The insertion strengthens the shear strength of two-layer staggered-stacked soil bags. Meanwhile, it affects the shape of the slip surface of the five-layer staggered-stacked soil bags. Finally, the interlayer resisting friction of soil bags is found to be related to the shape of the slip surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geosynthetics" title="geosynthetics">geosynthetics</a>, <a href="https://publications.waset.org/abstracts/search?q=retaining%20wall" title=" retaining wall"> retaining wall</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20bag" title=" soil bag"> soil bag</a>, <a href="https://publications.waset.org/abstracts/search?q=failure%20mode" title=" failure mode"> failure mode</a>, <a href="https://publications.waset.org/abstracts/search?q=interface" title=" interface"> interface</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title=" shear strength"> shear strength</a> </p> <a href="https://publications.waset.org/abstracts/105967/experimental-investigation-of-the-failure-behavior-of-a-retaining-wall-constructed-with-soil-bags" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105967.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">519</span> Influence of the Seat Arrangement in Public Reading Spaces on Individual Subjective Perceptions </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jo-Han%20Chang">Jo-Han Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chung-Jung%20Wu"> Chung-Jung Wu </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study involves a design proposal. The objective of is to create a seat arrangement model for public reading spaces that enable free arrangement without disturbing the users. Through a subjective perception scale, this study explored whether distance between seats and direction of seats influence individual subjective perceptions in a public reading space. This study also involves analysis of user subjective perceptions when reading in the settings on 3 seats at different directions and with 5 distances between seats. The results may be applied to public chair design. This study investigated that (a) whether different directions of seats and distances between seats influence individual subjective perceptions and (b) the acceptable personal space between 2 strangers in a public reading space. The results are shown as follows: (a) the directions of seats and distances between seats influenced individual subjective perceptions. (b) subjective evaluation scores were higher for back-to-back seat directions with Distances A (10 cm) and B (62 cm) compared with face-to-face and side-by-side seat directions; however, when the seat distance exceeded 114 cm (Distance C), no difference existed among the directions of seats. (c) regarding reading in public spaces, when the distance between seats is 10 cm only, we recommend arranging the seats in a back-to-back fashion to increase user comfort and arrangement of face-to-face and side- by-side seat directions should be avoided. When the seat arrangement is limited to face-to-face design, the distance between seats should be increased to at least 62 cm. Moreover, the distance between seats should be increased to at least 114 cm for side- by-side seats to elevate user comfort. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=individual%20subjective%20perceptions" title="individual subjective perceptions">individual subjective perceptions</a>, <a href="https://publications.waset.org/abstracts/search?q=personal%20space" title=" personal space"> personal space</a>, <a href="https://publications.waset.org/abstracts/search?q=seat%20arrangement" title=" seat arrangement"> seat arrangement</a>, <a href="https://publications.waset.org/abstracts/search?q=direction" title=" direction"> direction</a>, <a href="https://publications.waset.org/abstracts/search?q=distances" title=" distances"> distances</a> </p> <a href="https://publications.waset.org/abstracts/8520/influence-of-the-seat-arrangement-in-public-reading-spaces-on-individual-subjective-perceptions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">518</span> Effect of Tilt Angle of Herringbone Microstructures on Enhancement of Heat and Mass Transfer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nathan%20Estrada">Nathan Estrada</a>, <a href="https://publications.waset.org/abstracts/search?q=Fangjun%20Shu"> Fangjun Shu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yanxing%20Wang"> Yanxing Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The heat and mass transfer characteristics of a simple shear flow over a surface covered with staggered herringbone structures are numerically investigated using the lattice Boltzmann method. The focus is on the effect of ridge angle of the structures on the enhancement of heat and mass transfer. In the simulation, the temperature and mass concentration are modeled as a passive scalar released from the moving top wall and absorbed at the structured bottom wall. Reynolds number is fixed at 100. Two Prandtl or Schmidt numbers, 1 and 10, are considered. The results show that the advective scalar transport plays a more important role at larger Schmidt numbers. The fluid travels downward with higher scalar concentration into the grooves at the backward grove tips and travel upward with lower scalar concentration at the forward grove tips. Different tile angles result in different flow advection in wall-normal direction and thus different heat and mass transport efficiencies. The maximum enhancement is achieved at an angle between 15o and 30o. The mechanism of heat and mass transfer is analyzed in detail. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluid%20mechanics" title="fluid mechanics">fluid mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20and%20mass%20transfer" title=" heat and mass transfer"> heat and mass transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidics" title=" microfluidics"> microfluidics</a>, <a href="https://publications.waset.org/abstracts/search?q=staggered%20herringbone%20mixer" title=" staggered herringbone mixer"> staggered herringbone mixer</a> </p> <a href="https://publications.waset.org/abstracts/164652/effect-of-tilt-angle-of-herringbone-microstructures-on-enhancement-of-heat-and-mass-transfer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164652.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">517</span> Molecular Dynamics Study of Ferrocene in Low and Room Temperatures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Feng%20Wang">Feng Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladislav%20Vasilyev"> Vladislav Vasilyev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ferrocene (Fe(C5H5)2, i.e., di-cyclopentadienyle iron (FeCp2) or Fc) is a unique example of ‘wrong but seminal’ in chemistry history. It has significant applications in a number of areas such as homogeneous catalysis, polymer chemistry, molecular sensing, and nonlinear optical materials. However, the ‘molecular carousel’ has been a ‘notoriously difficult example’ and subject to long debate for its conformation and properties. Ferrocene is a dynamic molecule. As a result, understanding of the dynamical properties of ferrocene is very important to understand the conformational properties of Fc. In the present study, molecular dynamic (MD) simulations are performed. In the simulation, we use 5 geometrical parameters to define the overall conformation of Fc and all the rest is a thermal noise. The five parameters are defined as: three parameters d---the distance between two Cp planes, α and δ to define the relative positions of the Cp planes, in which α is the angle of the Cp tilt and δ the angle the two Cp plane rotation like a carousel. Two parameters to position the Fe atom between two Cps, i.e., d1 for Fe-Cp1 and d2 for Fe-Cp2 distances. Our preliminary MD simulation discovered the five parameters behave differently. Distances of Fe to the Cp planes show that they are independent, practically identical without correlation. The relative position of two Cp rings, α, indicates that the two Cp planes are most likely not in a parallel position, rather, they tilt in a small angle α≠ 0°. The mean plane dihedral angle δ ≠ 0°. Moreover, δ is neither 0° nor 36°, indicating under those conditions, Fc is neither in a perfect eclipsed structure nor a perfect staggered structure. The simulations show that when the temperature is above 80K, the conformers are virtually in free rotations, A very interesting result from the MD simulation is the five C-Fe bond distances from the same Cp ring. They are surprisingly not identical but in three groups of 2, 2 and 1. We describe the pentagon formed by five carbon atoms as ‘turtle swimming’ for the motion of the Cp rings of Fc as shown in their dynamical animation video. The Fe- C(1) and Fe-C(2) which are identical as ‘the turtle back legs’, Fe-C(3) and Fe-C(4) which are also identical as turtle front paws’, and Fe-C(5) ---’the turtle head’. Such as ‘turtle swimming’ analog may be able to explain the single substituted derivatives of Fc. Again, the mean Fe-C distance obtained from MD simulation is larger than the quantum mechanically calculated Fe-C distances for eclipsed and staggered Fc, with larger deviation with respect to the eclipsed Fc than the staggered Fc. The same trend is obtained for the five Fe-C-H angles from same Cp ring of Fc. The simulated mean IR spectrum at 7K shows split spectral peaks at approximately 470 cm-1 and 488 cm-1, in excellent agreement with quantum mechanically calculated gas phase IR spectrum for eclipsed Fc. As the temperature increases over 80K, the clearly splitting IR spectrum become a very board single peak. Preliminary MD results will be presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ferrocene%20conformation" title="ferrocene conformation">ferrocene conformation</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics%20simulation" title=" molecular dynamics simulation"> molecular dynamics simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=conformer%20orientation" title=" conformer orientation"> conformer orientation</a>, <a href="https://publications.waset.org/abstracts/search?q=eclipsed%20and%20staggered%20ferrocene" title=" eclipsed and staggered ferrocene"> eclipsed and staggered ferrocene</a> </p> <a href="https://publications.waset.org/abstracts/55169/molecular-dynamics-study-of-ferrocene-in-low-and-room-temperatures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">516</span> Numerical Simulation of Two-Dimensional Porous Cylinder Flow in In-Line Arrangement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamad%20Alhajeri">Hamad Alhajeri</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20Almutairi"> Abdulrahman Almutairi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20Alenezi"> A. H. Alenezi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Alhajeri"> M. H. Alhajeri</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayedh%20Alajmi"> Ayedh Alajmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The flow around three porous cylinders in inline arrangement is investigated in this paper computationally using the commercial code FLUENT. The arrangement generally operates with the dirty gases passing through the porous cylinders, the particulate material being deposited on the outside of the cylinders. However, in a combined cycle power plant, filtration is required to allow the hot exhaust gases to be fed to a turbine without causing any physical damage to the turbine blades. Three cylinder elements are placed in a two-dimensional rectangle duct with fixed face velocity and varying the velocity ratio between the approach and face velocity. Particle trajectories are obtained for a number of particle diameters and different inlet (approach) velocity to face filtration velocity ratios to investigate the behavior of particles around the cylinder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=porous%20cylinders" title="porous cylinders">porous cylinders</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20flow" title=" fluid flow"> fluid flow</a>, <a href="https://publications.waset.org/abstracts/search?q=filtration" title=" filtration"> filtration</a> </p> <a href="https://publications.waset.org/abstracts/82446/numerical-simulation-of-two-dimensional-porous-cylinder-flow-in-in-line-arrangement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82446.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">484</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">515</span> Living Arrangement of Elderly in India: An Exploration from BKPAI Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jitendra%20Gouda">Jitendra Gouda</a>, <a href="https://publications.waset.org/abstracts/search?q=Chander%20Shekhar"> Chander Shekhar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the addition of 27 million elderly in India in past census decade from 2001 to 2011, it is imperative to work towards exploring the issues and concerns of this increasingly aged population. In Indian society, the elderly person is assumed to be looked after by the family members, especially by children but with changing economy, society, and lifestyle, this assumption demands examining. This paper is an attempt to explore the living arrangement of the elderly and their perceptions about this in India. The findings are based on the BKPAI dataset of 2011, which was conducted in seven states – Himachal Pradesh, Kerala, Maharashtra, Odisha, Punjab, Tamil Nadu, and West Bengal. The result shows that three fourth of elderly lives with their children. Having son and staying with children is positively associated among elderly. More than 40 percent as compared to 37 percent of elderly feels comfortable living with sons and daughters respectively. Half of elderly across sexes viewed that sons are the best person to live with. The result of discriminant analysis suggest that health status and living arrangement of elderly are the good discriminators to ensure their importance in the family. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discriminant%20analysis" title="discriminant analysis">discriminant analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=elderly" title=" elderly"> elderly</a>, <a href="https://publications.waset.org/abstracts/search?q=India" title=" India"> India</a>, <a href="https://publications.waset.org/abstracts/search?q=living%20arrangment" title=" living arrangment"> living arrangment</a> </p> <a href="https://publications.waset.org/abstracts/40726/living-arrangement-of-elderly-in-india-an-exploration-from-bkpai-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40726.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">514</span> Optimized Design, Material Selection, and Improvement of Liners, Mother Plate, and Stone Box of a Direct Charge Transfer Chute in a Sinter Plant: A Computational Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anamitra%20Ghosh">Anamitra Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=Neeladri%20Paul"> Neeladri Paul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work aims at investigating material combinations and thereby improvising an optimized design of liner-mother plate arrangement and that of the stone box, such that it has low cost, high weldability, sufficiently capable of withstanding the increased amount of corrosive shear and bending loads, and having reduced thermal expansion coefficient at temperatures close to 1000 degrees Celsius. All the above factors have been preliminarily examined using a computational approach via ANSYS Thermo-Structural Computation, a commercial software that uses the Finite Element Method to analyze the response of simulated design specimens of liner-mother plate arrangement and the stone box, to varied bending, shear, and thermal loads as well as to determine the temperature gradients developed across various surfaces of the designs. Finally, the optimized structural designs of the liner-mother plate arrangement and that of the stone box with improved material and better structural and thermal properties are selected via trial-and-error method. The final improvised design is therefore considered to enhance the overall life and reliability of a Direct Charge Transfer Chute that transfers and segregates the hot sinter onto the cooler in a sinter plant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shear" title="shear">shear</a>, <a href="https://publications.waset.org/abstracts/search?q=bending" title=" bending"> bending</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal" title=" thermal"> thermal</a>, <a href="https://publications.waset.org/abstracts/search?q=sinter" title=" sinter"> sinter</a>, <a href="https://publications.waset.org/abstracts/search?q=simulated" title=" simulated"> simulated</a>, <a href="https://publications.waset.org/abstracts/search?q=optimized" title=" optimized"> optimized</a>, <a href="https://publications.waset.org/abstracts/search?q=charge" title=" charge"> charge</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer" title=" transfer"> transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=chute" title=" chute"> chute</a>, <a href="https://publications.waset.org/abstracts/search?q=expansion" title=" expansion"> expansion</a>, <a href="https://publications.waset.org/abstracts/search?q=computational" title=" computational"> computational</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosive" title=" corrosive"> corrosive</a>, <a href="https://publications.waset.org/abstracts/search?q=stone%20box" title=" stone box"> stone box</a>, <a href="https://publications.waset.org/abstracts/search?q=liner" title=" liner"> liner</a>, <a href="https://publications.waset.org/abstracts/search?q=mother%20plate" title=" mother plate"> mother plate</a>, <a href="https://publications.waset.org/abstracts/search?q=arrangement" title=" arrangement"> arrangement</a>, <a href="https://publications.waset.org/abstracts/search?q=material" title=" material"> material</a> </p> <a href="https://publications.waset.org/abstracts/152960/optimized-design-material-selection-and-improvement-of-liners-mother-plate-and-stone-box-of-a-direct-charge-transfer-chute-in-a-sinter-plant-a-computational-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152960.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">513</span> An Optimization Model for the Arrangement of Assembly Areas Considering Time Dynamic Area Requirements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20Zenker">Michael Zenker</a>, <a href="https://publications.waset.org/abstracts/search?q=Henrik%20Prinzhorn"> Henrik Prinzhorn</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20B%C3%B6ning"> Christian Böning</a>, <a href="https://publications.waset.org/abstracts/search?q=Tom%20Strating"> Tom Strating</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Large-scale products are often assembled according to the job-site principle, meaning that during the assembly the product is located at a fixed position, while the area requirements are constantly changing. On one hand, the product itself is growing with each assembly step, whereas varying areas for storage, machines or working areas are temporarily required. This is an important factor when arranging products to be assembled within the factory. Currently, it is common to reserve a fixed area for each product to avoid overlaps or collisions with the other assemblies. Intending to be large enough to include the product and all adjacent areas, this reserved area corresponds to the superposition of the maximum extents of all required areas of the product. In this procedure, the reserved area is usually poorly utilized over the course of the entire assembly process; instead a large part of it remains unused. If the available area is a limited resource, a systematic arrangement of the products, which complies with the dynamic area requirements, will lead to an increased area utilization and productivity. This paper presents the results of a study on the arrangement of assembly objects assuming dynamic, competing area requirements. First, the problem situation is extensively explained, and existing research on associated topics is described and evaluated on the possibility of an adaptation. Then, a newly developed mathematical optimization model is introduced. This model allows an optimal arrangement of dynamic areas, considering logical and practical constraints. Finally, in order to quantify the potential of the developed method, some test series results are presented, showing the possible increase in area utilization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20area%20requirements" title="dynamic area requirements">dynamic area requirements</a>, <a href="https://publications.waset.org/abstracts/search?q=facility%20layout%20problem" title=" facility layout problem"> facility layout problem</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization%20model" title=" optimization model"> optimization model</a>, <a href="https://publications.waset.org/abstracts/search?q=product%20assembly" title=" product assembly"> product assembly</a> </p> <a href="https://publications.waset.org/abstracts/56361/an-optimization-model-for-the-arrangement-of-assembly-areas-considering-time-dynamic-area-requirements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">512</span> The Numerical and Experimental Analysis of Compressed Composite Plate in Asymmetrical Arrangement of Layers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Katarzyna%20Falkowicz">Katarzyna Falkowicz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The work focused on the original concept of a thin-walled plate element with a cut-out, for use as a spring or load-bearing element. The subject of the study were rectangular plates with a cut-out with variable geometrical parameters and with a variable angle of fiber arrangement, made of a carbon-epoxy composite with high strength properties in an asymmetrical arrangement, subjected to uniform compression. The influence of geometrical parameters of the cut-out and the angle of fiber arrangement on the value of critical load of the structure and buckling form was investigated. Uniform thin plates are relatively cheap to manufacture, however due to their low bending stiffness; they can carry relatively small loads. The lowest form of loss of plate stability, which is the bending form, leads to its rapid destruction due to high deflection increases, with a slight increase in compressive load - low rigidity of the structure. However, the stiffness characteristics of the structure change significantly when the work of plate is forcing according to the higher flexural-torsional form of buckling. The plate is able to carry a much higher compressive load while maintaining much stiffer work characteristics in the post-critical range. The calculations carried out earlier show that plates with forced higher form of buckling are characterized by stable, progressive paths of post-critical equilibrium, enabling their use as elastic elements. The characteristics of such elements can be designed in a wide range by changing the geometrical parameters of the cut-out, i.e. height and width as well as by changing the angle of fiber arrangement The commercial ABAQUS program using the finite element method was used to develop the discrete model and perform numerical calculations. The obtained results are of significant practical importance in the design of structures with elastic elements, allowing to achieve the required maintenance characteristics of the device. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buckling%20mode" title="buckling mode">buckling mode</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20method" title=" numerical method"> numerical method</a>, <a href="https://publications.waset.org/abstracts/search?q=unsymmetrical%20laminates" title=" unsymmetrical laminates"> unsymmetrical laminates</a>, <a href="https://publications.waset.org/abstracts/search?q=thin-walled%20elastic%20elements" title=" thin-walled elastic elements"> thin-walled elastic elements</a> </p> <a href="https://publications.waset.org/abstracts/113026/the-numerical-and-experimental-analysis-of-compressed-composite-plate-in-asymmetrical-arrangement-of-layers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113026.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=staggered%20arrangement&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=staggered%20arrangement&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=staggered%20arrangement&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=staggered%20arrangement&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=staggered%20arrangement&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=staggered%20arrangement&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=staggered%20arrangement&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=staggered%20arrangement&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=staggered%20arrangement&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=staggered%20arrangement&amp;page=18">18</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=staggered%20arrangement&amp;page=19">19</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=staggered%20arrangement&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10