CINXE.COM
LossScaleOptimizer
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1"> <meta name="description" content="Keras documentation"> <meta name="author" content="Keras Team"> <link rel="shortcut icon" href="https://keras.io/img/favicon.ico"> <link rel="canonical" href="https://keras.io/2.18/api/mixed_precision/loss_scale_optimizer/" /> <!-- Social --> <meta property="og:title" content="Keras documentation: LossScaleOptimizer"> <meta property="og:image" content="https://keras.io/img/logo-k-keras-wb.png"> <meta name="twitter:title" content="Keras documentation: LossScaleOptimizer"> <meta name="twitter:image" content="https://keras.io/img/k-keras-social.png"> <meta name="twitter:card" content="summary"> <title>LossScaleOptimizer</title> <!-- Bootstrap core CSS --> <link href="/css/bootstrap.min.css" rel="stylesheet"> <!-- Custom fonts for this template --> <link href="https://fonts.googleapis.com/css2?family=Open+Sans:wght@400;600;700;800&display=swap" rel="stylesheet"> <!-- Custom styles for this template --> <link href="/css/docs.css" rel="stylesheet"> <link href="/css/monokai.css" rel="stylesheet"> <!-- Google Tag Manager --> <script>(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-5DNGF4N'); </script> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','https://www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-175165319-128', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Tag Manager --> <script async defer src="https://buttons.github.io/buttons.js"></script> </head> <body> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5DNGF4N" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <div class='k-page'> <div class="k-nav" id="nav-menu"> <a href='/'><img src='/img/logo-small.png' class='logo-small' /></a> <div class="nav flex-column nav-pills" role="tablist" aria-orientation="vertical"> <a class="nav-link" href="/about/" role="tab" aria-selected="">About Keras</a> <a class="nav-link" href="/getting_started/" role="tab" aria-selected="">Getting started</a> <a class="nav-link" href="/guides/" role="tab" aria-selected="">Developer guides</a> <a class="nav-link" href="/examples/" role="tab" aria-selected="">Code examples</a> <a class="nav-link" href="/api/" role="tab" aria-selected="">Keras 3 API documentation</a> <a class="nav-link active" href="/2.18/api/" role="tab" aria-selected="">Keras 2 API documentation</a> <a class="nav-sublink" href="/2.18/api/models/">Models API</a> <a class="nav-sublink" href="/2.18/api/layers/">Layers API</a> <a class="nav-sublink" href="/2.18/api/callbacks/">Callbacks API</a> <a class="nav-sublink" href="/2.18/api/optimizers/">Optimizers</a> <a class="nav-sublink" href="/2.18/api/metrics/">Metrics</a> <a class="nav-sublink" href="/2.18/api/losses/">Losses</a> <a class="nav-sublink" href="/2.18/api/data_loading/">Data loading</a> <a class="nav-sublink" href="/2.18/api/datasets/">Built-in small datasets</a> <a class="nav-sublink" href="/2.18/api/applications/">Keras Applications</a> <a class="nav-sublink active" href="/2.18/api/mixed_precision/">Mixed precision</a> <a class="nav-sublink2" href="/2.18/api/mixed_precision/policy/">Mixed precision policy API</a> <a class="nav-sublink2 active" href="/2.18/api/mixed_precision/loss_scale_optimizer/">LossScaleOptimizer</a> <a class="nav-sublink" href="/2.18/api/utils/">Utilities</a> <a class="nav-link" href="/keras_tuner/" role="tab" aria-selected="">KerasTuner: Hyperparam Tuning</a> <a class="nav-link" href="/keras_hub/" role="tab" aria-selected="">KerasHub: Pretrained Models</a> </div> </div> <div class='k-main'> <div class='k-main-top'> <script> function displayDropdownMenu() { e = document.getElementById("nav-menu"); if (e.style.display == "block") { e.style.display = "none"; } else { e.style.display = "block"; document.getElementById("dropdown-nav").style.display = "block"; } } function resetMobileUI() { if (window.innerWidth <= 840) { document.getElementById("nav-menu").style.display = "none"; document.getElementById("dropdown-nav").style.display = "block"; } else { document.getElementById("nav-menu").style.display = "block"; document.getElementById("dropdown-nav").style.display = "none"; } var navmenu = document.getElementById("nav-menu"); var menuheight = navmenu.clientHeight; var kmain = document.getElementById("k-main-id"); kmain.style.minHeight = (menuheight + 100) + 'px'; } window.onresize = resetMobileUI; window.addEventListener("load", (event) => { resetMobileUI() }); </script> <div id='dropdown-nav' onclick="displayDropdownMenu();"> <svg viewBox="-20 -20 120 120" width="60" height="60"> <rect width="100" height="20"></rect> <rect y="30" width="100" height="20"></rect> <rect y="60" width="100" height="20"></rect> </svg> </div> <form class="bd-search d-flex align-items-center k-search-form" id="search-form"> <input type="search" class="k-search-input" id="search-input" placeholder="Search Keras documentation..." aria-label="Search Keras documentation..." autocomplete="off"> <button class="k-search-btn"> <svg width="13" height="13" viewBox="0 0 13 13"><title>search</title><path d="m4.8495 7.8226c0.82666 0 1.5262-0.29146 2.0985-0.87438 0.57232-0.58292 0.86378-1.2877 0.87438-2.1144 0.010599-0.82666-0.28086-1.5262-0.87438-2.0985-0.59352-0.57232-1.293-0.86378-2.0985-0.87438-0.8055-0.010599-1.5103 0.28086-2.1144 0.87438-0.60414 0.59352-0.8956 1.293-0.87438 2.0985 0.021197 0.8055 0.31266 1.5103 0.87438 2.1144 0.56172 0.60414 1.2665 0.8956 2.1144 0.87438zm4.4695 0.2115 3.681 3.6819-1.259 1.284-3.6817-3.7 0.0019784-0.69479-0.090043-0.098846c-0.87973 0.76087-1.92 1.1413-3.1207 1.1413-1.3553 0-2.5025-0.46363-3.4417-1.3909s-1.4088-2.0686-1.4088-3.4239c0-1.3553 0.4696-2.4966 1.4088-3.4239 0.9392-0.92727 2.0864-1.3969 3.4417-1.4088 1.3553-0.011889 2.4906 0.45771 3.406 1.4088 0.9154 0.95107 1.379 2.0924 1.3909 3.4239 0 1.2126-0.38043 2.2588-1.1413 3.1385l0.098834 0.090049z"></path></svg> </button> </form> <script> var form = document.getElementById('search-form'); form.onsubmit = function(e) { e.preventDefault(); var query = document.getElementById('search-input').value; window.location.href = '/search.html?query=' + query; return False } </script> </div> <div class='k-main-inner' id='k-main-id'> <div class='k-location-slug'> <span class="k-location-slug-pointer">►</span> <a href='/2.18/api/'>Keras 2 API documentation</a> / <a href='/2.18/api/mixed_precision/'>Mixed precision</a> / LossScaleOptimizer </div> <div class='k-content'> <h1 id="lossscaleoptimizer">LossScaleOptimizer</h1> <p><span style="float:right;"><a href="https://github.com/keras-team/tf-keras/tree/v2.18.0/tf_keras/mixed_precision/loss_scale_optimizer.py#L359">[source]</a></span></p> <h3 id="baselossscaleoptimizer-class"><code>BaseLossScaleOptimizer</code> class</h3> <div class="codehilite"><pre><span></span><code><span class="n">tf_keras</span><span class="o">.</span><span class="n">mixed_precision</span><span class="o">.</span><span class="n">LossScaleOptimizer</span><span class="p">()</span> </code></pre></div> <p>An optimizer that applies loss scaling to prevent numeric underflow.</p> <p>Loss scaling is a technique to prevent numeric underflow in intermediate gradients when float16 is used. To prevent underflow, the loss is multiplied (or "scaled") by a certain factor called the "loss scale", which causes intermediate gradients to be scaled by the loss scale as well. The final gradients are divided (or "unscaled") by the loss scale to bring them back to their original value.</p> <p><code>LossScaleOptimizer</code> wraps another optimizer and applies loss scaling to it. By default, the loss scale is dynamically updated over time so you do not have to choose the loss scale. The <code>minimize</code> method automatically scales the loss, unscales the gradients, and updates the loss scale so all you have to do is wrap your optimizer with a <code>LossScaleOptimizer</code> if you use <code>minimize</code>. For example:</p> <div class="codehilite"><pre><span></span><code><span class="o">>>></span> <span class="n">opt</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">keras</span><span class="o">.</span><span class="n">optimizers</span><span class="o">.</span><span class="n">experimental</span><span class="o">.</span><span class="n">SGD</span><span class="p">(</span><span class="mf">0.25</span><span class="p">)</span> <span class="o">>>></span> <span class="n">opt</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">keras</span><span class="o">.</span><span class="n">mixed_precision</span><span class="o">.</span><span class="n">LossScaleOptimizer</span><span class="p">(</span><span class="n">opt</span><span class="p">)</span> <span class="o">>>></span> <span class="n">var</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">Variable</span><span class="p">(</span><span class="mf">1.</span><span class="p">)</span> <span class="o">>>></span> <span class="n">loss_fn</span> <span class="o">=</span> <span class="k">lambda</span><span class="p">:</span> <span class="n">var</span> <span class="o">**</span> <span class="mi">2</span> <span class="o">>>></span> <span class="c1"># 'minimize' applies loss scaling and updates the loss sale.</span> <span class="o">>>></span> <span class="n">opt</span><span class="o">.</span><span class="n">minimize</span><span class="p">(</span><span class="n">loss_fn</span><span class="p">,</span> <span class="n">var_list</span><span class="o">=</span><span class="p">[</span><span class="n">var</span><span class="p">])</span> <span class="o">>>></span> <span class="n">var</span><span class="o">.</span><span class="n">numpy</span><span class="p">()</span> <span class="mf">0.5</span> </code></pre></div> <p>If a <a href="https://www.tensorflow.org/api_docs/python/tf/GradientTape"><code>tf.GradientTape</code></a> is used to compute gradients instead of <code>minimize</code>, you must scale the loss and gradients manually. This can be done with the <code>LossScaleOptimizer.get_scaled_loss</code> and <code>LossScaleOptimizer.get_unscaled_gradients</code> methods. For example:</p> <div class="codehilite"><pre><span></span><code><span class="o">>>></span> <span class="k">with</span> <span class="n">tf</span><span class="o">.</span><span class="n">GradientTape</span><span class="p">()</span> <span class="k">as</span> <span class="n">tape</span><span class="p">:</span> <span class="o">...</span> <span class="n">loss</span> <span class="o">=</span> <span class="n">loss_fn</span><span class="p">()</span> <span class="o">...</span> <span class="n">scaled_loss</span> <span class="o">=</span> <span class="n">opt</span><span class="o">.</span><span class="n">get_scaled_loss</span><span class="p">(</span><span class="n">loss</span><span class="p">)</span> <span class="o">>>></span> <span class="n">scaled_grad</span> <span class="o">=</span> <span class="n">tape</span><span class="o">.</span><span class="n">gradient</span><span class="p">(</span><span class="n">scaled_loss</span><span class="p">,</span> <span class="n">var</span><span class="p">)</span> <span class="o">>>></span> <span class="p">(</span><span class="n">grad</span><span class="p">,)</span> <span class="o">=</span> <span class="n">opt</span><span class="o">.</span><span class="n">get_unscaled_gradients</span><span class="p">([</span><span class="n">scaled_grad</span><span class="p">])</span> <span class="o">>>></span> <span class="n">opt</span><span class="o">.</span><span class="n">apply_gradients</span><span class="p">([(</span><span class="n">grad</span><span class="p">,</span> <span class="n">var</span><span class="p">)])</span> <span class="c1"># Loss scale is updated here</span> <span class="o">>>></span> <span class="n">var</span><span class="o">.</span><span class="n">numpy</span><span class="p">()</span> <span class="mf">0.25</span> </code></pre></div> <p>Warning: If you forget to call <code>get_scaled_loss</code> or <code>get_unscaled_gradients</code> (or both) when using a <a href="https://www.tensorflow.org/api_docs/python/tf/GradientTape"><code>tf.GradientTape</code></a>, the model will likely converge to a worse quality. Please make sure you call each function exactly once.</p> <p>When mixed precision with float16 is used, there is typically no risk of underflow affecting model quality if loss scaling is properly used. See <a href="https://www.tensorflow.org/guide/keras/mixed_precision">the mixed precision guide</a> for more information on how to use mixed precision.</p> <p><strong>Arguments</strong></p> <ul> <li><strong>inner_optimizer</strong>: The <a href="https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Optimizer"><code>tf.keras.optimizers.Optimizer</code></a> or <a href="https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/experimental/Optimizer"><code>tf.keras.optimizers.experimental.Optimizer</code></a> instance to wrap.</li> <li><strong>dynamic</strong>: Bool indicating whether dynamic loss scaling is used. If <code>True</code>, the loss scale will be dynamically updated over time using an algorithm that keeps the loss scale at approximately its optimal value. If False, a single fixed loss scale is used and <code>initial_scale</code> must be specified, which is used as the loss scale. Recommended to keep as True, as choosing a fixed loss scale can be tricky. Currently, there is a small performance overhead to dynamic loss scaling compared to fixed loss scaling. Defaults to <code>True</code>.</li> <li><strong>initial_scale</strong>: The initial loss scale. If <code>dynamic</code> is True, this defaults to <code>2 ** 15</code>. If <code>dynamic</code> is False, this must be specified and acts as the sole loss scale, as the loss scale does not change over time. When dynamic loss scaling is used, is better for this to be a very high number, because a loss scale that is too high gets lowered far more quickly than a loss scale that is too low gets raised.</li> <li><strong>dynamic_growth_steps</strong>: With dynamic loss scaling, every <code>dynamic_growth_steps</code> steps with finite gradients, the loss scale is doubled. If a nonfinite gradient is encountered, the count is reset back to zero, gradients are skipped that step, and the loss scale is halved. The count can be queried with <code>LossScaleOptimizer.dynamic_counter</code>. This argument can only be specified if <code>dynamic</code> is True. Defaults to <code>2000</code>.</li> </ul> <p><code>LossScaleOptimizer</code> will occasionally skip applying gradients to the variables, in which case the trainable variables will not change that step. This is done because the dynamic loss scale will sometimes be raised too high, causing overflow in the gradients. Typically, the first 2 to 15 steps of the model are skipped as the initial loss scale is very high, but afterwards steps will only be skipped on average 0.05% of the time (the fraction of steps skipped is <code>1 / dynamic_growth_steps</code>).</p> <p><code>LossScaleOptimizer</code> delegates all public <code>Optimizer</code> methods to the inner optimizer. Additionally, in methods <code>minimize</code> and <code>get_gradients</code>, it scales the loss and unscales the gradients. In methods <code>minimize</code> and <code>apply_gradients</code>, it additionally updates the loss scale and skips applying gradients if any gradient has a nonfinite value.</p> <h3 id="hyperparameters">Hyperparameters</h3> <p>If wrapping a <a href="https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Optimizer"><code>tf.keras.optimizers.Optimizer</code></a>, hyperparameters can be accessed and set on the LossScaleOptimizer, which will be delegated to the wrapped optimizer.</p> <div class="codehilite"><pre><span></span><code><span class="o">>>></span> <span class="n">opt</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">keras</span><span class="o">.</span><span class="n">optimizers</span><span class="o">.</span><span class="n">legacy</span><span class="o">.</span><span class="n">Adam</span><span class="p">(</span><span class="n">beta_1</span><span class="o">=</span><span class="mf">0.8</span><span class="p">,</span> <span class="n">epsilon</span><span class="o">=</span><span class="mf">1e-5</span><span class="p">)</span> <span class="o">>>></span> <span class="n">opt</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">keras</span><span class="o">.</span><span class="n">mixed_precision</span><span class="o">.</span><span class="n">LossScaleOptimizer</span><span class="p">(</span><span class="n">opt</span><span class="p">)</span> <span class="o">>>></span> <span class="n">opt</span><span class="o">.</span><span class="n">beta_1</span> <span class="c1"># Equivalent to `opt.inner_optimizer.beta_1`</span> <span class="mf">0.8</span> <span class="o">>>></span> <span class="n">opt</span><span class="o">.</span><span class="n">beta_1</span> <span class="o">=</span> <span class="mf">0.7</span> <span class="c1"># Equivalent to `opt.inner_optimizer.beta_1 = 0.7`</span> <span class="o">>>></span> <span class="n">opt</span><span class="o">.</span><span class="n">beta_1</span> <span class="mf">0.7</span> <span class="o">>>></span> <span class="n">opt</span><span class="o">.</span><span class="n">inner_optimizer</span><span class="o">.</span><span class="n">beta_1</span> <span class="mf">0.7</span> </code></pre></div> <p>However, accessing or setting non-hyperparameters is not delegated to the LossScaleOptimizer. In an Adam optimizer, <code>beta_1</code> is a hyperparameter but <code>epsilon</code> is not, as the Adam optimizer only calls <code>Optimizer._set_hyper</code> on <code>beta_1</code>.</p> <div class="codehilite"><pre><span></span><code><span class="o">>>></span> <span class="n">opt</span><span class="o">.</span><span class="n">inner_optimizer</span><span class="o">.</span><span class="n">epsilon</span> <span class="mf">1e-5</span> <span class="o">>>></span> <span class="n">opt</span><span class="o">.</span><span class="n">epsilon</span> <span class="n">Traceback</span> <span class="p">(</span><span class="n">most</span> <span class="n">recent</span> <span class="n">call</span> <span class="n">last</span><span class="p">):</span> <span class="o">...</span> <span class="ne">AttributeError</span><span class="p">:</span> <span class="s1">'LossScaleOptimizer'</span> <span class="nb">object</span> <span class="n">has</span> <span class="n">no</span> <span class="n">attribute</span> <span class="s1">'epsilon'</span> <span class="o">>>></span> <span class="n">opt</span><span class="o">.</span><span class="n">epsilon</span> <span class="o">=</span> <span class="mf">1e-4</span> <span class="c1"># This does NOT set epsilon on `opt.inner_optimizer`</span> <span class="o">>>></span> <span class="n">opt</span><span class="o">.</span><span class="n">inner_optimizer</span><span class="o">.</span><span class="n">epsilon</span> <span class="o">>>></span> <span class="mf">1e-5</span> </code></pre></div> <p>In the above example, despite epsilon being set on the LossScaleOptimizer, the old epsilon value will still be used when training as epsilon was not set on the inner optimizer.</p> <hr /> </div> <div class='k-outline'> <div class='k-outline-depth-1'> <a href='#lossscaleoptimizer'>LossScaleOptimizer</a> </div> <div class='k-outline-depth-3'> <a href='#baselossscaleoptimizer-class'><code>BaseLossScaleOptimizer</code> class</a> </div> <div class='k-outline-depth-3'> <a href='#hyperparameters'>Hyperparameters</a> </div> </div> </div> </div> </div> </body> <footer style="float: left; width: 100%; padding: 1em; border-top: solid 1px #bbb;"> <a href="https://policies.google.com/terms">Terms</a> | <a href="https://policies.google.com/privacy">Privacy</a> </footer> </html>