CINXE.COM
Euclidean distance - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Euclidean distance - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"bc87ab36-9836-4ee8-b692-437cb8621cb4","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Euclidean_distance","wgTitle":"Euclidean distance","wgCurRevisionId":1277294848,"wgRevisionId":1277294848,"wgArticleId":53932,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Use American English from February 2019","All Wikipedia articles written in American English","Articles with short description","Short description is different from Wikidata","Use mdy dates from February 2019","Good articles","Distance","Length","Metric geometry","Pythagorean theorem","Euclid"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Euclidean_distance","wgRelevantArticleId":53932,"wgIsProbablyEditable":true ,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":30000,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q847073","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false, "wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups", "ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.17"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/5/55/Euclidean_distance_2d.svg/1200px-Euclidean_distance_2d.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="827"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/5/55/Euclidean_distance_2d.svg/800px-Euclidean_distance_2d.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="551"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/5/55/Euclidean_distance_2d.svg/640px-Euclidean_distance_2d.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="441"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Euclidean distance - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Euclidean_distance"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Euclidean_distance&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Euclidean_distance"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Euclidean_distance rootpage-Euclidean_distance skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" title="Main menu" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li><li id="n-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages"><span>Special pages</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&wmf_medium=sidebar&wmf_campaign=en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Euclidean+distance" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Euclidean+distance" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&wmf_medium=sidebar&wmf_campaign=en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Euclidean+distance" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Euclidean+distance" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Distance_formulas" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Distance_formulas"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Distance formulas</span> </div> </a> <button aria-controls="toc-Distance_formulas-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Distance formulas subsection</span> </button> <ul id="toc-Distance_formulas-sublist" class="vector-toc-list"> <li id="toc-One_dimension" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#One_dimension"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>One dimension</span> </div> </a> <ul id="toc-One_dimension-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Two_dimensions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Two_dimensions"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Two dimensions</span> </div> </a> <ul id="toc-Two_dimensions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Higher_dimensions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Higher_dimensions"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.3</span> <span>Higher dimensions</span> </div> </a> <ul id="toc-Higher_dimensions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Objects_other_than_points" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Objects_other_than_points"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.4</span> <span>Objects other than points</span> </div> </a> <ul id="toc-Objects_other_than_points-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Properties" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Properties</span> </div> </a> <ul id="toc-Properties-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Squared_Euclidean_distance" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Squared_Euclidean_distance"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Squared Euclidean distance</span> </div> </a> <ul id="toc-Squared_Euclidean_distance-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Generalizations" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Generalizations"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Generalizations</span> </div> </a> <ul id="toc-Generalizations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>History</span> </div> </a> <ul id="toc-History-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" title="Table of Contents" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Euclidean distance</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 39 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-39" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">39 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%85%D8%B3%D8%A7%D9%81%D8%A9_%D8%A5%D9%82%D9%84%D9%8A%D8%AF%D9%8A%D8%A9" title="مسافة إقليدية – Arabic" lang="ar" hreflang="ar" data-title="مسافة إقليدية" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Evklid_m%C9%99saf%C9%99si" title="Evklid məsafəsi – Azerbaijani" lang="az" hreflang="az" data-title="Evklid məsafəsi" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbaijani" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Euklidska_udaljenost" title="Euklidska udaljenost – Bosnian" lang="bs" hreflang="bs" data-title="Euklidska udaljenost" data-language-autonym="Bosanski" data-language-local-name="Bosnian" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Dist%C3%A0ncia_euclidiana" title="Distància euclidiana – Catalan" lang="ca" hreflang="ca" data-title="Distància euclidiana" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%95%D0%B2%D0%BA%D0%BB%D0%B8%D0%B4%D0%BB%D0%B0_%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D0%BA%D0%B0" title="Евклидла метрика – Chuvash" lang="cv" hreflang="cv" data-title="Евклидла метрика" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Eukleidovsk%C3%A1_metrika" title="Eukleidovská metrika – Czech" lang="cs" hreflang="cs" data-title="Eukleidovská metrika" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Euklidischer_Abstand" title="Euklidischer Abstand – German" lang="de" hreflang="de" data-title="Euklidischer Abstand" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%95%CF%85%CE%BA%CE%BB%CE%B5%CE%AF%CE%B4%CE%B5%CE%B9%CE%B1_%CE%B1%CF%80%CF%8C%CF%83%CF%84%CE%B1%CF%83%CE%B7" title="Ευκλείδεια απόσταση – Greek" lang="el" hreflang="el" data-title="Ευκλείδεια απόσταση" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Distancia_euclidiana" title="Distancia euclidiana – Spanish" lang="es" hreflang="es" data-title="Distancia euclidiana" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/E%C5%ADklida_distanco" title="Eŭklida distanco – Esperanto" lang="eo" hreflang="eo" data-title="Eŭklida distanco" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Distantzia_euklidear" title="Distantzia euklidear – Basque" lang="eu" hreflang="eu" data-title="Distantzia euklidear" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%81%D8%A7%D8%B5%D9%84%D9%87_%D8%A7%D9%82%D9%84%DB%8C%D8%AF%D8%B3%DB%8C" title="فاصله اقلیدسی – Persian" lang="fa" hreflang="fa" data-title="فاصله اقلیدسی" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Distance_euclidienne" title="Distance euclidienne – French" lang="fr" hreflang="fr" data-title="Distance euclidienne" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Distancia_euclidiana" title="Distancia euclidiana – Galician" lang="gl" hreflang="gl" data-title="Distancia euclidiana" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%9C%A0%ED%81%B4%EB%A6%AC%EB%93%9C_%EA%B1%B0%EB%A6%AC" title="유클리드 거리 – Korean" lang="ko" hreflang="ko" data-title="유클리드 거리" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-io mw-list-item"><a href="https://io.wikipedia.org/wiki/Euklidana_disto" title="Euklidana disto – Ido" lang="io" hreflang="io" data-title="Euklidana disto" data-language-autonym="Ido" data-language-local-name="Ido" class="interlanguage-link-target"><span>Ido</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Jarak_Euklides" title="Jarak Euklides – Indonesian" lang="id" hreflang="id" data-title="Jarak Euklides" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Distanza_euclidea" title="Distanza euclidea – Italian" lang="it" hreflang="it" data-title="Distanza euclidea" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Euklidinis_atstumas" title="Euklidinis atstumas – Lithuanian" lang="lt" hreflang="lt" data-title="Euklidinis atstumas" data-language-autonym="Lietuvių" data-language-local-name="Lithuanian" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-mn mw-list-item"><a href="https://mn.wikipedia.org/wiki/%D0%95%D0%B2%D0%BA%D0%BB%D0%B8%D0%B4%D0%B8%D0%B9%D0%BD_%D0%BE%D1%80%D0%BE%D0%BD" title="Евклидийн орон – Mongolian" lang="mn" hreflang="mn" data-title="Евклидийн орон" data-language-autonym="Монгол" data-language-local-name="Mongolian" class="interlanguage-link-target"><span>Монгол</span></a></li><li class="interlanguage-link interwiki-nl badge-Q70894304 mw-list-item" title=""><a href="https://nl.wikipedia.org/wiki/Gewone_metriek" title="Gewone metriek – Dutch" lang="nl" hreflang="nl" data-title="Gewone metriek" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%A6%E3%83%BC%E3%82%AF%E3%83%AA%E3%83%83%E3%83%89%E8%B7%9D%E9%9B%A2" title="ユークリッド距離 – Japanese" lang="ja" hreflang="ja" data-title="ユークリッド距離" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Dist%C3%A2ncia_euclidiana" title="Distância euclidiana – Portuguese" lang="pt" hreflang="pt" data-title="Distância euclidiana" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Distan%C8%9B%C4%83_euclidian%C4%83" title="Distanță euclidiană – Romanian" lang="ro" hreflang="ro" data-title="Distanță euclidiană" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%95%D0%B2%D0%BA%D0%BB%D0%B8%D0%B4%D0%BE%D0%B2%D0%B0_%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D0%BA%D0%B0" title="Евклидова метрика – Russian" lang="ru" hreflang="ru" data-title="Евклидова метрика" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-scn mw-list-item"><a href="https://scn.wikipedia.org/wiki/Distanza" title="Distanza – Sicilian" lang="scn" hreflang="scn" data-title="Distanza" data-language-autonym="Sicilianu" data-language-local-name="Sicilian" class="interlanguage-link-target"><span>Sicilianu</span></a></li><li class="interlanguage-link interwiki-si mw-list-item"><a href="https://si.wikipedia.org/wiki/%E0%B6%BA%E0%B7%94%E0%B6%9A%E0%B7%8A%E0%B6%BD%E0%B7%92%E0%B6%A9%E0%B7%92%E0%B6%BA%E0%B7%8F%E0%B6%B1%E0%B7%94_%E0%B6%AF%E0%B7%94%E0%B6%BB" title="යුක්ලිඩියානු දුර – Sinhala" lang="si" hreflang="si" data-title="යුක්ලිඩියානු දුර" data-language-autonym="සිංහල" data-language-local-name="Sinhala" class="interlanguage-link-target"><span>සිංහල</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Euclidean_distance" title="Euclidean distance – Simple English" lang="en-simple" hreflang="en-simple" data-title="Euclidean distance" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%95%D1%83%D0%BA%D0%BB%D0%B8%D0%B4%D1%81%D0%BA%D0%B0_%D1%80%D0%B0%D0%B7%D0%B4%D0%B0%D1%99%D0%B8%D0%BD%D0%B0" title="Еуклидска раздаљина – Serbian" lang="sr" hreflang="sr" data-title="Еуклидска раздаљина" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Euklidska_udaljenost" title="Euklidska udaljenost – Serbo-Croatian" lang="sh" hreflang="sh" data-title="Euklidska udaljenost" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Euklidinen_metriikka" title="Euklidinen metriikka – Finnish" lang="fi" hreflang="fi" data-title="Euklidinen metriikka" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%AF%E0%AF%82%E0%AE%95%E0%AF%8D%E0%AE%B3%E0%AE%BF%E0%AE%9F%E0%AE%BF%E0%AE%AF_%E0%AE%A4%E0%AF%8A%E0%AE%B2%E0%AF%88%E0%AE%B5%E0%AF%81" title="யூக்ளிடிய தொலைவு – Tamil" lang="ta" hreflang="ta" data-title="யூக்ளிடிய தொலைவு" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%A3%E0%B8%B0%E0%B8%A2%E0%B8%B0%E0%B8%97%E0%B8%B2%E0%B8%87%E0%B9%81%E0%B8%9A%E0%B8%9A%E0%B8%A2%E0%B8%B8%E0%B8%84%E0%B8%A5%E0%B8%B4%E0%B8%94" title="ระยะทางแบบยุคลิด – Thai" lang="th" hreflang="th" data-title="ระยะทางแบบยุคลิด" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/%C3%96klid_uzakl%C4%B1%C4%9F%C4%B1" title="Öklid uzaklığı – Turkish" lang="tr" hreflang="tr" data-title="Öklid uzaklığı" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%95%D0%B2%D0%BA%D0%BB%D1%96%D0%B4%D0%BE%D0%B2%D0%B0_%D0%B2%D1%96%D0%B4%D1%81%D1%82%D0%B0%D0%BD%D1%8C" title="Евклідова відстань – Ukrainian" lang="uk" hreflang="uk" data-title="Евклідова відстань" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D9%81%D8%A7%D8%B5%D9%84%DB%81_(%D8%B1%DB%8C%D8%A7%D8%B6%DB%8C)" title="فاصلہ (ریاضی) – Urdu" lang="ur" hreflang="ur" data-title="فاصلہ (ریاضی)" data-language-autonym="اردو" data-language-local-name="Urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-vi badge-Q17437798 badge-goodarticle mw-list-item" title="good article badge"><a href="https://vi.wikipedia.org/wiki/Kho%E1%BA%A3ng_c%C3%A1ch_Euclid" title="Khoảng cách Euclid – Vietnamese" lang="vi" hreflang="vi" data-title="Khoảng cách Euclid" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E6%AD%90%E5%B9%BE%E9%87%8C%E5%BE%97%E8%B7%9D%E9%9B%A2" title="歐幾里得距離 – Cantonese" lang="yue" hreflang="yue" data-title="歐幾里得距離" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E6%AC%A7%E5%87%A0%E9%87%8C%E5%BE%97%E8%B7%9D%E7%A6%BB" title="欧几里得距离 – Chinese" lang="zh" hreflang="zh" data-title="欧几里得距离" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q847073#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Euclidean_distance" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Euclidean_distance" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Euclidean_distance"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Euclidean_distance&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Euclidean_distance&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Euclidean_distance"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Euclidean_distance&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Euclidean_distance&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Euclidean_distance" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Euclidean_distance" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Euclidean_distance&oldid=1277294848" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Euclidean_distance&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Euclidean_distance&id=1277294848&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FEuclidean_distance"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FEuclidean_distance"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Euclidean_distance&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Euclidean_distance&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q847073" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> <div id="mw-indicator-good-star" class="mw-indicator"><div class="mw-parser-output"><span typeof="mw:File"><a href="/wiki/Wikipedia:Good_articles*" title="This is a good article. Click here for more information."><img alt="This is a good article. Click here for more information." src="//upload.wikimedia.org/wikipedia/en/thumb/9/94/Symbol_support_vote.svg/19px-Symbol_support_vote.svg.png" decoding="async" width="19" height="20" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/94/Symbol_support_vote.svg/29px-Symbol_support_vote.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/94/Symbol_support_vote.svg/39px-Symbol_support_vote.svg.png 2x" data-file-width="180" data-file-height="185" /></a></span></div></div> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><p class="mw-empty-elt"> </p> <div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Length of a line segment</div> <p class="mw-empty-elt"> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Euclidean_distance_2d.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/55/Euclidean_distance_2d.svg/300px-Euclidean_distance_2d.svg.png" decoding="async" width="300" height="207" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/55/Euclidean_distance_2d.svg/450px-Euclidean_distance_2d.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/55/Euclidean_distance_2d.svg/600px-Euclidean_distance_2d.svg.png 2x" data-file-width="360" data-file-height="248" /></a><figcaption>Using the Pythagorean theorem to compute two-dimensional Euclidean distance</figcaption></figure> <p>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, the <b>Euclidean distance</b> between two <a href="/wiki/Point_(geometry)" title="Point (geometry)">points</a> in <a href="/wiki/Euclidean_space" title="Euclidean space">Euclidean space</a> is the <a href="/wiki/Length" title="Length">length</a> of the <a href="/wiki/Line_segment" title="Line segment">line segment</a> between them. It can be calculated from the <a href="/wiki/Cartesian_coordinate" class="mw-redirect" title="Cartesian coordinate">Cartesian coordinates</a> of the points using the <a href="/wiki/Pythagorean_theorem" title="Pythagorean theorem">Pythagorean theorem</a>, and therefore is occasionally called the <b>Pythagorean distance</b>. </p><p>These names come from the ancient <a href="/wiki/Greek_mathematics" title="Greek mathematics">Greek mathematicians</a> <a href="/wiki/Euclid" title="Euclid">Euclid</a> and <a href="/wiki/Pythagoras" title="Pythagoras">Pythagoras</a>. In the Greek <a href="/wiki/Deductive" class="mw-redirect" title="Deductive">deductive</a> <a href="/wiki/Geometry" title="Geometry">geometry</a> exemplified by Euclid's <a href="/wiki/Euclid%27s_Elements" title="Euclid's Elements"><i>Elements</i></a>, distances were not represented as numbers but line segments of the same length, which were considered "equal". The notion of distance is inherent in the <a href="/wiki/Compass_(drawing_tool)" title="Compass (drawing tool)">compass</a> tool used to draw a <a href="/wiki/Circle" title="Circle">circle</a>, whose points all have the same distance from a common <a href="/wiki/Center_(geometry)" class="mw-redirect" title="Center (geometry)">center point</a>. The connection from the Pythagorean theorem to distance calculation was not made until the 18th century. </p><p>The distance between two objects that are not points is usually defined to be the smallest distance among pairs of points from the two objects. Formulas are known for computing distances between different types of objects, such as the <a href="/wiki/Distance_from_a_point_to_a_line" title="Distance from a point to a line">distance from a point to a line</a>. In advanced mathematics, the concept of distance has been generalized to abstract <a href="/wiki/Metric_space" title="Metric space">metric spaces</a>, and other distances than Euclidean have been studied. In some applications in <a href="/wiki/Statistics" title="Statistics">statistics</a> and <a href="/wiki/Mathematical_optimization" title="Mathematical optimization">optimization</a>, the square of the Euclidean distance is used instead of the distance itself. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Distance_formulas">Distance formulas</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euclidean_distance&action=edit&section=1" title="Edit section: Distance formulas"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="One_dimension">One dimension</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euclidean_distance&action=edit&section=2" title="Edit section: One dimension"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The distance between any two points on the <a href="/wiki/Real_line" class="mw-redirect" title="Real line">real line</a> is the <a href="/wiki/Absolute_value" title="Absolute value">absolute value</a> of the numerical difference of their coordinates, their <a href="/wiki/Absolute_difference" title="Absolute difference">absolute difference</a>. Thus if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span> are two points on the real line, then the distance between them is given by:<sup id="cite_ref-smith_1-0" class="reference"><a href="#cite_note-smith-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(p,q)=|p-q|.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>p</mi> <mo>−<!-- − --></mo> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(p,q)=|p-q|.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/358aac90f70a828c1214ac8630e41c13926cae21" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.416ex; height:2.843ex;" alt="{\displaystyle d(p,q)=|p-q|.}"></span> </p><p>A more complicated formula, giving the same value, but generalizing more readily to higher dimensions, is:<sup id="cite_ref-smith_1-1" class="reference"><a href="#cite_note-smith-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(p,q)={\sqrt {(p-q)^{2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo stretchy="false">(</mo> <mi>p</mi> <mo>−<!-- − --></mo> <mi>q</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(p,q)={\sqrt {(p-q)^{2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d75418dbec9482dbcb70f9063ad66e9cf7b5db9" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:20.31ex; height:4.843ex;" alt="{\displaystyle d(p,q)={\sqrt {(p-q)^{2}}}.}"></span> </p><p>In this formula, <a href="/wiki/Square_(algebra)" title="Square (algebra)">squaring</a> and then taking the <a href="/wiki/Square_root" title="Square root">square root</a> leaves any positive number unchanged, but replaces any negative number by its absolute value.<sup id="cite_ref-smith_1-2" class="reference"><a href="#cite_note-smith-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Two_dimensions">Two dimensions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euclidean_distance&action=edit&section=3" title="Edit section: Two dimensions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In the <a href="/wiki/Euclidean_plane" title="Euclidean plane">Euclidean plane</a>, let point <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> have <a href="/wiki/Cartesian_coordinates" class="mw-redirect" title="Cartesian coordinates">Cartesian coordinates</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (p_{1},p_{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (p_{1},p_{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aaa988e111a7acf37bf178e4a067e7db92a7a9fe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.291ex; height:2.843ex;" alt="{\displaystyle (p_{1},p_{2})}"></span> and let point <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span> have coordinates <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (q_{1},q_{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (q_{1},q_{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d78a4cde04374e91fd7c7af6c094dad1c0f37f16" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.026ex; height:2.843ex;" alt="{\displaystyle (q_{1},q_{2})}"></span>. Then the distance between <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span> is given by:<sup id="cite_ref-cohen_2-0" class="reference"><a href="#cite_note-cohen-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(p,q)={\sqrt {(p_{1}-q_{1})^{2}+(p_{2}-q_{2})^{2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo stretchy="false">(</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(p,q)={\sqrt {(p_{1}-q_{1})^{2}+(p_{2}-q_{2})^{2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c0157084fd89f5f3d462efeedc47d3d7aa0b773" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:35.245ex; height:4.843ex;" alt="{\displaystyle d(p,q)={\sqrt {(p_{1}-q_{1})^{2}+(p_{2}-q_{2})^{2}}}.}"></span> </p><p>This can be seen by applying the <a href="/wiki/Pythagorean_theorem" title="Pythagorean theorem">Pythagorean theorem</a> to a <a href="/wiki/Right_triangle" title="Right triangle">right triangle</a> with horizontal and vertical sides, having the line segment from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span> as its <a href="/wiki/Hypotenuse" title="Hypotenuse">hypotenuse</a>. The two squared formulas inside the square root give the areas of squares on the horizontal and vertical sides, and the outer square root converts the area of the square on the hypotenuse into the length of the hypotenuse.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> In terms of the <a href="/wiki/Pythagorean_addition" title="Pythagorean addition">Pythagorean addition</a> operation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \oplus }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>⊕<!-- ⊕ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \oplus }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b16e2bdaefee9eed86d866e6eba3ac47c710f60" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \oplus }"></span>, available in many <a href="/wiki/Software_library" class="mw-redirect" title="Software library">software libraries</a> as <code>hypot</code>, the same formula can be expressed as:<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(p,q)=(p_{1}-q_{1})\oplus (p_{2}-q_{2})={\mathsf {hypot}}(p_{1}-q_{1},p_{2}-q_{2}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>⊕<!-- ⊕ --></mo> <mo stretchy="false">(</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">h</mi> <mi mathvariant="sans-serif">y</mi> <mi mathvariant="sans-serif">p</mi> <mi mathvariant="sans-serif">o</mi> <mi mathvariant="sans-serif">t</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(p,q)=(p_{1}-q_{1})\oplus (p_{2}-q_{2})={\mathsf {hypot}}(p_{1}-q_{1},p_{2}-q_{2}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44d96e44d31a2b26bc98cbe29ceb2907263ea257" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:56.543ex; height:2.843ex;" alt="{\displaystyle d(p,q)=(p_{1}-q_{1})\oplus (p_{2}-q_{2})={\mathsf {hypot}}(p_{1}-q_{1},p_{2}-q_{2}).}"></span> </p><p>It is also possible to compute the distance for points given by <a href="/wiki/Polar_coordinate_system" title="Polar coordinate system">polar coordinates</a>. If the polar coordinates of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> are <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (r,\theta )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>r</mi> <mo>,</mo> <mi>θ<!-- θ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (r,\theta )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed8396fdc359fb06c93722137c959e7496e47ed6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.982ex; height:2.843ex;" alt="{\displaystyle (r,\theta )}"></span> and the polar coordinates of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span> are <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (s,\psi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>s</mi> <mo>,</mo> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (s,\psi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6d74c9f05e3b938a3b995acb43b76e746f18737" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.447ex; height:2.843ex;" alt="{\displaystyle (s,\psi )}"></span>, then their distance is<sup id="cite_ref-cohen_2-1" class="reference"><a href="#cite_note-cohen-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> given by the <a href="/wiki/Law_of_cosines" title="Law of cosines">law of cosines</a>: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(p,q)={\sqrt {r^{2}+s^{2}-2rs\cos(\theta -\psi )}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>2</mn> <mi>r</mi> <mi>s</mi> <mi>cos</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>θ<!-- θ --></mi> <mo>−<!-- − --></mo> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">)</mo> </msqrt> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(p,q)={\sqrt {r^{2}+s^{2}-2rs\cos(\theta -\psi )}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b464c783f7f962549336a13e8ae3d1ae3d35fce2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:36.349ex; height:4.843ex;" alt="{\displaystyle d(p,q)={\sqrt {r^{2}+s^{2}-2rs\cos(\theta -\psi )}}.}"></span> </p><p>When <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span> are expressed as <a href="/wiki/Complex_number" title="Complex number">complex numbers</a> in the <a href="/wiki/Complex_plane" title="Complex plane">complex plane</a>, the same formula for one-dimensional points expressed as real numbers can be used, although here the absolute value sign indicates the <a href="/wiki/Complex_norm" class="mw-redirect" title="Complex norm">complex norm</a>:<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(p,q)=|p-q|.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>p</mi> <mo>−<!-- − --></mo> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(p,q)=|p-q|.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/358aac90f70a828c1214ac8630e41c13926cae21" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.416ex; height:2.843ex;" alt="{\displaystyle d(p,q)=|p-q|.}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Higher_dimensions">Higher dimensions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euclidean_distance&action=edit&section=4" title="Edit section: Higher dimensions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Euclidean_distance_3d_2_cropped.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/10/Euclidean_distance_3d_2_cropped.png/260px-Euclidean_distance_3d_2_cropped.png" decoding="async" width="260" height="212" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/10/Euclidean_distance_3d_2_cropped.png/390px-Euclidean_distance_3d_2_cropped.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/10/Euclidean_distance_3d_2_cropped.png/520px-Euclidean_distance_3d_2_cropped.png 2x" data-file-width="1701" data-file-height="1386" /></a><figcaption>Deriving the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>-dimensional Euclidean distance formula by repeatedly applying the Pythagorean theorem</figcaption></figure> <p>In three dimensions, for points given by their Cartesian coordinates, the distance is </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(p,q)={\sqrt {(p_{1}-q_{1})^{2}+(p_{2}-q_{2})^{2}+(p_{3}-q_{3})^{2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo stretchy="false">(</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(p,q)={\sqrt {(p_{1}-q_{1})^{2}+(p_{2}-q_{2})^{2}+(p_{3}-q_{3})^{2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d1d13a40a7b203b455ae6d4be8b3cce898bda625" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:48.105ex; height:4.843ex;" alt="{\displaystyle d(p,q)={\sqrt {(p_{1}-q_{1})^{2}+(p_{2}-q_{2})^{2}+(p_{3}-q_{3})^{2}}}.}"></span> </p><p>In general, for points given by Cartesian coordinates in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>-dimensional Euclidean space, the distance is<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(p,q)={\sqrt {(p_{1}-q_{1})^{2}+(p_{2}-q_{2})^{2}+\cdots +(p_{n}-q_{n})^{2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo stretchy="false">(</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(p,q)={\sqrt {(p_{1}-q_{1})^{2}+(p_{2}-q_{2})^{2}+\cdots +(p_{n}-q_{n})^{2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c4f6ecd8278ed2b083d75e1943cb76f43bf48df" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:53.997ex; height:4.843ex;" alt="{\displaystyle d(p,q)={\sqrt {(p_{1}-q_{1})^{2}+(p_{2}-q_{2})^{2}+\cdots +(p_{n}-q_{n})^{2}}}.}"></span> </p><p>The Euclidean distance may also be expressed more compactly in terms of the <a href="/wiki/Euclidean_norm" class="mw-redirect" title="Euclidean norm">Euclidean norm</a> of the <a href="/wiki/Euclidean_vector" title="Euclidean vector">Euclidean vector</a> difference: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(p,q)=\|p-q\|.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>p</mi> <mo>−<!-- − --></mo> <mi>q</mi> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(p,q)=\|p-q\|.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b935b612b2b2d24214510aaa2b6a98a3e202f84" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.448ex; height:2.843ex;" alt="{\displaystyle d(p,q)=\|p-q\|.}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Objects_other_than_points">Objects other than points</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euclidean_distance&action=edit&section=5" title="Edit section: Objects other than points"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For pairs of objects that are not both points, the distance can most simply be defined as the smallest distance between any two points from the two objects, although more complicated generalizations from points to sets such as <a href="/wiki/Hausdorff_distance" title="Hausdorff distance">Hausdorff distance</a> are also commonly used.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> Formulas for computing distances between different types of objects include: </p> <ul><li>The <a href="/wiki/Distance_from_a_point_to_a_line" title="Distance from a point to a line">distance from a point to a line</a>, in the Euclidean plane<sup id="cite_ref-baljer_8-0" class="reference"><a href="#cite_note-baljer-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup></li> <li>The <a href="/wiki/Distance_from_a_point_to_a_plane" title="Distance from a point to a plane">distance from a point to a plane</a> in three-dimensional Euclidean space<sup id="cite_ref-baljer_8-1" class="reference"><a href="#cite_note-baljer-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup></li> <li>The <a href="/wiki/Skew_lines#Distance" title="Skew lines">distance between two lines</a> in three-dimensional Euclidean space<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup></li></ul> <p>The distance from a point to a <a href="/wiki/Curve" title="Curve">curve</a> can be used to define its <a href="/wiki/Parallel_curve" title="Parallel curve">parallel curve</a>, another curve all of whose points have the same distance to the given curve.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Properties">Properties</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euclidean_distance&action=edit&section=6" title="Edit section: Properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Euclidean distance is the prototypical example of the distance in a <a href="/wiki/Metric_space" title="Metric space">metric space</a>,<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> and obeys all the defining properties of a metric space:<sup id="cite_ref-strichartz_12-0" class="reference"><a href="#cite_note-strichartz-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> </p> <ul><li>It is <i>symmetric</i>, meaning that for all points <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(p,q)=d(q,p)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>q</mi> <mo>,</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(p,q)=d(q,p)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7fbb3e135747bdd1f48e2a1aca3eb19ec205e412" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.695ex; height:2.843ex;" alt="{\displaystyle d(p,q)=d(q,p)}"></span>. That is (unlike road distance with one-way streets) the distance between two points does not depend on which of the two points is the start and which is the destination.<sup id="cite_ref-strichartz_12-1" class="reference"><a href="#cite_note-strichartz-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup></li> <li>It is <i>positive</i>, meaning that the distance between every two distinct points is a <a href="/wiki/Positive_number" class="mw-redirect" title="Positive number">positive number</a>, while the distance from any point to itself is zero.<sup id="cite_ref-strichartz_12-2" class="reference"><a href="#cite_note-strichartz-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup></li> <li>It obeys the <a href="/wiki/Triangle_inequality" title="Triangle inequality">triangle inequality</a>: for every three points <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(p,q)+d(q,r)\geq d(p,r)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>q</mi> <mo>,</mo> <mi>r</mi> <mo stretchy="false">)</mo> <mo>≥<!-- ≥ --></mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>,</mo> <mi>r</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(p,q)+d(q,r)\geq d(p,r)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db644a41f75772603dc1b17bd3f3e286fe654ff0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.691ex; height:2.843ex;" alt="{\displaystyle d(p,q)+d(q,r)\geq d(p,r)}"></span>. Intuitively, traveling from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span> via <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span> cannot be any shorter than traveling directly from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span>.<sup id="cite_ref-strichartz_12-3" class="reference"><a href="#cite_note-strichartz-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup></li></ul> <p>Another property, <a href="/wiki/Ptolemy%27s_inequality" title="Ptolemy's inequality">Ptolemy's inequality</a>, concerns the Euclidean distances among four points <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01d131dfd7673938b947072a13a9744fe997e632" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:1.676ex;" alt="{\displaystyle s}"></span>. It states that </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(p,q)\cdot d(r,s)+d(q,r)\cdot d(p,s)\geq d(p,r)\cdot d(q,s).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>r</mi> <mo>,</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>q</mi> <mo>,</mo> <mi>r</mi> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>,</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>≥<!-- ≥ --></mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>,</mo> <mi>r</mi> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>q</mi> <mo>,</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(p,q)\cdot d(r,s)+d(q,r)\cdot d(p,s)\geq d(p,r)\cdot d(q,s).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8e97fd9961c4f479bb1528a56f5a5a3cbdcae650" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:49.112ex; height:2.843ex;" alt="{\displaystyle d(p,q)\cdot d(r,s)+d(q,r)\cdot d(p,s)\geq d(p,r)\cdot d(q,s).}"></span> </p><p>For points in the plane, this can be rephrased as stating that for every <a href="/wiki/Quadrilateral" title="Quadrilateral">quadrilateral</a>, the products of opposite sides of the quadrilateral sum to at least as large a number as the product of its diagonals. However, Ptolemy's inequality applies more generally to points in Euclidean spaces of any dimension, no matter how they are arranged.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> For points in metric spaces that are not Euclidean spaces, this inequality may not be true. Euclidean <a href="/wiki/Distance_geometry" title="Distance geometry">distance geometry</a> studies properties of Euclidean distance such as Ptolemy's inequality, and their application in testing whether given sets of distances come from points in a Euclidean space.<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> </p><p>According to the <a href="/wiki/Beckman%E2%80%93Quarles_theorem" title="Beckman–Quarles theorem">Beckman–Quarles theorem</a>, any transformation of the Euclidean plane or of a higher-dimensional Euclidean space that preserves unit distances must be an <a href="/wiki/Isometry" title="Isometry">isometry</a>, preserving all distances.<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Squared_Euclidean_distance">Squared Euclidean distance</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euclidean_distance&action=edit&section=7" title="Edit section: Squared Euclidean distance"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1273380762/mw-parser-output/.tmulti">.mw-parser-output .tmulti .multiimageinner{display:flex;flex-direction:column}.mw-parser-output .tmulti .trow{display:flex;flex-direction:row;clear:left;flex-wrap:wrap;width:100%;box-sizing:border-box}.mw-parser-output .tmulti .tsingle{margin:1px;float:left}.mw-parser-output .tmulti .theader{clear:both;font-weight:bold;text-align:center;align-self:center;background-color:transparent;width:100%}.mw-parser-output .tmulti .thumbcaption{background-color:transparent}.mw-parser-output .tmulti .text-align-left{text-align:left}.mw-parser-output .tmulti .text-align-right{text-align:right}.mw-parser-output .tmulti .text-align-center{text-align:center}@media all and (max-width:720px){.mw-parser-output .tmulti .thumbinner{width:100%!important;box-sizing:border-box;max-width:none!important;align-items:center}.mw-parser-output .tmulti .trow{justify-content:center}.mw-parser-output .tmulti .tsingle{float:none!important;max-width:100%!important;box-sizing:border-box;text-align:center}.mw-parser-output .tmulti .tsingle .thumbcaption{text-align:left}.mw-parser-output .tmulti .trow>.thumbcaption{text-align:center}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .tmulti .multiimageinner span:not(.skin-invert-image):not(.skin-invert):not(.bg-transparent) img{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .tmulti .multiimageinner span:not(.skin-invert-image):not(.skin-invert):not(.bg-transparent) img{background-color:white}}</style><div class="thumb tmulti tright"><div class="thumbinner multiimageinner" style="width:408px;max-width:408px"><div class="trow"><div class="tsingle" style="width:202px;max-width:202px"><div class="thumbimage"><span typeof="mw:File"><a href="/wiki/File:3d-function-5.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/1/12/3d-function-5.svg/200px-3d-function-5.svg.png" decoding="async" width="200" height="154" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/12/3d-function-5.svg/300px-3d-function-5.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/12/3d-function-5.svg/400px-3d-function-5.svg.png 2x" data-file-width="566" data-file-height="436" /></a></span></div><div class="thumbcaption">A <a href="/wiki/Cone" title="Cone">cone</a>, the <a href="/wiki/Graph_of_a_function" title="Graph of a function">graph</a> of Euclidean distance from the origin in the plane</div></div><div class="tsingle" style="width:202px;max-width:202px"><div class="thumbimage"><span typeof="mw:File"><a href="/wiki/File:3d-function-2.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/1/13/3d-function-2.svg/200px-3d-function-2.svg.png" decoding="async" width="200" height="154" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/13/3d-function-2.svg/300px-3d-function-2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/13/3d-function-2.svg/400px-3d-function-2.svg.png 2x" data-file-width="566" data-file-height="436" /></a></span></div><div class="thumbcaption">A <a href="/wiki/Paraboloid" title="Paraboloid">paraboloid</a>, the graph of squared Euclidean distance from the origin</div></div></div></div></div> <p>In many applications, and in particular when comparing distances, it may be more convenient to omit the final square root in the calculation of Euclidean distances, as the square root does not change the order (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d_{1}^{2}>d_{2}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>></mo> <msubsup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d_{1}^{2}>d_{2}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c365fe57a77c5637cf4303bb0c3ef0e1550c851b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.643ex; height:3.176ex;" alt="{\displaystyle d_{1}^{2}>d_{2}^{2}}"></span> if and only if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d_{1}>d_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>></mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d_{1}>d_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c885929dfa04444c7d9021c9beeedd01b6debb9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.625ex; height:2.509ex;" alt="{\displaystyle d_{1}>d_{2}}"></span>). The value resulting from this omission is the <a href="/wiki/Square_(algebra)" title="Square (algebra)">square</a> of the Euclidean distance, and is called the <b>squared Euclidean distance</b>.<sup id="cite_ref-spencer_16-0" class="reference"><a href="#cite_note-spencer-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> For instance, the <a href="/wiki/Euclidean_minimum_spanning_tree" title="Euclidean minimum spanning tree">Euclidean minimum spanning tree</a> can be determined using only the ordering between distances, and not their numeric values. Comparing squared distances produces the same result but avoids an unnecessary square-root calculation and sidesteps issues of numerical precision.<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> As an equation, the squared distance can be expressed as a <a href="/wiki/Sum_of_squares" title="Sum of squares">sum of squares</a>: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d^{2}(p,q)=(p_{1}-q_{1})^{2}+(p_{2}-q_{2})^{2}+\cdots +(p_{n}-q_{n})^{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d^{2}(p,q)=(p_{1}-q_{1})^{2}+(p_{2}-q_{2})^{2}+\cdots +(p_{n}-q_{n})^{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb4f9e37dfd3283783b68a02b2af802d49a08e2b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:52.729ex; height:3.176ex;" alt="{\displaystyle d^{2}(p,q)=(p_{1}-q_{1})^{2}+(p_{2}-q_{2})^{2}+\cdots +(p_{n}-q_{n})^{2}.}"></span> </p><p>Beyond its application to distance comparison, squared Euclidean distance is of central importance in <a href="/wiki/Statistics" title="Statistics">statistics</a>, where it is used in the method of <a href="/wiki/Least_squares" title="Least squares">least squares</a>, a standard method of fitting statistical estimates to data by minimizing the average of the squared distances between observed and estimated values,<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup> and as the simplest form of <a href="/wiki/Divergence_(statistics)" title="Divergence (statistics)">divergence</a> to compare <a href="/wiki/Probability_distribution" title="Probability distribution">probability distributions</a>.<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> The addition of squared distances to each other, as is done in least squares fitting, corresponds to an operation on (unsquared) distances called <a href="/wiki/Pythagorean_addition" title="Pythagorean addition">Pythagorean addition</a>.<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> In <a href="/wiki/Cluster_analysis" title="Cluster analysis">cluster analysis</a>, squared distances can be used to strengthen the effect of longer distances.<sup id="cite_ref-spencer_16-1" class="reference"><a href="#cite_note-spencer-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> </p><p>Squared Euclidean distance does not form a metric space, as it does not satisfy the triangle inequality.<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup> However it is a smooth, strictly <a href="/wiki/Convex_function" title="Convex function">convex function</a> of the two points, unlike the distance, which is non-smooth (near pairs of equal points) and convex but not strictly convex. The squared distance is thus preferred in <a href="/wiki/Optimization_theory" class="mw-redirect" title="Optimization theory">optimization theory</a>, since it allows <a href="/wiki/Convex_analysis" title="Convex analysis">convex analysis</a> to be used. Since squaring is a <a href="/wiki/Monotonic_function" title="Monotonic function">monotonic function</a> of non-negative values, minimizing squared distance is equivalent to minimizing the Euclidean distance, so the optimization problem is equivalent in terms of either, but easier to solve using squared distance.<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> </p><p>The collection of all squared distances between pairs of points from a finite set may be stored in a <a href="/wiki/Euclidean_distance_matrix" title="Euclidean distance matrix">Euclidean distance matrix</a>, and is used in this form in distance geometry.<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Generalizations">Generalizations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euclidean_distance&action=edit&section=8" title="Edit section: Generalizations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In more advanced areas of mathematics, when viewing Euclidean space as a <a href="/wiki/Vector_space" title="Vector space">vector space</a>, its distance is associated with a <a href="/wiki/Norm_(mathematics)" title="Norm (mathematics)">norm</a> called the <a href="/wiki/Norm_(mathematics)#Euclidean_norm" title="Norm (mathematics)">Euclidean norm</a>, defined as the distance of each vector from the <a href="/wiki/Origin_(mathematics)" title="Origin (mathematics)">origin</a>. One of the important properties of this norm, relative to other norms, is that it remains unchanged under arbitrary rotations of space around the origin.<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup> By <a href="/wiki/Dvoretzky%27s_theorem" title="Dvoretzky's theorem">Dvoretzky's theorem</a>, every finite-dimensional <a href="/wiki/Normed_vector_space" title="Normed vector space">normed vector space</a> has a high-dimensional subspace on which the norm is approximately Euclidean; the Euclidean norm is the only norm with this property.<sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> It can be extended to infinite-dimensional vector spaces as the <a href="/wiki/Lp_space" title="Lp space"><span class="texhtml"><i>L</i><sup>2</sup></span> norm</a> or <span class="texhtml"><i>L</i><sup>2</sup></span> distance.<sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup> The Euclidean distance gives Euclidean space the structure of a <a href="/wiki/Topological_space" title="Topological space">topological space</a>, the <a href="/wiki/Euclidean_topology" title="Euclidean topology">Euclidean topology</a>, with the <a href="/wiki/Open_ball" class="mw-redirect" title="Open ball">open balls</a> (subsets of points at less than a given distance from a given point) as its <a href="/wiki/Neighbourhood_(mathematics)" title="Neighbourhood (mathematics)">neighborhoods</a>.<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Minkowski_distance_examples.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/eb/Minkowski_distance_examples.svg/220px-Minkowski_distance_examples.svg.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/eb/Minkowski_distance_examples.svg/330px-Minkowski_distance_examples.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/eb/Minkowski_distance_examples.svg/440px-Minkowski_distance_examples.svg.png 2x" data-file-width="512" data-file-height="512" /></a><figcaption>Comparison of Chebyshev, Euclidean and taxicab distances for the hypotenuse of a 3-4-5 triangle on a chessboard</figcaption></figure> <p>Other common distances in <a href="/wiki/Real_coordinate_space" title="Real coordinate space">real coordinate spaces</a> and <a href="/wiki/Function_space" title="Function space">function spaces</a>:<sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup> </p> <ul><li><a href="/wiki/Chebyshev_distance" title="Chebyshev distance">Chebyshev distance</a> (<span class="texhtml"><i>L</i><sup>∞</sup></span> distance), which measures distance as the maximum of the distances in each coordinate.</li> <li><a href="/wiki/Taxicab_distance" class="mw-redirect" title="Taxicab distance">Taxicab distance</a> (<span class="texhtml"><i>L</i><sup>1</sup></span> distance), also called Manhattan distance, which measures distance as the sum of the distances in each coordinate.</li> <li><a href="/wiki/Minkowski_distance" title="Minkowski distance">Minkowski distance</a> (<span class="texhtml"><i>L</i><sup><i>p</i></sup></span> distance), a generalization that unifies Euclidean distance, taxicab distance, and Chebyshev distance.</li></ul> <p>For points on surfaces in three dimensions, the Euclidean distance should be distinguished from the <a href="/wiki/Geodesic" title="Geodesic">geodesic</a> distance, the length of a shortest curve that belongs to the surface. In particular, for measuring great-circle distances on the Earth or other spherical or near-spherical surfaces, distances that have been used include the <a href="/wiki/Haversine_distance" class="mw-redirect" title="Haversine distance">haversine distance</a> giving great-circle distances between two points on a sphere from their longitudes and latitudes, and <a href="/wiki/Vincenty%27s_formulae" title="Vincenty's formulae">Vincenty's formulae</a> also known as "Vincent distance" for distance on a spheroid.<sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euclidean_distance&action=edit&section=9" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Euclidean distance is the distance in <a href="/wiki/Euclidean_space" title="Euclidean space">Euclidean space</a>. Both concepts are named after ancient Greek mathematician <a href="/wiki/Euclid" title="Euclid">Euclid</a>, whose <a href="/wiki/Euclid%27s_Elements" title="Euclid's Elements"><i>Elements</i></a> became a standard textbook in geometry for many centuries.<sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup> Concepts of <a href="/wiki/Length" title="Length">length</a> and <a href="/wiki/Distance" title="Distance">distance</a> are widespread across cultures, can be dated to the earliest surviving "protoliterate" bureaucratic documents from <a href="/wiki/Sumer" title="Sumer">Sumer</a> in the fourth millennium BC (far before Euclid),<sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup> and have been hypothesized to develop in children earlier than the related concepts of speed and time.<sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup> But the notion of a distance, as a number defined from two points, does not actually appear in Euclid's <i>Elements</i>. Instead, Euclid approaches this concept implicitly, through the <a href="/wiki/Congruence_(geometry)" title="Congruence (geometry)">congruence</a> of line segments, through the comparison of lengths of line segments, and through the concept of <a href="/wiki/Proportionality_(mathematics)" title="Proportionality (mathematics)">proportionality</a>.<sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup> </p><p>The <a href="/wiki/Pythagorean_theorem" title="Pythagorean theorem">Pythagorean theorem</a> is also ancient, but it could only take its central role in the measurement of distances after the invention of <a href="/wiki/Cartesian_coordinates" class="mw-redirect" title="Cartesian coordinates">Cartesian coordinates</a> by <a href="/wiki/Ren%C3%A9_Descartes" title="René Descartes">René Descartes</a> in 1637. The distance formula itself was first published in 1731 by <a href="/wiki/Alexis_Clairaut" title="Alexis Clairaut">Alexis Clairaut</a>.<sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup> Because of this formula, Euclidean distance is also sometimes called Pythagorean distance.<sup id="cite_ref-35" class="reference"><a href="#cite_note-35"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup> Although accurate measurements of long distances on the Earth's surface, which are not Euclidean, had again been studied in many cultures since ancient times (see <a href="/wiki/History_of_geodesy" title="History of geodesy">history of geodesy</a>), the idea that Euclidean distance might not be the only way of measuring distances between points in mathematical spaces came even later, with the 19th-century formulation of <a href="/wiki/Non-Euclidean_geometry" title="Non-Euclidean geometry">non-Euclidean geometry</a>.<sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">[</span>36<span class="cite-bracket">]</span></a></sup> The definition of the Euclidean norm and Euclidean distance for geometries of more than three dimensions also first appeared in the 19th century, in the work of <a href="/wiki/Augustin-Louis_Cauchy" title="Augustin-Louis Cauchy">Augustin-Louis Cauchy</a>.<sup id="cite_ref-37" class="reference"><a href="#cite_note-37"><span class="cite-bracket">[</span>37<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euclidean_distance&action=edit&section=10" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-smith-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-smith_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-smith_1-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-smith_1-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFSmith2013" class="citation cs2">Smith, Karl (2013), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=ZUJbVQN37bIC&pg=PA8"><i>Precalculus: A Functional Approach to Graphing and Problem Solving</i></a>, Jones & Bartlett Publishers, p. 8, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-7637-5177-7" title="Special:BookSources/978-0-7637-5177-7"><bdi>978-0-7637-5177-7</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Precalculus%3A+A+Functional+Approach+to+Graphing+and+Problem+Solving&rft.pages=8&rft.pub=Jones+%26+Bartlett+Publishers&rft.date=2013&rft.isbn=978-0-7637-5177-7&rft.aulast=Smith&rft.aufirst=Karl&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DZUJbVQN37bIC%26pg%3DPA8&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+distance" class="Z3988"></span></span> </li> <li id="cite_note-cohen-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-cohen_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-cohen_2-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCohen2004" class="citation cs2">Cohen, David (2004), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=_6ukev29gmgC&pg=PA698"><i>Precalculus: A Problems-Oriented Approach</i></a> (6th ed.), Cengage Learning, p. 698, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-534-40212-9" title="Special:BookSources/978-0-534-40212-9"><bdi>978-0-534-40212-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Precalculus%3A+A+Problems-Oriented+Approach&rft.pages=698&rft.edition=6th&rft.pub=Cengage+Learning&rft.date=2004&rft.isbn=978-0-534-40212-9&rft.aulast=Cohen&rft.aufirst=David&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D_6ukev29gmgC%26pg%3DPA698&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+distance" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAufmannBarkerNation2007" class="citation cs2">Aufmann, Richard N.; Barker, Vernon C.; Nation, Richard D. (2007), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=kZ8HAAAAQBAJ&pg=PA17"><i>College Trigonometry</i></a> (6th ed.), Cengage Learning, p. 17, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-111-80864-8" title="Special:BookSources/978-1-111-80864-8"><bdi>978-1-111-80864-8</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=College+Trigonometry&rft.pages=17&rft.edition=6th&rft.pub=Cengage+Learning&rft.date=2007&rft.isbn=978-1-111-80864-8&rft.aulast=Aufmann&rft.aufirst=Richard+N.&rft.au=Barker%2C+Vernon+C.&rft.au=Nation%2C+Richard+D.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DkZ8HAAAAQBAJ%26pg%3DPA17&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+distance" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFManglik2024" class="citation cs2">Manglik, Rohit (2024), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=jwU6EQAAQBAJ&pg=PA144">"Section 14.22: Math.hypot"</a>, <i>Java Script Notes for Professionals</i>, EduGorilla, p. 144, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9789367840320" title="Special:BookSources/9789367840320"><bdi>9789367840320</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Section+14.22%3A+Math.hypot&rft.btitle=Java+Script+Notes+for+Professionals&rft.pages=144&rft.pub=EduGorilla&rft.date=2024&rft.isbn=9789367840320&rft.aulast=Manglik&rft.aufirst=Rohit&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DjwU6EQAAQBAJ%26pg%3DPA144&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+distance" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAndreescuAndrica2014" class="citation cs2">Andreescu, Titu; Andrica, Dorin (2014), "3.1.1 The Distance Between Two Points", <i>Complex Numbers from A to ... Z</i> (2nd ed.), Birkhäuser, pp. <span class="nowrap">57–</span>58, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-8176-8415-0" title="Special:BookSources/978-0-8176-8415-0"><bdi>978-0-8176-8415-0</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=3.1.1+The+Distance+Between+Two+Points&rft.btitle=Complex+Numbers+from+A+to+...+Z&rft.pages=%3Cspan+class%3D%22nowrap%22%3E57-%3C%2Fspan%3E58&rft.edition=2nd&rft.pub=Birkh%C3%A4user&rft.date=2014&rft.isbn=978-0-8176-8415-0&rft.aulast=Andreescu&rft.aufirst=Titu&rft.au=Andrica%2C+Dorin&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+distance" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTabak2014" class="citation cs2">Tabak, John (2014), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=r0HuPiexnYwC&pg=PA150"><i>Geometry: The Language of Space and Form</i></a>, Facts on File math library, Infobase Publishing, p. 150, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-8160-6876-0" title="Special:BookSources/978-0-8160-6876-0"><bdi>978-0-8160-6876-0</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Geometry%3A+The+Language+of+Space+and+Form&rft.series=Facts+on+File+math+library&rft.pages=150&rft.pub=Infobase+Publishing&rft.date=2014&rft.isbn=978-0-8160-6876-0&rft.aulast=Tabak&rft.aufirst=John&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dr0HuPiexnYwC%26pg%3DPA150&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+distance" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFÓ_Searcóid2006" class="citation cs2">Ó Searcóid, Mícheál (2006), "2.7 Distances from Sets to Sets", <a rel="nofollow" class="external text" href="https://books.google.com/books?id=aP37I4QWFRcC&pg=PA29"><i>Metric Spaces</i></a>, Springer Undergraduate Mathematics Series, Springer, pp. <span class="nowrap">29–</span>30, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-84628-627-8" title="Special:BookSources/978-1-84628-627-8"><bdi>978-1-84628-627-8</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=2.7+Distances+from+Sets+to+Sets&rft.btitle=Metric+Spaces&rft.series=Springer+Undergraduate+Mathematics+Series&rft.pages=%3Cspan+class%3D%22nowrap%22%3E29-%3C%2Fspan%3E30&rft.pub=Springer&rft.date=2006&rft.isbn=978-1-84628-627-8&rft.aulast=%C3%93+Searc%C3%B3id&rft.aufirst=M%C3%ADche%C3%A1l&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DaP37I4QWFRcC%26pg%3DPA29&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+distance" class="Z3988"></span></span> </li> <li id="cite_note-baljer-8"><span class="mw-cite-backlink">^ <a href="#cite_ref-baljer_8-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-baljer_8-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBallantineJerbert1952" class="citation cs2">Ballantine, J. P.; Jerbert, A. R. (April 1952), "Distance from a line, or plane, to a point", Classroom notes, <i><a href="/wiki/American_Mathematical_Monthly" class="mw-redirect" title="American Mathematical Monthly">American Mathematical Monthly</a></i>, <b>59</b> (4): <span class="nowrap">242–</span>243, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2306514">10.2307/2306514</a>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2306514">2306514</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=American+Mathematical+Monthly&rft.atitle=Distance+from+a+line%2C+or+plane%2C+to+a+point&rft.volume=59&rft.issue=4&rft.pages=%3Cspan+class%3D%22nowrap%22%3E242-%3C%2Fspan%3E243&rft.date=1952-04&rft_id=info%3Adoi%2F10.2307%2F2306514&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2306514%23id-name%3DJSTOR&rft.aulast=Ballantine&rft.aufirst=J.+P.&rft.au=Jerbert%2C+A.+R.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+distance" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBell1914" class="citation cs2"><a href="/wiki/Robert_J._T._Bell" title="Robert J. T. Bell">Bell, Robert J. T.</a> (1914), <a rel="nofollow" class="external text" href="https://archive.org/details/elementarytreati00bell/page/56/mode/2up">"49. The shortest distance between two lines"</a>, <i>An Elementary Treatise on Coordinate Geometry of Three Dimensions</i> (2nd ed.), Macmillan, pp. <span class="nowrap">57–</span>61</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=49.+The+shortest+distance+between+two+lines&rft.btitle=An+Elementary+Treatise+on+Coordinate+Geometry+of+Three+Dimensions&rft.pages=%3Cspan+class%3D%22nowrap%22%3E57-%3C%2Fspan%3E61&rft.edition=2nd&rft.pub=Macmillan&rft.date=1914&rft.aulast=Bell&rft.aufirst=Robert+J.+T.&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Felementarytreati00bell%2Fpage%2F56%2Fmode%2F2up&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+distance" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMaekawa1999" class="citation cs2">Maekawa, Takashi (March 1999), "An overview of offset curves and surfaces", <i>Computer-Aided Design</i>, <b>31</b> (3): <span class="nowrap">165–</span>173, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fs0010-4485%2899%2900013-5">10.1016/s0010-4485(99)00013-5</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Computer-Aided+Design&rft.atitle=An+overview+of+offset+curves+and+surfaces&rft.volume=31&rft.issue=3&rft.pages=%3Cspan+class%3D%22nowrap%22%3E165-%3C%2Fspan%3E173&rft.date=1999-03&rft_id=info%3Adoi%2F10.1016%2Fs0010-4485%2899%2900013-5&rft.aulast=Maekawa&rft.aufirst=Takashi&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+distance" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIvanov2013" class="citation cs2">Ivanov, Oleg A. (2013), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=reALBwAAQBAJ&pg=PA140"><i>Easy as π?: An Introduction to Higher Mathematics</i></a>, Springer, p. 140, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4612-0553-1" title="Special:BookSources/978-1-4612-0553-1"><bdi>978-1-4612-0553-1</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Easy+as+%CF%80%3F%3A+An+Introduction+to+Higher+Mathematics&rft.pages=140&rft.pub=Springer&rft.date=2013&rft.isbn=978-1-4612-0553-1&rft.aulast=Ivanov&rft.aufirst=Oleg+A.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DreALBwAAQBAJ%26pg%3DPA140&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+distance" class="Z3988"></span></span> </li> <li id="cite_note-strichartz-12"><span class="mw-cite-backlink">^ <a href="#cite_ref-strichartz_12-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-strichartz_12-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-strichartz_12-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-strichartz_12-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStrichartz2000" class="citation cs2">Strichartz, Robert S. (2000), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Yix09oVvI1IC&pg=PA357"><i>The Way of Analysis</i></a>, Jones & Bartlett Learning, p. 357, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-7637-1497-0" title="Special:BookSources/978-0-7637-1497-0"><bdi>978-0-7637-1497-0</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Way+of+Analysis&rft.pages=357&rft.pub=Jones+%26+Bartlett+Learning&rft.date=2000&rft.isbn=978-0-7637-1497-0&rft.aulast=Strichartz&rft.aufirst=Robert+S.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DYix09oVvI1IC%26pg%3DPA357&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+distance" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAdam2017" class="citation cs2">Adam, John A. (2017), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=DnygDgAAQBAJ&pg=PA26">"Chapter 2. Introduction to the "Physics" of Rays"</a>, <i>Rays, Waves, and Scattering: Topics in Classical Mathematical Physics</i>, Princeton Series in Applied Mathematics, Princeton University Press, pp. <span class="nowrap">26–</span>27, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1515%2F9781400885404-004">10.1515/9781400885404-004</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4008-8540-4" title="Special:BookSources/978-1-4008-8540-4"><bdi>978-1-4008-8540-4</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Chapter+2.+Introduction+to+the+%22Physics%22+of+Rays&rft.btitle=Rays%2C+Waves%2C+and+Scattering%3A+Topics+in+Classical+Mathematical+Physics&rft.series=Princeton+Series+in+Applied+Mathematics&rft.pages=%3Cspan+class%3D%22nowrap%22%3E26-%3C%2Fspan%3E27&rft.pub=Princeton+University+Press&rft.date=2017&rft_id=info%3Adoi%2F10.1515%2F9781400885404-004&rft.isbn=978-1-4008-8540-4&rft.aulast=Adam&rft.aufirst=John+A.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DDnygDgAAQBAJ%26pg%3DPA26&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+distance" class="Z3988"></span></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLibertiLavor2017" class="citation cs2">Liberti, Leo; Lavor, Carlile (2017), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=jOQ2DwAAQBAJ&pg=PP10"><i>Euclidean Distance Geometry: An Introduction</i></a>, Springer Undergraduate Texts in Mathematics and Technology, Springer, p. xi, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-319-60792-4" title="Special:BookSources/978-3-319-60792-4"><bdi>978-3-319-60792-4</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Euclidean+Distance+Geometry%3A+An+Introduction&rft.series=Springer+Undergraduate+Texts+in+Mathematics+and+Technology&rft.pages=xi&rft.pub=Springer&rft.date=2017&rft.isbn=978-3-319-60792-4&rft.aulast=Liberti&rft.aufirst=Leo&rft.au=Lavor%2C+Carlile&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DjOQ2DwAAQBAJ%26pg%3DPP10&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+distance" class="Z3988"></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBeckmanQuarles1953" class="citation cs2">Beckman, F. S.; Quarles, D. A. Jr. (1953), "On isometries of Euclidean spaces", <i><a href="/wiki/Proceedings_of_the_American_Mathematical_Society" title="Proceedings of the American Mathematical Society">Proceedings of the American Mathematical Society</a></i>, <b>4</b> (5): <span class="nowrap">810–</span>815, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2032415">10.2307/2032415</a></span>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2032415">2032415</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0058193">0058193</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+American+Mathematical+Society&rft.atitle=On+isometries+of+Euclidean+spaces&rft.volume=4&rft.issue=5&rft.pages=%3Cspan+class%3D%22nowrap%22%3E810-%3C%2Fspan%3E815&rft.date=1953&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0058193%23id-name%3DMR&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2032415%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.2307%2F2032415&rft.aulast=Beckman&rft.aufirst=F.+S.&rft.au=Quarles%2C+D.+A.+Jr.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+distance" class="Z3988"></span></span> </li> <li id="cite_note-spencer-16"><span class="mw-cite-backlink">^ <a href="#cite_ref-spencer_16-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-spencer_16-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSpencer2013" class="citation cs2">Spencer, Neil H. (2013), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=EG3SBQAAQBAJ&pg=PA95">"5.4.5 Squared Euclidean Distances"</a>, <i>Essentials of Multivariate Data Analysis</i>, CRC Press, p. 95, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4665-8479-2" title="Special:BookSources/978-1-4665-8479-2"><bdi>978-1-4665-8479-2</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=5.4.5+Squared+Euclidean+Distances&rft.btitle=Essentials+of+Multivariate+Data+Analysis&rft.pages=95&rft.pub=CRC+Press&rft.date=2013&rft.isbn=978-1-4665-8479-2&rft.aulast=Spencer&rft.aufirst=Neil+H.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DEG3SBQAAQBAJ%26pg%3DPA95&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+distance" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYao1982" class="citation cs2"><a href="/wiki/Andrew_Yao" title="Andrew Yao">Yao, Andrew Chi Chih</a> (1982), "On constructing minimum spanning trees in <span class="texhtml mvar" style="font-style:italic;">k</span>-dimensional spaces and related problems", <i><a href="/wiki/SIAM_Journal_on_Computing" title="SIAM Journal on Computing">SIAM Journal on Computing</a></i>, <b>11</b> (4): <span class="nowrap">721–</span>736, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1137%2F0211059">10.1137/0211059</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0677663">0677663</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=SIAM+Journal+on+Computing&rft.atitle=On+constructing+minimum+spanning+trees+in+%3Cspan+class%3D%22texhtml+mvar%22+style%3D%22font-style%3Aitalic%3B%22%3Ek%3C%2Fspan%3E-dimensional+spaces+and+related+problems&rft.volume=11&rft.issue=4&rft.pages=%3Cspan+class%3D%22nowrap%22%3E721-%3C%2Fspan%3E736&rft.date=1982&rft_id=info%3Adoi%2F10.1137%2F0211059&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D677663%23id-name%3DMR&rft.aulast=Yao&rft.aufirst=Andrew+Chi+Chih&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+distance" class="Z3988"></span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRandolphMyers2013" class="citation cs2"><a href="/wiki/Karen_Randolph" title="Karen Randolph">Randolph, Karen A.</a>; Myers, Laura L. (2013), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=WgSnudjEsrMC&pg=PA116"><i>Basic Statistics in Multivariate Analysis</i></a>, Pocket Guide to Social Work Research Methods, Oxford University Press, p. 116, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-19-976404-4" title="Special:BookSources/978-0-19-976404-4"><bdi>978-0-19-976404-4</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Basic+Statistics+in+Multivariate+Analysis&rft.series=Pocket+Guide+to+Social+Work+Research+Methods&rft.pages=116&rft.pub=Oxford+University+Press&rft.date=2013&rft.isbn=978-0-19-976404-4&rft.aulast=Randolph&rft.aufirst=Karen+A.&rft.au=Myers%2C+Laura+L.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DWgSnudjEsrMC%26pg%3DPA116&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+distance" class="Z3988"></span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCsiszár1975" class="citation cs2"><a href="/wiki/Imre_Csisz%C3%A1r" title="Imre Csiszár">Csiszár, I.</a> (1975), "<span class="texhtml mvar" style="font-style:italic;">I</span>-divergence geometry of probability distributions and minimization problems", <i><a href="/wiki/Annals_of_Probability" title="Annals of Probability">Annals of Probability</a></i>, <b>3</b> (1): <span class="nowrap">146–</span>158, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1214%2Faop%2F1176996454">10.1214/aop/1176996454</a></span>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2959270">2959270</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0365798">0365798</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annals+of+Probability&rft.atitle=%3Cspan+class%3D%22texhtml+mvar%22+style%3D%22font-style%3Aitalic%3B%22%3EI%3C%2Fspan%3E-divergence+geometry+of+probability+distributions+and+minimization+problems&rft.volume=3&rft.issue=1&rft.pages=%3Cspan+class%3D%22nowrap%22%3E146-%3C%2Fspan%3E158&rft.date=1975&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D365798%23id-name%3DMR&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2959270%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.1214%2Faop%2F1176996454&rft.aulast=Csisz%C3%A1r&rft.aufirst=I.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+distance" class="Z3988"></span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMoler,_Cleve_and_Donald_Morrison1983" class="citation cs2">Moler, Cleve and Donald Morrison (1983), <a rel="nofollow" class="external text" href="http://www.research.ibm.com/journal/rd/276/ibmrd2706P.pdf">"Replacing Square Roots by Pythagorean Sums"</a> <span class="cs1-format">(PDF)</span>, <i>IBM Journal of Research and Development</i>, <b>27</b> (6): <span class="nowrap">577–</span>581, <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.90.5651">10.1.1.90.5651</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1147%2Frd.276.0577">10.1147/rd.276.0577</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IBM+Journal+of+Research+and+Development&rft.atitle=Replacing+Square+Roots+by+Pythagorean+Sums&rft.volume=27&rft.issue=6&rft.pages=%3Cspan+class%3D%22nowrap%22%3E577-%3C%2Fspan%3E581&rft.date=1983&rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.90.5651%23id-name%3DCiteSeerX&rft_id=info%3Adoi%2F10.1147%2Frd.276.0577&rft.au=Moler%2C+Cleve+and+Donald+Morrison&rft_id=http%3A%2F%2Fwww.research.ibm.com%2Fjournal%2Frd%2F276%2Fibmrd2706P.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+distance" class="Z3988"></span></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMielkeBerry2000" class="citation cs2">Mielke, Paul W.; Berry, Kenneth J. (2000), "Euclidean distance based permutation methods in atmospheric science", in Brown, Timothy J.; Mielke, Paul W. Jr. (eds.), <i>Statistical Mining and Data Visualization in Atmospheric Sciences</i>, Springer, pp. <span class="nowrap">7–</span>27, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-1-4757-6581-6_2">10.1007/978-1-4757-6581-6_2</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4419-4974-5" title="Special:BookSources/978-1-4419-4974-5"><bdi>978-1-4419-4974-5</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Euclidean+distance+based+permutation+methods+in+atmospheric+science&rft.btitle=Statistical+Mining+and+Data+Visualization+in+Atmospheric+Sciences&rft.pages=%3Cspan+class%3D%22nowrap%22%3E7-%3C%2Fspan%3E27&rft.pub=Springer&rft.date=2000&rft_id=info%3Adoi%2F10.1007%2F978-1-4757-6581-6_2&rft.isbn=978-1-4419-4974-5&rft.aulast=Mielke&rft.aufirst=Paul+W.&rft.au=Berry%2C+Kenneth+J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+distance" class="Z3988"></span></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKaplan2011" class="citation cs2">Kaplan, Wilfred (2011), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=bAo6KNZcUP0C&pg=PA61"><i>Maxima and Minima with Applications: Practical Optimization and Duality</i></a>, Wiley Series in Discrete Mathematics and Optimization, vol. 51, John Wiley & Sons, p. 61, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-118-03104-9" title="Special:BookSources/978-1-118-03104-9"><bdi>978-1-118-03104-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Maxima+and+Minima+with+Applications%3A+Practical+Optimization+and+Duality&rft.series=Wiley+Series+in+Discrete+Mathematics+and+Optimization&rft.pages=61&rft.pub=John+Wiley+%26+Sons&rft.date=2011&rft.isbn=978-1-118-03104-9&rft.aulast=Kaplan&rft.aufirst=Wilfred&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DbAo6KNZcUP0C%26pg%3DPA61&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+distance" class="Z3988"></span></span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAlfakih2018" class="citation cs2">Alfakih, Abdo Y. (2018), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=woJyDwAAQBAJ&pg=PA51"><i>Euclidean Distance Matrices and Their Applications in Rigidity Theory</i></a>, Springer, p. 51, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-319-97846-8" title="Special:BookSources/978-3-319-97846-8"><bdi>978-3-319-97846-8</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Euclidean+Distance+Matrices+and+Their+Applications+in+Rigidity+Theory&rft.pages=51&rft.pub=Springer&rft.date=2018&rft.isbn=978-3-319-97846-8&rft.aulast=Alfakih&rft.aufirst=Abdo+Y.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DwoJyDwAAQBAJ%26pg%3DPA51&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+distance" class="Z3988"></span></span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKopeikinEfroimskyKaplan2011" class="citation cs2">Kopeikin, Sergei; Efroimsky, Michael; Kaplan, George (2011), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=uN5_DQWSR14C&pg=PA106"><i>Relativistic Celestial Mechanics of the Solar System</i></a>, John Wiley & Sons, p. 106, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-527-63457-6" title="Special:BookSources/978-3-527-63457-6"><bdi>978-3-527-63457-6</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Relativistic+Celestial+Mechanics+of+the+Solar+System&rft.pages=106&rft.pub=John+Wiley+%26+Sons&rft.date=2011&rft.isbn=978-3-527-63457-6&rft.aulast=Kopeikin&rft.aufirst=Sergei&rft.au=Efroimsky%2C+Michael&rft.au=Kaplan%2C+George&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DuN5_DQWSR14C%26pg%3DPA106&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+distance" class="Z3988"></span></span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMatoušek2002" class="citation cs2"><a href="/wiki/Ji%C5%99%C3%AD_Matou%C5%A1ek_(mathematician)" title="Jiří Matoušek (mathematician)">Matoušek, Jiří</a> (2002), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=K0fhBwAAQBAJ&pg=PA349"><i>Lectures on Discrete Geometry</i></a>, <a href="/wiki/Graduate_Texts_in_Mathematics" title="Graduate Texts in Mathematics">Graduate Texts in Mathematics</a>, Springer, p. 349, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-95373-1" title="Special:BookSources/978-0-387-95373-1"><bdi>978-0-387-95373-1</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Lectures+on+Discrete+Geometry&rft.series=Graduate+Texts+in+Mathematics&rft.pages=349&rft.pub=Springer&rft.date=2002&rft.isbn=978-0-387-95373-1&rft.aulast=Matou%C5%A1ek&rft.aufirst=Ji%C5%99%C3%AD&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DK0fhBwAAQBAJ%26pg%3DPA349&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+distance" class="Z3988"></span></span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCiarlet2013" class="citation cs2">Ciarlet, Philippe G. (2013), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=AUlWAQAAQBAJ&pg=PA173"><i>Linear and Nonlinear Functional Analysis with Applications</i></a>, Society for Industrial and Applied Mathematics, p. 173, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-61197-258-0" title="Special:BookSources/978-1-61197-258-0"><bdi>978-1-61197-258-0</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Linear+and+Nonlinear+Functional+Analysis+with+Applications&rft.pages=173&rft.pub=Society+for+Industrial+and+Applied+Mathematics&rft.date=2013&rft.isbn=978-1-61197-258-0&rft.aulast=Ciarlet&rft.aufirst=Philippe+G.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DAUlWAQAAQBAJ%26pg%3DPA173&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+distance" class="Z3988"></span></span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRichmond2020" class="citation cs2">Richmond, Tom (2020), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=jPgdEAAAQBAJ&pg=PA32"><i>General Topology: An Introduction</i></a>, De Gruyter, p. 32, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-11-068657-9" title="Special:BookSources/978-3-11-068657-9"><bdi>978-3-11-068657-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=General+Topology%3A+An+Introduction&rft.pages=32&rft.pub=De+Gruyter&rft.date=2020&rft.isbn=978-3-11-068657-9&rft.aulast=Richmond&rft.aufirst=Tom&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DjPgdEAAAQBAJ%26pg%3DPA32&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+distance" class="Z3988"></span></span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKlamroth2002" class="citation cs2"><a href="/wiki/Kathrin_Klamroth" title="Kathrin Klamroth">Klamroth, Kathrin</a> (2002), "Section 1.1: Norms and Metrics", <i>Single-Facility Location Problems with Barriers</i>, Springer Series in Operations Research, Springer, pp. <span class="nowrap">4–</span>6, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F0-387-22707-5_1">10.1007/0-387-22707-5_1</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Section+1.1%3A+Norms+and+Metrics&rft.btitle=Single-Facility+Location+Problems+with+Barriers&rft.series=Springer+Series+in+Operations+Research&rft.pages=%3Cspan+class%3D%22nowrap%22%3E4-%3C%2Fspan%3E6&rft.pub=Springer&rft.date=2002&rft_id=info%3Adoi%2F10.1007%2F0-387-22707-5_1&rft.aulast=Klamroth&rft.aufirst=Kathrin&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+distance" class="Z3988"></span></span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPanigrahi2014" class="citation cs2">Panigrahi, Narayan (2014), "12.2.4 Haversine Formula and 12.2.5 Vincenty's Formula", <a rel="nofollow" class="external text" href="https://books.google.com/books?id=kjj6AwAAQBAJ&pg=PA212"><i>Computing in Geographic Information Systems</i></a>, CRC Press, pp. <span class="nowrap">212–</span>214, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4822-2314-9" title="Special:BookSources/978-1-4822-2314-9"><bdi>978-1-4822-2314-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=12.2.4+Haversine+Formula+and+12.2.5+Vincenty%27s+Formula&rft.btitle=Computing+in+Geographic+Information+Systems&rft.pages=%3Cspan+class%3D%22nowrap%22%3E212-%3C%2Fspan%3E214&rft.pub=CRC+Press&rft.date=2014&rft.isbn=978-1-4822-2314-9&rft.aulast=Panigrahi&rft.aufirst=Narayan&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dkjj6AwAAQBAJ%26pg%3DPA212&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+distance" class="Z3988"></span></span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZhang2007" class="citation cs2">Zhang, Jin (2007), <i>Visualization for Information Retrieval</i>, Springer, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-540-75148-9" title="Special:BookSources/978-3-540-75148-9"><bdi>978-3-540-75148-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Visualization+for+Information+Retrieval&rft.pub=Springer&rft.date=2007&rft.isbn=978-3-540-75148-9&rft.aulast=Zhang&rft.aufirst=Jin&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+distance" class="Z3988"></span></span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHøyrup2018" class="citation cs2"><a href="/wiki/Jens_H%C3%B8yrup" title="Jens Høyrup">Høyrup, Jens</a> (2018), <a rel="nofollow" class="external text" href="https://web.archive.org/web/20210517124414/http://akira.ruc.dk/~jensh/Publications/2018%7Bj%7D_Mesopotamian%20Mathematics_S.pdf">"Mesopotamian mathematics"</a> <span class="cs1-format">(PDF)</span>, in Jones, Alexander; <a href="/wiki/Liba_Taub" title="Liba Taub">Taub, Liba</a> (eds.), <i>The Cambridge History of Science, Volume 1: Ancient Science</i>, Cambridge University Press, pp. <span class="nowrap">58–</span>72, archived from <a rel="nofollow" class="external text" href="https://akira.ruc.dk/~jensh/Publications/2018%7Bj%7D_Mesopotamian%20Mathematics_S.pdf">the original</a> <span class="cs1-format">(PDF)</span> on May 17, 2021<span class="reference-accessdate">, retrieved <span class="nowrap">October 21,</span> 2020</span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Mesopotamian+mathematics&rft.btitle=The+Cambridge+History+of+Science%2C+Volume+1%3A+Ancient+Science&rft.pages=%3Cspan+class%3D%22nowrap%22%3E58-%3C%2Fspan%3E72&rft.pub=Cambridge+University+Press&rft.date=2018&rft.aulast=H%C3%B8yrup&rft.aufirst=Jens&rft_id=https%3A%2F%2Fakira.ruc.dk%2F~jensh%2FPublications%2F2018%257Bj%257D_Mesopotamian%2520Mathematics_S.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+distance" class="Z3988"></span></span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAcredoloSchmid1981" class="citation cs2">Acredolo, Curt; Schmid, Jeannine (1981), "The understanding of relative speeds, distances, and durations of movement", <i><a href="/wiki/Developmental_Psychology_(journal)" title="Developmental Psychology (journal)">Developmental Psychology</a></i>, <b>17</b> (4): <span class="nowrap">490–</span>493, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1037%2F0012-1649.17.4.490">10.1037/0012-1649.17.4.490</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Developmental+Psychology&rft.atitle=The+understanding+of+relative+speeds%2C+distances%2C+and+durations+of+movement&rft.volume=17&rft.issue=4&rft.pages=%3Cspan+class%3D%22nowrap%22%3E490-%3C%2Fspan%3E493&rft.date=1981&rft_id=info%3Adoi%2F10.1037%2F0012-1649.17.4.490&rft.aulast=Acredolo&rft.aufirst=Curt&rft.au=Schmid%2C+Jeannine&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+distance" class="Z3988"></span></span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHenderson2002" class="citation cs2"><a href="/wiki/David_W._Henderson" title="David W. Henderson">Henderson, David W.</a> (2002), <a rel="nofollow" class="external text" href="https://www.ams.org/journals/bull/2002-39-04/S0273-0979-02-00949-7">"Review of <i>Geometry: Euclid and Beyond</i> by Robin Hartshorne"</a>, <i><a href="/wiki/Bulletin_of_the_American_Mathematical_Society" title="Bulletin of the American Mathematical Society">Bulletin of the American Mathematical Society</a></i>, <b>39</b>: <span class="nowrap">563–</span>571, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0273-0979-02-00949-7">10.1090/S0273-0979-02-00949-7</a></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Bulletin+of+the+American+Mathematical+Society&rft.atitle=Review+of+Geometry%3A+Euclid+and+Beyond+by+Robin+Hartshorne&rft.volume=39&rft.pages=%3Cspan+class%3D%22nowrap%22%3E563-%3C%2Fspan%3E571&rft.date=2002&rft_id=info%3Adoi%2F10.1090%2FS0273-0979-02-00949-7&rft.aulast=Henderson&rft.aufirst=David+W.&rft_id=https%3A%2F%2Fwww.ams.org%2Fjournals%2Fbull%2F2002-39-04%2FS0273-0979-02-00949-7&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+distance" class="Z3988"></span></span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMaor2019" class="citation cs2"><a href="/wiki/Eli_Maor" title="Eli Maor">Maor, Eli</a> (2019), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=XuWZDwAAQBAJ&pg=PA133"><i>The Pythagorean Theorem: A 4,000-Year History</i></a>, Princeton University Press, pp. <span class="nowrap">133–</span>134, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-691-19688-6" title="Special:BookSources/978-0-691-19688-6"><bdi>978-0-691-19688-6</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Pythagorean+Theorem%3A+A+4%2C000-Year+History&rft.pages=%3Cspan+class%3D%22nowrap%22%3E133-%3C%2Fspan%3E134&rft.pub=Princeton+University+Press&rft.date=2019&rft.isbn=978-0-691-19688-6&rft.aulast=Maor&rft.aufirst=Eli&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DXuWZDwAAQBAJ%26pg%3DPA133&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+distance" class="Z3988"></span></span> </li> <li id="cite_note-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-35">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRankinMarkleyEvans1970" class="citation cs2">Rankin, William C.; Markley, Robert P.; Evans, Selby H. (March 1970), "Pythagorean distance and the judged similarity of schematic stimuli", <i><a href="/wiki/Perception_%26_Psychophysics" class="mw-redirect" title="Perception & Psychophysics">Perception & Psychophysics</a></i>, <b>7</b> (2): <span class="nowrap">103–</span>107, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3758%2Fbf03210143">10.3758/bf03210143</a></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Perception+%26+Psychophysics&rft.atitle=Pythagorean+distance+and+the+judged+similarity+of+schematic+stimuli&rft.volume=7&rft.issue=2&rft.pages=%3Cspan+class%3D%22nowrap%22%3E103-%3C%2Fspan%3E107&rft.date=1970-03&rft_id=info%3Adoi%2F10.3758%2Fbf03210143&rft.aulast=Rankin&rft.aufirst=William+C.&rft.au=Markley%2C+Robert+P.&rft.au=Evans%2C+Selby+H.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+distance" class="Z3988"></span></span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMilnor1982" class="citation cs2"><a href="/wiki/John_Milnor" title="John Milnor">Milnor, John</a> (1982), <a rel="nofollow" class="external text" href="https://www.ams.org/journals/bull/1982-06-01/S0273-0979-1982-14958-8/S0273-0979-1982-14958-8.pdf">"Hyperbolic geometry: the first 150 years"</a> <span class="cs1-format">(PDF)</span>, <i><a href="/wiki/Bulletin_of_the_American_Mathematical_Society" title="Bulletin of the American Mathematical Society">Bulletin of the American Mathematical Society</a></i>, <b>6</b> (1): <span class="nowrap">9–</span>24, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0273-0979-1982-14958-8">10.1090/S0273-0979-1982-14958-8</a></span>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0634431">0634431</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Bulletin+of+the+American+Mathematical+Society&rft.atitle=Hyperbolic+geometry%3A+the+first+150+years&rft.volume=6&rft.issue=1&rft.pages=%3Cspan+class%3D%22nowrap%22%3E9-%3C%2Fspan%3E24&rft.date=1982&rft_id=info%3Adoi%2F10.1090%2FS0273-0979-1982-14958-8&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D634431%23id-name%3DMR&rft.aulast=Milnor&rft.aufirst=John&rft_id=https%3A%2F%2Fwww.ams.org%2Fjournals%2Fbull%2F1982-06-01%2FS0273-0979-1982-14958-8%2FS0273-0979-1982-14958-8.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+distance" class="Z3988"></span></span> </li> <li id="cite_note-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-37">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRatcliffe2019" class="citation cs2">Ratcliffe, John G. (2019), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=yMO4DwAAQBAJ&pg=PA32"><i>Foundations of Hyperbolic Manifolds</i></a>, <a href="/wiki/Graduate_Texts_in_Mathematics" title="Graduate Texts in Mathematics">Graduate Texts in Mathematics</a>, vol. 149 (3rd ed.), Springer, p. 32, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-030-31597-9" title="Special:BookSources/978-3-030-31597-9"><bdi>978-3-030-31597-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Foundations+of+Hyperbolic+Manifolds&rft.series=Graduate+Texts+in+Mathematics&rft.pages=32&rft.edition=3rd&rft.pub=Springer&rft.date=2019&rft.isbn=978-3-030-31597-9&rft.aulast=Ratcliffe&rft.aufirst=John+G.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DyMO4DwAAQBAJ%26pg%3DPA32&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+distance" class="Z3988"></span></span> </li> </ol></div></div> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Lp_spaces64" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Lp_spaces" title="Template:Lp spaces"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Lp_spaces" title="Template talk:Lp spaces"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Lp_spaces" title="Special:EditPage/Template:Lp spaces"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Lp_spaces64" style="font-size:114%;margin:0 4em"><a href="/wiki/Lp_space" title="Lp space">Lp spaces</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Basic concepts</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Banach_space" title="Banach space">Banach</a> & <a href="/wiki/Hilbert_space" title="Hilbert space">Hilbert spaces</a></li> <li><a href="/wiki/Lp_space" title="Lp space"><i>L</i><sup><i>p</i></sup> spaces</a></li> <li><a href="/wiki/Measure_(mathematics)" title="Measure (mathematics)">Measure</a> <ul><li><a href="/wiki/Lebesgue_measure" title="Lebesgue measure">Lebesgue</a></li></ul></li> <li><a href="/wiki/Measure_space" title="Measure space">Measure space</a></li> <li><a href="/wiki/Measurable_space" title="Measurable space">Measurable space</a>/<a href="/wiki/Measurable_function" title="Measurable function">function</a></li> <li><a href="/wiki/Minkowski_distance" title="Minkowski distance">Minkowski distance</a></li> <li><a href="/wiki/Sequence_space" title="Sequence space">Sequence spaces</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/L1_space" class="mw-redirect" title="L1 space"><i>L</i><sup>1</sup> spaces</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Integrable_function" class="mw-redirect" title="Integrable function">Integrable function</a></li> <li><a href="/wiki/Lebesgue_integration" class="mw-redirect" title="Lebesgue integration">Lebesgue integration</a></li> <li><a href="/wiki/Taxicab_geometry" title="Taxicab geometry">Taxicab geometry</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/L2_space" class="mw-redirect" title="L2 space"><i>L</i><sup>2</sup> spaces</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bessel%27s_inequality" title="Bessel's inequality">Bessel's</a></li> <li><a href="/wiki/Cauchy%E2%80%93Schwarz_inequality" title="Cauchy–Schwarz inequality">Cauchy–Schwarz</a></li> <li><a class="mw-selflink selflink">Euclidean distance</a></li> <li><a href="/wiki/Hilbert_space" title="Hilbert space">Hilbert space</a></li> <li><a href="/wiki/Parseval%27s_identity" title="Parseval's identity">Parseval's identity</a></li> <li><a href="/wiki/Polarization_identity" title="Polarization identity">Polarization identity</a></li> <li><a href="/wiki/Pythagorean_theorem" title="Pythagorean theorem">Pythagorean theorem</a></li> <li><a href="/wiki/Square-integrable_function" title="Square-integrable function">Square-integrable function</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/L-infinity" title="L-infinity"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{\infty }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{\infty }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9ab400cc4dfd865180cd84c72dc894ca457671f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.458ex; height:2.343ex;" alt="{\displaystyle L^{\infty }}"></span> spaces</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bounded_function" title="Bounded function">Bounded function</a></li> <li><a href="/wiki/Chebyshev_distance" title="Chebyshev distance">Chebyshev distance</a></li> <li><a href="/wiki/Infimum_and_supremum" title="Infimum and supremum">Infimum and supremum</a> <ul><li><a href="/wiki/Essential_infimum_and_essential_supremum" title="Essential infimum and essential supremum">Essential</a></li></ul></li> <li><a href="/wiki/Uniform_norm" title="Uniform norm">Uniform norm</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Maps</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Almost_everywhere" title="Almost everywhere">Almost everywhere</a></li> <li><a href="/wiki/Convergence_almost_everywhere" class="mw-redirect" title="Convergence almost everywhere">Convergence almost everywhere</a></li> <li><a href="/wiki/Convergence_in_measure" title="Convergence in measure">Convergence in measure</a></li> <li><a href="/wiki/Function_space" title="Function space">Function space</a></li> <li><a href="/wiki/Integral_transform" title="Integral transform">Integral transform</a></li> <li><a href="/wiki/Locally_integrable_function" title="Locally integrable function">Locally integrable function</a></li> <li><a href="/wiki/Measurable_function" title="Measurable function">Measurable function</a></li> <li><a href="/wiki/Symmetric_decreasing_rearrangement" title="Symmetric decreasing rearrangement">Symmetric decreasing rearrangement</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Inequalities</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Babenko%E2%80%93Beckner_inequality" title="Babenko–Beckner inequality">Babenko–Beckner</a></li> <li><a href="/wiki/Chebyshev%27s_inequality" title="Chebyshev's inequality">Chebyshev's</a></li> <li><a href="/wiki/Clarkson%27s_inequalities" title="Clarkson's inequalities">Clarkson's</a></li> <li><a href="/wiki/Hanner%27s_inequalities" title="Hanner's inequalities">Hanner's</a></li> <li><a href="/wiki/Hausdorff%E2%80%93Young_inequality" title="Hausdorff–Young inequality">Hausdorff–Young</a></li> <li><a href="/wiki/H%C3%B6lder%27s_inequality" title="Hölder's inequality">Hölder's</a></li> <li><a href="/wiki/Markov%27s_inequality" title="Markov's inequality">Markov's</a></li> <li><a href="/wiki/Minkowski_inequality" title="Minkowski inequality">Minkowski</a></li> <li><a href="/wiki/Young%27s_convolution_inequality" title="Young's convolution inequality">Young's convolution</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Category:Theorems_in_analysis" title="Category:Theorems in analysis">Results</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Marcinkiewicz_interpolation_theorem" title="Marcinkiewicz interpolation theorem">Marcinkiewicz interpolation theorem</a></li> <li><a href="/wiki/Plancherel_theorem" title="Plancherel theorem">Plancherel theorem</a></li> <li><a href="/wiki/Riemann%E2%80%93Lebesgue_lemma" title="Riemann–Lebesgue lemma">Riemann–Lebesgue</a></li> <li><a href="/wiki/Riesz%E2%80%93Fischer_theorem" title="Riesz–Fischer theorem">Riesz–Fischer theorem</a></li> <li><a href="/wiki/Riesz%E2%80%93Thorin_theorem" title="Riesz–Thorin theorem">Riesz–Thorin theorem</a></li></ul> </div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><span style="font-size:85%;">For <a href="/wiki/Lebesgue_measure" title="Lebesgue measure">Lebesgue measure</a></span></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Isoperimetric_inequality" title="Isoperimetric inequality">Isoperimetric inequality</a></li> <li><a href="/wiki/Brunn%E2%80%93Minkowski_theorem" title="Brunn–Minkowski theorem">Brunn–Minkowski theorem</a> <ul><li><a href="/wiki/Milman%27s_reverse_Brunn%E2%80%93Minkowski_inequality" title="Milman's reverse Brunn–Minkowski inequality">Milman's reverse</a></li></ul></li> <li><a href="/wiki/Minkowski%E2%80%93Steiner_formula" title="Minkowski–Steiner formula">Minkowski–Steiner formula</a></li> <li><a href="/wiki/Pr%C3%A9kopa%E2%80%93Leindler_inequality" title="Prékopa–Leindler inequality">Prékopa–Leindler inequality</a></li> <li><a href="/wiki/Vitale%27s_random_Brunn%E2%80%93Minkowski_inequality" title="Vitale's random Brunn–Minkowski inequality">Vitale's random Brunn–Minkowski inequality</a></li></ul> </div></td></tr></tbody></table><div> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Applications & related</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bochner_space" title="Bochner space">Bochner space</a></li> <li><a href="/wiki/Fourier_analysis" title="Fourier analysis">Fourier analysis</a></li> <li><a href="/wiki/Lorentz_space" title="Lorentz space">Lorentz space</a></li> <li><a href="/wiki/Probability_theory" title="Probability theory">Probability theory</a></li> <li><a href="/wiki/Quasinorm" title="Quasinorm">Quasinorm</a></li> <li><a href="/wiki/Real_analysis" title="Real analysis">Real analysis</a></li> <li><a href="/wiki/Sobolev_space" title="Sobolev space">Sobolev space</a></li> <li><a href="/wiki/*-algebra" title="*-algebra">*-algebra</a> <ul><li><a href="/wiki/C*-algebra" title="C*-algebra">C*-algebra</a></li> <li><a href="/wiki/Von_Neumann_algebra" title="Von Neumann algebra">Von Neumann</a></li></ul></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Machine_learning_evaluation_metrics329" style="padding:3px"><table class="nowraplinks mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Machine_learning_evaluation_metrics" title="Template:Machine learning evaluation metrics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Machine_learning_evaluation_metrics" title="Template talk:Machine learning evaluation metrics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Machine_learning_evaluation_metrics" title="Special:EditPage/Template:Machine learning evaluation metrics"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Machine_learning_evaluation_metrics329" style="font-size:114%;margin:0 4em"><a href="/wiki/Machine_learning" title="Machine learning">Machine learning</a> evaluation metrics</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Regression_analysis" title="Regression analysis">Regression</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Mean_squared_error" title="Mean squared error">MSE</a></li> <li><a href="/wiki/Mean_absolute_error" title="Mean absolute error">MAE</a></li> <li><a href="/wiki/Symmetric_mean_absolute_percentage_error" title="Symmetric mean absolute percentage error">sMAPE</a></li> <li><a href="/wiki/Mean_absolute_percentage_error" title="Mean absolute percentage error">MAPE</a></li> <li><a href="/wiki/Mean_absolute_scaled_error" title="Mean absolute scaled error">MASE</a></li> <li><a href="/wiki/Mean_squared_prediction_error" title="Mean squared prediction error">MSPE</a></li> <li><a href="/wiki/Root_mean_square" title="Root mean square">RMS</a></li> <li><a href="/wiki/Root-mean-square_deviation" class="mw-redirect" title="Root-mean-square deviation">RMSE/RMSD</a></li> <li><a href="/wiki/Coefficient_of_determination" title="Coefficient of determination">R<sup>2</sup></a></li> <li><a href="/wiki/Mean_directional_accuracy" title="Mean directional accuracy">MDA</a></li> <li><a href="/wiki/Median_absolute_deviation" title="Median absolute deviation">MAD</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Statistical_classification" title="Statistical classification">Classification</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/F-score" title="F-score">F-score</a></li> <li><a href="/wiki/P4-metric" title="P4-metric">P4</a></li> <li><a href="/wiki/Accuracy_and_precision" title="Accuracy and precision">Accuracy</a></li> <li><a href="/wiki/Precision_and_recall" title="Precision and recall">Precision</a></li> <li><a href="/wiki/Precision_and_recall" title="Precision and recall">Recall</a></li> <li><a href="/wiki/Cohen%27s_kappa" title="Cohen's kappa">Kappa</a></li> <li><a href="/wiki/Phi_coefficient" title="Phi coefficient">MCC</a></li> <li><a href="/wiki/Receiver_operating_characteristic#Area_under_the_curve" title="Receiver operating characteristic">AUC</a></li> <li><a href="/wiki/Receiver_operating_characteristic" title="Receiver operating characteristic">ROC</a></li> <li><a href="/wiki/Sensitivity_and_specificity" title="Sensitivity and specificity">Sensitivity and specificity</a></li> <li><a href="/wiki/Cross-entropy#Cross-entropy_loss_function_and_logistic_regression" title="Cross-entropy">Logarithmic Loss</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Cluster_analysis" title="Cluster analysis">Clustering</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Silhouette_(clustering)" title="Silhouette (clustering)">Silhouette</a></li> <li><a href="/wiki/Calinski-Harabasz_index" class="mw-redirect" title="Calinski-Harabasz index">Calinski-Harabasz index</a></li> <li><a href="/wiki/Davies%E2%80%93Bouldin_index" title="Davies–Bouldin index">Davies-Bouldin</a></li> <li><a href="/wiki/Dunn_index" title="Dunn index">Dunn index</a></li> <li><a href="/wiki/Hopkins_statistic" title="Hopkins statistic">Hopkins statistic</a></li> <li><a href="/wiki/Jaccard_index" title="Jaccard index">Jaccard index</a></li> <li><a href="/wiki/Rand_index" title="Rand index">Rand index</a></li> <li><a href="/wiki/Similarity_measure" title="Similarity measure">Similarity measure</a></li> <li><a href="/wiki/Simple_matching_coefficient" title="Simple matching coefficient">SMC</a></li> <li><a href="/wiki/SimHash" title="SimHash">SimHash</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Ranking_(information_retrieval)" title="Ranking (information retrieval)">Ranking</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Mean_reciprocal_rank" title="Mean reciprocal rank">MRR</a></li> <li><a href="/wiki/NDCG" class="mw-redirect" title="NDCG">NDCG</a></li> <li><a href="/wiki/Average_precision" class="mw-redirect" title="Average precision">AP</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Computer_Vision" class="mw-redirect" title="Computer Vision">Computer Vision</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/PSNR" class="mw-redirect" title="PSNR">PSNR</a></li> <li><a href="/wiki/SSIM" class="mw-redirect" title="SSIM">SSIM</a></li> <li><a href="/wiki/Intersection_over_union" class="mw-redirect" title="Intersection over union">IoU</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Natural_language_processing" title="Natural language processing">NLP</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Perplexity" title="Perplexity">Perplexity</a></li> <li><a href="/wiki/BLEU" title="BLEU">BLEU</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Deep Learning Related Metrics</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Inception_score" title="Inception score">Inception score</a></li> <li><a href="/wiki/Fr%C3%A9chet_inception_distance" title="Fréchet inception distance">FID</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Recommender_system" title="Recommender system">Recommender system</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Coverage_probability" title="Coverage probability">Coverage</a></li> <li><a href="/w/index.php?title=Intra-list_Similarity&action=edit&redlink=1" class="new" title="Intra-list Similarity (page does not exist)">Intra-list Similarity</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Similarity</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cosine_similarity" title="Cosine similarity">Cosine similarity</a></li> <li><a class="mw-selflink selflink">Euclidean distance</a></li> <li><a href="/wiki/Pearson_correlation_coefficient" title="Pearson correlation coefficient">Pearson correlation coefficient</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow hlist" colspan="2"><div> <ul><li><a href="/wiki/Confusion_matrix" title="Confusion matrix">Confusion matrix</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐api‐int.codfw.main‐679bf888dd‐m2m9m Cached time: 20250225123638 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.618 seconds Real time usage: 0.807 seconds Preprocessor visited node count: 3197/1000000 Post‐expand include size: 110209/2097152 bytes Template argument size: 1668/2097152 bytes Highest expansion depth: 12/100 Expensive parser function count: 3/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 156852/5000000 bytes Lua time usage: 0.390/10.000 seconds Lua memory usage: 5814081/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 585.842 1 -total 50.85% 297.872 1 Template:Reflist 45.26% 265.143 37 Template:Citation 18.16% 106.411 3 Template:Navbox 17.41% 102.012 1 Template:Lp_spaces 11.63% 68.112 1 Template:Short_description 7.57% 44.363 2 Template:Pagetype 6.50% 38.090 10 Template:Main_other 4.22% 24.711 1 Template:Good_article 4.17% 24.435 1 Template:Use_American_English --> <!-- Saved in parser cache with key enwiki:pcache:53932:|#|:idhash:canonical and timestamp 20250225123638 and revision id 1277294848. Rendering was triggered because: api-parse --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?useformat=desktop&type=1x1&usesul3=0" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Euclidean_distance&oldid=1277294848">https://en.wikipedia.org/w/index.php?title=Euclidean_distance&oldid=1277294848</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Distance" title="Category:Distance">Distance</a></li><li><a href="/wiki/Category:Length" title="Category:Length">Length</a></li><li><a href="/wiki/Category:Metric_geometry" title="Category:Metric geometry">Metric geometry</a></li><li><a href="/wiki/Category:Pythagorean_theorem" title="Category:Pythagorean theorem">Pythagorean theorem</a></li><li><a href="/wiki/Category:Euclid" title="Category:Euclid">Euclid</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Use_American_English_from_February_2019" title="Category:Use American English from February 2019">Use American English from February 2019</a></li><li><a href="/wiki/Category:All_Wikipedia_articles_written_in_American_English" title="Category:All Wikipedia articles written in American English">All Wikipedia articles written in American English</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Use_mdy_dates_from_February_2019" title="Category:Use mdy dates from February 2019">Use mdy dates from February 2019</a></li><li><a href="/wiki/Category:Good_articles" title="Category:Good articles">Good articles</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 23 February 2025, at 20:39<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Euclidean_distance&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/static/images/footer/wikimedia-button.svg" width="84" height="29"><img src="/static/images/footer/wikimedia.svg" width="25" height="25" alt="Wikimedia Foundation" lang="en" loading="lazy"></picture></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/w/resources/assets/poweredby_mediawiki.svg" width="88" height="31"><img src="/w/resources/assets/mediawiki_compact.svg" alt="Powered by MediaWiki" width="25" height="25" loading="lazy"></picture></a></li> </ul> </footer> </div> </div> </div> <div class="vector-header-container vector-sticky-header-container"> <div id="vector-sticky-header" class="vector-sticky-header"> <div class="vector-sticky-header-start"> <div class="vector-sticky-header-icon-start vector-button-flush-left vector-button-flush-right" aria-hidden="true"> <button class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-sticky-header-search-toggle" tabindex="-1" data-event-name="ui.vector-sticky-search-form.icon"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </button> </div> <div role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box"> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail"> <form action="/w/index.php" id="vector-sticky-search-form" class="cdx-search-input cdx-search-input--has-end-button"> <div class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia"> <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <div class="vector-sticky-header-context-bar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-sticky-header-toc" class="vector-dropdown mw-portlet mw-portlet-sticky-header-toc vector-sticky-header-toc vector-button-flush-left" > <input type="checkbox" id="vector-sticky-header-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-sticky-header-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-sticky-header-toc-label" for="vector-sticky-header-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-sticky-header-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div class="vector-sticky-header-context-bar-primary" aria-hidden="true" ><span class="mw-page-title-main">Euclidean distance</span></div> </div> </div> <div class="vector-sticky-header-end" aria-hidden="true"> <div class="vector-sticky-header-icons"> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-talk-sticky-header" tabindex="-1" data-event-name="talk-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbles mw-ui-icon-wikimedia-speechBubbles"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-subject-sticky-header" tabindex="-1" data-event-name="subject-sticky-header"><span class="vector-icon mw-ui-icon-article mw-ui-icon-wikimedia-article"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-history-sticky-header" tabindex="-1" data-event-name="history-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-history mw-ui-icon-wikimedia-wikimedia-history"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only mw-watchlink" id="ca-watchstar-sticky-header" tabindex="-1" data-event-name="watch-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-star mw-ui-icon-wikimedia-wikimedia-star"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-edit-sticky-header" tabindex="-1" data-event-name="wikitext-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-wikiText mw-ui-icon-wikimedia-wikimedia-wikiText"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-ve-edit-sticky-header" tabindex="-1" data-event-name="ve-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-edit mw-ui-icon-wikimedia-wikimedia-edit"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-viewsource-sticky-header" tabindex="-1" data-event-name="ve-edit-protected-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-editLock mw-ui-icon-wikimedia-wikimedia-editLock"></span> <span></span> </a> </div> <div class="vector-sticky-header-buttons"> <button class="cdx-button cdx-button--weight-quiet mw-interlanguage-selector" id="p-lang-btn-sticky-header" tabindex="-1" data-event-name="ui.dropdown-p-lang-btn-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-language mw-ui-icon-wikimedia-wikimedia-language"></span> <span>39 languages</span> </button> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive" id="ca-addsection-sticky-header" tabindex="-1" data-event-name="addsection-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbleAdd-progressive mw-ui-icon-wikimedia-speechBubbleAdd-progressive"></span> <span>Add topic</span> </a> </div> <div class="vector-sticky-header-icon-end"> <div class="vector-user-links"> </div> </div> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.canary-7bcc9d85fd-tzb69","wgBackendResponseTime":118,"wgPageParseReport":{"limitreport":{"cputime":"0.618","walltime":"0.807","ppvisitednodes":{"value":3197,"limit":1000000},"postexpandincludesize":{"value":110209,"limit":2097152},"templateargumentsize":{"value":1668,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":3,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":156852,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 585.842 1 -total"," 50.85% 297.872 1 Template:Reflist"," 45.26% 265.143 37 Template:Citation"," 18.16% 106.411 3 Template:Navbox"," 17.41% 102.012 1 Template:Lp_spaces"," 11.63% 68.112 1 Template:Short_description"," 7.57% 44.363 2 Template:Pagetype"," 6.50% 38.090 10 Template:Main_other"," 4.22% 24.711 1 Template:Good_article"," 4.17% 24.435 1 Template:Use_American_English"]},"scribunto":{"limitreport-timeusage":{"value":"0.390","limit":"10.000"},"limitreport-memusage":{"value":5814081,"limit":52428800}},"cachereport":{"origin":"mw-api-int.codfw.main-679bf888dd-m2m9m","timestamp":"20250225123638","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Euclidean distance","url":"https:\/\/en.wikipedia.org\/wiki\/Euclidean_distance","sameAs":"http:\/\/www.wikidata.org\/entity\/Q847073","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q847073","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2002-05-28T14:31:11Z","dateModified":"2025-02-23T20:39:12Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/5\/55\/Euclidean_distance_2d.svg","headline":"conventional distance in mathematics and physics"}</script> </body> </html>