CINXE.COM
Search results for: reverse micelles
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: reverse micelles</title> <meta name="description" content="Search results for: reverse micelles"> <meta name="keywords" content="reverse micelles"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="reverse micelles" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="reverse micelles"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 623</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: reverse micelles</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">623</span> Preparation and Characterization of Nickel-Tungsten Nanoparticles Using Microemulsion Mediated Synthesis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Pal">S. Pal</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Singh"> R. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sivakumar"> S. Sivakumar</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Kunzru"> D. Kunzru</a> </p> <p class="card-text"><strong>Abstract:</strong></p> AOT stabilized reverse micelles of deionized water, dispersed in isooctane have been used to synthesize bimetallic nickel tungsten nanoparticles. Prepared nanoparticles were supported on γ-Al2O3 followed by calcination at 500oC. Characterizations of the nanoparticles were done by TEM, XRD, FTIR, XRF, TGA and BET. XRF results showed that this method gave good composition control with W/Ni weight ratio equal to 3.2. TEM images showed particle size of 5-10 nm. Removal of surfactant after calcination was confirmed by TGA and FTIR. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title="nanoparticles">nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=reverse%20micelles" title=" reverse micelles"> reverse micelles</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel" title=" nickel"> nickel</a>, <a href="https://publications.waset.org/abstracts/search?q=tungsten" title=" tungsten "> tungsten </a> </p> <a href="https://publications.waset.org/abstracts/19384/preparation-and-characterization-of-nickel-tungsten-nanoparticles-using-microemulsion-mediated-synthesis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">592</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">622</span> Photophysics of a Coumarin Molecule in Graphene Oxide Containing Reverse Micelle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aloke%20Bapli">Aloke Bapli</a>, <a href="https://publications.waset.org/abstracts/search?q=Debabrata%20Seth"> Debabrata Seth</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graphene oxide (GO) is the two-dimensional (2D) nanoscale allotrope of carbon having several physiochemical properties such as high mechanical strength, high surface area, strong thermal and electrical conductivity makes it an important candidate in various modern applications such as drug delivery, supercapacitors, sensors etc. GO has been used in the photothermal treatment of cancers and Alzheimer’s disease etc. The main idea to choose GO in our work is that it is a surface active molecule, it has a large number of hydrophilic functional groups such as carboxylic acid, hydroxyl, epoxide on its surface and in basal plane. So it can easily interact with organic fluorophores through hydrogen bonding or any other kind of interaction and easily modulate the photophysics of the probe molecules. We have used different spectroscopic techniques for our work. The Ground-state absorption spectra and steady-state fluorescence emission spectra were measured by using UV-Vis spectrophotometer from Shimadzu (model-UV-2550) and spectrofluorometer from Horiba Jobin Yvon (model-Fluoromax 4P) respectively. All the fluorescence lifetime and anisotropy decays were collected by using time-correlated single photon counting (TCSPC) setup from Edinburgh instrument (model: LifeSpec-II, U.K.). Herein, we described the photophysics of a hydrophilic molecule 7-(n,n׀-diethylamino) coumarin-3-carboxylic acid (7-DCCA) in the reverse micelles containing GO. It was observed that photophysics of dye is modulated in the presence of GO compared to photophysics of dye in the absence of GO inside the reverse micelles. Here we have reported the solvent relaxation and rotational relaxation time in GO containing reverse micelle and compare our work with normal reverse micelle system by using 7-DCCA molecule. Normal reverse micelle means reverse micelle in the absence of GO. The absorption maxima of 7-DCCA were blue shifted and emission maxima were red shifted in GO containing reverse micelle compared to normal reverse micelle. The rotational relaxation time in GO containing reverse micelle is always faster compare to normal reverse micelle. Solvent relaxation time, at lower w₀ values, is always slower in GO containing reverse micelle compare to normal reverse micelle and at higher w₀ solvent relaxation time of GO containing reverse micelle becomes almost equal to normal reverse micelle. Here emission maximum of 7-DCCA exhibit bathochromic shift in GO containing reverse micelles compared to that in normal reverse micelles because in presence of GO the polarity of the system increases, as polarity increases the emission maxima was red shifted an average decay time of GO containing reverse micelle is less than that of the normal reverse micelle. In GO containing reverse micelle quantum yield, decay time, rotational relaxation time, solvent relaxation time at λₑₓ=375 nm is always higher than λₑₓ=405 nm, shows the excitation wavelength dependent photophysics of 7-DCCA in GO containing reverse micelles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photophysics" title="photophysics">photophysics</a>, <a href="https://publications.waset.org/abstracts/search?q=reverse%20micelle" title=" reverse micelle"> reverse micelle</a>, <a href="https://publications.waset.org/abstracts/search?q=rotational%20relaxation" title=" rotational relaxation"> rotational relaxation</a>, <a href="https://publications.waset.org/abstracts/search?q=solvent%20relaxation" title=" solvent relaxation"> solvent relaxation</a> </p> <a href="https://publications.waset.org/abstracts/98137/photophysics-of-a-coumarin-molecule-in-graphene-oxide-containing-reverse-micelle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98137.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">621</span> Soybean Lecithin Based Reverse Micellar Extraction of Pectinase from Synthetic Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sivananth%20Murugesan">Sivananth Murugesan</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Regupathi"> I. Regupathi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Vishwas%20Prabhu"> B. Vishwas Prabhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ankit%20Devatwal"> Ankit Devatwal</a>, <a href="https://publications.waset.org/abstracts/search?q=Vishnu%20Sivan%20Pillai"> Vishnu Sivan Pillai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pectinase is an important enzyme which has a wide range of applications including textile processing and bioscouring of cotton fibers, coffee and tea fermentation, purification of plant viruses, oil extraction etc. Selective separation and purification of pectinase from fermentation broth and recover the enzyme form process stream for reuse are cost consuming process in most of the enzyme based industries. It is difficult to identify a suitable medium to enhance enzyme activity and retain its enzyme characteristics during such processes. The cost effective, selective separation of enzymes through the modified Liquid-liquid extraction is of current research interest worldwide. Reverse micellar extraction, globally acclaimed Liquid-liquid extraction technique is well known for its separation and purification of solutes from the feed which offers higher solute specificity and partitioning, ease of operation and recycling of extractants used. Surfactant concentrations above critical micelle concentration to an apolar solvent form micelles and addition of micellar phase to water in turn forms reverse micelles or water-in-oil emulsions. Since, electrostatic interaction plays a major role in the separation/purification of solutes using reverse micelles. These interaction parameters can be altered with the change in pH, addition of cosolvent, surfactant and electrolyte and non-electrolyte. Even though many chemical based commercial surfactant had been utilized for this purpose, the biosurfactants are more suitable for the purification of enzymes which are used in food application. The present work focused on the partitioning of pectinase from the synthetic aqueous solution within the reverse micelle phase formed by a biosurfactant, Soybean Lecithin dissolved in chloroform. The critical micelle concentration of soybean lecithin/chloroform solution was identified through refractive index and density measurements. Effect of surfactant concentrations above and below the critical micelle concentration was considered to study its effect on enzyme activity, enzyme partitioning within the reverse micelle phase. The effect of pH and electrolyte salts on the partitioning behavior was studied by varying the system pH and concentration of different salts during forward and back extraction steps. It was observed that lower concentrations of soybean lecithin enhanced the enzyme activity within the water core of the reverse micelle with maximizing extraction efficiency. The maximum yield of pectinase of 85% with a partitioning coefficient of 5.7 was achieved at 4.8 pH during forward extraction and 88% yield with a partitioning coefficient of 7.1 was observed during backward extraction at a pH value of 5.0. However, addition of salt decreased the enzyme activity and especially at higher salt concentrations enzyme activity declined drastically during both forward and back extraction steps. The results proved that reverse micelles formed by Soybean Lecithin and chloroform may be used for the extraction of pectinase from aqueous solution. Further, the reverse micelles can be considered as nanoreactors to enhance enzyme activity and maximum utilization of substrate at optimized conditions, which are paving a way to process intensification and scale-down. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pectinase" title="pectinase">pectinase</a>, <a href="https://publications.waset.org/abstracts/search?q=reverse%20micelles" title=" reverse micelles"> reverse micelles</a>, <a href="https://publications.waset.org/abstracts/search?q=soybean%20lecithin" title=" soybean lecithin"> soybean lecithin</a>, <a href="https://publications.waset.org/abstracts/search?q=selective%20partitioning" title=" selective partitioning"> selective partitioning</a> </p> <a href="https://publications.waset.org/abstracts/67512/soybean-lecithin-based-reverse-micellar-extraction-of-pectinase-from-synthetic-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67512.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">620</span> Amino Acid Based Biodegradable Amphiphilic Polymers and Micelles as Drug Delivery Systems: Synthesis and Study </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sophio%20Kobauri">Sophio Kobauri</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20P.%20Torchilin"> Vladimir P. Torchilin</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Tugushi"> David Tugushi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramaz%20Katsarava"> Ramaz Katsarava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanotherapy is an actual newest mode of treatment numerous diseases using nanoparticles (NPs) loading with different pharmaceuticals. NPs of biodegradable polymeric micelles (PMs) are gaining increased attention for their numerous and attractive abilities to be used in a variety of applications in the various fields of medicine. The present paper deals with the synthesis of a class of biodegradable micelle-forming polymers, namely ABA triblock-copolymer in which A-blocks represent amino-poly(ethylene glycol) (H<sub>2</sub>N-PEG) and B-block is biodegradable amino acid-based poly(ester amide) constituted of α-amino acid – L-phenylalanine. The obtained copolymer formed micelles of 70±4 nm size at 10 mg/mL concentration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amino%20acids" title="amino acids">amino acids</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradable%20poly%20%28ester%20amide%29" title=" biodegradable poly (ester amide)"> biodegradable poly (ester amide)</a>, <a href="https://publications.waset.org/abstracts/search?q=amphiphilic%20triblock-copolymer" title=" amphiphilic triblock-copolymer"> amphiphilic triblock-copolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=micelles" title=" micelles"> micelles</a> </p> <a href="https://publications.waset.org/abstracts/85545/amino-acid-based-biodegradable-amphiphilic-polymers-and-micelles-as-drug-delivery-systems-synthesis-and-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85545.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">619</span> Bile Salt Induced Microstructural Changes of Gemini Surfactant Micelles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vijaykumar%20Patel">Vijaykumar Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Bahadur"> P. Bahadur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microstructural evolution of a cationic gemini surfactant 12-4-12 micelles in the presence of bile salts has been investigated using different techniques. A negative value of interaction parameter evaluated from surface tension measurements is a signature of strong synergistic interaction between oppositely charged surfactants. Both the bile salts compete with each other in inducing the micellar transition of 12-4-12 micelles depending on their hydrophobicity. Viscosity measurements disclose that loading of bile salts induces morphological changes in 12-4-12 micelles; sodium deoxycholate is more efficient in altering the aggregation behaviour of 12-4-12 micelles compared to sodium cholate and presents pronounced increase in viscosity and micellar growth which is suppressed at elevated temperatures. A remarkable growth of 12-4-12 micelles in the presence of sodium deoxycholate at low pH has been ascribed to the solubilization of bile acids formed in acidic medium. Small angle neutron scattering experiments provided size and shape of 12-4-12/bile salt mixed micelles are explicated on the basis of hydrophobicity of bile salts. The location of bile salts in micelle was determined from nuclear overhauser effect spectroscopy. The present study characterizes 12-4-12 gemini-bile salt mixed systems which significantly enriches our knowledge, and such a structural transition provides an opportunity to use these bioamphiphiles as delivery vehicles and in some pharmaceutical formulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gemini%20surfactants" title="gemini surfactants">gemini surfactants</a>, <a href="https://publications.waset.org/abstracts/search?q=bile%20salts" title=" bile salts"> bile salts</a>, <a href="https://publications.waset.org/abstracts/search?q=SANS%20%28small%20angle%20neutron%20scattering%29" title=" SANS (small angle neutron scattering)"> SANS (small angle neutron scattering)</a>, <a href="https://publications.waset.org/abstracts/search?q=NOESY%20%28nuclear%20overhauser%20effect%20spectroscopy%29" title=" NOESY (nuclear overhauser effect spectroscopy)"> NOESY (nuclear overhauser effect spectroscopy)</a> </p> <a href="https://publications.waset.org/abstracts/75883/bile-salt-induced-microstructural-changes-of-gemini-surfactant-micelles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75883.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">618</span> A Study of Families of Bistar and Corona Product of Graph: Reverse Topological Indices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gowtham%20Kalkere%20Jayanna">Gowtham Kalkere Jayanna</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Nazri%20Husin"> Mohamad Nazri Husin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graph theory, chemistry, and technology are all combined in cheminformatics. The structure and physiochemical properties of organic substances are linked using some useful graph invariants and the corresponding molecular graph. In this paper, we study specific reverse topological indices such as the reverse sum-connectivity index, the reverse Zagreb index, the reverse arithmetic-geometric, and the geometric-arithmetic, the reverse Sombor, the reverse Nirmala indices for the bistar graphs B (n: m) and the corona product Kₘ∘Kₙ', where Kₙ' Represent the complement of a complete graph Kₙ. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reverse%20topological%20indices" title="reverse topological indices">reverse topological indices</a>, <a href="https://publications.waset.org/abstracts/search?q=bistar%20graph" title=" bistar graph"> bistar graph</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20corona%20product" title=" the corona product"> the corona product</a>, <a href="https://publications.waset.org/abstracts/search?q=graph" title=" graph"> graph</a> </p> <a href="https://publications.waset.org/abstracts/166540/a-study-of-families-of-bistar-and-corona-product-of-graph-reverse-topological-indices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">617</span> A Model for Reverse-Mentoring in Education</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sabine%20A.%20Zauchner-Studnicka">Sabine A. Zauchner-Studnicka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the term indicates, reverse-mentoring flips the classical roles of mentoring: In school, students take over the role of mentors for adults, i.e. teachers or parents. Originally reverse-mentoring stems from US enterprises, which implemented this innovative method in order to benefit from the resources of skilled younger employees for the enhancement of IT competences of senior colleagues. However, reverse-mentoring in schools worldwide is rare. Based on empirical studies and theoretical approaches, in this article an implementation model for reverse-mentoring is developed in order to bring the significant potential reverse-mentoring has for education into practice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reverse-mentoring" title="reverse-mentoring">reverse-mentoring</a>, <a href="https://publications.waset.org/abstracts/search?q=innovation%20in%20education" title=" innovation in education"> innovation in education</a>, <a href="https://publications.waset.org/abstracts/search?q=implementation%20model" title=" implementation model"> implementation model</a>, <a href="https://publications.waset.org/abstracts/search?q=school%20education" title=" school education"> school education</a> </p> <a href="https://publications.waset.org/abstracts/58014/a-model-for-reverse-mentoring-in-education" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">616</span> Micelles Made of Pseudo-Proteins for Solubilization of Hydrophobic Biologicals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sophio%20Kobauri">Sophio Kobauri</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Tugushi"> David Tugushi</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20P.%20Torchilin"> Vladimir P. Torchilin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramaz%20Katsarava"> Ramaz Katsarava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrophobic / hydrophilically modified functional polymers are of high interest in modern biomedicine due to their ability to solubilize water-insoluble / poorly soluble (hydrophobic) drugs. Among the many approaches that are being developed in this direction, one of the most effective methods is the use of polymeric micelles (PMs) (micelles formed by amphiphilic block-copolymers) for solubilization of hydrophobic biologicals. For therapeutic purposes, PMs are required to be stable and biodegradable, although quite a few amphiphilic block-copolymers are described capable of forming stable micelles with good solubilization properties. For obtaining micelle-forming block-copolymers, polyethylene glycol (PEG) derivatives are desirable to use as hydrophilic shell because it represents the most popular biocompatible hydrophilic block and various hydrophobic blocks (polymers) can be attached to it. Although the construction of the hydrophobic core, due to the complex requirements and micelles structure development, is the very actual and the main problem for nanobioengineers. Considering the above, our research goal was obtaining biodegradable micelles for the solubilization of hydrophobic drugs and biologicals. For this purpose, we used biodegradable polymers– pseudo-proteins (PPs)(synthesized with naturally occurring amino acids and other non-toxic building blocks, such as fatty diols and dicarboxylic acids) as hydrophobic core since these polymers showed reasonable biodegradation rates and excellent biocompatibility. In the present study, we used the hydrophobic amino acid – L-phenylalanine (MW 4000-8000Da) instead of L-leucine. Amino-PEG (MW 2000Da) was used as hydrophilic fragments for constructing the suitable micelles. The molecular weight of PP (the hydrophobic core of micelle) was regulated by variation of used monomers ratios. Micelles were obtained by dissolving of synthesized amphiphilic polymer in water. The micelle-forming property was tested using dynamic light scattering (Malvern zetasizer NanoZSZEN3600). The study showed that obtaining amphiphilic block-copolymer form stable neutral micelles 100 ± 7 nm in size at 10mg/mL concentration, which is considered as an optimal range for pharmaceutical micelles. The obtained preliminary data allow us to conclude that the obtained micelles are suitable for the delivery of poorly water-soluble drugs and biologicals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amino%20acid%20%E2%80%93%20L-phenylalanine" title="amino acid – L-phenylalanine">amino acid – L-phenylalanine</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudo-proteins" title=" pseudo-proteins"> pseudo-proteins</a>, <a href="https://publications.waset.org/abstracts/search?q=amphiphilic%20block-copolymers" title=" amphiphilic block-copolymers"> amphiphilic block-copolymers</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradable%20micelles" title=" biodegradable micelles"> biodegradable micelles</a> </p> <a href="https://publications.waset.org/abstracts/109290/micelles-made-of-pseudo-proteins-for-solubilization-of-hydrophobic-biologicals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109290.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">615</span> Diselenide-Linked Redox Stimuli-Responsive Methoxy Poly(Ethylene Glycol)-b-Poly(Lactide-Co-Glycolide) Micelles for the Delivery of Doxorubicin in Cancer Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yihenew%20Simegniew%20Birhan">Yihenew Simegniew Birhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsieh%20Chih%20Tsai"> Hsieh Chih Tsai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The recent advancements in synthetic chemistry and nanotechnology fostered the development of different nanocarriers for enhanced intracellular delivery of pharmaceutical agents to tumor cells. Polymeric micelles (PMs), characterized by small size, appreciable drug loading capacity (DLC), better accumulation in tumor tissue via enhanced permeability and retention (EPR) effect, and the ability to avoid detection and subsequent clearance by the mononuclear phagocyte (MNP) system, are convenient to improve the poor solubility, slow absorption and non-selective biodistribution of payloads embedded in their hydrophobic cores and hence, enhance the therapeutic efficacy of chemotherapeutic agents. Recently, redox-responsive polymeric micelles have gained significant attention for the delivery and controlled release of anticancer drugs in tumor cells. In this study, we synthesized redox-responsive diselenide bond containing amphiphilic polymer, Bi(mPEG-PLGA)-Se₂ from mPEG-PLGA, and 3,3'-diselanediyldipropanoic acid (DSeDPA) using DCC/DMAP as coupling agents. The successful synthesis of the copolymers was verified by different spectroscopic techniques. Above the critical micelle concentration, the amphiphilic copolymer, Bi(mPEG-PLGA)-Se₂, self-assembled into stable micelles. The DLS data indicated that the hydrodynamic diameter of the micelles (123.9 ± 0.85 nm) was suitable for extravasation into the tumor cells through the EPR effect. The drug loading content (DLC) and encapsulation efficiency (EE) of DOX-loaded micelles were found to be 6.61 wt% and 54.9%, respectively. The DOX-loaded micelles showed initial burst release accompanied by sustained release trend where 73.94% and 69.54% of encapsulated DOX was released upon treatment with 6mM GSH and 0.1% H₂O₂, respectively. The biocompatible nature of Bi(mPEG-PLGA)-Se₂ copolymer was confirmed by the cell viability study. In addition, the DOX-loaded micelles exhibited significant inhibition against HeLa cells (44.46%), at a maximum dose of 7.5 µg/mL. The fluorescent microscope images of HeLa cells treated with 3 µg/mL (equivalent DOX concentration) revealed efficient internalization and accumulation of DOX-loaded Bi(mPEG-PLGA)-Se₂ micelles in the cytosol of cancer cells. In conclusion, the intelligent, biocompatible, and the redox stimuli-responsive behavior of Bi(mPEG-PLGA)-Se₂ copolymer marked the potential applications of diselenide-linked mPEG-PLGA micelles for the delivery and on-demand release of chemotherapeutic agents in cancer cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anticancer%20drug%20delivery" title="anticancer drug delivery">anticancer drug delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=diselenide%20bond" title=" diselenide bond"> diselenide bond</a>, <a href="https://publications.waset.org/abstracts/search?q=polymeric%20micelles" title=" polymeric micelles"> polymeric micelles</a>, <a href="https://publications.waset.org/abstracts/search?q=redox-responsive" title=" redox-responsive"> redox-responsive</a> </p> <a href="https://publications.waset.org/abstracts/118642/diselenide-linked-redox-stimuli-responsive-methoxy-polyethylene-glycol-b-polylactide-co-glycolide-micelles-for-the-delivery-of-doxorubicin-in-cancer-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118642.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">614</span> Targeted Delivery of Docetaxel Drug Using Cetuximab Conjugated Vitamin E TPGS Micelles Increases the Anti-Tumor Efficacy and Inhibit Migration of MDA-MB-231 Triple Negative Breast Cancer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20K.%20Rajaletchumy">V. K. Rajaletchumy</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20L.%20Chia"> S. L. Chia</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20I.%20Setyawati"> M. I. Setyawati</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Muthu"> M. S. Muthu</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Feng"> S. S. Feng</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20T.%20Leong"> D. T. Leong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Triple negative breast cancers (TNBC) can be classified as one of the most aggressive with a high rate of local recurrences and systematic metastases. TNBCs are insensitive to existing hormonal therapy or targeted therapies such as the use of monoclonal antibodies, due to the lack of oestrogen receptor (ER) and progesterone receptor (PR) and the absence of overexpression of human epidermal growth factor receptor 2 (HER2) compared with other types of breast cancers. The absence of targeted therapies for selective delivery of therapeutic agents into tumours, led to the search for druggable targets in TNBC. In this study, we developed a targeted micellar system of cetuximab-conjugated micelles of D-α-tocopheryl polyethylene glycol succinate (vitamin E TPGS) for targeted delivery of docetaxel as a model anticancer drug for the treatment of TNBCs. We examined the efficacy of our micellar system in xenograft models of triple negative breast cancers and explored the effect of the micelles on post-treatment tumours in order to elucidate the mechanism underlying the nanomedicine treatment in oncology. The targeting micelles were found preferentially accumulated in tumours immediately after the administration of the micelles compare to normal tissue. The fluorescence signal gradually increased up to 12 h at the tumour site and sustained for up to 24 h, reflecting the increases in targeted micelles (TPFC) micelles in MDA-MB-231/Luc cells. In comparison, for the non-targeting micelles (TPF), the fluorescence signal was evenly distributed all over the body of the mice. Only a slight increase in fluorescence at the chest area was observed after 24 h post-injection, reflecting the moderate uptake of micelles by the tumour. The successful delivery of docetaxel into tumour by the targeted micelles (TPDC) exhibited a greater degree of tumour growth inhibition than Taxotere® after 15 days of treatment. The ex vivo study has demonstrated that tumours treated with targeting micelles exhibit enhanced cell cycle arrest and attenuated proliferation compared with the control and with those treated non-targeting micelles. Furthermore, the ex vivo investigation revealed that both the targeting and non-targeting micellar formulations shows significant inhibition of cell migration with migration indices reduced by 0.098- and 0.28-fold, respectively, relative to the control. Overall, both the in vivo and ex vivo data increased the confidence that our micellar formulations effectively targeted and inhibited EGF-overexpressing MDA-MB-231 tumours. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodegradable%20polymers" title="biodegradable polymers">biodegradable polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer%20nanotechnology" title=" cancer nanotechnology"> cancer nanotechnology</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20targeting" title=" drug targeting"> drug targeting</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20biomaterials" title=" molecular biomaterials"> molecular biomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomedicine" title=" nanomedicine"> nanomedicine</a> </p> <a href="https://publications.waset.org/abstracts/50350/targeted-delivery-of-docetaxel-drug-using-cetuximab-conjugated-vitamin-e-tpgs-micelles-increases-the-anti-tumor-efficacy-and-inhibit-migration-of-mda-mb-231-triple-negative-breast-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50350.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">613</span> Microstructure of Virgin and Aged Asphalts by Small-Angle X-Ray Scattering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dong%20Tang">Dong Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongli%20Zhao"> Yongli Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of the microstructure of asphalt is of great importance for the analysis of its macroscopic properties. However, the peculiarities of the chemical composition of the asphalt itself and the limitations of existing direct imaging techniques have caused researchers to face many obstacles in studying the microstructure of asphalt. The advantage of small-angle X-ray scattering (SAXS) is that it allows quantitative determination of the internal structure of opaque materials and is suitable for analyzing the microstructure of materials. Therefore, the SAXS technique was used to study the evolution of microstructures on the nanoscale during asphalt aging. And the reasons for the change in scattering contrast during asphalt aging were also explained with the help of Fourier transform infrared spectroscopy (FTIR). SAXS experimental results show that the SAXS curves of asphalt are similar to the scattering curves of scattering objects with two-level structures. The Porod curve for asphalt shows that there is no obvious interface between the micelles and the surrounding mediums, and there is only a fluctuation of the hot electron density between the two. The Beaucage model fit SAXS patterns shows that the scattering coefficient P of the asphaltene clusters as well as the size of the micelles, gradually increase with the aging of the asphalt. Furthermore, aggregation exists between the micelles of asphalt and becomes more pronounced with increasing aging. During asphalt aging, the electron density difference between the micelles and the surrounding mediums gradually increases, leading to an increase in the scattering contrast of the asphalt. Under long-term aging conditions due to the gradual transition from maltenes to asphaltenes, the electron density difference between the micelles and the surrounding mediums decreases, resulting in a decrease in the scattering contrast of asphalt SAXS. Finally, this paper correlates the macroscopic properties of asphalt with microstructural parameters, and the results show that the high-temperature rutting resistance of asphalt is enhanced and the low-temperature cracking resistance decreases due to the aggregation of micelles and the generation of new micelles. These results are useful for understanding the relationship between changes in microstructure and changes in properties during asphalt aging and provide theoretical guidance for the regeneration of aged asphalt. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphalt" title="asphalt">asphalt</a>, <a href="https://publications.waset.org/abstracts/search?q=Beaucage%20model" title=" Beaucage model"> Beaucage model</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=SAXS" title=" SAXS"> SAXS</a> </p> <a href="https://publications.waset.org/abstracts/165750/microstructure-of-virgin-and-aged-asphalts-by-small-angle-x-ray-scattering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165750.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">612</span> Polymersomes in Drug Delivery: A Comparative Review with Liposomes and Micelles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salma%20E.%20Ahmed">Salma E. Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since the mid 50’s, enormous attention has been paid towards nanocarriers and their applications in drug and gene delivery. Among these vesicles, liposomes and micelles have been heavily investigated due to their many advantages over other types. Liposomes, for instance, are mostly distinguished by their ability to encapsulate hydrophobic, hydrophilic and amphiphilic drugs. Micelles, on the other hand, are self-assembled shells of lipids, amphiphilic or oppositely charged block copolymers that, once exposed to aqueous media, can entrap hydrophobic agents, and possess prolonged circulation in the bloodstream. Both carriers are considered compatible and biodegradable. Nevertheless, they have limited stabilities, chemical versatilities, and drug encapsulation efficiencies. In order to overcome these downsides, strategies for optimizing a novel drug delivery system that has the architecture of liposomes and polymeric characteristics of micelles have been evolved. Polymersomes are vehicles with fluidic cores and hydrophobic shells that are protected and isolated from the aqueous media by the hydrated hydrophilic brushes which give the carrier its distinctive polymeric bilayer shape. Similar to liposomes, this merit enables the carrier to encapsulate a wide range of agents, despite their affinities and solubilities in water. Adding to this, the high molecular weight of the amphiphiles that build the body of the polymersomes increases their colloidal and chemical stabilities and reduces the permeability of the polymeric membranes, which makes the vesicles more protective to the encapsulated drug. These carriers can also be modified in ways that make them responsive when targeted or triggered, by manipulating their composition and attaching moieties and conjugates to the body of the carriers. These appealing characteristics, in addition to the ease of synthesis, gave the polymersomes greater potentials in the area of drug delivery. Thus, their design and characterization, in comparison with liposomes and micelles, are briefly reviewed in this work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=controlled%20release" title="controlled release">controlled release</a>, <a href="https://publications.waset.org/abstracts/search?q=liposomes" title=" liposomes"> liposomes</a>, <a href="https://publications.waset.org/abstracts/search?q=micelles" title=" micelles"> micelles</a>, <a href="https://publications.waset.org/abstracts/search?q=polymersomes" title=" polymersomes"> polymersomes</a>, <a href="https://publications.waset.org/abstracts/search?q=targeting" title=" targeting"> targeting</a> </p> <a href="https://publications.waset.org/abstracts/67371/polymersomes-in-drug-delivery-a-comparative-review-with-liposomes-and-micelles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67371.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">611</span> Photophysics and Rotational Relaxation Dynamics of 6-Methoxyquinoline Fluorophore in Cationic Alkyltrimethylammonium Bromide Micelles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tej%20Varma%20Y">Tej Varma Y</a>, <a href="https://publications.waset.org/abstracts/search?q=Debi%20D.%20Pant"> Debi D. Pant</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photophysics and rotational dynamics of the fluorescent probe, 6-methoxyquinoline (6MQ) with cationic surfactant, alkyltrimethylammonium bromide (nTAB) micelle solutions have been investigated (n = 12, 14 and 16). Absorption and emission peaks of the dye have been observed to shift at concentrations around critical micellar concentration (cmc) of nTAB compared to that of bulk solutions suggesting probe is in a lower polar environment. The probe senses changes in polarity (ET (30)) brought about by variation of surfactant chain length concentration and is invariably solubilized in the aqueous interface or palisade layer. The order of change in polarity observed was DTAB > CTAB > TTAB. The binding constant study shows that the probe binds strongest with TTAB (is of the order TTAB > CTAB > DTAB) due to deeper penetration into the micelle. The anisotropy decay for the probe in all the nTAB micelles studied have been rationalized based on a two-step model consisting of fast-restricted rotation of the probe and slow lateral diffusion of the probe in the micelle that is coupled to the overall rotation of the micelle. Fluorescence lifetime measurements of probe in the cationic micelles demonstrate the close proximity of the 6MQ to the Br - counterions. The fluorescence lifetimes of TTAB and DTAB are much shorter than in CTAB. These results indicate that 6MQ resides to a substantial degree in the head group region of the micelles. All the changes observed in the steady state fluorescence, microenvironment, fluorescence lifetimes, fluorescence anisotropy, and other calculations are in agreement with each other suggesting binding of the cationic surfactant with the neutral dye molecule. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photophysics" title="photophysics">photophysics</a>, <a href="https://publications.waset.org/abstracts/search?q=chain%20length" title=" chain length"> chain length</a>, <a href="https://publications.waset.org/abstracts/search?q=ntaB" title=" ntaB"> ntaB</a>, <a href="https://publications.waset.org/abstracts/search?q=micelles" title=" micelles"> micelles</a> </p> <a href="https://publications.waset.org/abstracts/39913/photophysics-and-rotational-relaxation-dynamics-of-6-methoxyquinoline-fluorophore-in-cationic-alkyltrimethylammonium-bromide-micelles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39913.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">637</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">610</span> Reverse Innovation in Subsistence and Developed Markets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hailu%20Getnet">Hailu Getnet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study focus on reverse innovation on performance outcomes across developed and subsistence markets context. The subsistence market consists two third of the world population and the largest international market. To date, it has been neglected because of its issues of perceived challenges and seeming unattractiveness compared to the established markets in the west. However, subsistence markets are becoming source of reverse innovation; an innovation that is likely to be adopted first in developing world and successfully traded globally. In response, there is a growing interest on reverse innovation to power the future. Based on the theories of innovation and growing subsistence market literatures, the study propose drivers and outcomes of reverse innovation, a potential similarities and difference in benefiting and challenging firms and consumers in subsistence and developed markets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reverse%20innovation" title="reverse innovation">reverse innovation</a>, <a href="https://publications.waset.org/abstracts/search?q=subsistence%20market" title=" subsistence market"> subsistence market</a>, <a href="https://publications.waset.org/abstracts/search?q=developing%20world" title=" developing world"> developing world</a>, <a href="https://publications.waset.org/abstracts/search?q=developed%20market" title=" developed market "> developed market </a> </p> <a href="https://publications.waset.org/abstracts/36544/reverse-innovation-in-subsistence-and-developed-markets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36544.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">609</span> Development of Novel Amphiphilic Block Copolymer of Renewable ε-Decalactone for Drug Delivery Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deepak%20Kakde">Deepak Kakde</a>, <a href="https://publications.waset.org/abstracts/search?q=Steve%20Howdle"> Steve Howdle</a>, <a href="https://publications.waset.org/abstracts/search?q=Derek%20Irvine"> Derek Irvine</a>, <a href="https://publications.waset.org/abstracts/search?q=Cameron%20Alexander"> Cameron Alexander</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The poor aqueous solubility is one of the major obstacles in the formulation development of many drugs. Around 70% of drugs are poorly soluble in aqueous media. In the last few decades, micelles have emerged as one of the major tools for solubilization of hydrophobic drugs. Micelles are nanosized structures (10-100nm) obtained by self-assembly of amphiphilic molecules into the water. The hydrophobic part of the micelle forms core which is surrounded by a hydrophilic outer shell called corona. These core-shell structures have been used as a drug delivery vehicle for many years. Although, the utility of micelles have been reduced due to the lack of sustainable materials. In the present study, a novel methoxy poly(ethylene glycol)-b-poly(ε-decalactone) (mPEG-b-PεDL) copolymer was synthesized by ring opening polymerization (ROP) of renewable ε-decalactone (ε-DL) monomers on methoxy poly(ethylene glycol) (mPEG) initiator using 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) as a organocatalyst. All the reactions were conducted in bulk to avoid the use of toxic organic solvents. The copolymer was characterized by nuclear magnetic resonance spectroscopy (NMR), gel permeation chromatography (GPC) and differential scanning calorimetry (DSC).The mPEG-b-PεDL block copolymeric micelles containing indomethacin (IND) were prepared by nanoprecipitation method and evaluated as drug delivery vehicle. The size of the micelles was less than 40nm with narrow polydispersity pattern. TEM image showed uniform distribution of spherical micelles defined by clear surface boundary. The indomethacin loading was 7.4% for copolymer with molecular weight of 13000 and drug/polymer weight ratio of 4/50. The higher drug/polymer ratio decreased the drug loading. The drug release study in PBS (pH7.4) showed a sustained release of drug over a period of 24hr. In conclusion, we have developed a new sustainable polymeric material for IND delivery by combining the green synthetic approach with the use of renewable monomer for sustainable development of polymeric nanomedicine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dopolymer" title="dopolymer">dopolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B5-decalactone" title=" ε-decalactone"> ε-decalactone</a>, <a href="https://publications.waset.org/abstracts/search?q=indomethacin" title=" indomethacin"> indomethacin</a>, <a href="https://publications.waset.org/abstracts/search?q=micelles" title=" micelles"> micelles</a> </p> <a href="https://publications.waset.org/abstracts/37066/development-of-novel-amphiphilic-block-copolymer-of-renewable-e-decalactone-for-drug-delivery-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37066.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">608</span> Quantification of Uncertainties Related to the Implementation of Reverse Logistics Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dnaya%20Soukaina">Dnaya Soukaina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It’s over six decades that Reverse logistics had appeared as a research area, and it is emerging again and again in the scientific fields. As reverse logistics presents real potential for value recovery and environmental impacts decrease, it’s still necessary to extend this concept more in the industrial and commercial field especially in developing countries. The process of reverse logistics is a progression of steps beginning with the customer and finishing with the organization or even the customer, however the issue is that this cycle must be adjustable to the organization concerned, in addition of legislative, operational, financial and social obstacles. Literature had demonstrated that there are many other uncertainties while the implementation of this process that vary in function of the sector concerned and the kind of activity. Besides, even if literature is developing this topic over the last years, reseraches about uncertainties quantification in reverse logistics process still being few. the paper has the objective to fill this gap, and carry out a study to identify sustainable strategies that can be adapted to different industrial or commercial sectors to facilitate the implementation of reverse logistics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reverse%20logistics" title="reverse logistics">reverse logistics</a>, <a href="https://publications.waset.org/abstracts/search?q=implementation" title=" implementation"> implementation</a>, <a href="https://publications.waset.org/abstracts/search?q=unceratinties%20quantification" title=" unceratinties quantification"> unceratinties quantification</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20model" title=" mathematical model"> mathematical model</a> </p> <a href="https://publications.waset.org/abstracts/192110/quantification-of-uncertainties-related-to-the-implementation-of-reverse-logistics-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192110.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">20</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">607</span> Towards the Reverse Engineering of UML Sequence Diagrams Using Petri Nets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Baidada">C. Baidada</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Abidi"> M. H. Abidi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Jakimi"> A. Jakimi</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20H.%20El%20Kinani"> E. H. El Kinani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reverse engineering has become a viable method to measure an existing system and reconstruct the necessary model from tis original. The reverse engineering of behavioral models consists in extracting high-level models that help understand the behavior of existing software systems. In this paper, we propose an approach for the reverse engineering of sequence diagrams from the analysis of execution traces produced dynamically by an object-oriented application using petri nets. Our methods show that this approach can produce state diagrams in reasonable time and suggest that these diagrams are helpful in understanding the behavior of the underlying application. Finally we will discuss approachs and tools that are needed in the process of reverse engineering UML behavior. This work is a substantial step towards providing high-quality methodology for effectiveand efficient reverse engineering of sequence diagram. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reverse%20engineering" title="reverse engineering">reverse engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=UML%20behavior" title="UML behavior">UML behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=sequence%20diagram" title=" sequence diagram"> sequence diagram</a>, <a href="https://publications.waset.org/abstracts/search?q=execution%20traces" title=" execution traces"> execution traces</a>, <a href="https://publications.waset.org/abstracts/search?q=petri%20nets" title="petri nets">petri nets</a> </p> <a href="https://publications.waset.org/abstracts/35341/towards-the-reverse-engineering-of-uml-sequence-diagrams-using-petri-nets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35341.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">606</span> Reverse Logistics Information Management Using Ontological Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Lhafiane">F. Lhafiane</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Elbyed"> A. Elbyed</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bouchoum"> M. Bouchoum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reverse Logistics (RL) Process is considered as complex and dynamic network that involves many stakeholders such as: suppliers, manufactures, warehouse, retails, and costumers, this complexity is inherent in such process due to lack of perfect knowledge or conflicting information. Ontologies, on the other hand, can be considered as an approach to overcome the problem of sharing knowledge and communication among the various reverse logistics partners. In this paper, we propose a semantic representation based on hybrid architecture for building the Ontologies in an ascendant way, this method facilitates the semantic reconciliation between the heterogeneous information systems (ICT) that support reverse logistics Processes and product data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reverse%20Logistics" title="Reverse Logistics">Reverse Logistics</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20management" title=" information management"> information management</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneity" title=" heterogeneity"> heterogeneity</a>, <a href="https://publications.waset.org/abstracts/search?q=ontologies" title=" ontologies"> ontologies</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20web" title=" semantic web"> semantic web</a> </p> <a href="https://publications.waset.org/abstracts/23720/reverse-logistics-information-management-using-ontological-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23720.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">492</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">605</span> Competitive Advantages of Efficient Reverse Logistics: A Case Study Integrating Firms and Customers Perspectives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ad%C3%A8le%20Oliva">Adèle Oliva</a>, <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Fosso%20Wamba"> Samuel Fosso Wamba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study looks at how firms can create competitive advantages through effective reserve logistics strategies. Upon using data collected from reverse supply chain managers of electronic commerce companies, the study found that improved reverse logistics management can have a positive impact on companies’ business benefits. These include playing a role in the implementation of many factors that highly influence the decision to purchase, customers’ loyalty, as well as increasing companies’ turnover. As a result, through an efficient design and management of their reverse flow, companies can decrease the costs associated to returned products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reverse%20logistics" title="reverse logistics">reverse logistics</a>, <a href="https://publications.waset.org/abstracts/search?q=competitive%20advantage" title=" competitive advantage"> competitive advantage</a>, <a href="https://publications.waset.org/abstracts/search?q=case%20study" title=" case study"> case study</a>, <a href="https://publications.waset.org/abstracts/search?q=business%20value" title=" business value"> business value</a> </p> <a href="https://publications.waset.org/abstracts/16584/competitive-advantages-of-efficient-reverse-logistics-a-case-study-integrating-firms-and-customers-perspectives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16584.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">604</span> Multi Agent System Architecture Oriented Prometheus Methodology Design for Reverse Logistics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Lhafiane">F. Lhafiane</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Elbyed"> A. Elbyed</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bouchoum"> M. Bouchoum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The design of Reverse logistics Network has attracted growing attention with the stringent pressures from both environmental awareness and business sustainability. Reverse logistical activities include return, remanufacture, disassemble and dispose of products can be quite complex to manage. In addition, demand can be difficult to predict, and decision making is one of the challenges tasks. This complexity has amplified the need to develop an integrated architecture for product return as an enterprise system. The main purpose of this paper is to design Multi agent system (MAS) architecture using the Prometheus methodology to efficiently manage reverse logistics processes. The proposed MAS architecture includes five types of agents: Gate keeping Agent, Collection Agent, Sorting Agent, Processing Agent and Disposal Agent which act respectively during the five steps of reverse logistics Network. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reverse%20logistics" title="reverse logistics">reverse logistics</a>, <a href="https://publications.waset.org/abstracts/search?q=multi%20agent%20system" title=" multi agent system"> multi agent system</a>, <a href="https://publications.waset.org/abstracts/search?q=prometheus%20methodology" title=" prometheus methodology "> prometheus methodology </a> </p> <a href="https://publications.waset.org/abstracts/32686/multi-agent-system-architecture-oriented-prometheus-methodology-design-for-reverse-logistics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32686.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">603</span> Pharmacokinetic and Tissue Distribution of Etoposide Loaded Modified Glycol Chitosan Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akhtar%20Aman">Akhtar Aman</a>, <a href="https://publications.waset.org/abstracts/search?q=Abida%20Raza"> Abida Raza</a>, <a href="https://publications.waset.org/abstracts/search?q=Shumaila%20Bashir"> Shumaila Bashir</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehboob%20Alam"> Mehboob Alam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of efficient delivery systems remains a major concern in cancer chemotherapy as many efficacious anticancer drugs are hydrophobic and difficult to formulate. Nanomedicines based on drug-loaded amphiphilic glycol chitosan micelles offer potential advantages for the formulation of drugs such as etoposide that may improve the pharmacokinetics and reduce the formulation-related adverse effects observed with current formulations. Amphiphilic derivatives of glycol chitosan were synthesized by chemical grafting of palmitic acid N-hydroxysuccinimide and quaternization to glycol chitosan backbone. To this end, a 7.9 kDa glycol chitosan was modified by palmitoylation and quaternization, yielding a 13 kDa amphiphilic polymer. Micelles prepared from this amphiphilic polymer had a size of 162nm and were able to encapsulate up to 3 mg/ml etoposide. Pharmacokinetic results indicated that the GCPQ micelles transformed the biodistribution pattern and increased etoposide concentration in the brain significantly compared to free drugs after intravenous administration. AUC 0.5-24h showed statistically significant difference in ETP-GCPQ vs. Commercial preparation in liver (25 vs.70, p<0.001), spleen (27 vs.36, p<0.05), lungs (42 vs.136,p<0.001),kidneys(25 vs.70,p< 0.05),and brain(19 vs.9,p<0.001). ETP-GCPQ crossed the blood-brain barrier, and 4, 3.5, 2.6, 1.8, 1.7, 1.5, and 2.5 fold higher levels of etoposide were observed at 0.5, 1, 2, 4, 6, 12, and 24hrs; respectively suggesting these systems could deliver hydrophobic anticancer drugs such as etoposide to tumors but also increased their transport through the biological barriers, thus making it a good delivery system <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glycol%20chitosan" title="glycol chitosan">glycol chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=micelles" title=" micelles"> micelles</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmacokinetics" title=" pharmacokinetics"> pharmacokinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20distribution" title=" tissue distribution"> tissue distribution</a> </p> <a href="https://publications.waset.org/abstracts/156481/pharmacokinetic-and-tissue-distribution-of-etoposide-loaded-modified-glycol-chitosan-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156481.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">602</span> Mixed Micellization Study of Adiphenine Hydrochloride with 1-Decyl-3-Methylimidazolium Chloride</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abbul%20B.%20Khan">Abbul B. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Neeraj%20Dohare"> Neeraj Dohare</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajan%20Patel"> Rajan Patel </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The mixed micellization of adiphenine hydrochloride (ADP) with 1-decyl-3-methylimidazolium chloride (C10mim.Cl), was investigated at different mole fractions and temperatures by surface tension measurements. The synergistic behavior (i.e., non-ideal behavior) for binary mixtures was explained by the deviation of critical micelle concentration (cmc) from ideal critical micelle concentration (cmc*), micellar mole fraction (Xim) from ideal micellar mole fraction (Xiideal), the values of interaction parameter (β) and activity coefficients (fi) (for both mixed micelles and mixed monolayer). The excess free energy (∆Gex) for the ADP- C10mim.Cl binary mixtures explain the stability of mixed micelles in comparison to micelles of pure ADP and C10mim.Cl. Interfacial parameters, i.e., Gibbs surface excess (Гmax), minimum head group area at air/ water interface (Amin), and free energy of micellization (ΔG0m) were also evaluated for the systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adiphenine%20hydrochloride" title="adiphenine hydrochloride">adiphenine hydrochloride</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20micelle%20concentration" title=" critical micelle concentration"> critical micelle concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction%20parameter" title=" interaction parameter"> interaction parameter</a>, <a href="https://publications.waset.org/abstracts/search?q=activity%20coefficient" title=" activity coefficient"> activity coefficient</a> </p> <a href="https://publications.waset.org/abstracts/21352/mixed-micellization-study-of-adiphenine-hydrochloride-with-1-decyl-3-methylimidazolium-chloride" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21352.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">601</span> Reverse Logistics, Green Supply Chain, and Carbon Trading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neha%20Asthana">Neha Asthana</a>, <a href="https://publications.waset.org/abstracts/search?q=Vishal%20Krishna%20Prasad"> Vishal Krishna Prasad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reverse logistics and green supply chain form an interconnected and interwoven network of parameters that contribute to enhancement and incremental exchange in the triple bottom line in the consistently changing and fragmenting markets of the globalizing markets of today. Reverse logistics not only contributes to completing the supply chain in a comprehensive and synchronized manner but also contributes to a significant degree in optimizing green supply chains through procedures such as recycling, refurbishing etc. contributing to waste reduction. Carbon trading, owing to its limitations in the global context and being in a nascent stage seeks plethora of research to determine its full application in synergy with reverse logistics and green supply chain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reverse%20logistics" title="reverse logistics">reverse logistics</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20trading" title=" carbon trading"> carbon trading</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20emissions" title=" carbon emissions"> carbon emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20supply%20chain" title=" green supply chain"> green supply chain</a> </p> <a href="https://publications.waset.org/abstracts/11570/reverse-logistics-green-supply-chain-and-carbon-trading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11570.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">600</span> Aristotle University of Thessaloniki</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ail%20Akbar%20Emamverdian">Ail Akbar Emamverdian</a>, <a href="https://publications.waset.org/abstracts/search?q=Neriman%20%C3%96zada"> Neriman Özada</a>, <a href="https://publications.waset.org/abstracts/search?q=Atabak%20Rahimzadeh%20Ilkhchi"> Atabak Rahimzadeh Ilkhchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Emamverdian"> Zahra Emamverdian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The reverse shoulder prosthesis is an innovative procedure design to treat of (GH) joint problems with severe rotator cuff deficiency. The original reverse shoulder prosthesis was invented by France surgery in1985 and has been in clinical use in the United States in 2004. These prostheses consist of baseplate that attached to the glenoid, in order to hold a spherical component, and humeral part consist of polyethylene insert which is flat. This prosthesis is the ‘reverse’ configuration. The indications for the reverse prosthesis are: (1) treating failed hemi arthroplasty with irrecoverable rotator cuff tears, (2) relief of painful arthritis associated with cuff tear arthropathy, (3) instauration after tumor resection, (4) pseudo paralysis because of irrecoverable rotator cuff tears (5) some fractures of the shoulder which reverse shoulder prostheses is only the option for treatment. This prosthesis resulting in relief of pain and decreasing the range of motion in above indications. However, this prosthesis and its applications such as notching of the scapula, dislocation of the prosthesis parts and acromial stress fractures. In this article the reverse shoulder prostheses, indication has been reviewed. This study can make clear aspect of reverse shoulder prosthesis that can help to find some solution in future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=prostheses" title="prostheses">prostheses</a>, <a href="https://publications.waset.org/abstracts/search?q=complications" title=" complications"> complications</a>, <a href="https://publications.waset.org/abstracts/search?q=reverse%20shoulder%20prosthesis" title=" reverse shoulder prosthesis"> reverse shoulder prosthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=indications" title=" indications"> indications</a> </p> <a href="https://publications.waset.org/abstracts/47160/aristotle-university-of-thessaloniki" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47160.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">599</span> 4-Allylpyrocatechol Loaded Polymeric Micelles for Solubility Enhancing and Effects on Streptococcus mutans Biofilms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siriporn%20Okonogi">Siriporn Okonogi</a>, <a href="https://publications.waset.org/abstracts/search?q=Pimpak%20Phumat"> Pimpak Phumat</a>, <a href="https://publications.waset.org/abstracts/search?q=Sakornrat%20Khongkhunthian"> Sakornrat Khongkhunthian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Piper betle has been extensively reported for various pharmacological effects including antimicrobial activity. 4-Allylpyrocatechol (AC) is a principle active compound found in P. betle. However, AC has a problem of solubility in water. The aims of the present study were to prepare AC loaded polymeric micelles for enhancing its water solubility and to evaluate its anti-biofilm activity against oral phathogenic bacteria. AC was loaded in polymeric micelles (PM) of Pluronic F127 by using thin film hydration method to obtain AC loaded PM (PMAC). The results revealed that AC in the form of PMAC possessed high water solubility. PMAC particles were characterized using a transmission electron microscope and photon correlation spectroscopy. Determination of entrapment efficiency (EE) and loading capacity (LC) of PMAC was done by using high-performance liquid chromatography. The highest EE (86.33 ± 14.27 %) and LC (19.25 ± 3.18 %) of PMAC were found when the weight ratio of polymer to AC was 4 to 1. At this ratio, the particles showed spherical in shape with the size of 38.83 ± 1.36 nm and polydispersity index of 0.28 ± 0.10. Zeta potential of the particles is negative with the value of 16.43 ± 0.55 mV. Crystal violet assay and confocal microscopy were applied to evaluate the effects of PMAC on Streptococcus mutans biofilms using chlorhexidine (CHX) as a positive control. PMAC contained 1.5 mg/mL AC could potentially inhibit (102.01 ± 9.18%) and significantly eradicate (85.05 ± 2.03 %) these biofilms (p < 0.05). Comparison with CHX, PMAC showed slightly similar biofilm inhibition but significantly stronger biofilm eradication (p < 0.05) than CHX. It is concluded that PMAC can enhance water solubility and anti-biofilm activity of AC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pluronic" title="pluronic">pluronic</a>, <a href="https://publications.waset.org/abstracts/search?q=polymeric%20micelles" title=" polymeric micelles"> polymeric micelles</a>, <a href="https://publications.waset.org/abstracts/search?q=solubility" title=" solubility"> solubility</a>, <a href="https://publications.waset.org/abstracts/search?q=4-allylpyrocathecol" title=" 4-allylpyrocathecol"> 4-allylpyrocathecol</a>, <a href="https://publications.waset.org/abstracts/search?q=Streptococcus%20mutans" title=" Streptococcus mutans"> Streptococcus mutans</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-biofilm" title=" anti-biofilm"> anti-biofilm</a> </p> <a href="https://publications.waset.org/abstracts/106535/4-allylpyrocatechol-loaded-polymeric-micelles-for-solubility-enhancing-and-effects-on-streptococcus-mutans-biofilms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106535.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">598</span> Tri/Tetra-Block Copolymeric Nanocarriers as a Potential Ocular Delivery System of Lornoxicam: Experimental Design-Based Preparation, in-vitro Characterization and in-vivo Estimation of Transcorneal Permeation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alaa%20Hamed%20Salama">Alaa Hamed Salama</a>, <a href="https://publications.waset.org/abstracts/search?q=Rehab%20Nabil%20Shamma"> Rehab Nabil Shamma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Polymeric micelles that can deliver drug to intended sites of the eye have attracted much scientific attention recently. The aim of this study was to review the aqueous-based formulation of drug-loaded polymeric micelles that hold significant promise for ophthalmic drug delivery. This study investigated the synergistic performance of mixed polymeric micelles made of linear and branched poly (ethylene oxide)-poly (propylene oxide) for the more effective encapsulation of Lornoxicam (LX) as a hydrophobic model drug. Methods: The co-micellization process of 10% binary systems combining different weight ratios of the highly hydrophilic poloxamers; Synperonic® PE/P84, and Synperonic® PE/F127 and the hydrophobic poloxamine counterpart (Tetronic® T701) was investigated by means of photon correlation spectroscopy and cloud point. The drug-loaded micelles were tested for their solubilizing capacity towards LX. Results: Results showed a sharp solubility increase from 0.46 mg/ml up to more than 4.34 mg/ml, representing about 136-fold increase. Optimized formulation was selected to achieve maximum drug solubilizing power and clarity with lowest possible particle size. The optimized formulation was characterized by 1HNMR analysis which revealed complete encapsulation of the drug within the micelles. Further investigations by histopathological and confocal laser studies revealed the non-irritant nature and good corneal penetrating power of the proposed nano-formulation. Conclusion: LX-loaded polymeric nanomicellar formulation was fabricated allowing easy application of the drug in the form of clear eye drops that do not cause blurred vision or discomfort, thus achieving high patient compliance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=confocal%20laser%20scanning%20microscopy" title="confocal laser scanning microscopy">confocal laser scanning microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=Histopathological%20studies" title=" Histopathological studies"> Histopathological studies</a>, <a href="https://publications.waset.org/abstracts/search?q=Lornoxicam" title=" Lornoxicam"> Lornoxicam</a>, <a href="https://publications.waset.org/abstracts/search?q=micellar%20solubilization" title=" micellar solubilization"> micellar solubilization</a> </p> <a href="https://publications.waset.org/abstracts/30660/tritetra-block-copolymeric-nanocarriers-as-a-potential-ocular-delivery-system-of-lornoxicam-experimental-design-based-preparation-in-vitro-characterization-and-in-vivo-estimation-of-transcorneal-permeation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30660.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">597</span> Measurement of Reverse Flow Generated at Cold Exit of Vortex Tube </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Hazwan%20bin%20Yusof">Mohd Hazwan bin Yusof</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroshi%20Katanoda"> Hiroshi Katanoda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to clarify the structure of the cold flow discharged from the vortex tube (VT), the pressure of the cold flow was measured, and a simple flow visualization technique using a 0.75 mm-diameter needle and an oily paint is made to study the reverse flow at the cold exit. It is clear that a negative pressure and positive pressure region exist at a certain pressure and cold fraction area, and that a reverse flow is observed in the negative pressure region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flow%20visualization" title="flow visualization">flow visualization</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20measurement" title=" pressure measurement"> pressure measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=reverse%20flow" title=" reverse flow"> reverse flow</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20tube" title=" vortex tube"> vortex tube</a> </p> <a href="https://publications.waset.org/abstracts/10289/measurement-of-reverse-flow-generated-at-cold-exit-of-vortex-tube" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">519</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">596</span> The Perspective of Waste Frying Oil in São Paulo and Its Dimensions in the Reverse Logistics of the Production of Biodiesel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Max%20Filipe%20Goncalves">Max Filipe Goncalves</a>, <a href="https://publications.waset.org/abstracts/search?q=Alessandra%20Concilio"> Alessandra Concilio</a>, <a href="https://publications.waset.org/abstracts/search?q=Rodrigo%20Shimada"> Rodrigo Shimada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The waste frying oil is highly pollutant when disposed incorrectly in the environment. Is necessary search of the Reverse Logistics to identify how can be structure to return the waste like this to productive chain and to be used in the new process. In this context, the objective of this paper is to analyze the perspective of the waste frying oil in São Paulo, and its dimensions in the production of biodiesel. Subjacent factors such as the agents, motivators and legal aspects were analyzed to demonstrate it. Then, the SWOT matrix was built with the aspects observed and the forces, weaknesses, opportunities and threats of the reverse logistic chain in São Paulo. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=perspective" title=" perspective"> perspective</a>, <a href="https://publications.waset.org/abstracts/search?q=reverse%20logistic" title=" reverse logistic"> reverse logistic</a>, <a href="https://publications.waset.org/abstracts/search?q=WFO" title=" WFO"> WFO</a> </p> <a href="https://publications.waset.org/abstracts/59374/the-perspective-of-waste-frying-oil-in-sao-paulo-and-its-dimensions-in-the-reverse-logistics-of-the-production-of-biodiesel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59374.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">595</span> A Performance Model for Designing Network in Reverse Logistic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Dhib">S. Dhib</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Addouche"> S. A. Addouche</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Loukil"> T. Loukil</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Elmhamedi"> A. Elmhamedi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a reverse supply chain network is investigated for a decision making. This decision is surrounded by complex flows of returned products, due to the increasing quantity, the type of returned products and the variety of recovery option products (reuse, recycling, and refurbishment). The most important problem in the reverse logistic network (RLN) is to orient returned products to the suitable type of recovery option. However, returned products orientations from collect sources to the recovery disposition have not well considered in performance model. In this study, we propose a performance model for designing a network configuration on reverse logistics. Conceptual and analytical models are developed with taking into account operational, economic and environmental factors on designing network. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reverse%20logistics" title="reverse logistics">reverse logistics</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20design" title=" network design"> network design</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20model" title=" performance model"> performance model</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20loop%20configuration" title=" open loop configuration"> open loop configuration</a> </p> <a href="https://publications.waset.org/abstracts/40989/a-performance-model-for-designing-network-in-reverse-logistic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">594</span> Polymeric Micelles Based on Block Copolymer α-Tocopherol Succinate-g-Carboxymethyl Chitosan for Tamoxifen Delivery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sunil%20K.%20Jena">Sunil K. Jena</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjaya%20K.%20Samal"> Sanjaya K. Samal</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahesh%20Chand"> Mahesh Chand</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhay%20T.%20Sangamwar"> Abhay T. Sangamwar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tamoxifen (TMX) and its analogues are approved as a first line therapy for the treatment of estrogen receptor-positive tumors. However, clinical development of TMX has been hampered by its low bioavailability and severe hepatotoxicity. Herein, we attempt to design a new drug delivery vehicle that could enhance the pharmacokinetic performance of TMX. Initially, high-molecular weight carboxymethyl chitosan was hydrolyzed to low-molecular weight carboxymethyl chitosan (LMW CMC) with hydrogen peroxide under the catalysis of phosphotungstic acid. Amphiphilic block copolymers of LMW CMC were synthesized via amidation reaction between the carboxyl group of α-tocopherol succinate (TS) and an amine group of LMW CMC. These amphiphilic block copolymers were self-assembled to nanosize core-shell-structural micelles in the aqueous medium. The critical micelle concentration (CMC) decreased with the increasing substitution of TS on LMW CMC, which ranged from 1.58 × 10-6 to 7.94 × 10-8 g/mL. Maximum TMX loading up to 8.08 ± 0.98% was achieved with Cmc-TS4.5 (TMX/Cmc-TS4.5 with 1:8 weight ratio). Both blank and TMX-loaded polymeric micelles (TMX-PM) of Cmc-TS4.5 exhibits spherical shape with the particle size below 200 nm. TMX-PM has been found to be stable in the gastrointestinal conditions and released only 44.5% of the total drug content by the first 72 h in simulated gastric fluid (SGF), pH 1.2. However, the presence of pepsin does not significantly increased the TMX release in SGF, pH 1.2, released only about 46.2% by the first 72 h suggesting its inability to cleave the peptide bond. In contrast, the release of TMX from TMX-PM4.5 in SIF, pH 6.8 (without pancreatin) was slow and sustained, released only about 10.43% of the total drug content within the first 30 min and nearly about 12.41% by the first 72 h. The presence of pancreatin in SIF, pH 6.8 led to an improvement in drug release. About 28.09% of incorporated TMX was released in the presence of pancreatin in 72 h. A cytotoxicity study demonstrated that TMX-PM exhibited time-delayed cytotoxicity in human MCF-7 breast cancer cells. Pharmacokinetic studies on Sprague-Dawley rats revealed a remarkable increase in oral bioavailability (1.87-fold) with significant (p < 0.0001) enhancement in AUC0-72 h, t1/2 and MRT of TMX-PM4.5 than that of TMX-suspension. Thus, the results suggested that CMC-TS micelles are a promising carrier for TMX delivery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carboxymethyl%20chitosan" title="carboxymethyl chitosan">carboxymethyl chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=d-%CE%B1-tocopherol%20succinate" title=" d-α-tocopherol succinate"> d-α-tocopherol succinate</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmacokinetic" title=" pharmacokinetic"> pharmacokinetic</a>, <a href="https://publications.waset.org/abstracts/search?q=polymeric%20micelles" title=" polymeric micelles"> polymeric micelles</a>, <a href="https://publications.waset.org/abstracts/search?q=tamoxifen" title=" tamoxifen"> tamoxifen</a> </p> <a href="https://publications.waset.org/abstracts/40966/polymeric-micelles-based-on-block-copolymer-a-tocopherol-succinate-g-carboxymethyl-chitosan-for-tamoxifen-delivery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40966.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reverse%20micelles&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reverse%20micelles&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reverse%20micelles&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reverse%20micelles&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reverse%20micelles&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reverse%20micelles&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reverse%20micelles&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reverse%20micelles&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reverse%20micelles&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reverse%20micelles&page=20">20</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reverse%20micelles&page=21">21</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reverse%20micelles&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>