CINXE.COM
Search results for: Arvind K. Jain
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Arvind K. Jain</title> <meta name="description" content="Search results for: Arvind K. Jain"> <meta name="keywords" content="Arvind K. Jain"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Arvind K. Jain" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Arvind K. Jain"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 248</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Arvind K. Jain</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">248</span> Types of Communication Strategies in Jainism: A Study of Jain Mendicants, Educators and Lay Persons</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bhumi%20Shah">Bhumi Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the study is to create understanding of communication strategies followed by Jain mendicants, educators, and lay persons. Second objective of the study is to see ancient means of communication have reformed in this digital generation. For these purposes of the study, research was carried out among Jain lay persons, educators and mendicants. To understand how traditional methods of communication affect the understanding of Jain religion. The paper attempts further elaborate and analyse various degrees of involvement and expectations of Jain Lay persons and mendicants in the process of religious discourse. In doing so the paper would provide an in- depth debate and discussion about communication patterns and the actual impact to the original meaning of the religion. The study was carried out in the city of Ahmedabad India, where Jains are concentrated in urban settings. In depth interviews were carried out as to understand different communication strategies followed by them. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=customs" title="customs">customs</a>, <a href="https://publications.waset.org/abstracts/search?q=ethics" title=" ethics"> ethics</a>, <a href="https://publications.waset.org/abstracts/search?q=Jainism" title=" Jainism"> Jainism</a>, <a href="https://publications.waset.org/abstracts/search?q=Jain%20mendicants" title=" Jain mendicants"> Jain mendicants</a>, <a href="https://publications.waset.org/abstracts/search?q=religious%20communication" title=" religious communication"> religious communication</a>, <a href="https://publications.waset.org/abstracts/search?q=traditions" title=" traditions"> traditions</a>, <a href="https://publications.waset.org/abstracts/search?q=rituals" title=" rituals "> rituals </a> </p> <a href="https://publications.waset.org/abstracts/128328/types-of-communication-strategies-in-jainism-a-study-of-jain-mendicants-educators-and-lay-persons" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128328.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">247</span> Loading Methodology for a Capacity Constrained Job-Shop</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Viraj%20Tyagi">Viraj Tyagi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajai%20Jain"> Ajai Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20K.%20Jain"> P. K. Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Aarushi%20Jain"> Aarushi Jain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a genetic algorithm based loading methodology for a capacity constrained job-shop with the consideration of alternative process plans for each part to be produced. Performance analysis of the proposed methodology is carried out for two case studies by considering two different manufacturing scenarios. Results obtained indicate that the methodology is quite effective in improving the shop load balance, and hence, it can be included in the frameworks of manufacturing planning systems of job-shop oriented industries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20planning" title="manufacturing planning">manufacturing planning</a>, <a href="https://publications.waset.org/abstracts/search?q=loading" title=" loading"> loading</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=job%20shop" title=" job shop"> job shop</a> </p> <a href="https://publications.waset.org/abstracts/52652/loading-methodology-for-a-capacity-constrained-job-shop" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52652.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">246</span> Solidarity and Authority in the Characters of Shakespeare’s Drama</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vinay%20Jain">Vinay Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Meena%20Jain"> Meena Jain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thee is generally used in Shakespeare by a master to a servant. Being the appropriate address to a servant, it is used in confidential and good-humoured utterances. You was received by a master. Hindi tu, tum, and aap express roughly the same social meanings as English thou/thee and you used to express respectively. The pronouns thou, thee and you have been reduced to you whereas in Hindi we still have all three pronouns – aap, tum and tu. It reveals that our society has not yet reached the unidimensional solidarity semantics toward which the present European pronominal usage seems to be moving. Shakespeare’s use of pronouns and Hindi pronouns are correlated with the interlocutor’s social status and intimacy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brown%20and%20gilman" title="brown and gilman">brown and gilman</a>, <a href="https://publications.waset.org/abstracts/search?q=elizabethan%20pronouns" title=" elizabethan pronouns"> elizabethan pronouns</a>, <a href="https://publications.waset.org/abstracts/search?q=honorific%20pronoun" title=" honorific pronoun"> honorific pronoun</a>, <a href="https://publications.waset.org/abstracts/search?q=power" title=" power"> power</a>, <a href="https://publications.waset.org/abstracts/search?q=solidarity" title=" solidarity"> solidarity</a> </p> <a href="https://publications.waset.org/abstracts/171140/solidarity-and-authority-in-the-characters-of-shakespeares-drama" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171140.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">245</span> Exploratory Data Analysis of Passenger Movement on Delhi Urban Bus Route</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sourabh%20Jain">Sourabh Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Sukhvir%20Singh%20Jain"> Sukhvir Singh Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaurav%20V.%20Jain"> Gaurav V. Jain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Intelligent Transportation System is an integrated application of communication, control and monitoring and display process technologies for developing a user–friendly transportation system for urban areas in developing countries. In fact, the development of a country and the progress of its transportation system are complementary to each other. Urban traffic has been growing vigorously due to population growth as well as escalation of vehicle ownership causing congestion, delays, pollution, accidents, high-energy consumption and low productivity of resources. The development and management of urban transport in developing countries like India however, is at tryout stage with very few accumulations. Under the umbrella of ITS, urban corridor management strategy have proven to be one of the most successful system in accomplishing these objectives. The present study interprets and figures out the performance of the 27.4 km long Urban Bus route having six intersections, five flyovers and 29 bus stops that covers significant area of the city by causality analysis. Performance interpretations incorporate Passenger Boarding and Alighting, Dwell time, Distance between Bus Stops and Total trip time taken by bus on selected urban route. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=congestion" title="congestion">congestion</a>, <a href="https://publications.waset.org/abstracts/search?q=dwell%20time" title=" dwell time"> dwell time</a>, <a href="https://publications.waset.org/abstracts/search?q=passengers%20boarding%20alighting" title=" passengers boarding alighting"> passengers boarding alighting</a>, <a href="https://publications.waset.org/abstracts/search?q=travel%20time" title=" travel time"> travel time</a> </p> <a href="https://publications.waset.org/abstracts/64875/exploratory-data-analysis-of-passenger-movement-on-delhi-urban-bus-route" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64875.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">244</span> Comparison of Wake Oscillator Models to Predict Vortex-Induced Vibration of Tall Chimneys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saba%20Rahman">Saba Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Arvind%20K.%20Jain"> Arvind K. Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20D.%20Bharti"> S. D. Bharti</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20K.%20Datta"> T. K. Datta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study compares the semi-empirical wake-oscillator models that are used to predict vortex-induced vibration of structures. These models include those proposed by Facchinetti, Farshidian, and Dolatabadi, and Skop and Griffin. These models combine a wake oscillator model resembling the Van der Pol oscillator model and a single degree of freedom oscillation model. In order to use these models for estimating the top displacement of chimneys, the first mode vibration of the chimneys is only considered. The modal equation of the chimney constitutes the single degree of freedom model (SDOF). The equations of the wake oscillator model and the SDOF are simultaneously solved using an iterative procedure. The empirical parameters used in the wake-oscillator models are estimated using a newly developed approach, and response is compared with experimental data, which appeared comparable. For carrying out the iterative solution, the ode solver of MATLAB is used. To carry out the comparative study, a tall concrete chimney of height 210m has been chosen with the base diameter as 28m, top diameter as 20m, and thickness as 0.3m. The responses of the chimney are also determined using the linear model proposed by E. Simiu and the deterministic model given in Eurocode. It is observed from the comparative study that the responses predicted by the Facchinetti model and the model proposed by Skop and Griffin are nearly the same, while the model proposed by Fashidian and Dolatabadi predicts a higher response. The linear model without considering the aero-elastic phenomenon provides a less response as compared to the non-linear models. Further, for large damping, the prediction of the response by the Euro code is relatively well compared to those of non-linear models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chimney" title="chimney">chimney</a>, <a href="https://publications.waset.org/abstracts/search?q=deterministic%20model" title=" deterministic model"> deterministic model</a>, <a href="https://publications.waset.org/abstracts/search?q=van%20der%20pol" title=" van der pol"> van der pol</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex-induced%20vibration" title=" vortex-induced vibration"> vortex-induced vibration</a> </p> <a href="https://publications.waset.org/abstracts/141523/comparison-of-wake-oscillator-models-to-predict-vortex-induced-vibration-of-tall-chimneys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141523.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">243</span> Isotherm Study for Phenol Removal onto GAC</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lallan%20Singh%20Yadav">Lallan Singh Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Bijay%20Kumar%20Mishra"> Bijay Kumar Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=Manoj%20Kumar%20Mahapatra"> Manoj Kumar Mahapatra</a>, <a href="https://publications.waset.org/abstracts/search?q=Arvind%20Kumar"> Arvind Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Adsorption data for phenol removal onto granular activated carbon were fitted to Langmuir and Freundlich isotherms. The adsorption capacity of phenol was estimated to be 16.12 mg/g at initial pH=5.7. The thermodynamics of adsorption process has also been determined in the present work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=phenol" title=" phenol"> phenol</a>, <a href="https://publications.waset.org/abstracts/search?q=granular%20activated%20carbon" title=" granular activated carbon"> granular activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=bioinformatics" title=" bioinformatics"> bioinformatics</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedicine" title=" biomedicine"> biomedicine</a> </p> <a href="https://publications.waset.org/abstracts/8892/isotherm-study-for-phenol-removal-onto-gac" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8892.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">615</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">242</span> Electron Impact Ionization Cross-Sections for e-C₅H₅N₅ Scattering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manoj%20Kumar">Manoj Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ionization cross sections of molecules due to electron impact play an important role in chemical processes in various branches of applied physics, such as radiation chemistry, gas discharges, plasmas etching in semiconductors, planetary upper atmospheric physics, mass spectrometry, etc. In the present work, we have calculated the total ionization cross sections for Adenine (C₅H₅N₅), a biologically important molecule, by electron impact in the incident electron energy range from ionization threshold to 2 keV employing a well-known Jain-Khare semiempirical formulation based on Bethe and Möllor cross sections. In the non-availability of the experimental results, the present results are in good agreement qualitatively as well as quantitatively with available theoretical results. The present results drive our confidence for further investigation of complex bio-molecule with better accuracy. Notwithstanding, the present method can deduce reliable cross-sectional data for complex targets with adequate accuracy and may facilitate the acclimatization of calculated cross-sections into atomic molecular cross-section data sets for modeling codes and other applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electron%20impact%20ionization%20cross-sections" title="electron impact ionization cross-sections">electron impact ionization cross-sections</a>, <a href="https://publications.waset.org/abstracts/search?q=oscillator%20strength" title=" oscillator strength"> oscillator strength</a>, <a href="https://publications.waset.org/abstracts/search?q=jain-khare%20semiempirical%20approach" title=" jain-khare semiempirical approach"> jain-khare semiempirical approach</a> </p> <a href="https://publications.waset.org/abstracts/161986/electron-impact-ionization-cross-sections-for-e-c5h5n5-scattering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161986.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">241</span> Urban Corridor Management Strategy Based on Intelligent Transportation System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sourabh%20Jain">Sourabh Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Sukhvir%20Singh%20Jain"> Sukhvir Singh Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaurav%20V.%20Jain"> Gaurav V. Jain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Intelligent Transportation System (ITS) is the application of technology for developing a user–friendly transportation system for urban areas in developing countries. The goal of urban corridor management using ITS in road transport is to achieve improvements in mobility, safety, and the productivity of the transportation system within the available facilities through the integrated application of advanced monitoring, communications, computer, display, and control process technologies, both in the vehicle and on the road. This paper attempts to present the past studies regarding several ITS available that have been successfully deployed in urban corridors of India and abroad, and to know about the current scenario and the methodology considered for planning, design, and operation of Traffic Management Systems. This paper also presents the endeavor that was made to interpret and figure out the performance of the 27.4 Km long study corridor having eight intersections and four flyovers. The corridor consisting of 6 lanes as well as 8 lanes divided road network. Two categories of data were collected on February 2016 such as traffic data (traffic volume, spot speed, delay) and road characteristics data (no. of lanes, lane width, bus stops, mid-block sections, intersections, flyovers). The instruments used for collecting the data were video camera, radar gun, mobile GPS and stopwatch. From analysis, the performance interpretations incorporated were identification of peak hours and off peak hours, congestion and level of service (LOS) at mid blocks, delay followed by the plotting speed contours and recommending urban corridor management strategies. From the analysis, it is found that ITS based urban corridor management strategies will be useful to reduce congestion, fuel consumption and pollution so as to provide comfort and efficiency to the users. The paper presented urban corridor management strategies based on sensors incorporated in both vehicles and on the roads. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=congestion" title="congestion">congestion</a>, <a href="https://publications.waset.org/abstracts/search?q=ITS%20strategies" title=" ITS strategies"> ITS strategies</a>, <a href="https://publications.waset.org/abstracts/search?q=mobility" title=" mobility"> mobility</a>, <a href="https://publications.waset.org/abstracts/search?q=safety" title=" safety"> safety</a> </p> <a href="https://publications.waset.org/abstracts/50368/urban-corridor-management-strategy-based-on-intelligent-transportation-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">240</span> Urban Freight Station: An Innovative Approach to Urban Freight</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amit%20Kumar%20Jain">Amit Kumar Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Surbhi%20Jain"> Surbhi Jain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The urban freight in a city constitutes 10 to 18 per cent of all city road traffic, and 40 per cent of air pollution and noise emissions, are directly related to commercial transport. The policy measures implemented by urban planners have sought to restrict rather than assist goods-vehicle operations. This approach has temporarily controlled the urban transport demand during peak hours of traffic but has not effectively solved transport congestion. The solution discussed in the paper envisages the development of a comprehensive network of Urban Freight Stations (UFS) connected through underground conveyor belts in the city in line with baggage segregation and distribution in any of the major airports. The transportation of freight shall be done in standard size containers/cars through rail borne carts. The freight can be despatched or received from any of the UFS. Once freight is booked for a destination from any of the UFS, it would be stuffed in the container and digitally tagged for the destination. The container would reach the destination UFS through a network of rail borne carts. The container would be de-stuffed at the destination UFS and sent for further delivery, or the consignee may be asked to collect the consignment from urban freight station. The obvious benefits would be decongestion of roads, reduction in air and noise pollution, saving in manpower used for freight transportation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=congestion" title="congestion">congestion</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20freight" title=" urban freight"> urban freight</a>, <a href="https://publications.waset.org/abstracts/search?q=intelligent%20transport%20system" title=" intelligent transport system"> intelligent transport system</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a> </p> <a href="https://publications.waset.org/abstracts/51283/urban-freight-station-an-innovative-approach-to-urban-freight" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51283.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">239</span> Antidiabetic Effect of Aqueous Extract of Cedrus deodara Roxb. Heartwood in Alloxan-Induced Diabetic Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sourabh%20Jain">Sourabh Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Vikas%20Jain"> Vikas Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Dharmendar%20Kumar"> Dharmendar Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study investigated the antidiabetic potential of Cedrus deodara heart wood aqueous extract. Aqueous extract of Cedrus deodara was found to reduce blood sugar level in alloxan induced diabetic rats. Reduction in blood sugar could be seen from 5th day after continuous administration of the extract and on 21st day sugar levels were found to be reduced by 40.20%. Oxidative stress produced by alloxan was found to be significantly lowered by the administration of Cedrus deodara aqueous extract (500 mg/kg). This was evident from a significant decrease in lipid per oxidation level in liver induced by alloxan. The level of Glutathione, Catalase, Superoxide dismutase and Glutathione-S-Transferase in liver, kidney and pancreas tissue were found to be increased significantly after drug administration. The results obtained in the present study suggest that the Cedrus deodara aqueous extract effectively and significantly reduced the oxidative stress induced by alloxan and produced a reduction in blood sugar level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cedrus%20deodara" title="Cedrus deodara">Cedrus deodara</a>, <a href="https://publications.waset.org/abstracts/search?q=heartwood" title=" heartwood"> heartwood</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-diabetic" title=" anti-diabetic"> anti-diabetic</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-inflammatory" title=" anti-inflammatory"> anti-inflammatory</a> </p> <a href="https://publications.waset.org/abstracts/3346/antidiabetic-effect-of-aqueous-extract-of-cedrus-deodara-roxb-heartwood-in-alloxan-induced-diabetic-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">238</span> Antidiabetic Activity of Cedrus deodara Aqueous Extract and Its Relationship with Its Antioxidant Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sourabh%20Jain">Sourabh Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Vikas%20Jain"> Vikas Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Dharmendra%20Kumnar"> Dharmendra Kumnar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study investigated the antidiabetic potential of Cedrus deodara heart wood aqueous extract and its relationship in alloxan-induced diabetic rats. Aqueous extract of Cedrus deodara was found to reduce blood sugar level in alloxan induced diabetic rats. Reduction in blood sugar could be seen from 5th day after continuous administration of the extract and on 21st day sugar levels were found to be reduced by 40.20%. Oxidative stress produced by alloxan was found to be significantly lowered by the administration of Cedrus deodara aqueous extract (500 mg/kg). This was evident from a significant decrease in lipid per oxidation level in liver induced by alloxan. The level of Glutathione, Catalase, Superoxide dismutase and Glutathione-S-Transferase in liver, kidney and pancreas tissue were found to be increased significantly after drug administration. The results obtained in the present study suggest that the Cedrus deodara aqueous extract effectively and significantly reduced the oxidative stress induced by alloxan and produced a reduction in blood sugar level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cedrus%20deodara" title="Cedrus deodara">Cedrus deodara</a>, <a href="https://publications.waset.org/abstracts/search?q=heartwood" title=" heartwood"> heartwood</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-diabetic" title=" anti-diabetic"> anti-diabetic</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-inflammatory" title=" anti-inflammatory"> anti-inflammatory</a> </p> <a href="https://publications.waset.org/abstracts/3590/antidiabetic-activity-of-cedrus-deodara-aqueous-extract-and-its-relationship-with-its-antioxidant-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3590.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">237</span> Influence of Fiber Loading and Surface Treatments on Mechanical Properties of Pineapple Leaf Fiber Reinforced Polymer Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jain%20Jyoti">Jain Jyoti</a>, <a href="https://publications.waset.org/abstracts/search?q=Jain%20Shorab"> Jain Shorab</a>, <a href="https://publications.waset.org/abstracts/search?q=Sinha%20Shishir"> Sinha Shishir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current scenario, development of new biodegradable composites with the reinforcement of some plant derived natural fibers are in major research concern. Abundant quantity of these natural plant derived fibers including sisal, ramp, jute, wheat straw, pine, pineapple, bagasse, etc. can be used exclusively or in combination with other natural or synthetic fibers to augment their specific properties like chemical, mechanical or thermal properties. Among all natural fibers, wheat straw, bagasse, kenaf, pineapple leaf, banana, coir, ramie, flax, etc. pineapple leaf fibers have very good mechanical properties. Being hydrophilic in nature, pineapple leaf fibers have very less affinity towards all types of polymer matrixes. Not much work has been carried out in this area. Surface treatments like alkaline treatment in different concentrations were conducted to improve its compatibility towards hydrophobic polymer matrix. Pineapple leaf fiber epoxy composites have been prepared using hand layup method. Effect of variation in fiber loading up to 20% in epoxy composites has been studied for mechanical properties like tensile strength and flexural strength. Analysis of fiber morphology has also been studied using FTIR, XRD. SEM micrographs have also been studied for fracture surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite" title="composite">composite</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical" title=" mechanical"> mechanical</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20fiber" title=" natural fiber"> natural fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=pineapple%20leaf%20fiber" title=" pineapple leaf fiber"> pineapple leaf fiber</a> </p> <a href="https://publications.waset.org/abstracts/75998/influence-of-fiber-loading-and-surface-treatments-on-mechanical-properties-of-pineapple-leaf-fiber-reinforced-polymer-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">236</span> Tectonic Movements and Ecosystems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arvind%20Kumar%20Trivedi">Arvind Kumar Trivedi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Our Earth is dynamic in nature and its structure behaves like a puzzle because the interior of the Earth is in both gaseous as well as molten (liquid) form and the crust i.e. the outermost surface is in solid form. This Earth was one landmass known as ‘Pangaea’ in the beginning. With time due to complex phenomena of tectonic movements, it was broken into various landmasses along with water bodies. This Pangaea was in direct contact with the atmosphere playing dominant role in creating various ecosystems on the Earth. Ecosystems mean: Eco (environment body) and systems (interdependent complex of all the organisms interacting with each other). This paper provides an in-depth discussion on tectonic movements as well as ecosystems & how these two affect each other and in the end, we will enlist various methods on how to preserve our ‘Mother Earth’. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tectonic%20movements" title="tectonic movements">tectonic movements</a>, <a href="https://publications.waset.org/abstracts/search?q=ecosystems" title=" ecosystems"> ecosystems</a>, <a href="https://publications.waset.org/abstracts/search?q=plate%20tectonics" title=" plate tectonics"> plate tectonics</a>, <a href="https://publications.waset.org/abstracts/search?q=impact" title=" impact"> impact</a> </p> <a href="https://publications.waset.org/abstracts/186089/tectonic-movements-and-ecosystems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186089.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">49</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">235</span> A Problem in Microstretch Thermoelastic Diffusive Medium </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Devinder%20Singh">Devinder Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Arvind%20Kumar"> Arvind Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajneesh%20Kumar"> Rajneesh Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The general solution of the equations for a homogeneous isotropic microstretch thermo elastic medium with mass diffusion for two dimensional problems is obtained due to normal and tangential forces. The integral transform technique is used to obtain the components of displacements, microrotation, stress and mass concentration, temperature change and mass concentration. A particular case of interest is deduced from the present investigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=normal%20force" title="normal force">normal force</a>, <a href="https://publications.waset.org/abstracts/search?q=tangential%20force" title="tangential force">tangential force</a>, <a href="https://publications.waset.org/abstracts/search?q=microstretch" title=" microstretch"> microstretch</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoelastic" title=" thermoelastic"> thermoelastic</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20integral%20transform%20technique" title=" the integral transform technique"> the integral transform technique</a>, <a href="https://publications.waset.org/abstracts/search?q=deforming%20force" title=" deforming force"> deforming force</a>, <a href="https://publications.waset.org/abstracts/search?q=microstress%20force" title=" microstress force"> microstress force</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20value%20problem" title=" boundary value problem"> boundary value problem</a> </p> <a href="https://publications.waset.org/abstracts/2040/a-problem-in-microstretch-thermoelastic-diffusive-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2040.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">618</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">234</span> talk2all: A Revolutionary Tool for International Medical Tourism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Madhukar%20Kasarla">Madhukar Kasarla</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumit%20Fogla"> Sumit Fogla</a>, <a href="https://publications.waset.org/abstracts/search?q=Kiran%20Panuganti"> Kiran Panuganti</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaurav%20Jain"> Gaurav Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhijit%20Ramanujam"> Abhijit Ramanujam</a>, <a href="https://publications.waset.org/abstracts/search?q=Astha%20Jain"> Astha Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Shashank%20Kraleti"> Shashank Kraleti</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharat%20Musham"> Sharat Musham</a>, <a href="https://publications.waset.org/abstracts/search?q=Arun%20Chaudhury"> Arun Chaudhury</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Patients have often chosen to travel for care — making pilgrimages to academic meccas and state-of-the-art hospitals for sophisticated surgery. This culture is still persistent in the landscape of US healthcare, with hundred thousand of visitors coming to the shores of United States to seek the high quality of medical care. One of the major challenges in this form of medical tourism has been the language barrier. Thus, an Iraqi patient, with immediate needs of communicating the healthcare needs to the treating team in the hospital, may face huge barrier in effective patient-doctor communication, delaying care and even at times reducing the quality. To circumvent these challenges, we are proposing the use of a state-of-the-art tool, Talk2All, which can translate nearly one hundred international languages (and even sign language) in real time. The tool is an easy to download app and highly user friendly. It builds on machine learning principles to decode different languages in real time. We suggest that the use of Talk2All will tremendously enhance communication in the hospital setting, effectively breaking the language barrier. We propose that vigorous incorporation of Talk2All shall overcome practical challenges in international medical and surgical tourism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=language%20translation" title="language translation">language translation</a>, <a href="https://publications.waset.org/abstracts/search?q=communication" title=" communication"> communication</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20tourism" title=" medical tourism"> medical tourism</a> </p> <a href="https://publications.waset.org/abstracts/85480/talk2all-a-revolutionary-tool-for-international-medical-tourism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85480.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">233</span> Effect of Yb and Sm doping on Thermoluminescence and Optical Properties of LiF Nanophosphor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rakesh%20Dogra">Rakesh Dogra</a>, <a href="https://publications.waset.org/abstracts/search?q=Arun%20Kumar"> Arun Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Arvind%20Kumar%20Sharma"> Arvind Kumar Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reports the thermoluminescence as well as optical properties of rare earth doped lithium fluoride (LiF) nanophosphor, synthesized via chemical route. The rare earth impurities (Yb and Sm) have been observed to increase the deep trap center capacity, which, in turn, enhance the radiation resistance of the LiF. This suggests the viability of these materials to be used as high dose thermoluminescent detectors at high temperature. Further, optical absorption measurements revealed the formation of radiation induced stable color centers in LiF at room temperature, which are independent of the rare earth dopant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lithium%20flouride" title="lithium flouride">lithium flouride</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoluminescence" title=" thermoluminescence"> thermoluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=UV-VIS%20spectroscopy" title=" UV-VIS spectroscopy"> UV-VIS spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=Gamma%20radiations" title=" Gamma radiations"> Gamma radiations</a> </p> <a href="https://publications.waset.org/abstracts/164905/effect-of-yb-and-sm-doping-on-thermoluminescence-and-optical-properties-of-lif-nanophosphor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164905.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">232</span> Development and Characterization of Soya Phosphatidylcholine Complex of Coumestans from Eclipta alba for the Management of Hepatotoxicity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhishek%20Kumar%20Jain">Abhishek Kumar Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Anki%20Jain"> Anki Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuvraj%20Singh%20Dangi"> Yuvraj Singh Dangi</a>, <a href="https://publications.waset.org/abstracts/search?q=Brajesh%20Kumar%20Tiwari"> Brajesh Kumar Tiwari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The plant Eclipta alba Hassk. (Family: Compositae) contains coumestans (wedelolactone and demethyl wedelolactone) used in liver disorders. The objective of the present investigation was to develop a formulation of these coumestans in combination with the soya phosphatidylcholine (PC), in order to overcome the limitation of absorption and to investigate the protective effect of coumestans–phosphatidylcholine complex (C-PC) on carbon tetrachloride induced acute liver damage in rats. Methanolic extract (ME) of the whole plant of Eclipta alba was fractionated with water and then with ehylacetate. Coumestans were characterized in the ethylacetate fraction of methanolic extract (EFME). The C-PC was prepared by dissolving EFME and PC in 1:1 ratio in dichloromethane and heating at 60°C for 2 h. The C-PC was characterized by DSC and FTIR spectroscopy. In vitro drug release from EFME and C-PC through egg membrane was measured using UV-Visible spectrophotometer. The hepatoprotective activity of C-PC (equivalent to 5.35 and 10.7 mg/kg body weight of EFME), ME 250 mg/kg and EFME 5.35 mg/kg was evaluated by measuring various enzymes level. C-PC significantly provided better protection to the liver by restoring the enzyme levels of SGPT, SGOT, ALP and total billirubin with respect to carbon tetrachloride (CCl4) treated group (P < 0.001). Histopathological studies were also performed. The C-PC provided better protection to rat liver than ME and EFME at similar doses as well as shown significant regeneration of hepatocytes, central vein, intact cytoplasm, and nucleus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hepatotoxicity" title="hepatotoxicity">hepatotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=wedelolactone" title=" wedelolactone"> wedelolactone</a>, <a href="https://publications.waset.org/abstracts/search?q=soya%20phosphatidylcholine" title=" soya phosphatidylcholine"> soya phosphatidylcholine</a>, <a href="https://publications.waset.org/abstracts/search?q=eclipta%20alba" title=" eclipta alba"> eclipta alba</a> </p> <a href="https://publications.waset.org/abstracts/56280/development-and-characterization-of-soya-phosphatidylcholine-complex-of-coumestans-from-eclipta-alba-for-the-management-of-hepatotoxicity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56280.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">231</span> General Architecture for Automation of Machine Learning Practices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=U.%20Borasi">U. Borasi</a>, <a href="https://publications.waset.org/abstracts/search?q=Amit%20Kr.%20Jain"> Amit Kr. Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Rakesh"> Rakesh</a>, <a href="https://publications.waset.org/abstracts/search?q=Piyush%20Jain"> Piyush Jain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Data collection, data preparation, model training, model evaluation, and deployment are all processes in a typical machine learning workflow. Training data needs to be gathered and organised. This often entails collecting a sizable dataset and cleaning it to remove or correct any inaccurate or missing information. Preparing the data for use in the machine learning model requires pre-processing it after it has been acquired. This often entails actions like scaling or normalising the data, handling outliers, selecting appropriate features, reducing dimensionality, etc. This pre-processed data is then used to train a model on some machine learning algorithm. After the model has been trained, it needs to be assessed by determining metrics like accuracy, precision, and recall, utilising a test dataset. Every time a new model is built, both data pre-processing and model training—two crucial processes in the Machine learning (ML) workflow—must be carried out. Thus, there are various Machine Learning algorithms that can be employed for every single approach to data pre-processing, generating a large set of combinations to choose from. Example: for every method to handle missing values (dropping records, replacing with mean, etc.), for every scaling technique, and for every combination of features selected, a different algorithm can be used. As a result, in order to get the optimum outcomes, these tasks are frequently repeated in different combinations. This paper suggests a simple architecture for organizing this largely produced “combination set of pre-processing steps and algorithms” into an automated workflow which simplifies the task of carrying out all possibilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title="machine learning">machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=automation" title=" automation"> automation</a>, <a href="https://publications.waset.org/abstracts/search?q=AUTOML" title=" AUTOML"> AUTOML</a>, <a href="https://publications.waset.org/abstracts/search?q=architecture" title=" architecture"> architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=operator%20pool" title=" operator pool"> operator pool</a>, <a href="https://publications.waset.org/abstracts/search?q=configuration" title=" configuration"> configuration</a>, <a href="https://publications.waset.org/abstracts/search?q=scheduler" title=" scheduler"> scheduler</a> </p> <a href="https://publications.waset.org/abstracts/182057/general-architecture-for-automation-of-machine-learning-practices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">58</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">230</span> Sphingosomes: Potential Anti-Cancer Vectors for the Delivery of Doxorubicin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brajesh%20Tiwari">Brajesh Tiwari</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuvraj%20Dangi"> Yuvraj Dangi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhishek%20Jain"> Abhishek Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashok%20Jain"> Ashok Jain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the investigation was to evaluate the potential of sphingosomes as nanoscale drug delivery units for site-specific delivery of anti-cancer agents. Doxorubicin Hydrochloride (DOX) was selected as a model anti-cancer agent. Sphingosomes were prepared and loaded with DOX and optimized for size and drug loading. The formulations were characterized by Malvern zeta-seizer and Transmission Electron Microscopy (TEM) studies. Sphingosomal formulations were further evaluated for in-vitro drug release study under various pH profiles. The in-vitro drug release study showed an initial rapid release of the drug followed by a slow controlled release. In vivo studies of optimized formulations and free drug were performed on albino rats for comparison of drug plasma concentration. The in- vivo study revealed that the prepared system enabled DOX to have had enhanced circulation time, longer half-life and lower elimination rate kinetics as compared to free drug. Further, it can be interpreted that the formulation would selectively enter highly porous mass of tumor cells and at the same time spare normal tissues. To summarize, the use of sphingosomes as carriers of anti-cancer drugs may prove to be a fascinating approach that would selectively localize in the tumor mass, increasing the therapeutic margin of safety while reducing the side effects associated with anti-cancer agents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sphingosomes" title="sphingosomes">sphingosomes</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-cancer" title=" anti-cancer"> anti-cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=doxorubicin" title=" doxorubicin"> doxorubicin</a>, <a href="https://publications.waset.org/abstracts/search?q=formulation" title=" formulation"> formulation</a> </p> <a href="https://publications.waset.org/abstracts/56520/sphingosomes-potential-anti-cancer-vectors-for-the-delivery-of-doxorubicin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">229</span> Mechanical Analysis of Pineapple Leaf Fiber Reinforced Polymer Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jain%20Jyoti">Jain Jyoti</a>, <a href="https://publications.waset.org/abstracts/search?q=Jain%20Shorab"> Jain Shorab</a>, <a href="https://publications.waset.org/abstracts/search?q=Sinha%20Shishir"> Sinha Shishir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the field of material engineering, composites are in great concern for their nonbiodegradability and their cost. In order to reduce its cost and weight, plant derived fibers witnessed miraculous triumph. Plant fibers can be of different types like seed fibers, blast fibers, leaf fibers, etc. Composites can be reinforced with exclusively one type of natural fiber or also can be combined with two or more different types of natural or synthetic fibers to boost up their specific properties. Among all natural fibers, wheat straw, bagasse, kenaf, pineapple leaf, banana, coir, ramie, flax, etc. pineapple leaf fibers have very good mechanical properties. Being hydrophilic in nature, pineapple leaf fibers have very less affinity towards all types of polymer matrixes like HDPE, LDPE, PET, epoxy, etc. Surface treatments like alkaline treatment in different concentrations were conducted to improve its adhesion and compatibility towards hydrophobic polymer matrix i.e. epoxy resin. Pineapple leaf fiber epoxy composites have been prepared using hand layup method. Effect of fiber loading and surface treatments have been studied for different mechanical properties i.e. tensile strength, flexural strength and impact properties of pineapple leaf fiber composites. Analysis of fiber morphology has also been studied using FTIR, XRD. Scanning electron microscopy has also been used to study and compare the morphology of untreated and treated fibers. Also, the fracture surface has been reviewed comparing the reported literature of other eminent researchers of this field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite" title="composite">composite</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical" title=" mechanical"> mechanical</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20fiber" title=" natural fiber"> natural fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=pineapple%20leaf%20fiber" title=" pineapple leaf fiber"> pineapple leaf fiber</a> </p> <a href="https://publications.waset.org/abstracts/76000/mechanical-analysis-of-pineapple-leaf-fiber-reinforced-polymer-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">228</span> Biosorption of Phenol onto Water Hyacinth Activated Carbon: Kinetics and Isotherm Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manoj%20Kumar%20Mahapatra">Manoj Kumar Mahapatra</a>, <a href="https://publications.waset.org/abstracts/search?q=Arvind%20Kumar"> Arvind Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Batch adsorption experiments were carried out for the removal of phenol from its aqueous solution using water hyancith activated carbon (WHAC) as an adsorbent. The sorption kinetics were analysed using pseudo-first order kinetics and pseudo-second order model, and it was observed that the sorption data tend to fit very well in pseudo-second order model for the entire sorption time. The experimental data were analyzed by the Langmuir and Freundlich isotherm models. Equilibrium data fitted well to the Freundlich model with a maximum biosorption capacity of 31.45 mg/g estimated using Langmuir model. The adsorption intensity 3.7975 represents a favorable adsorption condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=isotherm" title=" isotherm"> isotherm</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=phenol" title=" phenol"> phenol</a> </p> <a href="https://publications.waset.org/abstracts/56589/biosorption-of-phenol-onto-water-hyacinth-activated-carbon-kinetics-and-isotherm-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56589.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">227</span> Backstepping Design and Fractional Differential Equation of Chaotic System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayub%20Khan">Ayub Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Net%20Ram%20Garg"> Net Ram Garg</a>, <a href="https://publications.waset.org/abstracts/search?q=Geeta%20Jain"> Geeta Jain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, backstepping method is proposed to synchronize two fractional-order systems. The simulation results show that this method can effectively synchronize two chaotic systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=backstepping%20method" title="backstepping method">backstepping method</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20order" title=" fractional order"> fractional order</a>, <a href="https://publications.waset.org/abstracts/search?q=synchronization" title=" synchronization"> synchronization</a>, <a href="https://publications.waset.org/abstracts/search?q=chaotic%20system" title=" chaotic system "> chaotic system </a> </p> <a href="https://publications.waset.org/abstracts/6438/backstepping-design-and-fractional-differential-equation-of-chaotic-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6438.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">226</span> The Reliability Analysis of Concrete Chimneys Due to Random Vortex Shedding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saba%20Rahman">Saba Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Arvind%20K.%20Jain"> Arvind K. Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20D.%20Bharti"> S. D. Bharti</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20K.%20Datta"> T. K. Datta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chimneys are generally tall and slender structures with circular cross-sections, due to which they are highly prone to wind forces. Wind exerts pressure on the wall of the chimneys, which produces unwanted forces. Vortex-induced oscillation is one of such excitations which can lead to the failure of the chimneys. Therefore, vortex-induced oscillation of chimneys is of great concern to researchers and practitioners since many failures of chimneys due to vortex shedding have occurred in the past. As a consequence, extensive research has taken place on the subject over decades. Many laboratory experiments have been performed to verify the theoretical models proposed to predict vortex-induced forces, including aero-elastic effects. Comparatively, very few proto-type measurement data have been recorded to verify the proposed theoretical models. Because of this reason, the theoretical models developed with the help of experimental laboratory data are utilized for analyzing the chimneys for vortex-induced forces. This calls for reliability analysis of the predictions of the responses of the chimneys produced due to vortex shedding phenomena. Although several works of literature exist on the vortex-induced oscillation of chimneys, including code provisions, the reliability analysis of chimneys against failure caused due to vortex shedding is scanty. In the present study, the reliability analysis of chimneys against vortex shedding failure is presented, assuming the uncertainty in vortex shedding phenomena to be significantly more than other uncertainties, and hence, the latter is ignored. The vortex shedding is modeled as a stationary random process and is represented by a power spectral density function (PSDF). It is assumed that the vortex shedding forces are perfectly correlated and act over the top one-third height of the chimney. The PSDF of the tip displacement of the chimney is obtained by performing a frequency domain spectral analysis using a matrix approach. For this purpose, both chimney and random wind forces are discretized over a number of points along with the height of the chimney. The method of analysis duly accounts for the aero-elastic effects. The double barrier threshold crossing level, as proposed by Vanmarcke, is used for determining the probability of crossing different threshold levels of the tip displacement of the chimney. Assuming the annual distribution of the mean wind velocity to be a Gumbel type-I distribution, the fragility curve denoting the variation of the annual probability of threshold crossing against different threshold levels of the tip displacement of the chimney is determined. The reliability estimate is derived from the fragility curve. A 210m tall concrete chimney with a base diameter of 35m, top diameter as 21m, and thickness as 0.3m has been taken as an illustrative example. The terrain condition is assumed to be that corresponding to the city center. The expression for the PSDF of the vortex shedding force is taken to be used by Vickery and Basu. The results of the study show that the threshold crossing reliability of the tip displacement of the chimney is significantly influenced by the assumed structural damping and the Gumbel distribution parameters. Further, the aero-elastic effect influences the reliability estimate to a great extent for small structural damping. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chimney" title="chimney">chimney</a>, <a href="https://publications.waset.org/abstracts/search?q=fragility%20curve" title=" fragility curve"> fragility curve</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability%20analysis" title=" reliability analysis"> reliability analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex-induced%20vibration" title=" vortex-induced vibration"> vortex-induced vibration</a> </p> <a href="https://publications.waset.org/abstracts/141508/the-reliability-analysis-of-concrete-chimneys-due-to-random-vortex-shedding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141508.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">225</span> A Unified Model for Orotidine Monophosphate Synthesis: Target for Inhibition of Growth of Mycobacterium tuberculosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Naga%20Subrahmanyeswara%20Rao">N. Naga Subrahmanyeswara Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=Parag%20Arvind%20Deshpande"> Parag Arvind Deshpande</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding nucleotide synthesis reaction of any organism is beneficial to know the growth of it as in Mycobacterium tuberculosis to design anti TB drug. One of the reactions of de novo pathway which takes place in all organisms was considered. The reaction takes places between phosphoribosyl pyrophosphate and orotate catalyzed by orotate phosphoribosyl transferase and divalent metal ion gives orotdine monophosphate, a nucleotide. All the reaction steps of three experimentally proposed mechanisms for this reaction were considered to develop kinetic rate expression. The model was validated using the data for four organisms. This model could successfully describe the kinetics for the reported data. The developed model can serve as a reliable model to describe the kinetics in new organisms without the need of mechanistic determination. So an organism-independent model was developed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanism" title="mechanism">mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=nucleotide" title=" nucleotide"> nucleotide</a>, <a href="https://publications.waset.org/abstracts/search?q=organism" title=" organism"> organism</a>, <a href="https://publications.waset.org/abstracts/search?q=tuberculosis" title=" tuberculosis"> tuberculosis</a> </p> <a href="https://publications.waset.org/abstracts/58551/a-unified-model-for-orotidine-monophosphate-synthesis-target-for-inhibition-of-growth-of-mycobacterium-tuberculosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58551.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">224</span> Dynamic Voltage Restorer Control Strategies: An Overview</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arvind%20Dhingra">Arvind Dhingra</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashwani%20Kumar%20Sharma"> Ashwani Kumar Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Power quality is an important parameter for today’s consumers. Various custom power devices are in use to give a proper supply of power quality. Dynamic Voltage Restorer is one such custom power device. DVR is a static VAR device which is used for series compensation. It is a power electronic device that is used to inject a voltage in series and in synchronism to compensate for the sag in voltage. Inductive Loads are a major source of power quality distortion. The induction furnace is one such typical load. A typical induction furnace is used for melting the scrap or iron. At the time of starting the melting process, the power quality is distorted to a large extent especially with the induction of harmonics. DVR is one such approach to mitigate these harmonics. This paper is an attempt to overview the various control strategies being followed for control of power quality by using DVR. An overview of control of harmonics using DVR is also presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DVR" title="DVR">DVR</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20quality" title=" power quality"> power quality</a>, <a href="https://publications.waset.org/abstracts/search?q=harmonics" title=" harmonics"> harmonics</a>, <a href="https://publications.waset.org/abstracts/search?q=harmonic%20mitigation" title=" harmonic mitigation"> harmonic mitigation</a> </p> <a href="https://publications.waset.org/abstracts/46232/dynamic-voltage-restorer-control-strategies-an-overview" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46232.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">223</span> A Review on Web-Based Attendance Management System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arvind%20Lal">Arvind Lal</a>, <a href="https://publications.waset.org/abstracts/search?q=Chumphila%20Bhutia"> Chumphila Bhutia</a>, <a href="https://publications.waset.org/abstracts/search?q=Bidhan%20Pradhan"> Bidhan Pradhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Retika%20Sharma"> Retika Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Monisha%20Limboo"> Monisha Limboo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There have been many proposals to optimize the students’ management system in higher education. Managing student attendance during lecture periods have become a difficult challenge. Manual calculation of attendance produces errors and wastes a lot of time. This proposed system manages the student’s attendance in a web portal and the records of the attendance will be stored in a database. The attendance of the students will be further forwarded to their HOD (Head OF Department), class teacher and their parents/guardians. This system will use MySQL for the database. The template of the website will be built using HTML and CSS (Cascading StyleSheet) code. JavaScript will be added to improve the use of the system. Student’s details will be stored in the database. Also, it will contain the details of the teachers according to their subjects and the classes they teach. The system will be responsive which can be used in mobile phones. Also, the development of this project will be user-friendly by facilitating with clear and understandable tabs. Hence, this website will be beneficial to institutes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=website" title="website">website</a>, <a href="https://publications.waset.org/abstracts/search?q=student%27s%20attendance" title=" student's attendance"> student's attendance</a>, <a href="https://publications.waset.org/abstracts/search?q=MySQL%20database" title=" MySQL database"> MySQL database</a>, <a href="https://publications.waset.org/abstracts/search?q=HTML" title=" HTML"> HTML</a>, <a href="https://publications.waset.org/abstracts/search?q=CSS" title=" CSS"> CSS</a>, <a href="https://publications.waset.org/abstracts/search?q=PHP" title=" PHP"> PHP</a>, <a href="https://publications.waset.org/abstracts/search?q=JavaScript" title=" JavaScript"> JavaScript</a> </p> <a href="https://publications.waset.org/abstracts/107947/a-review-on-web-based-attendance-management-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107947.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">222</span> Respiratory Indices and Sports Performance: A Comparision between Different Levels Basketballers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ranjan%20Chakravarty">Ranjan Chakravarty</a>, <a href="https://publications.waset.org/abstracts/search?q=Satpal%20Yadav"> Satpal Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Biswajit%20Basumatary"> Biswajit Basumatary</a>, <a href="https://publications.waset.org/abstracts/search?q=Arvind%20S.%20Sajwan"> Arvind S. Sajwan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to compare the basketball players of different level on selected respiratory indices. Ninety male basketball players from different universities those who participated in intercollegiate and inter- varsity championship. Selected respiratory indices were resting pulse rate, resting blood pressure, vital capacity and resting respiratory rate. Mean and standard deviation of selected respiratory indices were calculated and three different levels i.e. beginners, intermediate and advanced were compared by using analysis of variance. In order to test the hypothesis, level of significance was set at 0.05. It was concluded that variability does not exist among the basketball players of different groups with respect to their selected respiratory indices i.e. resting pulse rate, resting blood pressure, vital capacity and resting respiratory rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=respiratory%20indices" title="respiratory indices">respiratory indices</a>, <a href="https://publications.waset.org/abstracts/search?q=sports%20performance" title=" sports performance"> sports performance</a>, <a href="https://publications.waset.org/abstracts/search?q=basketball%20players" title=" basketball players"> basketball players</a>, <a href="https://publications.waset.org/abstracts/search?q=intervarsity%20level" title=" intervarsity level"> intervarsity level</a> </p> <a href="https://publications.waset.org/abstracts/44887/respiratory-indices-and-sports-performance-a-comparision-between-different-levels-basketballers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">221</span> A Problem on Homogeneous Isotropic Microstretch Thermoelastic Half Space with Mass Diffusion Medium under Different Theories</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Devinder%20Singh">Devinder Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajneesh%20Kumar"> Rajneesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Arvind%20Kumar"> Arvind Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present investigation deals with generalized model of the equations for a homogeneous isotropic microstretch thermoelastic half space with mass diffusion medium. Theories of generalized thermoelasticity Lord-Shulman (LS) Green-Lindsay (GL) and Coupled Theory (CT) theories are applied to investigate the problem. The stresses in the considered medium have been studied due to normal force and tangential force. The normal mode analysis technique is used to calculate the normal stress, shear stress, couple stresses and microstress. A numerical computation has been performed on the resulting quantity. The computed numerical results are shown graphically. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microstretch" title="microstretch">microstretch</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoelastic" title=" thermoelastic"> thermoelastic</a>, <a href="https://publications.waset.org/abstracts/search?q=normal%20mode%20analysis" title=" normal mode analysis"> normal mode analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=normal%20and%20tangential%20force" title=" normal and tangential force"> normal and tangential force</a>, <a href="https://publications.waset.org/abstracts/search?q=microstress%20force" title=" microstress force"> microstress force</a> </p> <a href="https://publications.waset.org/abstracts/16723/a-problem-on-homogeneous-isotropic-microstretch-thermoelastic-half-space-with-mass-diffusion-medium-under-different-theories" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">535</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">220</span> Polyolefin Fiber Reinforced Self-Compacting Concrete Replacing 20% Cement by Fly Ash</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suman%20Kumar%20Adhikary">Suman Kumar Adhikary</a>, <a href="https://publications.waset.org/abstracts/search?q=Zymantus%20Rudzionis"> Zymantus Rudzionis</a>, <a href="https://publications.waset.org/abstracts/search?q=Arvind%20Balakrishnan"> Arvind Balakrishnan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the behavior of concrete’s workability in a fresh state and compressive and flexural strength in a hardened state with the addition of polyolefin macro fibers. Four different amounts (3kg/m3, 4.5kg/m3, 6kg/m3 and 9kg/m3) of polyolefin macro fibers mixed in concrete mixture to observe the workability and strength properties difference between the concrete specimens. 20% class C type fly ash added is the concrete as replacement of cement. The water-cement ratio(W/C) of those concrete mix was 0.35. Masterglenium SKY 700 superplasticizer was added to the concrete mixture for better results. Slump test was carried out for determining the flowability. On 7th, 14th and 28th day of curing process compression strength tests were done and on 28th day flexural strength test and CMOD test were carried to differentiate the strength properties and post-cracking behavior of concrete samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=self-compacting%20concrete" title="self-compacting concrete">self-compacting concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=polyolefin%20fibers" title=" polyolefin fibers"> polyolefin fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20reinforced%20concrete" title=" fiber reinforced concrete"> fiber reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=CMOD%20test%20of%20concrete" title=" CMOD test of concrete"> CMOD test of concrete</a> </p> <a href="https://publications.waset.org/abstracts/101795/polyolefin-fiber-reinforced-self-compacting-concrete-replacing-20-cement-by-fly-ash" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101795.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">219</span> Fracture Strength of Carbon Nanotube Reinforced Plasma Sprayed Aluminum Oxide Coating</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anup%20Kumar%20Keshri">Anup Kumar Keshri</a>, <a href="https://publications.waset.org/abstracts/search?q=Arvind%20Agarwal"> Arvind Agarwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon nanotube (CNT) reinforced aluminum oxide (Al2O3) composite coating was synthesized on the steel substrate using plasma spraying technique. Three different compositions of coating such as Al2O3, Al2O¬3-4 wt. % CNT and Al2O3-8 wt. % CNT were synthesized and the fracture strength was determined using the four point bend test. Uniform dispersion of CNTs over Al2O3 powder particle was successfully achieved. With increasing CNT content, porosity in the coating showed decreasing trend and hence contributed towards enhanced mechanical properties such as hardness (~12% increased) and elastic modulus (~34 % increased). Fracture strength of the coating was found to be increasing with the CNT additions. By reinforcement of 8 wt. % of CNT, fracture strength increased by ~2.5 times. The improvement in fracture strength of Al2O3-CNT coating was attributed to three competitive phenomena viz. (i) lower porosity (ii) higher hardness and elastic modulus (iii) CNT bridging between splats. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum%20oxide" title="aluminum oxide">aluminum oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotube" title=" carbon nanotube"> carbon nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20strength" title=" fracture strength"> fracture strength</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20spraying" title=" plasma spraying"> plasma spraying</a> </p> <a href="https://publications.waset.org/abstracts/18770/fracture-strength-of-carbon-nanotube-reinforced-plasma-sprayed-aluminum-oxide-coating" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18770.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Arvind%20K.%20Jain&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Arvind%20K.%20Jain&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Arvind%20K.%20Jain&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Arvind%20K.%20Jain&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Arvind%20K.%20Jain&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Arvind%20K.%20Jain&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Arvind%20K.%20Jain&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Arvind%20K.%20Jain&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Arvind%20K.%20Jain&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>