CINXE.COM
Search results for: cosmic rays propagation
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: cosmic rays propagation</title> <meta name="description" content="Search results for: cosmic rays propagation"> <meta name="keywords" content="cosmic rays propagation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="cosmic rays propagation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="cosmic rays propagation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1010</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: cosmic rays propagation</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1010</span> Study of Atmospheric Cascades Generated by Primary Comic Rays, from Simulations in Corsika for the City of Tunja in Colombia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tathiana%20Yesenia%20Coy%20Mondrag%C3%B3n">Tathiana Yesenia Coy Mondragón</a>, <a href="https://publications.waset.org/abstracts/search?q=Jossitt%20William%20Vargas%20Cruz"> Jossitt William Vargas Cruz</a>, <a href="https://publications.waset.org/abstracts/search?q=Cristian%20Leonardo%20Guti%C3%A9rrez%20G%C3%B3mez"> Cristian Leonardo Gutiérrez Gómez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of cosmic rays is based on two fundamental pillars: the detection of secondary cosmic rays on the Earth's surface and the detection of the source and origin of the cascade. In addition, the constant flow of RC generates a lot of interest for study due to the incidence of various natural phenomena, which makes it relevant to characterize their incidence parameters to determine their effect not only at subsoil or terrestrial surface levels but also throughout the atmosphere. To determine the physical parameters of the primary cosmic ray, the implementation of robust algorithms capable of reconstructing the cascade from the measured values is required, with a high level of reliability. Therefore, it is proposed to build a machine learning system that will be fed from the cosmic ray simulations in CORSIKA at different energies that lie in a range [10⁹-10¹²] eV. in order to generate a trained particle and pattern recognition system to obtain greater efficiency when inferring the nature of the origin of the cascade for EAS in the atmosphere considering atmospheric models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CORSIKA" title="CORSIKA">CORSIKA</a>, <a href="https://publications.waset.org/abstracts/search?q=cosmic%20rays" title=" cosmic rays"> cosmic rays</a>, <a href="https://publications.waset.org/abstracts/search?q=eas" title=" eas"> eas</a>, <a href="https://publications.waset.org/abstracts/search?q=Colombia" title=" Colombia"> Colombia</a> </p> <a href="https://publications.waset.org/abstracts/163412/study-of-atmospheric-cascades-generated-by-primary-comic-rays-from-simulations-in-corsika-for-the-city-of-tunja-in-colombia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1009</span> The Galactic Magnetic Field in the Light of Starburst-Generated Ultrahigh-Energy Cosmic Rays</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luis%20A.%20Anchordoqui">Luis A. Anchordoqui</a>, <a href="https://publications.waset.org/abstracts/search?q=Jorge%20F.%20Soriano"> Jorge F. Soriano</a>, <a href="https://publications.waset.org/abstracts/search?q=Diego%20F.%20Torres"> Diego F. Torres</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Auger data show evidence for a correlation between ultrahigh-energy cosmic rays (UHECRs) and nearby starburst galaxies. This intriguing correlation is consistent with data collected by the Telescope Array, which have revealed a much more pronounced directional 'hot spot' in arrival directions not far from the starburst galaxy M82. In this work, we assume starbursts are sources of UHECRs, and we investigate the prospects to use the observed distribution of UHECR arrival directions to constrain galactic magnetic field models. We show that if the Telescope Array hot spot indeed originates on M82, UHECR data would place a strong constraint on the turbulent component of the galactic magnetic field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=galactic%20magnetic%20field" title="galactic magnetic field">galactic magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=Pierre%20Auger%20observatory" title=" Pierre Auger observatory"> Pierre Auger observatory</a>, <a href="https://publications.waset.org/abstracts/search?q=telescope%20array" title=" telescope array"> telescope array</a>, <a href="https://publications.waset.org/abstracts/search?q=ultra-high%20energy%20cosmic%20rays" title=" ultra-high energy cosmic rays"> ultra-high energy cosmic rays</a> </p> <a href="https://publications.waset.org/abstracts/102702/the-galactic-magnetic-field-in-the-light-of-starburst-generated-ultrahigh-energy-cosmic-rays" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102702.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1008</span> Neuronal Networks for the Study of the Effects of Cosmic Rays on Climate Variations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jossitt%20Williams%20Vargas%20Cruz">Jossitt Williams Vargas Cruz</a>, <a href="https://publications.waset.org/abstracts/search?q=Aura%20Jazm%C3%ADn%20P%C3%A9rez%20R%C3%ADos"> Aura Jazmín Pérez Ríos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The variations of solar dynamics have become a relevant topic of study due to the effects of climate changes generated on the earth. One of the most disconcerting aspects is the variability that the sun has on the climate is the role played by sunspots (extra-atmospheric variable) in the modulation of the Cosmic Rays CR (extra-atmospheric variable). CRs influence the earth's climate by affecting cloud formation (atmospheric variable), and solar cycle influence is associated with the presence of solar storms, and the magnetic activity is greater, resulting in less CR entering the earth's atmosphere. The different methods of climate prediction in Colombia do not take into account the extra-atmospheric variables. Therefore, correlations between atmospheric and extra-atmospheric variables were studied in order to implement a Python code based on neural networks to make the prediction of the extra-atmospheric variable with the highest correlation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=correlations" title="correlations">correlations</a>, <a href="https://publications.waset.org/abstracts/search?q=cosmic%20rays" title=" cosmic rays"> cosmic rays</a>, <a href="https://publications.waset.org/abstracts/search?q=sun" title=" sun"> sun</a>, <a href="https://publications.waset.org/abstracts/search?q=sunspots%20and%20variations." title=" sunspots and variations."> sunspots and variations.</a> </p> <a href="https://publications.waset.org/abstracts/163231/neuronal-networks-for-the-study-of-the-effects-of-cosmic-rays-on-climate-variations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163231.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1007</span> Propagation of Ultra-High Energy Cosmic Rays through Extragalactic Magnetic Fields: An Exploratory Study of the Distance Amplification from Rectilinear Propagation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rubens%20P.%20Costa">Rubens P. Costa</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcelo%20A.%20Leigui%20de%20Oliveira"> Marcelo A. Leigui de Oliveira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The comprehension of features on the energy spectra, the chemical compositions, and the origins of Ultra-High Energy Cosmic Rays (UHECRs) - mainly atomic nuclei with energies above ~1.0 EeV (exa-electron volts) - are intrinsically linked to the problem of determining the magnitude of their deflections in cosmic magnetic fields on cosmological scales. In addition, as they propagate from the source to the observer, modifications are expected in their original energy spectra, anisotropy, and the chemical compositions due to interactions with low energy photons and matter. This means that any consistent interpretation of the nature and origin of UHECRs has to include the detailed knowledge of their propagation in a three-dimensional environment, taking into account the magnetic deflections and energy losses. The parameter space range for the magnetic fields in the universe is very large because the field strength and especially their orientation have big uncertainties. Particularly, the strength and morphology of the Extragalactic Magnetic Fields (EGMFs) remain largely unknown, because of the intrinsic difficulty of observing them. Monte Carlo simulations of charged particles traveling through a simulated magnetized universe is the straightforward way to study the influence of extragalactic magnetic fields on UHECRs propagation. However, this brings two major difficulties: an accurate numerical modeling of charged particles diffusion in magnetic fields, and an accurate numerical modeling of the magnetized Universe. Since magnetic fields do not cause energy losses, it is important to impose that the particle tracking method conserve the particle’s total energy and that the energy changes are results of the interactions with background photons only. Hence, special attention should be paid to computational effects. Additionally, because of the number of particles necessary to obtain a relevant statistical sample, the particle tracking method must be computationally efficient. In this work, we present an analysis of the propagation of ultra-high energy charged particles in the intergalactic medium. The EGMFs are considered to be coherent within cells of 1 Mpc (mega parsec) diameter, wherein they have uniform intensities of 1 nG (nano Gauss). Moreover, each cell has its field orientation randomly chosen, and a border region is defined such that at distances beyond 95% of the cell radius from the cell center smooth transitions have been applied in order to avoid discontinuities. The smooth transitions are simulated by weighting the magnetic field orientation by the particle's distance to the two nearby cells. The energy losses have been treated in the continuous approximation parameterizing the mean energy loss per unit path length by the energy loss length. We have shown, for a particle with the typical energy of interest the integration method performance in the relative error of Larmor radius, without energy losses and the relative error of energy. Additionally, we plotted the distance amplification from rectilinear propagation as a function of the traveled distance, particle's magnetic rigidity, without energy losses, and particle's energy, with energy losses, to study the influence of particle's species on these calculations. The results clearly show when it is necessary to use a full three-dimensional simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cosmic%20rays%20propagation" title="cosmic rays propagation">cosmic rays propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=extragalactic%20magnetic%20fields" title=" extragalactic magnetic fields"> extragalactic magnetic fields</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20deflections" title=" magnetic deflections"> magnetic deflections</a>, <a href="https://publications.waset.org/abstracts/search?q=ultra-high%20energy" title=" ultra-high energy"> ultra-high energy</a> </p> <a href="https://publications.waset.org/abstracts/95547/propagation-of-ultra-high-energy-cosmic-rays-through-extragalactic-magnetic-fields-an-exploratory-study-of-the-distance-amplification-from-rectilinear-propagation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95547.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1006</span> Cosmic Radiation Hazards and Protective Strategies in Space Exploration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehrnaz%20Mostafavi">Mehrnaz Mostafavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Azani"> Alireza Azani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahtab%20Shabani"> Mahtab Shabani</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Ghafari"> Fatemeh Ghafari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> While filled with promise and wonder, space exploration also presents significant challenges, one of the foremost being the threat of cosmic radiation to astronaut health. Recent advancements in assessing these risks and developing protective strategies have shed new light on this issue. Cosmic radiation encompasses a variety of high-energy particles originating from sources like solar particle events, galactic cosmic rays, and cosmic rays from beyond the solar system. These particles, composed of protons, electrons, and heavy ions, pose a substantial threat to human health in space due to the lack of Earth's protective atmosphere and magnetic field. Researchers have made significant progress in assessing the risks associated with cosmic radiation exposure. By employing advanced dosimetry techniques and conducting biological studies, they have gained insights into how cosmic radiation affects astronauts' health, including increasing the risk of cancer and radiation sickness. This research has led to personalized risk assessment methods tailored to individual astronaut profiles. Distinctive protection strategies have been proposed to combat the dangers of cosmic radiation. These include developing spacecraft shielding materials and designs to enhance radiation protection. Additionally, researchers are exploring pharmacological interventions such as radioprotective drugs and antioxidant therapies to mitigate the biological effects of radiation exposure and preserve astronaut well-being. The findings from recent research have significant implications for the future of space exploration. By advancing our understanding of cosmic radiation risks and developing effective protection strategies, we pave the way for safer and more sustainable human missions beyond Earth's orbit. This is especially crucial for long-duration missions to destinations like Mars, where astronauts will face prolonged exposure to cosmic radiation. In conclusion, recent research has marked a milestone in addressing the challenges posed by cosmic radiation in space exploration. By delving into the complexities of cosmic radiation exposure and developing innovative protection strategies, scientists are ensuring the health and resilience of astronauts as they venture into the vast expanse of the cosmos. Continued research and collaboration in this area are essential for overcoming the cosmic radiation challenge and enabling humanity to embark on new frontiers of exploration and discovery in space. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Space%20exploration" title="Space exploration">Space exploration</a>, <a href="https://publications.waset.org/abstracts/search?q=cosmic%20radiation" title=" cosmic radiation"> cosmic radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=astronaut%20health" title=" astronaut health"> astronaut health</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title=" risk assessment"> risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=protective%20strategies" title=" protective strategies"> protective strategies</a> </p> <a href="https://publications.waset.org/abstracts/186188/cosmic-radiation-hazards-and-protective-strategies-in-space-exploration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186188.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1005</span> Correlation Between Forbush-Decrease Amplitude Detected by Mountain Chacaltaya Neutron Monitor and Solar Wind Electric Filed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sebwato%20Nasurudiin">Sebwato Nasurudiin</a>, <a href="https://publications.waset.org/abstracts/search?q=Akimasa%20Yoshikawa"> Akimasa Yoshikawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Elsaid"> Ahmed Elsaid</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayman%20Mahrous"> Ayman Mahrous</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study examines the correlation between the amplitude of Forbush Decreases (FDs) detected by the Mountain Chacaltaya neutron monitor and the solar wind electric field (E). Forbush Decreases, characterized by sudden drops in cosmic ray intensity, are typically associated with interplanetary coronal mass ejections (ICMEs) and high-speed solar wind streams. The Mountain Chacaltaya neutron monitor, located at a high altitude in Bolivia, offers an optimal setting for observing cosmic ray variations. The solar wind electric field, influenced by the solar wind velocity and interplanetary magnetic field, significantly impacts cosmic ray transport in the heliosphere. By analyzing neutron monitor data alongside solar wind parameters, we found a high correlation between E and FD amplitudes with a correlation factor of nearly 87%. The findings enhance our understanding of space weather processes, cosmic ray modulation, and solar-terrestrial interactions, providing valuable insights for predicting space weather events and mitigating their technological impacts. This study contributes to the broader astrophysics field by offering empirical data on cosmic ray modulation mechanisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cosmic%20rays" title="cosmic rays">cosmic rays</a>, <a href="https://publications.waset.org/abstracts/search?q=Forbush%20decrease" title=" Forbush decrease"> Forbush decrease</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20wind" title=" solar wind"> solar wind</a>, <a href="https://publications.waset.org/abstracts/search?q=neutron%20monitor" title=" neutron monitor"> neutron monitor</a> </p> <a href="https://publications.waset.org/abstracts/188217/correlation-between-forbush-decrease-amplitude-detected-by-mountain-chacaltaya-neutron-monitor-and-solar-wind-electric-filed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188217.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">45</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1004</span> Kemmer Oscillator in Cosmic String Background</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Messai">N. Messai</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Boumali"> A. Boumali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we aim to solve the two dimensional Kemmer equation including Dirac oscillator interaction term, in the background space-time generated by a cosmic string which is submitted to an uniform magnetic field. Eigenfunctions and eigenvalues of our problem have been found and the influence of the cosmic string space-time on the energy spectrum has been analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kemmer%20oscillator" title="Kemmer oscillator">Kemmer oscillator</a>, <a href="https://publications.waset.org/abstracts/search?q=cosmic%20string" title=" cosmic string"> cosmic string</a>, <a href="https://publications.waset.org/abstracts/search?q=Dirac%20oscillator" title=" Dirac oscillator"> Dirac oscillator</a>, <a href="https://publications.waset.org/abstracts/search?q=eigenfunctions" title=" eigenfunctions"> eigenfunctions</a> </p> <a href="https://publications.waset.org/abstracts/22318/kemmer-oscillator-in-cosmic-string-background" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22318.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">584</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1003</span> Design and Analysis of Shielding Magnetic Field for Active Space Radiation Protection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chaoyan%20Huang">Chaoyan Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongxia%20Zheng"> Hongxia Zheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For deep space exploration and long duration interplanetary manned missions, protection of astronauts from cosmic radiation is an unavoidable problem. However, passive shielding can be little effective for protecting particles which energies are greater than 1GeV/nucleon. In this study, active magnetic protection method is adopted. Taking into account the structure and size of the end-cap, eight shielding magnetic field configurations are designed based on the Hoffman configuration. The shielding effect of shielding magnetic field structure, intensity B and thickness L on H particles with 2GeV energy is compared by test particle simulation. The result shows that the shielding effect is better with the linear type magnetic field structure in the end-cap region. Furthermore, two magnetic field configurations with better shielding effect are investigated through H and He galactic cosmic spectra. And the shielding effect of the linear type configuration adopted in the barrel and end-cap regions is best. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=galactic%20cosmic%20rays" title="galactic cosmic rays">galactic cosmic rays</a>, <a href="https://publications.waset.org/abstracts/search?q=active%20protection" title=" active protection"> active protection</a>, <a href="https://publications.waset.org/abstracts/search?q=shielding%20magnetic%20field%20configuration" title=" shielding magnetic field configuration"> shielding magnetic field configuration</a>, <a href="https://publications.waset.org/abstracts/search?q=shielding%20effect" title=" shielding effect"> shielding effect</a> </p> <a href="https://publications.waset.org/abstracts/108740/design-and-analysis-of-shielding-magnetic-field-for-active-space-radiation-protection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108740.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1002</span> Cosmic Dust as Dark Matter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Prevenslik">Thomas Prevenslik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Weakly Interacting Massive Particle (WIMP) experiments suggesting dark matter does not exist are consistent with the argument that the long-standing galaxy rotation problem may be resolved without the need for dark matter if the redshift measurements giving the higher than expected galaxy velocities are corrected for the redshift in cosmic dust. Because of the ubiquity of cosmic dust, all velocity measurements in astronomy based on redshift are most likely overstated, e.g., an accelerating Universe expansion need not exist if data showing supernovae brighter than expected based on the redshift/distance relation is corrected for the redshift in dust. Extensions of redshift corrections for cosmic dust to other historical astronomical observations are briefly discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alternative%20theories" title="alternative theories">alternative theories</a>, <a href="https://publications.waset.org/abstracts/search?q=cosmic%20dust%20redshift" title=" cosmic dust redshift"> cosmic dust redshift</a>, <a href="https://publications.waset.org/abstracts/search?q=doppler%20effect" title=" doppler effect"> doppler effect</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20mechanics" title=" quantum mechanics"> quantum mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20electrodynamics" title=" quantum electrodynamics"> quantum electrodynamics</a> </p> <a href="https://publications.waset.org/abstracts/60993/cosmic-dust-as-dark-matter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1001</span> Transcendental Birth of the Column from the Full Jar Expressed at the Notre Dame of Paris and Saint Germain-des-Pres</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kang%20Woobang">Kang Woobang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The base of the column is not only a support but also the embodiment of profound symbolism full of cosmic energy. Finding the full jars from which various energy emanate at the Notre Dame of Paris and Saint-Germain-des-Pres in France, the author was so shocked. As the column is cosmic tree, from the Full Jar full with cosmic energy emerges the cosmic tree composed of shaft and capital. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=full%20picher%20or%20jar" title="full picher or jar">full picher or jar</a>, <a href="https://publications.waset.org/abstracts/search?q=transcendental%20or%20supernatural%20birth%20from%20yonggi" title=" transcendental or supernatural birth from yonggi"> transcendental or supernatural birth from yonggi</a>, <a href="https://publications.waset.org/abstracts/search?q=yonggimun" title=" yonggimun"> yonggimun</a>, <a href="https://publications.waset.org/abstracts/search?q=yonggissak" title=" yonggissak"> yonggissak</a> </p> <a href="https://publications.waset.org/abstracts/18833/transcendental-birth-of-the-column-from-the-full-jar-expressed-at-the-notre-dame-of-paris-and-saint-germain-des-pres" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18833.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1000</span> The Relationship between the Speed of Light and Cosmic Background Potential</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Youping%20Dai">Youping Dai</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinping%20Dai"> Xinping Dai</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoyun%20Li"> Xiaoyun Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the effect of Cosmic Background Gravitational Potential (CBGP) was discussed. It is helpful to reveal the equivalence of gravitational and inertial mass, and to understand the origin of inertia. The derivation is similar to the classic approach adopted by Landau in the book 'Classical Theory of Fields'.The main differences are that we used CBGP = Lambda^2 instead of c^2, and used CBGP energy E = m*Lambda^2 instead of kinetic energy E = (1/2)m*v^2 as initial assumptions (where Lambda has the same units for measuring velocity). It showed that Lorentz transformation, rest energy and Newtonian mechanics are all affected by $CBGP$, and the square of the speed of light is equal to CBGP too. Finally, the top value of cosmic mass density and cosmic radius were discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=the%20origin%20of%20inertia" title="the origin of inertia">the origin of inertia</a>, <a href="https://publications.waset.org/abstracts/search?q=Mach%27s%20principle" title=" Mach's principle"> Mach's principle</a>, <a href="https://publications.waset.org/abstracts/search?q=equivalence%20principle" title=" equivalence principle"> equivalence principle</a>, <a href="https://publications.waset.org/abstracts/search?q=cosmic%20background%20potential" title=" cosmic background potential"> cosmic background potential</a> </p> <a href="https://publications.waset.org/abstracts/29057/the-relationship-between-the-speed-of-light-and-cosmic-background-potential" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">999</span> A Cosmic Time Dilation Model for the Week of Creation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kwok%20W.%20Cheung">Kwok W. Cheung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A scientific interpretation of creation reconciling the beliefs of six literal days of creation and a 13.7-billion-year-old universe currently perceived by most modern cosmologists is proposed. We hypothesize that the reference timeframe of God’s creation is associated with some cosmic time different from the earth's time. We show that the scale factor of earth time to cosmic time can be determined by the solution of the Friedmann equations. Based on this scale factor and some basic assumptions, we derive a Cosmic Time Dilation model that harmonizes the literal meaning of creation days and scientific discoveries with remarkable accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cosmological%20expansion" title="cosmological expansion">cosmological expansion</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20dilation" title=" time dilation"> time dilation</a>, <a href="https://publications.waset.org/abstracts/search?q=creation" title=" creation"> creation</a>, <a href="https://publications.waset.org/abstracts/search?q=genesis" title=" genesis"> genesis</a>, <a href="https://publications.waset.org/abstracts/search?q=relativity" title=" relativity"> relativity</a>, <a href="https://publications.waset.org/abstracts/search?q=Big%20Bang" title=" Big Bang"> Big Bang</a>, <a href="https://publications.waset.org/abstracts/search?q=biblical%20hermeneutics" title=" biblical hermeneutics"> biblical hermeneutics</a> </p> <a href="https://publications.waset.org/abstracts/181901/a-cosmic-time-dilation-model-for-the-week-of-creation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181901.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">998</span> Cosmic Background Reduction in the Radiocarbon Measurements by Liquid Scintillation Spectrometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Natasa%20Todorovic">Natasa Todorovic</a>, <a href="https://publications.waset.org/abstracts/search?q=Jovana%20Nikolov">Jovana Nikolov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Guard detector efficiency, cosmic background, and its variation were determinate using ultra low-level liquid scintillation spectrometer Quantulus 1220, equipped with an anti-Compton guard detector, in the surface laboratory at the University of Novi Sad, Serbia, Atmospheric pressure variation has an observable effect on the anti-Compton guard detector count rate. and the cosmic muon flux is lower during a high-pressure period. Also, the guard detector Compton continuum provides a good view of the level of gamma radiation in the laboratory environment. The efficiency of the guard detector in the channel interval from 750 to 1024 was assessed to 93.45%; efficiency in the entire window (channels 1 to 1024) was 75.23%, which is in good agreement with literature data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cosmic%20radiation" title="cosmic radiation">cosmic radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=background%20reduction" title=" background reduction"> background reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20scintillation%20counting" title=" liquid scintillation counting"> liquid scintillation counting</a>, <a href="https://publications.waset.org/abstracts/search?q=guard%20detector%20efficiency" title=" guard detector efficiency"> guard detector efficiency</a> </p> <a href="https://publications.waset.org/abstracts/140808/cosmic-background-reduction-in-the-radiocarbon-measurements-by-liquid-scintillation-spectrometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">997</span> Cosmic Muon Tomography at the Wylfa Reactor Site Using an Anti-Neutrino Detector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ronald%20Collins">Ronald Collins</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonathon%20Coleman"> Jonathon Coleman</a>, <a href="https://publications.waset.org/abstracts/search?q=Joel%20Dasari"> Joel Dasari</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Holt"> George Holt</a>, <a href="https://publications.waset.org/abstracts/search?q=Carl%20Metelko"> Carl Metelko</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthew%20Murdoch"> Matthew Murdoch</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Morgan"> Alexander Morgan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan-Jie%20Schnellbach"> Yan-Jie Schnellbach</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Mills"> Robert Mills</a>, <a href="https://publications.waset.org/abstracts/search?q=Gareth%20Edwards"> Gareth Edwards</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Roberts"> Alexander Roberts</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At the Wylfa Magnox Power Plant between 2014–2016, the VIDARR prototype anti-neutrino detector was deployed. It is comprised of extruded plastic scintillating bars measuring 4 cm × 1 cm × 152 cm and utilised wavelength shifting fibres (WLS) and multi-pixel photon counters (MPPCs) to detect and quantify radiation. During deployment, it took cosmic muon data in accidental coincidence with the anti-neutrino measurements with the power plant site buildings obscuring the muon sky. Cosmic muons have a significantly higher probability of being attenuated and/or absorbed by denser objects, and so one-sided cosmic muon tomography was utilised to image the reactor site buildings. In order to achieve clear building outlines, a control data set was taken at the University of Liverpool from 2016 – 2018, which had minimal occlusion of the cosmic muon flux by dense objects. By taking the ratio of these two data sets and using GEANT4 simulations, it is possible to perform a one-sided cosmic muon tomography analysis. This analysis can be used to discern specific buildings, building heights, and features at the Wylfa reactor site, including the reactor core/reactor core shielding using ∼ 3 hours worth of cosmic-ray detector live time. This result demonstrates the feasibility of using cosmic muon analysis to determine a segmented detector’s location with respect to surrounding buildings, assisted by aerial photography or satellite imagery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-neutrino" title="anti-neutrino">anti-neutrino</a>, <a href="https://publications.waset.org/abstracts/search?q=GEANT4" title=" GEANT4"> GEANT4</a>, <a href="https://publications.waset.org/abstracts/search?q=muon" title=" muon"> muon</a>, <a href="https://publications.waset.org/abstracts/search?q=tomography" title=" tomography"> tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=occlusion" title=" occlusion"> occlusion</a> </p> <a href="https://publications.waset.org/abstracts/150759/cosmic-muon-tomography-at-the-wylfa-reactor-site-using-an-anti-neutrino-detector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150759.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">996</span> Cyclic Evolution of a Two Fluid Diffusive Universe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Subhayan%20Maity">Subhayan Maity</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Complete scenario of cosmic evolution from emergent phase to late time acceleration (i.e. non-singular ever expanding Universe) is a popular preference in the recent cosmology. Yet one can’t exclude the idea that other type of evolution pattern of the Universe may also be possible. Especially, the bouncing scenario is becoming a matter of interest now a days. The present work is an exhibition of such a different pattern of cosmic evolution where the evolution of Universe has been shown as a cyclic thermodynamic process. Under diffusion mechanism (non-equilibrium thermodynamic process), the cosmic evolution has been modelled as [ emergent - accelerated expansion - decelerated expansion - decelerated contraction - accelerated contraction - emergent] . <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-equilibrium%20thermodynamics" title="non-equilibrium thermodynamics">non-equilibrium thermodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=non%20singular%20evolution%20of%20universe" title=" non singular evolution of universe"> non singular evolution of universe</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20evolution" title=" cyclic evolution"> cyclic evolution</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusive%20fluid" title=" diffusive fluid"> diffusive fluid</a> </p> <a href="https://publications.waset.org/abstracts/146121/cyclic-evolution-of-a-two-fluid-diffusive-universe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146121.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">995</span> X-Ray Shielding Properties of Bismuth-Borate Glass Doped with Rare-Earth Ions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vincent%20Kheswa">Vincent Kheswa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> X-rays are ionizing electromagnetic radiation that is used in various industries such as computed tomography scans, dental X-rays, and screening freight trains. However, they pose health risks to humans if they are not shielded properly. In recent years, many researchers around the globe have been searching for nontoxic best possible glass materials for shielding X-rays. In this work, the x-ray shielding properties of 45Na₂O + 10 Bi₂O₃ + (5 - x)TiO₂+ (x) Nb₂O₅ + 40 P₂O₅, were x = 0, 1, 3, 5 mol%, glass materials were studied. The results revealed that the glass sample with the highest TiO2 content has the highest mass and linear attenuation coefficients and lowest half-value thickness, tenth-value thickness and mean-free path in the 20 to 80 keV energy region. The sample with 3 mol% of Nb₂O₅ has the highest mass and linear attenuation coefficients and the lowest half-value thickness, tenth-value thickness, and mean-free path at 15 keV and photon energies between 80 to 300 keV. It was, therefore, concluded that 45Na₂O + 10 Bi₂O₃ + 5 TiO₂ + 40 P₂O₅ glass is best for shielding x-rays of energies between 20 and 80 keV, while 45Na₂O + 10 Bi₂O₃ + 2 TiO₂ + 3 Nb₂O₅ + 40 P₂O₅ is best for shielding 15 keV x-rays and x-rays of energies between 80 keV and 300 keV. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bismuth-titanium-phosphate%20glass" title="bismuth-titanium-phosphate glass">bismuth-titanium-phosphate glass</a>, <a href="https://publications.waset.org/abstracts/search?q=x-ray%20shielding" title=" x-ray shielding"> x-ray shielding</a>, <a href="https://publications.waset.org/abstracts/search?q=LAC" title=" LAC"> LAC</a>, <a href="https://publications.waset.org/abstracts/search?q=MAC" title=" MAC"> MAC</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20shielding" title=" radiation shielding"> radiation shielding</a> </p> <a href="https://publications.waset.org/abstracts/180562/x-ray-shielding-properties-of-bismuth-borate-glass-doped-with-rare-earth-ions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/180562.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">994</span> Applied Actuator Fault Accommodation in Flight Control Systems Using Fault Reconstruction Based FDD and SMC Reconfiguration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ghodbane">A. Ghodbane</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Saad"> M. Saad</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20F.%20Boland"> J. F. Boland</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Thibeault"> C. Thibeault</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Historically, actuators’ redundancy was used to deal with faults occurring suddenly in flight systems. This technique was generally expensive, time consuming and involves increased weight and space in the system. Therefore, nowadays, the on-line fault diagnosis of actuators and accommodation plays a major role in the design of avionic systems. These approaches, known as Fault Tolerant Flight Control systems (FTFCs) are able to adapt to such sudden faults while keeping avionics systems lighter and less expensive. In this paper, a (FTFC) system based on the Geometric Approach and a Reconfigurable Flight Control (RFC) are presented. The Geometric approach is used for cosmic ray fault reconstruction, while Sliding Mode Control (SMC) based on Lyapunov stability theory is designed for the reconfiguration of the controller in order to compensate the fault effect. Matlab®/Simulink® simulations are performed to illustrate the effectiveness and robustness of the proposed flight control system against actuators’ faulty signal caused by cosmic rays. The results demonstrate the successful real-time implementation of the proposed FTFC system on a non-linear 6 DOF aircraft model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=actuators%E2%80%99%20faults" title="actuators’ faults">actuators’ faults</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20detection%20and%20diagnosis" title=" fault detection and diagnosis"> fault detection and diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20tolerant%20flight%20control" title=" fault tolerant flight control"> fault tolerant flight control</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20mode%20control" title=" sliding mode control"> sliding mode control</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20approach%20for%20fault%20reconstruction" title=" geometric approach for fault reconstruction"> geometric approach for fault reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20stability" title=" Lyapunov stability"> Lyapunov stability</a> </p> <a href="https://publications.waset.org/abstracts/7903/applied-actuator-fault-accommodation-in-flight-control-systems-using-fault-reconstruction-based-fdd-and-smc-reconfiguration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7903.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">993</span> Promoting Stem Education and a Cosmic Perspective by Using 21st Century Science of Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rohan%20Roberts">Rohan Roberts</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this project was to collaborate with a group of high-functioning, more-able students (aged 15-18) to promote STEM Education and a love for science by bringing a cosmic perspective into the classroom and high school environment. This was done using 21st century science of learning, a focus on the latest research on Neuroeducation, and modern pedagogical methods based on Howard Gardner's theory of Multiple Intelligences, Bill Lucas’ theory of New Smarts, and Sir Ken Robinson’s recommendations on encouraging creativity. The result was an increased sense of passion, excitement, and wonder about science in general, and about the marvels of space and the universe in particular. In addition to numerous unique and innovative science-based initiatives, clubs, workshops, and science trips, this project also saw a marked rise in student-teacher collaboration in science learning and in student engagement with the general public through the press, social media, and community-based initiatives. This paper also outlines the practical impact that bringing a cosmic perspective into the classroom has had on the lives, interests, and future career prospects of the students involved in this endeavour. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cosmic%20perspective" title="cosmic perspective">cosmic perspective</a>, <a href="https://publications.waset.org/abstracts/search?q=gifted%20and%20talented" title=" gifted and talented"> gifted and talented</a>, <a href="https://publications.waset.org/abstracts/search?q=neuro-education" title=" neuro-education"> neuro-education</a>, <a href="https://publications.waset.org/abstracts/search?q=STEM%20education" title=" STEM education"> STEM education</a> </p> <a href="https://publications.waset.org/abstracts/26695/promoting-stem-education-and-a-cosmic-perspective-by-using-21st-century-science-of-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26695.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">992</span> Enhancement of X-Rays Images Intensity Using Pixel Values Adjustments Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yousif%20Mohamed%20Y.%20Abdallah">Yousif Mohamed Y. Abdallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Razan%20Manofely"> Razan Manofely</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajab%20M.%20Ben%20Yousef"> Rajab M. Ben Yousef</a> </p> <p class="card-text"><strong>Abstract:</strong></p> X-Ray images are very popular as a first tool for diagnosis. Automating the process of analysis of such images is important in order to help physician procedures. In this practice, teeth segmentation from the radiographic images and feature extraction are essential steps. The main objective of this study was to study correction preprocessing of x-rays images using local adaptive filters in order to evaluate contrast enhancement pattern in different x-rays images such as grey color and to evaluate the usage of new nonlinear approach for contrast enhancement of soft tissues in x-rays images. The data analyzed by using MatLab program to enhance the contrast within the soft tissues, the gray levels in both enhanced and unenhanced images and noise variance. The main techniques of enhancement used in this study were contrast enhancement filtering and deblurring images using the blind deconvolution algorithm. In this paper, prominent constraints are firstly preservation of image's overall look; secondly, preservation of the diagnostic content in the image and thirdly detection of small low contrast details in diagnostic content of the image. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=enhancement" title="enhancement">enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=x-rays" title=" x-rays"> x-rays</a>, <a href="https://publications.waset.org/abstracts/search?q=pixel%20intensity%20values" title=" pixel intensity values"> pixel intensity values</a>, <a href="https://publications.waset.org/abstracts/search?q=MatLab" title=" MatLab"> MatLab</a> </p> <a href="https://publications.waset.org/abstracts/31031/enhancement-of-x-rays-images-intensity-using-pixel-values-adjustments-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31031.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">485</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">991</span> Peruvian Diagnostic Reference Levels for Patients Undergoing Different X-Rays Procedures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andres%20Portocarrero%20Bonifaz">Andres Portocarrero Bonifaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Caterina%20Sandra%20Camarena%20Rodriguez"> Caterina Sandra Camarena Rodriguez</a>, <a href="https://publications.waset.org/abstracts/search?q=Ricardo%20Palma%20Esparza"> Ricardo Palma Esparza</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicolas%20Antonio%20Romero%20Carlos"> Nicolas Antonio Romero Carlos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reference levels for common X-rays procedures have been set in many protocols. In Peru, during quality control tests, the dose tolerance is set by these international recommendations. Nevertheless, further studies can be made to assess the national reality and relate dose levels with different parameters such as kV, mA/mAs, exposure time, type of processing (digital, digitalized or conventional), etc. In this paper three radiologic procedures were taken into account for study, general X-rays (fixed and mobile), intraoral X-rays (fixed, mobile and portable) and mammography. For this purpose, an Unfors Xi detector was used; the dose was measured at a focus - detector distance which varied depending on the procedure, and was corrected afterward to find the surface entry dose. The data used in this paper was gathered over a period of over 3 years (2015-2018). In addition, each X-ray machine was taken into consideration only once. The results hope to achieve a new standard which reflects the local practice, and address the issues of the ‘Bonn Call for Action’ in Peru. For this purpose, the 75% percentile of the dose of each radiologic procedure was calculated. In future quality control services, those machines with dose values higher than the selected threshold should be informed that they surpass the reference dose levels established in comparison other radiological centers in the country. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=general%20X-rays" title="general X-rays">general X-rays</a>, <a href="https://publications.waset.org/abstracts/search?q=intraoral%20X-rays" title=" intraoral X-rays"> intraoral X-rays</a>, <a href="https://publications.waset.org/abstracts/search?q=mammography" title=" mammography"> mammography</a>, <a href="https://publications.waset.org/abstracts/search?q=reference%20dose%20levels" title=" reference dose levels"> reference dose levels</a> </p> <a href="https://publications.waset.org/abstracts/94936/peruvian-diagnostic-reference-levels-for-patients-undergoing-different-x-rays-procedures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94936.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">990</span> Effect of Load Ratio on Probability Distribution of Fatigue Crack Propagation Life in Magnesium Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seon%20Soon%20Choi">Seon Soon Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is necessary to predict a fatigue crack propagation life for estimation of structural integrity. Because of an uncertainty and a randomness of a structural behavior, it is also required to analyze stochastic characteristics of the fatigue crack propagation life at a specified fatigue crack size. The essential purpose of this study is to present the good probability distribution fit for the fatigue crack propagation life at a specified fatigue crack size in magnesium alloys under various fatigue load ratio conditions. To investigate a stochastic crack growth behavior, fatigue crack propagation experiments are performed in laboratory air under several conditions of fatigue load ratio using AZ31. By Anderson-Darling test, a goodness-of-fit test for probability distribution of the fatigue crack propagation life is performed and the good probability distribution fit for the fatigue crack propagation life is presented. The effect of load ratio on variability of fatigue crack propagation life is also investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fatigue%20crack%20propagation%20life" title="fatigue crack propagation life">fatigue crack propagation life</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20ratio" title=" load ratio"> load ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium%20alloys" title=" magnesium alloys"> magnesium alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=probability%20distribution" title=" probability distribution"> probability distribution</a> </p> <a href="https://publications.waset.org/abstracts/34718/effect-of-load-ratio-on-probability-distribution-of-fatigue-crack-propagation-life-in-magnesium-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34718.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">649</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">989</span> Influence of Maximum Fatigue Load on Probabilistic Aspect of Fatigue Crack Propagation Life at Specified Grown Crack in Magnesium Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seon%20Soon%20Choi">Seon Soon Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The principal purpose of this paper is to find the influence of maximum fatigue load on the probabilistic aspect of fatigue crack propagation life at a specified grown crack in magnesium alloys. The experiments of fatigue crack propagation are carried out in laboratory air under different conditions of the maximum fatigue loads to obtain the fatigue crack propagation data for the statistical analysis. In order to analyze the probabilistic aspect of fatigue crack propagation life, the goodness-of fit test for probability distribution of the fatigue crack propagation life at a specified grown crack is implemented through Anderson-Darling test. The good probability distribution of the fatigue crack propagation life is also verified under the conditions of the maximum fatigue loads. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fatigue%20crack%20propagation%20life" title="fatigue crack propagation life">fatigue crack propagation life</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium%20alloys" title=" magnesium alloys"> magnesium alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20fatigue%20load" title=" maximum fatigue load"> maximum fatigue load</a>, <a href="https://publications.waset.org/abstracts/search?q=probability" title=" probability"> probability</a> </p> <a href="https://publications.waset.org/abstracts/66629/influence-of-maximum-fatigue-load-on-probabilistic-aspect-of-fatigue-crack-propagation-life-at-specified-grown-crack-in-magnesium-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">988</span> Radioprotective Effects of Selenium and Vitamin-E against 6Mv X-Rays in Human Volunteers Blood Lymphocytes by Micronuclei Assay</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vahid%20Changizi">Vahid Changizi</a>, <a href="https://publications.waset.org/abstracts/search?q=Aram%20Rostami"> Aram Rostami</a>, <a href="https://publications.waset.org/abstracts/search?q=Akbar%20Mosavi"> Akbar Mosavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose of study: Critical macromolecules of cells such as DNA are in exposure to damage of free radicals that induced from interaction of ionizing radiation with biological systems. Selenium and vitamin-E are natural compound that has been shown to be a direct free radical scavenger. The aim of this study was to investigate the in vivo/in vitro radioprotective effect of selenium and vitamin-E separately and synergistically against genotoxicity induced by 6MV x-rays irradiation in cultured blood lymphocytes from 15 human volunteers. Methods: Fifteen volunteers were divided in three groups include A, B and C. These groups were given slenium(800 IU), vitamin-E(100 mg) and selenium(400 IU) + vitamin-E(50 mg), respectively. Peripheral blood samples were collected from each group before(0 hr) and 1, 2 and 3 hr after selenium and vitamin-E administration (separately and synergistically). Then the blood samples were irradiated to 200 cGy of 6 Mv x-rays. After that, lymphocyte samples were cultured with mitogenic stimulation to determine the chromosomal aberrations wih micronucleus assay in cytokinesis-blocked binucleated cells. Results: The lymphocytes in the blood samples collected at 1 hr after ingestion selenium and vitamin-E, exposed in vitro to x-rays exhibited a significant decrease in the incidence of micronuclei, compared with control group at 0 hr. The maximum protection and decrease in frequency of micronuclei(50%) was observed at 1 hr after administration of selenium and vitamin-E synergistically. Conclusion: The data suggest that ingestion of selenium and vitamin-E as a radioprotector substances before exposures may reduce genetic damage caused by x-rays irradiation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=x-rays" title="x-rays">x-rays</a>, <a href="https://publications.waset.org/abstracts/search?q=selenium" title=" selenium"> selenium</a>, <a href="https://publications.waset.org/abstracts/search?q=vitamin-e" title=" vitamin-e"> vitamin-e</a>, <a href="https://publications.waset.org/abstracts/search?q=lymphocyte" title=" lymphocyte"> lymphocyte</a>, <a href="https://publications.waset.org/abstracts/search?q=micronuclei" title=" micronuclei"> micronuclei</a> </p> <a href="https://publications.waset.org/abstracts/44233/radioprotective-effects-of-selenium-and-vitamin-e-against-6mv-x-rays-in-human-volunteers-blood-lymphocytes-by-micronuclei-assay" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44233.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">987</span> Polarization Effects in Cosmic-Ray Acceleration by Cyclotron Auto-Resonance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yousef%20I.%20Salamin">Yousef I. Salamin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Theoretical investigations, analytical as well as numerical, have shown that electrons can be accelerated to GeV energies by the process of cyclotron auto-resonance acceleration (CARA). In CARA, the particle would be injected along the lines of a uniform magnetic field aligned parallel to the direction of propagation of a plane-wave radiation field. Unfortunately, an accelerator based on CARA would be prohibitively too long and too expensive to build and maintain. However, the process stands a better chance of success near the polar cap of a compact object (such as a neutron star, a black hole or a magnetar) or in an environment created in the wake of a binary neutron-star or blackhole merger. Dynamics of the nuclides ₁H¹, ₂He⁴, ₂₆Fe⁵⁶, and ₂₈Ni⁶², in such astrophysical conditions, have been investigated by single-particle calculations and many-particle simulations. The investigations show that these nuclides can reach ZeV energies (1 ZeV = 10²¹ eV) due to interaction with super-intense radiation of wavelengths = 1 and 10 m and = 50 pm and magnetic fields of strengths at the mega- and giga-tesla levels. Examples employing radiation intensities in the range 10³²-10⁴² W/m² have been used. Employing a two-parameter model for representing the radiation field, CARA is analytically generalized to include any state of polarization, and the basic working equations are derived rigorously and in closed analytic form. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compact%20objects" title="compact objects">compact objects</a>, <a href="https://publications.waset.org/abstracts/search?q=cosmic-ray%20acceleration" title=" cosmic-ray acceleration"> cosmic-ray acceleration</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclotron%20auto-resonance" title=" cyclotron auto-resonance"> cyclotron auto-resonance</a>, <a href="https://publications.waset.org/abstracts/search?q=polarization%20effects" title=" polarization effects"> polarization effects</a>, <a href="https://publications.waset.org/abstracts/search?q=zevatron" title=" zevatron"> zevatron</a> </p> <a href="https://publications.waset.org/abstracts/156315/polarization-effects-in-cosmic-ray-acceleration-by-cyclotron-auto-resonance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">986</span> Propagation of Cos-Gaussian Beam in Photorefractive Crystal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Keshavarz">A. Keshavarz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A physical model for guiding the wave in photorefractive media is studied. Propagation of cos-Gaussian beam as the special cases of sinusoidal-Gaussian beams in photorefractive crystal is simulated numerically by the Crank-Nicolson method in one dimension. Results show that the beam profile deforms as the energy transfers from the center to the tails under propagation. This simulation approach is of significant interest for application in optical telecommunication. The results are presented graphically and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beam%20propagation" title="beam propagation">beam propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=cos-Gaussian%20beam" title=" cos-Gaussian beam"> cos-Gaussian beam</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=photorefractive%20crystal" title=" photorefractive crystal"> photorefractive crystal</a> </p> <a href="https://publications.waset.org/abstracts/33883/propagation-of-cos-gaussian-beam-in-photorefractive-crystal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33883.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">499</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">985</span> Factors Affecting Air Surface Temperature Variations in the Philippines </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=John%20Christian%20Lequiron">John Christian Lequiron</a>, <a href="https://publications.waset.org/abstracts/search?q=Gerry%20Bagtasa"> Gerry Bagtasa</a>, <a href="https://publications.waset.org/abstracts/search?q=Olivia%20Cabrera"> Olivia Cabrera</a>, <a href="https://publications.waset.org/abstracts/search?q=Leoncio%20Amadore"> Leoncio Amadore</a>, <a href="https://publications.waset.org/abstracts/search?q=Tolentino%20Moya"> Tolentino Moya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Changes in air surface temperature play an important role in the Philippine’s economy, industry, health, and food production. While increasing global mean temperature in the recent several decades has prompted a number of climate change and variability studies in the Philippines, most studies still focus on rainfall and tropical cyclones. This study aims to investigate the trend and variability of observed air surface temperature and determine its major influencing factor/s in the Philippines. A non-parametric Mann-Kendall trend test was applied to monthly mean temperature of 17 synoptic stations covering 56 years from 1960 to 2015 and a mean change of 0.58 °C or a positive trend of 0.0105 °C/year (p < 0.05) was found. In addition, wavelet decomposition was used to determine the frequency of temperature variability show a 12-month, 30-80-month and more than 120-month cycles. This indicates strong annual variations, interannual variations that coincide with ENSO events, and interdecadal variations that are attributed to PDO and CO2 concentrations. Air surface temperature was also correlated with smoothed sunspot number and galactic cosmic rays, the results show a low to no effect. The influence of ENSO teleconnection on temperature, wind pattern, cloud cover, and outgoing longwave radiation on different ENSO phases had significant effects on regional temperature variability. Particularly, an anomalous anticyclonic (cyclonic) flow east of the Philippines during the peak and decay phase of El Niño (La Niña) events leads to the advection of warm southeasterly (cold northeasterly) air mass over the country. Furthermore, an apparent increasing cloud cover trend is observed over the West Philippine Sea including portions of the Philippines, and this is believed to lessen the effect of the increasing air surface temperature. However, relative humidity was also found to be increasing especially on the central part of the country, which results in a high positive trend of heat index, exacerbating the effects on human discomfort. Finally, an assessment of gridded temperature datasets was done to look at the viability of using three high-resolution datasets in future climate analysis and model calibration and verification. Several error statistics (i.e. Pearson correlation, Bias, MAE, and RMSE) were used for this validation. Results show that gridded temperature datasets generally follows the observed surface temperature change and anomalies. In addition, it is more representative of regional temperature rather than a substitute to station-observed air temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20surface%20temperature" title="air surface temperature">air surface temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide" title=" carbon dioxide"> carbon dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=ENSO" title=" ENSO"> ENSO</a>, <a href="https://publications.waset.org/abstracts/search?q=galactic%20cosmic%20rays" title=" galactic cosmic rays"> galactic cosmic rays</a>, <a href="https://publications.waset.org/abstracts/search?q=smoothed%20sunspot%20number" title=" smoothed sunspot number"> smoothed sunspot number</a> </p> <a href="https://publications.waset.org/abstracts/58180/factors-affecting-air-surface-temperature-variations-in-the-philippines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58180.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">984</span> RF Propagation Analysis in Outdoor Environments Using RSSI Measurements Applied in ZigBee Sensor Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Teles%20de%20Sales%20Bezerra">Teles de Sales Bezerra</a>, <a href="https://publications.waset.org/abstracts/search?q=Saulo%20Aislan%20da%20Silva%20Eleuterio"> Saulo Aislan da Silva Eleuterio</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Anderson%20Rodrigues%20de%20Souza"> José Anderson Rodrigues de Souza</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeronimo%20Silva%20Rocha"> Jeronimo Silva Rocha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Propagation in radio frequency is a constant concern in the application of Wireless Sensor Networks (WSN), the behavior of an environment determines how good the quality of signal reception. The objective of this paper is to analyze the behavior of a WSN in an environment for agriculture where environmental variables are present and correlate the capture of values received signal strength (RSSI) with a propagation model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=propagation" title="propagation">propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=WSN" title=" WSN"> WSN</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a> </p> <a href="https://publications.waset.org/abstracts/20471/rf-propagation-analysis-in-outdoor-environments-using-rssi-measurements-applied-in-zigbee-sensor-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20471.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">754</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">983</span> The Cracks Propagation Monitoring of a Cantilever Beam Using Modal Analysis </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Raki">Morteza Raki</a>, <a href="https://publications.waset.org/abstracts/search?q=Abolghasem%20Zabihollah"> Abolghasem Zabihollah</a>, <a href="https://publications.waset.org/abstracts/search?q=Omid%20Askari"> Omid Askari </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cantilever beam is a simplified sample of a lot of mechanical components used in a wide range of applications, including many industries such as gas turbine blade. Due to the nature of the operating conditions, beams are subject to variety of damages especially crack propagates. Crack propagation may lead to catastrophic failure during operation. Therefore, online detection of crack presence and its propagation is very important and may reduce possible significant cost of the whole system failure. This paper aims to investigate the effect of cracks presence and crack propagation on one end fixed beam`s vibration. A finite element model will be developed for the blade in which the modal response of the structure with and without crack will be studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blade" title="blade">blade</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20propagation" title=" crack propagation"> crack propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20monitoring" title=" health monitoring"> health monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20analysis" title=" modal analysis"> modal analysis</a> </p> <a href="https://publications.waset.org/abstracts/48812/the-cracks-propagation-monitoring-of-a-cantilever-beam-using-modal-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48812.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">982</span> An Exploratory Study Applied to Search Relationship between Humans and Universe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Hashelaf">Mohamed Hashelaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Al-Osdody"> Ahmed Al-Osdody</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we focused our efforts on one of the vaguest subjects in astrophysics that is the formation and evolution of the universe until the arrival of humans. Through an in-depth exploration of the origins of the universe, understanding what has happened since the Big Bang until now and checking the history of creation, we can answer questions about the future of life, the possibility of its existence elsewhere in the universe and to be able to understand how we came, what our role in the circle of life is and what the future of our development will be. Here is where we used systematic steps that allowed us first and foremost to identify the reason behind the big bang itself that formed a large cloud of cosmic dust. Then after a period of time from the expansion of the universe and its coolness, the initial molecules of gases from the cosmic cloud began to condense, forming a very dense field of gravity that after millions of years led to the formation of stars, galaxies, even earth and the else planets. Finally, it became clear before us that after the earth has formed, the existence of liquid water made it possible for life to form, starting from the bacteria all the way until the appearance of the humans that we know today. But it does not stop here. If we look and contemplate in ourselves as humans, we will understand that the universe is inside us and that’s what makes us exceptional. All of this means that just as life on earth was created, it could have been on other planets as well. It also means that we are the universe’s key to understand itself. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Big%20Bang" title="Big Bang">Big Bang</a>, <a href="https://publications.waset.org/abstracts/search?q=cosmic%20dust" title=" cosmic dust"> cosmic dust</a>, <a href="https://publications.waset.org/abstracts/search?q=primary%20elements" title=" primary elements"> primary elements</a>, <a href="https://publications.waset.org/abstracts/search?q=universe" title=" universe"> universe</a> </p> <a href="https://publications.waset.org/abstracts/99846/an-exploratory-study-applied-to-search-relationship-between-humans-and-universe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99846.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">981</span> Measurement of Rayleigh Scattering Cross-Section of ₆₀Nd K X-Rays Elements with 26 ≤ Z≤ 90</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Govind%20Sharma">Govind Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Harpreet%20S.%20Kainth"> Harpreet S. Kainth</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rayleigh scattering differential cross sections have been measured for the 36.84 keV (60Nd Kα2), 37.36 keV (60Nd Kα1) and 42.27 keV (60Nd Kβ1,3) X-rays. These measurements have been done in 44 elements with 22 ≤ Z ≤ 90 at an angle of 1390. The measurements are performed by using a radiation source consisting of an annular 60Nd foil excited by the 59.54 KeV γ-ray photons from 241Am radioactive source. The Nd Kα2, Kβ1,3 X-ray photons from the 60Nd annular foil (secondary photon source) are made to scatter from the target and the scattered photons are detected using Canberra made low energy Germanium (LEGe) detector. The measured Rayleigh scattering cross sections are compared with the theoretical MF, MFASF and the SM values. The noticeable deviations are observed from the MF, MFASF and SM values for 36.84 keV (60Nd Kα2), 37.36 keV (60Nd Kα1) and 42.27 keV (60Nd Kβ1,3) X-rays. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Photon-electron%20interaction" title="Photon-electron interaction">Photon-electron interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=Rayleigh%20scattering" title=" Rayleigh scattering"> Rayleigh scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20fluorescence" title=" X-ray fluorescence"> X-ray fluorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray" title=" X-ray "> X-ray </a> </p> <a href="https://publications.waset.org/abstracts/79355/measurement-of-rayleigh-scattering-cross-section-of-60nd-k-x-rays-elements-with-26-z-90" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79355.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cosmic%20rays%20propagation&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cosmic%20rays%20propagation&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cosmic%20rays%20propagation&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cosmic%20rays%20propagation&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cosmic%20rays%20propagation&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cosmic%20rays%20propagation&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cosmic%20rays%20propagation&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cosmic%20rays%20propagation&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cosmic%20rays%20propagation&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cosmic%20rays%20propagation&page=33">33</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cosmic%20rays%20propagation&page=34">34</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cosmic%20rays%20propagation&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>