CINXE.COM
Search results for: weld joints
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: weld joints</title> <meta name="description" content="Search results for: weld joints"> <meta name="keywords" content="weld joints"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="weld joints" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="weld joints"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 527</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: weld joints</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">527</span> Effect of Welding Processes on Tensile Behavior of Aluminum Alloy Joints</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chaitanya%20Sharma">Chaitanya Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Vikas%20Upadhyay"> Vikas Upadhyay</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Tripathi"> A. Tripathi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Friction stir welding and tungsten inert gas welding techniques were employed to weld armor grade aluminum alloy to investigate the effect of welding processes on tensile behavior of weld joints. Tensile tests, Vicker microhardness tests and optical microscopy were performed on developed weld joints and base metal. Welding process influenced tensile behavior and microstructure of weld joints. Friction stir welded joints showed tensile behavior better than tungsten inert gas weld joints. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=friction%20stir%20welding" title="friction stir welding">friction stir welding</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20properties" title=" tensile properties"> tensile properties</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20locations" title=" fracture locations"> fracture locations</a> </p> <a href="https://publications.waset.org/abstracts/40159/effect-of-welding-processes-on-tensile-behavior-of-aluminum-alloy-joints" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40159.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">526</span> Influence of Post Weld Heat Treatment on Mechanical and Metallurgical Properties of TIG Welded Aluminium Alloy Joints</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gurmeet%20Singh%20Cheema">Gurmeet Singh Cheema</a>, <a href="https://publications.waset.org/abstracts/search?q=Navjotinder%20Singh"> Navjotinder Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Gurjinder%20Singh"> Gurjinder Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Amardeep%20Singh"> Amardeep Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aluminium and its alloys play have excellent corrosion resistant properties, ease of fabrication and high specific strength to weight ratio. In this investigation an attempt has been made to study the effect of different post weld heat treatment methods on the mechanical and metallurgical properties of TIG welded joints of the commercial aluminium alloy. Three different methods of post weld heat treatments are, solution heat treatment, artificial aged and combination of solution heat treatment and artificial aging are given to TIG welded aluminium joints. Mechanical and metallurgical properties of as welded and post weld treated joints of the aluminium alloys was examined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminium%20alloys" title="aluminium alloys">aluminium alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=TIG%20welding" title=" TIG welding"> TIG welding</a>, <a href="https://publications.waset.org/abstracts/search?q=post%20weld%20heat%20treatment" title=" post weld heat treatment"> post weld heat treatment</a> </p> <a href="https://publications.waset.org/abstracts/14625/influence-of-post-weld-heat-treatment-on-mechanical-and-metallurgical-properties-of-tig-welded-aluminium-alloy-joints" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">575</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">525</span> Study of Microstructure and Mechanical Properties Obtained by FSW of Similar and Dissimilar Non-Ferrous Alloys Used in Aerospace and Automobile Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ajay%20Sidana">Ajay Sidana</a>, <a href="https://publications.waset.org/abstracts/search?q=Kulbir%20Singh%20Sandhu"> Kulbir Singh Sandhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Balwinder%20Singh%20Sidhu"> Balwinder Singh Sidhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Joining of dissimilar non-ferrous alloys like aluminium and magnesium alloys becomes important in various automobile and aerospace applications due to their low density and good corrosion resistance. Friction Stir Welding (FSW), a solid state joining process, successfully welds difficult to weld similar and dissimilar aluminum and magnesium alloys. Two tool rotation speeds were selected by keeping the transverse speed constant to weld similar and dissimilar alloys. Similar(Al to Al) and Dissimilar(Al to Mg) weld joints were obtained by FSW. SEM scans revealed that higher tool rotation fragments the coarse grains of base material into fine grains in the weld zone. Also, there are less welding defects in weld joints obtained with higher tool rotation speed. The material of dissimilar alloys was mixed with each other forming recrystallised new intermetallics. There was decrease in hardness of similar weld joint however there is significant increase in hardness of weld zone in case of dissimilar weld joints due to stirring action of tool and formation of inter metallics. Tensile tests revealed that there was decrease in percentage elongation in both similar and dissimilar weld joints. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum%20alloys" title="aluminum alloys">aluminum alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium%20alloys" title=" magnesium alloys"> magnesium alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20stir%20welding" title=" friction stir welding"> friction stir welding</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/17732/study-of-microstructure-and-mechanical-properties-obtained-by-fsw-of-similar-and-dissimilar-non-ferrous-alloys-used-in-aerospace-and-automobile-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17732.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">524</span> Effect of Forging Pressure on Mechanical Properties and Microstructure of Similar and Dissimilar Friction Welded Joints (Aluminium, Copper, Steel)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sagar%20Pandit">Sagar Pandit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work focuses on the effect of various process parameters on the mechanical properties and microstructure of joints produced by continuous drive friction welding and linear friction welding. An attempt is made to investigate the feasibility of obtaining an acceptable weld joint between similar as well as dissimilar components and the microstructural changes have also been assessed once the good weld joints were considered (using Optical Microscopy and Scanning Electron Microscopy techniques). The impact of forging pressure in the microstructure of the weld joint has been studied and the variation in joint strength with varying forge pressure is analyzed. The weld joints were obtained two pair of dissimilar materials and one pair of similar materials, which are listed respectively as: Al-AA5083 & Cu-C101 (dissimilar), Aluminium alloy-3000 series & Mild Steel (dissimilar) and High Nitrogen Austenitic Stainless Steel pair (similar). Intermetallic phase formation was observed at the weld joints in the Al-Cu joint, which consequently harmed the properties of the joint (less tensile strength). It was also concluded that the increase in forging pressure led to both increment and decrement in the tensile strength of the joint depending on the similarity or dissimilarity of the components. The hardness was also observed to possess maximum as well as minimum values at the weld joint depending on the similarity or dissimilarity of workpieces. It was also suggested that a higher forging pressure is needed to obtain complete joining for the formation of the weld joint. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forging%20pressure" title="forging pressure">forging pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20welding" title=" friction welding"> friction welding</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/134222/effect-of-forging-pressure-on-mechanical-properties-and-microstructure-of-similar-and-dissimilar-friction-welded-joints-aluminium-copper-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134222.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">523</span> Evaluation of Mechanical Properties of Welds Fabricated at a Close Proximity on Offshore Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Nakkeran">T. Nakkeran</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Dhamodharan"> C. Dhamodharan</a>, <a href="https://publications.waset.org/abstracts/search?q=Win%20Myint%20Soe"> Win Myint Soe </a>, <a href="https://publications.waset.org/abstracts/search?q=Ramasamy%20Deverajan"> Ramasamy Deverajan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ganesh%20Babu"> M. Ganesh Babu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This manuscript presents the results of an experimental investigation performed to study the material and mechanical properties of two weld joints fabricated within close proximity. The experiment was designed using welded S355 D Z35 with distances between two parallel adjacent weld toes at 8 mm. These distances were less than the distance that has normally been recommended in standards, codes, and specifications. The main idea of the analysis is to determine any significant effects when welding the joints with the close proximity of 8mm using the SAW welding process of the one joint with high heat put and one joint welded with the FCAW welding process and evaluating the destructing and nondestructive testing between the welded joints. Further, we have evaluated the joints with Mechanical Testing for evaluating by performing Tensile test, bend testing, Macrostructure, Microstructure, Hardness test, and Impact testing. After evaluating the final outcome of the result, no significant changes were observed for welding the close proximity of weld of 8mm distance between the joints as compared to the specification minimum distance between the weldments of any design should be 50mm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=S355%20carbon%20steel" title="S355 carbon steel">S355 carbon steel</a>, <a href="https://publications.waset.org/abstracts/search?q=weld%20proximity" title=" weld proximity"> weld proximity</a>, <a href="https://publications.waset.org/abstracts/search?q=SAW%20process" title=" SAW process"> SAW process</a>, <a href="https://publications.waset.org/abstracts/search?q=FCAW%20process" title=" FCAW process"> FCAW process</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20input" title=" heat input"> heat input</a>, <a href="https://publications.waset.org/abstracts/search?q=bend%20test" title=" bend test"> bend test</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20test" title=" tensile test"> tensile test</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness%20test" title=" hardness test"> hardness test</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20test" title=" impact test"> impact test</a>, <a href="https://publications.waset.org/abstracts/search?q=macro%20and%20microscopic%20examinations" title=" macro and microscopic examinations"> macro and microscopic examinations</a> </p> <a href="https://publications.waset.org/abstracts/155282/evaluation-of-mechanical-properties-of-welds-fabricated-at-a-close-proximity-on-offshore-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155282.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">522</span> Investigation of Distortion and Impact Strength of 304L Butt Joint Using Different Weld Groove</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Sharma">A. Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Sandhu"> S. S. Sandhu</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Shahi"> A. Shahi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kumar"> A. Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of present investigation was to carry out Finite element modeling of distortion in the case of butt weld. 12mm thick AISI 304L plates were butt welded using three different combinations of groove design namely Double U, Double V and Composite. A full simulation of shielded metal arc welding (SMAW) of nonlinear heat transfer is carried out. Aspects like, temperature-dependent thermal properties of AISI stainless steel above liquid phase, the effect of thermal boundary conditions, were included in the model. Since welding heat dissipation characteristics changed due to variable groove design significant changes in the microhardness tensile strength and impact toughness of the joints were observed. The cumulative distortion was found to be least in double V joint followed by the Composite and Double U-joints. All the joints have joint efficiency more than 100%. CVN value of the Double V-groove weld metal was highest. The experimental results and the FEM results were compared and reveal a very good correlation for distortion and weld groove design for a multipass joint with a standard analogy of 83%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AISI%20304%20L" title="AISI 304 L">AISI 304 L</a>, <a href="https://publications.waset.org/abstracts/search?q=Butt%20joint" title=" Butt joint"> Butt joint</a>, <a href="https://publications.waset.org/abstracts/search?q=distortion" title=" distortion"> distortion</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=groove%20design" title=" groove design"> groove design</a>, <a href="https://publications.waset.org/abstracts/search?q=SMAW" title=" SMAW"> SMAW</a> </p> <a href="https://publications.waset.org/abstracts/29787/investigation-of-distortion-and-impact-strength-of-304l-butt-joint-using-different-weld-groove" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29787.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">521</span> Microstructure and SEM Analysis of Joints Fabricated by FSW of Aluminum Alloys 5083 and 6063</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaskirat%20Singh">Jaskirat Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Roshan%20Lal%20Virdi"> Roshan Lal Virdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Khushdeep%20Goyal"> Khushdeep Goyal </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is to perform a microstructural analysis of Friction Stir Welded joints of aluminum alloys 6063 and 5083, also to check the properties of the weld zone by SEM analysis. FSW experiments were carried on CNC Vertical milling machine. The tools used for welding were the round cylindrical pin shape and square pin shape. It is found that Microstructure shows the uniformly distributed material with minimum heat affected zone and dense welded zone without any defect. Microstructures indicate that the weld material is defect free. The SEM shows the diffusion of material with base metal with proper bonding without any defect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=friction%20stir%20welding" title="friction stir welding">friction stir welding</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum%20alloy" title=" aluminum alloy"> aluminum alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM%20analysis" title=" SEM analysis"> SEM analysis</a> </p> <a href="https://publications.waset.org/abstracts/6489/microstructure-and-sem-analysis-of-joints-fabricated-by-fsw-of-aluminum-alloys-5083-and-6063" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6489.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">520</span> Effect of Shot Peening on the Mechanical Properties for Welded Joints of Aluminium Alloy 6061-T6</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muna%20Khethier%20Abbass">Muna Khethier Abbass</a>, <a href="https://publications.waset.org/abstracts/search?q=Khairia%20Salman%20Hussan"> Khairia Salman Hussan</a>, <a href="https://publications.waset.org/abstracts/search?q=Huda%20Mohummed%20AbdudAlaziz"> Huda Mohummed AbdudAlaziz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work aims to study the effect of shot peening on the mechanical properties of welded joints which performed by two different welding processes: Tungsten inert gas (TIG) welding and friction stir welding (FSW) processes of aluminum alloy 6061 T6. Arc welding process (TIG) was carried out on the sheet with dimensions of (100x50x6 mm) to obtain many welded joints with using electrode type ER4043 (AlSi5) as a filler metal and argon as shielding gas. While the friction stir welding process was carried out using CNC milling machine with a tool of rotational speed (1000 rpm) and welding speed of (20 mm/min) to obtain the same butt welded joints. The welded pieces were tested by X-ray radiography to detect the internal defects and faulty welded pieces were excluded. Tensile test specimens were prepared from welded joints and base alloy in the dimensions according to ASTM17500 and then subjected to shot peening process using steel ball of diameter 0.9 mm and for 15 min. All specimens were subjected to Vickers hardness test and micro structure examination to study the effect of welding process (TIG and FSW) on the micro structure of the weld zones. Results showed that a general decay of mechanical properties of TIG and FSW welded joints comparing with base alloy while the FSW welded joint gives better mechanical properties than that of TIG welded joint. This is due to the micro structure changes during the welding process. It has been found that the surface hardening by shot peening improved the mechanical properties of both welded joints, this is due to the compressive residual stress generation in the weld zones which was measured using X-Ray diffraction (XRD) inspection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=friction%20stir%20welding" title="friction stir welding">friction stir welding</a>, <a href="https://publications.waset.org/abstracts/search?q=TIG%20welding" title=" TIG welding"> TIG welding</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=shot%20peening" title=" shot peening"> shot peening</a> </p> <a href="https://publications.waset.org/abstracts/14890/effect-of-shot-peening-on-the-mechanical-properties-for-welded-joints-of-aluminium-alloy-6061-t6" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14890.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">519</span> The Collapse of a Crane on Site: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Teruzzi">T. Teruzzi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Antonietti"> S. Antonietti</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Mosca"> C. Mosca</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Paglia"> C. Paglia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper discusses the causes of the structural failure in a tower crane. The structural collapse occurred at the upper joints of the extension element used to increase the height of the crane. The extension element consists of a steel lattice structure made with angular profiles and plates joined to the tower element by arc welding. Macroscopic inspection of the sections showed that the break was always observed on the angular profiles at the weld bead edge. The case study shows how, using mechanical characterization, chemical analysis of the steel and macroscopic and microscopic metallographic examinations, it was possible to obtain significant evidence that identified the mechanism causing the breakage. The analyses identified the causes of the structural failure as the use of materials that were not suitable for welding and poor performance in the welding joints. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=failure" title="failure">failure</a>, <a href="https://publications.waset.org/abstracts/search?q=metals" title=" metals"> metals</a>, <a href="https://publications.waset.org/abstracts/search?q=weld" title=" weld"> weld</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/123226/the-collapse-of-a-crane-on-site-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123226.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">518</span> Investigation of Distortion and Impact Strength of 304 L Butt Joint Using Different Weld Groove </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Sharma">A. Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Sandhu"> S. S. Sandhu</a>, <a href="https://publications.waset.org/abstracts/search?q=A.Shahi"> A.Shahi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kumar"> A. Kumar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the effects of geometric configurations of butt joints i.e. double V groove, double U groove and UV groove of AISI 304L of thickness 12 mm by using Gas Tungsten Arc Welding (GTAW) are investigated. The magnitude of transverse shrinkage stress and distortion generated during welding under the unrestrained conditions of butt joints is the main objective of the study. The effect of groove design on impact strength and metallurgical properties are also studied. The Finite element analysis for the groove design is done and compared the actual experimentation. The experimental results and the FEM results were compared and reveal a very good correlation for distortion and weld groove design for multipass joint with a standard analogy of 80%. In the case of VV groove design it was found that the transverse stress and cumulative deflection have the lowest value. It was found that the UV groove design had the maximum ultimate and yield tensile strength, VV groove had the highest impact strength. Vicker’s hardness value of all the groove design was measured. Micro structural studies were carried out using conventional microscopic tools which revealed a lot of useful information for correlating the microstructure with mechanical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=weld%20groove%20design" title="weld groove design">weld groove design</a>, <a href="https://publications.waset.org/abstracts/search?q=distortion" title=" distortion"> distortion</a>, <a href="https://publications.waset.org/abstracts/search?q=AISI%20304%20L" title=" AISI 304 L"> AISI 304 L</a>, <a href="https://publications.waset.org/abstracts/search?q=butt%20joint" title=" butt joint"> butt joint</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=GTAW" title=" GTAW"> GTAW</a> </p> <a href="https://publications.waset.org/abstracts/20711/investigation-of-distortion-and-impact-strength-of-304-l-butt-joint-using-different-weld-groove" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20711.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">517</span> Effect of Variation of Temperature Distribution on Mechanical Properties of Shield Metal Arc Welded Duplex Stainless Steel </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arvind%20Mittal">Arvind Mittal</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Gupta"> Rajesh Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Influence of heat input on the micro structure and mechanical properties of shield metal arc welded of duplex stainless steel UNSNO.S-31803 has been investigated. Three heat input combinations designated as low heat (0.675 KJ/mm), medium heat (0.860 KJ/mm) and high heat (1.094 KJ/mm) and weld joints made using these combinations were subjected to micro structural evaluations and tensile and impact testing so as to analyze the effect of thermal arc energy on the micro structure and mechanical properties of these joints. The result of this investigation shows that the joints made using low heat input exhibited higher tensile strength than those welded with medium and high heat input. Heat affected zone of welded joint made with medium heat input has austenitic ferritic grain structure with some patchy austenite provide high toughness. Significant grain coarsening was observed in the heat affected zone (HAZ) of medium and high heat input welded joints, whereas low heat input welded joint shows the fine grain structure in the heat affected zone with small amount of dendritic formation and equiaxed grain structure where inner zone indicates slowly cooled grains in the direction of heat dissipation. This is the main reason for the observable changes of tensile properties of weld joints welded with different arc energy inputs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microstructure" title="microstructure">microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=shield%20metal%20arc%20welded" title=" shield metal arc welded"> shield metal arc welded</a>, <a href="https://publications.waset.org/abstracts/search?q=duplex%20stainless%20steel" title=" duplex stainless steel"> duplex stainless steel</a> </p> <a href="https://publications.waset.org/abstracts/3527/effect-of-variation-of-temperature-distribution-on-mechanical-properties-of-shield-metal-arc-welded-duplex-stainless-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3527.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">516</span> Cold Metal Transfer Welding of Dissimilar Thickness 6061-T6 to 5182-O Aluminum Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Elrefaei">A. Elrefaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The possibility of having sheets with different thicknesses and materials in one assembly facilitates the optimal material distribution within the final product and reduces the weight of the structure. Ability of joining process to assembly these different material combinations is always a challenge to the designer. In this study, 0.6 mm thick 6061-T6 and 2 mm thick 5182-O were robot CMT welded using ER5356 and ER4043 filler metals. The thermal effect of welding resulted in a loss of hardness in the 6061 HAZ. Joints welded by ER5356 filler metal were much higher in fracture load than joints welded by ER4043 and the elongation of joints welded by ER5356 was almost double its corresponding joints welded by ER4043 filler. Owing to the big difference in formability and thickness of base metals, the fracture in forming test occurred in the softened 6061 HAZ out from the weld centerline. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum" title="aluminum">aluminum</a>, <a href="https://publications.waset.org/abstracts/search?q=CMT" title=" CMT"> CMT</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical" title=" mechanical"> mechanical</a>, <a href="https://publications.waset.org/abstracts/search?q=welding" title=" welding "> welding </a> </p> <a href="https://publications.waset.org/abstracts/7450/cold-metal-transfer-welding-of-dissimilar-thickness-6061-t6-to-5182-o-aluminum-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7450.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">515</span> Degree of Bending in Axially Loaded Tubular KT-Joints of Offshore Structures: Parametric Study and Formulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Ahmadi">Hamid Ahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shadi%20Asoodeh"> Shadi Asoodeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fatigue life of tubular joints commonly found in offshore industry is not only dependent on the value of hot-spot stress (HSS), but is also significantly influenced by the through-the-thickness stress distribution characterized by the degree of bending (DoB). The determination of DoB values in a tubular joint is essential for improving the accuracy of fatigue life estimation using the stress-life (S–N) method and particularly for predicting the fatigue crack growth based on the fracture mechanics (FM) approach. In the present paper, data extracted from finite element (FE) analyses of tubular KT-joints, verified against experimental data and parametric equations, was used to investigate the effects of geometrical parameters on DoB values at the crown 0˚, saddle, and crown 180˚ positions along the weld toe of central brace in tubular KT-joints subjected to axial loading. Parametric study was followed by a set of nonlinear regression analyses to derive DoB parametric formulas for the fatigue analysis of KT-joints under axial loads. The tubular KT-joint is a quite common joint type found in steel offshore structures. However, despite the crucial role of the DoB in evaluating the fatigue performance of tubular joints, this paper is the first attempt to study and formulate the DoB values in KT-joints. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tubular%20KT-joint" title="tubular KT-joint">tubular KT-joint</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue" title=" fatigue"> fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=degree%20of%20bending%0D%0A%28DoB%29" title=" degree of bending (DoB)"> degree of bending (DoB)</a>, <a href="https://publications.waset.org/abstracts/search?q=axial%20loading" title=" axial loading"> axial loading</a>, <a href="https://publications.waset.org/abstracts/search?q=parametric%20formula" title=" parametric formula "> parametric formula </a> </p> <a href="https://publications.waset.org/abstracts/26817/degree-of-bending-in-axially-loaded-tubular-kt-joints-of-offshore-structures-parametric-study-and-formulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26817.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">514</span> The Joint Properties for Friction Stir Welding of Aluminium Tubes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahbdelfattah%20M.%20Khourshid">Ahbdelfattah M. Khourshid</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Elabeidi"> T. Elabeidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Friction Stir Welding (FSW), a solid state joining technique, is widely being used for joining Al alloys for aerospace, marine automotive and many other applications of commercial importance. FSW were carried out using a vertical milling machine on Al 5083 alloy pipe. These pipe sections are relatively small in diameter, 5mm, and relatively thin walled, 2mm. In this study, 5083 aluminum alloy pipe were welded as similar alloy joints using (FSW) process in order to investigate mechanical and microstructural properties .rotation speed 1400 r.p.m and weld speed 10,40,70 mm/min. In order to investigate the effect of welding speeds on mechanical properties, metallographic and mechanical tests were carried out on the welded areas. Vickers hardness profile and tensile tests of the joints as a metallurgical investigation, Optic Microscopy and Scanning Electron Microscopy (SEM) were used for base and weld zones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=friction%20stir%20welding%20%28FSW%29" title="friction stir welding (FSW)">friction stir welding (FSW)</a>, <a href="https://publications.waset.org/abstracts/search?q=Al%20alloys" title=" Al alloys"> Al alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure "> microstructure </a> </p> <a href="https://publications.waset.org/abstracts/16722/the-joint-properties-for-friction-stir-welding-of-aluminium-tubes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16722.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">535</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">513</span> Analysis of Weld Crack of Main Steam Governing Valve Steam Turbine Case </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarakorn%20Sukaviriya">Sarakorn Sukaviriya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes the inspection procedure, root cause analysis, the rectification of crack, and how to apply the procedure with other similar plants. During the operation of the steam turbine (620MW), instruments such as speed sensor of steam turbine, the servo valve of main stop valve and electrical wires were malfunction caused by leakage steam from main steam governing valve. Therefore, the power plant decided to shutdown steam turbines for figuring out the cause of leakage steam. Inspection techniques to be applied in this problem were microstructure testing (SEM), pipe stress analysis (FEM) and non-destructive testing. The crack was initially found on main governing valve’s weldment by visual inspection. To analyze more precisely, pipe stress analysis and microstructure testing were applied and results indicated that the crack was intergranular and originated from the weld defect. This weld defect caused the notch with high-stress concentration which created crack and then propagated to steam leakage. The major root cause of this problem was an inappropriate welding process, which created a weld defect. To repair this joint from damage, we used a welding technique by producing refinement of coarse grain HAZ and eliminating stress concentration. After the weldment was completely repaired, other adjacent weldments still had risk. Hence, to prevent any future cracks, non-destructive testing (NDT) shall be applied to all joints in order to ensure that there will be no indication of crack. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=steam-pipe%20leakage" title="steam-pipe leakage">steam-pipe leakage</a>, <a href="https://publications.waset.org/abstracts/search?q=steam%20leakage" title=" steam leakage"> steam leakage</a>, <a href="https://publications.waset.org/abstracts/search?q=weld%20crack%20analysis" title=" weld crack analysis"> weld crack analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=weld%20defect" title=" weld defect"> weld defect</a> </p> <a href="https://publications.waset.org/abstracts/116436/analysis-of-weld-crack-of-main-steam-governing-valve-steam-turbine-case" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">512</span> Welding Technology Developments for Stringer-Skin Joints with Al-Li Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Egoitz%20Aldanondo">Egoitz Aldanondo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ekaitz%20Arruti"> Ekaitz Arruti</a>, <a href="https://publications.waset.org/abstracts/search?q=Amaia%20Iturrioz"> Amaia Iturrioz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivan%20Huarte"> Ivan Huarte</a>, <a href="https://publications.waset.org/abstracts/search?q=Fidel%20Zubiri"> Fidel Zubiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Manufacturing aeronautic structures joining extruded profiles or stringers to sheets or skins of aluminium is a typical manufacturing procedure in aeronautic structures. Although riveting is the conventional manufacturing technology to produce such joints, the Friction Stir Welding (FSW) and Laser Beam Welding (LBW) technologies have also demonstrated their potential for this kind of applications. Therefore, FSW and LBW technologies have the potential to continue their development as manufacturing processes for aeronautic structures showing benefits such as time-saving, light-weighting and overall cost reduction. In addition to that, new aluminium-lithium based alloy developments represent great opportunities for advanced aeronautic structure manufacturing with potential benefits such as lightweight construction or improved corrosion resistance. This work presents the main approaches by FSW and LBW to develop those technologies to produce stiffened panel structures such as fuselage by stringer-skin joints and using innovative aluminium-lithium alloys. Initial welding tests were performed in AA2198-T3S aluminium alloys for LBW technology and with AA2198-T851 for FSW. Later tests for both FSW and LBW have been carried out using AA2099-T83 alloy extrusions as stringers and AA2060-T8E30 as skin materials. The weld quality and properties have been examined by metallographic analysis and mechanical testing, including shear tensile tests and pull-out tests. The analysis of the results have shown the relationships between processing conditions, micro-macrostructural properties and the mechanical strength of the welded joints. The effects produced in the different alloys investigated have been observed and particular weld formation mechanics have been studied for each material and welding technology. Therefore, relationships between welding conditions and the obtained weld properties for each material combination and welding technology will be discussed in this presentation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AA2060-T8E30" title="AA2060-T8E30">AA2060-T8E30</a>, <a href="https://publications.waset.org/abstracts/search?q=AA2099-T83" title=" AA2099-T83"> AA2099-T83</a>, <a href="https://publications.waset.org/abstracts/search?q=AA2198-T3S" title=" AA2198-T3S"> AA2198-T3S</a>, <a href="https://publications.waset.org/abstracts/search?q=AA2198-T851" title=" AA2198-T851"> AA2198-T851</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20stir%20welding" title=" friction stir welding"> friction stir welding</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20beam%20welding" title=" laser beam welding"> laser beam welding</a> </p> <a href="https://publications.waset.org/abstracts/87356/welding-technology-developments-for-stringer-skin-joints-with-al-li-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">511</span> Optimization of Friction Stir Spot Welding Process Parameters for Joining 6061 Aluminum Alloy Using Taguchi Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20A.%20Tashkandi">Mohammed A. Tashkandi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jawdat%20A.%20Al-Jarrah"> Jawdat A. Al-Jarrah</a>, <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Ibrahim"> Masoud Ibrahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the shear strength of the joints produced by friction stir spot welding process (FSSW). FSSW parameters such as tool rotational speed, plunge depth, shoulder diameter of the welding tool and dwell time play the major role in determining the shear strength of the joints. The effect of these four parameters on FSSW process as well as the shear strength of the welded joints was studied via five levels of each parameter. Taguchi method was used to minimize the number of experiments required to determine the fracture load of the friction stir spot-welded joints by incorporating independently controllable FSSW parameters. Taguchi analysis was applied to optimize the FSSW parameters to attain the maximum shear strength of the spot weld for this type of aluminum alloy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Friction%20Stir%20Spot%20Welding" title="Friction Stir Spot Welding">Friction Stir Spot Welding</a>, <a href="https://publications.waset.org/abstracts/search?q=Al6061%20alloy" title=" Al6061 alloy"> Al6061 alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=Shear%20Strength" title=" Shear Strength"> Shear Strength</a>, <a href="https://publications.waset.org/abstracts/search?q=FSSW%20process%20parameters" title=" FSSW process parameters "> FSSW process parameters </a> </p> <a href="https://publications.waset.org/abstracts/21231/optimization-of-friction-stir-spot-welding-process-parameters-for-joining-6061-aluminum-alloy-using-taguchi-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21231.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">510</span> Hot Spot Stress Analysis and Parametric Study on Rib-To-Deck Welded Connections in Orthotropic Steel Bridge Decks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dibu%20Dave%20Mbako">Dibu Dave Mbako</a>, <a href="https://publications.waset.org/abstracts/search?q=Bin%20Cheng"> Bin Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper study the stress variation of the welded joints in the rib-to-deck connection structure, the influence stress of the deck plate and u-rib thickness at different positions. A Finite-element model of orthotropic steel deck structure using solid element and shell element was established in ABAQUS. Under a single wheel load, the static response was analyzed to understand the structural behaviors and examine stress distribution. A parametric study showed that the geometric parameters have a significant effect on the hot spot stress at the weld toe, but has little impact on the stress concentration factor. The increase of the thickness of the deck plate will lead to the decrease of the hot spot stress at the weld toe and the maximum deflection of the deck plate. The surface stresses of the deck plate are significantly larger than those of the rib near the joint in the 80% weld penetration into the u-rib. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=orthotropic%20steel%20bridge%20deck" title="orthotropic steel bridge deck">orthotropic steel bridge deck</a>, <a href="https://publications.waset.org/abstracts/search?q=rib-to-deck%20connection" title=" rib-to-deck connection"> rib-to-deck connection</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20spot%20stress" title=" hot spot stress"> hot spot stress</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20distribution" title=" stress distribution"> stress distribution</a> </p> <a href="https://publications.waset.org/abstracts/84337/hot-spot-stress-analysis-and-parametric-study-on-rib-to-deck-welded-connections-in-orthotropic-steel-bridge-decks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84337.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">509</span> Investigations on the Fatigue Behavior of Welded Details with Imperfections</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Helen%20Bartsch">Helen Bartsch</a>, <a href="https://publications.waset.org/abstracts/search?q=Markus%20Feldmann"> Markus Feldmann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The dimensioning of steel structures subject to fatigue loads, such as wind turbines, bridges, masts and towers, crane runways and weirs or components in crane construction, is often dominated by fatigue verification. The fatigue details defined by the welded connections, such as butt or cruciform joints, longitudinal welds, welded-on or welded-in stiffeners, etc., are decisive. In Europe, the verification is usually carried out according to EN 1993-1-9 on a nominal stress basis. The basis is the detailed catalog, which specifies the fatigue strength of the various weld and construction details according to fatigue classes. Until now, a relation between fatigue classes and weld imperfection sizes is not included. Quality levels for imperfections in fusion-welded joints in steel, nickel, titanium and their alloys are regulated in EN ISO 5817, which, however, doesn’t contain direct correlations to fatigue resistances. The question arises whether some imperfections might be tolerable to a certain extent since they may be present in the test data used for detail classifications dating back decades ago. Although current standardization requires proof of satisfying limits of imperfection sizes, it would also be possible to tolerate welds with certain irregularities if these can be reliably quantified by non-destructive testing. Fabricators would be prepared to undertake carefully and sustained weld inspection in view of the significant economic consequences of such unfavorable fatigue classes. This paper presents investigations on the fatigue behavior of common welded details containing imperfections. In contrast to the common nominal stress concept, local fatigue concepts were used to consider the true stress increase, i.e., local stresses at the weld toe and root. The actual shape of a weld comprising imperfections, e.g., gaps or undercuts, can be incorporated into the fatigue evaluation, usually on a numerical basis. With the help of the effective notch stress concept, the fatigue resistance of detailed local weld shapes is assessed. Validated numerical models serve to investigate notch factors of fatigue details with different geometries. By utilizing parametrized ABAQUS routines, detailed numerical studies have been performed. Depending on the shape and size of different weld irregularities, fatigue classes can be defined. As well load-carrying welded details, such as the cruciform joint, as non-load carrying welded details, e.g., welded-on or welded-in stiffeners, are regarded. The investigated imperfections include, among others, undercuts, excessive convexity, incorrect weld toe, excessive asymmetry and insufficient or excessive throat thickness. Comparisons of the impact of different imperfections on the different types of fatigue details are made. Moreover, the influence of a combination of crucial weld imperfections on the fatigue resistance is analyzed. With regard to the trend of increasing efficiency in steel construction, the overall aim of the investigations is to include a more economical differentiation of fatigue details with regard to tolerance sizes. In the long term, the harmonization of design standards, execution standards and regulations of weld imperfections is intended. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=effective%20notch%20stress" title="effective notch stress">effective notch stress</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue" title=" fatigue"> fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20design" title=" fatigue design"> fatigue design</a>, <a href="https://publications.waset.org/abstracts/search?q=weld%20imperfections" title=" weld imperfections"> weld imperfections</a> </p> <a href="https://publications.waset.org/abstracts/139537/investigations-on-the-fatigue-behavior-of-welded-details-with-imperfections" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139537.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">508</span> Empirical Modeling and Optimization of Laser Welding of AISI 304 Stainless Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nikhil%20Kumar">Nikhil Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Asish%20Bandyopadhyay"> Asish Bandyopadhyay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laser welding process is a capable technology for forming the automobile, microelectronics, marine and aerospace parts etc. In the present work, a mathematical and statistical approach is adopted to study the laser welding of AISI 304 stainless steel. A robotic control 500 W pulsed Nd:YAG laser source with 1064 nm wavelength has been used for welding purpose. Butt joints are made. The effects of welding parameters, namely; laser power, scanning speed and pulse width on the seam width and depth of penetration has been investigated using the empirical models developed by response surface methodology (RSM). Weld quality is directly correlated with the weld geometry. Twenty sets of experiments have been conducted as per central composite design (CCD) design matrix. The second order mathematical model has been developed for predicting the desired responses. The results of ANOVA indicate that the laser power has the most significant effect on responses. Microstructural analysis as well as hardness of the selected weld specimens has been carried out to understand the metallurgical and mechanical behaviour of the weld. Average micro-hardness of the weld is observed to be higher than the base metal. Higher hardness of the weld is the resultant of grain refinement and δ-ferrite formation in the weld structure. The result suggests that the lower line energy generally produce fine grain structure and improved mechanical properties than the high line energy. The combined effects of input parameters on responses have been analyzed with the help of developed 3-D response surface and contour plots. Finally, multi-objective optimization has been conducted for producing weld joint with complete penetration, minimum seam width and acceptable welding profile. Confirmatory tests have been conducted at optimum parametric conditions to validate the applied optimization technique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANOVA" title="ANOVA">ANOVA</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20welding" title=" laser welding"> laser welding</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling%20and%20optimization" title=" modeling and optimization"> modeling and optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a> </p> <a href="https://publications.waset.org/abstracts/51733/empirical-modeling-and-optimization-of-laser-welding-of-aisi-304-stainless-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51733.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">507</span> An Experimental Study on the Effect of Heat Input on the Weld Efficiency of TIG-MIG Hybrid Welding of Type-304 Austenitic Stainless Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Ogundimu">Emmanuel Ogundimu</a>, <a href="https://publications.waset.org/abstracts/search?q=Esther%20Akinlabi"> Esther Akinlabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mutiu%20Erinosho"> Mutiu Erinosho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Welding is described as the process of joining metals so that bonding can be created as a result of inter-atomic penetration. This study investigated the influence of heat input on the efficiency of the welded joints of 304 stainless steel. Three welds joint were made from two similar 304 stainless steel plates of thickness 6 mm. The tensile results obtained showed that the maximum average tensile strength of 672 MPa is possessed by the sample A1 with low heat input. It was discovered that the tensile strength, % elongation and weld joint efficiency decreased with the increase in heat input into the weld. The average % elongation for the entire samples ranged from 28.4% to 36.5%. Sample A1 had the highest joint efficiency of 94.5%. However, the optimum welding current of 190 for TIG- MIG hybrid welding of type-304 austenite stainless steel can be recommended for advanced technological applications such as aircraft manufacturing, nuclear industry, automobile industry, and processing industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microhardness" title="microhardness">microhardness</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile" title=" tensile"> tensile</a>, <a href="https://publications.waset.org/abstracts/search?q=MIG%20welding" title=" MIG welding"> MIG welding</a>, <a href="https://publications.waset.org/abstracts/search?q=process" title=" process"> process</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile" title=" tensile"> tensile</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20stress%20TIG%20welding" title=" shear stress TIG welding"> shear stress TIG welding</a>, <a href="https://publications.waset.org/abstracts/search?q=TIG-MIG%20welding" title=" TIG-MIG welding"> TIG-MIG welding</a> </p> <a href="https://publications.waset.org/abstracts/104563/an-experimental-study-on-the-effect-of-heat-input-on-the-weld-efficiency-of-tig-mig-hybrid-welding-of-type-304-austenitic-stainless-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104563.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">506</span> Developing an Empirical Relationship to Predict Tensile Strength and Micro Hardness of Friction Stir Welded Aluminium Alloy Joints </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gurmeet%20Singh%20Cheema">Gurmeet Singh Cheema</a>, <a href="https://publications.waset.org/abstracts/search?q=Gurjinder%20Singh"> Gurjinder Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Amardeep%20Singh%20Kang"> Amardeep Singh Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aluminium alloy 6061 is a medium to high strength heat-treatable alloy which has very good corrosion resistance and very good weldability. Friction Stir Welding was developed and this technique has attracted considerable interest from the aerospace and automotive industries since it is able to produce defect free joints particularly for light metals i.e aluminum alloy and magnesium alloy. In the friction stir welding process, welding parameters such as tool rotational speed, welding speed and tool shoulder diameter play a major role in deciding the weld quality. In this research work, an attempt has been made to understand the effect of tool rotational speed, welding speed and tool shoulder diameter on friction stir welded AA6061 aluminium alloy joints. Statistical tool such as central composite design is used to develop the mathematical relationships. The mathematical model was developed to predict mechanical properties of friction stir welded aluminium alloy joints at the 95% confidence level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminium%20alloy" title="aluminium alloy">aluminium alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20stir%20welding" title=" friction stir welding"> friction stir welding</a>, <a href="https://publications.waset.org/abstracts/search?q=central%20composite%20design" title=" central composite design"> central composite design</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20relationship" title=" mathematical relationship"> mathematical relationship</a> </p> <a href="https://publications.waset.org/abstracts/52425/developing-an-empirical-relationship-to-predict-tensile-strength-and-micro-hardness-of-friction-stir-welded-aluminium-alloy-joints" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">502</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">505</span> Corrosion Analysis and Interfacial Characterization of Al – Steel Metal Inert Gas Weld - Braze Dissimilar Joints by Micro Area X-Ray Diffraction Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Sravanthi">S. S. Sravanthi</a>, <a href="https://publications.waset.org/abstracts/search?q=Swati%20Ghosh%20Acharyya"> Swati Ghosh Acharyya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automotive light weighting is of major prominence in the current times due to its contribution in improved fuel economy and reduced environmental pollution. Various arc welding technologies are being employed in the production of automobile components with reduced weight. The present study is of practical importance since it involves preferential substitution of Zinc coated mild steel with a light weight alloy such as 6061 Aluminium by means of Gas Metal Arc Welding (GMAW) – Brazing technique at different processing parameters. However, the fabricated joints have shown the generation of Al – Fe layer at the interfacial regions which was confirmed by the Scanning Electron Microscope and Energy Dispersion Spectroscopy. These Al-Fe compounds not only affect the mechanical strength, but also predominantly deteriorate the corrosion resistance of the joints. Hence, it is essential to understand the phases formed in this layer and their crystal structure. Micro area X - ray diffraction technique has been exclusively used for this study. Moreover, the crevice corrosion analysis at the joint interfaces was done by exposing the joints to 5 wt.% FeCl<sub>3</sub> solution at regular time intervals as per ASTM G 48-03. The joints have shown a decreased crevice corrosion resistance with increased heat intensity. Inner surfaces of welds have shown severe oxide cracking and a remarkable weight loss when exposed to concentrated FeCl<sub>3</sub>. The weight loss was enhanced with decreased filler wire feed rate and increased heat intensity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automobiles" title="automobiles">automobiles</a>, <a href="https://publications.waset.org/abstracts/search?q=welding" title=" welding"> welding</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=lap%20joints" title=" lap joints"> lap joints</a>, <a href="https://publications.waset.org/abstracts/search?q=Micro%20XRD" title=" Micro XRD"> Micro XRD</a> </p> <a href="https://publications.waset.org/abstracts/107037/corrosion-analysis-and-interfacial-characterization-of-al-steel-metal-inert-gas-weld-braze-dissimilar-joints-by-micro-area-x-ray-diffraction-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107037.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">504</span> Fatigue Crack Behaviour in a Residual Stress Field at Fillet Welds in Ship Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anurag%20Niranjan">Anurag Niranjan</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Fitzpatrick"> Michael Fitzpatrick</a>, <a href="https://publications.waset.org/abstracts/search?q=Yin%20Jin%20Janin"> Yin Jin Janin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jazeel%20Chukkan"> Jazeel Chukkan</a>, <a href="https://publications.waset.org/abstracts/search?q=Niall%20Smyth"> Niall Smyth</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fillet welds are used in joining longitudinal stiffeners in ship structures. Welding residual stresses in fillet welds are generally distributed in a non-uniform manner, as shown in previous research the residual stress redistribution occurs under the cyclic loading that is experienced by such joints during service, and the combination of the initial residual stress, local constraints, and loading can alter the stress field in ways that are extremely difficult to predict. As the residual stress influences the crack propagation originating from the toe of the fillet welds, full understanding of the residual stress field and how it evolves is very important for structural integrity calculations. Knowledge of the residual stress redistribution in the presence of a flaw is therefore required for better fatigue life prediction. Moreover, defect assessment procedures such as BS7910 offer very limited guidance for flaw acceptance and the associated residual stress redistribution in the assessment of fillet welds. Therefore the objective of this work is to study a surface-breaking flaw at the weld toe region in a fillet weld under cyclic load, in conjunction with residual stress measurement at pre-defined crack depths. This work will provide details of residual stress redistribution under cyclic load in the presence of a crack. The outcome of this project will inform integrity assessment with respect to the treatment of residual stress in fillet welds. Knowledge of the residual stress evolution for this weld geometry will be greatly beneficial for flaw tolerance assessments (BS 7910, API 591). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fillet%20weld" title="fillet weld">fillet weld</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue" title=" fatigue"> fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20stress" title=" residual stress"> residual stress</a>, <a href="https://publications.waset.org/abstracts/search?q=structure%20integrity" title=" structure integrity"> structure integrity</a> </p> <a href="https://publications.waset.org/abstracts/156016/fatigue-crack-behaviour-in-a-residual-stress-field-at-fillet-welds-in-ship-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156016.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">503</span> Parametric Appraisal of Robotic Arc Welding of Mild Steel Material by Principal Component Analysis-Fuzzy with Taguchi Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amruta%20Rout">Amruta Rout</a>, <a href="https://publications.waset.org/abstracts/search?q=Golak%20Bihari%20Mahanta"> Golak Bihari Mahanta</a>, <a href="https://publications.waset.org/abstracts/search?q=Gunji%20Bala%20Murali"> Gunji Bala Murali</a>, <a href="https://publications.waset.org/abstracts/search?q=Bibhuti%20Bhusan%20Biswal"> Bibhuti Bhusan Biswal</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20B.%20V.%20L.%20Deepak"> B. B. V. L. Deepak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of industrial robots for performing welding operation is one of the chief sign of contemporary welding in these days. The weld joint parameter and weld process parameter modeling is one of the most crucial aspects of robotic welding. As weld process parameters affect the weld joint parameters differently, a multi-objective optimization technique has to be utilized to obtain optimal setting of weld process parameter. In this paper, a hybrid optimization technique, i.e., Principal Component Analysis (PCA) combined with fuzzy logic has been proposed to get optimal setting of weld process parameters like wire feed rate, welding current. Gas flow rate, welding speed and nozzle tip to plate distance. The weld joint parameters considered for optimization are the depth of penetration, yield strength, and ultimate strength. PCA is a very efficient multi-objective technique for converting the correlated and dependent parameters into uncorrelated and independent variables like the weld joint parameters. Also in this approach, no need for checking the correlation among responses as no individual weight has been assigned to responses. Fuzzy Inference Engine can efficiently consider these aspects into an internal hierarchy of it thereby overcoming various limitations of existing optimization approaches. At last Taguchi method is used to get the optimal setting of weld process parameters. Therefore, it has been concluded the hybrid technique has its own advantages which can be used for quality improvement in industrial applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=robotic%20arc%20welding" title="robotic arc welding">robotic arc welding</a>, <a href="https://publications.waset.org/abstracts/search?q=weld%20process%20parameters" title=" weld process parameters"> weld process parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=weld%20joint%20parameters" title=" weld joint parameters"> weld joint parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=principal%20component%20analysis" title=" principal component analysis"> principal component analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic" title=" fuzzy logic"> fuzzy logic</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a> </p> <a href="https://publications.waset.org/abstracts/87646/parametric-appraisal-of-robotic-arc-welding-of-mild-steel-material-by-principal-component-analysis-fuzzy-with-taguchi-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">502</span> Studying the Possibility to Weld AA1100 Aluminum Alloy by Friction Stir Spot Welding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20K.%20Jassim">Ahmad K. Jassim</a>, <a href="https://publications.waset.org/abstracts/search?q=Raheem%20Kh.%20Al-Subar"> Raheem Kh. Al-Subar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Friction stir welding is a modern and an environmentally friendly solid state joining process used to joint relatively lighter family of materials. Recently, friction stir spot welding has been used instead of resistance spot welding which has received considerable attention from the automotive industry. It is environmentally friendly process that eliminated heat and pollution. In this research, friction stir spot welding has been used to study the possibility to weld AA1100 aluminum alloy sheet with 3 mm thickness by overlapping the edges of sheet as lap joint. The process was done using a drilling machine instead of milling machine. Different tool rotational speeds of 760, 1065, 1445, and 2000 RPM have been applied with manual and automatic compression to study their effect on the quality of welded joints. Heat generation, pressure applied, and depth of tool penetration have been measured during the welding process. The result shows that there is a possibility to weld AA1100 sheets; however, there is some surface defect that happened due to insufficient condition of welding. Moreover, the relationship between rotational speed, pressure, heat generation and tool depth penetration was created. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=friction" title="friction">friction</a>, <a href="https://publications.waset.org/abstracts/search?q=spot" title=" spot"> spot</a>, <a href="https://publications.waset.org/abstracts/search?q=stir" title=" stir"> stir</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental" title=" environmental"> environmental</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable" title=" sustainable"> sustainable</a>, <a href="https://publications.waset.org/abstracts/search?q=AA1100%20aluminum%20alloy" title=" AA1100 aluminum alloy"> AA1100 aluminum alloy</a> </p> <a href="https://publications.waset.org/abstracts/75697/studying-the-possibility-to-weld-aa1100-aluminum-alloy-by-friction-stir-spot-welding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75697.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">501</span> Characteristics and Mechanical Properties of Bypass-Current MIG Welding-Brazed Dissimilar Al/Ti Joints</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bintao%20Wu">Bintao Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiangfang%20Xu"> Xiangfang Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yugang%20Miao%EF%BC%8CDuanfeng%20Han"> Yugang Miao,Duanfeng Han</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Joining of 1 mm thick aluminum 6061 to titanium TC4 was conducted using Bypass-current MIG welding-brazed, and stable welding process and good bead appearance were obtained. The Joint profile and microstructure of Ti/Al joints were observed by optical microscopy and SEM and then the structure of the interfacial reaction layers were analyzed in details. It was found that the intermetallic compound layer at the interfacial top is in the form of columnar crystal, which is in short and dense state. A mount of AlTi were observed at the interfacial layer near the Ti base metal while intermetallic compound like Al3Ti、TiSi3 were formed near the Al base metal, and the Al11Ti5 transition phase was found in the center of the interface layer due to the uneven distribution inside the weld pool during the welding process. Tensile test results show that the average tensile strength of joints is up to 182.6 MPa, which reaches about 97.6% of aluminum base metal. Fracture is prone to occur in the base metal with a certain amount of necking. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bypass-current%20MIG%20welding-brazed" title="bypass-current MIG welding-brazed">bypass-current MIG welding-brazed</a>, <a href="https://publications.waset.org/abstracts/search?q=Al%20alloy" title=" Al alloy"> Al alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=Ti%20alloy" title=" Ti alloy"> Ti alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=joint%20characteristics" title=" joint characteristics"> joint characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/17396/characteristics-and-mechanical-properties-of-bypass-current-mig-welding-brazed-dissimilar-alti-joints" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17396.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">500</span> Thermal Analysis of Friction Stir Welded Dissimilar Materials with Different Preheating Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prashant%20S.%20Humnabad">Prashant S. Humnabad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this work is to carry out a thermal heat transfer analysis to obtain the time dependent temperature field in welding process friction stir welded dissimilar materials with different preheating temperature. A series of joints were made on four mm thick aluminum and steel plates. The temperature used was 100ºC, 150ºC and 200ºC. The welding operation was performed with different rotational speeds and traverse speed (1000, 1400 and 2000 rmp and 16, 20 and 25 mm/min..). In numerical model, the welded plate was modeled as the weld line is the symmetric line. The work-piece has dimensions of 100x100x4 mm. The obtained result was compared with experimental result, which shows good agreement and within the acceptable limit. The peak temperature at the weld zone increases significantly with respect to increase in process time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FEA" title="FEA">FEA</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20analysis" title=" thermal analysis"> thermal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=preheating" title=" preheating"> preheating</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20stir%20welding" title=" friction stir welding"> friction stir welding</a> </p> <a href="https://publications.waset.org/abstracts/138460/thermal-analysis-of-friction-stir-welded-dissimilar-materials-with-different-preheating-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138460.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">499</span> Effect of Welding Current on Mechanical Properties and Microstructure of Tungsten Inert Gas Welding of Type-304 Austenite Stainless Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Ogundimu">Emmanuel Ogundimu</a>, <a href="https://publications.waset.org/abstracts/search?q=Esther%20Akinlabi"> Esther Akinlabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mutiu%20Erinosho"> Mutiu Erinosho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to study the effect of welding current on the microstructure and the mechanical properties. Material characterizations were conducted on a 6 mm thick plates of type-304 austenite stainless steel, welded by TIG welding process at two different welding currents of 150 A (Sample F3) and 170 A (Sample F4). The tensile strength and the elongation obtained from sample F4 weld were approximately 584 MPa and 19.3 %; which were higher than sample F3 weld. The average microhardness value of sample F4 weld was found to be 235.7 HV, while that of sample F3 weld was 233.4 HV respectively. Homogenous distribution of iron (Fe), chromium (Cr) and nickel (Ni) were observed at the welded joint of the two samples. The energy dispersive spectroscopy (EDS) analysis revealed that Fe, Cr, and Ni made up the composition formed in the weld zone. The optimum welding current of 170 A for TIG welding of type-304 austenite stainless steel can be recommended for high-tech industrial applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microhardness" title="microhardness">microhardness</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile" title=" tensile"> tensile</a>, <a href="https://publications.waset.org/abstracts/search?q=MIG%20welding" title=" MIG welding"> MIG welding</a>, <a href="https://publications.waset.org/abstracts/search?q=process" title=" process"> process</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile" title=" tensile"> tensile</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20stress%20TIG%20welding" title=" shear stress TIG welding"> shear stress TIG welding</a>, <a href="https://publications.waset.org/abstracts/search?q=TIG-MIG%20welding" title=" TIG-MIG welding"> TIG-MIG welding</a> </p> <a href="https://publications.waset.org/abstracts/104566/effect-of-welding-current-on-mechanical-properties-and-microstructure-of-tungsten-inert-gas-welding-of-type-304-austenite-stainless-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104566.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">498</span> Fatigue Behavior of Friction Stir Welded EN AW 5754 Aluminum Alloy Using Load Increase Procedure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20B.%20Chehreh">A. B. Chehreh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Gr%C3%A4tzel"> M. Grätzel</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Klein"> M. Klein</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20P.%20Bergmann"> J. P. Bergmann</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Walther"> F. Walther</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Friction stir welding (FSW) is an advantageous method in the thermal joining processes, featuring the welding of various dissimilar and similar material combinations, joining temperatures below the melting point which prevents irregularities such as pores and hot cracks as well as high strengths mechanical joints near the base material. The FSW process consists of a rotating tool which is made of a shoulder and a probe. The welding process is based on a rotating tool which plunges in the workpiece under axial pressure. As a result, the material is plasticized by frictional heat which leads to a decrease in the flow stress. During the welding procedure, the material is continuously displaced by the tool, creating a firmly bonded weld seam behind the tool. However, the mechanical properties of the weld seam are affected by the design and geometry of the tool. These include in particular microstructural and surface properties which can favor crack initiation. Following investigation compares the dynamic properties of FSW weld seams with conventional and stationary shoulder geometry based on load increase test (LIT). Compared to classical Woehler tests, it is possible to determine the fatigue strength of the specimens after a short amount of time. The investigations were carried out on a robotized welding setup on 2 mm thick EN AW 5754 aluminum alloy sheets. It was shown that an increased tensile and fatigue strength can be achieved by using the stationary shoulder concept. Furthermore, it could be demonstrated that the LIT is a valid method to describe the fatigue behavior of FSW weld seams. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum%20alloy" title="aluminum alloy">aluminum alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20performance" title=" fatigue performance"> fatigue performance</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture" title=" fracture"> fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20stir%20welding" title=" friction stir welding"> friction stir welding</a> </p> <a href="https://publications.waset.org/abstracts/101013/fatigue-behavior-of-friction-stir-welded-en-aw-5754-aluminum-alloy-using-load-increase-procedure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101013.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=weld%20joints&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=weld%20joints&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=weld%20joints&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=weld%20joints&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=weld%20joints&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=weld%20joints&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=weld%20joints&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=weld%20joints&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=weld%20joints&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=weld%20joints&page=17">17</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=weld%20joints&page=18">18</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=weld%20joints&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>