CINXE.COM

Eulerian number - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Eulerian number - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"7e58a915-abca-44f2-8eb0-ceb7d67a83ad","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Eulerian_number","wgTitle":"Eulerian number","wgCurRevisionId":1251293514,"wgRevisionId":1251293514,"wgArticleId":5041744,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Use American English from March 2019","All Wikipedia articles written in American English","Articles with short description","Short description matches Wikidata","Enumerative combinatorics","Factorial and binomial topics","Integer sequences","Triangles of numbers"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Eulerian_number","wgRelevantArticleId":5041744,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable" :true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":20000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q1373849","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled": false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init", "ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.quicksurveys.init","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/4/43/EulerianPolynomialsByEuler1755.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="879"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/4/43/EulerianPolynomialsByEuler1755.png/800px-EulerianPolynomialsByEuler1755.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="586"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/4/43/EulerianPolynomialsByEuler1755.png/640px-EulerianPolynomialsByEuler1755.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="469"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Eulerian number - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Eulerian_number"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Eulerian_number&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Eulerian_number"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Eulerian_number rootpage-Eulerian_number skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Eulerian+number" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Eulerian+number" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Eulerian+number" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Eulerian+number" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Definition" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Definition</span> </div> </a> <ul id="toc-Definition-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Basic_properties" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Basic_properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Basic properties</span> </div> </a> <ul id="toc-Basic_properties-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Computation" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Computation"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Computation</span> </div> </a> <ul id="toc-Computation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Identities" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Identities"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Identities</span> </div> </a> <button aria-controls="toc-Identities-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Identities subsection</span> </button> <ul id="toc-Identities-sublist" class="vector-toc-list"> <li id="toc-Formulas_involving_alternating_sums" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Formulas_involving_alternating_sums"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Formulas involving alternating sums</span> </div> </a> <ul id="toc-Formulas_involving_alternating_sums-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Formulas_involving_the_polynomials" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Formulas_involving_the_polynomials"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Formulas involving the polynomials</span> </div> </a> <ul id="toc-Formulas_involving_the_polynomials-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Eulerian_numbers_of_the_second_order" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Eulerian_numbers_of_the_second_order"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Eulerian numbers of the second order</span> </div> </a> <ul id="toc-Eulerian_numbers_of_the_second_order-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Citations" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Citations"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Citations</span> </div> </a> <ul id="toc-Citations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Eulerian number</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 9 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-9" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">9 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Euler-Zahlen" title="Euler-Zahlen – German" lang="de" hreflang="de" data-title="Euler-Zahlen" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Nombre_eul%C3%A9rien" title="Nombre eulérien – French" lang="fr" hreflang="fr" data-title="Nombre eulérien" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%98%A4%EC%9D%BC%EB%9F%AC_%EC%88%98_(%EC%A1%B0%ED%95%A9%EB%A1%A0)" title="오일러 수 (조합론) – Korean" lang="ko" hreflang="ko" data-title="오일러 수 (조합론)" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Numeri_euleriani" title="Numeri euleriani – Italian" lang="it" hreflang="it" data-title="Numeri euleriani" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Liczby_Eulera" title="Liczby Eulera – Polish" lang="pl" hreflang="pl" data-title="Liczby Eulera" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Num%C4%83r_eulerian" title="Număr eulerian – Romanian" lang="ro" hreflang="ro" data-title="Număr eulerian" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A7%D0%B8%D1%81%D0%BB%D0%B0_%D0%AD%D0%B9%D0%BB%D0%B5%D1%80%D0%B0_I_%D1%80%D0%BE%D0%B4%D0%B0" title="Числа Эйлера I рода – Russian" lang="ru" hreflang="ru" data-title="Числа Эйлера I рода" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Eulerskt_tal" title="Eulerskt tal – Swedish" lang="sv" hreflang="sv" data-title="Eulerskt tal" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A7%D0%B8%D1%81%D0%BB%D0%B0_%D0%95%D0%B9%D0%BB%D0%B5%D1%80%D0%B0_I_%D1%80%D0%BE%D0%B4%D1%83" title="Числа Ейлера I роду – Ukrainian" lang="uk" hreflang="uk" data-title="Числа Ейлера I роду" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1373849#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Eulerian_number" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Eulerian_number" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Eulerian_number"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Eulerian_number&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Eulerian_number&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Eulerian_number"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Eulerian_number&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Eulerian_number&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Eulerian_number" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Eulerian_number" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Eulerian_number&amp;oldid=1251293514" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Eulerian_number&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Eulerian_number&amp;id=1251293514&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FEulerian_number"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FEulerian_number"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Eulerian_number&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Eulerian_number&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1373849" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Not to be confused with <a href="/wiki/Euler_number" class="mw-redirect" title="Euler number">Euler number</a> or <a href="/wiki/Euler%27s_number" class="mw-redirect" title="Euler&#39;s number">Euler's number</a>.</div> <p class="mw-empty-elt"> </p> <div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Polynomial sequence</div> <p>In <a href="/wiki/Combinatorics" title="Combinatorics">combinatorics</a>, the <b>Eulerian number</b> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle A(n,k)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>A</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>k</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle A(n,k)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4487a821e069dc106b69938605594df743518c3a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.192ex; height:2.843ex;" alt="{\textstyle A(n,k)}"></span> is the number of <a href="/wiki/Permutation" title="Permutation">permutations</a> of the numbers 1 to <i><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc6e1f880981346a604257ebcacdef24c0aca2d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\textstyle n}"></span></i> in which exactly <i><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d5595fc0c47452f8fc2aa6e29c3611f047714b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\textstyle k}"></span></i> elements are greater than the previous element (permutations with <i><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d5595fc0c47452f8fc2aa6e29c3611f047714b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\textstyle k}"></span></i> "ascents"). </p><p><a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a> investigated them and associated <a href="/wiki/Polynomials" class="mw-redirect" title="Polynomials">polynomials</a> in his 1755 book <i><a href="/wiki/Institutiones_calculi_differentialis" title="Institutiones calculi differentialis">Institutiones calculi differentialis</a>.</i> </p> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:EulerianPolynomialsByEuler1755.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/43/EulerianPolynomialsByEuler1755.png/303px-EulerianPolynomialsByEuler1755.png" decoding="async" width="303" height="222" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/43/EulerianPolynomialsByEuler1755.png/455px-EulerianPolynomialsByEuler1755.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/43/EulerianPolynomialsByEuler1755.png/606px-EulerianPolynomialsByEuler1755.png 2x" data-file-width="909" data-file-height="666" /></a><figcaption>The polynomials presently known as Eulerian polynomials in Euler's work from 1755, Institutiones calculi differentialis, part 2, p. 485/6. The coefficients of these polynomials are known as Eulerian numbers.</figcaption></figure> <p>Other notations for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle A(n,k)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>A</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>k</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle A(n,k)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4487a821e069dc106b69938605594df743518c3a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.192ex; height:2.843ex;" alt="{\textstyle A(n,k)}"></span> are <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle E(n,k)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>E</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>k</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle E(n,k)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a9236c11eb7d9e0a2eb9c794716e09f62e98a4a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.225ex; height:2.843ex;" alt="{\textstyle E(n,k)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle \left\langle {n \atop k}\right\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>&#x27E8;</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac linethickness="0"> <mi>n</mi> <mi>k</mi> </mfrac> </mrow> <mo>&#x27E9;</mo> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle \left\langle {n \atop k}\right\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e29b3d4615c005ae0b068e07f4a8b6d6785676f5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.738ex; height:3.176ex;" alt="{\displaystyle \textstyle \left\langle {n \atop k}\right\rangle }"></span>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Definition">Definition</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Eulerian_number&amp;action=edit&amp;section=1" title="Edit section: Definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <b>Eulerian polynomials</b> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{n}(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{n}(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/56b6cd5cc5f0952cf67647088a4141efe0f45c6b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.61ex; height:2.843ex;" alt="{\displaystyle A_{n}(t)}"></span> are defined by the exponential generating function </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=0}^{\infty }A_{n}(t)\,{\frac {x^{n}}{n!}}={\frac {t-1}{t-e^{(t-1)\,x}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow> <mi>n</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mrow> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>x</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=0}^{\infty }A_{n}(t)\,{\frac {x^{n}}{n!}}={\frac {t-1}{t-e^{(t-1)\,x}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eefbfb0afe5bbe87c1f22b2b3115b7d663a81b01" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:28.002ex; height:6.843ex;" alt="{\displaystyle \sum _{n=0}^{\infty }A_{n}(t)\,{\frac {x^{n}}{n!}}={\frac {t-1}{t-e^{(t-1)\,x}}}.}"></span></dd></dl> <p>The <b>Eulerian numbers</b> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A(n,k)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>k</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A(n,k)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/765ac2e3c031b8e783dc12f752f28e8f09e5ea0a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.192ex; height:2.843ex;" alt="{\displaystyle A(n,k)}"></span> may be defined as the coefficients of the Eulerian polynomials: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{n}(t)=\sum _{k=0}^{n}A(n,k)\,t^{k}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mi>A</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{n}(t)=\sum _{k=0}^{n}A(n,k)\,t^{k}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68d4e37f58bb7d37ad6387e86de613ad11eab163" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:22.606ex; height:7.009ex;" alt="{\displaystyle A_{n}(t)=\sum _{k=0}^{n}A(n,k)\,t^{k}.}"></span></dd></dl> <p>An explicit formula for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle A(n,k)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>A</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>k</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle A(n,k)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4487a821e069dc106b69938605594df743518c3a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.192ex; height:2.843ex;" alt="{\textstyle A(n,k)}"></span> is<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:EulerianNumberPlot.svg" class="mw-file-description"><img alt="A plot of the Eulerian numbers with the second argument fixed to 5." src="//upload.wikimedia.org/wikipedia/commons/thumb/4/44/EulerianNumberPlot.svg/220px-EulerianNumberPlot.svg.png" decoding="async" width="220" height="206" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/44/EulerianNumberPlot.svg/330px-EulerianNumberPlot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/44/EulerianNumberPlot.svg/440px-EulerianNumberPlot.svg.png 2x" data-file-width="1338" data-file-height="1251" /></a><figcaption>A plot of the Eulerian numbers with the second argument fixed to 5.</figcaption></figure><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A(n,k)=\sum _{i=0}^{k}(-1)^{i}{\binom {n+1}{i}}(k+1-i)^{n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>i</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A(n,k)=\sum _{i=0}^{k}(-1)^{i}{\binom {n+1}{i}}(k+1-i)^{n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/124c596c27ce1fac85973f5af76690dd4ae707af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:40.576ex; height:7.343ex;" alt="{\displaystyle A(n,k)=\sum _{i=0}^{k}(-1)^{i}{\binom {n+1}{i}}(k+1-i)^{n}.}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Basic_properties">Basic properties</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Eulerian_number&amp;action=edit&amp;section=2" title="Edit section: Basic properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>For fixed <i><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc6e1f880981346a604257ebcacdef24c0aca2d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\textstyle n}"></span></i> there is a single permutation which has 0 ascents: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle (n,n-1,n-2,\ldots ,1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle (n,n-1,n-2,\ldots ,1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0010440388f28abb72d66cb99cf5ca70f00beaea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.408ex; height:2.843ex;" alt="{\textstyle (n,n-1,n-2,\ldots ,1)}"></span>. Indeed, as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tbinom {n}{0}}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mn>0</mn> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> </mstyle> </mrow> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tbinom {n}{0}}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0bac632ec89e36c2dd6a6caf5438ade527d61595" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:7.377ex; height:3.343ex;" alt="{\displaystyle {\tbinom {n}{0}}=1}"></span> for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle A(n,0)=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>A</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle A(n,0)=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51281ee624547b078a3042385a7e39f25a7ad91c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.404ex; height:2.843ex;" alt="{\textstyle A(n,0)=1}"></span>. This formally includes the empty collection of numbers, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle n=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle n=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a173aa235818e1acbdb5f2bec89c9ce695350cba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\textstyle n=0}"></span>. And so <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle A_{0}(t)=A_{1}(t)=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle A_{0}(t)=A_{1}(t)=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9cd13af112825684be42f1564c866623624101c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.252ex; height:2.843ex;" alt="{\textstyle A_{0}(t)=A_{1}(t)=1}"></span>.</li> <li>For <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle k=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle k=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e7d22824ef294ca20849685097307c0d067ec31" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.472ex; height:2.176ex;" alt="{\textstyle k=1}"></span> the explicit formula implies <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle A(n,1)=2^{n}-(n+1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>A</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle A(n,1)=2^{n}-(n+1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f58e8a46090d8fb9875706187565910a9b623e62" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.67ex; height:2.843ex;" alt="{\textstyle A(n,1)=2^{n}-(n+1)}"></span>, a sequence in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> that reads <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle 0,0,1,4,11,26,57,\dots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>4</mn> <mo>,</mo> <mn>11</mn> <mo>,</mo> <mn>26</mn> <mo>,</mo> <mn>57</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle 0,0,1,4,11,26,57,\dots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3929561a2317d8e6d96538c549e84ec3eff58b86" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:21.585ex; height:2.509ex;" alt="{\textstyle 0,0,1,4,11,26,57,\dots }"></span>.</li> <li>Fully reversing a permutation with <i><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d5595fc0c47452f8fc2aa6e29c3611f047714b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\textstyle k}"></span></i> ascents creates another permutation in which there are <i><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle n-k-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle n-k-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6132985a4dd35ab92c61cc42394ff5794962bc90" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:9.449ex; height:2.343ex;" alt="{\textstyle n-k-1}"></span></i> ascents. Therefore <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle A(n,k)=A(n,n-k-1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>A</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>A</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle A(n,k)=A(n,n-k-1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99acc65e34d9806f642e91a4d70ffe8b1ebad905" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.721ex; height:2.843ex;" alt="{\textstyle A(n,k)=A(n,n-k-1)}"></span>. So there is also a single permutation which has <i><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle n-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle n-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/960c88fa1831b7505d9672de66058532fa5d4053" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.398ex; height:2.343ex;" alt="{\textstyle n-1}"></span></i> ascents, namely the rising permutation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle (1,2,\ldots ,n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle (1,2,\ldots ,n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6518749d83e74d88d4815e9a184e3827508586c2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.741ex; height:2.843ex;" alt="{\textstyle (1,2,\ldots ,n)}"></span>. So also <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle A(n,n-1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>A</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle A(n,n-1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a462310e3f151ef8b0b66c7ff04c86a3205c02ee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.379ex; height:2.843ex;" alt="{\textstyle A(n,n-1)}"></span> equals <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span>.</li> <li>A lavish upper bound is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle A(n,k)\leq (k+1)^{n}\cdot (n+2)^{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>A</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>&#x2264;<!-- ≤ --></mo> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>2</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle A(n,k)\leq (k+1)^{n}\cdot (n+2)^{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c048710fb30fcc3272f35041930b276f5c627c9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.507ex; height:3.009ex;" alt="{\textstyle A(n,k)\leq (k+1)^{n}\cdot (n+2)^{k}}"></span>. Between the bounds just discussed, the value exceeds <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span>.</li> <li>For <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle k\geq n&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>k</mi> <mo>&#x2265;<!-- ≥ --></mo> <mi>n</mi> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle k\geq n&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f15f0e0849541c3ae40a2aded0dec25bbafd3df4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:9.965ex; height:2.343ex;" alt="{\textstyle k\geq n&gt;0}"></span>, the values are formally zero, meaning many sums over <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d5595fc0c47452f8fc2aa6e29c3611f047714b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\textstyle k}"></span> can be written with an upper index only up to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle n-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle n-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/960c88fa1831b7505d9672de66058532fa5d4053" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.398ex; height:2.343ex;" alt="{\textstyle n-1}"></span>. It also means that the polynomials <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{n}(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{n}(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/56b6cd5cc5f0952cf67647088a4141efe0f45c6b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.61ex; height:2.843ex;" alt="{\displaystyle A_{n}(t)}"></span> are really of <a href="/wiki/Degree_of_a_polynomial" title="Degree of a polynomial">degree</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle n-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle n-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/960c88fa1831b7505d9672de66058532fa5d4053" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.398ex; height:2.343ex;" alt="{\textstyle n-1}"></span> for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle n&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>n</mi> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle n&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5637a1af1493addad305531971621d900b8c1bdc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\textstyle n&gt;0}"></span>.</li></ul> <p>A tabulation of the numbers in a <a href="/wiki/Triangular_array" title="Triangular array">triangular array</a> is called the <b>Euler triangle</b> or <b>Euler's triangle</b>. It shares some common characteristics with <a href="/wiki/Pascal%27s_triangle" title="Pascal&#39;s triangle">Pascal's triangle</a>. Values of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle A(n,k)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>A</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>k</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle A(n,k)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4487a821e069dc106b69938605594df743518c3a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.192ex; height:2.843ex;" alt="{\textstyle A(n,k)}"></span> (sequence <span class="nowrap external"><a href="//oeis.org/A008292" class="extiw" title="oeis:A008292">A008292</a></span> in the <a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>) for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle 0\leq n\leq 9}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mn>0</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>n</mi> <mo>&#x2264;<!-- ≤ --></mo> <mn>9</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle 0\leq n\leq 9}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83b030d96d2f7911d76424945152aed2c71c7dc4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:9.917ex; height:2.343ex;" alt="{\textstyle 0\leq n\leq 9}"></span> are: </p> <dl><dd><table class="wikitable" style="text-align:right;"> <tbody><tr> <th style="background:#EAECF0;background:linear-gradient(to top right,#EAECF0 49%,#AAA 49.5%,#AAA 50.5%,#EAECF0 51%);line-height:1.2;padding:0.1em 0.4em;"><div style="margin-left:2em;text-align:right">&#160;<i>k</i></div><div style="margin-right:2em;text-align:left"><i>n</i>&#160;</div> </th> <th width="50">0 </th> <th width="50">1 </th> <th width="50">2 </th> <th width="50">3 </th> <th width="50">4 </th> <th width="50">5 </th> <th width="50">6 </th> <th width="50">7 </th> <th width="50">8 </th></tr> <tr> <th>0 </th> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td></tr> <tr> <th>1 </th> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td></tr> <tr> <th>2 </th> <td>1</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td></tr> <tr> <th>3 </th> <td>1</td> <td>4</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td></tr> <tr> <th>4 </th> <td>1</td> <td>11</td> <td>11</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td> </td></tr> <tr> <th>5 </th> <td>1</td> <td>26</td> <td>66</td> <td>26</td> <td>1</td> <td></td> <td></td> <td></td> <td> </td></tr> <tr> <th>6 </th> <td>1</td> <td>57</td> <td>302</td> <td>302</td> <td>57</td> <td>1</td> <td></td> <td></td> <td> </td></tr> <tr> <th>7 </th> <td>1</td> <td>120</td> <td>1191</td> <td>2416</td> <td>1191</td> <td>120</td> <td>1</td> <td></td> <td> </td></tr> <tr> <th>8 </th> <td>1</td> <td>247</td> <td>4293</td> <td>15619</td> <td>15619</td> <td>4293</td> <td>247</td> <td>1</td> <td> </td></tr> <tr> <th>9 </th> <td>1</td> <td>502</td> <td>14608</td> <td>88234</td> <td>156190</td> <td>88234</td> <td>14608</td> <td>502</td> <td>1 </td></tr></tbody></table></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Computation">Computation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Eulerian_number&amp;action=edit&amp;section=3" title="Edit section: Computation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For larger values of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc6e1f880981346a604257ebcacdef24c0aca2d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\textstyle n}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle A(n,k)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>A</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>k</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle A(n,k)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4487a821e069dc106b69938605594df743518c3a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.192ex; height:2.843ex;" alt="{\textstyle A(n,k)}"></span> can also be calculated using the <a href="/wiki/Recursion" title="Recursion">recursive</a> formula </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A(n,k)=(n-k)\,A(n-1,k-1)+(k+1)\,A(n-1,k).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>A</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>A</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A(n,k)=(n-k)\,A(n-1,k-1)+(k+1)\,A(n-1,k).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da49255cdd6c3ed1c90985d05be258a60773a976" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:55.224ex; height:2.843ex;" alt="{\displaystyle A(n,k)=(n-k)\,A(n-1,k-1)+(k+1)\,A(n-1,k).}"></span></dd></dl> <p>This formula can be motivated from the combinatorial definition and thus serves as a natural starting point for the theory. </p><p>For small values of <i><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc6e1f880981346a604257ebcacdef24c0aca2d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\textstyle n}"></span></i> and <i><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d5595fc0c47452f8fc2aa6e29c3611f047714b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\textstyle k}"></span></i>, the values of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle A(n,k)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>A</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>k</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle A(n,k)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4487a821e069dc106b69938605594df743518c3a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.192ex; height:2.843ex;" alt="{\textstyle A(n,k)}"></span> can be calculated by hand. For example </p> <dl><dd><table class="wikitable"> <tbody><tr> <th><i>n</i> </th> <th><i>k</i> </th> <th>Permutations </th> <th><i>A</i>(<i>n</i>, <i>k</i>) </th></tr> <tr> <td>1 </td> <td>0 </td> <td>(1) </td> <td><i>A</i>(1,0) = 1 </td></tr> <tr> <td rowspan="2">2 </td> <td>0 </td> <td>(2, 1) </td> <td><i>A</i>(2,0) = 1 </td></tr> <tr> <td>1 </td> <td>(1, <b>2</b>) </td> <td><i>A</i>(2,1) = 1 </td></tr> <tr> <td rowspan="3">3 </td> <td>0 </td> <td>(3, 2, 1) </td> <td><i>A</i>(3,0) = 1 </td></tr> <tr> <td>1 </td> <td>(1, <b>3</b>, 2), (2, 1, <b>3</b>), (2, <b>3</b>, 1) and (3, 1, <b>2</b>) </td> <td><i>A</i>(3,1) = 4 </td></tr> <tr> <td>2 </td> <td>(1, <b>2</b>, <b>3</b>) </td> <td><i>A</i>(3,2) = 1 </td></tr></tbody></table></dd></dl> <p>Applying the recurrence to one example, we may find </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A(4,1)=(4-1)\,A(3,0)+(1+1)\,A(3,1)=3\cdot 1+2\cdot 4=11.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo stretchy="false">(</mo> <mn>4</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mn>4</mn> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>A</mi> <mo stretchy="false">(</mo> <mn>3</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>A</mi> <mo stretchy="false">(</mo> <mn>3</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>3</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>1</mn> <mo>+</mo> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>4</mn> <mo>=</mo> <mn>11.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A(4,1)=(4-1)\,A(3,0)+(1+1)\,A(3,1)=3\cdot 1+2\cdot 4=11.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5586052b1506f01a44d9ae5594429e1c3971d04" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:61.413ex; height:2.843ex;" alt="{\displaystyle A(4,1)=(4-1)\,A(3,0)+(1+1)\,A(3,1)=3\cdot 1+2\cdot 4=11.}"></span></dd></dl> <p>Likewise, the Eulerian polynomials can be computed by the recurrence </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{0}(t)=1,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{0}(t)=1,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6410e69b663c73acd644fd9e205b20d8677bd78e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.354ex; height:2.843ex;" alt="{\displaystyle A_{0}(t)=1,}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{n}(t)=A_{n-1}'(t)\cdot t\,(1-t)+A_{n-1}(t)\cdot (1+(n-1)\,t),{\text{ for }}n&gt;1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mo>&#x2032;</mo> </msubsup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>t</mi> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>+</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>t</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;for&#xA0;</mtext> </mrow> <mi>n</mi> <mo>&gt;</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{n}(t)=A_{n-1}'(t)\cdot t\,(1-t)+A_{n-1}(t)\cdot (1+(n-1)\,t),{\text{ for }}n&gt;1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc04a4b9513d5429da7a7c6ea07265b4a291771e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:63.737ex; height:3.176ex;" alt="{\displaystyle A_{n}(t)=A_{n-1}&#039;(t)\cdot t\,(1-t)+A_{n-1}(t)\cdot (1+(n-1)\,t),{\text{ for }}n&gt;1.}"></span></dd></dl> <p>The second formula can be cast into an inductive form, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{n}(t)=\sum _{k=0}^{n-1}{\binom {n}{k}}A_{k}(t)\cdot (t-1)^{n-1-k},{\text{ for }}n&gt;1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> </mrow> </msup> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;for&#xA0;</mtext> </mrow> <mi>n</mi> <mo>&gt;</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{n}(t)=\sum _{k=0}^{n-1}{\binom {n}{k}}A_{k}(t)\cdot (t-1)^{n-1-k},{\text{ for }}n&gt;1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea9958f6109e55586df95c18f2d9e08a68b474d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:47.816ex; height:7.509ex;" alt="{\displaystyle A_{n}(t)=\sum _{k=0}^{n-1}{\binom {n}{k}}A_{k}(t)\cdot (t-1)^{n-1-k},{\text{ for }}n&gt;1.}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Identities">Identities</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Eulerian_number&amp;action=edit&amp;section=4" title="Edit section: Identities"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For any property partitioning a finite set into finitely many smaller sets, the sum of the cardinalities of the smaller sets equals the cardinality of the bigger set. The Eulerian numbers partition the permutations of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> elements, so their sum equals the <a href="/wiki/Factorial" title="Factorial">factorial</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>!</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bae971720be3cc9b8d82f4cdac89cb89877514a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.042ex; height:2.176ex;" alt="{\displaystyle n!}"></span>. I.e. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{k=0}^{n-1}A(n,k)=n!,{\text{ for }}n&gt;0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mi>A</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>n</mi> <mo>!</mo> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;for&#xA0;</mtext> </mrow> <mi>n</mi> <mo>&gt;</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{k=0}^{n-1}A(n,k)=n!,{\text{ for }}n&gt;0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a91d4fb50cead7f89d64f282a08218c39f890b11" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:27.358ex; height:7.509ex;" alt="{\displaystyle \sum _{k=0}^{n-1}A(n,k)=n!,{\text{ for }}n&gt;0.}"></span></dd></dl> <p>as well as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A(0,0)=0!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> <mo>!</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A(0,0)=0!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e382141865e7166e6f661341709eb73623ec4b0e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.819ex; height:2.843ex;" alt="{\displaystyle A(0,0)=0!}"></span>. To avoid conflict with the <a href="/wiki/Empty_sum" title="Empty sum">empty sum</a> convention, it is convenient to simply state the theorems for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27a6a5d982d54202a14f111cb8a49210501b2c96" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n&gt;0}"></span> only. </p><p>Much more generally, for a fixed function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\colon \mathbb {R} \rightarrow \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x003A;<!-- : --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\colon \mathbb {R} \rightarrow \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/36815f73358c4f3ac27c14909e3f01fc0bdf6be1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.283ex; height:2.509ex;" alt="{\displaystyle f\colon \mathbb {R} \rightarrow \mathbb {C} }"></span> integrable on the interval <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (0,n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (0,n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fda9516a58dc3bd99e060e9ec8565620a57a3a9e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.4ex; height:2.843ex;" alt="{\displaystyle (0,n)}"></span><sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{k=0}^{n-1}A(n,k)\,f(k)=n!\int _{0}^{1}\cdots \int _{0}^{1}f\left(\left\lfloor x_{1}+\cdots +x_{n}\right\rfloor \right){\mathrm {d} }x_{1}\cdots {\mathrm {d} }x_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mi>A</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>f</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>n</mi> <mo>!</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msubsup> <mo>&#x22EF;<!-- ⋯ --></mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msubsup> <mi>f</mi> <mrow> <mo>(</mo> <mrow> <mo>&#x230A;</mo> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> <mo>&#x230B;</mo> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{k=0}^{n-1}A(n,k)\,f(k)=n!\int _{0}^{1}\cdots \int _{0}^{1}f\left(\left\lfloor x_{1}+\cdots +x_{n}\right\rfloor \right){\mathrm {d} }x_{1}\cdots {\mathrm {d} }x_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a34ad64564a92ec4d5dceaa2f3052a37aec6036" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:62.347ex; height:7.509ex;" alt="{\displaystyle \sum _{k=0}^{n-1}A(n,k)\,f(k)=n!\int _{0}^{1}\cdots \int _{0}^{1}f\left(\left\lfloor x_{1}+\cdots +x_{n}\right\rfloor \right){\mathrm {d} }x_{1}\cdots {\mathrm {d} }x_{n}}"></span></dd></dl> <p><b>Worpitzky's identity</b><sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> expresses <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle x^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle x^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a7b678105fcf2ea50009bf36c77849dbdd2c54e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.548ex; height:2.176ex;" alt="{\textstyle x^{n}}"></span> as the <a href="/wiki/Linear_combination" title="Linear combination">linear combination</a> of Eulerian numbers with <a href="/wiki/Binomial_coefficient" title="Binomial coefficient">binomial coefficients</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{k=0}^{n-1}A(n,k){\binom {x+k}{n}}=x^{n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mi>A</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>x</mi> <mo>+</mo> <mi>k</mi> </mrow> <mi>n</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mo>=</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{k=0}^{n-1}A(n,k){\binom {x+k}{n}}=x^{n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/672facb9d02d9b6f6461216e1e0ee13f8b70526b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:26.03ex; height:7.509ex;" alt="{\displaystyle \sum _{k=0}^{n-1}A(n,k){\binom {x+k}{n}}=x^{n}.}"></span></dd></dl> <p>From it, it follows that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{k=1}^{m}k^{n}=\sum _{k=0}^{n-1}A(n,k){\binom {m+k+1}{n+1}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </munderover> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mi>A</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>m</mi> <mo>+</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{k=1}^{m}k^{n}=\sum _{k=0}^{n-1}A(n,k){\binom {m+k+1}{n+1}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/542c8bcf62a0569c43bdf378d0821102506a1410" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:34.367ex; height:7.509ex;" alt="{\displaystyle \sum _{k=1}^{m}k^{n}=\sum _{k=0}^{n-1}A(n,k){\binom {m+k+1}{n+1}}.}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Formulas_involving_alternating_sums">Formulas involving alternating sums</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Eulerian_number&amp;action=edit&amp;section=5" title="Edit section: Formulas involving alternating sums"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Alternating_sum" class="mw-redirect" title="Alternating sum">alternating sum</a> of the Eulerian numbers for a fixed value of <i><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc6e1f880981346a604257ebcacdef24c0aca2d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\textstyle n}"></span></i> is related to the <a href="/wiki/Bernoulli_number" title="Bernoulli number">Bernoulli number</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle B_{n+1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle B_{n+1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f56d2c657cd84d5448c7b3ebd405d7287e9317fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.083ex; height:2.509ex;" alt="{\textstyle B_{n+1}}"></span> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{k=0}^{n-1}(-1)^{k}A(n,k)=2^{n+1}(2^{n+1}-1){\frac {B_{n+1}}{n+1}},{\text{ for }}n&gt;0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mi>A</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;for&#xA0;</mtext> </mrow> <mi>n</mi> <mo>&gt;</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{k=0}^{n-1}(-1)^{k}A(n,k)=2^{n+1}(2^{n+1}-1){\frac {B_{n+1}}{n+1}},{\text{ for }}n&gt;0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af61563050e7c51d5fe104984df70ed73951666b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:51.807ex; height:7.509ex;" alt="{\displaystyle \sum _{k=0}^{n-1}(-1)^{k}A(n,k)=2^{n+1}(2^{n+1}-1){\frac {B_{n+1}}{n+1}},{\text{ for }}n&gt;0.}"></span></dd></dl> <p>Furthermore, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{k=0}^{n-1}(-1)^{k}{\frac {A(n,k)}{\binom {n-1}{k}}}=0,{\text{ for }}n&gt;1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>A</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>k</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;for&#xA0;</mtext> </mrow> <mi>n</mi> <mo>&gt;</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{k=0}^{n-1}(-1)^{k}{\frac {A(n,k)}{\binom {n-1}{k}}}=0,{\text{ for }}n&gt;1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/804f5c68a88b520e59805a5374a1125f581800b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:32.15ex; height:7.509ex;" alt="{\displaystyle \sum _{k=0}^{n-1}(-1)^{k}{\frac {A(n,k)}{\binom {n-1}{k}}}=0,{\text{ for }}n&gt;1}"></span></dd></dl> <p>and </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{k=0}^{n-1}(-1)^{k}{\frac {A(n,k)}{\binom {n}{k}}}=(n+1)B_{n},{\text{ for }}n&gt;1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>A</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>k</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;for&#xA0;</mtext> </mrow> <mi>n</mi> <mo>&gt;</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{k=0}^{n-1}(-1)^{k}{\frac {A(n,k)}{\binom {n}{k}}}=(n+1)B_{n},{\text{ for }}n&gt;1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/386ae905057cf4fc0185fcf65f66d6ba09872c7e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:41.177ex; height:7.509ex;" alt="{\displaystyle \sum _{k=0}^{n-1}(-1)^{k}{\frac {A(n,k)}{\binom {n}{k}}}=(n+1)B_{n},{\text{ for }}n&gt;1}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Formulas_involving_the_polynomials">Formulas involving the polynomials</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Eulerian_number&amp;action=edit&amp;section=6" title="Edit section: Formulas involving the polynomials"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The symmetry property implies: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{n}(t)=t^{n-1}A_{n}(t^{-1})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{n}(t)=t^{n-1}A_{n}(t^{-1})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e6ce6b2a12664a4a363e8bd364bf6a497e0897c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.811ex; height:3.176ex;" alt="{\displaystyle A_{n}(t)=t^{n-1}A_{n}(t^{-1})}"></span></dd></dl> <p>The Eulerian numbers are involved in the <a href="/wiki/Generating_function" title="Generating function">generating function</a> for the sequence of <i>n</i><sup>th</sup> powers: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{i=1}^{\infty }i^{n}x^{i}={\frac {1}{(1-x)^{n+1}}}\sum _{k=0}^{n}A(n,k)\,x^{k+1}={\frac {x}{(1-x)^{n+1}}}A_{n}(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msup> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mi>A</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{i=1}^{\infty }i^{n}x^{i}={\frac {1}{(1-x)^{n+1}}}\sum _{k=0}^{n}A(n,k)\,x^{k+1}={\frac {x}{(1-x)^{n+1}}}A_{n}(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51b65641fd21d433026191648648c3be87de15a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:59.011ex; height:7.009ex;" alt="{\displaystyle \sum _{i=1}^{\infty }i^{n}x^{i}={\frac {1}{(1-x)^{n+1}}}\sum _{k=0}^{n}A(n,k)\,x^{k+1}={\frac {x}{(1-x)^{n+1}}}A_{n}(x)}"></span></dd></dl> <p>An explicit expression for Eulerian polynomials is <sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{n}(t)=\sum _{k=0}^{n}\left\{{n \atop k}\right\}k!(t-1)^{n-k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow> <mo>{</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac linethickness="0"> <mi>n</mi> <mi>k</mi> </mfrac> </mrow> <mo>}</mo> </mrow> <mi>k</mi> <mo>!</mo> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{n}(t)=\sum _{k=0}^{n}\left\{{n \atop k}\right\}k!(t-1)^{n-k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35d8f37e4553424b2dab26104dd4ae65c3b44711" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:29.754ex; height:7.009ex;" alt="{\displaystyle A_{n}(t)=\sum _{k=0}^{n}\left\{{n \atop k}\right\}k!(t-1)^{n-k}}"></span> </p><p>Where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left\{{n \atop k}\right\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>{</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac linethickness="0"> <mi>n</mi> <mi>k</mi> </mfrac> </mrow> <mo>}</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left\{{n \atop k}\right\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/55f77651ed580b959338ce47e4122ca883b91b8d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:4.254ex; height:3.176ex;" alt="{\textstyle \left\{{n \atop k}\right\}}"></span> is the <a href="/wiki/Stirling_numbers_of_the_second_kind" title="Stirling numbers of the second kind">Stirling numbers of the second kind</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Eulerian_numbers_of_the_second_order">Eulerian numbers of the second order</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Eulerian_number&amp;action=edit&amp;section=7" title="Edit section: Eulerian numbers of the second order"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The permutations of the <a href="/wiki/Multiset" title="Multiset">multiset</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \{1,1,2,2,\ldots ,n,n\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mi>n</mi> <mo>,</mo> <mi>n</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \{1,1,2,2,\ldots ,n,n\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6de39e341bc6db266b452801ff252769b44e8259" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.078ex; height:2.843ex;" alt="{\textstyle \{1,1,2,2,\ldots ,n,n\}}"></span> which have the property that for each <i>k</i>, all the numbers appearing between the two occurrences of <i>k</i> in the permutation are greater than <i>k</i> are counted by the <a href="/wiki/Double_factorial" title="Double factorial">double factorial</a> number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle (2n-1)!!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> <mo>!</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle (2n-1)!!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/771de034c55f8980c38e607d289070f9b1dd1788" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.663ex; height:2.843ex;" alt="{\textstyle (2n-1)!!}"></span>. The Eulerian number of the second order, denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle \left\langle \!\left\langle {n \atop m}\right\rangle \!\right\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow> <mo>&#x27E8;</mo> <mrow> <mspace width="negativethinmathspace" /> <mrow> <mo>&#x27E8;</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac linethickness="0"> <mi>n</mi> <mi>m</mi> </mfrac> </mrow> <mo>&#x27E9;</mo> </mrow> <mspace width="negativethinmathspace" /> </mrow> <mo>&#x27E9;</mo> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle \left\langle \!\left\langle {n \atop m}\right\rangle \!\right\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3989f02132b89423253eca719b918e214d603cb4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.059ex; height:2.509ex;" alt="{\displaystyle \scriptstyle \left\langle \!\left\langle {n \atop m}\right\rangle \!\right\rangle }"></span>, counts the number of all such permutations that have exactly <i>m</i> ascents. For instance, for <i>n</i> = 3 there are 15 such permutations, 1 with no ascents, 8 with a single ascent, and 6 with two ascents: </p> <dl><dd>332211,</dd> <dd>221133, 221331, 223311, 233211, 113322, 133221, 331122, 331221,</dd> <dd>112233, 122133, 112332, 123321, 133122, 122331.</dd></dl> <p>The Eulerian numbers of the second order satisfy the recurrence relation, that follows directly from the above definition: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\langle \!\!\left\langle {n \atop k}\right\rangle \!\!\right\rangle =(2n-k-1)\left\langle \!\!\left\langle {n-1 \atop k-1}\right\rangle \!\!\right\rangle +(k+1)\left\langle \!\!\left\langle {n-1 \atop k}\right\rangle \!\!\right\rangle ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>&#x27E8;</mo> <mrow> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mrow> <mo>&#x27E8;</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac linethickness="0"> <mi>n</mi> <mi>k</mi> </mfrac> </mrow> <mo>&#x27E9;</mo> </mrow> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> </mrow> <mo>&#x27E9;</mo> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mrow> <mo>&#x27E8;</mo> <mrow> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mrow> <mo>&#x27E8;</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac linethickness="0"> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mrow> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>&#x27E9;</mo> </mrow> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> </mrow> <mo>&#x27E9;</mo> </mrow> <mo>+</mo> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mrow> <mo>&#x27E8;</mo> <mrow> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mrow> <mo>&#x27E8;</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac linethickness="0"> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mi>k</mi> </mfrac> </mrow> <mo>&#x27E9;</mo> </mrow> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> </mrow> <mo>&#x27E9;</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\langle \!\!\left\langle {n \atop k}\right\rangle \!\!\right\rangle =(2n-k-1)\left\langle \!\!\left\langle {n-1 \atop k-1}\right\rangle \!\!\right\rangle +(k+1)\left\langle \!\!\left\langle {n-1 \atop k}\right\rangle \!\!\right\rangle ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2dca0dd3d4cfb1a55410b318b6ea6cd13adfbd91" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:56.034ex; height:6.176ex;" alt="{\displaystyle \left\langle \!\!\left\langle {n \atop k}\right\rangle \!\!\right\rangle =(2n-k-1)\left\langle \!\!\left\langle {n-1 \atop k-1}\right\rangle \!\!\right\rangle +(k+1)\left\langle \!\!\left\langle {n-1 \atop k}\right\rangle \!\!\right\rangle ,}"></span></dd></dl> <p>with initial condition for <i>n</i> = 0, expressed in <a href="/wiki/Iverson_bracket" title="Iverson bracket">Iverson bracket</a> notation: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\langle \!\!\left\langle {0 \atop k}\right\rangle \!\!\right\rangle =[k=0].}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>&#x27E8;</mo> <mrow> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mrow> <mo>&#x27E8;</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac linethickness="0"> <mn>0</mn> <mi>k</mi> </mfrac> </mrow> <mo>&#x27E9;</mo> </mrow> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> </mrow> <mo>&#x27E9;</mo> </mrow> <mo>=</mo> <mo stretchy="false">[</mo> <mi>k</mi> <mo>=</mo> <mn>0</mn> <mo stretchy="false">]</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\langle \!\!\left\langle {0 \atop k}\right\rangle \!\!\right\rangle =[k=0].}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6cda001a9301196dab5512d11ab97ce842dae3cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:17.704ex; height:6.176ex;" alt="{\displaystyle \left\langle \!\!\left\langle {0 \atop k}\right\rangle \!\!\right\rangle =[k=0].}"></span></dd></dl> <p>Correspondingly, the Eulerian polynomial of second order, here denoted <i>P</i><sub><i>n</i></sub> (no standard notation exists for them) are </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{n}(x):=\sum _{k=0}^{n}\left\langle \!\!\left\langle {n \atop k}\right\rangle \!\!\right\rangle x^{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>:=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow> <mo>&#x27E8;</mo> <mrow> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mrow> <mo>&#x27E8;</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac linethickness="0"> <mi>n</mi> <mi>k</mi> </mfrac> </mrow> <mo>&#x27E9;</mo> </mrow> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> </mrow> <mo>&#x27E9;</mo> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{n}(x):=\sum _{k=0}^{n}\left\langle \!\!\left\langle {n \atop k}\right\rangle \!\!\right\rangle x^{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f17008721b1879e81431ee04597aa7710dcdd20c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:22.227ex; height:7.009ex;" alt="{\displaystyle P_{n}(x):=\sum _{k=0}^{n}\left\langle \!\!\left\langle {n \atop k}\right\rangle \!\!\right\rangle x^{k}}"></span></dd></dl> <p>and the above recurrence relations are translated into a recurrence relation for the sequence <i>P</i><sub><i>n</i></sub>(<i>x</i>): </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{n+1}(x)=(2nx+1)P_{n}(x)-x(x-1)P_{n}^{\prime }(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mi>x</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <msubsup> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{n+1}(x)=(2nx+1)P_{n}(x)-x(x-1)P_{n}^{\prime }(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c7ec815e20b566d723d4d8b0e6fe38fb01c3d73a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:43.759ex; height:2.843ex;" alt="{\displaystyle P_{n+1}(x)=(2nx+1)P_{n}(x)-x(x-1)P_{n}^{\prime }(x)}"></span></dd></dl> <p>with initial condition <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{0}(x)=1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{0}(x)=1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c829c274abab10d6e73d282e800f8b20d04ebf5f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.593ex; height:2.843ex;" alt="{\displaystyle P_{0}(x)=1.}"></span>. The latter recurrence may be written in a somewhat more compact form by means of an integrating factor: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x-1)^{-2n-2}P_{n+1}(x)=\left(x\,(1-x)^{-2n-1}P_{n}(x)\right)^{\prime }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msup> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x-1)^{-2n-2}P_{n+1}(x)=\left(x\,(1-x)^{-2n-1}P_{n}(x)\right)^{\prime }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0e3ae4a1ea8f51aa687d11ab20d9871ea903c4b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:46.552ex; height:3.676ex;" alt="{\displaystyle (x-1)^{-2n-2}P_{n+1}(x)=\left(x\,(1-x)^{-2n-1}P_{n}(x)\right)^{\prime }}"></span></dd></dl> <p>so that the rational function </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u_{n}(x):=(x-1)^{-2n}P_{n}(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>:=</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>n</mi> </mrow> </msup> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u_{n}(x):=(x-1)^{-2n}P_{n}(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8b218385d7f20220ec0221e60ae63af08d16490" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.743ex; height:3.176ex;" alt="{\displaystyle u_{n}(x):=(x-1)^{-2n}P_{n}(x)}"></span></dd></dl> <p>satisfies a simple autonomous recurrence: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u_{n+1}=\left({\frac {x}{1-x}}u_{n}\right)^{\prime },\quad u_{0}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> </mrow> </mfrac> </mrow> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo>,</mo> <mspace width="1em" /> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u_{n+1}=\left({\frac {x}{1-x}}u_{n}\right)^{\prime },\quad u_{0}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ccdb38156d6f0dfed2a1c94d88b326625d55c453" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:30.571ex; height:6.343ex;" alt="{\displaystyle u_{n+1}=\left({\frac {x}{1-x}}u_{n}\right)^{\prime },\quad u_{0}=1}"></span></dd></dl> <p>Whence one obtains the Eulerian polynomials of second order as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle P_{n}(x)=(1-x)^{2n}u_{n}(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle P_{n}(x)=(1-x)^{2n}u_{n}(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e4a7c480e65497121cd6b588e195c59f09edeb8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.818ex; height:3.009ex;" alt="{\textstyle P_{n}(x)=(1-x)^{2n}u_{n}(x)}"></span>, and the Eulerian numbers of second order as their coefficients. </p><p>The following table displays the first few second-order Eulerian numbers: </p> <dl><dd><table class="wikitable" style="text-align:right;"> <tbody><tr> <th style="background:#EAECF0;background:linear-gradient(to top right,#EAECF0 49%,#AAA 49.5%,#AAA 50.5%,#EAECF0 51%);line-height:1.2;padding:0.1em 0.4em;"><div style="margin-left:2em;text-align:right">&#160;<i>k</i></div><div style="margin-right:2em;text-align:left"><i>n</i>&#160;</div> </th> <th width="50">0 </th> <th width="50">1 </th> <th width="50">2 </th> <th width="50">3 </th> <th width="50">4 </th> <th width="50">5 </th> <th width="50">6 </th> <th width="50">7 </th> <th width="50">8 </th></tr> <tr> <th>0 </th> <td>1 </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td></tr> <tr> <th>1 </th> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td></tr> <tr> <th>2 </th> <td>1</td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td></tr> <tr> <th>3 </th> <td>1</td> <td>8</td> <td>6</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td></tr> <tr> <th>4 </th> <td>1</td> <td>22</td> <td>58</td> <td>24</td> <td></td> <td></td> <td></td> <td></td> <td> </td></tr> <tr> <th>5 </th> <td>1</td> <td>52</td> <td>328</td> <td>444</td> <td>120</td> <td></td> <td></td> <td></td> <td> </td></tr> <tr> <th>6 </th> <td>1</td> <td>114</td> <td>1452</td> <td>4400</td> <td>3708</td> <td>720</td> <td></td> <td></td> <td> </td></tr> <tr> <th>7 </th> <td>1</td> <td>240</td> <td>5610</td> <td>32120</td> <td>58140</td> <td>33984</td> <td>5040</td> <td></td> <td> </td></tr> <tr> <th>8 </th> <td>1</td> <td>494</td> <td>19950</td> <td>195800</td> <td>644020</td> <td>785304</td> <td>341136</td> <td>40320</td> <td> </td></tr> <tr> <th>9 </th> <td>1</td> <td>1004</td> <td>67260</td> <td>1062500</td> <td>5765500</td> <td>12440064</td> <td>11026296</td> <td>3733920</td> <td>362880 </td></tr></tbody></table></dd></dl> <p>The sum of the <i>n</i>-th row, which is also the value <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle P_{n}(1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle P_{n}(1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f8d149d299c618bee8895a4377ccedb7f6584b92" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.682ex; height:2.843ex;" alt="{\textstyle P_{n}(1)}"></span>, is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle (2n-1)!!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> <mo>!</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle (2n-1)!!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/771de034c55f8980c38e607d289070f9b1dd1788" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.663ex; height:2.843ex;" alt="{\textstyle (2n-1)!!}"></span>. </p><p>Indexing the second-order Eulerian numbers comes in three flavors: </p> <ul><li>(sequence <span class="nowrap external"><a href="//oeis.org/A008517" class="extiw" title="oeis:A008517">A008517</a></span> in the <a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>) following Riordan and Comtet,</li> <li>(sequence <span class="nowrap external"><a href="//oeis.org/A201637" class="extiw" title="oeis:A201637">A201637</a></span> in the <a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>) following Graham, Knuth, and Patashnik,</li> <li>(sequence <span class="nowrap external"><a href="//oeis.org/A340556" class="extiw" title="oeis:A340556">A340556</a></span> in the <a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>), extending the definition of Gessel and Stanley.</li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Eulerian_number&amp;action=edit&amp;section=8" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Eulerus, Leonardus [Leonhard Euler] (1755). <i>Institutiones calculi differentialis cum eius usu in analysi finitorum ac doctrina serierum [Foundations of differential calculus, with applications to finite analysis and series]</i>. Academia imperialis scientiarum Petropolitana; Berolini: Officina Michaelis.</li> <li><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFCarlitz1959" class="citation journal cs1">Carlitz, L. (1959). "Eulerian Numbers and polynomials". <i>Math. Mag</i>. <b>32</b> (5): 247–260. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F3029225">10.2307/3029225</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/3029225">3029225</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Math.+Mag.&amp;rft.atitle=Eulerian+Numbers+and+polynomials&amp;rft.volume=32&amp;rft.issue=5&amp;rft.pages=247-260&amp;rft.date=1959&amp;rft_id=info%3Adoi%2F10.2307%2F3029225&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F3029225%23id-name%3DJSTOR&amp;rft.aulast=Carlitz&amp;rft.aufirst=L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AEulerian+number" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGould1978" class="citation journal cs1">Gould, H. W. (1978). <a rel="nofollow" class="external text" href="https://www.fq.math.ca/16-6.html">"Evaluation of sums of convolved powers using Stirling and Eulerian Numbers"</a>. <i>Fib. Quart</i>. <b>16</b> (6): 488–497. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F00150517.1978.12430271">10.1080/00150517.1978.12430271</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Fib.+Quart.&amp;rft.atitle=Evaluation+of+sums+of+convolved+powers+using+Stirling+and+Eulerian+Numbers&amp;rft.volume=16&amp;rft.issue=6&amp;rft.pages=488-497&amp;rft.date=1978&amp;rft_id=info%3Adoi%2F10.1080%2F00150517.1978.12430271&amp;rft.aulast=Gould&amp;rft.aufirst=H.+W.&amp;rft_id=https%3A%2F%2Fwww.fq.math.ca%2F16-6.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AEulerian+number" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDesarmenienFoata1992" class="citation journal cs1">Desarmenien, Jacques; Foata, Dominique (1992). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0012-365X%2892%2990364-L">"The signed Eulerian numbers"</a>. <i>Discrete Math</i>. <b>99</b> (1–3): 49–58. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0012-365X%2892%2990364-L">10.1016/0012-365X(92)90364-L</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Discrete+Math.&amp;rft.atitle=The+signed+Eulerian+numbers&amp;rft.volume=99&amp;rft.issue=1%E2%80%933&amp;rft.pages=49-58&amp;rft.date=1992&amp;rft_id=info%3Adoi%2F10.1016%2F0012-365X%2892%2990364-L&amp;rft.aulast=Desarmenien&amp;rft.aufirst=Jacques&amp;rft.au=Foata%2C+Dominique&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252F0012-365X%252892%252990364-L&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AEulerian+number" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLesieurNicolas1992" class="citation journal cs1">Lesieur, Leonce; Nicolas, Jean-Louis (1992). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0195-6698%2805%2980018-6">"On the Eulerian Numbers M=max (A(n,k))"</a>. <i>Europ. J. Combinat</i>. <b>13</b> (5): 379–399. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0195-6698%2805%2980018-6">10.1016/S0195-6698(05)80018-6</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Europ.+J.+Combinat.&amp;rft.atitle=On+the+Eulerian+Numbers+M%3Dmax+%28A%28n%2Ck%29%29&amp;rft.volume=13&amp;rft.issue=5&amp;rft.pages=379-399&amp;rft.date=1992&amp;rft_id=info%3Adoi%2F10.1016%2FS0195-6698%2805%2980018-6&amp;rft.aulast=Lesieur&amp;rft.aufirst=Leonce&amp;rft.au=Nicolas%2C+Jean-Louis&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252FS0195-6698%252805%252980018-6&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AEulerian+number" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFButzerHauss1993" class="citation journal cs1">Butzer, P. L.; Hauss, M. (1993). <a rel="nofollow" class="external text" href="http://resolver.sub.uni-goettingen.de/purl?GDZPPN002610515">"Eulerian numbers with fractional order parameters"</a>. <i><a href="/wiki/Aequationes_Mathematicae" title="Aequationes Mathematicae">Aequationes Mathematicae</a></i>. <b>46</b> (1–2): 119–142. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fbf01834003">10.1007/bf01834003</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:121868847">121868847</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Aequationes+Mathematicae&amp;rft.atitle=Eulerian+numbers+with+fractional+order+parameters&amp;rft.volume=46&amp;rft.issue=1%E2%80%932&amp;rft.pages=119-142&amp;rft.date=1993&amp;rft_id=info%3Adoi%2F10.1007%2Fbf01834003&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A121868847%23id-name%3DS2CID&amp;rft.aulast=Butzer&amp;rft.aufirst=P.+L.&amp;rft.au=Hauss%2C+M.&amp;rft_id=http%3A%2F%2Fresolver.sub.uni-goettingen.de%2Fpurl%3FGDZPPN002610515&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AEulerian+number" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKoutras1994" class="citation journal cs1">Koutras, M.V. (1994). <a rel="nofollow" class="external text" href="https://www.fq.math.ca/32-1.html">"Eulerian numbers associated with sequences of polynomials"</a>. <i>Fib. Quart</i>. <b>32</b> (1): 44–57. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F00150517.1994.12429255">10.1080/00150517.1994.12429255</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Fib.+Quart.&amp;rft.atitle=Eulerian+numbers+associated+with+sequences+of+polynomials&amp;rft.volume=32&amp;rft.issue=1&amp;rft.pages=44-57&amp;rft.date=1994&amp;rft_id=info%3Adoi%2F10.1080%2F00150517.1994.12429255&amp;rft.aulast=Koutras&amp;rft.aufirst=M.V.&amp;rft_id=https%3A%2F%2Fwww.fq.math.ca%2F32-1.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AEulerian+number" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGrahamKnuthPatashnik1994" class="citation book cs1">Graham; Knuth; Patashnik (1994). <i><a href="/wiki/Concrete_Mathematics" title="Concrete Mathematics">Concrete Mathematics</a>: A Foundation for Computer Science</i> (2nd&#160;ed.). Addison-Wesley. pp.&#160;267–272.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Concrete+Mathematics%3A+A+Foundation+for+Computer+Science&amp;rft.pages=267-272&amp;rft.edition=2nd&amp;rft.pub=Addison-Wesley&amp;rft.date=1994&amp;rft.au=Graham&amp;rft.au=Knuth&amp;rft.au=Patashnik&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AEulerian+number" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHsuJau-Shyong_Shiue1999" class="citation journal cs1"><a href="/wiki/Leetsch_C._Hsu" title="Leetsch C. Hsu">Hsu, Leetsch C.</a>; Jau-Shyong Shiue, Peter (1999). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0012-365X%2898%2900379-3">"On certain summation problems and generalizations of Eulerian polynomials and numbers"</a>. <i>Discrete Math</i>. <b>204</b> (1–3): 237–247. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0012-365X%2898%2900379-3">10.1016/S0012-365X(98)00379-3</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Discrete+Math.&amp;rft.atitle=On+certain+summation+problems+and+generalizations+of+Eulerian+polynomials+and+numbers&amp;rft.volume=204&amp;rft.issue=1%E2%80%933&amp;rft.pages=237-247&amp;rft.date=1999&amp;rft_id=info%3Adoi%2F10.1016%2FS0012-365X%2898%2900379-3&amp;rft.aulast=Hsu&amp;rft.aufirst=Leetsch+C.&amp;rft.au=Jau-Shyong+Shiue%2C+Peter&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252FS0012-365X%252898%252900379-3&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AEulerian+number" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBoyadzhiev2007" class="citation arxiv cs1">Boyadzhiev, Khristo N. (2007). "Apostol-Bernoulli functions, derivative polynomials and Eulerian polynomials". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0710.1124">0710.1124</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/math.CA">math.CA</a>].</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=Apostol-Bernoulli+functions%2C+derivative+polynomials+and+Eulerian+polynomials&amp;rft.date=2007&amp;rft_id=info%3Aarxiv%2F0710.1124&amp;rft.aulast=Boyadzhiev&amp;rft.aufirst=Khristo+N.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AEulerian+number" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPetersen2015" class="citation book cs1">Petersen, T. Kyle (2015). "Eulerian numbers". <i>Eulerian Numbers</i>. Birkhäuser Advanced Texts Basler Lehrbücher. Birkhäuser. pp.&#160;3–18. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-1-4939-3091-3_1">10.1007/978-1-4939-3091-3_1</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4939-3090-6" title="Special:BookSources/978-1-4939-3090-6"><bdi>978-1-4939-3090-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Eulerian+numbers&amp;rft.btitle=Eulerian+Numbers&amp;rft.series=Birkh%C3%A4user+Advanced+Texts+Basler+Lehrb%C3%BCcher&amp;rft.pages=3-18&amp;rft.pub=Birkh%C3%A4user&amp;rft.date=2015&amp;rft_id=info%3Adoi%2F10.1007%2F978-1-4939-3091-3_1&amp;rft.isbn=978-1-4939-3090-6&amp;rft.aulast=Petersen&amp;rft.aufirst=T.+Kyle&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AEulerian+number" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="Citations">Citations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Eulerian_number&amp;action=edit&amp;section=9" title="Edit section: Citations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text">(L. Comtet 1974, p. 243)</span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text">Exercise 6.65 in <i>Concrete Mathematics</i> by Graham, Knuth and Patashnik.</span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWorpitzky1883" class="citation journal cs1">Worpitzky, J. (1883). <a rel="nofollow" class="external text" href="https://eudml.org/doc/148532">"Studien über die Bernoullischen und Eulerschen Zahlen"</a>. <i>Journal für die reine und angewandte Mathematik</i>. <b>94</b>: 203–232.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+f%C3%BCr+die+reine+und+angewandte+Mathematik&amp;rft.atitle=Studien+%C3%BCber+die+Bernoullischen+und+Eulerschen+Zahlen&amp;rft.volume=94&amp;rft.pages=203-232&amp;rft.date=1883&amp;rft.aulast=Worpitzky&amp;rft.aufirst=J.&amp;rft_id=https%3A%2F%2Feudml.org%2Fdoc%2F148532&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AEulerian+number" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFQiGuo2017" class="citation journal cs1">Qi, Feng; Guo, Bai-Ni (2017-08-01). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.indag.2017.06.010">"Explicit formulas and recurrence relations for higher order Eulerian polynomials"</a>. <i>Indagationes Mathematicae</i>. <b>28</b> (4): 884–891. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.indag.2017.06.010">10.1016/j.indag.2017.06.010</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0019-3577">0019-3577</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Indagationes+Mathematicae&amp;rft.atitle=Explicit+formulas+and+recurrence+relations+for+higher+order+Eulerian+polynomials&amp;rft.volume=28&amp;rft.issue=4&amp;rft.pages=884-891&amp;rft.date=2017-08-01&amp;rft_id=info%3Adoi%2F10.1016%2Fj.indag.2017.06.010&amp;rft.issn=0019-3577&amp;rft.aulast=Qi&amp;rft.aufirst=Feng&amp;rft.au=Guo%2C+Bai-Ni&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.indag.2017.06.010&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AEulerian+number" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Eulerian_number&amp;action=edit&amp;section=10" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external text" href="http://oeis.org/wiki/Eulerian_polynomials">Eulerian Polynomials</a> at <a href="/wiki/OEIS" class="mw-redirect" title="OEIS">OEIS</a> Wiki.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.mathpages.com/home/kmath012/kmath012.htm">"Eulerian Numbers"</a>. <i>MathPages.com</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=MathPages.com&amp;rft.atitle=Eulerian+Numbers&amp;rft_id=http%3A%2F%2Fwww.mathpages.com%2Fhome%2Fkmath012%2Fkmath012.htm&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AEulerian+number" class="Z3988"></span></li> <li><span class="citation mathworld" id="Reference-Mathworld-Eulerian_Number"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs1"><a href="/wiki/Eric_W._Weisstein" title="Eric W. Weisstein">Weisstein, Eric W.</a> <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/EulerianNumber.html">"Eulerian Number"</a>. <i><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=MathWorld&amp;rft.atitle=Eulerian+Number&amp;rft.au=Weisstein%2C+Eric+W.&amp;rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FEulerianNumber.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AEulerian+number" class="Z3988"></span></span></li> <li><span class="citation mathworld" id="Reference-Mathworld-Euler&#39;s_Number_Triangle"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs1"><a href="/wiki/Eric_W._Weisstein" title="Eric W. Weisstein">Weisstein, Eric W.</a> <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/EulersNumberTriangle.html">"Euler's Number Triangle"</a>. <i><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=MathWorld&amp;rft.atitle=Euler%27s+Number+Triangle&amp;rft.au=Weisstein%2C+Eric+W.&amp;rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FEulersNumberTriangle.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AEulerian+number" class="Z3988"></span></span></li> <li><span class="citation mathworld" id="Reference-Mathworld-Worpitzky&#39;s_Identity"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs1"><a href="/wiki/Eric_W._Weisstein" title="Eric W. Weisstein">Weisstein, Eric W.</a> <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/WorpitzkysIdentity.html">"Worpitzky's Identity"</a>. <i><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=MathWorld&amp;rft.atitle=Worpitzky%27s+Identity&amp;rft.au=Weisstein%2C+Eric+W.&amp;rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FWorpitzkysIdentity.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AEulerian+number" class="Z3988"></span></span></li> <li><span class="citation mathworld" id="Reference-Mathworld-Second-Order_Eulerian_Triangle"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs1"><a href="/wiki/Eric_W._Weisstein" title="Eric W. Weisstein">Weisstein, Eric W.</a> <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/Second-OrderEulerianTriangle.html">"Second-Order Eulerian Triangle"</a>. <i><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=MathWorld&amp;rft.atitle=Second-Order+Eulerian+Triangle&amp;rft.au=Weisstein%2C+Eric+W.&amp;rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FSecond-OrderEulerianTriangle.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AEulerian+number" class="Z3988"></span></span></li> <li><a rel="nofollow" class="external text" href="http://go.helms-net.de/math/binomial_new/01_12_Eulermatrix.pdf">Euler-matrix</a> (generalized rowindexes, divergent summation)</li></ul> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐vrhlg Cached time: 20241122141916 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.353 seconds Real time usage: 0.656 seconds Preprocessor visited node count: 1659/1000000 Post‐expand include size: 35220/2097152 bytes Template argument size: 1203/2097152 bytes Highest expansion depth: 12/100 Expensive parser function count: 4/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 45305/5000000 bytes Lua time usage: 0.170/10.000 seconds Lua memory usage: 5548605/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 312.384 1 -total 36.72% 114.694 9 Template:Cite_journal 21.78% 68.028 1 Template:Short_description 11.96% 37.351 2 Template:Pagetype 10.03% 31.333 1 Template:Distinguish 9.61% 30.020 1 Template:Reflist 9.09% 28.399 4 Template:MathWorld 6.43% 20.081 3 Template:Main_other 5.86% 18.320 1 Template:SDcat 4.22% 13.198 1 Template:Use_American_English --> <!-- Saved in parser cache with key enwiki:pcache:idhash:5041744-0!canonical and timestamp 20241122141916 and revision id 1251293514. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Eulerian_number&amp;oldid=1251293514">https://en.wikipedia.org/w/index.php?title=Eulerian_number&amp;oldid=1251293514</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Enumerative_combinatorics" title="Category:Enumerative combinatorics">Enumerative combinatorics</a></li><li><a href="/wiki/Category:Factorial_and_binomial_topics" title="Category:Factorial and binomial topics">Factorial and binomial topics</a></li><li><a href="/wiki/Category:Integer_sequences" title="Category:Integer sequences">Integer sequences</a></li><li><a href="/wiki/Category:Triangles_of_numbers" title="Category:Triangles of numbers">Triangles of numbers</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Use_American_English_from_March_2019" title="Category:Use American English from March 2019">Use American English from March 2019</a></li><li><a href="/wiki/Category:All_Wikipedia_articles_written_in_American_English" title="Category:All Wikipedia articles written in American English">All Wikipedia articles written in American English</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 15 October 2024, at 12:07<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Eulerian_number&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-6b8d669998-jh6xl","wgBackendResponseTime":186,"wgPageParseReport":{"limitreport":{"cputime":"0.353","walltime":"0.656","ppvisitednodes":{"value":1659,"limit":1000000},"postexpandincludesize":{"value":35220,"limit":2097152},"templateargumentsize":{"value":1203,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":4,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":45305,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 312.384 1 -total"," 36.72% 114.694 9 Template:Cite_journal"," 21.78% 68.028 1 Template:Short_description"," 11.96% 37.351 2 Template:Pagetype"," 10.03% 31.333 1 Template:Distinguish"," 9.61% 30.020 1 Template:Reflist"," 9.09% 28.399 4 Template:MathWorld"," 6.43% 20.081 3 Template:Main_other"," 5.86% 18.320 1 Template:SDcat"," 4.22% 13.198 1 Template:Use_American_English"]},"scribunto":{"limitreport-timeusage":{"value":"0.170","limit":"10.000"},"limitreport-memusage":{"value":5548605,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-vrhlg","timestamp":"20241122141916","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Eulerian number","url":"https:\/\/en.wikipedia.org\/wiki\/Eulerian_number","sameAs":"http:\/\/www.wikidata.org\/entity\/Q1373849","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q1373849","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2006-05-07T04:06:16Z","dateModified":"2024-10-15T12:07:04Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/4\/43\/EulerianPolynomialsByEuler1755.png","headline":"polynomial sequence"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10