CINXE.COM

Computational Organic Chemistry by Steven M. Bachrach

<html> <head> <title>Computational Organic Chemistry by Steven M. Bachrach</title> <meta name="author" content="Steven Bachrach" /> <meta name="copyright" content="&copy; 2007 Steven Bachrach" /> <meta name="description" content="The supplemental website to Steven Bachrach's book Computational Organic Chemistry" /> <meta name="keywords" content="chemistry, organic, organic chemistry, computational chemistry, computational, book, wiley, steven bachrach, bachrach, steven m. bachrach, steven m bachrach" /> <meta http-equiv="content-type" content="text/html; charset=UTF-16" /> <link rel="stylesheet" href="style.css" type="text/css" media="screen" /> <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" /> </head> <body> <div id="header"> <div id="header_img"></div> </div> <div id="sidebar_background"></div> <div id="wrapper1"> <div id="wrapper2"> <div id="maincol"> <div id="leftcol"> <a href="http://www.wiley.com/WileyCDA/WileyTitle/productCd-1118291921,subjectCd-CHD0.html"> <img src="COC2_cover.jpg" alt="Book Cover" /> <li>Buy the book now</li> </a> </div> <div id="rightcol"> <h3>About the Book</h3> <ul> <li>&raquo; <a href="index.html">Home</a></li> <li>&raquo; <a href="/blog/">Read the blog</a></li> <li>&raquo; <a href="http://www.trinity.edu/sbachrac/">Steven M. Bachrach</a></li> <li>&raquo; <a href="http://www.trinity.edu/">Trinity University</a></li> <li>&raquo; <a href="http://www.wiley.com/">Published by Wiley</a></li> <li>&raquo; <a href="indexFirst.html">First Edition Web Page</a></li> </ul> <h3>Citations</h3> <ul> <li>&raquo; <a href="CitationsSPref.htm">Preface</a></li> <li>&raquo; <a href="CitationsS1.htm">Chapter 1</a></li> <li>&raquo; <a href="CitationsS2.htm">Chapter 2</a></li> <li>&raquo; <a href="CitationsS3.htm">Chapter 3</a></li> <li>&raquo; <a href="CitationsS4.htm">Chapter 4</a></li> <li>&raquo; <a href="CitationsS5.htm">Chapter 5</a></li> <li>&raquo; <a href="CitationsS6.htm">Chapter 6</a></li> <li>&raquo; <a href="CitationsS7.htm">Chapter 7</a></li> <li>&raquo; <a href="CitationsS8.htm">Chapter 8</a></li> <li>&raquo; <a href="CitationsS9.htm">Chapter 9</a></li> </ul> <h3>Molecules</h3> <ul> <li>&raquo; Under Construction</li> </ul> </div> <div id="centercol"> <h1>Chapter 3 Citations</h1> <ol> <li>Feng, Y.; Liu, L.; Wang, J.-T.; Huang, H.; Guo, Q.-X. &quot;Assessment of Experimental Bond Dissociation Energies Using Composite ab Initio Methods and Evaluation of the Performances of Density Functional Methods in the Calculation of Bond Dissociation Energies,&quot; <i>J. Chem. Inf. Comput. Sci.</i> <b>2003</b>, <i>43</i>, 2005-2013, DOI: <a href="http://dx.doi.org/10.1021/ci034033k">10.1021/ci034033k</a>.</li> <li> Blanksby, S. J.; Ellison, G. B. &quot;Bond Dissociation Energies of Organic Molecules,&quot; <i>Acc. Chem. Res.</i> <b>2003</b>, <i>36</i>, 255-263, DOI: <a href="http://dx.doi.org/10.1021/ar020230d">10.1021/ar020230d</a>.</li> <li> Henry, D. J.; Parkinson, C. J.; Mayer, P. M.; Radom, L. &quot;Bond Dissociation Energies and Radical Stabilization Energies Associated with Substituted Methyl Radicals,&quot; <i>J. Phys. Chem. A</i> <b>2001</b>, <i>105</i>, 6750-6756, DOI: <a href="http://dx.doi.org/10.1021/jp010442c">10.1021/jp010442c</a>.</li> <li> Feng, Y.; Liu, L.; Wang, J.-T.; Zhao, S.-W.; Guo, Q.-X. &quot;Homolytic C-H and N-H Bond Dissociation Energies of Strained Organic Compounds,&quot; <i>J. Org. Chem.</i> <b>2004</b>, <i>69</i>, 3129-3138, DOI: <a href="http://dx.doi.org/10.1021/jo035306d">10.1021/jo035306d</a>.</li> <li> Menon, A. S.; Wood, G. P. F.; Moran, D.; Radom, L. &quot;Bond Dissociation Energies and Radical Stabilization Energies: An Assessment of Contemporary Theoretical Procedures,&quot; <i>J. Phys. Chem. A</i> <b>2007</b>, <i>111</i>, 13638-13644, DOI: <a href="http://dx.doi.org/10.1021/jp076521r">10.1021/jp076521r</a>.</li> <li> Yao, X.-Q.; Hou, X.-J.; Jiao, H.; Xiang, H.-W.; Li, Y.-W. &quot;Accurate Calculations of Bond Dissociation Enthalpies with Density Functional Methods,&quot; <i>J. Phys. Chem. A</i> <b>2003</b>, <i style='mso-bidi-font-style:normal'>107</i>, 9991-9996, DOI: <a href="http://dx.doi.org/10.1021/jp0361125">10.1021/jp0361125</a>.</li> <li> Check, C. E.; Gilbert, T. M. &quot;Progressive Systematic Underestimation of Reaction Energies by the B3LYP Model as the Number of C-C Bonds Increases: Why Organic Chemists Should Use Multiple DFT Models for Calculations Involving Polycarbon Hydrocarbons,&quot; <i>J. Org. Chem.</i> <b>2005</b>, <i>70</i>, 9828-9834, DOI: <a href="http://dx.doi.org/10.1021/jo051545k">10.1021/jo051545k</a>.</li> <li> Redfern, P. C.; Zapol, P.; Curtiss, L. A.; Raghavachari, K. &quot;Assessment of Gaussian-3 and Density Functional Theories for Enthalpies of Formation of C<sub>1</sub>-C<sub>16</sub> Alkanes,&quot; <i>J. Phys. Chem. A</i> <b>2000</b>, <i>104</i>, 5850-5854, DOI: <a href="http://dx.doi.org/10.1021/jp994429s">10.1021/jp994429s</a>.</li> <li> Luo, Y.-R. <i>Handbook of Bond Dissociation Energies in Organic Compounds</i>; CRC Press: New York, 2002.</a></li> <li> R&uuml;chardt, C. &quot;Relations Between Structure and Reactivity in Free-Radical Chemistry,&quot; <i>Angew. Chem. Int. Ed. Engl.</i> <b>1970</b>, <i>9</i>, 830-843, DOI: <a href="http://dx.doi.org/10.1002/anie.197008301">10.1002/anie.197008301</a>.</li> <li> Izgorodina, E. I.; Coote, M. L.; Radom, L. &quot;Trends in R-X Bond Dissociation Energies (R = Me, Et, <i>i</i>-Pr, <i>t</i>-Bu; X = H, CH<sub>3</sub>, OCH<sub>3</sub>, OH, F): A Surprising Shortcoming of Density Functional Theory,&quot; <i>J. Phys. Chem. A</i> <b>2005</b>, <i>109</i>, 7558-7566, DOI: <a href="http://dx.doi.org/10.1021/jp052021r">http://dx.doi.org/10.1021/jp052021r</a>.</li> <li> Coote, M. L.; Pross, A.; Radom, L. &quot;Variable Trends in R-X Bond Dissociation Energies (R = Me, Et, <i>i</i>-Pr, <i>t</i>-Bu),&quot; <i>Org. Lett.</i> <b>2003</b>, <i>5</i>, 4689-4692, DOI: <a href="http://dx.doi.org/10.1021/ol035860+">http://dx.doi.org/10.1021/ol035860+</a>.</li> <li> Matsunaga, N.; Rogers, D. W.; Zavitsas, A. A. &quot;Pauling's Electronegativity Equation and a New Corollary Accurately Predict Bond Dissociation Enthalpies and Enhance Current Understanding of the Nature of the Chemical Bond,&quot; <i>J. Org. Chem.</i> <b>2003</b>, <i>68</i>, 3158-3172, DOI: <a href="http://dx.doi.org/10.1021/jo020650g">10.1021/jo020650g</a>.</li> <li> Lias, S. G.; Bartmess, J. E.; Holmes, J. L.; Levin, R. D.; Mallard, W. G. &quot;Gas-Phase Ion and Neutral Thermochemistry,&quot; <i>J. Phys. Chem. Ref. Data</i> <b>1988</b>, <i>Suppl. 17</i>.</li> <li> Linstrom, P. J.; Mallard, W. G. &quot;NIST Chemistry WebBook, NIST Standard Reference Database Number 69,&quot; 2012, URL: <a href="http://webbook.nist.gov/"> http://webbook.nist.gov/.</a></li> <li> Kollmar, H. &quot;The Stability of Alkyl Anions. A Molecular Orbital Theoretical Study,&quot; <i>J. Am. Chem. Soc.</i> <b>1978</b>, <i style='mso-bidi-font-style:normal'>100</i>, 2665-2669, DOI: <a href="http://dx.doi.org/10.1021/ja00477a016">10.1021/ja00477a016</a>.</li> <li> Chandrasekhar, J.; Andrade, J. G.; Schleyer, P. v. R. &quot;Efficient and Accurate Calculation of Anion Proton Affinities,&quot; <i>J. Am. Chem. Soc.</i> <b>1981</b>, <i>103</i>, 5609-5612, DOI: <a href="http://dx.doi.org/10.1021/ja00408a074">10.1021/ja00408a074</a>.</li> <li> Saunders, W. H., Jr. &quot;Ab Initio and Semi-Empirical Investigation of Gas-Phase Carbon Acidity,&quot; <i>J. Phys. Org. Chem.</i> <b>1994</b>, <i>7</i>, 268-271, DOI: <a href="http://dx.doi.org/10.1002/poc.610070509">10.1002/poc.610070509</a>.</li> <li> Burk, P.; Koppel, I. A.; Koppel, I.; Leito, I.; Travnikova, O. &quot;Critical Test of Performance of B3LYP Functional for Prediction of Gas-Phase Acidities and Basicities,&quot; <i>Chem. Phys. Lett.</i> <b>2000</b>, <i>323</i>, 482-489, DOI: <a href="http://dx.doi.org/10.1016/S0009-2614(00)00566-2">10.1016/S0009-2614(00)00566-2</a>.</li> <li> Merrill, G. N.; Kass, S. R. &quot;Calculated Gas-Phase Acidities Using Density Functional Theory: Is It Reliable?,&quot; <i>J. Phys. Chem.</i> <b>1996</b>, <i>100</i>, 17465-17471, DOI: <a href="http://dx.doi.org/10.1021/jp961557x">10.1021/jp961557x</a>.</li> <li> Ochterski, J. W.; G. A. Petersson, G. A.; Montgomery, J. A., Jr. &quot;A Complete Basis Set Model Chemistry. V. Extensions to Six or More Heavy Atoms,&quot; <i>J. Chem. Phys.</i> <b>1996</b>, <i>104</i>, 2598-2619, DOI: <a href="http://dx.doi.org/10.1063/1.470985">10.1063/1.470985</a>.</li> <li> Ochterski, J. W.; Petersson, G. A.; Wiberg, K. B. &quot;A Comparison of Model Chemistries,&quot; <i>J. Am. Chem. Soc.</i> <b>1995</b>, <i>117</i>, 11299-11308, DOI: <a href="http://dx.doi.org/10.1021/ja00150a030">10.1021/ja00150a030</a>.</li> <li> Topol, I. A.; Tawa, G. J.; Caldwell, R. A.; Eissenstat, M. A.; Burt, S. K. &quot;Acidity of Organic Molecules in the Gas Phase and in Aqueous Solvent,&quot; <i>J. Phys. Chem. A</i> <b>2000</b>, <i>104</i>, 9619-9624, DOI: <a href="http://dx.doi.org/10.1021/jp001938h">10.1021/jp001938h</a>.</li> <li> DePuy, C. H.; Gronert, S.; Barlow, S. E.; Bierbaum, V. M.; Damrauer, R. &quot;The Gas-Phase Acidities of the Alkanes,&quot; <i>J. Am. Chem. Soc.</i> <b>1989</b>, <i>111</i>, 1968-1973, DOI: <a href="http://dx.doi.org/10.1021/ja00188a003">10.1021/ja00188a003</a>.</li> <li> Luh, T.-Y.; Stock, L. M. &quot;Kinetic Acidity of Cubane,&quot; <i>J. Am. Chem. Soc.</i> <b style='mso-bidi-font-weight:normal'>1974</b>, <i>96</i>, 3712-3713, DOI: <a href="http://dx.doi.org/10.1021/ja00818a090">10.1021/ja00818a090</a>.</li> <li> Ritchie, J. P.; Bachrach, S. M. &quot;Comparison of the Calculated Acidity of Cubane with That of Other Strained and Unstrained Hydrocarbons,&quot; <i>J. Am. Chem. Soc.</i> <b>1990</b>, <i>112</i>, 6514-6517, DOI: <a href="http://dx.doi.org/10.1021/ja00174a010">10.1021/ja00174a010</a>.</li> <li> Hare, M.; Emrick, T.; Eaton, P. E.; Kass, S. R. &quot;Cubyl Anion Formation and an Experimental Determination of the Acidity and C-H Bond Dissociation Energy of Cubane,&quot; <i>J. Am. Chem. Soc.</i> <b>1997</b>, <i>119</i>, 237-238, DOI: <a href="http://dx.doi.org/10.1021/ja9627858">10.1021/ja9627858</a>.</li> <li> Rayne, S.; Forest, K. &quot;Gas-phase enthalpies of formation, acidities, and strain energies of the [<i>m,n</i>]polyprismanes (<i>m</i>&nbsp;&#8805;&nbsp;2; <i>n</i>&nbsp;=&nbsp;3-8; <i>m</i>&nbsp;x&nbsp;<i>n </i>&nbsp;&#8804;&nbsp;16): a CBS-Q//B3, G4MP2, and G4 theoretical study,&quot; <i>Theor. Chem. Acc.</i> <b style='mso-bidi-font-weight:normal'>2010</b>, <i>127</i>, 697-709, DOI: <a href="http://dx.doi.org/10.1007/s00214-010-0780-0">10.1007/s00214-010-0780-0</a>.</li> <li> Broadus, K. M.; Kass, S. R.; Osswald, T.; Prinzbach, H. &quot;Dodecahedryl Anion Formation and an Experimental Determination of the Acidity and C-H Bond Dissociation Energy of Dodecahedrane,&quot; <i>J. Am. Chem. Soc.</i> <b>2000</b>, <i>122</i>, 10964-10968, DOI: <a href="http://dx.doi.org/10.1021/ja002588f">10.1021/ja002588f</a>.</li> <li> Fattahi, A.; McCarthy, R. E.; Ahmad, M. R.; Kass, S. R. &quot;Why Does Cyclopropene Have the Acidity of an Acetylene but the Bond Energy of Methane?,&quot; <i>J. Am. Chem. Soc.</i> <b>2003</b>, <i>125</i>, 11746-11750, DOI: <a href="http://dx.doi.org/10.1021/ja035725s">10.1021/ja035725s</a>.</li> <li> Manini, P.; Amrein, W.; Gramlich, V.; Diederich, F. &quot;Expanded Cubane: Synthesis of a Cage Compound with a C56 Core by Acetylenic Scaffolding and Gas-Phase Transformations into Fullerenes,&quot; <i>Angew. Chem. Int. Ed.</i> <b style='mso-bidi-font-weight:normal'>2002</b>, 4339-4343, DOI: <a href="http://dx.doi.org/10.1002/1521-3773(20021115)41:22%3c4339::AID-ANIE4339%3e3.0.CO;2-8">10.1002/1521-3773(20021115)41:22&lt;4339::AID-ANIE4339&gt;3.0.CO;2-8</a>.</li> <li> Bachrach, S. M. &quot;Structure, Deprotonation Energy, and Cation Affinity of an Ethynyl-Expanded Cubane,&quot; <i>J. Phys. Chem. A.</i> <b>2003</b>, <i>107</i>, 4957-4961, DOI: <a href="http://dx.doi.org/10.1021/jp034406k">10.1021/jp034406k</a>.</li> <li> Bachrach, S. M.; Demoin, D. W. &quot;Computational Studies of Ethynyl- and Diethynyl-Expanded Tetrahedranes, Prismanes, Cubanes, and Adamantanes,&quot; <i>J. Org. Chem.</i> <b>2006</b>, <i style='mso-bidi-font-style:normal'>71</i>, 5105-5116, DOI: <a href="http://dx.doi.org/10.1021/jo060240i">10.1021/jo060240i</a>.</li> <li> de Visser, S. P.; van der Horst, E.; de Koning, L. J.; van der Hart, W. J.; Nibbering, N. M. M. &quot;Characterization of Isomeric C<sub>4</sub>H<sub>5</sub><sup>-</sup> Anions in the Gas Phase; Theory and Experiment,&quot; <i>J. Mass. Spectrom.</i> <b>1999</b>, <i>34</i>, 303-310, DOI: <a href="http://dx.doi.org/10.1002/(SICI)1096-9888(199904)34:4%3c303::AID-JMS753%3e3.0.CO;2-C">10.1002/(SICI)1096-9888(199904)34:4&lt;303::AID-JMS753&gt;3.0.CO;2-C</a>.</li> <li> Siggel, M. R.; Thomas, T. D. &quot;Why are Organic Acids Stronger Acids than Organic Alcohols?,&quot; <i>J. Am. Chem. Soc.</i> <b>1986</b>, <i>108</i>, 4360-4363, DOI: <a href="http://dx.doi.org/10.1021/ja00275a022">10.1021/ja00275a022</a>.</li> <li> Burk, P.; Schleyer, P. v. R. &quot;Why are Carboxylic Acids Stronger Acids than Alcohols? The Electrostatic Theory of Siggel-Thomas Revisited,&quot; <i>J. Mol. Struct. (THEOCHEM)</i> <b>2000</b>, <i style='mso-bidi-font-style:normal'>505</i>, 161-167, DOI: <a href="http://dx.doi.org/10.1016/S0166-1280(99)00357-7">10.1016/S0166-1280(99)00357-7</a>.</li> <li> Siggel, M. R. F.; Streitwieser, A. J.; Thomas, T. D. &quot;The Role of Resonance and Inductive Effects in the Acidity of Carboxylic Acids,&quot; <i>J. Am. Chem. Soc.</i> <b>1988</b>, <i>110</i>, 8022-8028, DOI: <a href="http://dx.doi.org/10.1021/ja00232a011">10.1021/ja00232a011</a>.</li> <li> Exner, O. &quot;Why are Carboxylic Acids and Phenols Stronger Acids than Alcohols?,&quot; <i>J. Org. Chem.</i> <b>1988</b>, <i>53</i>, 1810-1812, DOI: <a href="http://dx.doi.org/10.1021/jo00243a042">10.1021/jo00243a042</a>.</li> <li> Dewar, M. J. S.; Krull, K. L. &quot;Acidity of Carboxylic Acids: Due to Delocalization or Induction?,&quot; <i>J. Chem. Soc., Chem. Commun.</i> <b>1990</b>, 333-334, DOI: <a href="http://dx.doi.org/10.1039/C39900000333">10.1039/C39900000333</a>.</li> <li> Perrin, C. L. &quot;Atomic Size Dependence of Bader Electron Populations: Significance for Questions of Resonance Stabilization,&quot; <i>J. Am. Chem. Soc.</i> <b>1991</b>, <i>113</i>, 2865-2868, DOI: <a href="http://dx.doi.org/10.1021/ja00008a011">10.1021/ja00008a011</a>.</li> <li> Hiberty, P. C.; Byrman, C. P. &quot;Role of &pi;-Electron Delocalization in the Enhanced Acidity of Carboxylic Acids and Enols Relative to Alcohols,&quot; <i>J. Am. Chem. Soc.</i> <b>1995</b>, <i>117</i>, 9875-9880, DOI: </span></span><a href="http://dx.doi.org/10.1021/ja00144a013">10.1021/ja00144a013</a>.</li> <li> Rablen, P. R. &quot;Is the Acetate Anion Stabilized by Resonance or Electrostatics? A Systematic Structural Comparison,&quot; <i>J. Am. Chem. Soc.</i> <b style='mso-bidi-font-weight:normal'>2000</b>, <i>122</i>, 357-368, DOI: <a href="http://dx.doi.org/10.1021/ja9928475">10.1021/ja9928475</a> </li> <li> Holt, J.; Karty, J. M. &quot;Origin of the Acidity Enhancement of Formic Acid over Methanol: Resonance versus Inductive Effects,&quot; <i>J. Am. Chem. Soc.</i> <b style='mso-bidi-font-weight:normal'>2003</b>, <i>125</i>, 2797-2803, DOI: <a href="http://dx.doi.org/10.1021/ja020803h">10.1021/ja020803h</a>.</li> <li> O'Hair, R. A. J.; Bowie, J. H.; Gronert, S. &quot;Gas phase acidities of the &alpha;-amino acids,&quot; <i>Int. J. Mass Spectrom. Ion Processes</i> <b>1992</b>, <i>117</i>, 23-36, DOI: <a href="http://dx.doi.org/10.1016/0168-1176(92)80083-D">10.1016/0168-1176(92)80083-D</a>.</li> <li> Jones, C. M.; Bernier, M.; Carson, E.; Colyer, K. E.; Metz, R.; Pawlow, A.; Wischow, E. D.; Webb, I.; Andriole, E. J.; Poutsma, J. C. &quot;Gas-Phase Acidities of the 20 Protein Amino Acids,&quot; <i>Int. J. Mass Spectrom.</i> <b style='mso-bidi-font-weight:normal'>2007</b>, <i>267</i>, 54-62, DOI: <a href="http://dx.doi.org/10.1016/j.ijms.2007.02.018">10.1016/j.ijms.2007.02.018</a>.</li> <li> Tian, Z.; Pawlow, A.; Poutsma, J. C.; Kass, S. R. &quot;Are Carboxyl Groups the Most Acidic Sites in Amino Acids? Gas-Phase Acidity, H/D Exchange Experiments, and Computations on Cysteine and Its Conjugate Base,&quot; <i>J. Am. Chem. Soc.</i> <b>2007</b>, <i>129</i>, 5403-5407, DOI: <a href="http://dx.doi.org/10.1021/ja0666194">10.1021/ja0666194</a>.</li> <li> Tian, Z.; Wang, X.-B.; Wang, L.-S.; Kass, S. R. &quot;Are Carboxyl Groups the Most Acidic Sites in Amino Acids? Gas-Phase Acidities, Photoelectron Spectra, and Computations on Tyrosine, p-Hydroxybenzoic Acid, and Their Conjugate Bases,&quot; <i>J. Am. Chem. Soc.</i> <b>2009</b>, <i>131</i>, 1174-1181, DOI: <a href="http://dx.doi.org/10.1021/ja807982k">10.1021/ja807982k</a>.</li> <li> Smith, G. D.; Jaffe, R. L. &quot;Quantum Chemistry Study of Conformational Energies and Rotational Energy Barriers in n-Alkanes,&quot; <i>J. Phys. Chem.</i> <b style='mso-bidi-font-weight:normal'>1996</b>, <i>100</i>, 18718-18724, DOI: <a href="http://dx.doi.org/10.1021/jp960413f">10.1021/jp960413f</a>.</li> <li> Gruzman, D.; Karton, A.; Martin, J. M. L. &quot;Performance of Ab Initio and Density Functional Methods for Conformational Equilibria of CnH2n+2 Alkane Isomers (n = 4-8),&quot; <i>J. Phys. Chem. A</i> <b>2009</b>, <i>113</i>, 11974-11983, DOI: <a href="http://dx.doi.org/10.1021/jp903640h">10.1021/jp903640h</a>.</li> <li> Allinger, N. L.; Fermann, J. T.; Allen, W. D.; Schaefer Iii, H. F. &quot;The torsional conformations of butane: Definitive energetics from ab initio methods,&quot; <i>J. Chem. Phys</i> <b>1997</b>, <i style='mso-bidi-font-style:normal'>106</i>, 5143-5150, DOI: <a href="http://dx.doi.org/10.1063/1.473993">10.1063/1.473993</a>.</li> <li> Herrebout, W. A.; van der Veken, B. J.; Wang, A.; Durig, J. R. &quot;Enthalpy Difference between Conformers of n-Butane and the Potential Function Governing Conformational Interchange,&quot; <i>J. Phys. Chem.</i> <b>1995</b>, <i>99</i>, 578-585, DOI: <a href="http://dx.doi.org/10.1021/j100002a020">10.1021/j100002a020</a>.</li> <li> Balabin, R. M. &quot;Enthalpy Difference between Conformations of Normal Alkanes: Raman Spectroscopy Study of <i>n</i>-Pentane and <i>n</i>-Butane,&quot; <i>J. Phys. Chem. A</i> <b>2009</b>, <i style='mso-bidi-font-style:normal'>113</i>, 1012-1019, DOI: <a href="http://dx.doi.org/10.1021/jp809639s">10.1021/jp809639s</a>.</li> <li> Martin, J. M. L.; de Oliveira, G. &quot;Towards Standard Methods for Benchmark Quality ab Initio Thermochemistry - W1 and W2 Theory,&quot; <i>J. Chem. Phys.</i> <b style='mso-bidi-font-weight:normal'>1999</b>, <i>111</i>, 1843-1856, DOI: <a href="http://dx.doi.org/10.1063/1.479454">10.1063/1.479454</a>.</li> <li> Parthiban, S.; Martin, J. M. L. &quot;Assessment of W1 and W2 theories for the computation of electron affinities, ionization potentials, heats of formation, and proton affinities,&quot; <i>J. Chem. Phys.</i> <b>2001</b>, <i>114</i>, 6014-6029, DOI: <a href="http://dx.doi.org/10.1063/1.1356014">10.1063/1.1356014</a>.</li> <li> Balabin, R. M. &quot;Enthalpy difference between conformations of normal alkanes: effects of basis set and chain length on intramolecular basis set superposition error,&quot; <i>Mol. Phys.</i> <b>2011</b>, <i>109</i>, 943-953, DOI: <a href="http://dx.doi.org/10.1080/00268976.2011.558858">10.1080/00268976.2011.558858</a>.</li> <li> Asturiol, D.; Duran, M.; Salvador, P. &quot;Intramolecular basis set superposition error effects on the planarity of benzene and other aromatic molecules: A solution to the problem,&quot; <i>J. Chem. Phys.</i> <b>2008</b>, <i>128</i>, 144108, DOI: <a href="http://dx.doi.org/10.1063/1.2902974">10.1063/1.2902974</a>.</li> <li> Cs&aacute;z&aacute;r, A. G. &quot;Conformers of Gaseous &alpha;-Alanine,&quot; <i>J. Phys. Chem.</i> <b>1996</b>, <i>100</i>, 3541-3551, DOI: <a href="http://dx.doi.org/10.1021/jp9533640">10.1021/jp9533640</a>.</li> <li> Godfrey, P. D.; Firth, S.; Hatherley, L. D.; Brown, R. D.; Pierlot, A. P. &quot;Millimeter-wave spectroscopy of biomolecules: alanine,&quot; <i>J. Am. Chem. Soc.</i> <b>1993</b>, <i>115</i>, 9687-9691, DOI: <a href="http://dx.doi.org/10.1021/ja00074a039">10.1021/ja00074a039</a>.</li> <li> Jaeger, H. M.; Schaefer, H. F.; Demaison, J.; Cs&aacute;sz&aacute;r, A. G.; Allen, W. D. &quot;Lowest-Lying Conformers of Alanine: Pushing Theory to Ascertain Precise Energetics and Semiexperimental <i>R</i><sub>e</sub> Structures,&quot; <i>J. Chem. Theory Comput.</i> <b>2010</b>, <i>6</i>, 3066-3078, DOI: <a href="http://dx.doi.org/10.1021/ct1000236">10.1021/ct1000236</a>.</li> <li> Blanco, S.; Lesarri, A.; L&oacute;pez, J. C.; Alonso, J. L. &quot;The Gas-Phase Structure of Alanine,&quot; <i>J. Am. Chem. Soc.</i> <b>2004</b>, <i>126</i>, 11675-11683, DOI: <a href="http://dx.doi.org/10.1021/ja048317c">10.1021/ja048317c</a>.</li> <li> Gronert, S.; O'Hair, R. A. J. &quot;Ab Initio Studies of Amino Acid Conformations. 1. The Conformers of Alanine, Serine, and Cysteine,&quot; <i>J. Am. Chem. Soc.</i> <b>1995</b>, <i>117</i>, 2071-2081, DOI: <a href="http://dx.doi.org/10.1021/ja00112a022">10.1021/ja00112a022</a>.</li> <li> Dobrowolski, J. C.; Rode, J. E.; Sadlej, J. &quot;Cysteine conformations revisited,&quot; <i>J. Mol. Struct. THEOCHEM</i> <b>2007</b>, <i>810</i>, 129-134, DOI: <a href="http://dx.doi.org/10.1016/j.theochem.2007.02.011">10.1016/j.theochem.2007.02.011</a>.</li> <li> Sanz, M. E.; Blanco, S.; L&oacute;pez, J. C.; Alonso, J. L. &quot;Rotational Probes of Six Conformers of Neutral Cysteine,&quot; <i>Angew. Chem. Int. Ed.</i> <b>2008</b>, <i>47</i>, 6216-6220, DOI: <a href="http://dx.doi.org/10.1002/anie.200801337">10.1002/anie.200801337</a>.</li> <li> Wilke, J. J.; Lind, M. C.; Schaefer, H. F.; Cs&aacute;sz&aacute&aacute;;r, A. G.; Allen, W. D. &quot;Conformers of Gaseous Cysteine,&quot; <i>J. Chem. Theor. Comput.</i> <b>2009</b>, <i>5</i>, 1511-1523, DOI: <a href="http://dx.doi.org/10.1021/ct900005c">10.1021/ct900005c</a>.</li> <li> Grimme, S. &quot;Seemingly Simple Stereoelectronic Effects in Alkane Isomers and the Implications for Kohn-Sham Density Functional Theory,&quot; <i>Angew. Chem. Int. Ed.</i> <b>2006</b>, <i>45</i>, 4460-4464, DOI: <a href="http://dx.doi.org/10.1002/anie.200600448">10.1002/anie.200600448</a>.</li> <li> NIST &quot;NIST Chemistry WebBook,&quot; 2005, URL: <a href="http://webbook.nist.gov/">http://webbook.nist.gov/</a>.</li> <li> Zhao, Y.; Truhlar, D. G. &quot;A Density Functional That Accounts for Medium-Range Correlation Energies in Organic Chemistry,&quot; <i>Org. Lett.</i> <b style='mso-bidi-font-weight:normal'>2006</b>, <i>8</i>, 5753-5755, DOI: <a href="http://dx.doi.org/10.1021/ol062318n">10.1021/ol062318n</a>.</li> <li> Schreiner, P. R.; Fokin, A. A.; Pascal, R. A.; deMeijere, A. &quot;Many Density Functional Theory Approaches Fail To Give Reliable Large Hydrocarbon Isomer Energy Differences,&quot; <i>Org. Lett.</i> <b>2006</b>, <i>8</i>, 3635-3638, DOI: <a href="http://dx.doi.org/10.1021/ol0610486">10.1021/ol0610486 </a>.</li> <li> Wodrich, M. D.; Corminboeuf, C.; Schleyer, P. v. R. &quot;Systematic Errors in Computed Alkane Energies Using B3LYP and Other Popular DFT Functionals,&quot; <i>Org. Lett.</i> <b>2006</b>, <i>8</i>, 3631-3634, DOI: <a href="http://dx.doi.org/10.1021/ol061016i">10.1021/ol061016i</a>.</li> <li> Wodrich, M. D.; Corminboeuf, C.; Schreiner, P. R.; Fokin, A. A.; Schleyer, P. v. R. &quot;How Accurate Are DFT Treatments of Organic Energies?,&quot; <i>Org. Lett.</i> <b>2007</b>, <i>9</i>, 1851-1854, DOI: <a href="http://dx.doi.org/10.1021/ol070354w">10.1021/ol070354w</a>.</li> <li> Pieniazek, S. N.; Clemente, F. R.; Houk, K. N. &quot;Sources of Error in DFT Computations of C-C Bond Formation Thermochemistries: &pi; &#8594; &sigma; Transformations and Error Cancellation by DFT Methods,&quot; <i>Angew. Chem. Int. Ed.</i> <b>2008</b>, <i>47</i>, 7746-7749, DOI: </span></span><a href="http://dx.doi.org/10.1002/anie.200801843">10.1002/anie.200801843</a>.</li> <li> Brittain, D. R. B.; Lin, C. Y.; Gilbert, A. T. B.; Izgorodina, E. I.; Gill, P. M. W.; Coote, M. L. &quot;The role of exchange in systematic DFT errors for some organic reactions,&quot; <i>Phys. Chem. Chem. Phys.</i> <b>2009</b>, DOI: <a href="http://dx.doi.org/10.1039/b818412g">10.1039/b818412g</a>.</li> <li> Song, J.-W.; Tsuneda, T.; Sato, T.; Hirao, K. &quot;Calculations of Alkane Energies Using Long-Range Corrected DFT Combined with Intramolecular van der Waals Correlation,&quot; <i>Org. Lett.</i> <b>2010</b>, <i>12</i>, 1440�1443, DOI: <a href="http://dx.doi.org/10.1021/ol100082z">10.1021/ol100082z</a>.</li> <li> Sato, T.; Nakai, H. &quot;Density functional method including weak interactions: Dispersion coefficients based on the local response approximation,&quot; <i>J. Chem. Phys</i> <b>2009</b>, <i>131</i>, 224104-224112, DOI: <a href="http://dx.doi.org/10.1063/1.3269802">10.1063/1.3269802</a>.</li> <li> Grimme, S. &quot;n-Alkane Isodesmic Reaction Energy Errors in Density Functional Theory Are Due to Electron Correlation Effects,&quot; <i>Org. Lett.</i> <b>2010</b>, <i>12</i>, 4670-4673, DOI: <a href="http://dx.doi.org/10.1021/ol1016417">10.1021/ol1016417</a>.</li> <li> Krieg, H.; Grimme, S. &quot;Thermochemical benchmarking of hydrocarbon bond separation reaction energies: Jacob's ladder is not reversed!,&quot; <i>Mol. Phys.</i> <b style='mso-bidi-font-weight:normal'>2010</b>, <i>108</i>, 2655-2666, DOI: <a href="http://dx.doi.org/10.1080/00268976.2010.519729">10.1080/00268976.2010.519729</a>.</li> <li> Zhao, Y.; Schultz, N. E.; Truhlar, D. G. &quot;Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions,&quot; <i>J. Chem. Theory Comput.</i> <b>2006</b>, <i>2</i>, 364-382, DOI: <a href="http://dx.doi.org/10.1021/ct0502763">10.1021/ct0502763</a>.</li> <li> Zhao, Y.; Truhlar, D. &quot;The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals,&quot; <i>Theor. Chem. Acc.</i> <b>2008</b>, <i>120</i>, 215-241, DOI: <a href="http://dx.doi.org/10.1007/s00214-007-0310-x">10.1007/s00214-007-0310-x</a>.</li> <li> Mardirossian, N.; Parkhill, J. A.; Head-Gordon, M. &quot;Benchmark results for empirical post-GGA functionals: Difficult exchange problems and independent tests,&quot; <i>Phys. Chem. Chem. Phys.</i> <b>2011</b>, <i>13</i>, 19325-19337, DOI: <a href="http://dx.doi.org/10.1039/C1CP21635J">10.1039/C1CP21635J</a>.</li> <li> Song, J.-W.; Tsuneda, T.; Sato, T.; Hirao, K. &quot;An examination of density functional theories on isomerization energy calculations of organic molecules,&quot; <i>Theor. Chem. Acc.</i> <b>2011</b>, <i>130</i>, 851-857, DOI: <a href="http://dx.doi.org/10.1007/s00214-011-0997-6">10.1007/s00214-011-0997-6</a>.</li> <li> Chai, J.-D.; Head-Gordon, M. &quot;Systematic optimization of long-range corrected hybrid density functionals,&quot; <i>J. Chem. Phys</i> <b>2008</b>, <i>128</i>, 084106-084115, DOI: <a href="http://dx.doi.org/10.1063/1.2834918">10.1063/1.2834918</a>.</li> <li> McBride, J. M. &quot;The hexaphenylethane riddle,&quot; <i>Tetrahedron</i> <b>1974</b>, <i>30</i>, 2009-2022, DOI: <a href="http://dx.doi.org/10.1016/s0040-4020(01)97332-6">10.1016/s0040-4020(01)97332-6</a>.</li> <li> Selwood, P. W.; Dobres, R. M. &quot;The Diamagnetic Correction for Free Radicals,&quot; <i>J. Am. Chem. Soc.</i> <b>1950</b>, <i>72</i>, 3860-3863, DOI: <a href="http://dx.doi.org/10.1021/ja01165a007">10.1021/ja01165a007</a>.</li> <li> Kahr, B.; Van Engen, D.; Mislow, K. &quot;Length of the ethane bond in hexaphenylethane and its derivatives,&quot; <i>J. Am. Chem. Soc.</i> <b>1986</b>, <i>108</i>, 8305-8307, DOI: <a href="http://dx.doi.org/10.1021/ja00286a053">10.1021/ja00286a053</a>.</li> <li> Grimme, S.; Schreiner, P. R. &quot;Steric Crowding Can Stabilize a Labile Molecule: Solving the Hexaphenylethane Riddle,&quot; <i>Angew. Chem. Int. Ed.</i> <b>2011</b>, <i>50</i>, 12639-12642, DOI: <a href="http://dx.doi.org/10.1002/anie.201103615">10.1002/anie.201103615</a>.</li> <li> Schreiner, P. R.; Chernish, L. V.; Gunchenko, P. A.; Tikhonchuk, E. Y.; Hausmann, H.; Serafin, M.; Schlecht, S.; Dahl, J. E. P.; Carlson, R. M. K.; Fokin, A. A. &quot;Overcoming lability of extremely long alkane carbon-carbon bonds through dispersion forces,&quot; <i>Nature</i> <b>2011</b>, <i>477</i>, 308-311, DOI: <a href="http://dx.doi.org/10.1038/nature10367">10.1038/nature10367</a>.</li> <li> Fokin, A. A.; Chernish, L. V.; Gunchenko, P. A.; Tikhonchuk, E. Y.; Hausmann, H.; Serafin, M.; Dahl, J. E. P.; Carlson, R. M. K.; Schreiner, P. R. &quot;Stable Alkanes Containing Very Long Carbon-Carbon Bonds,&quot; <i>J. Am. Chem. Soc.</i> <b>2012</b>, <i>134</i>, 13641-13650, DOI: <a href="http://dx.doi.org/10.1021/ja302258q">10.1021/ja302258q</a>.</li> <li> Smith, M. B.; March, J. <i>March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure</i>; Wiley: New York, 2001.</li> <li> Pedley, J. B.; Naylor, R. D.; Kirby, S. P. <i>Thermochemical Data of Organic Compounds</i>; 2nd ed.; Chapman and Hall: London, 1986.</li> <li> Benson, S. W.; Cruickshank, F. R.; Golden, D. M.; Haugen, G. R.; O'Neal, H. E.; Rodgers, A. S.; Shaw, R.; Walsh, R. &quot;Additivity Rules for the Estimation of Thermochemical Properties,&quot; <i>Chem. Rev.</i> <b>1969</b>, <i>69</i>, 279-324, DOI: <a href="http://dx.doi.org/10.1021/cr60259a002">10.1021/cr60259a002 </a>.</li> <li> Benson, S. W. <i>Thermochemical Kinetics: Methods for the Estimation of Thermochemical Data and Rate Parameters</i>; 2nd ed.; Wiley: New York, 1976.</li> <li> Wiberg, K. B. &quot;Group Equivalents for Converting ab initio Energies to Enthalpies of Formation,&quot; <i>J. Comp. Chem.</i> <b>1984</b>, <i>5</i>, 197-199, DOI: <a href="http://dx.doi.org/10.1002/jcc.540050212">10.1002/jcc.540050212</a>.</li> <li> Ibrahim, M. R.; Schleyer, P. v. R. &quot;Atom Equivalents for Relating ab initio Energies to Enthalpies of Formation,&quot; <i>J. Comp. Chem.</i> <b>1985</b>, <i>6</i>, 157-167, DOI: <a href="http://dx.doi.org/10.1002/jcc.540060302">10.1002/jcc.540060302</a>.</li> <li> Cioslowski, J.; Liu, G.; Piskorz, P. &quot;Computationally Inexpensive Theoretical Thermochemistry,&quot; <i>J. Phys. Chem. A</i> <b>1998</b>, <i>102</i>, 9890-9900, DOI: <a href="http://dx.doi.org/10.1021/jp982024m">10.1021/jp982024m</a>.</li> <li> Guthrie, J. P. &quot;Heats of Formation from DFT Calculations: An Examination of Several Parameterizations,&quot; <i>J. Phys. Chem. A</i> <b>2001</b>, <i>105</i>, 9196-9202, DOI: <a href="http://dx.doi.org/10.1021/jp010355k">10.1021/jp010355k</a>.</li> <li> Hehre, W. J.; Ditchfield, R.; Radom, L.; Pople, J. A. &quot;Molecular orbital theory of the electronic structure of organic compounds. V. Molecular theory of bond separation,&quot; <i>J. Am. Chem. Soc.</i> <b>1970</b>, <i>92</i>, 4796-4801, DOI: <a href="http://dx.doi.org/10.1021/ja00719a006">10.1021/ja00719a006</a>.</li> <li> George, P.; Trachtman, M.; Bock, C. W.; Brett, A. M. &quot;An alternative approach to the problem of assessing destabilization energies (strain energies) in cyclic hydrocarbons,&quot; <i>Tetrahedron</i> <b>1976</b>, <i>32</i>, 317-323, DOI: <a href="http://dx.doi.org/10.1016/0040-4020(76)80043-9">10.1016/0040-4020(76)80043-9</a>.</li> <li> George, P.; Trachtman, M.; Brett, A. M.; Bock, C. W. &quot;Comparison of various isodesmic and homodesmotic reaction heats with values derived from published ab initio molecular orbital calculations,&quot; <i>J. Chem. Soc., Perkin Trans. 2</i> <b>1977</b>, 1036-1047, DOI: <a href="http://dx.doi.org/10.1039/P29770001036">10.1039/P29770001036</a>.</li> <li> Bachrach, S. M. &quot;The Group Equivalent Reaction: An Improved Method for Determining Ring Strain Energy,&quot; <i>J. Chem. Ed.</i> <b>1990</b>, <i>67</i>, 907-908, DOI: <a href="http://dx.doi.org/10.1021/ed067p907">10.1021/ed067p907</a>.</li> <li> Wheeler, S. E.; Houk, K. N.; Schleyer, P. v. R.; Allen, W. D. &quot;A Hierarchy of Homodesmotic Reactions for Thermochemistry,&quot; <i>J. Am. Chem. Soc.</i> <b>2009</b>, <i>131</i>, 2547-2560, DOI: <a href="http://dx.doi.org/10.1021/ja805843n">10.1021/ja805843n</a>.</li> <li> Boatz, J. A.; Gordon, M. S.; Hilderbrandt, R. L. &quot;Structure and Bonding in Cycloalkanes and Monosilacycloalkanes,&quot; <i>J. Am. Chem. Soc.</i> <b>1988</b>, <i>110</i>, 352-358, DOI: <a href="http://dx.doi.org/10.1021/ja00210a005">10.1021/ja00210a005</a>.</li> <li> Alcam&iacute;, M.; M&oacute;, O.; Y&aacute;&ntilde;ez, M. &quot;G2 ab Initio Calculations on Three-Membered Rings: Role of Hydrogen Atoms,&quot; <i>J. Comp. Chem.</i> <b>1998</b>, <i>19</i>, 1072-1086, DOI: <a href="http://dx.doi.org/10.1002/(SICI)1096-987X(19980715)19:9%3c1072::AID-JCC8%3e3.0.CO;2-N">10.1002/(SICI)1096-987X(19980715)19:9&lt;1072::AID-JCC8&gt;3.0.CO;2-N</a>.</li> <li> Cremer, D. &quot;Pros and Cons of &sigma;-Aromaticity,&quot; <i>Tetrahedron</i> <b>1988</b>, <i>44</i>, 7427-7454, DOI: </span></span><a href="http://dx.doi.org/10.1016/S0040-4020(01)86238-4">10.1016/S0040-4020(01)86238-4</a>.</li> <li> Cremer, D.; Gauss, J. &quot;Theoretical Determination of Molecular Structure and Conformation. 20. Reevaluation of the Strain Energies of Cyclopropane and Cyclobutane - CC and CH Bond Energies, 1,3 Interactions, and &sigma;-Aromaticity,&quot; <i>J. Am. Chem. Soc.</i> <b>1986</b>, <i>108</i>, 7467-7477, DOI: <a href="http://dx.doi.org/10.1021/ja00284a004">10.1021/ja00284a004</a>.</li> <li> Baeyer, A. v. &quot;&Uuml;ber Polyacetylenverbindungen,&quot; <i>Chem. Ber.</i> <b>1885</b>, <i>18</i>, 2269-2281.</li> <li> Huisgen, R. &quot;Adolf von Baeyer's Scientific Achievements - a Legacy,&quot; <i>Angew. Chem. Int. Ed. Engl.</i> <b>1986</b>, <i>25</i>, 297-311, DOI: <a href="http://dx.doi.org/10.1002/anie.198602973">10.1002/anie.198602973</a>.</li> <li> Snyder, R. G.; Schachtschneider, J. H. &quot;A Valence Force Field for Saturated Hydrocarbons,&quot; <i>Spectrochim. Acta</i> <b>1965</b>, <i>21</i>, 169-195, DOI: <a href="http://dx.doi.org/10.1016/0371-1951(65)80115-1">10.1016/0371-1951(65)80115-1</a>.</li> <li> Walsh, A. D. &quot;Structures of Ethylene Oxide, Cyclopropane, and Related Molecules,&quot; <i>Trans. Faraday Soc.</i> <b>1949</b>, <i style='mso-bidi-font-style:normal'>45</i>, 179-190, DOI: <a href="http://dx.doi.org/10.1039/TF9494500179">10.1039/TF9494500179 </a>.</li> <li> Bader, R. F. W. <i>Atoms in Molecules - A Quantum Theory</i>; Oxford University Press: Oxford, 1990.</li> <li> Pitzer, K. S. &quot;Strain Energies of Cyclic Hydrocarbons,&quot; <i>Science</i> <b>1945</b>, <i>101</i>, 672, DOI: <a href="http://dx.doi.org/10.1126/science.101.2635.672">10.1126/science.101.2635.672</a>.</li> <li> Dunitz, J. D.; Schomaker, V. &quot;The Molecular Structure of Cyclobutane,&quot; <i>J. Chem. Phys.</i> <b>1952</b>, <i>20</i>, 1703-1707, DOI: <a href="http://dx.doi.org/10.1063/1.1700271">10.1063/1.1700271</a>.</li> <li> Bauld, N. L.; Cessac, J.; Holloway, R. L. &quot;1,3(Nonbonded) carbon/carbon interactions. The common cause of ring strain, puckering, and inward methylene rocking in cyclobutane and of vertical nonclassical stabilization, pyramidalization, puckering, and outward methylene rocking in the cyclobutyl cation,&quot; <i>J. Am. Chem. Soc.</i> <b>1977</b>, <i>99</i>, 8140-8144, DOI: <a href="http://dx.doi.org/10.1021/ja00467a003">10.1021/ja00467a003</a>.</li> <li> Coulson, C. A.; Moffitt, W. E. &quot;The Properties of Certain Strained Hydrocarbons,&quot; <i>Phil. Mag.</i> <b>1949</b>, <i>40</i>, 1-35.</li> <li> Baghal-Vayjooee, M. H.; Benson, S. W. &quot;Kinetics and thermochemistry of the reaction atomic chlorine + cyclopropane .dblarw. hydrochloric acid + cyclopropyl. Heat of formation of the cyclopropyl radical,&quot; <i>J. Am. Chem. Soc.</i> <b>1979</b>, <i>101</i>, 2838-2840, DOI: <a href="http://dx.doi.org/10.1021/ja00505a005">10.1021/ja00505a005</a>.</li> <li> Seakins, P. W.; Pilling, M. J.; Niiranen, J. T.; Gutman, D.; Krasnoperov, L. N. &quot;Kinetics and Thermochemistry of R + HBr .dblarw. RH + Br Reactions: Determinations of the Heat of Formation of C<sub>2</sub>H<sub>5</sub>, <i>i</i>-C<sub>3</sub>H<sub>7</sub>, <i>sec</i>-C<sub>4</sub>H<sub>9</sub> and <i>t</i>-C<sub>4</sub>H<sub>9</sub>,&quot; <i>J. Phys. Chem.</i> <b>1992</b>, <i>96</i>, 9847-9855, DOI: ><a href="http://dx.doi.org/10.1021/j100203a050">10.1021/j100203a050</a>.</li> <li> Exner, K.; Schleyer, P. v. R. &quot;Theoretical Bond Energies: A Critical Evaluation,&quot; <i>J. Phys. Chem. A.</i> <b>2001</b>, <i>105</i>, 3407-3416, DOI: <a href="http://dx.doi.org/10.1021/jp004193o">10.1021/jp004193o</a>.</li> <li> Grimme, S. &quot;Theoretical Bond and Strain Energies of Molecules Derived from Properties of the Charge Density at Bond Critical Points,&quot; <i>J. Am. Chem. Soc.</i> <b>1996</b>, <i>118</i>, 1529-1534, DOI: <a href="http://dx.doi.org/10.1021/ja9532751">10.1021/ja9532751</a>.</li> <li> Johnson, W. T. G.; Borden, W. T. &quot;Why Are Methylenecyclopropane and 1-Methylcylopropene More &quot;Strained&quot; than Methylcyclopropane?,&quot; <i>J. Am. Chem. Soc</i> <b>1997</b>, <i>119</i>, 5930-5933, DOI: <a href="http://dx.doi.org/10.1021/ja9638061">10.1021/ja9638061</a>.</li> <li> Bach, R. D.; Dmitrenko, O. &quot;The Effect of Substitutents on the Strain Energies of Small Ring Compounds,&quot; <i>J. Org. Chem.</i> <b>2002</b>, <i>67</i>, 2588-2599, DOI: <a href="http://dx.doi.org/10.1021/jo016241m">10.1021/jo016241m</a>.</li> <li> Bach, R. D.; Dmitrenko, O. &quot;Strain Energy of Small Ring Hydrocarbons. Influence of C-H Bond Dissociation Energies,&quot; <i>J. Am. Chem. Soc.</i> <b>2004</b>, <i>126</i>, 4444-4452, DOI: <a href="http://dx.doi.org/10.1021/ja036309a">10.1021/ja036309a</a>.</li> <li> Dewar, M. J. S. &quot;&sigma;-Conjugation and &sigma;-Aromaticity,&quot; <i>Bull. Soc. Chim. Belg.</i> <b>1979</b>, <i>88</i>, 957-967.</li> <li> Dewar, M. J. S. &quot;Chemical Implications of &sigma;-Conjugation,&quot; <i>J. Am. Chem. Soc.</i> <b>1984</b>, <i>106</i>, 669-682, DOI: </span></span><a href="http://dx.doi.org/10.1021/ja00315a036">10.1021/ja00315a036</a>.</li> <li> Kraka, E.; Cremer, D. &quot;Theoretical determination of molecular structure and conformation. 15. Three-membered rings: bent bonds, ring strain, and surface delocalization,&quot; <i>J. Am. Chem. Soc.</i> <b>1985</b>, <i>107</i>, 3800-3810, DOI: <a href="http://dx.doi.org/10.1021/ja00299a009">10.1021/ja00299a009</a>.</li> <li> Moran, D.; Manoharan, M.; Heine, T.; Schleyer, P. v. R. &quot;&sigma;-Antiaromaticity in Cyclobutane, Cubane, and Other Molecules with Saturated Four-Membered Rings,&quot; <i>Org. Lett.</i> <b>2003</b>, <i>5</i>, 23-26, DOI: <a href="http://dx.doi.org/10.1021/ol027159w">10.1021/ol027159w</a>.</li> <li> Fowler, P. W.; Baker, J.; Mark Lillington, M. &quot;The Ring Current in Cyclopropane &quot; <i>Theor. Chem. Acta</i> <b>2007</b>, <i>118</i>, 123-127, DOI: <a href="http://dx.doi.org/10.1007/s00214-007-0253-2">10.1007/s00214-007-0253-2</a>.</li> <li> Schleyer, P. v. R.; Jiao, H. &quot;What is Aromaticity?,&quot; <i>Pure. Appl. Chem.</i> <b>1996</b>, <i>68</i>, 209-218, DOI: <a href="http://dx.doi.org/10.1351/pac199668020209">10.1351/pac199668020209</a>.</li> <li> Krygowski, T. M.; Cyra&ntilde;ski, M. K.; Czarnocki, Z.; H&auml;felinger, G.; Katritzky, A. R. &quot;Aromaticity: a Theoretical Concept of Immense Practical Importance,&quot; <i>Tetrahedron</i> <b>2000</b>, <i>56</i>, 1783-1796, DOI: <a href="http://dx.doi.org/10.1016/S0040-4020(99)00979-5">10.1016/S0040-4020(99)00979-5</a>.</li> <li> Stanger, A. &quot;What is... aromaticity: a critique of the concept of aromaticity-can it really be defined?,&quot; <i>Chem. Commun.</i> <b>2009</b>, 1939-1947, DOI: <a href="http://dx.doi.org/10.1039/B816811C">10.1039/B816811C</a>.</li> <li> Minkin, V. I.; Glukhovtsev, M. N.; Simkin, B. Y. <i>Aromaticity and Antiaromaticity: Electronic and Structural Aspects</i>; John Wiley &amp; Sons: New York, 1994.</li> <li> Schleyer, P. v. R. &quot;Aromaticity,&quot; <i>Chem Rev.</i> <b>2001</b>, <i>101</i>, 1115-1566, DOI: <a href="http://dx.doi.org/10.1021/cr0103221">10.1021/cr0103221</a>.</li> <li> Cyranski, M. K. &quot;Energetic Aspects of Cyclic Pi-Electron Delocalization: Evaluation of the Methods of Estimating Aromatic Stabilization Energies,&quot; <i>Chem. Rev.</i> <b>2005</b>, <i>105</i>, 3773 - 3811, DOI: <a href="http://dx.doi.org/10.1021/cr0300845">10.1021/cr0300845</a>.</li> <li> Cyranski, M. K.; Schleyer, P. v. R.; Krygowski, T. M.; Jiao, H.; Hohlneicher, G. &quot;Facts and Artifacts about Aromatic Stability Estimation,&quot; <i>Tetrahedron</i> <b>2003</b>, <i>59</i>, 1657-1665, DOI: <a href="http://dx.doi.org/10.1016/S0040-4020(03)00137-6">10.1016/S0040-4020(03)00137-6</a>.</li> <li> Hedberg, L.; Hedberg, K.; Cheng, P.-C.; Scott, L. T. &quot;Gas-Phase Molecular Structure of Corannulene, C20H10. An Electron-Diffraction Study Augmented by ab Initio and Normal Coordinate Calculations,&quot; <i>J. Phys. Chem. A</i> <b>2000</b>, <i>104</i>, 7689-7694, DOI: <a href="http://dx.doi.org/10.1021/jp0015527">10.1021/jp0015527</a>.</li> <li> Dobrowolski, M. A.; Ciesielski, A.; Cyranski, M. K. &quot;On the aromatic stabilization of corannulene and coronene,&quot; <i>Phys. Chem. Chem. Phys.</i> <b>2011</b>, <i>13</i>, 20557-20563, DOI: <a href="http://dx.doi.org/10.1039/C1CP21994D">10.1039/C1CP21994D</a>.</li> <li> Choi, C. H.; Kertesz, M. &quot;Bond Length Alternation and Aromaticity in Large Annulenes,&quot; <i>J. Chem. Phys.</i> <b>1998</b>, <i>108</i>, 6681-6688, DOI: <a href="http://dx.doi.org/10.102110.1063/1.476083">10.102110.1063/1.476083</a>.</li> <li> <i>Aromaticity, Pseudo-aromaticiy, Anti-aromaticity, Proceedings of an International Symposium</i>; Bergmann, E. D.; Pullman, B., Eds.; Israel Academy of Sciences and Humanities: Jerusalem, 1971; Vol. p. 33 see the following exchange:<br> E. Heilbronner: &quot;Now could you point out a molecule, except benzene, which classifies as 'aromatic'?&quot;<br> B. Binsch: &quot;Benzene is a perfect example!&quot;<br> E. Heilbronner: &quot;Name a second one.&quot;<br> B. Binsch: &quot;It is, of course, a question of degree.&quot;</li> <li> Katritzky, A. R.; Barczynski, P.; Musumarra, G.; Pisano, D.; Szafran, M. &quot;Aromaticity as a quantitative concept. 1. A statistical demonstration of the orthogonality of classical and magnetic aromaticity in five- and six-membered heterocycles,&quot; <i>J. Am. Chem. Soc.</i> <b>1989</b>, <i>111</i>, 7-15, DOI: <a href="http://dx.doi.org/10.1021/ja00183a002">10.1021/ja00183a002</a>.</li> <li> Jug, K.; Koester, A. M. &quot;Aromaticity as a Multi-Dimensional Phenomenon,&quot; <i>J. Phys. Org. Chem.</i> <b>1991</b>, <i>4</i>, 163-169, DOI: <a href="http://dx.doi.org/10.1002/poc.610040307">10.1002/poc.610040307</a>.</li> <li> Schleyer, P. v. R.; Freeman, P. K.; Jiao, H.; Goldfuss, B. &quot;Aromaticity and Antiaromaticity in Five-Membered C4H4X Ring Systems: Classical and Magnetic Concepts May Not Be Orthogonal,&quot; <i>Angew. Chem. Int. Ed. Engl.</i> <b>1995</b>, <i>34</i>, 337-340, DOI: <a href="http://dx.doi.org/10.1002/anie.199503371">10.1002/anie.199503371</a>.</li> <li> Katritzky, A. R.; Karelson, M.; Sild, S.; Krygowski, T. M.; Jug, K. &quot;Aromaticity as a Quantitative Concept. 7. Aromaticity Reaffirmed as a Multidimensional Characteristic,&quot; <i style='mso-bidi-font-style:normal'>J. Org. Chem.</i> <b>1998</b>, <i>63</i>, 5228-5231, DOI: <a href="http://dx.doi.org/10.1021/jo970939b">10.1021/jo970939b</a>.</li> <li> Cyranski, M. K.; Krygowski, T. M.; Katritzky, A. R.; Schleyer, P. v. R. &quot;To What Extent Can Aromaticity Be Defined Uniquely?,&quot; <i>J. Org. Chem.</i> <b>2002</b>, <i>67</i>, 1333-1338, DOI: <a href="http://dx.doi.org/10.1021/jo016255s">10.1021/jo016255s</a>.</li> <li> Moran, D.; Simmonett, A. C.; Leach, F. E.; Allen, W. D.; Schleyer, P. v. R.; Schaefer, H. F., III &quot;Popular Theoretical Methods Predict Benzene and Arenes To Be Nonplanar,&quot; <i>J. Am. Chem. Soc.</i> <b>2006</b>, <i>128</i>, 9342-9343, DOI: <a href="http://dx.doi.org/10.1021/ja0630285">10.1021/ja0630285</a>.</li> <li> Baldridge, K. K.; Siegel, J. S. &quot;Stabilization of Benzene Versus Oligoacetylenes: Not Another Scale for Aromaticity,&quot; <i>J. Phys. Org. Chem.</i> <b>2004</b>, <i>17</i>, 740-742, DOI: <a href="http://dx.doi.org/10.1002/poc.819">10.1002/poc.819</a>.</li> <li> Roberts, J. D.; Streitwieser, A. J.; Regan, C. M. &quot;Small-Ring Compounds. X. Molecular Orbital Calculations of Properties of Some Small-Ring Hydrocarbons and Free Radicals,&quot; <i>J. Am. Chem. Soc.</i> <b>1952</b>, <i style='mso-bidi-font-style:normal'>74</i>, 4579-4582, DOI: <a href="http://dx.doi.org/10.1021/ja01138a038">10.1021/ja01138a038</a>.</li> <li> Schaad, L. J.; Hess, B. A., Jr. &quot;Dewar Resonance Energy,&quot; <i>Chem. Rev.</i> <b>2001</b>, <i>101</i>, 1465-1476, DOI: <a href="http://dx.doi.org/10.1021/cr9903609">10.1021/cr9903609</a>.</li> <li> Pauling, L. <i>The Nature of the Chemical Bond</i>; Cornell University Press: Ithaca, NY, 1960.</a></li> <li> Wheland, G. W. <i>The Theory of Resonance</i>; J. Wiley: New York, 1944.</a></li> <li> Mo, Y.; Schleyer, P. v. R. &quot;An Energetic Measure of Aromaticity and Antiaromaticity Based on the Pauling-Wheland Resonance Energies,&quot; <i>Chem. Eur. J.</i> <b>2006</b>, <i>12</i>, 2009-2020, DOI: <a href="http://dx.doi.org/10.1002/chem.200500376">10.1002/chem.200500376</a>.</li> <li> Dewar, M. J. S.; De Llano, C. &quot;Ground States of Conjugated Molecules. XI. Improved Treatment of Hydrocarbons,&quot; <i>J. Am. Chem. Soc.</i> <b>1969</b>, <i>91</i>, 789-795, DOI: <a href="http://dx.doi.org/10.1021/ja01032a001">10.1021/ja01032a001</a>.</li> <li> Schleyer, P. v. R.; Manoharan, M.; Jiao, H.; Stahl, F. &quot;The Acenes: Is There a Relationship between Aromatic Stabilization and Reactivity?,&quot; <i>Org. Lett.</i> <b>2001</b>, <i>3</i>, 3643-3646, DOI: <a href="http://dx.doi.org/10.1021/ol016553b">10.1021/ol016553b</a>.</li> <li> Hess, B. A., Jr.; Schaad, L. J. &quot;Ab Initio Calculation of Resonance Energies. Benzene and Cyclobutadiene,&quot; <i>J. Am. Chem. Soc.</i> <b>1983</b>, <i>105</i>, 7500-7505, DOI: <a href="http://dx.doi.org/10.1021/ja00364a600">10.1021/ja00364a600</a>.</li> <li> Schleyer, P. v. R.; Puhlhofer, F. &quot;Recommendations for the Evaluation of Aromatic Stabilization Energies,&quot; <i>Org. Lett.</i> <b style='mso-bidi-font-weight:normal'>2002</b>, <i>4</i>, 2873-2876, DOI: <a href="http://dx.doi.org/10.1021/ol0261332">10.1021/ol0261332</a>.</li> <li> Schleyer, P. v. R.; Jiao, H.; Hommes, N. J. R. v. E.; Malkin, V. G.; Malkina, O. &quot;An Evaluation of the Aromaticity of Inorganic Rings: Refined Evidence from Magnetic Properties,&quot; <i>J. Am. Chem. Soc.</i> <b>1997</b>, <i>119</i>, 12669-12670-, DOI: <a href="http://dx.doi.org/10.1021/ja9719135">10.1021/ja9719135</a>.</li> <li> Gomes, J. A. N. F.; Mallion, R. B. &quot;Aromaticity and Ring Currents,&quot; <i>Chem. Rev.</i> <b>2001</b>, <i>101</i>, 1349 - 1384, DOI: <a href="http://dx.doi.org/10.1021/cr990323h">10.1021/cr990323h</a>.</li> <li> Dauben, H. J., Jr.; Wilson, J. D.; Laity, J. L. &quot;Diamagnetic Susceptibility Exaltation in Hydrocarbons,&quot; <i>J. Am. Chem. Soc.</i> <b>1969</b>, <i>91</i>, 1991-1998, DOI: <a href="http://dx.doi.org/10.1021/ja01036a022">10.1021/ja01036a022</a>.</li> <li> Dauben, H. J.; Wilson, J. D.; Laity, J. L. In <i>Nonbenzenoid Aromatics</i>; Snyder, J. P., Ed.; Academic Press: New York, 1971; Vol. 2, p 167-206.</a></li> <li> Jackman, L. M.; Sondheimer, F.; Amiel, Y.; Ben-Efraim, D. A.; Gaoni, Y.; Wolovsky, R.; Bothner-By, A. A. &quot;The Nuclear Magnetic Resonance Spectroscopy of a Series of Annulenes and Dehydro-annulenes,&quot; <i>J. Am. Chem. Soc.</i> <b>1962</b>, <i>84</i>, 4307-4312, DOI: <a href="http://dx.doi.org/10.1021/ja00881a022">10.1021/ja00881a022</a>.</li> <li> Stevenson, C. D.; Kurth, T. L. &quot;Isotopic Perturbations in Aromatic Character and New Closely Related Conformers Found in [16]- and [18]Annulene,&quot; <i>J. Am. Chem. Soc.</i> <b>2000</b>, <i>122</i>, 722-723, DOI: <a href="http://dx.doi.org/10.1021/ja993604f">10.1021/ja993604f</a>.</li> <li> Wannere, C. S.; Corminboeuf, C.; Allen, W. D.; Schaefer, H. F., III; Schleyer, P. v. R. &quot;Downfield Proton Chemical Shifts Are Not Reliable Aromaticity Indicators,&quot; <i>Org. Lett.</i> <b>2005</b>, <i>7</i>, 1457-1460, DOI: <a href="http://dx.doi.org/10.1021/ol050118q">10.1021/ol050118q</a>.</li> <li> Faglioni, F.; Ligabue, A.; Pelloni, S.; Soncini, A.; Viglione, R. G.; Ferraro, M. B.; Zanasi, R.; Lazzeretti, P. &quot;Why Downfield Proton Chemical Shifts Are Not Reliable Aromaticity Indicators,&quot; <i>Org. Lett.</i> <b>2005</b>, <i>7</i>, 3457-3460, DOI: <a href="http://dx.doi.org/10.1021/ol051103v">10.1021/ol051103v</a>.</li> <li> Schleyer, P. v. R.; Maerker, C.; Dransfeld, A.; Jiao, H.; Hommes, N. J. R. v. E. &quot;Nucleus-Independent Chemical Shifts: A Simple and Efficient Aromaticity Probe,&quot; <i>J. Am. Chem. Soc.</i> <b>1996</b>, <i>118</i>, 6317-6318, DOI: <a href="http://dx.doi.org/10.1021/ja960582d">10.1021/ja960582d</a>.</li> <li> Jiao, H.; Schleyer, P. v. R.; Mo, Y.; McAllister, M. A.; Tidwell, T. T. &quot;Magnetic Evidence for the Aromaticity and Antiaromaticity of Charged Fluorenyl, Indenyl, and Cyclopentadienyl Systems,&quot; <i>J. Am. Chem. Soc.</i> <b style='mso-bidi-font-weight:normal'>1997</b>, <i>119</i>, 7075-7083, DOI: <a href="http://dx.doi.org/10.1021/ja970380x">10.1021/ja970380x</a>.</li> <li> Williams, R. V.; Armantrout, J. R.; Twamley, B.; Mitchell, R. H.; Ward, T. R.; Bandyopadhyay, S. &quot;A Theoretical and Experimental Scale of Aromaticity. The First Nucleus-Independent Chemical Shifts (NICS) Study of the Dimethyldihydropyrene Nucleus,&quot; <i>J. Am. Chem. Soc.</i> <b>2002</b>, <i>124</i>, 13495-13505, DOI: <a href="http://dx.doi.org/10.1021/ja020595t">10.1021/ja020595t</a>.</li> <li> Schleyer, P. v. R.; Manoharan, M.; Wang, Z.-X.; Kiran, B.; Jiao, H.; Puchta, R.; van Eikema Hommes, N. J. R. &quot;Dissected Nucleus-Independent Chemical Shift Analysis of -Aromaticity and Antiaromaticity,&quot; <i>Org. Lett.</i> <b>2001</b>, <i>3</i>, 2465-2468, DOI: <a href="http://dx.doi.org/10.1021/ol016217v">10.1021/ol016217v</a>.</li> <li> Stanger, A. &quot;Nucleus-Independent Chemical Shifts (NICS): Distance Dependence and Revised Criteria for Aromaticity and Antiaromaticity,&quot; <i>J. Org. Chem.</i> <b>2006</b>, <i>71</i>, 883-893, DOI: <a href="http://dx.doi.org/10.1021/jo051746o">10.1021/jo051746o</a>.</li> <li> Klod, S.; Kleinpeter, E. &quot;Ab initio calculation of the anisotropy effect of multiple bonds and the ring current effect of arenes - application in conformational and configurational analysis,&quot; <i>Chem. Soc., Perkin Trans. 2</i> <b>2001</b>, 1893-1898, DOI: <a href="http://dx.doi.org/10.1039/b009809o">10.1039/b009809o</a>.</li> <li> Pople , J. A. &quot;Proton Magnetic Resonance of Hydrocarbons,&quot; <i>J. Chem. Phys.</i> <b>1956</b>, <i>24</i>, 1111, DOI: <a href="http://dx.doi.org/10.1063/1.1742701">10.1063/1.1742701</a>.</li> <li> Viglione, R. G.; Zanasi, R.; Lazzeretti, P. &quot;Are Ring Currents Still Useful to Rationalize the Benzene Proton Magnetic Shielding?,&quot; <i>Org. Lett.</i> <b>2004</b>, <i>6</i>, 2265-2267, DOI: <a href="http://dx.doi.org/10.1021/ol049200w">10.1021/ol049200w</a>.</li> <li> Fallah-Bagher-Shaidaei, H.; Wannere, C. S.; Corminboeuf, C.; Puchta, R.; Schleyer, P. v. R. &quot;Which NICS Aromaticity Index for Planar &pi; Rings Is Best?,&quot; <i>Org. Lett.</i> <b>2006</b>, <i>8</i>, 863-866, DOI: <a href="http://dx.doi.org/10.1021/ol0529546">10.1021/ol0529546</a>.</li> <li> Herges, R.; Jiao, H.; Schleyer, P. v. R. &quot;Magnetic Properties of Aromatic Transition States: The Diels-Alder Reactions,&quot; <i>Angew. Chem. Int. Ed. Engl.</i> <b>1994</b>, <i>33</i>, 1376-1378, DOI: <a href="http://dx.doi.org/10.1002/anie.199413761">10.1002/anie.199413761</a>.</li> <li> Jiao, H.; Schleyer, P. v. R. &quot;The Cope Rearrangement Transition Structure is not Diradicaloid, but is it Aromatic?,&quot; <i>Angew. Chem. Int. Ed. Engl.</i> <b>1995</b>, <i>34</i>, 334-337, DOI: <a href="http://dx.doi.org/10.1002/anie.199503341">10.1002/anie.199503341</a>.</li> <li> Cabaleiro-Lago, E. M.; Rodriguez-Otero, J.; Varela-Varela, S. M.; Pena-Gallego, A.; Hermida-Ramon, J. M. &quot;Are Electrocyclization Reactions of (3Z)-1,3,5-Hexatrienone and Nitrogen Derivatives Pseudopericyclic? A DFT Study,&quot; <i>J. Org. Chem.</i> <b>2005</b>, <i>70</i>, 3921-3928, DOI: <a href="http://dx.doi.org/10.1021/jo0477695">10.1021/jo0477695</a>.</li> <li> Martin-Santamaria, S.; Lavan, B.; Rzepa, H. S. &quot;H&uuml;ckel and M&ouml;bius Aromaticity and Trimerous Transition State Behaviour in the Pericyclic Reactions of [10], [14], [16] and [18]Annulenes,&quot; <i>J. Chem. Soc., Perkin Trans. 2</i> <b>2000</b>, 1415-1417, DOI: <a href="http://dx.doi.org/10.1039/b002082f">10.1039/b002082f</a>.</li> <li> Levy, A.; Rakowitz, A.; Mills, N. S. &quot;Dications of Fluorenylidenes. The Effect of Substituent Electronegativity and Position on the Antiaromaticity of Substituted Tetrabenzo[5.5]fulvalene Dications,&quot; <i>J. Org. Chem.</i> <b>2003</b>, <i>68</i>, 3990-3998, DOI: <a href="http://dx.doi.org/10.1021/jo026924h">10.1021/jo026924h</a>.</li> <li> Mills, N. S.; Levy, A.; Plummer, B. F. &quot;Antiaromaticity in Fluorenylidene Dications. Experimental and Theoretical Evidence for the Relationship between the HOMO/LUMO Gap and Antiaromaticity,&quot; <i>J. Org. Chem.</i> <b>2004</b>, <i>69</i>, 6623-6633, DOI: <a href="http://dx.doi.org/10.1021/jo0499266">10.1021/jo0499266</a>.</li> <li> Piekarski, A. M.; Mills, N. S.; Yousef, A. &quot;Dianion and Dication of Tetrabenzo[5.7]fulvalene. Greater Antiaromaticity than Aromaticity in Comparable Systems,&quot; <i>J. Am. Chem. Soc.</i> <b>2008</b>, <i>130</i>, 14883-14890, DOI: <a href="http://dx.doi.org/10.1021/ja8042323">10.1021/ja8042323</a>.</li> <li> Dinadayalane, T. C.; Deepa, S.; Reddy, A. S.; Sastry, G. N. &quot;Density Functional Theory Study on the Effect of Substitution and Ring Annelation to the Rim of Corannulene,&quot; <i>J. Org. Chem.</i> <b>2004</b>, <i>69</i>, 8111-8114, DOI: <a href="http://dx.doi.org/10.1021/jo048850a">10.1021/jo048850a</a>.</li> <li> Schulman, J. M.; Disch, R. L. &quot;Properties of Phenylene-Based Hydrocarbon Bowls and Archimedene,&quot; <i>J. Phys. Chem. A</i> <b>2005</b>, <i>109</i>, 6947-6952, DOI: <a href="http://dx.doi.org/10.1021/jp058088w">10.1021/jp058088w</a>.</li> <li> Kavitha, K.; Manoharan, M.; Venuvanalingam, P. &quot;1,3-Dipolar Reactions Involving Corannulene: How Does Its Rim and Spoke Addition Vary?,&quot; <i>J. Org. Chem.</i> <b>2005</b>, <i>70</i>, 2528-2536, DOI: <a href="http://dx.doi.org/10.1021/jo0480693">10.1021/jo0480693</a>.</li> <li> Wu, J. I.; Fern&aacute;ndez, I.; Mo, Y.; Schleyer, P. v. R. &quot;Why Cyclooctatetraene Is Highly Stabilized: The Importance of "Two-Way" (Double) Hyperconjugation,&quot; <i>J. Chem. Theor. Comput.</i> <b>2012</b>, <i style='mso-bidi-font-style:normal'>8</i>, 1280-1287, DOI: <a href="http://dx.doi.org/10.1021/ct3000553">10.1021/ct3000553</a>.</li> <li> Nishinaga, T.; Uto, T.; Inoue, R.; Matsuura, A.; Treitel, N.; Rabinovitz, M.; Komatsu, K. &quot;Antiaromaticity and Reactivity of a Planar Cyclooctatetraene Fully Annelated with Bicyclo[2.1.1]hexane Units,&quot; <i>Chem. Eur. J.</i> <b>2008</b>, <i>14</i>, 2067-2074, DOI: <a href="http://dx.doi.org/10.1002/chem.200701405">10.1002/chem.200701405</a>.</li> <li> Ohmae, T.; Nishinaga, T.; Wu, M.; Iyoda, M. &quot;Cyclic Tetrathiophenes Planarized by Silicon and Sulfur Bridges Bearing Antiaromatic Cyclooctatetraene Core: Syntheses, Structures, and Properties,&quot; <i>J. Am. Chem. Soc.</i> <b>2009</b>, <i>132</i>, 1066-1074, DOI: <a href="http://dx.doi.org/10.1021/ja908161r">10.1021/ja908161r</a>.</li> <li> Masamune, S.; Hojo, K.; Hojo, K.; Bigam, G.; Rabenstein, D. L. &quot;Geometry of [10]annulenes,&quot; <i>J. Am. Chem. Soc.</i> <b>1971</b>, <i style='mso-bidi-font-style:normal'>93</i>, 4966-4968, DOI: <a href="http://dx.doi.org/10.1021/ja00748a083">10.1021/ja00748a083</a>.</li> <li> Xie, Y.; Schaefer, H. F., III; Liang, G.; Bowen, J. P. &quot;[10]Annulene: The Wealth of Energetically Low-Lying Structural Isomers of the Same (CH)<sub>10</sub> Connectivity,&quot; <i>J. Am. Chem. Soc.</i> <b>1994</b>, <i>116</i>, 1442-1449, DOI: <a href="http://dx.doi.org/10.1021/ja00083a032">10.1021/ja00083a032</a>.</li> <li> Sulzbach, H. M.; Schleyer, P. v. R.; Jiao, H.; Xie, Y.; Schaefer, H. F., III &quot;A [10]Annulene Isomer May Be Aromatic, After All!,&quot; <i>J. Am. Chem. Soc.</i> <b>1995</b>, <i>117</i>, 1369-1373, DOI: <a href="http://dx.doi.org/10.1021/ja00109a021">10.1021/ja00109a021</a>.</li> <li> King, R. A.; Crawford, T. D.; Stanton, J. F.; Schaefer, H. F., III &quot;Conformations of [10]Annulene: More Bad News for Density Functional Theory and Second-Order Perturbation Theory,&quot; <i>J. Am. Chem. Soc.</i> <b>1999</b>, <i>121</i>, 10788-10793, DOI: <a href="http://dx.doi.org/10.1021/ja991429x">10.1021/ja991429x</a>.</li> <li> Sulzbach, H. M.; Schaefer, H. F., III; Klopper, W.; Luthi, H.-P. &quot;Exploring the Boundary between Aromatic and Olefinic Character: Bad News for Second-Order Perturbation Theory and Density Functional Schemes,&quot; <i>J. Am. Chem. Soc.</i> <b>1996</b>, <i>118</i>, 3519-3520, DOI: <a href="http://dx.doi.org/10.1021/ja9538400">10.1021/ja9538400</a>.</li> <li> Wannere, C. S.; Sattelmeyer, K. W.; Schaefer, H. F., III, ; Schleyer, P. v. R. &quot;Aromaticity: The Alternating CC Bond Length Structures of [14]-, [18]-, and [22]Annulene,&quot; <i>Angew. Chem. Int. Ed.</i> <b>2004</b>, <i>43</i>, 4200-4206, DOI: <a href="http://dx.doi.org/10.1002/anie.200454188">10.1002/anie.200454188</a>.</li> <li> Castro, C.; Karney, W. L.; McShane, C. M.; Pemberton, R. P. &quot;[10]Annulene: Bond Shifting and Conformational Mechanisms for Automerization,&quot; <i>J. Org. Chem.</i> <b>2006</b>, <i>71</i>, DOI: <a href="http://dx.doi.org/10.1021/jo0521450">10.1021/jo0521450</a>.</li> <li> Price, D. R.; Stanton, J. F. &quot;Computational Study of [10]Annulene NMR Spectra,&quot; <i>Org. Lett.</i> <b>2002</b>, <i>4</i>, 2809-2811, DOI: <a href="http://dx.doi.org/10.1021/ol0200450">10.1021/ol0200450</a>.</li> <li> Navarro-V&aacute;zquez, A.; Schreiner, P. R. &quot;1,2-Didehydro[10]annulenes: Structures, Aromaticity, and Cyclizations,&quot; <i>J. Am. Chem. Soc.</i> <b>2005</b>, <i>127</i>, 8150 - 8159, DOI: <a href="http://dx.doi.org/10.1021/ja0507968">10.1021/ja0507968</a>.</li> <li> Wannere, C. S.; Schleyer, P. v. R. &quot;How Aromatic Are Large (4n + 2) Annulenes?,&quot; <i>Org. Lett.</i> <b>2003</b>, <i>5</i>, 865-868, DOI: <a href="http://dx.doi.org/10.1021/ol027571b">10.1021/ol027571b</a>.</li> <li> Longuet-Higgins, H. C.; Salem, L. &quot;Alternation of Bond Lengths in Long Conjugated Chain Molecules,&quot; <i style='mso-bidi-font-style:normal'>Proc. Roy. Soc. London</i> <b style='mso-bidi-font-weight:normal'>1959</b>, <i>A251</i>, 172-185, DOI: <a href="http://dx.doi.org/10.1098/rspa.1959.0100">10.1098/rspa.1959.0100</a>.</li> <li> Chiang, C. C.; Paul, I. C. &quot;Crystal and Molecular Structure of [14]Annulene,&quot; <i>J. Am. Chem. Soc.</i> <b>1972</b>, <i style='mso-bidi-font-style:normal'>94</i>, 4741-4743, DOI: <a href="http://dx.doi.org/10.1021/ja00768a058">10.1021/ja00768a058</a>.</li> <li> Bregman, J.; Hirshfeld, F. L.; Rabinovich, D.; Schmidt, G. M. J. &quot;The Crystal Structure of [18]Annulene. I. X-ray study,&quot; <i>Acta Cryst.</i> <b>1965</b>, <i>19</i>, 227-234, DOI: <a href="http://dx.doi.org/10.1107/S0365110X65003158">10.1107/S0365110X65003158</a>.</li> <li> Gorter, S.; Rutten-Keulemans, E.; Krever, M.; Romers, C.; Cruickshank, D. W. J. &quot;[18]-Annulene, C<sub>18</sub>H<sub>18</sub>, Structure, Disorder and Hueckel's 4n + 2 rule,&quot; <i>Acta Crystallogr. B</i> <b>1995</b>, <i>51</i>, 1036-1045, DOI: <a href="http://dx.doi.org/10.1107/S0108768195004927">10.1107/S0108768195004927</a>.</li> <li> Choi, C. H.; Kertesz, M.; Karpfen, A. &quot;Do Localized Structures of [14]- and [18]Annulenes Exist?,&quot; <i>J. Am. Chem. Soc.</i> <b>1997</b>, <i>119</i>, 11994-11995, DOI: <a href="http://dx.doi.org/10.1021/ja971035a">10.1021/ja971035a</a>.</li> <li> Baldridge, K. K.; Siegel, J. S. &quot;Ab Initio Density Funtional vs Hartree Fock Predictions for the Structure of [18]Annulene: Evidence for Bond Localization and Diminished Ring Currents in Bicycloannelated [18]Annulenes,&quot; <i>Angew. Chem. Int. Ed. Engl</i> <b>1997</b>, <i style='mso-bidi-font-style:normal'>36</i>, 745-748, DOI: <a href="http://dx.doi.org/10.1002/anie.199707451">10.1002/anie.199707451</a>.</li> <li> Oth, J. F. M. &quot;Conformational Mobility and Fast Bond Shift in the Annulenes,&quot; <i>Pure Appl. Chem.</i> <b>1971</b>, <i>25</i>, 573-622, DOI: <a href="http://dx.doi.org/10.1351/pac197125030573">10.1351/pac197125030573</a>.</li> <li> Heilbronner, E. &quot;H&uuml;ckel Molecular Orbitals of M&oumlt:bius-Type Conformations of Annulenes,&quot; <i>Tetrahedron Lett.</i> <b>1964</b>, <i>5</i>, 1923-1928, DOI: <a href="http://dx.doi.org/10.1016/S0040-4039(01)89474-0">10.1016/S0040-4039(01)89474-0</a>.</li> <li> Rzepa, H. S. &quot;M&ouml;bius Aromaticity and Delocalization,&quot; <i>Chem. Rev.</i> <b>2005</b>, <i>105</i>, 3697 - 3715, DOI: <a href="http://dx.doi.org/10.1021/cr030092l">10.1021/cr030092l</a>.</li> <li> Castro, C.; Isborn, C. M.; Karney, W. L.; Mauksch, M.; Schleyer, P. v. R. &quot;Aromaticity with a Twist: M&ouml;bius [4n]Annulenes,&quot; <i>Org. Lett.</i> <b>2002</b>, <i>4</i>, 3431-3434, DOI: <a href="http://dx.doi.org/10.1021/ol026610g">10.1021/ol026610g</a>.</li> <li> Ajami, D.; Hess, K.; K&ouml;hler, F.; N&auml;ther, C.; Oeckler, O.; Simon, A.; Yamamoto, C.; Okamoto, Y.; Herges, R. &quot;Synthesis and Properties of the First M&ouml;bius Annulenes,&quot; <i>Chem. Eur. J.</i> <b>2006</b>, <i>12</i>, 5434-5445, DOI: <a href="http://dx.doi.org/10.1002/chem.200600215">10.1002/chem.200600215</a>.</li> <li> Ajami, D.; Oeckler, O.; Simon, A.; Herges, R. &quot;Synthesis of a M&ouml;bius Aromatic Hydrocarbon,&quot; <i>Nature</i> <b>2003</b>, <i>426</i>, 819-821, DOI: <a href="http://dx.doi.org/10.1038/nature02224">10.1038/nature02224</a>.</li> <li> Wannere, C. S.; Moran, D.; Allinger, N. L.; Hess, B. A., Jr.; Schaad, L. J.; Schleyer, P. v. R. &quot;On the Stability of Large [4n]Annulenes,&quot; <i>Org. Lett.</i> <b>2003</b>, <i>5</i>, 2983-2986, DOI: <a href="http://dx.doi.org/10.1021/ol034979f">10.1021/ol034979f</a>.</li> <li> Castro, C.; Chen, Z.; Wannere, C. S.; Jiao, H.; Karney, W. L.; Mauksch, M.; Puchta, R.; Hommes, N. J. R. v. E.; Schleyer, P. v. R. &quot;Investigation of a Putative M&ouml;bius Aromatic Hydrocarbon. The Effect of Benzannelation on M&ouml;bius [4n]Annulene Aromaticity,&quot; <i>J. Am. Chem. Soc.</i> <b>2005</b>, <i>127</i>, 2425-2432, DOI: <a href="http://dx.doi.org/10.1021/ja0458165">10.1021/ja0458165</a>.</li> <li>Clar, E. <i>The Aromatic Sextet</i>; Wiley: London, 1972.</li> <li> Shimizu, S.; Aratani, N.; Osuka, A. &quot;<i>meso</i>-Trifluoromethyl-Substituted Expanded Porphyrins,&quot; <i>Chem. Eur. J.</i> <b>2006</b>, <i>12</i>, 4909-4918, DOI: <a href="http://dx.doi.org/10.1002/chem.200600158">10.1002/chem.200600158</a>.</li> <li> Rzepa, H. S. &quot;Lemniscular Hexaphyrins as Examples of Aromatic and Antiaromatic Double-Twist Mobius Molecules,&quot; <i>Org. Lett.</i> <b>2008</b>, <i>10</i>, 949-952, DOI: <a href="http://dx.doi.org/10.1021/ol703129z">10.1021/ol703129z</a>.</li> <li> Tanaka, Y.; Saito, S.; Mori, S.; Aratani, N.; Shinokubo, H.; Shibata, N.; Higuchi, Y.; Yoon, Z. S.; Kim, K. S.; Noh, S. B.; Park , J. K.; Kim , D.; Osuka, A. &quot;Metalation of Expanded Porphyrins: A Chemical Trigger Used To Produce Molecular Twisting and M&ouml;bius Aromaticity,&quot; <i>Angew. Chem. Int. Ed.</i> <b>2008</b>, <i>47</i>, 681-684, DOI: <a href="http://dx.doi.org/10.1002/anie.200704407">10.1002/anie.200704407</a>.</li> <li> Tokuji, S.; Shin, J.-Y.; Kim, K. S.; Lim, J. M.; Youfu, K.; Saito, S.; Kim, D.; Osuka, A. &quot;Facile Formation of a Benzopyrane-Fused [28]Hexaphyrin That Exhibits Distinct Mobius Aromaticity,&quot; <i>J. Am. Chem. Soc.</i> <b>2009</b>, <i>131</i>, 7240-7241, DOI: <a href="http://dx.doi.org/10.1021/ja902836x">10.1021/ja902836x</a>.</li> <li> Castro, C.; Karney, W. L.; Valencia, M. A.; Vu, C. M. H.; Pemberton, R. P. &quot;M&ouml;bius Aromaticity in [12]Annulene: Cis-Trans Isomerization via Twist-Coupled Bond Shifting,&quot; <i>J. Am. Chem. Soc.</i> <b>2005</b>, <i>127</i>, 9704-9705, DOI: <a href="http://dx.doi.org/10.1021/ja052447j">10.1021/ja052447j</a>.</li> <li> Moll, J. F.; Pemberton, R. P.; Gutierrez, M. G.; Castro, C.; Karney, W. L. &quot;Configuration Change in [14]Annulene Requires M&ouml;bius Antiaromatic Bond Shifting,&quot; <i>J. Am. Chem. Soc.</i> <b>2006</b>, <i>129</i>, 274-275, DOI: <a href="http://dx.doi.org/10.1021/ja0678469">10.1021/ja0678469</a>.</li> <li> Schleyer, P. v. R.; Barborak, J. C.; Su, T. M.; Boche, G.; Schneider, G. &quot;Thermal bicyclo[6.1.0]nonatrienyl chloride-dihydroindenyl chloride rearrangement,&quot; <i>J. Am. Chem. Soc.</i> <b>1971</b>, <i style='mso-bidi-font-style:normal'>93</i>, 279-281, DOI: <a href="http://dx.doi.org/10.1021/ja00730a063">10.1021/ja00730a063</a>.</li> <li> Yakali, E. &quot;Genesis and bond relocation of the cyclononatetraenyl cation and related compounds,&quot; Dissertation, Syracuse University, 1973.</li> <li> Mauksch, M.; Gogonea, V.; Jiao, H.; Schleyer, P. v. R. &quot;Monocyclic (CH)<sub>9</sub><sup>+</sup> - A Heilbronner M&ouml;bius Aromatic System Revealed,&quot; <i>Angew. Chem. Int. Ed.</i> <b>1998</b>, <i>37</i>, 2395-2397, DOI: <a href="http://dx.doi.org/10.1002/(SICI)1521-3773(19980918)37:17%3c2395::AID-ANIE2395%3e3.0.CO;2-W">10.1002/(SICI)1521-3773(19980918)37:17&lt;2395::AID-ANIE2395&gt;3.0.CO;2-W</a>.</li> <li> Bucher, G.; Grimme, S.; Huenerbein, R.; Auer, A. A.; Mucke, E.; K&ouml;hler, F.; Siegwarth, J.; Herges, R. &quot;Is the [9]Annulene Cation a M&ouml;bius Annulene?,&quot; <i>Angew. Chem. Int. Ed.</i> <b>2009</b>, <i>48</i>, 9971-9974, DOI: <a href="http://dx.doi.org/10.1002/anie.200900886">10.1002/anie.200900886</a>.</li> <li> Mucke, E.-K.; Kohler, F.; Herges, R. &quot;The [13]Annulene Cation Is a Stable Mobius Annulene Cation,&quot; <i>Org. Lett.</i> <b>2010</b>, <i>12</i>, 1708-1711, DOI: <a href="http://dx.doi.org/10.1021/ol1002384">10.1021/ol1002384</a>.</li> <li> Mucke, E.-K.; Scho&#776;nborn, B.; Ko&#776;hler, F.; Herges, R. &quot;Stability and Aromaticity of Charged Mo&#776;bius[4n]Annulenes,&quot; <i>J. Org. Chem.</i> <b>2010</b>, <i>76</i>, 35-41, DOI: <a href="http://dx.doi.org/10.1021/jo100798e">10.1021/jo100798e</a>.</li> <li> Fowler, P. W.; Rzepa, H. S. &quot;Aromaticity rules for cycles with arbitrary numbers of half-twists,&quot; <i>Phys. Chem. Chem. Phys.</i> <b>2006</b>, <i>8</i>, 1775-1777, DOI: <a href="http://dx.doi.org/10.1039/b601655c">10.1039/b601655c</a>.</li> <li> Wannere, C. S.; Rzepa, H. S.; Rinderspacher, B. C.; Paul, A.; Allan, C. S. M.; Schaefer III, H. F.; Schleyer, P. v. R. &quot;The Geometry and Electronic Topology of Higher-Order Charged Mobius Annulenes,&quot; <i>J. Phys. Chem. A</i> <b>2009</b>, <i>113</i>, 11619-11629, DOI: <a href="http://dx.doi.org/10.1021/jp902176a">10.1021/jp902176a</a>.</li> <li> Rzepa, H. S. &quot;A Double-Twist M&ouml;bius-Aromatic Conformation of [14]Annulene,&quot; <i>Org. Lett.</i> <b>2005</b>, <i>7</i>, 4637-4639, DOI: <a href="http://dx.doi.org/10.1021/ol0518333">10.1021/ol0518333</a>.</li> <li> Okoronkwo, T.; Nguyen, P. T.; Castro, C.; Karney, W. L. &quot;[14]Annulene: Cis/Trans Isomerization via Two-Twist and Nondegenerate Planar Bond Shifting and M&ouml;bius Conformational Minima,&quot; <i>Org. Lett.</i> <b>2010</b>, <i>12</i>, 972-975, DOI: <a href="http://dx.doi.org/10.1021/ol100025j">10.1021/ol100025j</a>.</li> <li> Mohebbi, A.; Mucke, E. K.; Schaller, G.; K&ouml;hler, F.; S&ouml;nnichsen, F.; Ernst, L.; N�ther, C.; Herges, R. &quot;Singly and Doubly Twisted [36]Annulenes: Synthesis and Calculations,&quot; <i>Chem. Eur. J.</i> <b>2010</b>, <i>16</i>, 7767-7772, DOI: <a href="http://dx.doi.org/10.1002/chem.201000277">10.1002/chem.201000277</a>.</li> <li> Mills, W. H.; Nixon, I. G. &quot;Stereochemical Influences on Aromatic Substitution. Substitution Derivatives of 5-Hydroxyhydrindene,&quot; <i>J. Chem. Soc.</i> <b>1930</b>, 2510-2524, DOI: <a href="http://dx.doi.org/10.1039/jr9300002510">10.1039/jr9300002510</a>.</li> <li> Siegel, J. S. &quot;Mills - Nixon Effect: Wherefore Art Thou?,&quot; <i>Angew. Chem. Int. Ed. Engl.</i> <b>1994</b>, <i style='mso-bidi-font-style:normal'>33</i>, 1721-1723, DOI: <a href="http://dx.doi.org/10.1002/anie.199417211">10.1002/anie.199417211</a>.</li> <li> Stanger, A. &quot;Strain-Induced Bond Localization. The Heteroatom Case,&quot; <i>J. Am. Chem. Soc.</i> <b>1998</b>, <i style='mso-bidi-font-style:normal'>120</i>, 12034-12040, DOI: <a href="http://dx.doi.org/10.1021/ja9819662">10.1021/ja9819662</a>.</li> <li> Stanger, A. &quot;Is the Mills-Nixon Effect Real?,&quot; <i>J. Am. Chem. Soc.</i> <b>1991</b>, <i>113</i>, 8277-8280, DOI: <a href="http://dx.doi.org/10.1021/ja00022a012">10.1021/ja00022a012</a>.</li> <li> Baldridge, K. K.; Siegel, J. S. &quot;Bond Alternation in Triannelated Benzenes: Dissection of Cyclic &pi; from Mills-Nixon Effects,&quot; <i>J. Am. Chem. Soc.</i> <b>1992</b>, <i>114</i>, 9583-9587, DOI: </span></span><a href="http://dx.doi.org/10.1021/ja00050a043">10.1021/ja00050a043</a>.</li> <li> Sakai, S. &quot;Theoretical Study on the Aromaticity of Benzenes Annelated to Small Rings,&quot; <i>J. Phys. Chem. A.</i> <b>2002</b>, <i>106</i>, 11526-11532, DOI: <a href="http://dx.doi.org/10.1021/jp021722a">10.1021/jp021722a</a>.</li> <li> Bachrach, S. M. &quot;Aromaticity of Annulated Benzene, Pyridine and Phosphabenzene,&quot; <i>J. Organomet. Chem.</i> <b>2002</b>, <i>643-644</i>, 39-46, DOI: <a href="http://dx.doi.org/10.1016/S0022-328X(01)01144-5">10.1016/S0022-328X(01)01144-5</a>.</li> <li> Boese, R.; Bl&auml;ser, D.; Billups, W. E.; Haley, M. M.; Maulitz, A. H.; Mohler, D. L.; Vollhardt, K. P. C. &quot;The Effect of Fusion of Angular Strained Rings on Benzene: Crystal Structures of 1,2-Dihydrocyclobuta[a]cyclopropa[c]-, 1,2,3,4-Tetrahydrodicyclobuta[a,c]-, 1,2,3,4-Tetrahydrodicyclobuta[a,c]cyclopropa[e]-, and 1,2,3,4,5,6-Hexahydrotricyclobuta[a,c,e]benzene,&quot; <i>Angew. Chem. Int. Ed. Engl.</i> <b>1994</b>, <i>33</i>, 313-317, DOI: <a href="http://dx.doi.org/10.1002/anie.199403131">10.1002/anie.199403131</a>.</li> <li> Mo, O.; Yanez, M.; Eckert-Maksic, M.; Maksic, Z. B. &quot;Bent Bonds in Benzocyclopropenes and Their Fluorinated Derivatives,&quot; <i>J. Org. Chem.</i> <b>1995</b>, <i>60</i>, 1638-1646, DOI: <a href="http://dx.doi.org/10.1021/jo00111a023">10.1021/jo00111a023</a>.</li> <li> B&uuml;rgi, H.-B.; Baldridge, K. K.; Hardcastle, K.; Frank, N. L.; Gantzel, P.; Siegel, J. S.; Ziller, J. &quot;X-Ray Diffraction Evidence for a Cyclohexatriene Motif in the Molecular Structure of Tris(bicyclo[2.1.1]hexeno)benzene: Bond Alternation after the Refutation of the Mills-Nixon Theory,&quot; <i>Angew. Chem. Int. Ed. Engl.</i> <b>1995</b>, <i style='mso-bidi-font-style:normal'>34</i>, 1454-1456, DOI: <a href="http://dx.doi.org/10.1002/anie.199514541">10.1002/anie.199514541</a>.</li> <li> Diercks, R.; Vollhardt, K. P. C. &quot;Tris(benzocyclobutadieno)benzene, the Triangular [4]Phenylene with a Completely Bond-Fixed Cyclohexatriene Ring: Cobalt-catalyzed Synthesis from Hexaethynylbenzene and Thermal Ring Opening to 1,2:5,6:9,10-Tribenzo-3,4,7,8,11,12-hexadehydro[12]annulene,&quot; <i>J. Am. Chem. Soc.</i> <b>1986</b>, <i>108</i>, 3150-3152, DOI: <a href="http://dx.doi.org/10.1021/ja00271a080">10.1021/ja00271a080</a>.</li> <li> Boese, R.; Bl&auml;ser, D. &quot;Structures and Deformation Electron Densities of 1,2-Dihydrocyclobutabenzene and 1,2,4,5-Tetrahydrodicyclobuta[a,d]benzene,&quot; <i>Angew. Chem. Int. Ed. Engl.</i> <b>1988</b>, <i>27</i>, 304-305, DOI: <a href="http://dx.doi.org/10.1002/anie.198803041">10.1002/anie.198803041</a>.</li> <li> Alkorta, I.; Elguero, J. &quot;Can Aromaticity be Described with a Single Parameter? Benzene vs. Cyclohexatriene,&quot; <i>New J. Chem.</i> <b>1999</b>, <i>23</i>, 951-954, DOI: <a href="http://dx.doi.org/10.1039/a904537f">10.1039/a904537f</a>.</li> <li> Bao, X.; Hrovat, D.; Borden, W. &quot;The effects of orbital interactions on the geometries of some annelated benzenes,&quot; <i>Theor. Chem. Acc.</i> <b>2011</b>, <i>130</i>, 261-268, DOI: <a href="http://dx.doi.org/10.1007/s00214-011-0970-4">10.1007/s00214-011-0970-4</a>.</li> <li>Schulman, J. M.; Disch, R. L.; Jiao, H.; Schleyer, P. v. R. &quot;Chemical Shifts of the [N]Phenylenes and Related Compounds,&quot; <i>J. Phys. Chem. A</i> <b>1998</b>, <i>102</i>, 8051-8055, DOI: <a href="http://dx.doi.org/10.1021/jp982271q">10.1021/jp982271q</a>.</li> <li> Beckhaus, H.-D.; Faust, R.; Matzger, A. J.; Mohler, D. L.; Rogers, D. W.; Ruchardt, C.; Sawhney, A. K.; Verevkin, S. P.; Vollhardt, K. P. C.; Wolff, S. &quot;The Heat of Hydrogenation of (a) Cyclohexatriene,&quot; <i>J. Am. Chem. Soc.</i> <b>2000</b>, <i>122</i>, 7819-7820, DOI: <a href="http://dx.doi.org/10.1021/ja001274p">10.1021/ja001274p</a>.</li> <li> Hopf, H. <i>Classics in Hydrocarbon Chemistry: Syntheses, Concepts, Perspectives</i>; Wiley-VCH: Weinheim, Germany, 2000.</li> <li> Bodwell, G. J.; Fleming, J. J.; Mannion, M. R.; Miller, D. O. &quot;Nonplanar Aromatic Compounds. 3. A Proposed New Strategy for the Synthesis of Buckybowls. Synthesis, Structure and Reactions of [7]-, [8]- and [9](2,7)Pyrenophanes,&quot; <i>J. Org. Chem.</i> <b>2000</b>, <i>65</i>, 5360-5370, DOI: <a href="http://dx.doi.org/10.1021/jo0007027">10.1021/jo0007027</a>.</li> <li> Dobrowolski, M. A.; Cyranski, M. K.; Merner, B. L.; Bodwell, G. J.; Wu, J. I.; Schleyer, P. v. R. &quot;Interplay of &pi;-Electron Delocalization and Strain in [n](2,7)Pyrenophanes,&quot; <i>J. Org. Chem.</i> <b>2008</b>, <i>73</i>, 8001-8009, DOI: <a href="http://dx.doi.org/10.1021/jo8014159">10.1021/jo8014159</a>.</li> <li> Swart, M.; van der Wijst, T.; Guerra, C. F.; Bickelhaupt, F. M. &quot; &#960;-&#960; stacking tackled with density functional theory,&quot;<b> 2007</b>, <i style='mso-bidi-font-style:normal'>13</i>, 1245-1257, DOI: <a href="http://dx.doi.org/10.1007/s00894-007-0239-y">10.1007/s00894-007-0239-y</a>.</li> <li> Hobza, P.; Selzle, H. L.; Schlag, E. W. &quot;Potential Energy Surface for the Benzene Dimer. Results of ab Initio CCSD(T) Calculations Show Two Nearly Isoenergetic Structures:&#8201; T-Shaped and Parallel-Displaced,&quot; <i>J. Phys. Chem.</i> <b>1996</b>, <i>100</i>, 18790-18794, DOI: <a href="http://dx.doi.org/10.1021/jp961239y">10.1021/jp961239y</a>.</li> <li> Steed, J. M.; Dixon, T. A.; Klemperer, W. &quot;Molecular beam studies of benzene dimer, hexafluorobenzene dimer, and benzene--hexafluorobenzene,&quot; <i>J. Chem. Phys</i> <b>1979</b>, <i style='mso-bidi-font-style:normal'>70</i>, 4940-4946, DOI: <a href="http://dx.doi.org/10.1063/1.437383">10.1063/1.437383</a>.</li> <li> Arunan, E.; Gutowsky, H. S. &quot;The rotational spectrum, structure and dynamics of a benzene dimer,&quot; <i>J. Chem. Phys</i> <b>1993</b>, <i style='mso-bidi-font-style:normal'>98</i>, 4294-4296, DOI: <a href="http://dx.doi.org/10.1063/1.465035">10.1063/1.465035</a>.</li> <li> Felker, P. M.; Maxton, P. M.; Schaeffer, M. W. &quot;Nonlinear Raman Studies of Weakly Bound Complexes and Clusters in Molecular Beams,&quot; <i>Chem. Rev.</i> <b>1994</b>, <i>94</i>, 1787-1805, DOI: <a href="http://dx.doi.org/10.1021/cr00031a003">10.1021/cr00031a003</a>.</li> <li> Bornsen, K. O.; Selzle, H. L.; Schlag, E. W. &quot;Spectra of isotopically mixed benzene dimers: Details on the interaction in the vdW bond,&quot; <i>J. Chem. Phys</i> <b>1986</b>, <i>85</i>, 1726-1732, DOI: <a href="http://dx.doi.org/10.1063/1.451173">10.1063/1.451173</a>.</li> <li> Law, K.; Schauer, M.; Bernstein, E. R. &quot;Dimers of aromatic molecules: (Benzene)<sub>2</sub>, (toluene)<sub>2</sub>, and benzene--toluene,&quot; <i>J. Chem. Phys.</i> <b>1984</b>, <i>81</i>, 4871-4882, DOI: <a href="http://dx.doi.org/10.1063/1.447514">10.1063/1.447514</a>.</li> <li> Scherzer, W.; Kraetzschmar, O.; Selzle, H. L.; Schlag, E. W. &quot;Structural isomers of the benzene dimer from mass selective hole-burning spectroscopy,&quot; <i>Z. Naturforsch. A</i> <b>1992</b>, <i>47</i>, 1248-1252.</li> <li> Grover, J. R.; Walters, E. A.; Hui, E. T. &quot;Dissociation energies of the benzene dimer and dimer cation,&quot; <i>J. Phys. Chem.</i> <b>1987</b>, <i>91</i>, 3233-3237, DOI: <a href="http://dx.doi.org/10.1021/j100296a026"><10.1021/j100296a026</a>.</li> <li> Sinnokrot, M. O.; Valeev, E. F.; Sherrill, C. D. &quot;Estimates of the Ab Initio Limit for &#960;&#8722;&#960; Interactions:&#8201; The Benzene Dimer,&quot; <i>J. Am. Chem. Soc.</i> <b>2002</b>, <i>124</i>, 10887-10893, DOI: <a href="http://dx.doi.org/10.1021/ja025896h">10.1021/ja025896h</a>.</li> <li> Sinnokrot, M. O.; Sherrill, C. D. &quot;Highly Accurate Coupled Cluster Potential Energy Curves for the Benzene Dimer:&#8201; Sandwich, T-Shaped, and Parallel-Displaced Configurations,&quot; <i>J. Phys. Chem. A</i> <b>2004</b>, <i>108</i>, 10200-10207, DOI: <a href="http://dx.doi.org/10.1021/jp0469517">10.1021/jp0469517</a>.</li> <li> Grimme, S. &quot;Do Special Noncovalent &#960;-&#960; Stacking Interactions Really Exist?,&quot; <i>Angew. Che, Int. Ed.</i> <b>2008</b>, <i>47</i>, 3430-3434, DOI: <a href="http://dx.doi.org/10.1002/anie.200705157">10.1002/anie.200705157</a>.</li> <li> Sherrill, C. D.; Takatani, T.; Hohenstein, E. G. &quot;An Assessment of Theoretical Methods for Nonbonded Interactions: Comparison to Complete Basis Set Limit Coupled-Cluster Potential Energy Curves for the Benzene Dimer, the Methane Dimer, Benzene&#8722;Methane, and Benzene&#8722;H2S<sup>-</sup>,&quot; <i>J. Phys. Chem. A</i> <b>2009</b>, <i>113</i>, 10146-10159, DOI: <a href="http://dx.doi.org/10.1021/jp9034375">10.1021/jp9034375</a>.</li> <li> Piton&#780;a&#769;k, M.; Neogra&#769;dy, P.; R&#774;eza&#769;c&#780;, J.; Jurec&#780;ka, P.; Urban, M.; Hobza, P. &quot;Benzene Dimer: High-Level Wave Function and Density Functional Theory Calculations,&quot; <i>J. Chem. Theor. Comput.</i> <b>2008</b>, <i>4</i>, 1829-1834, DOI: <a href="http://dx.doi.org/10.1021/ct800229h">10.1021/ct800229h</a>.</li> <li> Hunter, C. A.; Sanders, J. K. M. &quot;The nature of &pi;-&pi; interactions,&quot; <i>J. Am. Chem. Soc.</i> <b>1990</b>, <i>112</i>, 5525-5534, DOI: </span></span><a href="http://dx.doi.org/10.1021/ja00170a016">10.1021/ja00170a016</a>.</li> <li> Cozzi, F.; Cinquini, M.; Annunziata, R.; Dwyer, T.; Siegel, J. S. &quot;Polar/&pi; interactions between stacked aryls in 1,8-diarylnaphthalenes,&quot; <i>J. Am. Chem. Soc.</i> <b>1992</b>, <i>114</i>, 5729-5733, DOI: </span></span><a href="http://dx.doi.org/10.1021/ja00040a036">10.1021/ja00040a036</a>.</li> <li> Sinnokrot, M. O.; Sherrill, C. D. &quot;Unexpected Substituent Effects in Face-to-Face &pi;-Stacking Interactions,&quot; <i>J. Phys. Chem. A</i> <b>2003</b>, <i>107</i>, 8377-8379, DOI: <a href="http://dx.doi.org/10.1021/jp030880e">10.1021/jp030880e</a>.</li> <li> Sinnokrot, M. O.; Sherrill, C. D. &quot;Substituent Effects in &#960;&#8722;&#960; Interactions:&#8201; Sandwich and T-Shaped Configurations,&quot; <i>J. Am. Chem. Soc.</i> <b>2004</b>, <i style='mso-bidi-font-style:normal'>126</i>, 7690-7697, DOI: <a href="http://dx.doi.org/10.1021/ja049434a">10.1021/ja049434a</a>.</li> <li> Lee, E. C.; Kim, D.; Jurec&#780;ka, P.; Tarakeshwar, P.; Hobza, P.; Kim, K. S. &quot;Understanding of Assembly Phenomena by Aromatic&#8722;Aromatic Interactions:&#8201; Benzene Dimer and the Substituted Systems,&quot; <i>J. Phys. Chem. A</i> <b>2007</b>, <i>111</i>, 3446-3457, DOI: <a href="http://dx.doi.org/10.1021/jp068635t">10.1021/jp068635t</a>.</li> <li> Grimme, S.; Antony, J.; Schwabe, T.; Muck-Lichtenfeld, C. &quot;Density functional theory with dispersion corrections for supramolecular structures, aggregates, and complexes of (bio)organic molecules,&quot; <i>Org. Biomol. Chem.</i> <b>2007</b>, <i>5</i>, 741-758, DOI: <a href="http://dx.doi.org/10.1039/B615319B">10.1039/B615319B</a>.</li> <li> Watt, M.; Hardebeck, L. K. E.; Kirkpatrick, C. C.; Lewis, M. &quot;Face-to-Face Arene&#8722;Arene Binding Energies: Dominated by Dispersion but Predicted by Electrostatic and Dispersion/Polarizability Substituent Constants,&quot; <i>J. Am. Chem. Soc.</i> <b>2011</b>, <i>133</i>, 3854-3862, DOI: <a href="http://dx.doi.org/10.1021/ja105975a">10.1021/ja105975a</a>.</li> <li> Ringer, A. L.; Sinnokrot, M. O.; Lively, R. P.; Sherrill, C. D. &quot;The Effect of Multiple Substituents on Sandwich and T-Shaped &#960;-&#960; Interactions,&quot; <i>Chem. Eur. J.</i> <b>2006</b>, <i>12</i>, 3821-3828, DOI: <a href="http://dx.doi.org/10.1002/chem.200501316">10.1002/chem.200501316</a>.</li> <li> Wheeler, S. E. &quot;Local Nature of Substituent Effects in Stacking Interactions,&quot; <i>J. Am. Chem. Soc.</i> <b>2011</b>, <i>133</i>, 10262-10274, DOI: <a href="http://dx.doi.org/10.1021/ja202932e">10.1021/ja202932e</a>.</li> <li> Arnstein, S. A.; Sherrill, C. D. &quot;Substituent effects in parallel-displaced <&pi; - &pi; interactions,&quot; <i>Phys. Chem. Chem. Phys.</i> <b>2008</b>, <i>10</i>, 2646-2655, DOI: <a href="http://dx.doi.org/10.1039/B718742D">10.1039/B718742D</a>.</li> <li> Wheeler, S. E.; Houk, K. N. &quot;Substituent Effects in the Benzene Dimer are Due to Direct Interactions of the Substituents with the Unsubstituted Benzene,&quot; <i>J. Am. Chem. Soc.</i> <b>2008</b>, <i style='mso-bidi-font-style:normal'>130</i>, 10854-10855, DOI: <a href="http://dx.doi.org/10.1021/ja802849j">10.1021/ja802849j</a>.</li> <li> Ringer, A. L.; Sherrill, C. D. &quot;Substituent Effects in Sandwich Configurations of Multiply Substituted Benzene Dimers Are Not Solely Governed By Electrostatic Control,&quot; <i>J. Am. Chem. Soc.</i> <b>2009</b>, <i>131</i>, 4574-4575, DOI: <a href="http://dx.doi.org/10.1021/ja809720r">10.1021/ja809720r</a>.</li> <li> Bloom, J. W. G.; Wheeler, S. E. &quot;Taking the Aromaticity out of Aromatic Interactions,&quot; <i>Angew. Che, Int. Ed.</i> <b>2011</b>, <i>50</i>, 7847-7849, DOI: <a href="http://dx.doi.org/10.1002/anie.201102982">10.1002/anie.201102982</a>.</li> <li> Martinez, C. R.; Iverson, B. L. &quot;Rethinking the term &quot;pi-stacking&quot;,&quot; <i>Chem. Sci.</i> <b>2012</b>, <i>3</i>, 2191-2201, DOI: <a href="http://dx.doi.org/10.1039/C2SC20045G">10.1039/C2SC20045G</a>.</li> </ol> </div> </div> <div id="footer"> <p>&copy; 2014 Steven Bachrach. Site designed by <a href="http://www.dbachrach.com">Dustin Bachrach</a>.</p> </div> </div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10