CINXE.COM
Just a moment...
<!DOCTYPE html><html lang="en-US"><head><title>Just a moment...</title><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><meta http-equiv="X-UA-Compatible" content="IE=Edge"><meta name="robots" content="noindex,nofollow"><meta name="viewport" content="width=device-width,initial-scale=1"><style>*{box-sizing:border-box;margin:0;padding:0}html{line-height:1.15;-webkit-text-size-adjust:100%;color:#313131;font-family:system-ui,-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Helvetica Neue,Arial,Noto Sans,sans-serif,Apple Color Emoji,Segoe UI Emoji,Segoe UI Symbol,Noto Color Emoji}body{display:flex;flex-direction:column;height:100vh;min-height:100vh}.main-content{margin:8rem auto;max-width:60rem;padding-left:1.5rem}@media (width <= 720px){.main-content{margin-top:4rem}}.h2{font-size:1.5rem;font-weight:500;line-height:2.25rem}@media (width <= 720px){.h2{font-size:1.25rem;line-height:1.5rem}}#challenge-error-text{background-image:url();background-repeat:no-repeat;background-size:contain;padding-left:34px}@media (prefers-color-scheme:dark){body{background-color:#222;color:#d9d9d9}}</style><meta http-equiv="refresh" content="120"></head><body class="no-js"><div class="main-wrapper" role="main"><div class="main-content"><noscript><div class="h2"><span id="challenge-error-text">Enable JavaScript and cookies to continue</span></div></noscript></div></div><script>(function(){window._cf_chl_opt={cvId: '3',cZone: "publications.waset.org",cType: 'non-interactive',cRay: '9135f6cd4dd2fd2c',cH: 'BLymajyZRLUYk6lbwo9aZxBx36G1N3efwhJHVLw6lFE-1739797265-1.2.1.1-IXoL2VgzAN43StZ3nqI5gEnzvVv_yfwjM5eiYSc3t.qayy8Ql90FJfKdPMGstc6M',cUPMDTk: "\/abstracts\/search?q=Gauss-Kronrod%20method%20of%20integration&page=7&__cf_chl_tk=ZO3DEb2Ovm36LEvmBpJjXQcs.Mg0fij7tgpCV3lJnds-1739797265-1.0.1.1-ZPedNJH7IfZMmyR7_dRuYpCNUkuuQsH.h3IvIIxWOGs",cFPWv: 'b',cITimeS: '1739797265',cTTimeMs: '1000',cMTimeMs: '120000',cTplC: 0,cTplV: 5,cTplB: 'cf',cK: "",fa: "\/abstracts\/search?q=Gauss-Kronrod%20method%20of%20integration&page=7&__cf_chl_f_tk=ZO3DEb2Ovm36LEvmBpJjXQcs.Mg0fij7tgpCV3lJnds-1739797265-1.0.1.1-ZPedNJH7IfZMmyR7_dRuYpCNUkuuQsH.h3IvIIxWOGs",md: "8Bg17RiYFXxn3MQtgz5VUDKgSrdB4nHT86c1hVj9IXs-1739797265-1.2.1.1-4PQ9k6mBUuVPPHy2VPVQgasBxXc3wBS1UQ3zmjcmf0Bhfcz28Y1YSzqb2TL5tIZYBSaXluzBk18bhs2huuLYLMFI7VMQJaGqU1CqI.IKYGMvjwlgsfE4mKXpXVKwI5_BR.WNYuvTl_S0yfHyzptCyNa0EpmfKhBvO3SVEP9UFuYoHbBDrRGLG31Cz7tGAUo90eDVO3gyCqDVd4HYBbIC7EfzLOneWp.XafbPYThKLydi46tVoj7Nl2STwWUJwfyC_2hryZJgx3y9Eq8UQmfVoWDgI.BabFIKvq8ImLq7BswoPYoJ.iu1Yi7cuOnBzPh5xFrS0Hh.tO__i2Y_YluHxeVGgpvhUWPrx4g7MA1Jyym8SZ4nQqg2p3iT.CzpmlShqKnMXUbREij8HTEIPKYHVbRG3NNiVo8HwtaE9ITG7a4YEQbXeL0UDqHRgW7LJKnWPBoUWw7.o7Xm1aZHEXqPkwkYpRRIruCT0jaLC60NeATHRBZo5foCeqjlOtpctfrgxOkN8dXxru9MdREZE3kwm0neynXgHf7Zw9MO7zsHZAzxf8Fos9osVQ3pJiZn0ON49CqtHEmPxNoO5w.InfuQqKoZzEaj21fK15jelW2QR.I7I3HadGuWe2Byxw1ipNnhmVw3UDd4qpGGTeIip.GXWbVzTtW1JjmlafqhPlr9TIdV_dkgN8gix1CaCXb5wZjwgy9LOdLTBQHpK07WwNc4Lky4iqd_nb7RJIKHTvtw4aYFB133UKEvMhnm2ZBNkpX8tVi93DgKC2_7vdxT_Dlo0ajiRKIDqx3DMlnY.WuoDF5ZsXnwrD9CAlGtlZWt1pZ5O87i7XkfuFfiuPw8keg6OrYXdLe0i1ixYZXU3uGWFLr4NEaEQK1UT7RhM9Lw.Y_ZOe2CWaTL98gvWMzPgFtSbIYtfaqPV_m_Ho639b5hqz0QNQXoFAWYFFQyywheJJzMYRVl0jGXva_MKuELPl92fBA3lju01GLGTXIhCjRnI1IymfhvDiUel_isNwAgkoexDurBcmTNXCLl98b9aOfKcrXKg_Vs5PBDsUalBxQrQyTCDuNOVknqe1htYQh6VIURl5CPu1ghxAZC5Sxpetv7XZ2umM2No.qMnzQHtnj1YArsbo2pi0VcZ3Q9BEnR0jxbtgGrDYUdYgUmkOJOoXKuJVYy6r.pjWvNduQKljDUDbpo.tCHaVESIzBlcY5YhB_Nw4nbZKL7e4_mAR_3Ac1HASeZW4gWV1myMhZbpiEo8Gta6XWS1P6C_wW8Xykl_uz_2LrfK0uIufjvHHcb2owubZ.vc3NmQU.JW84CfBLRmK2TsO5p3rXFIR48Gc9iSSxmL2xQMJLvRzKXHlyvJk8nOTFP7WrW1i3fmxgIuSiZp1Wob.o6mZZsJkTOsVX0gJcPQa8mLAAaupT5CCvBpSClk5i9gCh0j3lusQmWck47_SFk.Sp4e._JzkY7h.ZyLOSWxHHi1dxvibJLTOkFQkI3zVBx0mc7M8K5b1pJOhB8Zlv8jdBzOtS55iUsEr3JUZHpuwe1LOnEJoFOxUXmG2sTZXaRV2OC5YFaZ1aNfjLwZgPuKJ4CxtMc_Dwl84dgwvVtvIwQGqYqz64soH5G5fPuq4TK3EdJJUnE8TwJVcFU86I9JG3POcfjG4Fb8AGRQ0KBLQP9rsLRCqxPcWlW_vNHKIVvDZoUWFa7qGB5i5AFhNYzER4HIpI4_cYX9SsZ.s5xpcA7QZwFI2Jv0rwJW_NE.6ee2dFDehA.GLokShCROEoWP04tm_KDDsEll0i4H7ss_7NogK7pqk6HKpXWvDvbpxAjzU7T.2ob.0Ik5Rukgrwy4.Vsa91v_pOkSalv7fWX0u8R1dBmvmTUdCg6wil3NG6BaLU0KddQqxINPqup91QnhHaltIbGp5NYDivpo7JOQmOeQK12pd03vtChgDeD8hTwjzsIe8EwwiVymb3wj0JagnytIl9lDAR_YGXk7d1TEMOMnpuQNt1jsT9U_bZu7xEaqr8dTVpDViwr72clgqaK8ppPkFSPSlNDn13Kyb58",mdrd: "dQm1aV3MsJJNTJz3u1XD3XesLjp5AD2BS7mXKPFylrw-1739797265-1.2.1.1-cqy_iTDQ9lq.KRQYalDjg.48Jk06dkdL7yDbhbd2lqq8lbGFcVbYkuDxPSUPCQmRLCkP3Cb_4DjjH62KqDPS3pHUj_K40f8peXz5I3u4U6IMNqkKxlTcouhFdnyvAGq6.jthQUzx_8mmS0bNZFXG2VMQYj0apsYP8x1wixZZNNiJV90d7hyeuRWUimfjjEkEvZTTBWBvv.YGY.4H4urmcxS9tnUtvmKdFvfmZl1A9kjGHM9OgkUwyuIsW9fGy.pDIMCdKzUrUVqwlS_Vqxq5oirfxXfTk6A6AXc64mEJP3_qCvVQ8myloxAzg43.FaLSJJe.pkNhdUg4.K4ag3WyXiCD2e2tc6M4qwNnT.rwZwhDAmTMzlMMAeuncuP0XS3SuCvd0zEzVaktkNZHWi__.fWnQ6TEELHzu4vJJMP1HPNFQrfrxN.zvvyDM.aIUFCreZ1HYXyPSvOPxKiTqfUIhrLWRVvpfmMRnLaIVnY2CLw3H_8bhnSbfmOr2fnb7sEwGzcgGc0uiwmsLqD9LHAECy.7qWJf6zpxI_2Vh.wk4f5gMippFBAuAnIaLKgSrnGtsCWR04u.Jz6_HK3sdbRt4hOZk9yShsZ7h133wJLf6E9UZGlhLsoStdGp4f9A7CRTDovqVmJ50a.CJEyA.lXX5EnojrT_ztozm_SYGszWlqsMJoABy5MLJUjw2hDCn0vFjIDoiNakBezgxme.wNcxVUOZpM.HAc5_CPtUFMKe5L40hWqwnSNRl2u7PYJe0rc5H4Nthcv_vkQ39wSscHoDhAIf.L.A6TfjMm5UU9k0mIuNzWDxIPwiCiKxc62LCHi2ZpITNHwKXxoRZohLUurJCgj2KEe81wotx_j7G71GrjXoquwP81YAz0fwi6BSKd1TNWiZb7qSrKQu.8CgBKlP9UbYqmVQlq9rbn9aJ4vR1ySAFIBcJuiq1sUvq8sMIuU1P9ri9TUSit72z30mm8hdAkZbSmEk7xsuERxnd3QeTpY95bOa55KHiaJippS3AWrCR2EHyWUOR0oU6BxgPirRVHLld0QlhIyb_96de7mu64y9IibnMDlMryz3hqzkFBw8cvYr6jRgjo5xdLhbXGkVrWMXclT3OJq8gget8oU2rj5Cw0ChSLClmqksEgwVCU8Nz7YBnDZm2hg0.mNcBqemU83NFLW9h4EUulxLrSg2BcnviebJP6_ETHaYvcn8xGS31d8Zr.bbJgAP5sn1WmIFyKD.Z_SGqOk6rBB0D_zlpedyMlcfTJusL5z3OulXLAeoO4kYUz0fmm0nTE0lDFxnzjFxcf42hCYbD7_bDnNJYzq6jBD7u8b8RC_39PSV68F2xqPVStlWgp6qoPhMLGCz1YT2XHeH6qZmLxtl4rYHj2AhmM_jIGL8LTogoBFKze.rpOWAKS1BPwG3ouzQ3ukMFtwsLoqcnfndwnc7fk9by0kRHGRkpJkomV1prJiDjncc4woM9YJpCnfchdfTQw_Db2H2hs001_acrI3OjsVHG3ZxEVtAZ5pfmZ6UwfS.ZvuzI6Jz6DrmLCg8.8Pr5JkNBOP8_ooyM4IRvTtdkj51jw7J.jRsplkWmB3kohy_v1muJf4lLb2umUn8WpweV.KwRHbojchbl1uosOTWuFf5f607VGmmcQPUYYIf.KavbVM7e0_C_dV_WMGFTdapAzBZU_32fQ_i9kwLpwg5caz4P79ZVa.veaWhOhjKwZigtzypXFnI7xvvoIre7F_xk3N3uYB_wAiXCH4mF7mk8byuHbwzTONk0ip9es4tHJlrOQyqc7aG4zxo6fJdfRbADsqbYfIN8Y24JDqo8XY4vPt5sFUebFusBpSUH2mbfh7c0eLyiNVlg4DBaR0M3d7cdBxmk1SRi5_5keIfWmryLqz2efOuWeQQcLAQ9L4V8NBz__CrAfJtqZOT1SIVCftupBlG0m9dC9BXtFg2BzVTij.xwxtKSUsWXBpG5EOfKXJBsQKN"};var cpo = document.createElement('script');cpo.src = '/cdn-cgi/challenge-platform/h/b/orchestrate/chl_page/v1?ray=9135f6cd4dd2fd2c';window._cf_chl_opt.cOgUHash = location.hash === '' && location.href.indexOf('#') !== -1 ? '#' : location.hash;window._cf_chl_opt.cOgUQuery = location.search === '' && location.href.slice(0, location.href.length - window._cf_chl_opt.cOgUHash.length).indexOf('?') !== -1 ? '?' : location.search;if (window.history && window.history.replaceState) {var ogU = location.pathname + window._cf_chl_opt.cOgUQuery + window._cf_chl_opt.cOgUHash;history.replaceState(null, null, "\/abstracts\/search?q=Gauss-Kronrod%20method%20of%20integration&page=7&__cf_chl_rt_tk=ZO3DEb2Ovm36LEvmBpJjXQcs.Mg0fij7tgpCV3lJnds-1739797265-1.0.1.1-ZPedNJH7IfZMmyR7_dRuYpCNUkuuQsH.h3IvIIxWOGs" + window._cf_chl_opt.cOgUHash);cpo.onload = function() {history.replaceState(null, null, ogU);}}document.getElementsByTagName('head')[0].appendChild(cpo);}());</script></body></html>