CINXE.COM

Riemann curvature tensor - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Riemann curvature tensor - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"6fcd62b2-f960-46fd-bb66-dd657c2d8bee","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Riemann_curvature_tensor","wgTitle":"Riemann curvature tensor","wgCurRevisionId":1259829374,"wgRevisionId":1259829374,"wgArticleId":130526,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","All articles with unsourced statements","Articles with unsourced statements from March 2022","Theorems about circles","Bernhard Riemann","Curvature (mathematics)","Differential geometry","Riemannian geometry","Riemannian manifolds","Tensors in general relativity"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName": "Riemann_curvature_tensor","wgRelevantArticleId":130526,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":20000,"wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q855112","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform", "platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips", "ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Riemann curvature tensor - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Riemann_curvature_tensor"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Riemann_curvature_tensor&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Riemann_curvature_tensor"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Riemann_curvature_tensor rootpage-Riemann_curvature_tensor skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Riemann+curvature+tensor" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Riemann+curvature+tensor" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Riemann+curvature+tensor" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Riemann+curvature+tensor" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Definition" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Definition</span> </div> </a> <ul id="toc-Definition-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Geometric_meaning" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Geometric_meaning"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Geometric meaning</span> </div> </a> <button aria-controls="toc-Geometric_meaning-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Geometric meaning subsection</span> </button> <ul id="toc-Geometric_meaning-sublist" class="vector-toc-list"> <li id="toc-Informally" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Informally"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Informally</span> </div> </a> <ul id="toc-Informally-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Formally" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Formally"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Formally</span> </div> </a> <ul id="toc-Formally-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Coordinate_expression" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Coordinate_expression"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Coordinate expression</span> </div> </a> <ul id="toc-Coordinate_expression-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Symmetries_and_identities" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Symmetries_and_identities"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Symmetries and identities</span> </div> </a> <ul id="toc-Symmetries_and_identities-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Ricci_curvature" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Ricci_curvature"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Ricci curvature</span> </div> </a> <ul id="toc-Ricci_curvature-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Special_cases" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Special_cases"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Special cases</span> </div> </a> <button aria-controls="toc-Special_cases-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Special cases subsection</span> </button> <ul id="toc-Special_cases-sublist" class="vector-toc-list"> <li id="toc-Surfaces" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Surfaces"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Surfaces</span> </div> </a> <ul id="toc-Surfaces-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Space_forms" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Space_forms"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Space forms</span> </div> </a> <ul id="toc-Space_forms-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Citations" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Citations"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Citations</span> </div> </a> <ul id="toc-Citations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Riemann curvature tensor</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 22 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-22" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">22 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Tensor_de_Corvadura" title="Tensor de Corvadura – Asturian" lang="ast" hreflang="ast" data-title="Tensor de Corvadura" data-language-autonym="Asturianu" data-language-local-name="Asturian" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Tensor_de_curvatura_de_Riemann" title="Tensor de curvatura de Riemann – Catalan" lang="ca" hreflang="ca" data-title="Tensor de curvatura de Riemann" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Riemann%C5%AFv_tenzor" title="Riemannův tenzor – Czech" lang="cs" hreflang="cs" data-title="Riemannův tenzor" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Riemannscher_Kr%C3%BCmmungstensor" title="Riemannscher Krümmungstensor – German" lang="de" hreflang="de" data-title="Riemannscher Krümmungstensor" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%A4%CE%B1%CE%BD%CF%85%CF%83%CF%84%CE%AE%CF%82_%CE%BA%CE%B1%CE%BC%CF%80%CF%85%CE%BB%CF%8C%CF%84%CE%B7%CF%84%CE%B1%CF%82_Riemann" title="Τανυστής καμπυλότητας Riemann – Greek" lang="el" hreflang="el" data-title="Τανυστής καμπυλότητας Riemann" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Tensor_de_curvatura" title="Tensor de curvatura – Spanish" lang="es" hreflang="es" data-title="Tensor de curvatura" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Rimana_kurbectensoro" title="Rimana kurbectensoro – Esperanto" lang="eo" hreflang="eo" data-title="Rimana kurbectensoro" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Riemannen_kurbadura-tentsore" title="Riemannen kurbadura-tentsore – Basque" lang="eu" hreflang="eu" data-title="Riemannen kurbadura-tentsore" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%AA%D8%A7%D9%86%D8%B3%D9%88%D8%B1_%D8%A7%D9%86%D8%AD%D9%86%D8%A7%DB%8C_%D8%B1%DB%8C%D9%85%D8%A7%D9%86" title="تانسور انحنای ریمان – Persian" lang="fa" hreflang="fa" data-title="تانسور انحنای ریمان" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Tenseur_de_Riemann" title="Tenseur de Riemann – French" lang="fr" hreflang="fr" data-title="Tenseur de Riemann" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%A6%AC%EB%A7%8C_%EA%B3%A1%EB%A5%A0_%ED%85%90%EC%84%9C" title="리만 곡률 텐서 – Korean" lang="ko" hreflang="ko" data-title="리만 곡률 텐서" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Tensore_di_Riemann" title="Tensore di Riemann – Italian" lang="it" hreflang="it" data-title="Tensore di Riemann" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Riemann-tenzor" title="Riemann-tenzor – Hungarian" lang="hu" hreflang="hu" data-title="Riemann-tenzor" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Krommingstensor_van_Riemann" title="Krommingstensor van Riemann – Dutch" lang="nl" hreflang="nl" data-title="Krommingstensor van Riemann" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%AA%E3%83%BC%E3%83%9E%E3%83%B3%E6%9B%B2%E7%8E%87%E3%83%86%E3%83%B3%E3%82%BD%E3%83%AB" title="リーマン曲率テンソル – Japanese" lang="ja" hreflang="ja" data-title="リーマン曲率テンソル" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-nap mw-list-item"><a href="https://nap.wikipedia.org/wiki/Tensore_e%27_Riemman" title="Tensore e&#039; Riemman – Neapolitan" lang="nap" hreflang="nap" data-title="Tensore e&#039; Riemman" data-language-autonym="Napulitano" data-language-local-name="Neapolitan" class="interlanguage-link-target"><span>Napulitano</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Tensor_krzywizny_Riemanna" title="Tensor krzywizny Riemanna – Polish" lang="pl" hreflang="pl" data-title="Tensor krzywizny Riemanna" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Tensor_de_curvatura_de_Riemann" title="Tensor de curvatura de Riemann – Portuguese" lang="pt" hreflang="pt" data-title="Tensor de curvatura de Riemann" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Tensorul_Riemann" title="Tensorul Riemann – Romanian" lang="ro" hreflang="ro" data-title="Tensorul Riemann" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BD%D0%B7%D0%BE%D1%80_%D0%BA%D1%80%D0%B8%D0%B2%D0%B8%D0%B7%D0%BD%D1%8B" title="Тензор кривизны – Russian" lang="ru" hreflang="ru" data-title="Тензор кривизны" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BD%D0%B7%D0%BE%D1%80_%D0%BA%D1%80%D0%B8%D0%B2%D0%B8%D0%BD%D0%B8" title="Тензор кривини – Ukrainian" lang="uk" hreflang="uk" data-title="Тензор кривини" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E9%BB%8E%E6%9B%BC%E6%9B%B2%E7%8E%87%E5%BC%B5%E9%87%8F" title="黎曼曲率張量 – Chinese" lang="zh" hreflang="zh" data-title="黎曼曲率張量" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q855112#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Riemann_curvature_tensor" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Riemann_curvature_tensor" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Riemann_curvature_tensor"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Riemann_curvature_tensor&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Riemann_curvature_tensor&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Riemann_curvature_tensor"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Riemann_curvature_tensor&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Riemann_curvature_tensor&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Riemann_curvature_tensor" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Riemann_curvature_tensor" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Riemann_curvature_tensor&amp;oldid=1259829374" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Riemann_curvature_tensor&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Riemann_curvature_tensor&amp;id=1259829374&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FRiemann_curvature_tensor"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FRiemann_curvature_tensor"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Riemann_curvature_tensor&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Riemann_curvature_tensor&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q855112" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Tensor field in Riemannian geometry</div> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><table class="sidebar sidebar-collapse nomobile nowraplinks plainlist"><tbody><tr><th class="sidebar-title"><a href="/wiki/General_relativity" title="General relativity">General relativity</a></th></tr><tr><td class="sidebar-image"><span class="notpageimage" typeof="mw:File"><a href="/wiki/File:Spacetime_lattice_analogy.svg" class="mw-file-description" title="Spacetime curvature schematic"><img alt="Spacetime curvature schematic" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/63/Spacetime_lattice_analogy.svg/220px-Spacetime_lattice_analogy.svg.png" decoding="async" width="220" height="82" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/63/Spacetime_lattice_analogy.svg/330px-Spacetime_lattice_analogy.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/63/Spacetime_lattice_analogy.svg/440px-Spacetime_lattice_analogy.svg.png 2x" data-file-width="1260" data-file-height="469" /></a></span><div class="sidebar-caption" style="padding:0.5em 0.2em 0.6em;border-bottom:1px solid #aaa; display:block;margin-bottom:0.1em;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{\mu \nu }+\Lambda g_{\mu \nu }={\kappa }T_{\mu \nu }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msub> <mo>+</mo> <mi mathvariant="normal">&#x039B;<!-- Λ --></mi> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BA;<!-- κ --></mi> </mrow> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G_{\mu \nu }+\Lambda g_{\mu \nu }={\kappa }T_{\mu \nu }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/124ab80fcb17e2733cc17ff6f93da5e52f355c77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:19.468ex; height:2.843ex;" alt="{\displaystyle G_{\mu \nu }+\Lambda g_{\mu \nu }={\kappa }T_{\mu \nu }}"></span></div></td></tr><tr><td class="sidebar-content" style="padding-bottom:0.75em;"> <ul><li><a href="/wiki/Introduction_to_general_relativity" title="Introduction to general relativity">Introduction</a></li> <li><div class="hlist"><ul><li><a href="/wiki/History_of_general_relativity" title="History of general relativity">History</a></li><li><a href="/wiki/Timeline_of_gravitational_physics_and_relativity" title="Timeline of gravitational physics and relativity">Timeline</a></li><li><a href="/wiki/Tests_of_general_relativity" title="Tests of general relativity">Tests</a></li></ul></div></li> <li><a href="/wiki/Mathematics_of_general_relativity" title="Mathematics of general relativity">Mathematical formulation</a></li></ul></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:#ddf; text-align:center;;color: var(--color-base)"><div class="sidebar-list-title-c">Fundamental concepts</div></div><div class="sidebar-list-content mw-collapsible-content hlist"> <ul><li><a href="/wiki/Equivalence_principle" title="Equivalence principle">Equivalence principle</a></li> <li><a href="/wiki/Special_relativity" title="Special relativity">Special relativity</a></li> <li><a href="/wiki/World_line" title="World line">World line</a></li> <li><a href="/wiki/Pseudo-Riemannian_manifold" title="Pseudo-Riemannian manifold">Pseudo-Riemannian manifold</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:#ddf; text-align:center;;color: var(--color-base)"><div class="sidebar-list-title-c">Phenomena</div></div><div class="sidebar-list-content mw-collapsible-content hlist"><table class="sidebar nomobile nowraplinks" style="background-color: transparent; color: var( --color-base ); border-collapse:collapse; border-spacing:0px; border:none; width:100%; margin:0px; font-size:100%; clear:none; float:none"><tbody><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Two-body_problem_in_general_relativity" title="Two-body problem in general relativity">Kepler problem</a></li> <li><a href="/wiki/Gravitational_lens" title="Gravitational lens">Gravitational lensing</a></li> <li><a href="/wiki/Gravitational_redshift" title="Gravitational redshift">Gravitational redshift</a></li> <li><a href="/wiki/Gravitational_time_dilation" title="Gravitational time dilation">Gravitational time dilation</a></li> <li><a href="/wiki/Gravitational_wave" title="Gravitational wave">Gravitational waves</a></li> <li><a href="/wiki/Frame-dragging" title="Frame-dragging">Frame-dragging</a></li> <li><a href="/wiki/Geodetic_effect" title="Geodetic effect">Geodetic effect</a></li> <li><a href="/wiki/Event_horizon" title="Event horizon">Event horizon</a></li> <li><a href="/wiki/Gravitational_singularity" title="Gravitational singularity">Singularity</a></li> <li><a href="/wiki/Black_hole" title="Black hole">Black hole</a></li></ul></td> </tr><tr><th class="sidebar-heading" style="background:#ececff; font-style:italic;font-weight:normal;"> <a href="/wiki/Spacetime" title="Spacetime">Spacetime</a></th></tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Spacetime_diagram" title="Spacetime diagram">Spacetime diagrams</a></li> <li><a href="/wiki/Minkowski_space" title="Minkowski space">Minkowski spacetime</a></li> <li><a href="/wiki/Wormhole" title="Wormhole">Einstein–Rosen bridge</a></li></ul></td> </tr></tbody></table></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:#ddf; text-align:center;;color: var(--color-base)"><div class="sidebar-list-title-c"><div class="hlist"><ul><li>Equations</li><li>Formalisms</li></ul></div></div></div><div class="sidebar-list-content mw-collapsible-content hlist"><table class="sidebar nomobile nowraplinks" style="background-color: transparent; color: var( --color-base ); border-collapse:collapse; border-spacing:0px; border:none; width:100%; margin:0px; font-size:100%; clear:none; float:none;padding-bottom:0;margin-bottom:0;"><tbody><tr><th class="sidebar-heading" style="font-style:italic;font-weight:normal;padding-bottom:0;"> Equations</th></tr><tr><td class="sidebar-content" style="padding-top:0;"> <ul><li><a href="/wiki/Linearized_gravity" title="Linearized gravity">Linearized gravity</a></li> <li><a href="/wiki/Einstein_field_equations" title="Einstein field equations">Einstein field equations</a></li> <li><a href="/wiki/Friedmann_equations" title="Friedmann equations">Friedmann</a></li> <li><a href="/wiki/Geodesics_in_general_relativity" title="Geodesics in general relativity">Geodesics</a></li> <li><a href="/wiki/Mathisson%E2%80%93Papapetrou%E2%80%93Dixon_equations" title="Mathisson–Papapetrou–Dixon equations">Mathisson–Papapetrou–Dixon</a></li> <li><a href="/wiki/Hamilton%E2%80%93Jacobi%E2%80%93Einstein_equation" title="Hamilton–Jacobi–Einstein equation">Hamilton–Jacobi–Einstein</a></li></ul></td> </tr><tr><th class="sidebar-heading" style="font-style:italic;font-weight:normal;padding-bottom:0;"> Formalisms</th></tr><tr><td class="sidebar-content" style="padding-top:0;"> <ul><li><a href="/wiki/ADM_formalism" title="ADM formalism">ADM</a></li> <li><a href="/wiki/BSSN_formalism" title="BSSN formalism">BSSN</a></li> <li><a href="/wiki/Parameterized_post-Newtonian_formalism" title="Parameterized post-Newtonian formalism">Post-Newtonian</a></li></ul></td> </tr><tr><th class="sidebar-heading" style="font-style:italic;font-weight:normal;padding-bottom:0;"> Advanced theory</th></tr><tr><td class="sidebar-content" style="padding-top:0;"> <ul><li><a href="/wiki/Kaluza%E2%80%93Klein_theory" title="Kaluza–Klein theory">Kaluza–Klein theory</a></li> <li><a href="/wiki/Quantum_gravity" title="Quantum gravity">Quantum gravity</a></li></ul></td> </tr></tbody></table></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:#ddf; text-align:center;;color: var(--color-base)"><div class="sidebar-list-title-c"><a href="/wiki/Exact_solutions_in_general_relativity" title="Exact solutions in general relativity">Solutions</a></div></div><div class="sidebar-list-content mw-collapsible-content hlist"> <ul><li><a href="/wiki/Schwarzschild_metric" title="Schwarzschild metric">Schwarzschild</a> (<a href="/wiki/Interior_Schwarzschild_metric" title="Interior Schwarzschild metric">interior</a>)</li> <li><a href="/wiki/Reissner%E2%80%93Nordstr%C3%B6m_metric" title="Reissner–Nordström metric">Reissner–Nordström</a></li> <li><a href="/wiki/Einstein%E2%80%93Rosen_metric" title="Einstein–Rosen metric">Einstein–Rosen waves</a></li> <li><a href="/wiki/Wormhole" title="Wormhole">Wormhole</a></li> <li><a href="/wiki/G%C3%B6del_metric" title="Gödel metric">Gödel</a></li> <li><a href="/wiki/Kerr_metric" title="Kerr metric">Kerr</a></li> <li><a href="/wiki/Kerr%E2%80%93Newman_metric" title="Kerr–Newman metric">Kerr–Newman</a></li> <li><a href="/wiki/Kerr%E2%80%93Newman%E2%80%93de%E2%80%93Sitter_metric" title="Kerr–Newman–de–Sitter metric">Kerr–Newman–de Sitter</a></li> <li><a href="/wiki/Kasner_metric" title="Kasner metric">Kasner</a></li> <li><a href="/wiki/Lema%C3%AEtre%E2%80%93Tolman_metric" title="Lemaître–Tolman metric">Lemaître–Tolman</a></li> <li><a href="/wiki/Taub%E2%80%93NUT_space" title="Taub–NUT space">Taub–NUT</a></li> <li><a href="/wiki/Milne_model" title="Milne model">Milne</a></li> <li><a href="/wiki/Friedmann%E2%80%93Lema%C3%AEtre%E2%80%93Robertson%E2%80%93Walker_metric" title="Friedmann–Lemaître–Robertson–Walker metric">Robertson–Walker</a></li> <li><a href="/wiki/Oppenheimer%E2%80%93Snyder_model" title="Oppenheimer–Snyder model">Oppenheimer–Snyder</a></li> <li><a href="/wiki/Pp-wave_spacetime" title="Pp-wave spacetime">pp-wave</a></li> <li><a href="/wiki/Van_Stockum_dust" title="Van Stockum dust">van Stockum dust</a></li> <li><a href="/wiki/Weyl%E2%80%93Lewis%E2%80%93Papapetrou_coordinates" title="Weyl–Lewis–Papapetrou coordinates">Weyl−Lewis−Papapetrou</a></li> <li><a href="/wiki/Hartle%E2%80%93Thorne_metric" title="Hartle–Thorne metric">Hartle–Thorne</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:#ddf; text-align:center;;color: var(--color-base)"><div class="sidebar-list-title-c">Scientists</div></div><div class="sidebar-list-content mw-collapsible-content hlist"> <ul><li><a href="/wiki/Albert_Einstein" title="Albert Einstein">Einstein</a></li> <li><a href="/wiki/Hendrik_Lorentz" title="Hendrik Lorentz">Lorentz</a></li> <li><a href="/wiki/David_Hilbert" title="David Hilbert">Hilbert</a></li> <li><a href="/wiki/Henri_Poincar%C3%A9" title="Henri Poincaré">Poincaré</a></li> <li><a href="/wiki/Karl_Schwarzschild" title="Karl Schwarzschild">Schwarzschild</a></li> <li><a href="/wiki/Willem_de_Sitter" title="Willem de Sitter">de Sitter</a></li> <li><a href="/wiki/Hans_Reissner" title="Hans Reissner">Reissner</a></li> <li><a href="/wiki/Gunnar_Nordstr%C3%B6m" title="Gunnar Nordström">Nordström</a></li> <li><a href="/wiki/Hermann_Weyl" title="Hermann Weyl">Weyl</a></li> <li><a href="/wiki/Arthur_Eddington" title="Arthur Eddington">Eddington</a></li> <li><a href="/wiki/Alexander_Friedmann" title="Alexander Friedmann">Friedmann</a></li> <li><a href="/wiki/Edward_Arthur_Milne" title="Edward Arthur Milne">Milne</a></li> <li><a href="/wiki/Fritz_Zwicky" title="Fritz Zwicky">Zwicky</a></li> <li><a href="/wiki/Georges_Lema%C3%AEtre" title="Georges Lemaître">Lemaître</a></li> <li><a href="/wiki/J._Robert_Oppenheimer" title="J. Robert Oppenheimer">Oppenheimer</a></li> <li><a href="/wiki/Kurt_G%C3%B6del" title="Kurt Gödel">Gödel</a></li> <li><a href="/wiki/John_Archibald_Wheeler" title="John Archibald Wheeler">Wheeler</a></li> <li><a href="/wiki/Howard_P._Robertson" title="Howard P. Robertson">Robertson</a></li> <li><a href="/wiki/James_M._Bardeen" title="James M. Bardeen">Bardeen</a></li> <li><a href="/wiki/Arthur_Geoffrey_Walker" title="Arthur Geoffrey Walker">Walker</a></li> <li><a href="/wiki/Roy_Kerr" title="Roy Kerr">Kerr</a></li> <li><a href="/wiki/Subrahmanyan_Chandrasekhar" title="Subrahmanyan Chandrasekhar">Chandrasekhar</a></li> <li><a href="/wiki/J%C3%BCrgen_Ehlers" title="Jürgen Ehlers">Ehlers</a></li> <li><a href="/wiki/Roger_Penrose" title="Roger Penrose">Penrose</a></li> <li><a href="/wiki/Stephen_Hawking" title="Stephen Hawking">Hawking</a></li> <li><a href="/wiki/Amal_Kumar_Raychaudhuri" title="Amal Kumar Raychaudhuri">Raychaudhuri</a></li> <li><a href="/wiki/Joseph_Hooton_Taylor_Jr." title="Joseph Hooton Taylor Jr.">Taylor</a></li> <li><a href="/wiki/Russell_Alan_Hulse" title="Russell Alan Hulse">Hulse</a></li> <li><a href="/wiki/Willem_Jacob_van_Stockum" title="Willem Jacob van Stockum">van Stockum</a></li> <li><a href="/wiki/Abraham_H._Taub" title="Abraham H. Taub">Taub</a></li> <li><a href="/wiki/Ezra_T._Newman" title="Ezra T. Newman">Newman</a></li> <li><a href="/wiki/Shing-Tung_Yau" title="Shing-Tung Yau">Yau</a></li> <li><a href="/wiki/Kip_Thorne" title="Kip Thorne">Thorne</a></li> <li><a href="/wiki/List_of_contributors_to_general_relativity" title="List of contributors to general relativity"><i>others</i></a></li></ul></div></div></td> </tr><tr><td class="sidebar-below hlist" style="background-color: transparent; border-color: #A2B8BF"> <ul><li><span class="nowrap"><span class="nowrap"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg/14px-Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg.png" decoding="async" width="14" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg/21px-Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg/28px-Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg.png 2x" data-file-width="530" data-file-height="600" /></a></span> </span><a href="/wiki/Portal:Physics" title="Portal:Physics">Physics&#32;portal</a></span></li> <li><span class="nowrap"><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span>&#160;<a href="/wiki/Category:General_relativity" title="Category:General relativity">Category</a></span></li></ul></td></tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:General_relativity_sidebar" title="Template:General relativity sidebar"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:General_relativity_sidebar" title="Template talk:General relativity sidebar"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:General_relativity_sidebar" title="Special:EditPage/Template:General relativity sidebar"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <p>In the <a href="/wiki/Mathematical" class="mw-redirect" title="Mathematical">mathematical</a> field of <a href="/wiki/Differential_geometry" title="Differential geometry">differential geometry</a>, the <b>Riemann curvature tensor</b> or <b>Riemann–Christoffel tensor</b> (after <a href="/wiki/Bernhard_Riemann" title="Bernhard Riemann">Bernhard Riemann</a> and <a href="/wiki/Elwin_Bruno_Christoffel" title="Elwin Bruno Christoffel">Elwin Bruno Christoffel</a>) is the most common way used to express the <a href="/wiki/Curvature_of_Riemannian_manifolds" title="Curvature of Riemannian manifolds">curvature of Riemannian manifolds</a>. It assigns a <a href="/wiki/Tensor" title="Tensor">tensor</a> to each point of a <a href="/wiki/Riemannian_manifold" title="Riemannian manifold">Riemannian manifold</a> (i.e., it is a <a href="/wiki/Tensor_field" title="Tensor field">tensor field</a>). It is a local invariant of Riemannian metrics which measures the failure of the second <a href="/wiki/Covariant_derivative" title="Covariant derivative">covariant derivatives</a> to commute. A Riemannian manifold has zero curvature if and only if it is <i>flat</i>, i.e. locally <a href="/wiki/Isometry" title="Isometry">isometric</a> to the <a href="/wiki/Euclidean_space" title="Euclidean space">Euclidean space</a>.<sup id="cite_ref-FOOTNOTELee2018193_1-0" class="reference"><a href="#cite_note-FOOTNOTELee2018193-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> The curvature tensor can also be defined for any <a href="/wiki/Pseudo-Riemannian_manifold" title="Pseudo-Riemannian manifold">pseudo-Riemannian manifold</a>, or indeed any manifold equipped with an <a href="/wiki/Affine_connection" title="Affine connection">affine connection</a>. </p><p>It is a central mathematical tool in the theory of <a href="/wiki/General_relativity" title="General relativity">general relativity</a>, the modern theory of <a href="/wiki/Gravity" title="Gravity">gravity</a>. The curvature of <a href="/wiki/Spacetime" title="Spacetime">spacetime</a> is in principle observable via the <a href="/wiki/Geodesic_deviation_equation" class="mw-redirect" title="Geodesic deviation equation">geodesic deviation equation</a>. The curvature tensor represents the <a href="/wiki/Tidal_force" title="Tidal force">tidal force</a> experienced by a rigid body moving along a <a href="/wiki/Geodesic" title="Geodesic">geodesic</a> in a sense made precise by the <a href="/wiki/Jacobi_field" title="Jacobi field">Jacobi equation</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Definition">Definition</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Riemann_curvature_tensor&amp;action=edit&amp;section=1" title="Edit section: Definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (M,g)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>M</mi> <mo>,</mo> <mi>g</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (M,g)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68e27d2e539fd0c3a9a7efab6257abd17de7fc57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.401ex; height:2.843ex;" alt="{\displaystyle (M,g)}"></span> be a <a href="/wiki/Riemannian_manifold" title="Riemannian manifold">Riemannian</a> or <a href="/wiki/Pseudo-Riemannian_manifold" title="Pseudo-Riemannian manifold">pseudo-Riemannian manifold</a>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {X}}(M)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">X</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {X}}(M)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/98adcdb076cb8069c2d19d06030cf7e2c2f237f3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.923ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {X}}(M)}"></span> be the space of all <a href="/wiki/Vector_field" title="Vector field">vector fields</a> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span>. We define the <b>Riemann curvature tensor</b> as a map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {X}}(M)\times {\mathfrak {X}}(M)\times {\mathfrak {X}}(M)\rightarrow {\mathfrak {X}}(M)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">X</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">X</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">X</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">X</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {X}}(M)\times {\mathfrak {X}}(M)\times {\mathfrak {X}}(M)\rightarrow {\mathfrak {X}}(M)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d25bb6babec5ea2c38ac62c20a738bc5413c005f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:32.985ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {X}}(M)\times {\mathfrak {X}}(M)\times {\mathfrak {X}}(M)\rightarrow {\mathfrak {X}}(M)}"></span> by the following formula<sup id="cite_ref-FOOTNOTELee2018196_2-0" class="reference"><a href="#cite_note-FOOTNOTELee2018196-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a3d0e93b78c50237f9ea83d027e4ebbdaef354b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.936ex; height:2.176ex;" alt="{\displaystyle \nabla }"></span> is the <a href="/wiki/Levi-Civita_connection" title="Levi-Civita connection">Levi-Civita connection</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R(X,Y)Z=\nabla _{X}\nabla _{Y}Z-\nabla _{Y}\nabla _{X}Z-\nabla _{[X,Y]}Z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mi>Z</mi> <mo>=</mo> <msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mi>Z</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>Z</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">[</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">]</mo> </mrow> </msub> <mi>Z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R(X,Y)Z=\nabla _{X}\nabla _{Y}Z-\nabla _{Y}\nabla _{X}Z-\nabla _{[X,Y]}Z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a30a969d5b599e29c8ef7fc0344b823845e5865" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:44.036ex; height:3.176ex;" alt="{\displaystyle R(X,Y)Z=\nabla _{X}\nabla _{Y}Z-\nabla _{Y}\nabla _{X}Z-\nabla _{[X,Y]}Z}"></span></dd></dl> <p>or equivalently </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R(X,Y)=[\nabla _{X},\nabla _{Y}]-\nabla _{[X,Y]}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">[</mo> <msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo>,</mo> <msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">[</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">]</mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R(X,Y)=[\nabla _{X},\nabla _{Y}]-\nabla _{[X,Y]}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6213ec08b244f551f3abb12fd05c9352ea337d08" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:29.812ex; height:3.176ex;" alt="{\displaystyle R(X,Y)=[\nabla _{X},\nabla _{Y}]-\nabla _{[X,Y]}}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [X,Y]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [X,Y]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/94470b44d283fde62130212956058ca6b727da37" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.081ex; height:2.843ex;" alt="{\displaystyle [X,Y]}"></span> is the <a href="/wiki/Lie_bracket_of_vector_fields" title="Lie bracket of vector fields">Lie bracket of vector fields</a> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [\nabla _{X},\nabla _{Y}]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo>,</mo> <msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [\nabla _{X},\nabla _{Y}]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f14a9375ccac5a4b17f4da5a35e2fab48e427930" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.318ex; height:2.843ex;" alt="{\displaystyle [\nabla _{X},\nabla _{Y}]}"></span> is a commutator of differential operators. It turns out that the right-hand side actually only depends on the value of the vector fields <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X,Y,Z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo>,</mo> <mi>Z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X,Y,Z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bcf4a8b48db1a32d24aabe164b07744069093225" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.502ex; height:2.509ex;" alt="{\displaystyle X,Y,Z}"></span> at a given point, which is notable since the covariant derivative of a vector field also depends on the field values in a neighborhood of the point. Hence, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> is a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (1,3)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (1,3)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c80e593e3953231c56d0887f5b247bbe517461f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.168ex; height:2.843ex;" alt="{\displaystyle (1,3)}"></span>-tensor field. For fixed <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X,Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>,</mo> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X,Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8705438171d938b7f59cd1bfa5b7d99b6afa5cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.787ex; height:2.509ex;" alt="{\displaystyle X,Y}"></span>, the linear transformation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Z\mapsto R(X,Y)Z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Z</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mi>R</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mi>Z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Z\mapsto R(X,Y)Z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa5c82dbd34c4ad9566cb92439c914ec57af0e5d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.335ex; height:2.843ex;" alt="{\displaystyle Z\mapsto R(X,Y)Z}"></span> is also called the <i>curvature transformation</i> or <i>endomorphism</i>. Occasionally, the curvature tensor is defined with the opposite sign. </p><p>The curvature tensor measures <i>noncommutativity of the covariant derivative</i>, and as such is the <a href="/wiki/Integrability_condition" class="mw-redirect" title="Integrability condition">integrability obstruction</a> for the existence of an isometry with Euclidean space (called, in this context, <i>flat</i> space). </p><p>Since the Levi-Civita connection is torsion-free, its curvature can also be expressed in terms of the <a href="/wiki/Second_covariant_derivative" title="Second covariant derivative">second covariant derivative</a><sup id="cite_ref-lawson_3-0" class="reference"><a href="#cite_note-lawson-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \nabla _{X,Y}^{2}Z=\nabla _{X}\nabla _{Y}Z-\nabla _{\nabla _{X}Y}Z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msubsup> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> <mo>,</mo> <mi>Y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mi>Z</mi> <mo>=</mo> <msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mi>Z</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>Y</mi> </mrow> </msub> <mi>Z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \nabla _{X,Y}^{2}Z=\nabla _{X}\nabla _{Y}Z-\nabla _{\nabla _{X}Y}Z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/289cb03062649733ae7c24c31291957d2aa4a390" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:29.342ex; height:3.509ex;" alt="{\textstyle \nabla _{X,Y}^{2}Z=\nabla _{X}\nabla _{Y}Z-\nabla _{\nabla _{X}Y}Z}"></span></dd></dl> <p>which depends only on the values of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X,Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>,</mo> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X,Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8705438171d938b7f59cd1bfa5b7d99b6afa5cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.787ex; height:2.509ex;" alt="{\displaystyle X,Y}"></span> at a point. The curvature can then be written as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R(X,Y)=\nabla _{X,Y}^{2}-\nabla _{Y,X}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> <mo>,</mo> <mi>Y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <msubsup> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> <mo>,</mo> <mi>X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R(X,Y)=\nabla _{X,Y}^{2}-\nabla _{Y,X}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e16332f6c2d2db7c22c3b01127e9abe2f74578b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:24.858ex; height:3.509ex;" alt="{\displaystyle R(X,Y)=\nabla _{X,Y}^{2}-\nabla _{Y,X}^{2}}"></span></dd></dl> <p>Thus, the curvature tensor measures the noncommutativity of the second covariant derivative. In <a href="/wiki/Abstract_index_notation" title="Abstract index notation">abstract index notation</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R^{d}{}_{cab}Z^{c}=\nabla _{a}\nabla _{b}Z^{d}-\nabla _{b}\nabla _{a}Z^{d}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mi>a</mi> <mi>b</mi> </mrow> </msub> <msup> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msup> <mo>=</mo> <msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <msup> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <msup> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R^{d}{}_{cab}Z^{c}=\nabla _{a}\nabla _{b}Z^{d}-\nabla _{b}\nabla _{a}Z^{d}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5d032a8d342ef4b4e9f86cdb2ab7f883db6694d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:32.037ex; height:3.009ex;" alt="{\displaystyle R^{d}{}_{cab}Z^{c}=\nabla _{a}\nabla _{b}Z^{d}-\nabla _{b}\nabla _{a}Z^{d}.}"></span>The Riemann curvature tensor is also the <a href="/wiki/Commutator" title="Commutator">commutator</a> of the covariant derivative of an arbitrary covector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{\nu }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{\nu }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2dbf88172e5b5c60cd05db9362b55390ccb4435f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.847ex; height:2.509ex;" alt="{\displaystyle A_{\nu }}"></span> with itself:<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{\nu ;\rho \sigma }-A_{\nu ;\sigma \rho }=A_{\beta }R^{\beta }{}_{\nu \rho \sigma }.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> <mo>;</mo> <mi>&#x03C1;<!-- ρ --></mi> <mi>&#x03C3;<!-- σ --></mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> <mo>;</mo> <mi>&#x03C3;<!-- σ --></mi> <mi>&#x03C1;<!-- ρ --></mi> </mrow> </msub> <mo>=</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> <mi>&#x03C1;<!-- ρ --></mi> <mi>&#x03C3;<!-- σ --></mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{\nu ;\rho \sigma }-A_{\nu ;\sigma \rho }=A_{\beta }R^{\beta }{}_{\nu \rho \sigma }.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/21a9ea50f1fc24f8872d2521d5ec97b2892c3437" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:25.523ex; height:3.343ex;" alt="{\displaystyle A_{\nu ;\rho \sigma }-A_{\nu ;\sigma \rho }=A_{\beta }R^{\beta }{}_{\nu \rho \sigma }.}"></span></dd></dl> <p>This formula is often called the <i>Ricci identity</i>.<sup id="cite_ref-lovelockrund_6-0" class="reference"><a href="#cite_note-lovelockrund-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> This is the classical method used by <a href="/wiki/Gregorio_Ricci-Curbastro" title="Gregorio Ricci-Curbastro">Ricci</a> and <a href="/wiki/Tullio_Levi-Civita" title="Tullio Levi-Civita">Levi-Civita</a> to obtain an expression for the Riemann curvature tensor.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> This identity can be generalized to get the commutators for two covariant derivatives of arbitrary tensors as follows <sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;\nabla _{\delta }\nabla _{\gamma }T^{\alpha _{1}\cdots \alpha _{r}}{}_{\beta _{1}\cdots \beta _{s}}-\nabla _{\gamma }\nabla _{\delta }T^{\alpha _{1}\cdots \alpha _{r}}{}_{\beta _{1}\cdots \beta _{s}}\\[3pt]={}&amp;R^{\alpha _{1}}{}_{\rho \delta \gamma }T^{\rho \alpha _{2}\cdots \alpha _{r}}{}_{\beta _{1}\cdots \beta _{s}}+\ldots +R^{\alpha _{r}}{}_{\rho \delta \gamma }T^{\alpha _{1}\cdots \alpha _{r-1}\rho }{}_{\beta _{1}\cdots \beta _{s}}-R^{\sigma }{}_{\beta _{1}\delta \gamma }T^{\alpha _{1}\cdots \alpha _{r}}{}_{\sigma \beta _{2}\cdots \beta _{s}}-\ldots -R^{\sigma }{}_{\beta _{s}\delta \gamma }T^{\alpha _{1}\cdots \alpha _{r}}{}_{\beta _{1}\cdots \beta _{s-1}\sigma }\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.6em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B4;<!-- δ --></mi> </mrow> </msub> <msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B4;<!-- δ --></mi> </mrow> </msub> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> <mtd> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C1;<!-- ρ --></mi> <mi>&#x03B4;<!-- δ --></mi> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C1;<!-- ρ --></mi> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mrow> </msub> <mo>+</mo> <mo>&#x2026;<!-- … --></mo> <mo>+</mo> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C1;<!-- ρ --></mi> <mi>&#x03B4;<!-- δ --></mi> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mi>&#x03C1;<!-- ρ --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C3;<!-- σ --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>&#x03B4;<!-- δ --></mi> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C3;<!-- σ --></mi> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mo>&#x2026;<!-- … --></mo> <mo>&#x2212;<!-- − --></mo> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C3;<!-- σ --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> <mi>&#x03B4;<!-- δ --></mi> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mi>&#x03C3;<!-- σ --></mi> </mrow> </msub> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;\nabla _{\delta }\nabla _{\gamma }T^{\alpha _{1}\cdots \alpha _{r}}{}_{\beta _{1}\cdots \beta _{s}}-\nabla _{\gamma }\nabla _{\delta }T^{\alpha _{1}\cdots \alpha _{r}}{}_{\beta _{1}\cdots \beta _{s}}\\[3pt]={}&amp;R^{\alpha _{1}}{}_{\rho \delta \gamma }T^{\rho \alpha _{2}\cdots \alpha _{r}}{}_{\beta _{1}\cdots \beta _{s}}+\ldots +R^{\alpha _{r}}{}_{\rho \delta \gamma }T^{\alpha _{1}\cdots \alpha _{r-1}\rho }{}_{\beta _{1}\cdots \beta _{s}}-R^{\sigma }{}_{\beta _{1}\delta \gamma }T^{\alpha _{1}\cdots \alpha _{r}}{}_{\sigma \beta _{2}\cdots \beta _{s}}-\ldots -R^{\sigma }{}_{\beta _{s}\delta \gamma }T^{\alpha _{1}\cdots \alpha _{r}}{}_{\beta _{1}\cdots \beta _{s-1}\sigma }\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/711ad8f7e44966802efd57caabfa504dcdab7c79" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:108.939ex; height:7.176ex;" alt="{\displaystyle {\begin{aligned}&amp;\nabla _{\delta }\nabla _{\gamma }T^{\alpha _{1}\cdots \alpha _{r}}{}_{\beta _{1}\cdots \beta _{s}}-\nabla _{\gamma }\nabla _{\delta }T^{\alpha _{1}\cdots \alpha _{r}}{}_{\beta _{1}\cdots \beta _{s}}\\[3pt]={}&amp;R^{\alpha _{1}}{}_{\rho \delta \gamma }T^{\rho \alpha _{2}\cdots \alpha _{r}}{}_{\beta _{1}\cdots \beta _{s}}+\ldots +R^{\alpha _{r}}{}_{\rho \delta \gamma }T^{\alpha _{1}\cdots \alpha _{r-1}\rho }{}_{\beta _{1}\cdots \beta _{s}}-R^{\sigma }{}_{\beta _{1}\delta \gamma }T^{\alpha _{1}\cdots \alpha _{r}}{}_{\sigma \beta _{2}\cdots \beta _{s}}-\ldots -R^{\sigma }{}_{\beta _{s}\delta \gamma }T^{\alpha _{1}\cdots \alpha _{r}}{}_{\beta _{1}\cdots \beta _{s-1}\sigma }\end{aligned}}}"></span></dd></dl> <p>This formula also applies to <a href="/wiki/Tensor_density" title="Tensor density">tensor densities</a> without alteration, because for the Levi-Civita (<i>not generic</i>) connection one gets:<sup id="cite_ref-lovelockrund_6-1" class="reference"><a href="#cite_note-lovelockrund-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla _{\mu }\left({\sqrt {g}}\right)\equiv \left({\sqrt {g}}\right)_{;\mu }=0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>g</mi> </msqrt> </mrow> <mo>)</mo> </mrow> <mo>&#x2261;<!-- ≡ --></mo> <msub> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>g</mi> </msqrt> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>;</mo> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla _{\mu }\left({\sqrt {g}}\right)\equiv \left({\sqrt {g}}\right)_{;\mu }=0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df96911b8403f9443d04b9cb00f389a68b538aa5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:23.597ex; height:3.843ex;" alt="{\displaystyle \nabla _{\mu }\left({\sqrt {g}}\right)\equiv \left({\sqrt {g}}\right)_{;\mu }=0,}"></span></dd></dl> <p>where </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g=\left|\det \left(g_{\mu \nu }\right)\right|.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>=</mo> <mrow> <mo>|</mo> <mrow> <mo movablelimits="true" form="prefix">det</mo> <mrow> <mo>(</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> <mo>|</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g=\left|\det \left(g_{\mu \nu }\right)\right|.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29727eb9369cd4c873a9ad080d61e052b130c60f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:15.172ex; height:3.009ex;" alt="{\displaystyle g=\left|\det \left(g_{\mu \nu }\right)\right|.}"></span></dd></dl> <p>It is sometimes convenient to also define the purely covariant version of the curvature tensor by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{\sigma \mu \nu \rho }=g_{\rho \zeta }R^{\zeta }{}_{\sigma \mu \nu }.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C3;<!-- σ --></mi> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03BD;<!-- ν --></mi> <mi>&#x03C1;<!-- ρ --></mi> </mrow> </msub> <mo>=</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C1;<!-- ρ --></mi> <mi>&#x03B6;<!-- ζ --></mi> </mrow> </msub> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B6;<!-- ζ --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C3;<!-- σ --></mi> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{\sigma \mu \nu \rho }=g_{\rho \zeta }R^{\zeta }{}_{\sigma \mu \nu }.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9cefd960bc24ec3e7dd536f6133e1af9aef128d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:18.165ex; height:3.343ex;" alt="{\displaystyle R_{\sigma \mu \nu \rho }=g_{\rho \zeta }R^{\zeta }{}_{\sigma \mu \nu }.}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Geometric_meaning">Geometric meaning</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Riemann_curvature_tensor&amp;action=edit&amp;section=2" title="Edit section: Geometric meaning"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Riemann_curvature_motivation_shpere.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e7/Riemann_curvature_motivation_shpere.gif/220px-Riemann_curvature_motivation_shpere.gif" decoding="async" width="220" height="155" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e7/Riemann_curvature_motivation_shpere.gif/330px-Riemann_curvature_motivation_shpere.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e7/Riemann_curvature_motivation_shpere.gif/440px-Riemann_curvature_motivation_shpere.gif 2x" data-file-width="600" data-file-height="424" /></a><figcaption>Figure showing the geometric meaning of the Riemann curvature tensor in a spherical curved manifold. The fact that this transfer can define two different arrows at the starting point gives rise to the Riemann curvature tensor. The orthogonal symbol indicates that the <a href="/wiki/Dot_product" title="Dot product">dot product</a> (provided by the metric tensor) between the transmitted arrows (or the tangent arrows on the curve) is zero. The angle between the two arrows is zero when the space is flat and greater than zero when the space is curved. The more curved the space, the greater the angle.</figcaption></figure> <div class="mw-heading mw-heading3"><h3 id="Informally">Informally</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Riemann_curvature_tensor&amp;action=edit&amp;section=3" title="Edit section: Informally"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>One can see the effects of curved space by comparing a tennis court and the Earth. Start at the lower right corner of the tennis court, with a racket held out towards north. Then while walking around the outline of the court, at each step make sure the tennis racket is maintained in the same orientation, parallel to its previous positions. Once the loop is complete the tennis racket will be parallel to its initial starting position. This is because tennis courts are built so the surface is flat. On the other hand, the surface of the Earth is curved: we can complete a loop on the surface of the Earth. Starting at the equator, point a tennis racket north along the surface of the Earth. Once again the tennis racket should always remain parallel to its previous position, using the local plane of the horizon as a reference. For this path, first walk to the north pole, then walk sideways (i.e. without turning), then down to the equator, and finally walk backwards to your starting position. Now the tennis racket will be pointing towards the west, even though when you began your journey it pointed north and you never turned your body. This process is akin to <a href="/wiki/Parallel_transport" title="Parallel transport">parallel transporting</a> a vector along the path and the difference identifies how lines which appear "straight" are only "straight" locally. Each time a loop is completed the tennis racket will be deflected further from its initial position by an amount depending on the distance and the curvature of the surface. It is possible to identify paths along a curved surface where parallel transport works as it does on flat space. These are the <a href="/wiki/Geodesics" class="mw-redirect" title="Geodesics">geodesics</a> of the space, for example any segment of a great circle of a sphere. </p><p>The concept of a curved space in mathematics differs from conversational usage. For example, if the above process was completed on a cylinder one would find that it is not curved overall as the curvature around the cylinder cancels with the flatness along the cylinder, which is a consequence of <a href="/wiki/Gaussian_curvature" title="Gaussian curvature">Gaussian curvature</a> and Gauss's <a href="/wiki/Theorema_Egregium" title="Theorema Egregium">Theorema Egregium</a>. A familiar example of this is a floppy pizza slice, which will remain rigid along its length if it is curved along its width. </p><p>The Riemann curvature tensor is a way to capture a measure of the intrinsic curvature. When you write it down in terms of its components (like writing down the components of a vector), it consists of a multi-dimensional array of sums and products of partial derivatives (some of those partial derivatives can be thought of as akin to capturing the curvature imposed upon someone walking in straight lines on a curved surface). </p> <div class="mw-heading mw-heading3"><h3 id="Formally">Formally</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Riemann_curvature_tensor&amp;action=edit&amp;section=4" title="Edit section: Formally"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>When a vector in a Euclidean space is <a href="/wiki/Parallel_transport" title="Parallel transport">parallel transported</a> around a loop, it will again point in the initial direction after returning to its original position. However, this property does not hold in the general case. The Riemann curvature tensor directly measures the failure of this in a general <a href="/wiki/Riemannian_manifold" title="Riemannian manifold">Riemannian manifold</a>. This failure is known as the non-<a href="/wiki/Holonomy" title="Holonomy">holonomy</a> of the manifold. </p><p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{t}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{t}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f279a30bc8eabc788f3fe81c9cfb674e72e858db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.156ex; height:2.009ex;" alt="{\displaystyle x_{t}}"></span> be a curve in a Riemannian manifold <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span>. Denote by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau _{x_{t}}:T_{x_{0}}M\to T_{x_{t}}M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> </mrow> </msub> <mo>:</mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </msub> <mi>M</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> </mrow> </msub> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau _{x_{t}}:T_{x_{0}}M\to T_{x_{t}}M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e602d5b6eb57855fdbcc8005e121a58e951b2ec7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:19.808ex; height:2.843ex;" alt="{\displaystyle \tau _{x_{t}}:T_{x_{0}}M\to T_{x_{t}}M}"></span> the parallel transport map along <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{t}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{t}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f279a30bc8eabc788f3fe81c9cfb674e72e858db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.156ex; height:2.009ex;" alt="{\displaystyle x_{t}}"></span>. The parallel transport maps are related to the <a href="/wiki/Covariant_derivative" title="Covariant derivative">covariant derivative</a> by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla _{{\dot {x}}_{0}}Y=\lim _{h\to 0}{\frac {1}{h}}\left(Y_{x_{0}}-\tau _{x_{h}}^{-1}\left(Y_{x_{h}}\right)\right)=\left.{\frac {d}{dt}}\left(\tau _{x_{t}}^{-1}(Y_{x_{t}})\right)\right|_{t=0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </msub> <mi>Y</mi> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>h</mi> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msubsup> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> <mrow> <mo>(</mo> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> </mrow> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> <mo stretchy="false">(</mo> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> </mrow> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla _{{\dot {x}}_{0}}Y=\lim _{h\to 0}{\frac {1}{h}}\left(Y_{x_{0}}-\tau _{x_{h}}^{-1}\left(Y_{x_{h}}\right)\right)=\left.{\frac {d}{dt}}\left(\tau _{x_{t}}^{-1}(Y_{x_{t}})\right)\right|_{t=0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e96cd2b03fd815175f4f46ab40b001637fd5d25c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:53.716ex; height:5.843ex;" alt="{\displaystyle \nabla _{{\dot {x}}_{0}}Y=\lim _{h\to 0}{\frac {1}{h}}\left(Y_{x_{0}}-\tau _{x_{h}}^{-1}\left(Y_{x_{h}}\right)\right)=\left.{\frac {d}{dt}}\left(\tau _{x_{t}}^{-1}(Y_{x_{t}})\right)\right|_{t=0}}"></span></dd></dl> <p>for each <a href="/wiki/Vector_field" title="Vector field">vector field</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span> defined along the curve. </p><p>Suppose that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span> are a pair of commuting vector fields. Each of these fields generates a one-parameter group of diffeomorphisms in a neighborhood of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86f21d0e31751534cd6584264ecf864a6aa792cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{0}}"></span>. Denote by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau _{tX}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mi>X</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau _{tX}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fdd0e4878763b48ea37e854dd3842b86384e3a4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.242ex; height:2.009ex;" alt="{\displaystyle \tau _{tX}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau _{tY}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mi>Y</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau _{tY}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/efddac2192aaa9d4d0e8002c66d28f0890bc8f23" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.096ex; height:2.009ex;" alt="{\displaystyle \tau _{tY}}"></span>, respectively, the parallel transports along the flows of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span> for time <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span>. Parallel transport of a vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Z\in T_{x_{0}}M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Z</mi> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </msub> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Z\in T_{x_{0}}M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dfbaa30d7400c30d477cfaa196f54baa5f14a96a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:10.325ex; height:2.843ex;" alt="{\displaystyle Z\in T_{x_{0}}M}"></span> around the quadrilateral with sides <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle tY}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle tY}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2c8e15149b248b3151c321dba2d0fa5b7c79e2e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.613ex; height:2.176ex;" alt="{\displaystyle tY}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle sX}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle sX}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e513e67210e9981113a0163d3d8c75369f8aaf9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.07ex; height:2.176ex;" alt="{\displaystyle sX}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -tY}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mi>t</mi> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -tY}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/927b5324b113e2434bd6c27b593d06bba2a2c0df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:4.421ex; height:2.343ex;" alt="{\displaystyle -tY}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -sX}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -sX}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ff5ad7fe671ac5fe0c26a784b286c19f9d51a7f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:4.879ex; height:2.343ex;" alt="{\displaystyle -sX}"></span> is given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau _{sX}^{-1}\tau _{tY}^{-1}\tau _{sX}\tau _{tY}Z.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mi>X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> <msubsup> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mi>Y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mi>X</mi> </mrow> </msub> <msub> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mi>Y</mi> </mrow> </msub> <mi>Z</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau _{sX}^{-1}\tau _{tY}^{-1}\tau _{sX}\tau _{tY}Z.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e9cd2ab513a85fbb6babc2fb6692e89f2b8d106" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:16.024ex; height:3.343ex;" alt="{\displaystyle \tau _{sX}^{-1}\tau _{tY}^{-1}\tau _{sX}\tau _{tY}Z.}"></span></dd></dl> <p>The difference between this and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1cc6b75e09a8aa3f04d8584b11db534f88fb56bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.68ex; height:2.176ex;" alt="{\displaystyle Z}"></span> measures the failure of parallel transport to return <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1cc6b75e09a8aa3f04d8584b11db534f88fb56bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.68ex; height:2.176ex;" alt="{\displaystyle Z}"></span> to its original position in the tangent space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{x_{0}}M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </msub> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{x_{0}}M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f67df4769c57dd34252d4284743c041fbdd1ce79" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:5.804ex; height:2.843ex;" alt="{\displaystyle T_{x_{0}}M}"></span>. Shrinking the loop by sending <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s,t\to 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s,t\to 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/21d23ed1708d3031d5a9aac60dd2743fb118b44d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.741ex; height:2.509ex;" alt="{\displaystyle s,t\to 0}"></span> gives the infinitesimal description of this deviation: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left.{\frac {d}{ds}}{\frac {d}{dt}}\tau _{sX}^{-1}\tau _{tY}^{-1}\tau _{sX}\tau _{tY}Z\right|_{s=t=0}=\left(\nabla _{X}\nabla _{Y}-\nabla _{Y}\nabla _{X}-\nabla _{[X,Y]}\right)Z=R(X,Y)Z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>s</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <msubsup> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mi>X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> <msubsup> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mi>Y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mi>X</mi> </mrow> </msub> <msub> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mi>Y</mi> </mrow> </msub> <mi>Z</mi> </mrow> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mo>=</mo> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">[</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">]</mo> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mi>Z</mi> <mo>=</mo> <mi>R</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mi>Z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left.{\frac {d}{ds}}{\frac {d}{dt}}\tau _{sX}^{-1}\tau _{tY}^{-1}\tau _{sX}\tau _{tY}Z\right|_{s=t=0}=\left(\nabla _{X}\nabla _{Y}-\nabla _{Y}\nabla _{X}-\nabla _{[X,Y]}\right)Z=R(X,Y)Z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4f7391c086a496cf8c270adf768cd477a32fb05b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:73.325ex; height:5.843ex;" alt="{\displaystyle \left.{\frac {d}{ds}}{\frac {d}{dt}}\tau _{sX}^{-1}\tau _{tY}^{-1}\tau _{sX}\tau _{tY}Z\right|_{s=t=0}=\left(\nabla _{X}\nabla _{Y}-\nabla _{Y}\nabla _{X}-\nabla _{[X,Y]}\right)Z=R(X,Y)Z}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> is the Riemann curvature tensor. </p> <div class="mw-heading mw-heading2"><h2 id="Coordinate_expression">Coordinate expression</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Riemann_curvature_tensor&amp;action=edit&amp;section=5" title="Edit section: Coordinate expression"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Converting to the <a href="/wiki/Tensor_index_notation" class="mw-redirect" title="Tensor index notation">tensor index notation</a>, the Riemann curvature tensor is given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R^{\rho }{}_{\sigma \mu \nu }=dx^{\rho }\left(R\left(\partial _{\mu },\partial _{\nu }\right)\partial _{\sigma }\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C1;<!-- ρ --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C3;<!-- σ --></mi> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msub> <mo>=</mo> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C1;<!-- ρ --></mi> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mi>R</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msub> <mo>,</mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C3;<!-- σ --></mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R^{\rho }{}_{\sigma \mu \nu }=dx^{\rho }\left(R\left(\partial _{\mu },\partial _{\nu }\right)\partial _{\sigma }\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa9479d99816e0d3e92c88c221a269652255149d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:27.388ex; height:3.009ex;" alt="{\displaystyle R^{\rho }{}_{\sigma \mu \nu }=dx^{\rho }\left(R\left(\partial _{\mu },\partial _{\nu }\right)\partial _{\sigma }\right)}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \partial _{\mu }=\partial /\partial x^{\mu }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msub> <mo>=</mo> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \partial _{\mu }=\partial /\partial x^{\mu }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d254e4a2f61c99020e632761d22fafc4f076eef8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:11.908ex; height:3.009ex;" alt="{\displaystyle \partial _{\mu }=\partial /\partial x^{\mu }}"></span> are the coordinate vector fields. The above expression can be written using <a href="/wiki/Christoffel_symbols" title="Christoffel symbols">Christoffel symbols</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R^{\rho }{}_{\sigma \mu \nu }=\partial _{\mu }\Gamma ^{\rho }{}_{\nu \sigma }-\partial _{\nu }\Gamma ^{\rho }{}_{\mu \sigma }+\Gamma ^{\rho }{}_{\mu \lambda }\Gamma ^{\lambda }{}_{\nu \sigma }-\Gamma ^{\rho }{}_{\nu \lambda }\Gamma ^{\lambda }{}_{\mu \sigma }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C1;<!-- ρ --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C3;<!-- σ --></mi> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msub> <mo>=</mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msub> <msup> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C1;<!-- ρ --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> <mi>&#x03C3;<!-- σ --></mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msub> <msup> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C1;<!-- ρ --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03C3;<!-- σ --></mi> </mrow> </msub> <mo>+</mo> <msup> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C1;<!-- ρ --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03BB;<!-- λ --></mi> </mrow> </msub> <msup> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BB;<!-- λ --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> <mi>&#x03C3;<!-- σ --></mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msup> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C1;<!-- ρ --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> <mi>&#x03BB;<!-- λ --></mi> </mrow> </msub> <msup> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BB;<!-- λ --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03C3;<!-- σ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R^{\rho }{}_{\sigma \mu \nu }=\partial _{\mu }\Gamma ^{\rho }{}_{\nu \sigma }-\partial _{\nu }\Gamma ^{\rho }{}_{\mu \sigma }+\Gamma ^{\rho }{}_{\mu \lambda }\Gamma ^{\lambda }{}_{\nu \sigma }-\Gamma ^{\rho }{}_{\nu \lambda }\Gamma ^{\lambda }{}_{\mu \sigma }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/97f07269279b9e67d9b28123e5d830f0463b7976" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:50.381ex; height:3.343ex;" alt="{\displaystyle R^{\rho }{}_{\sigma \mu \nu }=\partial _{\mu }\Gamma ^{\rho }{}_{\nu \sigma }-\partial _{\nu }\Gamma ^{\rho }{}_{\mu \sigma }+\Gamma ^{\rho }{}_{\mu \lambda }\Gamma ^{\lambda }{}_{\nu \sigma }-\Gamma ^{\rho }{}_{\nu \lambda }\Gamma ^{\lambda }{}_{\mu \sigma }}"></span></dd></dl> <p>(See also <i><a href="/wiki/List_of_formulas_in_Riemannian_geometry" title="List of formulas in Riemannian geometry">List of formulas in Riemannian geometry</a></i>). </p> <div class="mw-heading mw-heading2"><h2 id="Symmetries_and_identities">Symmetries and identities</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Riemann_curvature_tensor&amp;action=edit&amp;section=6" title="Edit section: Symmetries and identities"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Riemann curvature tensor has the following symmetries and identities: </p> <table> <tbody><tr> <th>Skew symmetry </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R(u,v)=-R(v,u)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>R</mi> <mo stretchy="false">(</mo> <mi>v</mi> <mo>,</mo> <mi>u</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R(u,v)=-R(v,u)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/50103c9b041b334be50635f9e35fb28cb19af2e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.036ex; height:2.843ex;" alt="{\displaystyle R(u,v)=-R(v,u)}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{abcd}=-R_{abdc}\Leftrightarrow R_{ab(cd)}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> <mi>c</mi> <mi>d</mi> </mrow> </msub> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> <mi>d</mi> <mi>c</mi> </mrow> </msub> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> <mo stretchy="false">(</mo> <mi>c</mi> <mi>d</mi> <mo stretchy="false">)</mo> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{abcd}=-R_{abdc}\Leftrightarrow R_{ab(cd)}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe9063849ffc944bafcbbcce6c57f19aa65f0f9c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:29.49ex; height:3.009ex;" alt="{\displaystyle R_{abcd}=-R_{abdc}\Leftrightarrow R_{ab(cd)}=0}"></span> </td></tr> <tr> <th>Skew symmetry </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle R(u,v)w,z\rangle =-\langle R(u,v)z,w\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>R</mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mi>w</mi> <mo>,</mo> <mi>z</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>R</mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mi>z</mi> <mo>,</mo> <mi>w</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle R(u,v)w,z\rangle =-\langle R(u,v)z,w\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc244e9b7c8ef3ed4ad14c61713d9c218d9dc44e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:30.227ex; height:2.843ex;" alt="{\displaystyle \langle R(u,v)w,z\rangle =-\langle R(u,v)z,w\rangle }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{abcd}=-R_{bacd}\Leftrightarrow R_{(ab)cd}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> <mi>c</mi> <mi>d</mi> </mrow> </msub> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> <mi>a</mi> <mi>c</mi> <mi>d</mi> </mrow> </msub> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>a</mi> <mi>b</mi> <mo stretchy="false">)</mo> <mi>c</mi> <mi>d</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{abcd}=-R_{bacd}\Leftrightarrow R_{(ab)cd}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5aa836710661abf65f9922e5c3bc8ba0d64ead8a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:29.49ex; height:3.009ex;" alt="{\displaystyle R_{abcd}=-R_{bacd}\Leftrightarrow R_{(ab)cd}=0}"></span> </td></tr> <tr> <th>First (algebraic) Bianchi identity </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R(u,v)w+R(v,w)u+R(w,u)v=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mi>w</mi> <mo>+</mo> <mi>R</mi> <mo stretchy="false">(</mo> <mi>v</mi> <mo>,</mo> <mi>w</mi> <mo stretchy="false">)</mo> <mi>u</mi> <mo>+</mo> <mi>R</mi> <mo stretchy="false">(</mo> <mi>w</mi> <mo>,</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mi>v</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R(u,v)w+R(v,w)u+R(w,u)v=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24f3b17859c4a732e153e0433fbcf6585f4e3188" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:36.128ex; height:2.843ex;" alt="{\displaystyle R(u,v)w+R(v,w)u+R(w,u)v=0}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{abcd}+R_{acdb}+R_{adbc}=0\Leftrightarrow R_{a[bcd]}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> <mi>c</mi> <mi>d</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>c</mi> <mi>d</mi> <mi>b</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>d</mi> <mi>b</mi> <mi>c</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mo stretchy="false">[</mo> <mi>b</mi> <mi>c</mi> <mi>d</mi> <mo stretchy="false">]</mo> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{abcd}+R_{acdb}+R_{adbc}=0\Leftrightarrow R_{a[bcd]}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/15ac017653b8ec51bd7a2767e455368213ee1066" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:39.303ex; height:3.009ex;" alt="{\displaystyle R_{abcd}+R_{acdb}+R_{adbc}=0\Leftrightarrow R_{a[bcd]}=0}"></span> </td></tr> <tr> <th>Interchange symmetry </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle R(u,v)w,z\rangle =\langle R(w,z)u,v\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>R</mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mi>w</mi> <mo>,</mo> <mi>z</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>R</mi> <mo stretchy="false">(</mo> <mi>w</mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle R(u,v)w,z\rangle =\langle R(w,z)u,v\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d1877abf33cd6b487beda540c845a8175b2be203" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.419ex; height:2.843ex;" alt="{\displaystyle \langle R(u,v)w,z\rangle =\langle R(w,z)u,v\rangle }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{abcd}=R_{cdab}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> <mi>c</mi> <mi>d</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mi>d</mi> <mi>a</mi> <mi>b</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{abcd}=R_{cdab}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dda3b727c6a8e015b76d72fe1a98780a20ddb116" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.384ex; height:2.509ex;" alt="{\displaystyle R_{abcd}=R_{cdab}}"></span> </td></tr> <tr> <th>Second (differential) Bianchi identity </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(\nabla _{u}R\right)(v,w)+\left(\nabla _{v}R\right)(w,u)+\left(\nabla _{w}R\right)(u,v)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> </msub> <mi>R</mi> </mrow> <mo>)</mo> </mrow> <mo stretchy="false">(</mo> <mi>v</mi> <mo>,</mo> <mi>w</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> </msub> <mi>R</mi> </mrow> <mo>)</mo> </mrow> <mo stretchy="false">(</mo> <mi>w</mi> <mo>,</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>w</mi> </mrow> </msub> <mi>R</mi> </mrow> <mo>)</mo> </mrow> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(\nabla _{u}R\right)(v,w)+\left(\nabla _{v}R\right)(w,u)+\left(\nabla _{w}R\right)(u,v)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4088559076ada92b76120d8b09d36c326cdda8c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:48.014ex; height:2.843ex;" alt="{\displaystyle \left(\nabla _{u}R\right)(v,w)+\left(\nabla _{v}R\right)(w,u)+\left(\nabla _{w}R\right)(u,v)=0}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{abcd;e}+R_{abde;c}+R_{abec;d}=0\Leftrightarrow R_{ab[cd;e]}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> <mi>c</mi> <mi>d</mi> <mo>;</mo> <mi>e</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> <mi>d</mi> <mi>e</mi> <mo>;</mo> <mi>c</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> <mi>e</mi> <mi>c</mi> <mo>;</mo> <mi>d</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> <mo stretchy="false">[</mo> <mi>c</mi> <mi>d</mi> <mo>;</mo> <mi>e</mi> <mo stretchy="false">]</mo> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{abcd;e}+R_{abde;c}+R_{abec;d}=0\Leftrightarrow R_{ab[cd;e]}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f138d94ffe57be9f1236b47519fec826f94268ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:44.197ex; height:3.009ex;" alt="{\displaystyle R_{abcd;e}+R_{abde;c}+R_{abec;d}=0\Leftrightarrow R_{ab[cd;e]}=0}"></span> </td></tr></tbody></table> <p>where the bracket <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle ,\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mo>,</mo> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle ,\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/528cb832a8e8af1633a9396fef5bb588f563395b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.843ex; height:2.843ex;" alt="{\displaystyle \langle ,\rangle }"></span> refers to the inner product on the tangent space induced by the <a href="/wiki/Metric_tensor" title="Metric tensor">metric tensor</a> and the brackets and parentheses on the indices denote the <a href="/wiki/Antisymmetric_tensor" title="Antisymmetric tensor">antisymmetrization</a> and <a href="/wiki/Symmetric_tensor" title="Symmetric tensor">symmetrization</a> operators, respectively. If there is nonzero <a href="/wiki/Torsion_tensor" title="Torsion tensor">torsion</a>, the Bianchi identities involve the <a href="/wiki/Torsion_tensor" title="Torsion tensor">torsion tensor</a>. </p><p>The first (algebraic) Bianchi identity was discovered by <a href="/wiki/Gregorio_Ricci-Curbastro" title="Gregorio Ricci-Curbastro">Ricci</a>, but is often called the <b>first Bianchi identity</b> or <b>algebraic Bianchi identity</b>, because it looks similar to the differential <a href="/wiki/Luigi_Bianchi" title="Luigi Bianchi">Bianchi</a> identity.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (March 2022)">citation needed</span></a></i>&#93;</sup> </p><p>The first three identities form a complete list of symmetries of the curvature tensor, i.e. given any tensor which satisfies the identities above, one can find a Riemannian manifold with such a curvature tensor at some point. Simple calculations show that such a tensor has <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n^{2}\left(n^{2}-1\right)/12}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>12</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n^{2}\left(n^{2}-1\right)/12}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f105296f0d0bc09c9bdfb4aa7ec73cb9254ba965" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:15.292ex; height:3.343ex;" alt="{\displaystyle n^{2}\left(n^{2}-1\right)/12}"></span> independent components.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> Interchange symmetry follows from these. The algebraic symmetries are also equivalent to saying that <i>R</i> belongs to the image of the <a href="/wiki/Young_symmetrizer" title="Young symmetrizer">Young symmetrizer</a> corresponding to the partition 2+2. </p><p>On a Riemannian manifold one has the covariant derivative <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla _{u}R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> </msub> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla _{u}R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33f0f1975028ab91470cb70d18df8383804eee84" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.872ex; height:2.509ex;" alt="{\displaystyle \nabla _{u}R}"></span> and the <a href="/wiki/Bianchi_identity" class="mw-redirect" title="Bianchi identity">Bianchi identity</a> (often called the second Bianchi identity or differential Bianchi identity) takes the form of the last identity in the table. </p> <div class="mw-heading mw-heading2"><h2 id="Ricci_curvature">Ricci curvature</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Riemann_curvature_tensor&amp;action=edit&amp;section=7" title="Edit section: Ricci curvature"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Ricci_curvature" title="Ricci curvature">Ricci curvature</a> tensor is the <a href="/wiki/Tensor_contraction" title="Tensor contraction">contraction</a> of the first and third indices of the Riemann tensor. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \underbrace {R_{ab}} _{\text{Ricci}}\equiv R^{c}{}_{acb}=g^{cd}\underbrace {R_{cadb}} _{\text{Riemann}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> </mrow> </msub> <mo>&#x23DF;<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>Ricci</mtext> </mrow> </munder> <mo>&#x2261;<!-- ≡ --></mo> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>c</mi> <mi>b</mi> </mrow> </msub> <mo>=</mo> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mi>d</mi> </mrow> </msup> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mi>a</mi> <mi>d</mi> <mi>b</mi> </mrow> </msub> <mo>&#x23DF;<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>Riemann</mtext> </mrow> </munder> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \underbrace {R_{ab}} _{\text{Ricci}}\equiv R^{c}{}_{acb}=g^{cd}\underbrace {R_{cadb}} _{\text{Riemann}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6f57325acde2bab010c9726863d80e34684bfbe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.171ex; width:24.613ex; height:6.509ex;" alt="{\displaystyle \underbrace {R_{ab}} _{\text{Ricci}}\equiv R^{c}{}_{acb}=g^{cd}\underbrace {R_{cadb}} _{\text{Riemann}}}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Special_cases">Special cases</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Riemann_curvature_tensor&amp;action=edit&amp;section=8" title="Edit section: Special cases"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Surfaces">Surfaces</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Riemann_curvature_tensor&amp;action=edit&amp;section=9" title="Edit section: Surfaces"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For a two-dimensional <a href="/wiki/Surface_(topology)" title="Surface (topology)">surface</a>, the Bianchi identities imply that the Riemann tensor has only one independent component, which means that the <a href="/wiki/Ricci_scalar" class="mw-redirect" title="Ricci scalar">Ricci scalar</a> completely determines the Riemann tensor. There is only one valid expression for the Riemann tensor which fits the required symmetries: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{abcd}=f(R)\left(g_{ac}g_{db}-g_{ad}g_{cb}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> <mi>c</mi> <mi>d</mi> </mrow> </msub> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>R</mi> <mo stretchy="false">)</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>c</mi> </mrow> </msub> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mi>b</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>d</mi> </mrow> </msub> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mi>b</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{abcd}=f(R)\left(g_{ac}g_{db}-g_{ad}g_{cb}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/080db763ef355b2ab4eafc430fca29ad3577b9cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:29.789ex; height:2.843ex;" alt="{\displaystyle R_{abcd}=f(R)\left(g_{ac}g_{db}-g_{ad}g_{cb}\right)}"></span></dd></dl> <p>and by contracting with the metric twice we find the explicit form: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{abcd}=K\left(g_{ac}g_{db}-g_{ad}g_{cb}\right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> <mi>c</mi> <mi>d</mi> </mrow> </msub> <mo>=</mo> <mi>K</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>c</mi> </mrow> </msub> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mi>b</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>d</mi> </mrow> </msub> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mi>b</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{abcd}=K\left(g_{ac}g_{db}-g_{ad}g_{cb}\right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5eca86fc1a3e5ea151cf6e0b02190eac672992c0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.037ex; height:2.843ex;" alt="{\displaystyle R_{abcd}=K\left(g_{ac}g_{db}-g_{ad}g_{cb}\right),}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{ab}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{ab}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e69d450dd2c6434f120d72eba8865a4492121a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.916ex; height:2.009ex;" alt="{\displaystyle g_{ab}}"></span> is the <a href="/wiki/Metric_tensor" title="Metric tensor">metric tensor</a> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K=R/2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>=</mo> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K=R/2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46380c338e4993d70a420e61939be16777142b51" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.253ex; height:2.843ex;" alt="{\displaystyle K=R/2}"></span> is a function called the <a href="/wiki/Gaussian_curvature" title="Gaussian curvature">Gaussian curvature</a> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e85ff03cbe0c7341af6b982e47e9f90d235c66ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.216ex; height:2.176ex;" alt="{\displaystyle d}"></span> take values either 1 or&#160;2. The Riemann tensor has only one functionally independent component. The Gaussian curvature coincides with the <a href="/wiki/Sectional_curvature" title="Sectional curvature">sectional curvature</a> of the surface. It is also exactly half the <a href="/wiki/Scalar_curvature" title="Scalar curvature">scalar curvature</a> of the 2-manifold, while the <a href="/wiki/Ricci_curvature" title="Ricci curvature">Ricci curvature</a> tensor of the surface is simply given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{ab}=Kg_{ab}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> </mrow> </msub> <mo>=</mo> <mi>K</mi> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{ab}=Kg_{ab}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/80183099d1b6ca0ee6fbeda8c18ee04f28ea701e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.299ex; height:2.509ex;" alt="{\displaystyle R_{ab}=Kg_{ab}.}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Space_forms">Space forms</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Riemann_curvature_tensor&amp;action=edit&amp;section=10" title="Edit section: Space forms"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A Riemannian manifold is a <a href="/wiki/Space_form" title="Space form">space form</a> if its <a href="/wiki/Sectional_curvature" title="Sectional curvature">sectional curvature</a> is equal to a constant <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span>. The Riemann tensor of a space form is given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{abcd}=K\left(g_{ac}g_{db}-g_{ad}g_{cb}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> <mi>c</mi> <mi>d</mi> </mrow> </msub> <mo>=</mo> <mi>K</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>c</mi> </mrow> </msub> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mi>b</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>d</mi> </mrow> </msub> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mi>b</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{abcd}=K\left(g_{ac}g_{db}-g_{ad}g_{cb}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aacc7c91e743c91d5946713e4384da94a2abd688" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.037ex; height:2.843ex;" alt="{\displaystyle R_{abcd}=K\left(g_{ac}g_{db}-g_{ad}g_{cb}\right).}"></span></dd></dl> <p>Conversely, except in dimension 2, if the curvature of a Riemannian manifold has this form for some function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span>, then the Bianchi identities imply that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> is constant and thus that the manifold is (locally) a space form. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Riemann_curvature_tensor&amp;action=edit&amp;section=11" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Introduction_to_the_mathematics_of_general_relativity" title="Introduction to the mathematics of general relativity">Introduction to the mathematics of general relativity</a></li> <li><a href="/wiki/Ricci_decomposition" title="Ricci decomposition">Decomposition of the Riemann curvature tensor</a></li> <li><a href="/wiki/Curvature_of_Riemannian_manifolds" title="Curvature of Riemannian manifolds">Curvature of Riemannian manifolds</a></li> <li><a href="/wiki/Ricci_curvature" title="Ricci curvature">Ricci curvature tensor</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Citations">Citations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Riemann_curvature_tensor&amp;action=edit&amp;section=12" title="Edit section: Citations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-FOOTNOTELee2018193-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTELee2018193_1-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFLee2018">Lee 2018</a>, p.&#160;193.</span> </li> <li id="cite_note-FOOTNOTELee2018196-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTELee2018196_2-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFLee2018">Lee 2018</a>, p.&#160;196.</span> </li> <li id="cite_note-lawson-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-lawson_3-0">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFLawsonMichelsohn1989" class="citation book cs1">Lawson, H. Blaine Jr.; <a href="/wiki/Marie-Louise_Michelsohn" title="Marie-Louise Michelsohn">Michelsohn, Marie-Louise</a> (1989). <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://archive.org/details/spingeometry00laws"><i>Spin Geometry</i></a></span>. Princeton U Press. p.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/spingeometry00laws/page/n166">154</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-691-08542-5" title="Special:BookSources/978-0-691-08542-5"><bdi>978-0-691-08542-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Spin+Geometry&amp;rft.pages=154&amp;rft.pub=Princeton+U+Press&amp;rft.date=1989&amp;rft.isbn=978-0-691-08542-5&amp;rft.aulast=Lawson&amp;rft.aufirst=H.+Blaine+Jr.&amp;rft.au=Michelsohn%2C+Marie-Louise&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fspingeometry00laws&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+curvature+tensor" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSynge_J.L.,_Schild_A.1949" class="citation book cs1">Synge J.L., Schild A. (1949). <a rel="nofollow" class="external text" href="https://archive.org/details/tensorcalculus00syng/page/83"><i>Tensor Calculus</i></a>. first Dover Publications 1978 edition. pp.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/tensorcalculus00syng/page/83">83, 107</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-63612-2" title="Special:BookSources/978-0-486-63612-2"><bdi>978-0-486-63612-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Tensor+Calculus&amp;rft.pages=83%2C+107&amp;rft.pub=first+Dover+Publications+1978+edition&amp;rft.date=1949&amp;rft.isbn=978-0-486-63612-2&amp;rft.au=Synge+J.L.%2C+Schild+A.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Ftensorcalculus00syng%2Fpage%2F83&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+curvature+tensor" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFP._A._M._Dirac1996" class="citation book cs1">P. A. M. Dirac (1996). <i>General Theory of Relativity</i>. <a href="/wiki/Princeton_University_Press" title="Princeton University Press">Princeton University Press</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-691-01146-2" title="Special:BookSources/978-0-691-01146-2"><bdi>978-0-691-01146-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=General+Theory+of+Relativity&amp;rft.pub=Princeton+University+Press&amp;rft.date=1996&amp;rft.isbn=978-0-691-01146-2&amp;rft.au=P.+A.+M.+Dirac&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+curvature+tensor" class="Z3988"></span></span> </li> <li id="cite_note-lovelockrund-6"><span class="mw-cite-backlink">^ <a href="#cite_ref-lovelockrund_6-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-lovelockrund_6-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLovelockRund1989" class="citation book cs1">Lovelock, David; <a href="/wiki/Hanno_Rund" title="Hanno Rund">Rund, Hanno</a> (1989) [1975]. <i>Tensors, Differential Forms, and Variational Principles</i>. Dover. p.&#160;84,109. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-65840-7" title="Special:BookSources/978-0-486-65840-7"><bdi>978-0-486-65840-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Tensors%2C+Differential+Forms%2C+and+Variational+Principles&amp;rft.pages=84%2C109&amp;rft.pub=Dover&amp;rft.date=1989&amp;rft.isbn=978-0-486-65840-7&amp;rft.aulast=Lovelock&amp;rft.aufirst=David&amp;rft.au=Rund%2C+Hanno&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+curvature+tensor" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRicciLevi-Civita1900" class="citation cs2"><a href="/wiki/Gregorio_Ricci-Curbastro" title="Gregorio Ricci-Curbastro">Ricci, Gregorio</a>; Levi-Civita, Tullio (March 1900), <a rel="nofollow" class="external text" href="https://zenodo.org/record/1428270">"Méthodes de calcul différentiel absolu et leurs applications"</a>, <i>Mathematische Annalen</i>, <b>54</b> (1–2): 125–201, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01454201">10.1007/BF01454201</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:120009332">120009332</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mathematische+Annalen&amp;rft.atitle=M%C3%A9thodes+de+calcul+diff%C3%A9rentiel+absolu+et+leurs+applications&amp;rft.volume=54&amp;rft.issue=1%E2%80%932&amp;rft.pages=125-201&amp;rft.date=1900-03&amp;rft_id=info%3Adoi%2F10.1007%2FBF01454201&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A120009332%23id-name%3DS2CID&amp;rft.aulast=Ricci&amp;rft.aufirst=Gregorio&amp;rft.au=Levi-Civita%2C+Tullio&amp;rft_id=https%3A%2F%2Fzenodo.org%2Frecord%2F1428270&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+curvature+tensor" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSandbergVernon1978" class="citation journal cs1">Sandberg, Vernon D (1978). <a rel="nofollow" class="external text" href="https://authors.library.caltech.edu/32877/1/SANjmp78.pdf">"Tensor spherical harmonics on S 2 and S 3 as eigenvalue problems"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Journal_of_Mathematical_Physics" title="Journal of Mathematical Physics">Journal of Mathematical Physics</a></i>. <b>19</b> (12): 2441–2446. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1978JMP....19.2441S">1978JMP....19.2441S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.523649">10.1063/1.523649</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Mathematical+Physics&amp;rft.atitle=Tensor+spherical+harmonics+on+S+2+and+S+3+as+eigenvalue+problems&amp;rft.volume=19&amp;rft.issue=12&amp;rft.pages=2441-2446&amp;rft.date=1978&amp;rft_id=info%3Adoi%2F10.1063%2F1.523649&amp;rft_id=info%3Abibcode%2F1978JMP....19.2441S&amp;rft.au=Sandberg&amp;rft.au=Vernon%2C+D&amp;rft_id=https%3A%2F%2Fauthors.library.caltech.edu%2F32877%2F1%2FSANjmp78.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+curvature+tensor" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBergmann_P.G.1976" class="citation book cs1">Bergmann P.G. (1976). <a rel="nofollow" class="external text" href="https://archive.org/details/introductiontoth00berg/page/172"><i>Introduction to the Theory of Relativity</i></a>. Dover. pp.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/introductiontoth00berg/page/172">172–174</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-63282-7" title="Special:BookSources/978-0-486-63282-7"><bdi>978-0-486-63282-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+the+Theory+of+Relativity&amp;rft.pages=172-174&amp;rft.pub=Dover&amp;rft.date=1976&amp;rft.isbn=978-0-486-63282-7&amp;rft.au=Bergmann+P.G.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fintroductiontoth00berg%2Fpage%2F172&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+curvature+tensor" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Riemann_curvature_tensor&amp;action=edit&amp;section=13" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239549316">.mw-parser-output .refbegin{margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li{margin-left:0;padding-left:3.2em;text-indent:-3.2em}.mw-parser-output .refbegin-hanging-indents ul,.mw-parser-output .refbegin-hanging-indents ul li{list-style:none}@media(max-width:720px){.mw-parser-output .refbegin-hanging-indents>ul>li{padding-left:1.6em;text-indent:-1.6em}}.mw-parser-output .refbegin-columns{margin-top:0.3em}.mw-parser-output .refbegin-columns ul{margin-top:0}.mw-parser-output .refbegin-columns li{page-break-inside:avoid;break-inside:avoid-column}@media screen{.mw-parser-output .refbegin{font-size:90%}}</style><div class="refbegin" style=""> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLee2018" class="citation book cs1"><a href="/wiki/John_M._Lee" title="John M. Lee">Lee, John M.</a> (2018). <i>Introduction to Riemannian Manifolds</i>. <a href="/wiki/Springer_Science%2BBusiness_Media" title="Springer Science+Business Media">Springer-Verlag</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-319-91754-2" title="Special:BookSources/978-3-319-91754-2"><bdi>978-3-319-91754-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+Riemannian+Manifolds&amp;rft.pub=Springer-Verlag&amp;rft.date=2018&amp;rft.isbn=978-3-319-91754-2&amp;rft.aulast=Lee&amp;rft.aufirst=John+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+curvature+tensor" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBesse1987" class="citation cs2">Besse, A.L. (1987), <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/einsteinmanifold0000bess"><i>Einstein Manifolds</i></a></span>, Springer, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-387-15279-2" title="Special:BookSources/0-387-15279-2"><bdi>0-387-15279-2</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Einstein+Manifolds&amp;rft.pub=Springer&amp;rft.date=1987&amp;rft.isbn=0-387-15279-2&amp;rft.aulast=Besse&amp;rft.aufirst=A.L.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Feinsteinmanifold0000bess&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+curvature+tensor" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKobayashiNomizu1963" class="citation cs2">Kobayashi, S.; Nomizu, K. (1963), <i>Foundations of Differential Geometry</i>, vol.&#160;1, Interscience</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Foundations+of+Differential+Geometry&amp;rft.pub=Interscience&amp;rft.date=1963&amp;rft.aulast=Kobayashi&amp;rft.aufirst=S.&amp;rft.au=Nomizu%2C+K.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+curvature+tensor" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMisnerThorneWheeler1973" class="citation cs2"><a href="/wiki/Charles_W._Misner" title="Charles W. Misner">Misner, Charles W.</a>; <a href="/wiki/Kip_S._Thorne" class="mw-redirect" title="Kip S. Thorne">Thorne, Kip S.</a>; <a href="/wiki/John_Archibald_Wheeler" title="John Archibald Wheeler">Wheeler, John A.</a> (1973), <a href="/wiki/Gravitation_(book)" title="Gravitation (book)"><i>Gravitation</i></a>, W. H. Freeman, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-7167-0344-0" title="Special:BookSources/978-0-7167-0344-0"><bdi>978-0-7167-0344-0</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Gravitation&amp;rft.pub=W.+H.+Freeman&amp;rft.date=1973&amp;rft.isbn=978-0-7167-0344-0&amp;rft.aulast=Misner&amp;rft.aufirst=Charles+W.&amp;rft.au=Thorne%2C+Kip+S.&amp;rft.au=Wheeler%2C+John+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARiemann+curvature+tensor" class="Z3988"></span></li></ul> </div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Various_notions_of_curvature_defined_in_differential_geometry" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Curvature" title="Template:Curvature"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Curvature" title="Template talk:Curvature"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Curvature" title="Special:EditPage/Template:Curvature"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Various_notions_of_curvature_defined_in_differential_geometry" style="font-size:114%;margin:0 4em">Various notions of <a href="/wiki/Curvature" title="Curvature">curvature</a> defined in <a href="/wiki/Differential_geometry" title="Differential geometry">differential geometry</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Differential_geometry_of_curves" class="mw-redirect" title="Differential geometry of curves">Differential geometry <br />of curves</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Curvature" title="Curvature">Curvature</a></li> <li><a href="/wiki/Torsion_of_a_curve" title="Torsion of a curve">Torsion of a curve</a></li> <li><a href="/wiki/Frenet%E2%80%93Serret_formulas" title="Frenet–Serret formulas">Frenet–Serret formulas</a></li> <li><a href="/wiki/Radius_of_curvature_(applications)" class="mw-redirect" title="Radius of curvature (applications)">Radius of curvature (applications)</a></li> <li><a href="/wiki/Affine_curvature" title="Affine curvature">Affine curvature</a></li> <li><a href="/wiki/Total_curvature" title="Total curvature">Total curvature</a></li> <li><a href="/wiki/Total_absolute_curvature" title="Total absolute curvature">Total absolute curvature</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Differential_geometry_of_surfaces" title="Differential geometry of surfaces">Differential geometry <br />of surfaces</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Principal_curvature" title="Principal curvature">Principal curvatures</a></li> <li><a href="/wiki/Gaussian_curvature" title="Gaussian curvature">Gaussian curvature</a></li> <li><a href="/wiki/Mean_curvature" title="Mean curvature">Mean curvature</a></li> <li><a href="/wiki/Darboux_frame" title="Darboux frame">Darboux frame</a></li> <li><a href="/wiki/Gauss%E2%80%93Codazzi_equations" title="Gauss–Codazzi equations">Gauss–Codazzi equations</a></li> <li><a href="/wiki/First_fundamental_form" title="First fundamental form">First fundamental form</a></li> <li><a href="/wiki/Second_fundamental_form" title="Second fundamental form">Second fundamental form</a></li> <li><a href="/wiki/Third_fundamental_form" title="Third fundamental form">Third fundamental form</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Riemannian_geometry" title="Riemannian geometry">Riemannian geometry</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Curvature_of_Riemannian_manifolds" title="Curvature of Riemannian manifolds">Curvature of Riemannian manifolds</a></li> <li><a class="mw-selflink selflink">Riemann curvature tensor</a></li> <li><a href="/wiki/Ricci_curvature" title="Ricci curvature">Ricci curvature</a></li> <li><a href="/wiki/Scalar_curvature" title="Scalar curvature">Scalar curvature</a></li> <li><a href="/wiki/Sectional_curvature" title="Sectional curvature">Sectional curvature</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Connection_(mathematics)" title="Connection (mathematics)">Curvature of connections</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Curvature_form" title="Curvature form">Curvature form</a></li> <li><a href="/wiki/Torsion_tensor" title="Torsion tensor">Torsion tensor</a></li> <li><a href="/wiki/Cocurvature" title="Cocurvature">Cocurvature</a></li> <li><a href="/wiki/Holonomy" title="Holonomy">Holonomy</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Riemannian_geometry_(Glossary)" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Riemannian_geometry" title="Template:Riemannian geometry"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Riemannian_geometry" title="Template talk:Riemannian geometry"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Riemannian_geometry" title="Special:EditPage/Template:Riemannian geometry"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Riemannian_geometry_(Glossary)" style="font-size:114%;margin:0 4em"><a href="/wiki/Riemannian_geometry" title="Riemannian geometry">Riemannian geometry</a> (<a href="/wiki/Glossary_of_Riemannian_and_metric_geometry" title="Glossary of Riemannian and metric geometry">Glossary</a>)</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Basic concepts</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Curvature_of_Riemannian_manifolds" title="Curvature of Riemannian manifolds">Curvature</a> <ul><li><a class="mw-selflink selflink">tensor</a></li> <li><a href="/wiki/Scalar_curvature" title="Scalar curvature">Scalar</a></li> <li><a href="/wiki/Ricci_curvature" title="Ricci curvature">Ricci</a></li> <li><a href="/wiki/Sectional_curvature" title="Sectional curvature">Sectional</a></li></ul></li> <li><a href="/wiki/Exponential_map_(Riemannian_geometry)" title="Exponential map (Riemannian geometry)">Exponential map</a></li> <li><a href="/wiki/Geodesic" title="Geodesic">Geodesic</a></li> <li><a href="/wiki/Inner_product_space" title="Inner product space">Inner product</a></li> <li><a href="/wiki/Metric_tensor" title="Metric tensor">Metric tensor</a> <ul><li><a href="/wiki/Levi-Civita_connection" title="Levi-Civita connection">Levi-Civita connection</a></li> <li><a href="/wiki/Covariant_derivative" title="Covariant derivative">Covariant derivative</a></li> <li><a href="/wiki/Metric_signature" title="Metric signature">Signature</a></li> <li><a href="/wiki/Raising_and_lowering_indices" title="Raising and lowering indices">Raising and lowering indices</a>/<a href="/wiki/Musical_isomorphism" title="Musical isomorphism">Musical isomorphism</a></li></ul></li> <li><a href="/wiki/Parallel_transport" title="Parallel transport">Parallel transport</a></li> <li><a href="/wiki/Riemannian_manifold" title="Riemannian manifold">Riemannian manifold</a></li> <li><a href="/wiki/Pseudo-Riemannian_manifold" title="Pseudo-Riemannian manifold">Pseudo-Riemannian manifold</a></li> <li><a href="/wiki/Riemannian_volume_form" class="mw-redirect" title="Riemannian volume form">Riemannian volume form</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Types of manifolds</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Hermitian_manifold" title="Hermitian manifold">Hermitian</a></li> <li><a href="/wiki/Hyperbolic_manifold" title="Hyperbolic manifold">Hyperbolic</a></li> <li><a href="/wiki/K%C3%A4hler_manifold" title="Kähler manifold">Kähler</a></li> <li><a href="/wiki/Kenmotsu_manifold" title="Kenmotsu manifold">Kenmotsu</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Main results</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Fundamental_theorem_of_Riemannian_geometry" title="Fundamental theorem of Riemannian geometry">Fundamental theorem of Riemannian geometry</a></li> <li><a href="/wiki/Gauss%27s_lemma_(Riemannian_geometry)" title="Gauss&#39;s lemma (Riemannian geometry)">Gauss's lemma</a></li> <li><a href="/wiki/Gauss%E2%80%93Bonnet_theorem" title="Gauss–Bonnet theorem">Gauss–Bonnet theorem</a></li> <li><a href="/wiki/Hopf%E2%80%93Rinow_theorem" title="Hopf–Rinow theorem">Hopf–Rinow theorem</a></li> <li><a href="/wiki/Nash_embedding_theorem" class="mw-redirect" title="Nash embedding theorem">Nash embedding theorem</a></li> <li><a href="/wiki/Ricci_flow" title="Ricci flow">Ricci flow</a></li> <li><a href="/wiki/Schur%27s_lemma_(Riemannian_geometry)" title="Schur&#39;s lemma (Riemannian geometry)">Schur's lemma</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Generalizations</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Finsler_manifold" title="Finsler manifold">Finsler</a></li> <li><a href="/wiki/Hilbert_manifold" title="Hilbert manifold">Hilbert</a></li> <li><a href="/wiki/Sub-Riemannian_manifold" title="Sub-Riemannian manifold">Sub-Riemannian</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Applications</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/General_relativity" title="General relativity">General relativity</a></li> <li><a href="/wiki/Geometrization_conjecture" title="Geometrization conjecture">Geometrization conjecture</a></li> <li><a href="/wiki/Poincar%C3%A9_conjecture" title="Poincaré conjecture">Poincaré conjecture</a></li> <li><a href="/wiki/Uniformization_theorem" title="Uniformization theorem">Uniformization theorem</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Manifolds_(Glossary)" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Manifolds" title="Template:Manifolds"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Manifolds" title="Template talk:Manifolds"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Manifolds" title="Special:EditPage/Template:Manifolds"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Manifolds_(Glossary)" style="font-size:114%;margin:0 4em"><a href="/wiki/Manifold" title="Manifold">Manifolds</a> (<a href="/wiki/Glossary_of_differential_geometry_and_topology" title="Glossary of differential geometry and topology">Glossary</a>)</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Basic concepts</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Topological_manifold" title="Topological manifold">Topological manifold</a> <ul><li><a href="/wiki/Atlas_(topology)" title="Atlas (topology)">Atlas</a></li></ul></li> <li><a href="/wiki/Differentiable_manifold" title="Differentiable manifold">Differentiable/Smooth manifold</a> <ul><li><a href="/wiki/Differential_structure" title="Differential structure">Differential structure</a></li> <li><a href="/wiki/Smooth_structure" title="Smooth structure">Smooth atlas</a></li></ul></li> <li><a href="/wiki/Submanifold" title="Submanifold">Submanifold</a></li> <li><a href="/wiki/Riemannian_manifold" title="Riemannian manifold">Riemannian manifold</a></li> <li><a href="/wiki/Smoothness" title="Smoothness">Smooth map</a></li> <li><a href="/wiki/Submersion_(mathematics)" title="Submersion (mathematics)">Submersion</a></li> <li><a href="/wiki/Pushforward_(differential)" title="Pushforward (differential)">Pushforward</a></li> <li><a href="/wiki/Tangent_space" title="Tangent space">Tangent space</a></li> <li><a href="/wiki/Differential_form" title="Differential form">Differential form</a></li> <li><a href="/wiki/Vector_field" title="Vector field">Vector field</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Main results <span style="font-size:85%;"><a href="/wiki/Category:Theorems_in_differential_geometry" title="Category:Theorems in differential geometry">(list)</a></span></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Atiyah%E2%80%93Singer_index_theorem" title="Atiyah–Singer index theorem">Atiyah–Singer index</a></li> <li><a href="/wiki/Darboux%27s_theorem" title="Darboux&#39;s theorem">Darboux's</a></li> <li><a href="/wiki/De_Rham_cohomology#De_Rham&#39;s_theorem" title="De Rham cohomology">De Rham's</a></li> <li><a href="/wiki/Frobenius_theorem_(differential_topology)" title="Frobenius theorem (differential topology)">Frobenius</a></li> <li><a href="/wiki/Generalized_Stokes_theorem" title="Generalized Stokes theorem">Generalized Stokes</a></li> <li><a href="/wiki/Hopf%E2%80%93Rinow_theorem" title="Hopf–Rinow theorem">Hopf–Rinow</a></li> <li><a href="/wiki/Noether%27s_theorem" title="Noether&#39;s theorem">Noether's</a></li> <li><a href="/wiki/Sard%27s_theorem" title="Sard&#39;s theorem">Sard's</a></li> <li><a href="/wiki/Whitney_embedding_theorem" title="Whitney embedding theorem">Whitney embedding</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Smoothness" title="Smoothness">Maps</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Differentiable_curve" title="Differentiable curve">Curve</a></li> <li><a href="/wiki/Diffeomorphism" title="Diffeomorphism">Diffeomorphism</a> <ul><li><a href="/wiki/Local_diffeomorphism" title="Local diffeomorphism">Local</a></li></ul></li> <li><a href="/wiki/Geodesic" title="Geodesic">Geodesic</a></li> <li><a href="/wiki/Exponential_map_(Riemannian_geometry)" title="Exponential map (Riemannian geometry)">Exponential map</a> <ul><li><a href="/wiki/Exponential_map_(Lie_theory)" title="Exponential map (Lie theory)">in Lie theory</a></li></ul></li> <li><a href="/wiki/Foliation" title="Foliation">Foliation</a></li> <li><a href="/wiki/Immersion_(mathematics)" title="Immersion (mathematics)">Immersion</a></li> <li><a href="/wiki/Integral_curve" title="Integral curve">Integral curve</a></li> <li><a href="/wiki/Lie_derivative" title="Lie derivative">Lie derivative</a></li> <li><a href="/wiki/Section_(fiber_bundle)" title="Section (fiber bundle)">Section</a></li> <li><a href="/wiki/Submersion_(mathematics)" title="Submersion (mathematics)">Submersion</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Types of<br />manifolds</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Closed_manifold" title="Closed manifold">Closed</a></li> <li>(<a href="/wiki/Almost_complex_manifold" title="Almost complex manifold">Almost</a>)&#160;<a href="/wiki/Complex_manifold" title="Complex manifold">Complex</a></li> <li>(<a href="/wiki/Almost-contact_manifold" title="Almost-contact manifold">Almost</a>)&#160;<a href="/wiki/Contact_manifold" class="mw-redirect" title="Contact manifold">Contact</a></li> <li><a href="/wiki/Fibered_manifold" title="Fibered manifold">Fibered</a></li> <li><a href="/wiki/Finsler_manifold" title="Finsler manifold">Finsler</a></li> <li><a href="/wiki/Flat_manifold" title="Flat manifold">Flat</a></li> <li><a href="/wiki/G-structure_on_a_manifold" title="G-structure on a manifold">G-structure</a></li> <li><a href="/wiki/Hadamard_manifold" title="Hadamard manifold">Hadamard</a></li> <li><a href="/wiki/Hermitian_manifold" title="Hermitian manifold">Hermitian</a></li> <li><a href="/wiki/Hyperbolic_manifold" title="Hyperbolic manifold">Hyperbolic</a></li> <li><a href="/wiki/K%C3%A4hler_manifold" title="Kähler manifold">Kähler</a></li> <li><a href="/wiki/Kenmotsu_manifold" title="Kenmotsu manifold">Kenmotsu</a></li> <li><a href="/wiki/Lie_group" title="Lie group">Lie group</a> <ul><li><a href="/wiki/Lie_group%E2%80%93Lie_algebra_correspondence" title="Lie group–Lie algebra correspondence">Lie algebra</a></li></ul></li> <li><a href="/wiki/Manifold_with_boundary" class="mw-redirect" title="Manifold with boundary">Manifold with boundary</a></li> <li><a href="/wiki/Orientability" title="Orientability">Oriented</a></li> <li><a href="/wiki/Parallelizable_manifold" title="Parallelizable manifold">Parallelizable</a></li> <li><a href="/wiki/Poisson_manifold" title="Poisson manifold">Poisson</a></li> <li><a href="/wiki/Prime_manifold" title="Prime manifold">Prime</a></li> <li><a href="/wiki/Quaternionic_manifold" title="Quaternionic manifold">Quaternionic</a></li> <li><a href="/wiki/Hypercomplex_manifold" title="Hypercomplex manifold">Hypercomplex</a></li> <li>(<a href="/wiki/Pseudo-Riemannian_manifold" title="Pseudo-Riemannian manifold">Pseudo−</a>,&#160;<a href="/wiki/Sub-Riemannian_manifold" title="Sub-Riemannian manifold">Sub−</a>)&#160;<a href="/wiki/Riemannian_manifold" title="Riemannian manifold">Riemannian</a></li> <li><a href="/wiki/Rizza_manifold" title="Rizza manifold">Rizza</a></li> <li>(<a href="/wiki/Almost_symplectic_manifold" title="Almost symplectic manifold">Almost</a>)&#160;<a href="/wiki/Symplectic_manifold" title="Symplectic manifold">Symplectic</a></li> <li><a href="/wiki/Tame_manifold" title="Tame manifold">Tame</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Tensor" title="Tensor">Tensors</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">Vectors</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Distribution_(differential_geometry)" title="Distribution (differential geometry)">Distribution</a></li> <li><a href="/wiki/Lie_bracket_of_vector_fields" title="Lie bracket of vector fields">Lie bracket</a></li> <li><a href="/wiki/Pushforward_(differential)" title="Pushforward (differential)">Pushforward</a></li> <li><a href="/wiki/Tangent_space" title="Tangent space">Tangent space</a> <ul><li><a href="/wiki/Tangent_bundle" title="Tangent bundle">bundle</a></li></ul></li> <li><a href="/wiki/Torsion_tensor" title="Torsion tensor">Torsion</a></li> <li><a href="/wiki/Vector_field" title="Vector field">Vector field</a></li> <li><a href="/wiki/Vector_flow" title="Vector flow">Vector flow</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Covectors</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Closed_and_exact_differential_forms" title="Closed and exact differential forms">Closed/Exact</a></li> <li><a href="/wiki/Covariant_derivative" title="Covariant derivative">Covariant derivative</a></li> <li><a href="/wiki/Cotangent_space" title="Cotangent space">Cotangent space</a> <ul><li><a href="/wiki/Cotangent_bundle" title="Cotangent bundle">bundle</a></li></ul></li> <li><a href="/wiki/De_Rham_cohomology" title="De Rham cohomology">De Rham cohomology</a></li> <li><a href="/wiki/Differential_form" title="Differential form">Differential form</a> <ul><li><a href="/wiki/Vector-valued_differential_form" title="Vector-valued differential form">Vector-valued</a></li></ul></li> <li><a href="/wiki/Exterior_derivative" title="Exterior derivative">Exterior derivative</a></li> <li><a href="/wiki/Interior_product" title="Interior product">Interior product</a></li> <li><a href="/wiki/Pullback_(differential_geometry)" title="Pullback (differential geometry)">Pullback</a></li> <li><a href="/wiki/Ricci_curvature" title="Ricci curvature">Ricci curvature</a> <ul><li><a href="/wiki/Ricci_flow" title="Ricci flow">flow</a></li></ul></li> <li><a class="mw-selflink selflink">Riemann curvature tensor</a></li> <li><a href="/wiki/Tensor_field" title="Tensor field">Tensor field</a> <ul><li><a href="/wiki/Tensor_density" title="Tensor density">density</a></li></ul></li> <li><a href="/wiki/Volume_form" title="Volume form">Volume form</a></li> <li><a href="/wiki/Wedge_product" class="mw-redirect" title="Wedge product">Wedge product</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Fiber_bundle" title="Fiber bundle">Bundles</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Adjoint_bundle" title="Adjoint bundle">Adjoint</a></li> <li><a href="/wiki/Affine_bundle" title="Affine bundle">Affine</a></li> <li><a href="/wiki/Associated_bundle" title="Associated bundle">Associated</a></li> <li><a href="/wiki/Cotangent_bundle" title="Cotangent bundle">Cotangent</a></li> <li><a href="/wiki/Dual_bundle" title="Dual bundle">Dual</a></li> <li><a href="/wiki/Fiber_bundle" title="Fiber bundle">Fiber</a></li> <li>(<a href="/wiki/Cofibration" title="Cofibration">Co</a>)&#160;<a href="/wiki/Fibration" title="Fibration">Fibration</a></li> <li><a href="/wiki/Jet_bundle" title="Jet bundle">Jet</a></li> <li><a href="/wiki/Lie_algebra_bundle" title="Lie algebra bundle">Lie algebra</a></li> <li>(<a href="/wiki/Stable_normal_bundle" title="Stable normal bundle">Stable</a>)&#160;<a href="/wiki/Normal_bundle" title="Normal bundle">Normal</a></li> <li><a href="/wiki/Principal_bundle" title="Principal bundle">Principal</a></li> <li><a href="/wiki/Spinor_bundle" title="Spinor bundle">Spinor</a></li> <li><a href="/wiki/Subbundle" title="Subbundle">Subbundle</a></li> <li><a href="/wiki/Tangent_bundle" title="Tangent bundle">Tangent</a></li> <li><a href="/wiki/Tensor_bundle" title="Tensor bundle">Tensor</a></li> <li><a href="/wiki/Vector_bundle" title="Vector bundle">Vector</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Connection_(mathematics)" title="Connection (mathematics)">Connections</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Affine_connection" title="Affine connection">Affine</a></li> <li><a href="/wiki/Cartan_connection" title="Cartan connection">Cartan</a></li> <li><a href="/wiki/Ehresmann_connection" title="Ehresmann connection">Ehresmann</a></li> <li><a href="/wiki/Connection_form" title="Connection form">Form</a></li> <li><a href="/wiki/Connection_(fibred_manifold)" title="Connection (fibred manifold)">Generalized</a></li> <li><a href="/wiki/Koszul_connection" class="mw-redirect" title="Koszul connection">Koszul</a></li> <li><a href="/wiki/Levi-Civita_connection" title="Levi-Civita connection">Levi-Civita</a></li> <li><a href="/wiki/Connection_(principal_bundle)" title="Connection (principal bundle)">Principal</a></li> <li><a href="/wiki/Connection_(vector_bundle)" title="Connection (vector bundle)">Vector</a></li> <li><a href="/wiki/Parallel_transport" title="Parallel transport">Parallel transport</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Classification_of_manifolds" title="Classification of manifolds">Classification of manifolds</a></li> <li><a href="/wiki/Gauge_theory_(mathematics)" title="Gauge theory (mathematics)">Gauge theory</a></li> <li><a href="/wiki/History_of_manifolds_and_varieties" title="History of manifolds and varieties">History</a></li> <li><a href="/wiki/Morse_theory" title="Morse theory">Morse theory</a></li> <li><a href="/wiki/Moving_frame" title="Moving frame">Moving frame</a></li> <li><a href="/wiki/Singularity_theory" title="Singularity theory">Singularity theory</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Generalizations</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Banach_manifold" title="Banach manifold">Banach manifold</a></li> <li><a href="/wiki/Diffeology" title="Diffeology">Diffeology</a></li> <li><a href="/wiki/Diffiety" title="Diffiety">Diffiety</a></li> <li><a href="/wiki/Fr%C3%A9chet_manifold" title="Fréchet manifold">Fréchet manifold</a></li> <li><a href="/wiki/K-theory" title="K-theory">K-theory</a></li> <li><a href="/wiki/Orbifold" title="Orbifold">Orbifold</a></li> <li><a href="/wiki/Secondary_calculus_and_cohomological_physics" title="Secondary calculus and cohomological physics">Secondary calculus</a> <ul><li><a href="/wiki/Differential_calculus_over_commutative_algebras" title="Differential calculus over commutative algebras">over commutative algebras</a></li></ul></li> <li><a href="/wiki/Sheaf_(mathematics)" title="Sheaf (mathematics)">Sheaf</a></li> <li><a href="/wiki/Stratifold" title="Stratifold">Stratifold</a></li> <li><a href="/wiki/Supermanifold" title="Supermanifold">Supermanifold</a></li> <li><a href="/wiki/Stratified_space" title="Stratified space">Stratified space</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Theories_of_gravitation" style="padding:3px"><table class="nowraplinks hlist mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Theories_of_gravitation" title="Template:Theories of gravitation"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Theories_of_gravitation" title="Template talk:Theories of gravitation"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Theories_of_gravitation" title="Special:EditPage/Template:Theories of gravitation"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Theories_of_gravitation" style="font-size:114%;margin:0 4em"><a href="/wiki/Gravity" title="Gravity">Theories of gravitation</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Standard</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;">Newtonian gravity (NG)</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Newton%27s_law_of_universal_gravitation" title="Newton&#39;s law of universal gravitation">Newton's law of universal gravitation</a></li> <li><a href="/wiki/Gauss%27s_law_for_gravity" title="Gauss&#39;s law for gravity">Gauss's law for gravity</a></li> <li><a href="/wiki/Poisson%27s_equation#Newtonian_gravity" title="Poisson&#39;s equation">Poisson's equation for gravity</a></li> <li><a href="/wiki/History_of_gravitational_theory" title="History of gravitational theory">History of gravitational theory</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/General_relativity" title="General relativity">General relativity (GR)</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Introduction_to_general_relativity" title="Introduction to general relativity">Introduction</a></li> <li><a href="/wiki/History_of_general_relativity" title="History of general relativity">History</a></li> <li><a href="/wiki/Mathematics_of_general_relativity" title="Mathematics of general relativity">Mathematics</a></li> <li><a href="/wiki/Exact_solutions_in_general_relativity" title="Exact solutions in general relativity">Exact solutions</a></li> <li><a href="/wiki/General_relativity#Further_reading" title="General relativity">Resources</a></li> <li><a href="/wiki/Tests_of_general_relativity" title="Tests of general relativity">Tests</a></li> <li><a href="/wiki/Parameterized_post-Newtonian_formalism" title="Parameterized post-Newtonian formalism">Post-Newtonian formalism</a></li> <li><a href="/wiki/Linearized_gravity" title="Linearized gravity">Linearized gravity</a></li> <li><a href="/wiki/ADM_formalism" title="ADM formalism">ADM formalism</a></li> <li><a href="/wiki/Gibbons%E2%80%93Hawking%E2%80%93York_boundary_term" title="Gibbons–Hawking–York boundary term">Gibbons–Hawking–York boundary term</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;line-height:1.2em;"><a href="/wiki/Alternatives_to_general_relativity" title="Alternatives to general relativity">Alternatives to<br />general relativity</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;">Paradigms</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Alternatives_to_general_relativity" title="Alternatives to general relativity">Classical theories of gravitation</a></li> <li><a href="/wiki/Quantum_gravity" title="Quantum gravity">Quantum gravity</a></li> <li><a href="/wiki/Theory_of_everything" title="Theory of everything">Theory of everything</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;">Classical</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/w/index.php?title=Poincar%C3%A9_gauge_theory&amp;action=edit&amp;redlink=1" class="new" title="Poincaré gauge theory (page does not exist)">Poincaré gauge theory</a> <ul><li><span style="font-size:85%;"><a href="/wiki/Einstein%E2%80%93Cartan_theory" title="Einstein–Cartan theory">Einstein–Cartan</a></span></li> <li><span style="font-size:85%;"><a href="/wiki/Teleparallelism" title="Teleparallelism">Teleparallelism</a></span></li></ul></li> <li><a href="/wiki/Bimetric_gravity" title="Bimetric gravity">Bimetric theories</a></li> <li><a href="/wiki/Gauge_theory_gravity" title="Gauge theory gravity">Gauge theory gravity</a></li> <li><a href="/wiki/Composite_gravity" title="Composite gravity">Composite gravity</a></li> <li><a href="/wiki/F(R)_gravity" title="F(R) gravity"><i>f</i>(<i>R</i>) gravity</a></li> <li><a href="/wiki/Infinite_derivative_gravity" title="Infinite derivative gravity">Infinite derivative gravity</a></li> <li><a href="/wiki/Massive_gravity" title="Massive gravity">Massive gravity</a></li> <li><a href="/wiki/Modified_Newtonian_dynamics" title="Modified Newtonian dynamics">Modified Newtonian dynamics, MOND</a> <ul><li><span style="font-size:85%;"><a href="/wiki/AQUAL" title="AQUAL">AQUAL</a></span></li> <li><span style="font-size:85%;"><a href="/wiki/Tensor%E2%80%93vector%E2%80%93scalar_gravity" title="Tensor–vector–scalar gravity">Tensor–vector–scalar</a></span></li></ul></li> <li><a href="/wiki/Nonsymmetric_gravitational_theory" title="Nonsymmetric gravitational theory">Nonsymmetric gravitation</a></li> <li><a href="/wiki/Scalar%E2%80%93tensor_theory" title="Scalar–tensor theory">Scalar–tensor theories</a> <ul><li><span style="font-size:85%;"><a href="/wiki/Brans%E2%80%93Dicke_theory" title="Brans–Dicke theory">Brans–Dicke</a></span></li></ul></li> <li><a href="/wiki/Scalar%E2%80%93tensor%E2%80%93vector_gravity" title="Scalar–tensor–vector gravity">Scalar–tensor–vector</a></li> <li><a href="/wiki/Conformal_gravity" title="Conformal gravity">Conformal gravity</a></li> <li><a href="/wiki/Scalar_theories_of_gravitation" title="Scalar theories of gravitation">Scalar theories</a> <ul><li><span style="font-size:85%;"><a href="/wiki/Nordstr%C3%B6m%27s_theory_of_gravitation" title="Nordström&#39;s theory of gravitation">Nordström</a></span></li></ul></li> <li><a href="/wiki/Whitehead%27s_theory_of_gravitation" title="Whitehead&#39;s theory of gravitation">Whitehead</a></li> <li><a href="/wiki/Geometrodynamics" title="Geometrodynamics">Geometrodynamics</a></li> <li><a href="/wiki/Induced_gravity" title="Induced gravity">Induced gravity</a></li> <li><a href="/wiki/Degenerate_Higher-Order_Scalar-Tensor_theories" title="Degenerate Higher-Order Scalar-Tensor theories">Degenerate Higher-Order Scalar-Tensor theories</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;">Quantum-mechanical</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Euclidean_quantum_gravity" title="Euclidean quantum gravity">Euclidean quantum gravity</a></li> <li><a href="/wiki/Canonical_quantum_gravity" title="Canonical quantum gravity">Canonical quantum gravity</a> <ul><li><span style="font-size:85%;"><a href="/wiki/Wheeler%E2%80%93DeWitt_equation" title="Wheeler–DeWitt equation">Wheeler–DeWitt equation</a></span></li> <li><span style="font-size:85%;"><a href="/wiki/Loop_quantum_gravity" title="Loop quantum gravity">Loop quantum gravity</a></span></li> <li><span style="font-size:85%;"><a href="/wiki/Spin_foam" title="Spin foam">Spin foam</a></span></li></ul></li> <li><a href="/wiki/Causal_dynamical_triangulation" title="Causal dynamical triangulation">Causal dynamical triangulation</a></li> <li><a href="/wiki/Asymptotic_safety_in_quantum_gravity" title="Asymptotic safety in quantum gravity">Asymptotic safety in quantum gravity</a></li> <li><a href="/wiki/Causal_sets" title="Causal sets">Causal sets</a></li> <li><a href="/wiki/DGP_model" title="DGP model">DGP model</a></li> <li><a href="/wiki/Rainbow_gravity_theory" title="Rainbow gravity theory">Rainbow gravity theory</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;">Unified-field-theoric</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Kaluza%E2%80%93Klein_theory" title="Kaluza–Klein theory">Kaluza–Klein theory</a></li> <li><a href="/wiki/Supergravity" title="Supergravity">Supergravity</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;">Unified-field-theoric and <br /> quantum-mechanical</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Noncommutative_quantum_field_theory" title="Noncommutative quantum field theory">Noncommutative geometry</a></li> <li><a href="/wiki/Semiclassical_gravity" title="Semiclassical gravity">Semiclassical gravity</a></li> <li><a href="/wiki/Superfluid_vacuum_theory" title="Superfluid vacuum theory">Superfluid vacuum theory</a> <ul><li><span style="font-size:85%;"><a href="/wiki/Superfluid_vacuum_theory#Logarithmic_BEC_vacuum_theory" title="Superfluid vacuum theory">Logarithmic BEC vacuum</a></span></li></ul></li> <li><a href="/wiki/String_theory" title="String theory">String theory</a> <ul><li><span style="font-size:85%;"><a href="/wiki/M-theory" title="M-theory">M-theory</a></span></li> <li><span style="font-size:85%;"><a href="/wiki/F-theory" title="F-theory">F-theory</a></span></li> <li><span style="font-size:85%;"><a href="/wiki/Heterotic_string_theory" title="Heterotic string theory">Heterotic string theory</a></span></li> <li><span style="font-size:85%;"><a href="/wiki/Type_I_string_theory" title="Type I string theory">Type I string theory</a></span></li> <li><span style="font-size:85%;"><a href="/wiki/Type_0_string_theory" title="Type 0 string theory">Type 0 string theory</a></span></li> <li><span style="font-size:85%;"><a href="/wiki/Bosonic_string_theory" title="Bosonic string theory">Bosonic string theory</a></span></li> <li><span style="font-size:85%;"><a href="/wiki/Type_II_string_theory" title="Type II string theory">Type II string theory</a></span></li> <li><span style="font-size:85%;"><a href="/wiki/Little_string_theory" title="Little string theory">Little string theory</a></span></li></ul></li> <li><a href="/wiki/Twistor_theory" title="Twistor theory">Twistor theory</a> <ul><li><span style="font-size:85%;"><a href="/wiki/Twistor_string_theory" title="Twistor string theory">Twistor string theory</a></span></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;">Generalisations / <br /> extensions of GR</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Liouville_gravity" class="mw-redirect" title="Liouville gravity">Liouville gravity</a></li> <li><a href="/wiki/Lovelock_theory_of_gravity" title="Lovelock theory of gravity">Lovelock theory</a></li> <li><a href="/wiki/(2%2B1)-dimensional_topological_gravity" title="(2+1)-dimensional topological gravity">(2+1)-dimensional topological gravity</a></li> <li><a href="/wiki/Gauss%E2%80%93Bonnet_gravity" title="Gauss–Bonnet gravity">Gauss–Bonnet gravity</a></li> <li><a href="/wiki/Jackiw%E2%80%93Teitelboim_gravity" title="Jackiw–Teitelboim gravity">Jackiw–Teitelboim gravity</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Pre-Newtonian<br />theories and<br /><a href="/wiki/Toy_model" title="Toy model">toy models</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Aristotelian_physics" title="Aristotelian physics">Aristotelian physics</a></li> <li><a href="/wiki/CGHS_model" title="CGHS model">CGHS model</a></li> <li><a href="/wiki/RST_model" title="RST model">RST model</a></li> <li><a href="/wiki/Mechanical_explanations_of_gravitation" title="Mechanical explanations of gravitation">Mechanical explanations</a> <ul><li><span style="font-size:85%;"><a href="/wiki/Le_Sage%27s_theory_of_gravitation" title="Le Sage&#39;s theory of gravitation">Fatio–Le Sage</a></span></li> <li><span style="font-size:85%;"><a href="/wiki/Entropic_gravity" title="Entropic gravity">Entropic gravity</a></span></li></ul></li> <li><a href="/wiki/Gravitational_interaction_of_antimatter" title="Gravitational interaction of antimatter">Gravitational interaction of antimatter</a></li> <li><a href="/wiki/Physics_in_the_medieval_Islamic_world" title="Physics in the medieval Islamic world">Physics in the medieval Islamic world</a></li> <li><a href="/wiki/Theory_of_impetus" title="Theory of impetus">Theory of impetus</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related topics</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Gravitational_wave" title="Gravitational wave">Gravitational wave</a></li> <li><a href="/wiki/Graviton" title="Graviton">Graviton</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Tensors" style="padding:3px"><table class="nowraplinks hlist mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Tensors" title="Template:Tensors"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Tensors" title="Template talk:Tensors"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Tensors" title="Special:EditPage/Template:Tensors"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Tensors" style="font-size:114%;margin:0 4em"><a href="/wiki/Tensor" title="Tensor">Tensors</a></div></th></tr><tr><td class="navbox-abovebelow" colspan="2"><div><i><a href="/wiki/Glossary_of_tensor_theory" title="Glossary of tensor theory">Glossary of tensor theory</a></i></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Scope</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Mathematics" title="Mathematics">Mathematics</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Coordinate_system" title="Coordinate system">Coordinate system</a></li> <li><a href="/wiki/Differential_geometry" title="Differential geometry">Differential geometry</a></li> <li><a href="/wiki/Dyadics" title="Dyadics">Dyadic algebra</a></li> <li><a href="/wiki/Euclidean_geometry" title="Euclidean geometry">Euclidean geometry</a></li> <li><a href="/wiki/Exterior_calculus" class="mw-redirect" title="Exterior calculus">Exterior calculus</a></li> <li><a href="/wiki/Multilinear_algebra" title="Multilinear algebra">Multilinear algebra</a></li> <li><a href="/wiki/Tensor_algebra" title="Tensor algebra">Tensor algebra</a></li> <li><a href="/wiki/Tensor_calculus" class="mw-redirect" title="Tensor calculus">Tensor calculus</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><div class="hlist"><ul><li><a href="/wiki/Physics" title="Physics">Physics</a></li><li><a href="/wiki/Engineering" title="Engineering">Engineering</a></li></ul></div></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Computer_vision" title="Computer vision">Computer vision</a></li> <li><a href="/wiki/Continuum_mechanics" title="Continuum mechanics">Continuum mechanics</a></li> <li><a href="/wiki/Electromagnetism" title="Electromagnetism">Electromagnetism</a></li> <li><a href="/wiki/General_relativity" title="General relativity">General relativity</a></li> <li><a href="/wiki/Transport_phenomena" title="Transport phenomena">Transport phenomena</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Notation</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Abstract_index_notation" title="Abstract index notation">Abstract index notation</a></li> <li><a href="/wiki/Einstein_notation" title="Einstein notation">Einstein notation</a></li> <li><a href="/wiki/Index_notation" title="Index notation">Index notation</a></li> <li><a href="/wiki/Multi-index_notation" title="Multi-index notation">Multi-index notation</a></li> <li><a href="/wiki/Penrose_graphical_notation" title="Penrose graphical notation">Penrose graphical notation</a></li> <li><a href="/wiki/Ricci_calculus" title="Ricci calculus">Ricci calculus</a></li> <li><a href="/wiki/Tetrad_(index_notation)" class="mw-redirect" title="Tetrad (index notation)">Tetrad (index notation)</a></li> <li><a href="/wiki/Van_der_Waerden_notation" title="Van der Waerden notation">Van der Waerden notation</a></li> <li><a href="/wiki/Voigt_notation" title="Voigt notation">Voigt notation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Tensor<br />definitions</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Tensor_(intrinsic_definition)" title="Tensor (intrinsic definition)">Tensor (intrinsic definition)</a></li> <li><a href="/wiki/Tensor_field" title="Tensor field">Tensor field</a></li> <li><a href="/wiki/Tensor_density" title="Tensor density">Tensor density</a></li> <li><a href="/wiki/Tensors_in_curvilinear_coordinates" title="Tensors in curvilinear coordinates">Tensors in curvilinear coordinates</a></li> <li><a href="/wiki/Mixed_tensor" title="Mixed tensor">Mixed tensor</a></li> <li><a href="/wiki/Antisymmetric_tensor" title="Antisymmetric tensor">Antisymmetric tensor</a></li> <li><a href="/wiki/Symmetric_tensor" title="Symmetric tensor">Symmetric tensor</a></li> <li><a href="/wiki/Tensor_operator" title="Tensor operator">Tensor operator</a></li> <li><a href="/wiki/Tensor_bundle" title="Tensor bundle">Tensor bundle</a></li> <li><a href="/wiki/Two-point_tensor" title="Two-point tensor">Two-point tensor</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Operation_(mathematics)" title="Operation (mathematics)">Operations</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Covariant_derivative" title="Covariant derivative">Covariant derivative</a></li> <li><a href="/wiki/Exterior_covariant_derivative" title="Exterior covariant derivative">Exterior covariant derivative</a></li> <li><a href="/wiki/Exterior_derivative" title="Exterior derivative">Exterior derivative</a></li> <li><a href="/wiki/Exterior_product" class="mw-redirect" title="Exterior product">Exterior product</a></li> <li><a href="/wiki/Hodge_star_operator" title="Hodge star operator">Hodge star operator</a></li> <li><a href="/wiki/Lie_derivative" title="Lie derivative">Lie derivative</a></li> <li><a href="/wiki/Raising_and_lowering_indices" title="Raising and lowering indices">Raising and lowering indices</a></li> <li><a href="/wiki/Symmetrization" title="Symmetrization">Symmetrization</a></li> <li><a href="/wiki/Tensor_contraction" title="Tensor contraction">Tensor contraction</a></li> <li><a href="/wiki/Tensor_product" title="Tensor product">Tensor product</a></li> <li><a href="/wiki/Transpose" title="Transpose">Transpose</a> (2nd-order tensors)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related<br />abstractions</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Affine_connection" title="Affine connection">Affine connection</a></li> <li><a href="/wiki/Basis_(linear_algebra)" title="Basis (linear algebra)">Basis</a></li> <li><a href="/wiki/Cartan_formalism_(physics)" class="mw-redirect" title="Cartan formalism (physics)">Cartan formalism (physics)</a></li> <li><a href="/wiki/Connection_form" title="Connection form">Connection form</a></li> <li><a href="/wiki/Covariance_and_contravariance_of_vectors" title="Covariance and contravariance of vectors">Covariance and contravariance of vectors</a></li> <li><a href="/wiki/Differential_form" title="Differential form">Differential form</a></li> <li><a href="/wiki/Dimension" title="Dimension">Dimension</a></li> <li><a href="/wiki/Exterior_form" class="mw-redirect" title="Exterior form">Exterior form</a></li> <li><a href="/wiki/Fiber_bundle" title="Fiber bundle">Fiber bundle</a></li> <li><a href="/wiki/Geodesic" title="Geodesic">Geodesic</a></li> <li><a href="/wiki/Levi-Civita_connection" title="Levi-Civita connection">Levi-Civita connection</a></li> <li><a href="/wiki/Linear_map" title="Linear map">Linear map</a></li> <li><a href="/wiki/Manifold" title="Manifold">Manifold</a></li> <li><a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">Matrix</a></li> <li><a href="/wiki/Multivector" title="Multivector">Multivector</a></li> <li><a href="/wiki/Pseudotensor" title="Pseudotensor">Pseudotensor</a></li> <li><a href="/wiki/Spinor" title="Spinor">Spinor</a></li> <li><a href="/wiki/Vector_(mathematics_and_physics)" title="Vector (mathematics and physics)">Vector</a></li> <li><a href="/wiki/Vector_space" title="Vector space">Vector space</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Notable tensors</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;">Mathematics</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Kronecker_delta" title="Kronecker delta">Kronecker delta</a></li> <li><a href="/wiki/Levi-Civita_symbol" title="Levi-Civita symbol">Levi-Civita symbol</a></li> <li><a href="/wiki/Metric_tensor" title="Metric tensor">Metric tensor</a></li> <li><a href="/wiki/Nonmetricity_tensor" title="Nonmetricity tensor">Nonmetricity tensor</a></li> <li><a href="/wiki/Ricci_curvature" title="Ricci curvature">Ricci curvature</a></li> <li><a class="mw-selflink selflink">Riemann curvature tensor</a></li> <li><a href="/wiki/Torsion_tensor" title="Torsion tensor">Torsion tensor</a></li> <li><a href="/wiki/Weyl_tensor" title="Weyl tensor">Weyl tensor</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;">Physics</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Moment_of_inertia#Inertia_tensor" title="Moment of inertia">Moment of inertia</a></li> <li><a href="/wiki/Angular_momentum#Angular_momentum_in_relativistic_mechanics" title="Angular momentum">Angular momentum tensor</a></li> <li><a href="/wiki/Spin_tensor" title="Spin tensor">Spin tensor</a></li> <li><a href="/wiki/Cauchy_stress_tensor" title="Cauchy stress tensor">Cauchy stress tensor</a></li> <li><a href="/wiki/Stress%E2%80%93energy_tensor" title="Stress–energy tensor">stress–energy tensor</a></li> <li><a href="/wiki/Einstein_tensor" title="Einstein tensor">Einstein tensor</a></li> <li><a href="/wiki/Electromagnetic_tensor" title="Electromagnetic tensor">EM tensor</a></li> <li><a href="/wiki/Gluon_field_strength_tensor" title="Gluon field strength tensor">Gluon field strength tensor</a></li> <li><a href="/wiki/Metric_tensor_(general_relativity)" title="Metric tensor (general relativity)">Metric tensor (GR)</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Mathematician" title="Mathematician">Mathematicians</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/%C3%89lie_Cartan" title="Élie Cartan">Élie Cartan</a></li> <li><a href="/wiki/Augustin-Louis_Cauchy" title="Augustin-Louis Cauchy">Augustin-Louis Cauchy</a></li> <li><a href="/wiki/Elwin_Bruno_Christoffel" title="Elwin Bruno Christoffel">Elwin Bruno Christoffel</a></li> <li><a href="/wiki/Albert_Einstein" title="Albert Einstein">Albert Einstein</a></li> <li><a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a></li> <li><a href="/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss">Carl Friedrich Gauss</a></li> <li><a href="/wiki/Hermann_Grassmann" title="Hermann Grassmann">Hermann Grassmann</a></li> <li><a href="/wiki/Tullio_Levi-Civita" title="Tullio Levi-Civita">Tullio Levi-Civita</a></li> <li><a href="/wiki/Gregorio_Ricci-Curbastro" title="Gregorio Ricci-Curbastro">Gregorio Ricci-Curbastro</a></li> <li><a href="/wiki/Bernhard_Riemann" title="Bernhard Riemann">Bernhard Riemann</a></li> <li><a href="/wiki/Jan_Arnoldus_Schouten" title="Jan Arnoldus Schouten">Jan Arnoldus Schouten</a></li> <li><a href="/wiki/Woldemar_Voigt" title="Woldemar Voigt">Woldemar Voigt</a></li> <li><a href="/wiki/Hermann_Weyl" title="Hermann Weyl">Hermann Weyl</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Bernhard_Riemann" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Bernhard_Riemann" title="Template:Bernhard Riemann"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Bernhard_Riemann" title="Template talk:Bernhard Riemann"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Bernhard_Riemann" title="Special:EditPage/Template:Bernhard Riemann"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Bernhard_Riemann" style="font-size:114%;margin:0 4em"><a href="/wiki/Bernhard_Riemann" title="Bernhard Riemann">Bernhard Riemann</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cauchy%E2%80%93Riemann_equations" title="Cauchy–Riemann equations">Cauchy–Riemann equations</a></li> <li><a href="/wiki/Generalized_Riemann_hypothesis" title="Generalized Riemann hypothesis">Generalized Riemann hypothesis</a></li> <li><a href="/wiki/Grand_Riemann_hypothesis" title="Grand Riemann hypothesis">Grand Riemann hypothesis</a></li> <li><a href="/wiki/Grothendieck%E2%80%93Riemann%E2%80%93Roch_theorem" title="Grothendieck–Riemann–Roch theorem">Grothendieck–Hirzebruch–Riemann–Roch theorem</a></li> <li><a href="/wiki/Hirzebruch%E2%80%93Riemann%E2%80%93Roch_theorem" title="Hirzebruch–Riemann–Roch theorem">Hirzebruch–Riemann–Roch theorem</a></li> <li><a href="/wiki/Local_zeta_function" title="Local zeta function">Local zeta function</a></li> <li><a href="/wiki/Measurable_Riemann_mapping_theorem" title="Measurable Riemann mapping theorem">Measurable Riemann mapping theorem</a></li> <li><a href="/wiki/Riemann_(crater)" title="Riemann (crater)">Riemann (crater)</a></li> <li><a href="/wiki/Riemann_Xi_function" class="mw-redirect" title="Riemann Xi function">Riemann Xi function</a></li> <li><a class="mw-selflink selflink">Riemann curvature tensor</a></li> <li><a href="/wiki/Riemann_hypothesis" title="Riemann hypothesis">Riemann hypothesis</a></li> <li><a href="/wiki/Riemann_integral" title="Riemann integral">Riemann integral</a></li> <li><a href="/wiki/Riemann_invariant" title="Riemann invariant">Riemann invariant</a></li> <li><a href="/wiki/Riemann_mapping_theorem" title="Riemann mapping theorem">Riemann mapping theorem</a></li> <li><a href="/wiki/Riemann_form" title="Riemann form">Riemann form</a></li> <li><a href="/wiki/Riemann_problem" title="Riemann problem">Riemann problem</a></li> <li><a href="/wiki/Riemann_series_theorem" title="Riemann series theorem">Riemann series theorem</a></li> <li><a href="/wiki/Riemann_solver" title="Riemann solver">Riemann solver</a></li> <li><a href="/wiki/Riemann_sphere" title="Riemann sphere">Riemann sphere</a></li> <li><a href="/wiki/Riemann_sum" title="Riemann sum">Riemann sum</a></li> <li><a href="/wiki/Riemann_surface" title="Riemann surface">Riemann surface</a></li> <li><a href="/wiki/Riemann_zeta_function" title="Riemann zeta function">Riemann zeta function</a></li> <li><a href="/wiki/Riemann%27s_differential_equation" title="Riemann&#39;s differential equation">Riemann's differential equation</a></li> <li><a href="/wiki/Riemann%27s_minimal_surface" title="Riemann&#39;s minimal surface">Riemann's minimal surface</a></li> <li><a href="/wiki/Riemannian_circle" class="mw-redirect" title="Riemannian circle">Riemannian circle</a></li> <li><a href="/wiki/Riemannian_connection_on_a_surface" title="Riemannian connection on a surface">Riemannian connection on a surface</a></li> <li><a href="/wiki/Riemannian_geometry" title="Riemannian geometry">Riemannian geometry</a></li> <li><a href="/wiki/Riemann%E2%80%93Hilbert_correspondence" title="Riemann–Hilbert correspondence">Riemann–Hilbert correspondence</a></li> <li><a href="/wiki/Riemann%E2%80%93Hilbert_problem" title="Riemann–Hilbert problem">Riemann–Hilbert problems</a></li> <li><a href="/wiki/Riemann%E2%80%93Lebesgue_lemma" title="Riemann–Lebesgue lemma">Riemann–Lebesgue lemma</a></li> <li><a href="/wiki/Riemann%E2%80%93Liouville_integral" title="Riemann–Liouville integral">Riemann–Liouville integral</a></li> <li><a href="/wiki/Riemann%E2%80%93Roch_theorem" title="Riemann–Roch theorem">Riemann–Roch theorem</a></li> <li><a href="/wiki/Riemann%E2%80%93Roch_theorem_for_smooth_manifolds" title="Riemann–Roch theorem for smooth manifolds">Riemann–Roch theorem for smooth manifolds</a></li> <li><a href="/wiki/Riemann%E2%80%93Siegel_formula" title="Riemann–Siegel formula">Riemann–Siegel formula</a></li> <li><a href="/wiki/Riemann%E2%80%93Siegel_theta_function" title="Riemann–Siegel theta function">Riemann–Siegel theta function</a></li> <li><a href="/wiki/Riemann%E2%80%93Silberstein_vector" title="Riemann–Silberstein vector">Riemann–Silberstein vector</a></li> <li><a href="/wiki/Riemann%E2%80%93Stieltjes_integral" title="Riemann–Stieltjes integral">Riemann–Stieltjes integral</a></li> <li><a href="/wiki/Riemann%E2%80%93von_Mangoldt_formula" title="Riemann–von Mangoldt formula">Riemann–von Mangoldt formula</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <b><a href="/wiki/Category:Bernhard_Riemann" title="Category:Bernhard Riemann">Category</a></b></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐645858d48f‐zvd4j Cached time: 20241202164420 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.698 seconds Real time usage: 0.963 seconds Preprocessor visited node count: 2514/1000000 Post‐expand include size: 165742/2097152 bytes Template argument size: 2979/2097152 bytes Highest expansion depth: 12/100 Expensive parser function count: 3/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 119248/5000000 bytes Lua time usage: 0.372/10.000 seconds Lua memory usage: 8351439/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 649.250 1 -total 24.53% 159.288 1 Template:General_relativity_sidebar 24.16% 156.867 1 Template:Sidebar_with_collapsible_lists 22.69% 147.285 1 Template:Reflist 17.99% 116.799 6 Template:Cite_book 14.04% 91.167 1 Template:Short_description 12.06% 78.268 10 Template:Navbox 9.08% 58.925 2 Template:Pagetype 7.51% 48.749 1 Template:Citation_needed 6.72% 43.615 3 Template:Hlist --> <!-- Saved in parser cache with key enwiki:pcache:130526:|#|:idhash:canonical and timestamp 20241202164420 and revision id 1259829374. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&amp;useformat=desktop" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Riemann_curvature_tensor&amp;oldid=1259829374">https://en.wikipedia.org/w/index.php?title=Riemann_curvature_tensor&amp;oldid=1259829374</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Theorems_about_circles" title="Category:Theorems about circles">Theorems about circles</a></li><li><a href="/wiki/Category:Bernhard_Riemann" title="Category:Bernhard Riemann">Bernhard Riemann</a></li><li><a href="/wiki/Category:Curvature_(mathematics)" title="Category:Curvature (mathematics)">Curvature (mathematics)</a></li><li><a href="/wiki/Category:Differential_geometry" title="Category:Differential geometry">Differential geometry</a></li><li><a href="/wiki/Category:Riemannian_geometry" title="Category:Riemannian geometry">Riemannian geometry</a></li><li><a href="/wiki/Category:Riemannian_manifolds" title="Category:Riemannian manifolds">Riemannian manifolds</a></li><li><a href="/wiki/Category:Tensors_in_general_relativity" title="Category:Tensors in general relativity">Tensors in general relativity</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_March_2022" title="Category:Articles with unsourced statements from March 2022">Articles with unsourced statements from March 2022</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 27 November 2024, at 08:16<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Riemann_curvature_tensor&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-79d9bc49cc-h6p2r","wgBackendResponseTime":169,"wgPageParseReport":{"limitreport":{"cputime":"0.698","walltime":"0.963","ppvisitednodes":{"value":2514,"limit":1000000},"postexpandincludesize":{"value":165742,"limit":2097152},"templateargumentsize":{"value":2979,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":3,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":119248,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 649.250 1 -total"," 24.53% 159.288 1 Template:General_relativity_sidebar"," 24.16% 156.867 1 Template:Sidebar_with_collapsible_lists"," 22.69% 147.285 1 Template:Reflist"," 17.99% 116.799 6 Template:Cite_book"," 14.04% 91.167 1 Template:Short_description"," 12.06% 78.268 10 Template:Navbox"," 9.08% 58.925 2 Template:Pagetype"," 7.51% 48.749 1 Template:Citation_needed"," 6.72% 43.615 3 Template:Hlist"]},"scribunto":{"limitreport-timeusage":{"value":"0.372","limit":"10.000"},"limitreport-memusage":{"value":8351439,"limit":52428800},"limitreport-logs":"table#1 {\n [\"size\"] = \"tiny\",\n}\nanchor_id_list = table#1 {\n [\"CITEREFBergmann_P.G.1976\"] = 1,\n [\"CITEREFBesse1987\"] = 1,\n [\"CITEREFKobayashiNomizu1963\"] = 1,\n [\"CITEREFLawsonMichelsohn1989\"] = 1,\n [\"CITEREFLee2018\"] = 1,\n [\"CITEREFLovelockRund1989\"] = 1,\n [\"CITEREFMisnerThorneWheeler1973\"] = 1,\n [\"CITEREFP._A._M._Dirac1996\"] = 1,\n [\"CITEREFRicciLevi-Civita1900\"] = 1,\n [\"CITEREFSandbergVernon1978\"] = 1,\n [\"CITEREFSynge_J.L.,_Schild_A.1949\"] = 1,\n}\ntemplate_list = table#1 {\n [\"Bernhard Riemann\"] = 1,\n [\"Citation\"] = 4,\n [\"Citation needed\"] = 1,\n [\"Cite book\"] = 6,\n [\"Cite journal\"] = 1,\n [\"Curvature\"] = 1,\n [\"DEFAULTSORT:Riemann Curvature Tensor\"] = 1,\n [\"General relativity sidebar\"] = 1,\n [\"Manifolds\"] = 1,\n [\"Refbegin\"] = 1,\n [\"Refend\"] = 1,\n [\"Reflist\"] = 1,\n [\"Riemannian geometry\"] = 1,\n [\"Sfn\"] = 2,\n [\"Short description\"] = 1,\n [\"Tensors\"] = 1,\n [\"Theories of gravitation\"] = 1,\n}\narticle_whitelist = table#1 {\n}\nciteref_patterns = table#1 {\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-645858d48f-zvd4j","timestamp":"20241202164420","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Riemann curvature tensor","url":"https:\/\/en.wikipedia.org\/wiki\/Riemann_curvature_tensor","sameAs":"http:\/\/www.wikidata.org\/entity\/Q855112","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q855112","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2002-10-24T07:44:57Z","dateModified":"2024-11-27T08:16:43Z","headline":"tensor field in general relativity and geometry"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10