CINXE.COM

Applied Mechanics and Materials Vol. 909 | Scientific.Net

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=device-width, initial-scale=1.0" /> <meta charset="utf-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta name="description" content="This edition collects research results and engineering solutions in materials science related to studying the mechanical properties and behaviour of elastomers, brittle polymeric material and dental implants made by 3D Printing technology. Readers will also be interested in the study of the mechanical behaviour of composite reinforced concrete beams and the simulation of the installation and jacking off a large steel grid project. The quantitative non-destructive evaluation of aircraft structures as well as the high-accuracy detection and classification of defects and deformation of metal screw heads are important for specialists in automatic technological monitoring. The results of the development and analysis of energy harvesting by the triboelectric nanogenerator and magnet-actuated piezoelectric harvester with results on error minimisation in robotic milling will be helpful to engineers in mechatronics and industrial robotics." /> <link rel="canonical" href="https://www.scientific.net/AMM.909" /> <meta property="og:title" content="Applied Mechanics and Materials Vol. 909 | Scientific.Net" /> <meta property="og:type" content="website" /> <meta property="og:url" content="https://www.scientific.net/AMM.909" /> <meta property="og:image" content="/Content/app/scinet5/images/metadata_logo.png" /> <meta property="og:image:type" content="image/png" /> <meta property="og:image:width" content="261" /> <meta property="og:image:height" content="260" /> <meta property="og:image:alt" content="Scientific.Net Logo" /> <title>Applied Mechanics and Materials Vol. 909 | Scientific.Net</title> <link href="/Content/app/scinet5/images/favicon.ico" rel="shortcut icon" /> <link href="/Content/public.min.css?v=BKBihgCkUm340JBGsNjEPtWz8I22CUsubMPC3V1WYzw" rel="stylesheet" /> <link rel="preconnect" href="https://www.google-analytics.com"> <link rel="preconnect" href="https://www.gstatic.com"> <link rel="preconnect" href="https://www.googletagmanager.com"> <link rel="icon" href="/Content/app/scinet5/images/favicon.ico"> <link rel="apple-touch-icon" href="/Content/app/scinet5/images/apple-touch-icon.png"> <link rel="preconnect" href="https://fonts.googleapis.com"> <link rel="preconnect" href="https://fonts.gstatic.com" crossorigin> <link href="https://fonts.googleapis.com/css?family=Open&#x2B;Sans&#x2B;Condensed:300,700%7COpen&#x2B;Sans:300i,400,400i,600,600i,700&amp;display=swap" rel="stylesheet"> <!-- HTML5 shim support of HTML5 elements and media queries --> <!--[if lte IE 9]> <script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script> <![endif]--> <!-- Google Tag Manager --> <script> (function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-T3VDKWV');</script> <!-- End Google Tag Manager --> </head> <body> <noscript> <!-- Google Tag Manager (noscript) --> <iframe src="https://www.googletagmanager.com/ns.html?id=GTM-T3VDKWV" height="0" width="0" style="display:none;visibility:hidden"></iframe> </noscript> <div class="sc-content-container"> <div class="sc-content"> <div class="header-menu-container"> <div class="identity-menu-container header-menu-container-not-logged-in"> <div class="container"> <div class="row"> <ul class="role-menu"> <li class="user-menu between normal-user-menu"> <div class="hdivider-100"></div> <div class="cart-info"> <a href="https://main.scientific.net/Payment/Cart"> <i class="inline-icon cart-icon-white"></i> <span id="cartInfoTotalItemsCount"></span> </a> </div> <div class="user-menu-login-or-register"> <a href="https://main.scientific.net/Account/Registration?ReturnUrl=https%3A%2F%2Fwww.scientific.net%2FAMM.909" rel="nofollow"> Registration </a> <a href="https://main.scientific.net/Account/Login?ReturnUrl=https%3A%2F%2Fwww.scientific.net%2FAMM.909" rel="nofollow"> Log In </a> </div> </li> </ul> </div> </div> </div> <div class="header-fluid"> <div class="container"> <div class="row"> <div class="block-header"> <div class="logo-block"> <a href="/" class="application-logo inline-icon logo-icon"></a> <div class="burger-menu-button visible-xs"> <div class="hamburger-box"> <div class="hamburger-inner"></div> </div> </div> </div> <div class="menu-and-search-block"> <div class="burger-menu"> <nav class="burger-menu-items"> <div class="public-menu"> <ul> <li><a href="/ForLibraries">For Libraries</a></li> <li><a href="/ForPublication/Paper">For Publication</a></li> <li><a href="/DocuCenter">Downloads</a></li> <li><a href="/news/all">News</a></li> <li><a href="/Home/AboutUs">About Us</a></li> <li><a href="/Home/Contacts">Contact Us</a></li> </ul> </div> </nav> </div> <div class="header-menu-top"> <div class="header-menu-list"> <a href="/ForLibraries">For Libraries</a> <a href="/ForPublication/Paper">For Publication</a> <a href="/DocuCenter">Downloads</a> <a href="/news/all">News</a> <a href="/Home/AboutUs">About Us</a> <a href="/Home/Contacts">Contact Us</a> </div> </div> <div class="search-block"> <input class="search-control" type="search" placeholder="Search" data-url="/Search"> <button class="button button-95 button-grey search-btn button-simple"> <span class="hidden-xs">Search</span> <i class="inline-icon search-icon-grey visible-xs"></i> </button> </div> </div> </div> </div> </div> </div> </div> <div class="container-fluid"> <div class="row"> <div class="banner-new"></div> </div> </div> <div class="content"> <div class="container"> <div class="row content-container"> <div class="left-content col-md-4 col-sm-5"> <div class="left-content-first-line icon-container mobile-collapse-button"> <div class="page-name-block underline-begin sibling-name-block"> <div class="page-name-block-text"> Volumes <a class="left-content-expand-button"><i class="inline-icon arrow-right-black no-hover-icon on-focus-arrow-down-black"></i></a> </div> </div> </div> <div class="row mobile-collapse-content"> <a href="/AMM.915" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Applied Mechanics and Materials <br /> <span class="paper-volume-number">Vol. 915</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/AMM.914" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Applied Mechanics and Materials <br /> <span class="paper-volume-number">Vol. 914</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/AMM.913" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Applied Mechanics and Materials <br /> <span class="paper-volume-number">Vol. 913</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/AMM.912" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Applied Mechanics and Materials <br /> <span class="paper-volume-number">Vol. 912</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/AMM.911" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Applied Mechanics and Materials <br /> <span class="paper-volume-number">Vol. 911</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/AMM.910" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Applied Mechanics and Materials <br /> <span class="paper-volume-number">Vol. 910</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/AMM.909" class="normal-large-text icon-container active-element active"> <div class="element-list"> <div class="element-list-text"> Applied Mechanics and Materials <br /> <span class="paper-volume-number">Vol. 909</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/AMM.908" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Applied Mechanics and Materials <br /> <span class="paper-volume-number">Vol. 908</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/AMM.907" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Applied Mechanics and Materials <br /> <span class="paper-volume-number">Vol. 907</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/AMM.906" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Applied Mechanics and Materials <br /> <span class="paper-volume-number">Vol. 906</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/AMM.905" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Applied Mechanics and Materials <br /> <span class="paper-volume-number">Vol. 905</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/AMM.904" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Applied Mechanics and Materials <br /> <span class="paper-volume-number">Vol. 904</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/AMM.903" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Applied Mechanics and Materials <br /> <span class="paper-volume-number">Vol. 903</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> </div> </div> <div class="right-content col-md-8 col-sm-7 col-xs-12"> <div class="bread-crumbs hidden-xs"> <a class="bread-crumbs-first" href="/">Home</a><i class="inline-icon arrow-breadcrumbs"></i><a class="bread-crumbs-first" href="/AMM">Applied Mechanics and Materials</a><i class="inline-icon arrow-breadcrumbs"></i><span class="bread-crumbs-second">Applied Mechanics and Materials Vol. 909</span></div> <div class="page-name-block underline-begin"> <h1 class="page-name-block-text">Applied Mechanics and Materials Vol. 909</h1> </div> <div class="clearfix title-details"> <div class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>DOI:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p><a href="https://doi.org/10.4028/v-bqo9gj">https://doi.org/10.4028/v-bqo9gj</a></p> </div> </div> </div> </div> <div id="titleMarcXmlLink" style="display: none" class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>Export:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p><a href="/AMM.909/marc.xml">MARCXML</a></p> </div> </div> </div> </div> <div class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>ToC:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p><a href="/AMM.909_toc.pdf">Table of Contents</a></p> </div> </div> </div> </div> </div> <div class="volume-tabs"> </div> <div class=""> <div class="volume-papers-page"> <div class="block-search-pagination clearfix"> <div class="block-search-volume"> <input id="paper-search" type="search" placeholder="Search" maxlength="65"> </div> <div class="pagination-container"><ul class="pagination"><li class="active"><span>1</span></li><li><a href="/AMM.909/2">2</a></li><li class="PagedList-skipToNext"><a href="/AMM.909/2" rel="next">></a></li></ul></div> </div> <div class="block-volume-title normal-text-gray"> <p> Paper Title <span>Page</span> </p> </div> <div class="item-block"> <div class="item-link"> <a href="/AMM.909.-3">Preface</a> </div> </div> <div class="item-block"> <div class="item-link"> <a href="/AMM.909.1">Study of the Impact of Ionic Liquid on the Reactive Compatibilization of the NBR/EVASH/PP Vulcanized Thermoplatic Elastomer Using the Click Chemistry Technique by Thiol-Ene</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Danielle Ferreira dos Santos, Renata Antoun Sim&#xE3;o </div> </div> <div id="abstractTextBlock587061" class="volume-info volume-info-text volume-info-description"> Abstract: The dynamic vulcanization technique is a process of crosslinking an elastomer during mixing with a molten state thermoplastic, resulting in a new class of thermoplastic elastomers (TPEs): vulcanized thermoplastics (TPVs). This technique obtains materials with rubber behavior at room temperature, but processed as plastics at high temperatures, especially by extrusion and injection. The advantage of using the process of obtaining thermoplastic elastomers is that traditional elastomers require several steps in their processing. From an environmental point of view, vulcanized thermoplastics are interesting, since these materials keep their properties practically unchanged with direct recycling, without the need for any treatments. The objective of this work was to develop a new system of reactive compatibilization for the PP/NBR mixture, by means of the click chemistry technique by the reaction of the thiol-ene type, using as a compatibilizing agent the addition of EVASH (Poli (ethylene-co-alcoholicvinyl)-co-mercapto-vinyl acetate), resulting from the chemical modification of EVA (poly (acrylonitrile-co-butadiene)) with mercaptan groups by transesterification. The ionic liquid acted as a catalyst, optimizing the transesterification reaction of EVA, to obtain EVASH with a greater presence of -SH to EVA, obtaining more rigid systems due to the click thiol-ene bond. </div> <div> <a data-readmore="{ block: '#abstractTextBlock587061', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 1 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/AMM.909.11">Peridynamic Model for Tensile Elongation and Fracture Simulations of Polymethyl Methacrylate Notched Specimens</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Muhammad Azim Azizi, Mohd Faiz Mohd Ridhuan, Mohd Zakiyuddin Mohd Zahari, Sharafiz Abdul Rahim, Muhammad Amin Azman </div> </div> <div id="abstractTextBlock587967" class="volume-info volume-info-text volume-info-description"> Abstract: This paper presents the peridynamic (PD) numerical model for simulating a tensile test until total fracture for a brittle polymeric material namely polymethyl methacrylate (PMMA). U-notched and V-notched specimens were used to investigate the effect of the notches on the elongation and fracture of PMMA. The tensile elongation of PMMA exhibits nonlinearity with respect to the applied load, while the fracture occurs when the material stress has reached the ultimate tensile stress of the material. Similar elongation and fracture properties were applied on PD simulations. Two types of elongation equation are used namely brittle and ductile equations to form PD-brittle and PD-ductile models. The published experimental data of tensile fracture test on notched PMMA specimens are used as reference to validate the simulations of the PD models. The PD numerical force-extension curves have good quantitative similarity for V-notched specimen but adequate quantitative similarity for U-notched specimen. As for the quality of the fractured specimen shape, the PD simulations have good similarity for the V-notched specimen but adequate similarity for the U-notched specimen. The plot of the internal force distribution from the simulations of PD shows good qualitative similarity to the plot of the stress distribution from the published data of FEM in terms of stress concentration. From the PD results, it is observed that the PD-ductile model has better capability in producing accurate simulation of the notched specimens than the PD-brittle model. </div> <div> <a data-readmore="{ block: '#abstractTextBlock587967', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 11 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/AMM.909.29">Thermo-Mechanical Bending for Hybrid Material Plates Perfect-Imperfect Rectangular Using High Order Theory</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Zerrouki Otmane, Merdaci Slimane, Hadj Mostefa Adda </div> </div> <div id="abstractTextBlock589616" class="volume-info volume-info-text volume-info-description"> Abstract: In this paper, a higher order shear deformation theory is used to analyse the thermo-mechanical bending response of perfect-imperfect rectangular plates for hybrid ceramic and metal type (FGP) functionally graded plates with porosities. Based on the mixing law, the FG porous material qualities fluctuate with the thickness of the FGP layer. The equilibrium equations are found using the total potential energy approach. For simply supported (FGP) porous plates, the thermo-mechanical response is calculated. Analytical research shows the correctness of the existing high-order shear deformation theory in predicting the thermo-mechanical response of perfect-imperfect rectangular FG plates. Geometric characteristics, thickness ratios, gradient indices, porosity coefficients, mechanical loading, and thermal loading are all covered. According to the findings, the proposed hypothesis is more likely to be correct when it comes to the thermo-mechanical response of FG porous plates. </div> <div> <a data-readmore="{ block: '#abstractTextBlock589616', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 29 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/AMM.909.45">Numerical and Experimental Analysis of Segmented Porous Implant Fabricated by 3D Printing and CNC Composite Machining Technology</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Xiao Zhang, Jin Yang Zhang, Jian Yu Chen, Xian Shuai Chen </div> </div> <div id="abstractTextBlock589572" class="volume-info volume-info-text volume-info-description"> Abstract: The purpose of this study was to design porous implants with particular structure and evaluate their biomechanical behavior. Thus, a segmented porous dental implant (SPDI) was designed and manufactured by 3D Printing and computer numerical control (CNC) composite machining technology. The FE analysis was used to investigate its static mechanical property. Fatigue test was performed to verify its fatigue life. Resonance frequency analysis and pull-out tests were carried out to study its primary stability. Results indicated that better stress distribution was observed for SPDI. Fatigue test showed that no fracture or failure occurred in SPDI samples after 8 million cycles. The average implant stability quotient (ISQ) values of the SPDI inserted into the porous and denser artificial bones were 68.7 and 73.0 respectively. The average maximum pull-out force of SPDI extracted from the artificial bones was 347.5 N. This study provided a new structural design and manufacturing method for porous implant. The results suggested that the novel porous implant obtained good mechanical adaptability and primary stability. </div> <div> <a data-readmore="{ block: '#abstractTextBlock589572', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 45 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/AMM.909.55">Mechanical Behavior of RC Beams Strengthened in Shear with CFRP Grid鈥揈poxy Mortar</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Lianheng Cai, Shigenobu Kainuma, Mu Ye Yang, Rui Guo </div> </div> <div id="abstractTextBlock589914" class="volume-info volume-info-text volume-info-description"> Abstract: A total of seven beam specimens were carried out to investigate the shear behavior of reinforced concrete (RC) beams strengthened by carbon fiber reinforced polymer (CFRP) grid with epoxy mortar, considering various shear span ratios, concrete strengths and intervals of CFRP grid. According to the test results, the nonlinear regression analysis was conducted and further a prediction method of shear capacity was proposed for CFRP grid-strengthened RC beams. The results showed that the shear behavior of strengthened beams were obviously improved, mainly due to CFRP grid. The shear strengthening effects of CFRP grid not only had a relation to the intervals of grids, but also were closely related to the shear span ratios and the concrete strengths, and thus both of them also cannot be ignored in design. The novel prediction method proposed in this paper, was verified by collecting data and regarded as a good predictor. </div> <div> <a data-readmore="{ block: '#abstractTextBlock589914', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 55 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/AMM.909.63">Research on Comprehensive Technology of Steel Grid Installation and Integral Jacking</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Zheng Ji Li, Chun Hui Wang, Qiu Shi Han, Zhen Zhen Quan, Hai Xuan Zhang </div> </div> <div id="abstractTextBlock590469" class="volume-info volume-info-text volume-info-description"> Abstract: In this paper, through the construction simulation of the installation and jacking of a large steel grid project, ANSYS software is used to select the corresponding finite element module, and by analyzing the construction models of different modes and different load conditions, the analysis results and structural models are displayed. The 12 supporting hydraulic jacks can meet the overall steel structure hoisting requirements on site. At the same time, the calculation model takes into account the deformation of the overall grid during the unloading process. After testing, the maximum displacement is 7mm, which meets the requirements of national regulations. This method better supports the construction guidance, and also achieved good benefits during the on-site implementation process. The installation plan and jacking technology are worthy of reference. </div> <div> <a data-readmore="{ block: '#abstractTextBlock590469', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 63 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/AMM.909.69">Qualitative to Quantitative Non-Destructive Evaluation: A Concept for D-Sight Inspections of Aircraft Structures</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Andrzej Katunin, Krzysztof Dragan </div> </div> <div id="abstractTextBlock589591" class="volume-info volume-info-text volume-info-description"> Abstract: Non-destructive evaluation of structures is a key procedure in operation of aircraft structures, necessary to maintain their quality and integrity. Numerous non-destructive testing (NDT) techniques have been adapted to inspect aircraft structures and are currently used according to appropriate protocols. However, many of them provide only qualitative results, such as the D-Sight optical NDT technique used for inspections in aviation. In this study, a concept of improvement of the D-Sight technique is proposed by means of appropriate experimental program and processing procedures applied to the resulting images from inspection. It was demonstrated that appropriately selected processing methods may allow assessing damage quantitatively and improve the overall sensitivity and applicability of a given NDT technique. </div> <div> <a data-readmore="{ block: '#abstractTextBlock589591', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 69 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/AMM.909.75">High-Accuracy Detection and Classification of Defect and Deformation of Metal Screw Head Achieved by Convolutional Neural Networks</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Jin Yi Lai, Yu Reng Tsao, Cheng Yang Liu </div> </div> <div id="abstractTextBlock590495" class="volume-info volume-info-text volume-info-description"> Abstract: Nowadays, the industry requires automatic production for high-speed manufacturing. However, the products must also maintain high quality and reliability. An efficient inspection technique should be conducted for the improvement in the manufacturing quality. In order to achieve high inspection rate, optical inspection based on machine vision often raises the threshold of the judgment and this will worsen false detection. In this study, we propose a high-accuracy optical inspection system based on deep learning technology. Various defects in screw head are precisely detected and analyzed, which include surface damage, unprocessed, and stripped surfaces. An industrial camera and microscope system are employed to collect the raw images of metal screws with different defect types. The raw images of 3200 are utilized to train the designed convolutional neural networks. The experimental results indicate that the proposed system reaches a detection accuracy of 92.8% and the average detection speed is 0.03 second per image. In comparison with conventional machine vision methods, the proposed measurement system is more suitable for the inspection of industrial production line. </div> <div> <a data-readmore="{ block: '#abstractTextBlock590495', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 75 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/AMM.909.81">Magnetic Structured Triboelectric Nanogenerators for Energy Harvesting</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Ali Matin Nazar, King James Egbe, Peng Cheng Jiao </div> </div> <div id="abstractTextBlock589609" class="volume-info volume-info-text volume-info-description"> Abstract: Abstract. Triboelectric nanogenerators (TENG) have made significant progress as a sustainable energy harvesting technique due to their ease of assembly, high power density, good stability and cost-efficiency. This study develops the magnetic structured triboelectric nanogenerators (MS-TENG) for energy harvesting with different loading frequency. The MS-TENG use magnetic force in the sliding mode to provide the repulsive force. The dielectric and electrode components, in particular, are appropriately connected to the circuit, which is attached to the digital oscilloscope for voltage performance. The copper capsules in mode two were the most effective design for the MS-TENG. The highest load-circuit voltage of 4.0 V is obtained for the copper (Cu) MS-TENG in mode 2 (dielectric capsule designed in mode 2 is first coated with a layer of Cu or Al and then covered with Kapton). A peak power in this design is 3.4 碌W. The suggested MS-TENG offers a practical way to gather electrical energy via the triboelectric effect, which are suitable for multifunctional applications. </div> <div> <a data-readmore="{ block: '#abstractTextBlock589609', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 81 </div> </div> <div class="block-bottom-pagination"> <div class="pager-info"> <p>Showing 1 to 10 of 12 Paper Titles</p> </div> <div class="pagination-container"><ul class="pagination"><li class="active"><span>1</span></li><li><a href="/AMM.909/2">2</a></li><li class="PagedList-skipToNext"><a href="/AMM.909/2" rel="next">></a></li></ul></div> </div> </div> </div> </div> </div> </div> </div> <div class="social-icon-popup"> <a href="https://www.facebook.com/Scientific.Net.Ltd/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon facebook-popup-icon social-icon"></i></a> <a href="https://twitter.com/Scientific_Net/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon twitter-popup-icon social-icon"></i></a> <a href="https://www.linkedin.com/company/scientificnet/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon linkedin-popup-icon social-icon"></i></a> </div> </div> <div class="sc-footer"> <div class="footer-fluid"> <div class="container"> <div class="row"> <div class="footer-menu col-md-12 col-sm-12 col-xs-12"> <ul class="list-inline menu-font"> <li><a href="/ForLibraries">For Libraries</a></li> <li><a href="/ForPublication/Paper">For Publication</a></li> <li><a href="/insights" target="_blank">Insights</a></li> <li><a href="/DocuCenter">Downloads</a></li> <li><a href="/Home/AboutUs">About Us</a></li> <li><a href="/PolicyAndEthics/PublishingPolicies">Policy &amp; Ethics</a></li> <li><a href="/Home/Contacts">Contact Us</a></li> <li><a href="/Home/Imprint">Imprint</a></li> <li><a href="/Home/PrivacyPolicy">Privacy Policy</a></li> <li><a href="/Home/Sitemap">Sitemap</a></li> <li><a href="/Conferences">All Conferences</a></li> <li><a href="/special-issues">All Special Issues</a></li> <li><a href="/news/all">All News</a></li> <li><a href="/read-and-publish-agreements">Read &amp; Publish Agreements</a></li> </ul> </div> </div> </div> </div> <div class="line-footer"></div> <div class="footer-fluid"> <div class="container"> <div class="row"> <div class="col-xs-12"> <a href="https://www.facebook.com/Scientific.Net.Ltd/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon facebook-footer-icon social-icon"></i></a> <a href="https://twitter.com/Scientific_Net/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon twitter-footer-icon social-icon"></i></a> <a href="https://www.linkedin.com/company/scientificnet/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon linkedin-footer-icon social-icon"></i></a> </div> </div> </div> </div> <div class="line-footer"></div> <div class="footer-fluid"> <div class="container"> <div class="row"> <div class="col-xs-12 footer-copyright"> <p> &#169; 2024 Trans Tech Publications Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For open access content, terms of the Creative Commons licensing CC-BY are applied. <br />Scientific.Net is a registered trademark of Trans Tech Publications Ltd. </p> </div> </div> </div> </div> </div> <a class="scrollTop inline-icon scroll-top-icon" href="#" style="display: none"></a> </div> <script src="/Scripts/public.min.js?v=BtSq2PJEHRTW2PekpQGgIQKs7-OSPiKhsoI9rMs6kTU"></script> <script> $(function () { $("#paper-search").autocomplete({ minLength: 1, source: '/Title/Search?kurzel=AMM&volumeBegin=909&volumeEnd=909', delay: 200, select: function (event, ui) { window.location.href = ui.item.url; } }); }); </script> <script asp-render-component-scripts> $(function () { $.get("/Title/ShowMarcXmlLink") .done(function (showMarcXmlLink) { if (showMarcXmlLink) { $("#titleMarcXmlLink").show(); } }); }); Scinet.public = (function () { function loadCartInfo(onLoad) { var formatCartItemCount = function (count) { var format = (count > 1 || count === 0) ? "{0} items" : "{0} item"; $("#cartInfoTotalItemsCount").html(Scinet.stringFormat(format, count)); }, cookieCartItemCount = Cookies.get("Scinet5.CartItemsCount"); if (onLoad && cookieCartItemCount != null) { formatCartItemCount(parseInt(cookieCartItemCount, 10)); } else { $.ajax({ url: "/Cart/GetItemsCount", cache: false }) .done( function (count) { Cookies.set("Scinet5.CartItemsCount", count, { domain: ".scientific.net", secure: true }); formatCartItemCount(count); }); } } return { loadCartInfo: loadCartInfo }; })(); $(function () { Scinet.public.loadCartInfo(true); $("[data-add-book-to-cart]").on("click", function (e) { e.preventDefault(); var data = $(this).data("add-book-to-cart"); console.log(data); var url = "/Cart/AddBook"; $.post(url, data) .done( function () { Scinet.public.loadCartInfo(); $("#addToCart").modal(); }) .fail( function (xhr) { Scinet.error(xhr.responseText); }); }) }); </script> <script> var $buoop = { required: { e: 11, f: -6, o: -6, s: -3, c: -6 }, insecure: false, unsupported: false, api: 2019.11, reminder: 0, onshow: function () { window.browserUpdateOutdated = true; } }; function $buo_f() { var e = document.createElement("script"); e.src = "//browser-update.org/update.min.js"; document.body.appendChild(e); }; try { document.addEventListener("DOMContentLoaded", $buo_f, false) } catch (e) { window.attachEvent("onload", $buo_f) } </script> <!-- IE polyfills--> <!--[if lt IE 10]> <script src="/Scripts/lib/flexibility/flexibility.js"></script> <script> flexibility(document.documentElement); </script> <![endif]--> <script> window.clientErrorLogActionUrl = "/Errors/LogClientError"; </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10