CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 443 results for author: <span class="mathjax">Huang, Z</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Huang%2C+Z">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Huang, Z"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Huang%2C+Z&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Huang, Z"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Huang%2C+Z&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Huang%2C+Z&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Huang%2C+Z&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Huang%2C+Z&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Huang%2C+Z&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Huang%2C+Z&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.01679">arXiv:2412.01679</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.01679">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Optimisation and Loss Analyses of Pulsed Field Magnetisation in a Superconducting Motor with Cryocooled Iron Cores </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Qi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hao%2C+L">Luning Hao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Hongye Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+G">Guojin Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+H">Haigening Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yuyang Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zhipeng Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Jintao Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Coombs%2C+T">Tim Coombs</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.01679v1-abstract-short" style="display: inline;"> A 2D electromagnetic-thermal coupled numerical model has been developed using the finite element method and validated against experimental data to investigate a superconducting machine featuring high-temperature superconducting (HTS) tape stacks and cryocooled iron cores. The HTS stacks are transformed into trapped field stacks (TFSs) through pulsed field magnetisation (PFM), generating rotor fiel&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01679v1-abstract-full').style.display = 'inline'; document.getElementById('2412.01679v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.01679v1-abstract-full" style="display: none;"> A 2D electromagnetic-thermal coupled numerical model has been developed using the finite element method and validated against experimental data to investigate a superconducting machine featuring high-temperature superconducting (HTS) tape stacks and cryocooled iron cores. The HTS stacks are transformed into trapped field stacks (TFSs) through pulsed field magnetisation (PFM), generating rotor fields. After PFM, the superconducting motor operates on the same principle as permanent magnet synchronous motors. This study explores the behaviour of HTS stacks by altering the stack&#39;s layer number from one to nine and adjusting the pulsed current amplitude from 250 A to 1000 A. The primary objective of this paper is to identify the optimal combination of pulsed current amplitudes and TFS layer numbers for achieving maximum magnetisation fields. The secondary objective is to evaluate the overall losses in both superconducting and non-superconducting parts of the machine during magnetisation, including heat generated in various layers of the TFS, and losses in the motor&#39;s active materials (copper windings and iron cores). Two motor configurations were proposed, and two calculation methods using linear interpolation of iron losses and steel grades were introduced to estimate the iron losses for the studied iron material, M270-35A. This pioneering study is expected to serve as a valuable reference for loss analyses and structural design considerations in developing superconducting machines. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01679v1-abstract-full').style.display = 'none'; document.getElementById('2412.01679v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19pages, 18 figures, 5 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.01393">arXiv:2412.01393</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.01393">pdf</a>, <a href="https://arxiv.org/format/2412.01393">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Machine Learning Analysis of Anomalous Diffusion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+W">Wenjie Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Y">Yi Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+X">Xiang Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+H">Hui Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+G">Gongyi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jing Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zihan Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.01393v1-abstract-short" style="display: inline;"> The rapid advancements in machine learning have made its application to anomalous diffusion analysis both essential and inevitable. This review systematically introduces the integration of machine learning techniques for enhanced analysis of anomalous diffusion, focusing on two pivotal aspects: single trajectory characterization via machine learning and representation learning of anomalous diffusi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01393v1-abstract-full').style.display = 'inline'; document.getElementById('2412.01393v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.01393v1-abstract-full" style="display: none;"> The rapid advancements in machine learning have made its application to anomalous diffusion analysis both essential and inevitable. This review systematically introduces the integration of machine learning techniques for enhanced analysis of anomalous diffusion, focusing on two pivotal aspects: single trajectory characterization via machine learning and representation learning of anomalous diffusion. We extensively compare various machine learning methods, including both classical machine learning and deep learning, used for the inference of diffusion parameters and trajectory segmentation. Additionally, platforms such as the Anomalous Diffusion Challenge that serve as benchmarks for evaluating these methods are highlighted. On the other hand, we outline three primary strategies for representing anomalous diffusion: the combination of predefined features, the feature vector from the penultimate layer of neural network, and the latent representation from the autoencoder, analyzing their applicability across various scenarios. This investigation paves the way for future research, offering valuable perspectives that can further enrich the study of anomalous diffusion and advance the application of artificial intelligence in statistical physics and biophysics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01393v1-abstract-full').style.display = 'none'; document.getElementById('2412.01393v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">43 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.16830">arXiv:2411.16830</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.16830">pdf</a>, <a href="https://arxiv.org/format/2411.16830">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Cavity-Quantum Electrodynamics with Moir茅 Flatband Photonic Crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yu-Tong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+Q">Qi-Hang Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+J">Jun-Yong Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiao%2C+Y">Yufei Qiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C">Chen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+X">Xiao-Tian Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+C">Chen-Hui Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zi-Jian Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+C">Cheng-Nian Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+Y">Yun Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+K">Kai Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhan%2C+W">Wen-Kang Zhan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+C">Chao Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+X">Xiaolong Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tee%2C+C+A+T+H">Clarence Augustine T H Tee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sha%2C+W+E+I">Wei E. I. Sha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zhixiang Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">Huiyun Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+C">Chao-Yuan Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ying%2C+L">Lei Ying</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+F">Feng Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.16830v1-abstract-short" style="display: inline;"> Quantum emitters are a key component in photonic quantum technologies. Enhancing their single-photon emission by engineering the photonic environment using cavities can significantly improve the overall efficiency in quantum information processing. However, this enhancement is often constrained by the need for precise nanoscale control over the emitter&#39;s position within micro- or nano-cavities. In&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16830v1-abstract-full').style.display = 'inline'; document.getElementById('2411.16830v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.16830v1-abstract-full" style="display: none;"> Quantum emitters are a key component in photonic quantum technologies. Enhancing their single-photon emission by engineering the photonic environment using cavities can significantly improve the overall efficiency in quantum information processing. However, this enhancement is often constrained by the need for precise nanoscale control over the emitter&#39;s position within micro- or nano-cavities. Inspired by the fascinating physics of moir茅 patterns, we present an approach to strongly modify the spontaneous emission rate of a quantum emitter using a finely designed multilayer moir茅 photonic crystal with a robust isolated-flatband dispersion. Theoretical analysis reveals that, due to its nearly infinite photonic density of states, the moir茅 cavity can simultaneously achieve a high Purcell factor and exhibit large tolerance over the emitter&#39;s position. We experimentally demonstrate the coupling between this moir茅 cavity and a quantum dot through the cavity-determined polarization of the dot&#39;s emission. The radiative lifetime of the quantum dot can be tuned by a factor of 40, ranging from 42 ps to 1692 ps, which is attributed to strong Purcell enhancement and Purcell inhibition effects. Our findings pave the way for moir茅 flatband cavity-enhanced quantum light sources, quantum optical switches, and quantum nodes for quantum internet applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16830v1-abstract-full').style.display = 'none'; document.getElementById('2411.16830v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13725">arXiv:2411.13725</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.13725">pdf</a>, <a href="https://arxiv.org/format/2411.13725">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Renormalization of States and Quasiparticles in Many-body Downfolding </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Canestraight%2C+A">Annabelle Canestraight</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zhen Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vlcek%2C+V">Vojtech Vlcek</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13725v2-abstract-short" style="display: inline;"> We explore the principles of many-body Hamiltonian complexity reduction via downfolding on an effective low-dimensional representation. We present a unique measure of fidelity between the effective (reduced-rank) description and the full many-body treatment for arbitrary (i.e., ground and excited) states. When the entire problem is mapped on a system of interacting quasiparticles [npj Computationa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13725v2-abstract-full').style.display = 'inline'; document.getElementById('2411.13725v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13725v2-abstract-full" style="display: none;"> We explore the principles of many-body Hamiltonian complexity reduction via downfolding on an effective low-dimensional representation. We present a unique measure of fidelity between the effective (reduced-rank) description and the full many-body treatment for arbitrary (i.e., ground and excited) states. When the entire problem is mapped on a system of interacting quasiparticles [npj Computational Materials 9 (1), 126, 2023], the effective Hamiltonians can faithfully reproduce the physics only when a clear energy scale separation exists between the subsystems and its environment. We also demonstrate that it is necessary to include quasiparticle renormalization at distinct energy scales, capturing the distinct interaction between subsystems and their surrounding environments. Numerical results from simple, exactly solvable models highlight the limitations and strengths of this approach, particularly for ground and low-lying excited states. This work lays the groundwork for applying dynamical downfolding techniques to problems concerned with (quantum) interfaces. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13725v2-abstract-full').style.display = 'none'; document.getElementById('2411.13725v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.09615">arXiv:2411.09615</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.09615">pdf</a>, <a href="https://arxiv.org/format/2411.09615">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Noise-driven odd elastic waves in living chiral active matter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+S+H">Sang Hyun Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zhi-Feng Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goldenfeld%2C+N">Nigel Goldenfeld</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.09615v1-abstract-short" style="display: inline;"> Chiral active matter is predicted to exhibit odd elasticity, with nontraditional elastic response arising from a combination of chirality, being out of equilibrium, and the presence of nonreciprocal interactions. One of the resulting phenomena is the possible occurrence of odd elastic waves in overdamped systems, although its experimental realization still remains elusive. Here we show that in ove&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09615v1-abstract-full').style.display = 'inline'; document.getElementById('2411.09615v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.09615v1-abstract-full" style="display: none;"> Chiral active matter is predicted to exhibit odd elasticity, with nontraditional elastic response arising from a combination of chirality, being out of equilibrium, and the presence of nonreciprocal interactions. One of the resulting phenomena is the possible occurrence of odd elastic waves in overdamped systems, although its experimental realization still remains elusive. Here we show that in overdamped active systems, noise is required to generate persistent elastic waves. In the chiral crystalline phase of active matter, such as that found recently in populations of swimming starfish embryos, the noise arises from self-driving of active particles and their mutual collisions, a key factor that has been missing in previous studies. We identify the criterion for the occurrence of noise-driven odd elastic waves, and postulate the corresponding phase diagram for the general chiral active crystals. Our results can be used to predict the experimental conditions for achieving a transition to self-sustained elastic waves in overdamped active systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09615v1-abstract-full').style.display = 'none'; document.getElementById('2411.09615v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.10077">arXiv:2410.10077</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.10077">pdf</a>, <a href="https://arxiv.org/format/2410.10077">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Probability">math.PR</span> </div> </div> <p class="title is-5 mathjax"> A physical random walk for space-fractional diffusion on finite domains </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Angstmann%2C+C+N">Christopher N. Angstmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+D+S">Daniel S. Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Henry%2C+B+I">Bruce I. Henry</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+B+Z">Boris Z. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Zhuang Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.10077v1-abstract-short" style="display: inline;"> We formulate a compounded random walk that is physically well defined on both finite and infinite domains, and samples space-dependent forces throughout jumps. The governing evolution equation for the walk limits to a space-fractional Fokker-Planck equation valid on bounded domains, and recovers the well known superdiffusive space-fractional diffusion equation on infinite domains. This compounded&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10077v1-abstract-full').style.display = 'inline'; document.getElementById('2410.10077v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.10077v1-abstract-full" style="display: none;"> We formulate a compounded random walk that is physically well defined on both finite and infinite domains, and samples space-dependent forces throughout jumps. The governing evolution equation for the walk limits to a space-fractional Fokker-Planck equation valid on bounded domains, and recovers the well known superdiffusive space-fractional diffusion equation on infinite domains. This compounded random walk, and its associated fractional Fokker-Planck equation, provides a major advance for modelling space-fractional diffusion through potential fields and on finite domains. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10077v1-abstract-full').style.display = 'none'; document.getElementById('2410.10077v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.18843">arXiv:2409.18843</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.18843">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Thermal Conductivity of Cubic Silicon Carbide Single Crystals Heavily Doped by Nitrogen </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zifeng Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yunfan Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sheng%2C+D">Da Sheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hui Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yuxiang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zixuan Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+M">Ming Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+R">Runsheng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+R">Ru Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Z">Zhe Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.18843v1-abstract-short" style="display: inline;"> High-purity cubic silicon carbide possesses the second-highest thermal conductivity among large-scale crystals, surpassed only by diamond, making it crucial for practical applications of thermal management. Recent theoretical studies predict that heavy doping reduces the thermal conductivity of 3C-SiC via phonon-defect and phonon-electron scattering. However, experimental evidence has been limited&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18843v1-abstract-full').style.display = 'inline'; document.getElementById('2409.18843v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.18843v1-abstract-full" style="display: none;"> High-purity cubic silicon carbide possesses the second-highest thermal conductivity among large-scale crystals, surpassed only by diamond, making it crucial for practical applications of thermal management. Recent theoretical studies predict that heavy doping reduces the thermal conductivity of 3C-SiC via phonon-defect and phonon-electron scattering. However, experimental evidence has been limited. In this work, we report the thermal conductivity of heavily nitrogen doped 3C SiC single crystals, grown using the top-seeded solution growth method, measured via time domain thermoreflectance. Our results show that a significant reduction (up to 30%) in thermal conductivity is observed with nitrogen doping concentrations around 1020 cm-3. A comparison with theoretical calculations indicates less intensive scatterings are observed in the measured thermal conductivity. We speculate that the electron-phonon scattering may have a smaller impact than previously anticipated or the distribution of defects are nonuniform which leads to less intensive scatterings. These findings shed light on understanding the doping effects on thermal transport in semiconductors and support further exploration of 3C SiC for thermal management in electronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18843v1-abstract-full').style.display = 'none'; document.getElementById('2409.18843v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.13258">arXiv:2409.13258</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.13258">pdf</a>, <a href="https://arxiv.org/ps/2409.13258">ps</a>, <a href="https://arxiv.org/format/2409.13258">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Hybrid-Order Topological Phase And Transition in 1H Transition Metal Compounds </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+N">Ning-Jing Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zhigao Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jian-Min Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.13258v1-abstract-short" style="display: inline;"> Inspired by recent experimental observations of hybrid topological states [Nature 628, 527 (2024)], we predict hybrid-order topological insulators (HOTIs) in 1H transition metal compounds (TMCs), where both second-order and first-order topological states coexist near the Fermi level. Initially, 1H-TMCs exhibit a second-order topological phase due to the d-orbital band gap. Upon coupling of p- and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13258v1-abstract-full').style.display = 'inline'; document.getElementById('2409.13258v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.13258v1-abstract-full" style="display: none;"> Inspired by recent experimental observations of hybrid topological states [Nature 628, 527 (2024)], we predict hybrid-order topological insulators (HOTIs) in 1H transition metal compounds (TMCs), where both second-order and first-order topological states coexist near the Fermi level. Initially, 1H-TMCs exhibit a second-order topological phase due to the d-orbital band gap. Upon coupling of p- and d- orbitals couple, first-order topological characteristics emerge. This hybrid-order topological phase transition is tunable via crystal field effects. Combined with first-principles calculations, we illustrate the phase transition with WTe2 and NbSe2. In addition, the first-order topological band gap of the HOTI exhibits a strong spin Hall effect. Our finding reveal novel hybrid-order topological phase in 2D electron materials and highlight spintronic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13258v1-abstract-full').style.display = 'none'; document.getElementById('2409.13258v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 gages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.12090">arXiv:2409.12090</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.12090">pdf</a>, <a href="https://arxiv.org/ps/2409.12090">ps</a>, <a href="https://arxiv.org/format/2409.12090">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.8.104002">10.1103/PhysRevMaterials.8.104002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Uncovering liquid-substrate fluctuation effects on crystal growth and disordered hyperuniformity of two-dimensional materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mkhonta%2C+S+K">S. K. Mkhonta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zhi-Feng Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Elder%2C+K+R">K. R. Elder</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.12090v1-abstract-short" style="display: inline;"> We investigate the growth of two-dimensional (2D) crystals on fluctuating surfaces using a phase field crystal model that is relevant on atomic length and diffusive time scales. Motivated by recent experiments which achieved unprecedented fast growth of large-size high-quality 2D crystals on liquid substrates, we uncover novel effects of liquid surfaces on microstructural ordering. We find that su&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12090v1-abstract-full').style.display = 'inline'; document.getElementById('2409.12090v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.12090v1-abstract-full" style="display: none;"> We investigate the growth of two-dimensional (2D) crystals on fluctuating surfaces using a phase field crystal model that is relevant on atomic length and diffusive time scales. Motivated by recent experiments which achieved unprecedented fast growth of large-size high-quality 2D crystals on liquid substrates, we uncover novel effects of liquid surfaces on microstructural ordering. We find that substrate fluctuations generate short-ranged noise that speeds up crystallization and grain growth of the overlayer, surpassing that of free-standing system. Coupling to the liquid substrate fluctuations can also modulate local randomness, leading to intriguing disordered structures with hidden spatial order, i.e., disordered hyperuniformity. These results reveal the physical mechanisms underlying the fast growth of 2D crystals on liquid surfaces and demonstrate a novel strategy for synthesizing disordered hyperuniform thin film structures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12090v1-abstract-full').style.display = 'none'; document.getElementById('2409.12090v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Mater. 8, 104002 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.12073">arXiv:2409.12073</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.12073">pdf</a>, <a href="https://arxiv.org/format/2409.12073">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.8.104003">10.1103/PhysRevMaterials.8.104003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Influence of dislocations in multilayer graphene stacks: A phase field crystal study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Elder%2C+K+R">K. R. Elder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zhi-Feng Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ala-Nissila%2C+T">T. Ala-Nissila</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.12073v1-abstract-short" style="display: inline;"> In this work the influence of $5|7$ dislocations in multiplayer graphene stacks (up to six layers) is examined. The study is conducted through a recently developed Phase Field Crystal (PFC) model for multilayer systems incorporating out-of-plane deformations and parameterized to match to density functional theory calculations for graphene bilayers and other systems. The specific configuration cons&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12073v1-abstract-full').style.display = 'inline'; document.getElementById('2409.12073v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.12073v1-abstract-full" style="display: none;"> In this work the influence of $5|7$ dislocations in multiplayer graphene stacks (up to six layers) is examined. The study is conducted through a recently developed Phase Field Crystal (PFC) model for multilayer systems incorporating out-of-plane deformations and parameterized to match to density functional theory calculations for graphene bilayers and other systems. The specific configuration considered consists of one monolayer containing four $5|7$ dislocations (i.e., two dislocation dipoles) sandwiched in between perfect graphene layers. The study reveals how the strain field from the dislocations in the defected layer leads to out-of-plane deformations that in turn cause deformations of neighboring layers. Quantitative predictions are made for the defect free energy of the multilayer stacks as compared to a defect-free system, which is shown to increase with the number of layers and system size. Furthermore it is predicted that system defect energy saturates by roughly ten sheets in the stack, indicating the range of defect influence across the multilayer. Variations of stress field distribution and layer height profiles in different layer of the stack are also quantitatively identified. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12073v1-abstract-full').style.display = 'none'; document.getElementById('2409.12073v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 18 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Mater. 8, 104003 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.08656">arXiv:2409.08656</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.08656">pdf</a>, <a href="https://arxiv.org/ps/2409.08656">ps</a>, <a href="https://arxiv.org/format/2409.08656">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Electronic properties of the dimerized organic conductor $魏$-(BETS)$_2$Mn[N(CN)$_2$]$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schmidt%2C+M">Marvin Schmidt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Priya%2C+S">Savita Priya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zhijie Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kartsovnik%2C+M">Mark Kartsovnik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kushch%2C+N">Natalia Kushch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dressel%2C+M">Martin Dressel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.08656v1-abstract-short" style="display: inline;"> The two-dimensional molecular conductor $魏$-(BETS)$_2$Mn[N(CN)$_2$]$_3$ undergoes a sharp metal-to-insulator phase transition at $T_{\rm MI}\approx$ 21 K, which has been under scrutiny for many years. We have performed comprehensive infrared investigations along the three crystallographic directions as a function of temperature down to 10 K, complemented by electron spin resonance and dc-transport&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08656v1-abstract-full').style.display = 'inline'; document.getElementById('2409.08656v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.08656v1-abstract-full" style="display: none;"> The two-dimensional molecular conductor $魏$-(BETS)$_2$Mn[N(CN)$_2$]$_3$ undergoes a sharp metal-to-insulator phase transition at $T_{\rm MI}\approx$ 21 K, which has been under scrutiny for many years. We have performed comprehensive infrared investigations along the three crystallographic directions as a function of temperature down to 10 K, complemented by electron spin resonance and dc-transport studies. The in-plane anisotropy of the optical conductivity is more pronounced than in any other $魏$-type BEDT-TTF or related compounds. The metal-insulator transitions affects the molecular vibrations due to the coupling to the electronic system; in addition we observe a clear splitting of the charge-sensitive vibrational modes below $T_{\rm MI}$ that evidences the presence of two distinct BETS dimers in this compound. The Mn[N(CN)$_2$]$_3^-$ layers are determined by the chain structure of the anions resulting in a rather anisotropic behavior and remarkable temperature dependence of the vibronic features. At low temperatures the ESR properties are affected by the Mn$^{2+}$ ions via $蟺$-$d$-coupling and antiferromagnetic ordering within the $蟺$-spins: The $g$-factor shifts enormously with a pronounced in-plane anisotropy that flips as the temperature decreases; the lines broaden significantly; and the spin susceptibility increases upon cooling with a kink at the phase transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08656v1-abstract-full').style.display = 'none'; document.getElementById('2409.08656v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.15529">arXiv:2408.15529</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.15529">pdf</a>, <a href="https://arxiv.org/format/2408.15529">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.195148">10.1103/PhysRevB.110.195148 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quasi-Lindblad pseudomode theory for open quantum systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+G">Gunhee Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zhen Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Y">Yuanran Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C">Chao Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chan%2C+G+K">Garnet Kin-Lic Chan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+L">Lin Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.15529v2-abstract-short" style="display: inline;"> We introduce a new framework to study the dynamics of open quantum systems with linearly coupled Gaussian baths. Our approach replaces the continuous bath with an auxiliary discrete set of pseudomodes with dissipative dynamics, but we further relax the complete positivity requirement in the Lindblad master equation and formulate a quasi-Lindblad pseudomode theory. We show that this quasi-Lindblad&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15529v2-abstract-full').style.display = 'inline'; document.getElementById('2408.15529v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.15529v2-abstract-full" style="display: none;"> We introduce a new framework to study the dynamics of open quantum systems with linearly coupled Gaussian baths. Our approach replaces the continuous bath with an auxiliary discrete set of pseudomodes with dissipative dynamics, but we further relax the complete positivity requirement in the Lindblad master equation and formulate a quasi-Lindblad pseudomode theory. We show that this quasi-Lindblad pseudomode formulation directly leads to a representation of the bath correlation function in terms of a complex weighted sum of complex exponentials, an expansion that is known to be rapidly convergent in practice and thus leads to a compact set of pseudomodes. The pseudomode representation is not unique and can differ by a gauge choice. When the global dynamics can be simulated exactly, the system dynamics is unique and independent of the specific pseudomode representation. However, the gauge choice may affect the stability of the global dynamics, and we provide an analysis of why and when the global dynamics can retain stability despite losing positivity. We showcase the performance of this formulation across various spectral densities in both bosonic and fermionic problems, finding significant improvements over conventional pseudomode formulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15529v2-abstract-full').style.display = 'none'; document.getElementById('2408.15529v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 6 figures (main text); 8 pages, 1 figure (Supplementary Material)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 110, 195148 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.14282">arXiv:2408.14282</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.14282">pdf</a>, <a href="https://arxiv.org/format/2408.14282">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> All-microwave spectroscopy and polarization of individual nuclear spins in a solid </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Travesedo%2C+J">J. Travesedo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=O%27Sullivan%2C+J">J. O&#39;Sullivan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pallegoix%2C+L">L. Pallegoix</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z+W">Z. W. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hogan%2C+P">P. Hogan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goldner%2C+P">P. Goldner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chaneliere%2C+T">T. Chaneliere</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bertaina%2C+S">S. Bertaina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Esteve%2C+D">D. Esteve</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abgrall%2C+P">P. Abgrall</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vion%2C+D">D. Vion</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Flurin%2C+E">E. Flurin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bertet%2C+P">P. Bertet</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.14282v2-abstract-short" style="display: inline;"> We report magnetic resonance spectroscopy measurements of individual nuclear spins in a crystal coupled to a neighbouring paramagnetic center, detected using microwave fluorescence at millikelvin temperatures. We observe real-time quantum jumps of the nuclear spin state, a proof of their individual nature. By driving the forbidden transitions of the coupled electron-nuclear spin system, we also ac&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14282v2-abstract-full').style.display = 'inline'; document.getElementById('2408.14282v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.14282v2-abstract-full" style="display: none;"> We report magnetic resonance spectroscopy measurements of individual nuclear spins in a crystal coupled to a neighbouring paramagnetic center, detected using microwave fluorescence at millikelvin temperatures. We observe real-time quantum jumps of the nuclear spin state, a proof of their individual nature. By driving the forbidden transitions of the coupled electron-nuclear spin system, we also achieve single-spin solid-effect dynamical nuclear polarization. Relying exclusively on microwave driving and microwave photon counting, the methods reported here are in principle applicable to a large number of electron-nuclear spin systems, in a wide variety of samples. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14282v2-abstract-full').style.display = 'none'; document.getElementById('2408.14282v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.13671">arXiv:2408.13671</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.13671">pdf</a>, <a href="https://arxiv.org/format/2408.13671">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Ultrafast Charge Transfer Dynamics at the MoS$_2$/Au Interface Observed via Optical Spectroscopy under Ambient Conditions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+T">Tao Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zhipeng Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sleziona%2C+S">Stephan Sleziona</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hasselbrink%2C+E">Eckart Hasselbrink</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kratzer%2C+P">Peter Kratzer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schleberger%2C+M">Marika Schleberger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Campen%2C+R+K">R. Kramer Campen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tong%2C+Y">Yujin Tong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.13671v1-abstract-short" style="display: inline;"> To take advantage of the exceptional properties of atomically thin transition metal dichalcogenides (TMDC) for advanced devices and catalysts, integration with metallic surfaces is an efficacious approach for facilitating charge carrier injection and extraction from TMDC monolayers. Light-matter interactions predominantly occur at the K point in TMDC monolayers, making the charge carrier dynamics&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.13671v1-abstract-full').style.display = 'inline'; document.getElementById('2408.13671v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.13671v1-abstract-full" style="display: none;"> To take advantage of the exceptional properties of atomically thin transition metal dichalcogenides (TMDC) for advanced devices and catalysts, integration with metallic surfaces is an efficacious approach for facilitating charge carrier injection and extraction from TMDC monolayers. Light-matter interactions predominantly occur at the K point in TMDC monolayers, making the charge carrier dynamics at this point essential for their optimal performance. However, direct access to and comprehensive understanding of the charge carrier dynamics at the K point of TMDC monolayer on a metal substrate remains challenging. In this study, we employed azimuth- and polarization-dependent final-state sum frequency generation (FS-SFG) spectroscopy to investigate the ultrafast dynamics of charge transfer at the K point of a MoS$_2$ monolayer interfaced with an Au substrate. We observed an ultrafast injection (sub-20 fs) of photoexcited hot electrons from the Au substrate to the conduction band minimum (CBM) of the MoS$_2$ monolayer. Subsequently, driven by an internal electric field induced by charge redistribution, injected hot electrons in MoS$_2$ experience a relaxation and fast return ($\sim2$ ps) from the CBM and a trap state mediated slow return ($\sim60$ ps) process. The direct optical observation of the full electron dynamics at the K point of MoS$_2$ monolayer in ambient conditions provides valuable insights into the mechanisms of charge carrier transfer across the TMDC-metal interface, informing the design of advanced TMDC-based devices with enhanced charge transfer rates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.13671v1-abstract-full').style.display = 'none'; document.getElementById('2408.13671v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 3 figures and supplemental material</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.06174">arXiv:2408.06174</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.06174">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Emergent superconductivity and pair density wave at antiphase boundaries of charge density wave order in kagome metals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xianghe Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hui Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+H">Hengxin Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+Z">Zhongyi Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zihao Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+Y">Yuhan Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Z">Zhen Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+C">Chengmin Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Haitao Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+B">Binghai Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Ziqiang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+H">Hong-Jun Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.06174v1-abstract-short" style="display: inline;"> Central to the layered kagome lattice superconductors AV3Sb5 (A = K, Cs, Rb) is a cascade of novel quantum states triggered by an unconventional charge density wave (CDW) order. The three-dimensional (3D) order involves a 2x2x2 phase coherent stacking of 2x2 charge density modulations in the kagome plane at low temperatures, exhibiting a CDW energy gap and evidence for time-reversal symmetry break&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.06174v1-abstract-full').style.display = 'inline'; document.getElementById('2408.06174v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.06174v1-abstract-full" style="display: none;"> Central to the layered kagome lattice superconductors AV3Sb5 (A = K, Cs, Rb) is a cascade of novel quantum states triggered by an unconventional charge density wave (CDW) order. The three-dimensional (3D) order involves a 2x2x2 phase coherent stacking of 2x2 charge density modulations in the kagome plane at low temperatures, exhibiting a CDW energy gap and evidence for time-reversal symmetry breaking. Here we report the discovery of emergent superconductivity and primary pair density wave (PDW) at the antiphase boundaries and stacking faults of bulk CDW order. We find that the 蟺-phase shift dislocations can naturally appear on the surface as the Cs atoms form 2x2 superstructures that are out of phase with the bulk CDW. An incipient narrow band of surface states inside bulk CDW gap emerge close to the Fermi level where a particle-hole symmetric energy gap develops. We demonstrate that the energy gap originates from a novel quasi-2D kagome superconducting state (Tc ~ 5.4 K) intertwined with bulk CDW order, exhibiting an unprecedented vortex core spectrum and spatial modulations of the superconducting gap consistent with a 4x4 PDW. Intriguingly, the 2D kagome superconductivity is shown to be tunable on and off by atomically manipulating the Cs atoms on the surface. Our findings provide fresh new insights for understanding the interplay between the unconventional CDW and superconductivity in kagome metals and a pathway for atomic manipulation and topological defects engineering of quantum many-body states in correlated materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.06174v1-abstract-full').style.display = 'none'; document.getElementById('2408.06174v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.20724">arXiv:2407.20724</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.20724">pdf</a>, <a href="https://arxiv.org/format/2407.20724">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Exploring Loss Landscapes through the Lens of Spin Glass Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liao%2C+H">Hao Liao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Wei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zhanyi Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Long%2C+Z">Zexiao Long</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+M">Mingyang Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+X">Xiaoqun Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mao%2C+R">Rui Mao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yeung%2C+C+H">Chi Ho Yeung</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.20724v2-abstract-short" style="display: inline;"> In the past decade, significant strides in deep learning have led to numerous groundbreaking applications. Despite these advancements, the understanding of the high generalizability of deep learning, especially in such an over-parametrized space, remains limited. For instance, in deep neural networks (DNNs), their internal representations, decision-making mechanism, absence of overfitting in an ov&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20724v2-abstract-full').style.display = 'inline'; document.getElementById('2407.20724v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.20724v2-abstract-full" style="display: none;"> In the past decade, significant strides in deep learning have led to numerous groundbreaking applications. Despite these advancements, the understanding of the high generalizability of deep learning, especially in such an over-parametrized space, remains limited. For instance, in deep neural networks (DNNs), their internal representations, decision-making mechanism, absence of overfitting in an over-parametrized space, superior generalizability, etc., remain less understood. Successful applications are often considered as empirical rather than scientific achievement. This paper delves into the loss landscape of DNNs through the lens of spin glass in statistical physics, a system characterized by a complex energy landscape with numerous metastable states, as a novel perspective in understanding how DNNs work. We investigated the loss landscape of single hidden layer neural networks activated by Rectified Linear Unit (ReLU) function, and introduced several protocols to examine the analogy between DNNs and spin glass. Specifically, we used (1) random walk in the parameter space of DNNs to unravel the structures in their loss landscape; (2) a permutation-interpolation protocol to study the connection between copies of identical regions in the loss landscape due to the permutation symmetry in the hidden layers; (3) hierarchical clustering to reveal the hierarchy among trained solutions of DNNs, reminiscent of the so-called Replica Symmetry Breaking (RSB) phenomenon (i.e. the Parisi solution) in spin glass; (4) finally, we examine the relationship between the ruggedness of DNN&#39;s loss landscape and its generalizability, showing an improvement of flattened minima. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20724v2-abstract-full').style.display = 'none'; document.getElementById('2407.20724v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.15029">arXiv:2407.15029</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.15029">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.4c02320">10.1021/acs.nanolett.4c02320 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Atomic-Layer-Controlled Magnetic Orders in MnBi2Te4-Bi2Te3 Topological Heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+X">Xiong Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Q">Qirui Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zengle Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+X">Xiaoyu Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+H+T">Hee Taek Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jain%2C+D">Deepti Jain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kisslinger%2C+K">Kim Kisslinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+M">Myung-Geun Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+W">Weida Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Hongxin Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Oh%2C+S">Seongshik Oh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.15029v1-abstract-short" style="display: inline;"> The natural van der Waals superlattice MnBi2Te4-(Bi2Te3)m provides an optimal platform to combine topology and magnetism in one system with minimal structural disorder. Here, we show that this system can harbor both ferromagnetic (FM) and antiferromagnetic (AFM) orders and that these magnetic orders can be controlled in two different ways by either varying the Mn-Mn distance while keeping the Bi2T&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15029v1-abstract-full').style.display = 'inline'; document.getElementById('2407.15029v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.15029v1-abstract-full" style="display: none;"> The natural van der Waals superlattice MnBi2Te4-(Bi2Te3)m provides an optimal platform to combine topology and magnetism in one system with minimal structural disorder. Here, we show that this system can harbor both ferromagnetic (FM) and antiferromagnetic (AFM) orders and that these magnetic orders can be controlled in two different ways by either varying the Mn-Mn distance while keeping the Bi2Te3/MnBi2Te4 ratio constant or vice versa. We achieve this by creating atomically engineered sandwich structures composed of Bi2Te3 and MnBi2Te4 layers. We show that the AFM order is exclusively determined by the Mn-Mn distance whereas the FM order depends only on the overall Bi2Te3/MnBi2Te4 ratio regardless of the distance between the MnBi2Te4 layers. Our results shed light on the origins of the AFM and FM orders and provide insights into how to manipulate magnetic orders not only for the MnBi2Te4-Bi2Te3 system but also for other magneto-topological materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15029v1-abstract-full').style.display = 'none'; document.getElementById('2407.15029v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 5 figures, accepted to Nano Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.08297">arXiv:2407.08297</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.08297">pdf</a>, <a href="https://arxiv.org/format/2407.08297">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> The trade-off between diagonal and off-diagonal elements in the eigenstate thermalization hypothesis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zhiqiang Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.08297v2-abstract-short" style="display: inline;"> To bypass using local observables as intermediate quantities in proving the eigenstate thermalization hypothesis (ETH), we have introduced an observable-independent measure of distinguishability. In this paper, we establish the connection between this measure and several other ETH measures in a more natural way. We first demonstrate a universal trade-off relation between the diagonal and off-diago&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.08297v2-abstract-full').style.display = 'inline'; document.getElementById('2407.08297v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.08297v2-abstract-full" style="display: none;"> To bypass using local observables as intermediate quantities in proving the eigenstate thermalization hypothesis (ETH), we have introduced an observable-independent measure of distinguishability. In this paper, we establish the connection between this measure and several other ETH measures in a more natural way. We first demonstrate a universal trade-off relation between the diagonal and off-diagonal elements of the measure. We then extend this discussion to eigenstate typicality and the average observable. This trade-off relationship reveals that the exponential growth of off-diagonal elements directly suppresses their own values, as well as indirectly suppressing the diagonal elements. This provides a new perspective on the physical mechanisms underlying ETH. Finally, through numerical calculations on a one-dimensional Ising spin chain, we explore various trade-off relationships and examine strong and weak ETH. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.08297v2-abstract-full').style.display = 'none'; document.getElementById('2407.08297v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.04779">arXiv:2407.04779</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.04779">pdf</a>, <a href="https://arxiv.org/format/2407.04779">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Interaction-induced topological phase transition at finite temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Ze-Min Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Diehl%2C+S">Sebastian Diehl</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.04779v1-abstract-short" style="display: inline;"> We demonstrate the existence of topological phase transitions in interacting, symmetry-protected quantum matter at finite temperatures. Using a combined numerical and analytical approach, we study a one-dimensional Su-Schrieffer-Heeger model with added Hubbard interactions, where no thermodynamic phase transition occurs at finite temperatures. The transition is signalled by a quantized, non-local&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.04779v1-abstract-full').style.display = 'inline'; document.getElementById('2407.04779v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.04779v1-abstract-full" style="display: none;"> We demonstrate the existence of topological phase transitions in interacting, symmetry-protected quantum matter at finite temperatures. Using a combined numerical and analytical approach, we study a one-dimensional Su-Schrieffer-Heeger model with added Hubbard interactions, where no thermodynamic phase transition occurs at finite temperatures. The transition is signalled by a quantized, non-local bulk topological order parameter. It is driven by defects, which are enabled by the combination of interaction and thermal activation, with no counterpart in the non-interacting limit. The defects localize topological zero modes, which, when sufficiently abundant, cause the order parameter to vanish. This phenomenon, interpreted via bulk-boundary correspondence, reflects the loss of a topological edge mode at a well-defined critical temperature in the thermodynamic limit. Unlike zero-temperature topological transitions, these finite-temperature transitions lack thermodynamic signatures but remain observable in controlled quantum systems, such as ultracold fermionic atoms in optical lattices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.04779v1-abstract-full').style.display = 'none'; document.getElementById('2407.04779v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6+4 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.03290">arXiv:2407.03290</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.03290">pdf</a>, <a href="https://arxiv.org/format/2407.03290">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.094111">10.1103/PhysRevB.108.094111 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thermal and mechanical properties and the structural phase transition under pressure in $A$In$_2$As$_2$ ($A$ = Ca, Sr, Ba) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+W">Wen-Ti Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zhigao Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jian-Min Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.03290v1-abstract-short" style="display: inline;"> Experimental results that BaIn2As2 and Ca(Sr)In2As2, which are the same class of alkali metal compounds, belong to different structural phases have puzzled the current materials physics community. Here, we investigate the pressure-induced structural phase transition of AIn2As2 and its accompanying improvement in mechanical and thermal properties. Firstly, the structural stability of the materials&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03290v1-abstract-full').style.display = 'inline'; document.getElementById('2407.03290v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.03290v1-abstract-full" style="display: none;"> Experimental results that BaIn2As2 and Ca(Sr)In2As2, which are the same class of alkali metal compounds, belong to different structural phases have puzzled the current materials physics community. Here, we investigate the pressure-induced structural phase transition of AIn2As2 and its accompanying improvement in mechanical and thermal properties. Firstly, the structural stability of the materials and their structural phase transitions under pressure are characterized by enthalpy and double checking by phonon dispersion spectrum. We also confirm the structural phase transitions of the hexagonal and monoclinic phases from a group-theoretic point of view, associating their symmetry operations using transformation matrices. In terms of mechanical properties, we propose an effective scheme for pressure modulation of the anisotropy of AIn2As2 materials and to induce the transformation of AIn2As2 from isotropic to anisotropic (hexagonal) and from brittle to ductile (hexagonal and monoclinic). Meanwhile, we find the negative Poisson&#39;s ratio phenomenon under compression and tension, which is favorable for a wide range of applications of this series of materials in aerospace, medicine, sensors, etc. In terms of thermal properties, applying pressure will enhance the structural phase transition temperature of AIn2As2 materials to near room temperature. We further give direct evidence of phonon softening based on group velocity calculations and reveal that phonon softening prevents the heat capacity from reaching the Dulong-Petit limit. Our study provides a theoretical basis for selecting stable structural phases and pioneering thermodynamic property studies of the thermoelectric topological candidate material AIn2As2. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03290v1-abstract-full').style.display = 'none'; document.getElementById('2407.03290v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 108, 094111 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.02319">arXiv:2407.02319</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.02319">pdf</a>, <a href="https://arxiv.org/format/2407.02319">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Catalogue of $C$-paired spin-valley locking in antiferromagnetic systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+M">Mengli Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+X">Xingkai Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zhenqiao Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Junwei Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.02319v1-abstract-short" style="display: inline;"> Antiferromagnetic materials (AFMs) have been gaining lots of attentions due to its great potential in spintronics devices and the recently discovered novel spin structure in the momentum space, i.e., $C$-paired spin-valley or spin-momentum locking (CSVL), where spins and valleys/momenta are locked to each other due to the crystal symmetry guaranteeing zero magnetization. Here, we systematically st&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02319v1-abstract-full').style.display = 'inline'; document.getElementById('2407.02319v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.02319v1-abstract-full" style="display: none;"> Antiferromagnetic materials (AFMs) have been gaining lots of attentions due to its great potential in spintronics devices and the recently discovered novel spin structure in the momentum space, i.e., $C$-paired spin-valley or spin-momentum locking (CSVL), where spins and valleys/momenta are locked to each other due to the crystal symmetry guaranteeing zero magnetization. Here, we systematically studied CSVLs and proposed a general theory and algorithm using little co-group and coset representatives, which reveals that 12 elementary kinds of CSVLs, determined by the geometric relation of spins and valleys and the essential symmetry guaranteeing zero magnetization, are sufficient to fully represent all possible CSVLs. By combining the proposed algorithm and high-throughput first-principles calculations, we predicted 38 magnetic point groups and identified 140 experimentally verified AFMs that can realize CSVL. Besides predicting new materials, our theory can naturally reveal underlying mechanisms of CSVLs&#39; responses to external fields. As an example, two qualitatively different types of piezomagnetism via occupation imbalance or spin tilting were predicted in RuO$_2$. The algorithm and conclusions can be directly extended to the locking between valley/momentum and any other pseudo-vector degree of freedom, e.g. Berry curvature, as exemplified in RuO$_2$, and the proposed concept and methodology can be straightforwardly applied to other symmetry groups such as spin space group. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02319v1-abstract-full').style.display = 'none'; document.getElementById('2407.02319v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text: 9 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.05875">arXiv:2406.05875</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.05875">pdf</a>, <a href="https://arxiv.org/format/2406.05875">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Hybrid terahertz emitter for pulse shaping and chirality control </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+W">Weipeng Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Acuna%2C+W">Wilder Acuna</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zhixiang Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gundlach%2C+L">Lars Gundlach</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doty%2C+M+F">Matthew F. Doty</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zide%2C+J+M+O">Joshua M. O. Zide</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jungfleisch%2C+M+B">M. Benjamin Jungfleisch</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.05875v1-abstract-short" style="display: inline;"> Terahertz (THz) radiation, spanning from 0.3 to 3x10^12 Hz, fills the crucial gap between the microwave and infrared spectral range. THz technology has found applications in various fields, from imaging and sensing to telecommunication and biosensing. However, the full potential of these applications is often hindered by the need for precise control and manipulation of the frequency and polarizati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05875v1-abstract-full').style.display = 'inline'; document.getElementById('2406.05875v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.05875v1-abstract-full" style="display: none;"> Terahertz (THz) radiation, spanning from 0.3 to 3x10^12 Hz, fills the crucial gap between the microwave and infrared spectral range. THz technology has found applications in various fields, from imaging and sensing to telecommunication and biosensing. However, the full potential of these applications is often hindered by the need for precise control and manipulation of the frequency and polarization state, which typically requires external THz modulators. Here, we demonstrate a hybrid THz source that overcomes this limitation. Our device consists of two THz emitters integrated into one single device, enabling pulse shaping and chirality control of the emitted radiation without additional external components. The two sources are a spintronic emitter and a semiconductor photoconductive antenna (PCA). Using a combination of dual-wavelength excitation, allowing for control of the relative time delay between the two laser excitation pulses, and tuning external parameters for each emitter (i.e., biasing voltage for the PCA and magnetic field for the spintronic THz emitter) enables precise control of the mixing of the two signals and results in frequency, polarization, and chirality control of the overall THz radiation. This on-chip hybrid emitter provides an essential platform for engineered THz radiation with wide-ranging potential applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05875v1-abstract-full').style.display = 'none'; document.getElementById('2406.05875v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.05319">arXiv:2406.05319</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.05319">pdf</a>, <a href="https://arxiv.org/format/2406.05319">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.224411">10.1103/PhysRevB.109.224411 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin and lattice dynamics of a van der Waals antiferromagnet MnPSe$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liao%2C+J">Junbo Liao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zhentao Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shangguan%2C+Y">Yanyan Shangguan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+B">Bo Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+S">Shufan Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+H">Hao Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kajimoto%2C+R">Ryoichi Kajimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kamazawa%2C+K">Kazuya Kamazawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bao%2C+S">Song Bao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wen%2C+J">Jinsheng Wen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.05319v1-abstract-short" style="display: inline;"> Antiferromagnetic van der Waals family $\rm \textit{M}P\textit{X}_{3}\ (M=Fe,\ Mn,\ Co,\text{ and}\ Ni; X=S\text{ and}\ Se)$ have attracted significant research attention due to the possibility of realizing long-range magnetic order down to the monolayer limit. Here, we perform inelastic neutron scattering measurements on single crystal samples of MnPSe$_3$, a member of the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05319v1-abstract-full').style.display = 'inline'; document.getElementById('2406.05319v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.05319v1-abstract-full" style="display: none;"> Antiferromagnetic van der Waals family $\rm \textit{M}P\textit{X}_{3}\ (M=Fe,\ Mn,\ Co,\text{ and}\ Ni; X=S\text{ and}\ Se)$ have attracted significant research attention due to the possibility of realizing long-range magnetic order down to the monolayer limit. Here, we perform inelastic neutron scattering measurements on single crystal samples of MnPSe$_3$, a member of the $\rm \textit{M}P\textit{X}_{3}$ family, to study the spin dynamics and determine the effective spin model. The excited magnon bands are well characterized by a spin model, which includes a Heisenberg term with three intraplane exchange parameters ($J_{1}=-0.73$~meV, $J_{2}=-0.014$~meV, $J_{3}=-0.43$~meV) and one interplane parameter ($J_{c}=-0.054$~meV), and an easy-plane single-ion anisotropy term ($D=-0.035$~meV). Additionally, we observe the intersection of the magnon and phonon bands but no anomalous spectral features induced by the formation of magnon-phonon hybrid excitations at the intersecting region. We discuss possible reasons for the absence of such hybrid excitations in MnPSe$_3$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05319v1-abstract-full').style.display = 'none'; document.getElementById('2406.05319v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 109, 224411 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.17899">arXiv:2405.17899</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.17899">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/anie.202300186">10.1002/anie.202300186 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Near IR bandgap semiconductive 2D conjugated metal-organic framework with rhombic lattice and high mobility </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sporrer%2C+L">Lukas Sporrer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+G">Guojun Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+M">Mingchao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balos%2C+V">Vasileios Balos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Revuelta%2C+S">Sergio Revuelta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jastrzembski%2C+K">Kamil Jastrzembski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Loeffler%2C+M">Markus Loeffler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petkov%2C+P">Petko Petkov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heine%2C+T">Thomas Heine</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuc%2C+A">Angieszka Kuc</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canovas%2C+E">Enrique Canovas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zhehao Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+X">Xinliang Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+R">Renhao Dong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.17899v1-abstract-short" style="display: inline;"> Two-dimensional conjugated metal-organic frameworks (2D c-MOFs) are emerging as a unique class of 2D electronic materials. However, intrinsically semiconducting 2D c-MOFs with gaps in the Vis-NIR and high charge carrier mobility have been rare. Most of the reported semiconducting 2D c-MOFs are metallic (i.e. gapless), which limits their use in applications where larger band gaps are needed for log&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.17899v1-abstract-full').style.display = 'inline'; document.getElementById('2405.17899v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.17899v1-abstract-full" style="display: none;"> Two-dimensional conjugated metal-organic frameworks (2D c-MOFs) are emerging as a unique class of 2D electronic materials. However, intrinsically semiconducting 2D c-MOFs with gaps in the Vis-NIR and high charge carrier mobility have been rare. Most of the reported semiconducting 2D c-MOFs are metallic (i.e. gapless), which limits their use in applications where larger band gaps are needed for logic devices. Herein, we design a new D2h-geometric ligand, 2,3,6,7,11,12,15,16-octahydroxyphenanthro(9,10b)triphenylene (OHPTP), and synthesize the first example of a 2D c-MOF single crystal (OHPTP-Cu) with a rhombohedral pore geometry after coordination with copper. The continuous rotation electron diffraction (cRED) analysis unveils the orthorhombic crystal structure at the atomic level with a unique AB layer stacking. The resultant Cu2(OHPTP) is a p-type semiconductor with an indirect band gap of about 0.50 eV and exhibits high electrical conductivity of 0.10 S cm-1 and high charge carrier mobility of 10.0 cm2V-1s-1. Density-functional theory calculations underline the predominant role of the out-of-plane charge transport in this semiquinone-based 2D c-MOFs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.17899v1-abstract-full').style.display = 'none'; document.getElementById('2405.17899v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Angew. Chem. Int. Ed. 2023, 62, e202300186 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.18683">arXiv:2404.18683</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.18683">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> New tool for extraction of $^{187}$Os M枚ssbauer parameters with biologically relevant detection sensitivity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Stepanenko%2C+I">Iryna Stepanenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zhishuo Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ungur%2C+L">Liviu Ungur</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bessas%2C+D">Dimitrios Bessas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chumakov%2C+A">Aleksandr Chumakov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sergueev%2C+I">Ilya Sergueev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchel%2C+G+E">Gabriel E. B眉chel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Al-Kahtani%2C+A+A">Abdullah A. Al-Kahtani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chibotaru%2C+L">Liviu Chibotaru</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Telser%2C+J">Joshua Telser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arion%2C+V+B">Vladimir B. Arion</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.18683v2-abstract-short" style="display: inline;"> A large number of osmium complexes with osmium in different oxidation states (II, III, IV, VI) have been reported recently to exhibit good antiproliferative activity in cancer cell lines. Herein, we demonstrate new opportunities offered by $^{187}$Os nuclear forward scattering (NFS) and nuclear inelastic scattering (NIS) of synchrotron radiation for characterization of hyperfine interactions and l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.18683v2-abstract-full').style.display = 'inline'; document.getElementById('2404.18683v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.18683v2-abstract-full" style="display: none;"> A large number of osmium complexes with osmium in different oxidation states (II, III, IV, VI) have been reported recently to exhibit good antiproliferative activity in cancer cell lines. Herein, we demonstrate new opportunities offered by $^{187}$Os nuclear forward scattering (NFS) and nuclear inelastic scattering (NIS) of synchrotron radiation for characterization of hyperfine interactions and lattice dynamics in a benchmark Os(VI) complex K$_2$[OsO$_2$(OH)$_4$], by accurate extraction of M枚ssbauer parameters and the determination of Os-projected density of phonon states confirmed by first-principles phonon calculations. The values of isomer shift ($未$ = 3.3(1) mm/s) relative to [Os$^{IV}$ Cl$_{6}$]$^{2-}$ and quadrupole splitting ($螖E_Q$ = 12.0(2) mm/s) were determined with NFS, while the Lamb-M枚ssbauer factor (0.55(1)), the density of phonon states (DOS), and a full thermodynamics characterization was carried out using the NIS data combined with first principle theoretical calculations. In more general terms, this study provides strong evidence that $^{187}$Os nuclear resonance scattering is a reliable technique for the investigation of hyperfine interactions and Os specific vibrations in osmium(VI) species, which might be potentially applicable for measuring such interactions in osmium complexes of other oxidation states, including those with anticancer activity such as Os(III) and Os(IV). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.18683v2-abstract-full').style.display = 'none'; document.getElementById('2404.18683v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.15237">arXiv:2404.15237</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.15237">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Insights into the defect-driven heterogeneous structural evolution of Ni-rich layered cathode in lithium-ion batteries </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zhongyuan Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Ziwei Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+M">Maolin Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chu%2C+M">Mihai Chu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zenan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+S">Sihao Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+L">Lunhua He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+L">Lei Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dunin-Borkowski%2C+R+E">Rafal E. Dunin-Borkowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+R">Rui Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jun Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+T">Tingting Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+Y">Yinguo Xiao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.15237v1-abstract-short" style="display: inline;"> Recently, considerable efforts have been made on research and improvement for Ni-rich lithium-ion batteries to meet the demand from vehicles and grid-level large-scale energy storage. Development of next-generation high-performance lithium-ion batteries requires a comprehensive understanding on the underlying electrochemical mechanisms associated with its structural evolution. In this work, advanc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.15237v1-abstract-full').style.display = 'inline'; document.getElementById('2404.15237v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.15237v1-abstract-full" style="display: none;"> Recently, considerable efforts have been made on research and improvement for Ni-rich lithium-ion batteries to meet the demand from vehicles and grid-level large-scale energy storage. Development of next-generation high-performance lithium-ion batteries requires a comprehensive understanding on the underlying electrochemical mechanisms associated with its structural evolution. In this work, advanced operando neutron diffraction and four-dimensional scanning transmission electron microscopy techniques are applied to clarify the structural evolution of electrodes in two distinct full cells with identical LiNi0.8Co0.1Mn0.1O2 cathode but different anode counterparts. It is found that both of cathodes in two cells exhibit non-intrinsic two-phase-like behavior at the early charge stage, indicating selective Li+ extraction from cathodes. But the heterogeneous evolution of cathode is less serious with graphite-silicon blended anode than that with graphite anode due to the different delithiation rate. Moreover, it is revealed that the formation of heterogeneous structure is led by the distribution of defects including Li/Ni disordering and microcracks, which should be inhibited by assembling appropriate anode to avoid potential threaten on cell performance. The present work unveils the origin of inhomogeneity in Ni-rich lithium-ion batteries and highlights the significance of kinetics control in electrodes for batteries with higher capacity and longer life. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.15237v1-abstract-full').style.display = 'none'; document.getElementById('2404.15237v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages and 5 figures for manuscript; 30 pages, 14 figures and 4 tables for supplementary information</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.10093">arXiv:2404.10093</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.10093">pdf</a>, <a href="https://arxiv.org/format/2404.10093">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> </div> </div> <p class="title is-5 mathjax"> Active pattern formation emergent from single-species nonreciprocity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zhi-Feng Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vrugt%2C+M+t">Michael te Vrugt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wittkowski%2C+R">Raphael Wittkowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=L%C3%B6wen%2C+H">Hartmut L枚wen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.10093v1-abstract-short" style="display: inline;"> Nonreciprocal forces violating Newton&#39;s third law are common in a plethora of nonequilibrium situations ranging from predator-prey systems to the swarming of birds and effective colloidal interactions under flow. While many recent studies have focused on two species with nonreciprocal coupling, much less is examined for the basic single-component system breaking the actio and reactio equality of f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.10093v1-abstract-full').style.display = 'inline'; document.getElementById('2404.10093v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.10093v1-abstract-full" style="display: none;"> Nonreciprocal forces violating Newton&#39;s third law are common in a plethora of nonequilibrium situations ranging from predator-prey systems to the swarming of birds and effective colloidal interactions under flow. While many recent studies have focused on two species with nonreciprocal coupling, much less is examined for the basic single-component system breaking the actio and reactio equality of force within the same species. Here, we systematically derive the fundamental field theory of single-species nonreciprocal interactions from microscopic dynamics, leading to a generic framework termed Active Model N (N denoting nonreciprocity). We explore the rich dynamics of pattern formation in this intrinsic nonreciprocal system and the emergence of self-traveling states with persistent variation and flowing of active branched patterns. One particular new characteristic pattern is an interwoven self-knitting &#34;yarn&#34; structure with a unique feature of simultaneous development of micro- and bulk phase separations. The growth dynamics of a &#34;ball-of-wool&#34; active droplet towards these self-knitted yarn or branched states exhibits a crossover between different scaling behaviors. The mechanism underlying this distinct class of active phase separation is attributed to the interplay between force nonreciprocity and competition. Our predictions can be applied to various biological and artificial active matter systems controlled by single-species nonreciprocity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.10093v1-abstract-full').style.display = 'none'; document.getElementById('2404.10093v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.09120">arXiv:2404.09120</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.09120">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Interfacial reaction boosts thermal conductance of room-temperature integrated semiconductor interfaces stable up to 1100 C </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Z">Zhe Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+X">Xiaoyang Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zifeng Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ohno%2C+Y">Yutaka Ohno</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Inoue%2C+K">Koji Inoue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nagai%2C+Y">Yasusyohi Nagai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sakaida%2C+Y">Yoshiki Sakaida</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Uratani%2C+H">Hiroki Uratani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shigekawa%2C+N">Naoteru Shigekawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jianbo Liang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.09120v1-abstract-short" style="display: inline;"> Overheating has emerged as a primary challenge constraining the reliability and performance of next-generation high-performance electronics, such as chiplets and (ultra)wide bandgap electronics. Advanced heterogeneous integration not only constitutes a pivotal technique for fabricating these electronics but also offers potential solutions for thermal management. This study presents the integration&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.09120v1-abstract-full').style.display = 'inline'; document.getElementById('2404.09120v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.09120v1-abstract-full" style="display: none;"> Overheating has emerged as a primary challenge constraining the reliability and performance of next-generation high-performance electronics, such as chiplets and (ultra)wide bandgap electronics. Advanced heterogeneous integration not only constitutes a pivotal technique for fabricating these electronics but also offers potential solutions for thermal management. This study presents the integration of high thermal conductivity semiconductors, specifically, 3C-SiC thin films and diamond substrates, through a room-temperature surface-activated bonding technique. Notably, the thermal conductivity of the 3C-SiC films is among the highest for all semiconductor films which can be integrated near room temperature with similar thicknesses. Furthermore, following annealing, the interfaces between 3C-SiC and diamond demonstrate a remarkable enhancement in thermal boundary conductance (TBC), reaching up to approximately 300%, surpassing all other grown and bonded heterointerfaces. This enhancement is attributed to interfacial reactions, specifically the transformation of amorphous silicon into SiC upon interaction with diamond, which is further corroborated by picosecond ultrasonics measurements. Subsequent to annealing at 1100 C, the achieved TBC (150 MW/m2-K) is record-high among all bonded diamond interfaces. Additionally, the visualization of large-area TBC, facilitated by femtosecond laser-based time-domain thermoreflectance measurements, shows the uniformity of the interfaces which are capable of withstanding temperatures as high as 1100 C. Our research marks a significant advancement in the realm of thermally conductive heterogeneous integration, which is promising for enhanced cooling of next-generation electronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.09120v1-abstract-full').style.display = 'none'; document.getElementById('2404.09120v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.15912">arXiv:2403.15912</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.15912">pdf</a>, <a href="https://arxiv.org/format/2403.15912">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-024-07211-8">10.1038/s41586-024-07211-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of the dual quantum spin Hall insulator by density-tuned correlations in a van der Waals monolayer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+J">Jian Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+T+S">Thomas Siyuan Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hongyu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+A">Anyuan Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+T">Tiema Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zumeng Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zhe Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xin Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strasser%2C+A">Alex Strasser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jiangxu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geiwitz%2C+M">Michael Geiwitz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shehabeldin%2C+M">Mohamed Shehabeldin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Belosevich%2C+V">Vsevolod Belosevich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zihan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yiping Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bell%2C+D+C">David C. Bell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Ziqiang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+L">Liang Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+X">Xiaofeng Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Burch%2C+K+S">Kenneth S. Burch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">Youguo Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ni%2C+N">Ni Ni</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.15912v1-abstract-short" style="display: inline;"> The convergence of topology and correlations represents a highly coveted realm in the pursuit of novel quantum states of matter. Introducing electron correlations to a quantum spin Hall (QSH) insulator can lead to the emergence of a fractional topological insulator and other exotic time-reversal-symmetric topological order, not possible in quantum Hall and Chern insulator systems. However, the QSH&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.15912v1-abstract-full').style.display = 'inline'; document.getElementById('2403.15912v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.15912v1-abstract-full" style="display: none;"> The convergence of topology and correlations represents a highly coveted realm in the pursuit of novel quantum states of matter. Introducing electron correlations to a quantum spin Hall (QSH) insulator can lead to the emergence of a fractional topological insulator and other exotic time-reversal-symmetric topological order, not possible in quantum Hall and Chern insulator systems. However, the QSH insulator with quantized edge conductance remains rare, let alone that with significant correlations. In this work, we report a novel dual QSH insulator within the intrinsic monolayer crystal of TaIrTe4, arising from the interplay of its single-particle topology and density-tuned electron correlations. At charge neutrality, monolayer TaIrTe4 demonstrates the QSH insulator that aligns with single-particle band structure calculations, manifesting enhanced nonlocal transport and quantized helical edge conductance. Interestingly, upon introducing electrons from charge neutrality, TaIrTe4 only shows metallic behavior in a small range of charge densities but quickly goes into a new insulating state, entirely unexpected based on TaIrTe4&#39;s single-particle band structure. This insulating state could arise from a strong electronic instability near the van Hove singularities (VHS), likely leading to a charge density wave (CDW). Remarkably, within this correlated insulating gap, we observe a resurgence of the QSH state, marked by the revival of nonlocal transport and quantized helical edge conduction. Our observation of helical edge conduction in a CDW gap could bridge spin physics and charge orders. The discovery of a dual QSH insulator introduces a new method for creating topological flat minibands via CDW superlattices, which offer a promising platform for exploring time-reversal-symmetric fractional phases and electromagnetism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.15912v1-abstract-full').style.display = 'none'; document.getElementById('2403.15912v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 15 figures, submitted version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.09395">arXiv:2403.09395</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.09395">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-50330-z">10.1038/s41467-024-50330-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidence of a distinct collective mode in Kagome superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+B">Bin Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hui Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+Y">Yuhan Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zihao Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xianghe Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Z">Zhen Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+H">Hongqin Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+X">Xiao Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Haitao Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Ziqiang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+H">Hong-Jun Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.09395v2-abstract-short" style="display: inline;"> The collective modes of the superconducting order parameter fluctuation can provide key insights into the nature of the superconductor. Recently, a family of superconductors has emerged in non-magnetic kagome material AV3Sb5 (A=K, Rb, Cs), exhibiting fertile emergent phenomenology. However, the collective behaviors of Cooper pairs have not been studied. Here, we report a distinct collective mode i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09395v2-abstract-full').style.display = 'inline'; document.getElementById('2403.09395v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.09395v2-abstract-full" style="display: none;"> The collective modes of the superconducting order parameter fluctuation can provide key insights into the nature of the superconductor. Recently, a family of superconductors has emerged in non-magnetic kagome material AV3Sb5 (A=K, Rb, Cs), exhibiting fertile emergent phenomenology. However, the collective behaviors of Cooper pairs have not been studied. Here, we report a distinct collective mode in CsV3-xTaxSb5 using scanning tunneling microscope/spectroscopy. The spectral line-shape is well-described by one isotropic and one anisotropic superconducting gap, and a bosonic mode due to electron-mode coupling. With increasing x, the two gaps move closer in energy, merge into two isotropic gaps of equal amplitude, and then increase synchronously. The mode energy decreases monotonically to well below 2螖 and survives even after the charge density wave order is suppressed. We propose the interpretation of this collective mode as Leggett mode between different superconducting components or the Bardasis-Schrieffer mode due to a subleading superconducting component. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09395v2-abstract-full').style.display = 'none'; document.getElementById('2403.09395v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 15, 6109 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.04273">arXiv:2403.04273</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.04273">pdf</a>, <a href="https://arxiv.org/format/2403.04273">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mathematical Software">cs.MS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> GenML: A Python Library to Generate the Mittag-Leffler Correlated Noise </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+X">Xiang Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+H">Hui Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+W">Wenjie Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+G">Gongyi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zihan Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.04273v2-abstract-short" style="display: inline;"> Mittag-Leffler correlated noise (M-L noise) plays a crucial role in the dynamics of complex systems, yet the scientific community has lacked tools for its direct generation. Addressing this gap, our work introduces GenML, a Python library specifically designed for generating M-L noise. We detail the architecture and functionalities of GenML and its underlying algorithmic approach, which enables th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.04273v2-abstract-full').style.display = 'inline'; document.getElementById('2403.04273v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.04273v2-abstract-full" style="display: none;"> Mittag-Leffler correlated noise (M-L noise) plays a crucial role in the dynamics of complex systems, yet the scientific community has lacked tools for its direct generation. Addressing this gap, our work introduces GenML, a Python library specifically designed for generating M-L noise. We detail the architecture and functionalities of GenML and its underlying algorithmic approach, which enables the precise simulation of M-L noise. The effectiveness of GenML is validated through quantitative analyses of autocorrelation functions and diffusion behaviors, showcasing its capability to accurately replicate theoretical noise properties. Our contribution with GenML enables the effective application of M-L noise data in numerical simulation and data-driven methods for describing complex systems, moving beyond mere theoretical modeling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.04273v2-abstract-full').style.display = 'none'; document.getElementById('2403.04273v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.00316">arXiv:2403.00316</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.00316">pdf</a>, <a href="https://arxiv.org/format/2403.00316">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Surface Chern-Simons theory for third-order topological insulators and superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zhi-Hao Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+Y">Yi Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+W">Wei Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+L">Long Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiong-Jun Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.00316v1-abstract-short" style="display: inline;"> Three-dimensional 3rd-order topological insulators (TOTIs) and superconductors (TOTSCs), as the highestorder topological phases hosting zero corner modes in physical dimension, has sparked extensive research interest. However, such topological states have not been discovered in reality due to the lack of experimental schemes of realization. Here, we propose a novel surface Chern-Simons (CS) theory&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00316v1-abstract-full').style.display = 'inline'; document.getElementById('2403.00316v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.00316v1-abstract-full" style="display: none;"> Three-dimensional 3rd-order topological insulators (TOTIs) and superconductors (TOTSCs), as the highestorder topological phases hosting zero corner modes in physical dimension, has sparked extensive research interest. However, such topological states have not been discovered in reality due to the lack of experimental schemes of realization. Here, we propose a novel surface Chern-Simons (CS) theory for 3rd-order topological phases, and show that the theory enables a feasible and systematic design of TOTIs and TOTSCs. We show that the emergence of zero Dirac (Majorana) corner modes is entirely captured by an emergent $\mathbb{Z}_{2}$ CS term that can be further characterized by a novel two-particle Wess-Zumino (WZ) term uncovered here in the surfaces of three-dimensional topological materials. Importantly, our proposed CS term characterization and two-particle WZ term mechanism provide a unique perspective to design TOTIs (TOTSCs) in terms of minimal ingredients, feasibly guiding the search for underlying materials, with promising candidates being discussed. This work shall advance both the theoretical and experimental research for highest-order topological matters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00316v1-abstract-full').style.display = 'none'; document.getElementById('2403.00316v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5+11 pages, 4+5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.16138">arXiv:2402.16138</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.16138">pdf</a>, <a href="https://arxiv.org/format/2402.16138">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Integration of Conventional Surface Science Techniques with Surface-Sensitive Azimuthal and Polarization Dependent Femtosecond-Resolved Sum Frequency Generation Spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zhipeng Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roos%2C+T">Tobias Roos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tong%2C+Y">Yujin Tong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Campen%2C+R+K">R. Kramer Campen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.16138v1-abstract-short" style="display: inline;"> Experimental insight into the elementary processes underlying charge transfer across interfaces has blossomed with the wide-spread availability of ultra-high vacuum set-ups that allow the preparation and characterization of solid surfaces with well-defined molecular adsorbates over a wide ranges of temperatures. Thick layers of molecular adsorbates or heterostructures of 2D materials generally pre&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.16138v1-abstract-full').style.display = 'inline'; document.getElementById('2402.16138v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.16138v1-abstract-full" style="display: none;"> Experimental insight into the elementary processes underlying charge transfer across interfaces has blossomed with the wide-spread availability of ultra-high vacuum set-ups that allow the preparation and characterization of solid surfaces with well-defined molecular adsorbates over a wide ranges of temperatures. Thick layers of molecular adsorbates or heterostructures of 2D materials generally preclude the use of electrons or atoms as probes in such characterization. However with linear photon-in/photon-out techniques it is often challenging to assign the observed optical response to a particular portion of the interface. We and prior workers have demonstrated in work under ambient conditions that by full characterization of the symmetry of the second order nonlinear optical susceptibility, i.e. the $蠂^{(2)}$, in sum frequency generation (SFG) spectroscopy, this problem can be overcome. Here we describe an ultra-high vacuum system built to allow conventional UHV sample preparation and characterization, femtosecond and polarization resolved SFG spectroscopy, the azimuthal sample rotation necessary to fully describe $蠂^{(2)}$ symmetry and with sufficient stability to allow scanning SFG microscopy. We demonstrate these capabilities in proof-of-principle measurements on CO adsorbed on Pt(111) and of the clean Ag(111) surface. Because this set-up allows both full characterization of the nonlinear susceptibility and the temperature control and sample preparation/characterization of conventional UHV set-ups we expect it to be of great utility in investigation of both the basic physics and applications of solid, 2D material heterostructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.16138v1-abstract-full').style.display = 'none'; document.getElementById('2402.16138v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.16022">arXiv:2402.16022</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.16022">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Superconducting stripes induced by ferromagnetic proximity in an oxide heterostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hua%2C+X">Xiangyu Hua</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+Z">Zimeng Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+F">Fanbao Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+H">Hongxu Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zongyao Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Long%2C+X">Xuanyu Long</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zhaohang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Youfang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhenyu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+T">Tao Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weng%2C+Z">Zhengyu Weng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yihua Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zheng Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+Z">Ziji Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xianhui Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.16022v1-abstract-short" style="display: inline;"> The intimate connection between magnetism and superconducting pairing routinely plays a central role in determining the occurrence of unconventional superconducting states. In high-transition-temperature (high-Tc) stripe-ordered cuprate superconductors and a magnetically ordered iron-based superconductor, the coupling between magnetism and superconductivity gives birth to novel phases of matter wi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.16022v1-abstract-full').style.display = 'inline'; document.getElementById('2402.16022v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.16022v1-abstract-full" style="display: none;"> The intimate connection between magnetism and superconducting pairing routinely plays a central role in determining the occurrence of unconventional superconducting states. In high-transition-temperature (high-Tc) stripe-ordered cuprate superconductors and a magnetically ordered iron-based superconductor, the coupling between magnetism and superconductivity gives birth to novel phases of matter with modulation of the superconducting pairing in the real space. Further exploration of these phases can shed light on the mechanism of unconventional superconductivity. Here we report on the discovery of a peculiar spatially-varying superconducting state residing at the interface between (110)-oriented KTaO3 and ferromagnetic EuO. Electrical transport measurements reveal different Tc and upper critical fields (Hc2) with current applied along the two orthogonal in-plane directions. Such anisotropy persistently occurs in the low-carrier-density samples that are characterized by strong coupling between Ta 5d and Eu 4f electrons, whereas in the high-carrier-density samples the coupling is weakened and Tc and Hc2 becomes isotropic. Complemented by local imaging of diamagnetism and theoretical analysis, our observations imply an unprecedented emergence of superconducting stripes wherein the phase coherence is established ahead of the rest of the interface, arising from a band-filling-dependent ferromagnetic proximity. The realization of such exotic superconducting states provides impetus for the study of novel physics in heterostructures possessing both magnetism and superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.16022v1-abstract-full').style.display = 'none'; document.getElementById('2402.16022v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.11519">arXiv:2402.11519</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.11519">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> </div> </div> <p class="title is-5 mathjax"> Formation and manipulation of diatomic rotors at the symmetry-breaking surfaces of kagome superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zihao Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xianghe Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Z">Zhen Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Haitao Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hui Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+H">Hong-Jun Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.11519v1-abstract-short" style="display: inline;"> Artificial molecular rotors and motors hold great promise for functional nanomachines, but constructing diatomic rotors, crucial for these machines, is challenging due to surface constraints and limited chemical design. Here we report the construction of diatomic Cr-Cs and Fe-Cs rotors where a Cr or Fe atom revolves around a Cs atom at the Sb surface of the newly-discovered kagome superconductor C&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.11519v1-abstract-full').style.display = 'inline'; document.getElementById('2402.11519v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.11519v1-abstract-full" style="display: none;"> Artificial molecular rotors and motors hold great promise for functional nanomachines, but constructing diatomic rotors, crucial for these machines, is challenging due to surface constraints and limited chemical design. Here we report the construction of diatomic Cr-Cs and Fe-Cs rotors where a Cr or Fe atom revolves around a Cs atom at the Sb surface of the newly-discovered kagome superconductor CsV3Sb5. The rotation rate is controlled by bias voltage between the rotor and scanning tunneling microscope (STM) tip. The spatial distribution of rates exhibits C2 symmetry, might linked to the symmetry-breaking charge orders of CsV3Sb5. We have expanded rotor construction to include different transition metals (Cr, Fe, V) and alkali metals (Cs, K). Remarkably, designed configurations of rotors are achieved through STM manipulation. Rotor orbits and quantum states are precisely controlled by tunning inter-rotor distance. Our findings establish a novel platform for the atomically precise fabrication of atomic motors on symmetry-breaking quantum materials, paving the way for advanced nanoscale devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.11519v1-abstract-full').style.display = 'none'; document.getElementById('2402.11519v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.05793">arXiv:2402.05793</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.05793">pdf</a>, <a href="https://arxiv.org/format/2402.05793">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PRXQuantum.5.020354">10.1103/PRXQuantum.5.020354 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exact quantum sensing limits for bosonic dephasing channels </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zixin Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lami%2C+L">Ludovico Lami</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wilde%2C+M+M">Mark M. Wilde</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.05793v1-abstract-short" style="display: inline;"> Dephasing is a prominent noise mechanism that afflicts quantum information carriers, and it is one of the main challenges towards realizing useful quantum computation, communication, and sensing. Here we consider discrimination and estimation of bosonic dephasing channels, when using the most general adaptive strategies allowed by quantum mechanics. We reduce these difficult quantum problems to si&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.05793v1-abstract-full').style.display = 'inline'; document.getElementById('2402.05793v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.05793v1-abstract-full" style="display: none;"> Dephasing is a prominent noise mechanism that afflicts quantum information carriers, and it is one of the main challenges towards realizing useful quantum computation, communication, and sensing. Here we consider discrimination and estimation of bosonic dephasing channels, when using the most general adaptive strategies allowed by quantum mechanics. We reduce these difficult quantum problems to simple classical ones based on the probability densities defining the bosonic dephasing channels. By doing so, we rigorously establish the optimal performance of various distinguishability and estimation tasks and construct explicit strategies to achieve this performance. To the best of our knowledge, this is the first example of a non-Gaussian bosonic channel for which there are exact solutions for these tasks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.05793v1-abstract-full').style.display = 'none'; document.getElementById('2402.05793v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">v1: 21 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PRX Quantum, vol. 5, no. 2, page 020354, June 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.16150">arXiv:2401.16150</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.16150">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Sliding ferroelectric memories and synapses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiuzhen Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qin%2C+B">Biao Qin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yaxian Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xi%2C+Y">Yue Xi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zhiheng Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+M">Mengze Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yalin Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zitao Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+Z">Zitian Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+J">Jundong Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+C">Chenyang Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+R">Rong Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wei Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+S">Sheng Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+D">Dongxia Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bai%2C+X">Xuedong Bai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Can Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+N">Na Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+J">Jianshi Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+K">Kaihui Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+L">Luojun Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+G">Guangyu Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.16150v1-abstract-short" style="display: inline;"> Ferroelectric materials with switchable electric polarization hold great promise for a plethora of emergent applications, such as post-Moore&#39;s law nanoelectronics, beyond-Boltzmann transistors, non-volatile memories, and above-bandgap photovoltaic devices. Recent advances have uncovered an exotic sliding ferroelectric mechanism, which endows to design atomically thin ferroelectrics from non-ferroe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.16150v1-abstract-full').style.display = 'inline'; document.getElementById('2401.16150v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.16150v1-abstract-full" style="display: none;"> Ferroelectric materials with switchable electric polarization hold great promise for a plethora of emergent applications, such as post-Moore&#39;s law nanoelectronics, beyond-Boltzmann transistors, non-volatile memories, and above-bandgap photovoltaic devices. Recent advances have uncovered an exotic sliding ferroelectric mechanism, which endows to design atomically thin ferroelectrics from non-ferroelectric parent monolayers. Although notable progress has been witnessed in understanding its fundamental properties, functional devices based on sliding ferroelectrics, the key touchstone toward applications, remain elusive. Here, we demonstrate the rewritable, non-volatile memory devices at room-temperature utilizing a two-dimensional (2D) sliding ferroelectric semiconductor of rhombohedral-stacked bilayer molybdenum disulfide. The 2D sliding ferroelectric memories (SFeMs) show superior performances with a large memory window of &gt;8V, a high conductance ratio of above 106, a long retention time of &gt;10 years, and a programming endurance greater than 104 cycles. Remarkably, flexible SFeMs are achieved with state-of-the-art performances competitive to their rigid counterparts and maintain their performances post bending over 103 cycles. Furthermore, synapse-specific Hebbian forms of plasticity and image recognition with a high accuracy of 97.81% are demonstrated based on flexible SFeMs. Our work demonstrates the sliding ferroelectric memories and synaptic plasticity on both rigid and flexible substrates, highlighting the great potential of sliding ferroelectrics for emerging technological applications in brain-inspired in-memory computing, edge intelligence and energy-efficient wearable electronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.16150v1-abstract-full').style.display = 'none'; document.getElementById('2401.16150v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.15918">arXiv:2401.15918</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.15918">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.scib.2024.01.036">10.1016/j.scib.2024.01.036 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tunable vortex bound states in multiband CsV3Sb5-derived kagome superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zihao Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xianghe Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Z">Zhen Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jinjin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+P">Pengfei Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+H">Hengxin Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhiwei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yugui Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Haitao Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+B">Binghai Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+K">Kun Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Jiangping Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Ziqiang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hui Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+H">Hong-Jun Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.15918v1-abstract-short" style="display: inline;"> Vortices and bound states offer an effective means of comprehending the electronic properties of superconductors. Recently, surface dependent vortex core states have been observed in the newly discovered kagome superconductors CsV3Sb5. Although the spatial distribution of the sharp zero energy conductance peak appears similar to Majorana bound states arising from the superconducting Dirac surface&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.15918v1-abstract-full').style.display = 'inline'; document.getElementById('2401.15918v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.15918v1-abstract-full" style="display: none;"> Vortices and bound states offer an effective means of comprehending the electronic properties of superconductors. Recently, surface dependent vortex core states have been observed in the newly discovered kagome superconductors CsV3Sb5. Although the spatial distribution of the sharp zero energy conductance peak appears similar to Majorana bound states arising from the superconducting Dirac surface states, its origin remains elusive. In this study, we present observations of tunable vortex bound states (VBSs) in two chemically doped kagome superconductors Cs(V1-xTrx)3Sb5 (Tr=Ta or Ti), using low temperature scanning tunneling microscopy/spectroscopy. The CsV3Sb5-derived kagome superconductors exhibit full gap pairing superconductivity accompanied by the absence of long range charge orders, in contrast to pristine CsV3Sb5. Zero energy conductance maps demonstrate a field-driven continuous reorientation transition of the vortex lattice, suggesting multiband superconductivity. The Ta doped CsV3Sb5 displays the conventional cross shaped spatial evolution of Caroli de Gennes Matricon bound states, while the Ti doped CsV3Sb5 exhibits a sharp, non split zero bias conductance peak (ZBCP) that persists over a long distance across the vortex. The spatial evolution of the non split ZBCP is robust against surface effects and external magnetic field but is related to the doping concentrations. Our study reveals the tunable VBSs in multiband chemically doped CsV3Sb5 system and offers fresh insights into previously reported Y shaped ZBCP in a non quantum limit condition at the surface of kagome superconductor. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.15918v1-abstract-full').style.display = 'none'; document.getElementById('2401.15918v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted by Science Bulletin DOI:10.1016/j.scib.2024.01.036</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science Bulletin 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.10993">arXiv:2401.10993</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.10993">pdf</a>, <a href="https://arxiv.org/format/2401.10993">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Mixed state topological order parameters for symmetry protected fermion matter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Ze-Min Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Diehl%2C+S">Sebastian Diehl</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.10993v1-abstract-short" style="display: inline;"> We construct an observable mixed state topological order parameter for symmetry-protected free fermion matter. It resolves the entire table of topological insulators and superconductors, relying exclusively on the symmetry class, but not on unitary symmetries. It provides a robust, quantized signal not only for pure ground states, but also for mixed states in- or out of thermal equilibrium. Key in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.10993v1-abstract-full').style.display = 'inline'; document.getElementById('2401.10993v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.10993v1-abstract-full" style="display: none;"> We construct an observable mixed state topological order parameter for symmetry-protected free fermion matter. It resolves the entire table of topological insulators and superconductors, relying exclusively on the symmetry class, but not on unitary symmetries. It provides a robust, quantized signal not only for pure ground states, but also for mixed states in- or out of thermal equilibrium. Key ingredient is a unitary probe operator, whose phase can be related to spectral asymmetry, in turn revealing the topological properties of the underlying state. This is demonstrated analytically in the continuum limit, and validated numerically on the lattice. The order parameter is experimentally accessible via either interferometry or full counting statistics, for example, in cold atom experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.10993v1-abstract-full').style.display = 'none'; document.getElementById('2401.10993v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7+15 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.08204">arXiv:2401.08204</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.08204">pdf</a>, <a href="https://arxiv.org/format/2401.08204">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> First-principles derivation of elastic interaction between Jahn-Teller centers in crystals via lattice Green&#39;s functions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zhishuo Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Iwahara%2C+N">Naoya Iwahara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chibotaru%2C+L+F">Liviu F. Chibotaru</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.08204v1-abstract-short" style="display: inline;"> Jahn-Teller (JT) systems with strong and intermediate vibronic coupling are described in terms of local JT active vibrational modes. In JT crystals, the elastic interaction of these modes at different JT centers plays a crucial role, for instance, in determining critical temperature of structural phase transitions. Despite their importance, the parameters of elastic interaction between JT centers&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.08204v1-abstract-full').style.display = 'inline'; document.getElementById('2401.08204v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.08204v1-abstract-full" style="display: none;"> Jahn-Teller (JT) systems with strong and intermediate vibronic coupling are described in terms of local JT active vibrational modes. In JT crystals, the elastic interaction of these modes at different JT centers plays a crucial role, for instance, in determining critical temperature of structural phase transitions. Despite their importance, the parameters of elastic interaction between JT centers have not been accessed yet by first-principles calculations. In this paper, we develop an effective Hamiltonian methodology for the thorough description of the elastic interactions in cooperative Jahn-Teller problems, which treats the interactions with both phonons and uniform strains. All the microscopic parameters, such as lattice Green&#39;s functions, elastic modulus, can be obtained or calculated based on first-principles the calculation. The method has been applied to a series of 5d1 double perovskites. Such effective Hamiltonian methodology can be, in general, used to investigate the APES of any type of the local distortions, such as impurities, defects, etc. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.08204v1-abstract-full').style.display = 'none'; document.getElementById('2401.08204v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 4 figures, 14 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.02224">arXiv:2401.02224</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.02224">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Topological transmission in Suzuki phase sonic crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zhen Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cervera%2C+F">Francisco Cervera</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+J+H">Jiu Hui Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ibarias%2C+M">Martin Ibarias</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Chongrui Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia-Chocano%2C+V+M">Victor M. Garcia-Chocano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+F">Fuyin Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sanchez-Dehesa%2C+J">Jose Sanchez-Dehesa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.02224v1-abstract-short" style="display: inline;"> This work reports topological extraordinary properties of sound transmission through topological states in sonic crystals denominated Suzuki phase, consisting of a rectangular lattice of vacancies created in a triangular lattice. These low-symmetry crystals exhibit unique properties due to the embedded lattice of vacancies. A generalized folding method explains the band structure and the quasi-typ&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.02224v1-abstract-full').style.display = 'inline'; document.getElementById('2401.02224v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.02224v1-abstract-full" style="display: none;"> This work reports topological extraordinary properties of sound transmission through topological states in sonic crystals denominated Suzuki phase, consisting of a rectangular lattice of vacancies created in a triangular lattice. These low-symmetry crystals exhibit unique properties due to the embedded lattice of vacancies. A generalized folding method explains the band structure and the quasi-type-II Dirac point in the Suzuki phase, which is related to the underlying triangular lattice. In analogy to the acoustic valley Hall effect, the Suzuki phase contains three types of topological edge states on the four possible interfaces separating two Suzuki phase crystals with distinct topological phases. The edge states have defined symmetries with inherent directionality, which affect the topological sound transmission and are different from chirality, valley vorticity or helicity. Particularly, the existence of topological deaf bands is here reported. The propagation of topological eigenmodes on the same interface is also different, which is quantified using the acoustic Shannon entropy, making the topological transport dependent on the frequency of the edge states. Based on the abundant topological edge states of Suzuki phase crystals, a multifunctional device with acoustic diodes, multi-channel transmission, and selective acoustic transmission can be designed. Numerical simulations and measurements demonstrate the topological transmission. Our work extends the research platform of acoustic topological states to lattices with low symmetry, which opens new avenues for enriching topological states with broad engineering applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.02224v1-abstract-full').style.display = 'none'; document.getElementById('2401.02224v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 9 figures, and 17 pages of supplementary materials</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.15961">arXiv:2312.15961</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.15961">pdf</a>, <a href="https://arxiv.org/format/2312.15961">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Observation of Magnon Damping Minimum Induced by Kondo Coupling in a van der Waals Ferromagnet Fe$_{3-x}$GeTe$_{2}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bao%2C+S">Song Bao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Junsen Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yano%2C+S">Shin-ichiro Yano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shangguan%2C+Y">Yanyan Shangguan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zhentao Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liao%2C+J">Junbo Liao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Wei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yuan Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+B">Bo Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+S">Shufan Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+H">Hao Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+Z">Zhao-Yang Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+S">Shun-Li Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+W">Wei Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jian-Xin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wen%2C+J">Jinsheng Wen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.15961v1-abstract-short" style="display: inline;"> In heavy-fermion systems with $f$ electrons, there is an intricate interplay between Kondo screening and magnetic correlations, which can give rise to various exotic phases. Recently, similar interplay appears to also occur in $d$-electron systems, but the underlying mechanism remains elusive. Here, using inelastic neutron scattering, we investigate the temperature evolution of the low-energy spin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15961v1-abstract-full').style.display = 'inline'; document.getElementById('2312.15961v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.15961v1-abstract-full" style="display: none;"> In heavy-fermion systems with $f$ electrons, there is an intricate interplay between Kondo screening and magnetic correlations, which can give rise to various exotic phases. Recently, similar interplay appears to also occur in $d$-electron systems, but the underlying mechanism remains elusive. Here, using inelastic neutron scattering, we investigate the temperature evolution of the low-energy spin waves in a metallic van der Waals ferromagnet Fe$_{3-x}$GeTe$_{2}$ (Curie temperature $T_{\rm C}\sim160$ K), where the Kondo-lattice behavior emerges in the ferromagnetic phase below a characteristic temperature $T^*\sim90$ K. We observe that the magnon damping constant diverges at both low and high temperatures, exhibiting a minimum coincidentally around $T^*$. Such an observation is analogous to the resistivity minimum as due to the single-impurity Kondo effect. This unusual behavior is described by a formula that combines logarithmic and power terms, representing the dominant contributions from Kondo screening and thermal fluctuations, respectively. Furthermore, we find that the magnon damping increases with momentum below $T_{\rm C}$. These findings can be explained by considering spin-flip electron-magnon scattering, which serves as a magnonic analog of the Kondo-impurity scattering, and thus provides a measure of the Kondo coupling through magnons. Our results provide critical insights into how Kondo coupling manifests itself in a system with magnetic ordering and shed light on the coexistence of and interplay between magnetic order and Kondo effect in itinerant 3$d$-electron systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15961v1-abstract-full').style.display = 'none'; document.getElementById('2312.15961v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.15943">arXiv:2312.15943</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.15943">pdf</a>, <a href="https://arxiv.org/format/2312.15943">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-41791-9">10.1038/s41467-023-41791-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct observation of topological magnon polarons in a multiferroic material </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bao%2C+S">Song Bao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+Z">Zhao-Long Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shangguan%2C+Y">Yanyan Shangguan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zhentao Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liao%2C+J">Junbo Liao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+X">Xiaoxue Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+B">Bo Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+Z">Zhao-Yang Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Wei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kajimoto%2C+R">Ryoichi Kajimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nakamura%2C+M">Mitsutaka Nakamura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fennell%2C+T">Tom Fennell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+S">Shun-Li Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jian-Xin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wen%2C+J">Jinsheng Wen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.15943v1-abstract-short" style="display: inline;"> Magnon polarons are novel elementary excitations possessing hybrid magnonic and phononic signatures, and are responsible for many exotic spintronic and magnonic phenomena. Despite long-term sustained experimental efforts in chasing for magnon polarons, direct spectroscopic evidence of their existence is hardly observed. Here, we report the direct observation of magnon polarons using neutron spectr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15943v1-abstract-full').style.display = 'inline'; document.getElementById('2312.15943v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.15943v1-abstract-full" style="display: none;"> Magnon polarons are novel elementary excitations possessing hybrid magnonic and phononic signatures, and are responsible for many exotic spintronic and magnonic phenomena. Despite long-term sustained experimental efforts in chasing for magnon polarons, direct spectroscopic evidence of their existence is hardly observed. Here, we report the direct observation of magnon polarons using neutron spectroscopy on a multiferroic Fe$_{2}$Mo$_{3}$O$_{8}$ possessing strong magnon-phonon coupling. Specifically, below the magnetic ordering temperature, a gap opens at the nominal intersection of the original magnon and phonon bands, leading to two separated magnon-polaron bands. Each of the bands undergoes mixing, interconverting and reversing between its magnonic and phononic components. We attribute the formation of magnon polarons to the strong magnon-phonon coupling induced by Dzyaloshinskii-Moriya interaction. Intriguingly, we find that the band-inverted magnon polarons are topologically nontrivial. These results uncover exotic elementary excitations arising from the magnon-phonon coupling, and offer a new route to topological states by considering hybridizations between different types of fundamental excitations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15943v1-abstract-full').style.display = 'none'; document.getElementById('2312.15943v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures, published in Nature Communications</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 14, 6093 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.15932">arXiv:2312.15932</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.15932">pdf</a>, <a href="https://arxiv.org/format/2312.15932">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-023-02212-2">10.1038/s41567-023-02212-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of a 1/3 Magnetisation Plateau Phase as Evidence for the Kitaev Interaction in a Honeycomb-Lattice Antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shangguan%2C+Y">Yanyan Shangguan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bao%2C+S">Song Bao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+Z">Zhao-Yang Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xi%2C+N">Ning Xi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yi-Peng Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+Z">Zhen Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Wei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qi%2C+Z">Zhongyuan Qi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shuai Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zhentao Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liao%2C+J">Junbo Liao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+X">Xiaoxue Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+B">Bo Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+S">Shufan Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+H">Hao Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+D">Dehong Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mole%2C+R+A">Richard A. Mole</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Murai%2C+N">Naoki Murai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ohira-Kawamura%2C+S">Seiko Ohira-Kawamura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+L">Lunhua He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hao%2C+J">Jiazheng Hao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+Q">Qing-Bo Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+F">Fengqi Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+W">Wei Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+S">Shun-Li Yu</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.15932v1-abstract-short" style="display: inline;"> Fractional magnetisation plateaus, in which the magnetisation is pinned at a fraction of its saturated value within a range of external magnetic field, are spectacular macroscopic manifestations of the collective quantum behaviours. One prominent example of the plateau phase is found in spin-1/2 triangular-lattice antiferromagnets featuring strong geometrical frustration, and is often interpreted&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15932v1-abstract-full').style.display = 'inline'; document.getElementById('2312.15932v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.15932v1-abstract-full" style="display: none;"> Fractional magnetisation plateaus, in which the magnetisation is pinned at a fraction of its saturated value within a range of external magnetic field, are spectacular macroscopic manifestations of the collective quantum behaviours. One prominent example of the plateau phase is found in spin-1/2 triangular-lattice antiferromagnets featuring strong geometrical frustration, and is often interpreted as quantum-fluctuation-stabilised state in magnetic field via the &#34;order-by-disorder&#34; mechanism. Here, we observe an unprecedented 1/3 magnetisation plateau between 5.2 and 7.4 T at 2 K in a spin-1 antiferromagnet Na$_3$Ni$_2$BiO$_6$ with a honeycomb lattice, where conventionally no geometrical frustration is anticipated. By carrying out elastic neutron scattering measurements, we propose the spin structure of the plateau phase to be an unusual partial spin-flop ferrimagnetic order, transitioning from the zigzag antiferromagnetic order in zero field. Our theoretical calculations show that the plateau phase is stabilised by the bond-anisotropic Kitaev interaction. These results provide a new paradigm for the exploration of rich quantum phases in frustrated magnets and exotic Kitaev physics in high-spin systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15932v1-abstract-full').style.display = 'none'; document.getElementById('2312.15932v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted version, 10 pages, 5 figures. Final version has been published in Nature Physics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics 19, 1883-1889 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.14166">arXiv:2312.14166</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.14166">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Hydrogel modified evaporation interface for highly stable membrane distillation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+Y">Yanni Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+Z">Zehua Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+X">Xifan Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zhi Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+T">Tenghui Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+N">Na Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">Huidong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+K">Kang Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.14166v1-abstract-short" style="display: inline;"> Surface effect of low-surface-tension contaminants accumulating at the evaporation surface can easily induce membrane wetting in the application of membrane distillation, especially in hypersaline scenarios. In this work, we propose a novel strategy to eliminate the surface effect and redistribute contaminants at the evaporation interface with simply incorporating a layer of hydrogel. The as-fabri&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.14166v1-abstract-full').style.display = 'inline'; document.getElementById('2312.14166v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.14166v1-abstract-full" style="display: none;"> Surface effect of low-surface-tension contaminants accumulating at the evaporation surface can easily induce membrane wetting in the application of membrane distillation, especially in hypersaline scenarios. In this work, we propose a novel strategy to eliminate the surface effect and redistribute contaminants at the evaporation interface with simply incorporating a layer of hydrogel. The as-fabricated composite membrane exhibits remarkable stability, even when exposed to extreme conditions, such as a salt concentration of 5M and surfactant concentration of 8 mM. The breakthrough pressure of the membrane is as high as 20 bars in the presence of surfactants, surpassing commercial hydrophobic membranes by one to two magnitudes. Combined study of density functional theory and molecular dynamics simulations reveals the important role of hydrogel-surfactant interaction in suppressing the surface effect. As a proof of concept, we also demonstrate the stable performance of the membrane in processing synthetic wastewater containing surfactants of 144 mg L-1, mineral oils of 1g L-1 and NaCl of 192 g L-1, showing potential of the membrane in addressing challenges of hypersaline water treatment and zero liquid discharge processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.14166v1-abstract-full').style.display = 'none'; document.getElementById('2312.14166v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.06664">arXiv:2312.06664</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.06664">pdf</a>, <a href="https://arxiv.org/format/2312.06664">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.6.L042014">10.1103/PhysRevResearch.6.L042014 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Accurate optimal quantum error correction thresholds from coherent information </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Colmenarez%2C+L">Luis Colmenarez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Ze-Min Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Diehl%2C+S">Sebastian Diehl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=M%C3%BCller%2C+M">Markus M眉ller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.06664v2-abstract-short" style="display: inline;"> Quantum error correcting (QEC) codes protect quantum information from decoherence, as long as error rates fall below critical error thresholds. In general, obtaining thresholds implies simulating the QEC procedure using, in general, sub-optimal decoding strategies. In a few cases and for sufficiently simple noise models, optimal decoding of QEC codes can be framed as a phase transition in disorder&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.06664v2-abstract-full').style.display = 'inline'; document.getElementById('2312.06664v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.06664v2-abstract-full" style="display: none;"> Quantum error correcting (QEC) codes protect quantum information from decoherence, as long as error rates fall below critical error thresholds. In general, obtaining thresholds implies simulating the QEC procedure using, in general, sub-optimal decoding strategies. In a few cases and for sufficiently simple noise models, optimal decoding of QEC codes can be framed as a phase transition in disordered classical spin models. In both situations, accurate estimation of thresholds demands intensive computational resources. Here we use the coherent information of the mixed state of noisy QEC codes to accurately estimate the associated optimal QEC thresholds already from small-distance codes at moderate computational cost. We show the effectiveness and versatility of our method by applying it first to the topological surface and color code under bit-flip and depolarizing noise. We then extend the coherent information based methodology to phenomenological and quantum circuit level noise settings. For all examples considered we obtain highly accurate estimates of optimal error thresholds from small, low-distance instances of the codes, in close accordance with threshold values reported in the literature. Our findings establish the coherent information as a reliable competitive practical tool for the calculation of optimal thresholds of state-of-the-art QEC codes under realistic noise models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.06664v2-abstract-full').style.display = 'none'; document.getElementById('2312.06664v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.00410">arXiv:2312.00410</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.00410">pdf</a>, <a href="https://arxiv.org/ps/2312.00410">ps</a>, <a href="https://arxiv.org/format/2312.00410">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.109.054120">10.1103/PhysRevE.109.054120 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Subsystem eigenstate thermalization hypothesis for translation invariant systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zhiqiang Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+X">Xiao-Kan Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.00410v4-abstract-short" style="display: inline;"> The eigenstate thermalization hypothesis for translation invariant quantum spin systems has been proved recently by using random matrices. In this paper, we study the subsystem version of eigenstate thermalization hypothesis for translation invariant quantum systems without referring to random matrices. We first find a relation between the quantum variance and the Belavkin-Staszewski relative entr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.00410v4-abstract-full').style.display = 'inline'; document.getElementById('2312.00410v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.00410v4-abstract-full" style="display: none;"> The eigenstate thermalization hypothesis for translation invariant quantum spin systems has been proved recently by using random matrices. In this paper, we study the subsystem version of eigenstate thermalization hypothesis for translation invariant quantum systems without referring to random matrices. We first find a relation between the quantum variance and the Belavkin-Staszewski relative entropy. Then, by showing the small upper bounds on the quantum variance and the Belavkin-Staszewski relative entropy, we prove the subsystem eigenstate thermalization hypothesis for translation invariant quantum systems with an algebraic speed of convergence in an elementary way. The proof holds for most of the translation invariant quantum lattice models with exponential or algebraic decays of correlations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.00410v4-abstract-full').style.display = 'none'; document.getElementById('2312.00410v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 109, 054120 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.16655">arXiv:2311.16655</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.16655">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Room-temperature correlated states in twisted bilayer MoS$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+F">Fanfan Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Q">Qiaoling Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Qinqin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chu%2C+Y">Yanbang Chu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+L">Lu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+J">Jian Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jieying Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+J">Jinpeng Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+Y">Yiru Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+L">Le Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Y">Yalong Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zhiheng Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J">Jiaojiao Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zan%2C+X">Xiaozhou Zan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+D">Dongxia Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+G">Gangxu Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yang Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xian%2C+L">Lede Xian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wei Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+L">Luojun Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+G">Guangyu Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.16655v1-abstract-short" style="display: inline;"> Moir茅 superlattices have emerged as an exciting condensed-matter quantum simulator for exploring the exotic physics of strong electronic correlations. Notable progress has been witnessed, but such correlated states are achievable usually at low temperatures. Here, we report the transport evidences of room-temperature correlated electronic states and layer-hybridized SU(4) Hubbard model simulator i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.16655v1-abstract-full').style.display = 'inline'; document.getElementById('2311.16655v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.16655v1-abstract-full" style="display: none;"> Moir茅 superlattices have emerged as an exciting condensed-matter quantum simulator for exploring the exotic physics of strong electronic correlations. Notable progress has been witnessed, but such correlated states are achievable usually at low temperatures. Here, we report the transport evidences of room-temperature correlated electronic states and layer-hybridized SU(4) Hubbard model simulator in AB-stacked MoS$_2$ homo-bilayer moir茅 superlattices. Correlated insulating states at moir茅 band filling factors v = 1, 2, 3 are unambiguously established in twisted bilayer MoS$_2$. Remarkably, the correlated electronic states can persist up to a record-high critical temperature of over 285 K. The realization of room-temperature correlated states in twisted bilayer MoS$_2$ can be understood as the cooperation effects of the stacking-specific atomic reconstruction and the resonantly enhanced interlayer hybridization, which largely amplify the moir茅 superlattice effects on electronic correlations. Furthermore, extreme large non-linear Hall responses up to room-temperature are uncovered near correlated insulating states, demonstrating the quantum geometry of moir茅 flat conduction band. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.16655v1-abstract-full').style.display = 'none'; document.getElementById('2311.16655v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.13395">arXiv:2311.13395</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.13395">pdf</a>, <a href="https://arxiv.org/format/2311.13395">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.195121">10.1103/PhysRevB.109.195121 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Site-selective doublon-holon dynamics in a pumped one-dimensional Hubbard superlattice with staggered Coulomb interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Z">Zhenyu Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Ying Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+H">Hantao Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+X">Xiang Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zhongbing Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fiete%2C+G+A">Gregory A. Fiete</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+L">Liang Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.13395v1-abstract-short" style="display: inline;"> Doublon-holon dynamics is investigated in a pumped one-dimensional Hubbard model with a staggered on?site Coulomb interaction at half-filling. When the system parameters are set to be in the Mott insulating regime the equilibrium sublattice density of states exhibits several characteristic peaks, corresponding to the lower and upper Hubbard bands as well as hybridization bands. We study the linear&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.13395v1-abstract-full').style.display = 'inline'; document.getElementById('2311.13395v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.13395v1-abstract-full" style="display: none;"> Doublon-holon dynamics is investigated in a pumped one-dimensional Hubbard model with a staggered on?site Coulomb interaction at half-filling. When the system parameters are set to be in the Mott insulating regime the equilibrium sublattice density of states exhibits several characteristic peaks, corresponding to the lower and upper Hubbard bands as well as hybridization bands. We study the linear absorption spectrum and find two main peaks characterizing the photon frequencies which excite the ground state to an excited state. For a system driven by a laser pulse with general intensity and frequency, both the energy absorption and the doublon-holon dynamics exhibit distinct behaviors as a function of laser amplitude and frequency. Single-photon processes are observed at low laser intensity where the energy is absorbed for resonance laser frequencies. For strong laser intensity multi-photon induced dynamics are observed in the system, which are confirmed by an evaluation of the Loschmidt amplitude. The contribution of multi-photon processes to site-specific double occupancy is also characterized by the generalized Loschmidt amplitude. The site-selective doublon-holon dynamics are observed in both the one and multi-photon processes and the site-selective behavior is explained within a quasiparticle picture. Our study suggests strategies to optically engineer the doublon-holon dynamics in one dimensional strongly correlated many-body systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.13395v1-abstract-full').style.display = 'none'; document.getElementById('2311.13395v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys Rev B 109, 195121 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.03836">arXiv:2311.03836</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.03836">pdf</a>, <a href="https://arxiv.org/ps/2311.03836">ps</a>, <a href="https://arxiv.org/format/2311.03836">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Active smectics on a sphere </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Nestler%2C+M">Michael Nestler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Praetorius%2C+S">Simon Praetorius</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zhi-Feng Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=L%C3%B6wen%2C+H">Hartmut L枚wen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Voigt%2C+A">Axel Voigt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.03836v1-abstract-short" style="display: inline;"> The dynamics of active smectic liquid crystals confined on a spherical surface is explored through an active phase field crystal model. Starting from an initially randomly perturbed isotropic phase, several types of topological defects are spontaneously formed, and then annihilate during a coarsening process until a steady state is achieved. The coarsening process is highly complex involving sever&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.03836v1-abstract-full').style.display = 'inline'; document.getElementById('2311.03836v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.03836v1-abstract-full" style="display: none;"> The dynamics of active smectic liquid crystals confined on a spherical surface is explored through an active phase field crystal model. Starting from an initially randomly perturbed isotropic phase, several types of topological defects are spontaneously formed, and then annihilate during a coarsening process until a steady state is achieved. The coarsening process is highly complex involving several scaling laws of defect densities as a function of time where different dynamical exponents can be identified. In general the exponent for the final stage towards the steady state is significantly larger than that in the passive and in the planar case, i.e., the coarsening is getting accelerated both by activity and by the topological and geometrical properties of the sphere. A defect type characteristic for this active system is a rotating spiral of evolving smectic layering lines. On a sphere this defect type also determines the steady state. Our results can in principle be confirmed by dense systems of synthetic or biological active particles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.03836v1-abstract-full').style.display = 'none'; document.getElementById('2311.03836v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 6 figures</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Huang%2C+Z&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Huang%2C+Z&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Huang%2C+Z&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Huang%2C+Z&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Huang%2C+Z&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Huang%2C+Z&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10