CINXE.COM

Search results for: low-pressure turbine cascade

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: low-pressure turbine cascade</title> <meta name="description" content="Search results for: low-pressure turbine cascade"> <meta name="keywords" content="low-pressure turbine cascade"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="low-pressure turbine cascade" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="low-pressure turbine cascade"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 714</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: low-pressure turbine cascade</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">714</span> Computational Investigation of Secondary Flow Losses in Linear Turbine Cascade by Modified Leading Edge Fence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20N.%20Kiran">K. N. Kiran</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Anish"> S. Anish</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is well known that secondary flow loses account about one third of the total loss in any axial turbine. Modern gas turbine height is smaller and have longer chord length, which might lead to increase in secondary flow. In order to improve the efficiency of the turbine, it is important to understand the behavior of secondary flow and device mechanisms to curtail these losses. The objective of the present work is to understand the effect of a stream wise end-wall fence on the aerodynamics of a linear turbine cascade. The study is carried out computationally by using commercial software ANSYS CFX. The effect of end-wall on the flow field are calculated based on RANS simulation by using SST transition turbulence model. Durham cascade which is similar to high-pressure axial flow turbine for simulation is used. The aim of fencing in blade passage is to get the maximum benefit from flow deviation and destroying the passage vortex in terms of loss reduction. It is observed that, for the present analysis, fence in the blade passage helps reducing the strength of horseshoe vortex and is capable of restraining the flow along the blade passage. Fence in the blade passage helps in reducing the under turning by 7<sup>0</sup> in comparison with base case. Fence on end-wall is effective in preventing the movement of pressure side leg of horseshoe vortex and helps in breaking the passage vortex. Computations are carried for different fence height whose curvature is different from the blade camber. The optimum fence geometry and location reduces the loss coefficient by 15.6% in comparison with base case. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer%20fence" title="boundary layer fence">boundary layer fence</a>, <a href="https://publications.waset.org/abstracts/search?q=horseshoe%20vortex" title=" horseshoe vortex"> horseshoe vortex</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20cascade" title=" linear cascade"> linear cascade</a>, <a href="https://publications.waset.org/abstracts/search?q=passage%20vortex" title=" passage vortex"> passage vortex</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20flow" title=" secondary flow"> secondary flow</a> </p> <a href="https://publications.waset.org/abstracts/49015/computational-investigation-of-secondary-flow-losses-in-linear-turbine-cascade-by-modified-leading-edge-fence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49015.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">713</span> Numerical Study of Off-Design Performance of a Highly Loaded Low Pressure Turbine Cascade</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shidvash%20Vakilipour">Shidvash Vakilipour</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Habibnia"> Mehdi Habibnia</a>, <a href="https://publications.waset.org/abstracts/search?q=Rouzbeh%20Riazi"> Rouzbeh Riazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Mohammadi"> Masoud Mohammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20H.%20Sabour"> Mohammad H. Sabour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The flow field passing through a highly loaded low pressure (LP) turbine cascade is numerically investigated at design and off-design conditions. The Field Operation And Manipulation (OpenFOAM) platform is used as the computational Fluid Dynamics (CFD) tool. Firstly, the influences of grid resolution on the results of k-ε, k-ω, and LES turbulence models are investigated and compared with those of experimental measurements. A numerical pressure under-shoot is appeared near the end of blade pressure surface which is sensitive to grid resolution and flow turbulence modeling. The LES model is able to resolve separation on a coarse and fine grid resolutions. Secondly, the off-design flow condition is modeled by negative and positive inflow incidence angles. The numerical experiments show that a separation bubble generated on blade pressure side is predicted by LES. The total pressure drop is also been calculated at incidence angle between -20◦ and +8◦. The minimum total pressure drop is obtained by k-ω and LES at the design point. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low%20pressure%20turbine" title="low pressure turbine">low pressure turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=off-design%20performance" title=" off-design performance"> off-design performance</a>, <a href="https://publications.waset.org/abstracts/search?q=openFOAM" title=" openFOAM"> openFOAM</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence%20modeling" title=" turbulence modeling"> turbulence modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20separation" title=" flow separation"> flow separation</a> </p> <a href="https://publications.waset.org/abstracts/26688/numerical-study-of-off-design-performance-of-a-highly-loaded-low-pressure-turbine-cascade" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26688.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">712</span> Dynamic Analysis of Turbine Foundation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mogens%20Saberi">Mogens Saberi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents different design approaches for the design of turbine foundations. In the design process, several unknown factors must be considered such as the soil stiffness at the site. The main static and dynamic loads are presented and the results of a dynamic simulation are presented for a turbine foundation that is currently being built. A turbine foundation is an important part of a power plant since a non-optimal behavior of the foundation can damage the turbine itself and thereby stop the power production with large consequences. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20turbine%20design" title="dynamic turbine design">dynamic turbine design</a>, <a href="https://publications.waset.org/abstracts/search?q=harmonic%20response%20analysis" title=" harmonic response analysis"> harmonic response analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=practical%20turbine%20design%20experience" title=" practical turbine design experience"> practical turbine design experience</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20foundation" title=" concrete foundation"> concrete foundation</a> </p> <a href="https://publications.waset.org/abstracts/52233/dynamic-analysis-of-turbine-foundation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52233.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">711</span> Review of Modern Gas turbine Blade Cooling Technologies used in Aircraft</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arun%20Prasath%20Subramanian">Arun Prasath Subramanian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The turbine Inlet Temperature is an important parameter which determines the efficiency of a gas turbine engine. The increase in this parameter is limited by material constraints of the turbine blade.The modern Gas turbine blade has undergone a drastic change from a simple solid blade to a modern multi-pass blade with internal and external cooling techniques. This paper aims to introduce the reader the concept of turbine blade cooling, the classification of techniques and further explain some of the important internal cooling technologies used in a modern gas turbine blade along with the various factors that affect the cooling effectiveness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20turbine%20blade" title="gas turbine blade">gas turbine blade</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling%20technologies" title=" cooling technologies"> cooling technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20cooling" title=" internal cooling"> internal cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=pin-fin%20cooling" title=" pin-fin cooling"> pin-fin cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=jet%20impingement%20cooling" title=" jet impingement cooling"> jet impingement cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=rib%20turbulated%20cooling" title=" rib turbulated cooling"> rib turbulated cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=metallic%20foam%20cooling" title=" metallic foam cooling"> metallic foam cooling</a> </p> <a href="https://publications.waset.org/abstracts/39117/review-of-modern-gas-turbine-blade-cooling-technologies-used-in-aircraft" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39117.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">710</span> Power Generation from Sewage by a Micro-Hydraulic Turbine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tomomi%20Uchiyama">Tomomi Uchiyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomoko%20Okayama"> Tomoko Okayama</a>, <a href="https://publications.waset.org/abstracts/search?q=Yukio%20Ide"> Yukio Ide</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is concerned with the development of a micro-hydraulic turbine for power generation installed in sewer pipes. The runner has a circular hollow around the central (rotating) axis so that solid materials included in water can be easily flow through the runner without blocking the turbine. The laboratory experiments are also conducted. The hollow is very effective to make polyester fibers pass through the turbine. The guide vane is useful to heighten the turbine performance. But it is easily blocked by the fibers, making the turbine lose the function. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=micro-hydraulic%20turbine" title="micro-hydraulic turbine">micro-hydraulic turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20generation" title=" power generation"> power generation</a>, <a href="https://publications.waset.org/abstracts/search?q=sewage" title=" sewage"> sewage</a>, <a href="https://publications.waset.org/abstracts/search?q=sewer%20pipe" title=" sewer pipe"> sewer pipe</a> </p> <a href="https://publications.waset.org/abstracts/24854/power-generation-from-sewage-by-a-micro-hydraulic-turbine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24854.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">709</span> Multiphase Flow Model for 3D Numerical Model Using ANSYS for Flow over Stepped Cascade with End Sill</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dheyaa%20Wajid%20Abbood">Dheyaa Wajid Abbood</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanan%20Hussien%20Abood"> Hanan Hussien Abood</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stepped cascade has been utilized as a hydraulic structure for years. It has proven to be the least costly aeration system in replenishing dissolved oxygen. Numerical modeling of stepped cascade with end sill is very complicated and challenging because of the high roughness and velocity re circulation regions. Volume of fluid multiphase flow model (VOF) is used .The realizable k-ξ model is chosen to simulate turbulence. The computational results are compared with lab-scale stepped cascade data. The lab –scale model was constructed in the hydraulic laboratory, Al-Mustansiriya University, Iraq. The stepped cascade was 0.23 m wide and consisted of 3 steps each 0.2m high and 0.6 m long with variable end sill. The discharge was varied from 1 to 4 l/s. ANSYS has been employed to simulate the experimental data and their related results. This study shows that ANSYS is able to predict results almost the same as experimental findings in some regions of the structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stepped%20cascade%20weir" title="stepped cascade weir">stepped cascade weir</a>, <a href="https://publications.waset.org/abstracts/search?q=aeration" title=" aeration"> aeration</a>, <a href="https://publications.waset.org/abstracts/search?q=multiphase%20flow%20model" title=" multiphase flow model"> multiphase flow model</a>, <a href="https://publications.waset.org/abstracts/search?q=ansys" title=" ansys"> ansys</a> </p> <a href="https://publications.waset.org/abstracts/30556/multiphase-flow-model-for-3d-numerical-model-using-ansys-for-flow-over-stepped-cascade-with-end-sill" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30556.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">708</span> Experimental and CFD of Desgined Small Wind Turbine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tarek%20A.%20Mekail">Tarek A. Mekail</a>, <a href="https://publications.waset.org/abstracts/search?q=Walid%20M.%20A.%20Elmagid"> Walid M. A. Elmagid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many researches have concentrated on improving the aerodynamic performance of wind turbine blade through testing and theoretical studies. A small wind turbine blade is designed, fabricated and tested. The power performance of small horizontal axis wind turbines is simulated in details using Computational Fluid Dynamic (CFD). The three-dimensional CFD models are presented using ANSYS-CFX v13 software for predicting the performance of a small horizontal axis wind turbine. The simulation results are compared with the experimental data measured from a small wind turbine model, which designed according to a vehicle-based test system. The analysis of wake effect and aerodynamic of the blade can be carried out when the rotational effect was simulated. Finally, comparison between experimental, numerical and analytical performance has been done. The comparison is fairly good. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=small%20wind%20turbine" title="small wind turbine">small wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD%20of%20wind%20turbine" title=" CFD of wind turbine"> CFD of wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20of%20wind%20turbine" title=" performance of wind turbine"> performance of wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20of%20small%20wind%20turbine" title=" test of small wind turbine"> test of small wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine%20aerodynamic" title=" wind turbine aerodynamic"> wind turbine aerodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20model" title=" 3D model"> 3D model</a> </p> <a href="https://publications.waset.org/abstracts/18446/experimental-and-cfd-of-desgined-small-wind-turbine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18446.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">542</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">707</span> Evaluation of Mechanical Behavior of Gas Turbine Blade at High Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sung-Uk%20Wee">Sung-Uk Wee</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang-Sung%20Seok"> Chang-Sung Seok</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae-Mean%20Koo"> Jae-Mean Koo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeong-Min%20Lee"> Jeong-Min Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gas turbine blade is important part of power plant, so it is necessary to evaluate gas turbine reliability. For better heat efficiency, inlet temperature of gas turbine has been elevated more and more so gas turbine blade is exposed to high-temperature environment. Then, higher inlet temperature affects mechanical behavior of the gas turbine blade, so it is necessary that evaluation of mechanical property of gas turbine blade at high-temperature environment. In this study, tensile test and fatigue test were performed at various high temperature, and fatigue life was predicted by Coffin-Manson equation at each temperature. The experimental results showed that gas turbine blade has a lower elastic modulus and shorter fatigue life at higher temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20turbine%20blade" title="gas turbine blade">gas turbine blade</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20test" title=" tensile test"> tensile test</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20life" title=" fatigue life"> fatigue life</a>, <a href="https://publications.waset.org/abstracts/search?q=stress-strain" title=" stress-strain"> stress-strain</a> </p> <a href="https://publications.waset.org/abstracts/52129/evaluation-of-mechanical-behavior-of-gas-turbine-blade-at-high-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52129.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">477</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">706</span> Shear Layer Investigation through a High-Load Cascade in Low-Pressure Gas Turbine Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Habibnia%20Rami">Mehdi Habibnia Rami</a>, <a href="https://publications.waset.org/abstracts/search?q=Shidvash%20Vakilipour"> Shidvash Vakilipour</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20H.%20Sabour"> Mohammad H. Sabour</a>, <a href="https://publications.waset.org/abstracts/search?q=Rouzbeh%20Riazi"> Rouzbeh Riazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Hassannia"> Hossein Hassannia </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the steady and unsteady flow behavior on the separation bubble occurring on the rear portion of the suction side of T106A blade. The first phase was to implement the steady condition capturing the separation bubble. To accurately predict the separated region, the effects of three different turbulence models and computational grids were separately investigated. The results of Large Eddy Simulation (LES) model on the finest grid structure are acceptably in a good agreement with its relevant experimental results. The second phase is mainly to address the effects of wake entrance on bubble disappearance in unsteady situation. In the current simulations, from what was suggested in an experiment, simulating the flow unsteadiness, with concentrations on small scale disturbances instead of simulating a complete oncoming wake, is the key issue. Subsequently, the results from the current strategy to apply the effects of the wake and two other experimental work were compared to be in a good agreement. Between the two experiments, one of them deals with wake passing unsteady flow, and the other one implements experimentally the same approach as the current Computational Fluid Dynamics (CFD) simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low-pressure%20turbine%20cascade" title="low-pressure turbine cascade">low-pressure turbine cascade</a>, <a href="https://publications.waset.org/abstracts/search?q=large-Eddy%20simulation%20%28LES%29" title=" large-Eddy simulation (LES)"> large-Eddy simulation (LES)</a>, <a href="https://publications.waset.org/abstracts/search?q=RANS%20turbulence%20models" title=" RANS turbulence models"> RANS turbulence models</a>, <a href="https://publications.waset.org/abstracts/search?q=unsteady%20flow%20measurements" title=" unsteady flow measurements"> unsteady flow measurements</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20separation" title=" flow separation"> flow separation</a> </p> <a href="https://publications.waset.org/abstracts/62574/shear-layer-investigation-through-a-high-load-cascade-in-low-pressure-gas-turbine-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62574.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">705</span> Exergy Analysis of Regenerative Organic Rankine Cycle Using Turbine Bleeding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyoung%20Hoon%20Kim">Kyoung Hoon Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents an exergetical performance analysis of regenerative organic Rankine cycle (ORC) using turbine bleeding based on the second law of thermodynamics for recovery of finite thermal energy. Effects of system parameters such as turbine bleeding pressure and turbine bleeding fraction are theoretically investigated on the exergy destructions (anergies) at various components of the system as well as the exergy and the second-law efficiencies. Under the conditions of the critical fraction of turbine bleeding, the simulation results show that the exergy efficiency decreases monotonically with respect to the bleeding pressure, however, the second-law efficiency has a peak with respect to the turbine bleeding pressure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20Rankine%20cycle" title="organic Rankine cycle">organic Rankine cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=ORC" title=" ORC"> ORC</a>, <a href="https://publications.waset.org/abstracts/search?q=regeneration" title=" regeneration"> regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=turbine%20bleeding" title=" turbine bleeding"> turbine bleeding</a>, <a href="https://publications.waset.org/abstracts/search?q=exergy" title=" exergy"> exergy</a>, <a href="https://publications.waset.org/abstracts/search?q=second-law%20efficiency" title=" second-law efficiency"> second-law efficiency</a> </p> <a href="https://publications.waset.org/abstracts/34056/exergy-analysis-of-regenerative-organic-rankine-cycle-using-turbine-bleeding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">499</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">704</span> Stress Analysis of Turbine Blades of Turbocharger Using Structural Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roman%20Kalvin">Roman Kalvin</a>, <a href="https://publications.waset.org/abstracts/search?q=Anam%20Nadeem"> Anam Nadeem</a>, <a href="https://publications.waset.org/abstracts/search?q=Saba%20Arif"> Saba Arif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Turbocharger is a device that is driven by the turbine and increases efficiency and power output of the engine by forcing external air into the combustion chamber. This study focused on the distribution of stress on the turbine blades and total deformation that may occur during its working along with turbocharger to carry out its static structural analysis of turbine blades. Structural steel was selected as the material for turbocharger. Assembly of turbocharger and turbine blades was designed on PRO ENGINEER. Furthermore, the structural analysis is performed by using ANSYS. This research concluded that by using structural steel, the efficiency of engine is improved and by increasing number of turbine blades, more waste heat from combustion chamber is emitted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=turbocharger" title="turbocharger">turbocharger</a>, <a href="https://publications.waset.org/abstracts/search?q=turbine%20blades" title=" turbine blades"> turbine blades</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20steel" title=" structural steel"> structural steel</a>, <a href="https://publications.waset.org/abstracts/search?q=ANSYS" title=" ANSYS"> ANSYS</a> </p> <a href="https://publications.waset.org/abstracts/97552/stress-analysis-of-turbine-blades-of-turbocharger-using-structural-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">703</span> Effect of Thickness and Solidity on the Performance of Straight Type Vertical Axis Wind Turbine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jianyang%20Zhu">Jianyang Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Lin%20Jiang"> Lin Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Tixian%20Tian"> Tixian Tian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inspired by the increasing interesting on the wind power associated with production of clear electric power, a numerical experiment is applied to investigate the aerodynamic performance of straight type vertical axis wind turbine with different thickness and solidity, where the incompressible Navier-Stokes (N-S) equations coupled with dynamic mesh technique is solved. By analyzing the flow field, as well as energy coefficient of different thickness and solidity turbine, it is found that the thickness and solidity can significantly influence the performance of vertical axis wind turbine. For the turbine under low tip speed, the mean energy coefficient increase with the increasing of thickness and solidity, which may improve the self starting performance of the turbine. However for the turbine under high tip speed, the appropriate thickness and smaller solidity turbine possesses better performance. In addition, delay stall and no interaction of the blade and previous separated vortex are observed around appropriate thickness and solidity turbine, therefore lead better performance characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vertical%20axis%20wind%20turbine" title="vertical axis wind turbine">vertical axis wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=N-S%20equations" title=" N-S equations"> N-S equations</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20mesh%20technique" title=" dynamic mesh technique"> dynamic mesh technique</a>, <a href="https://publications.waset.org/abstracts/search?q=thickness" title=" thickness"> thickness</a>, <a href="https://publications.waset.org/abstracts/search?q=solidity" title=" solidity"> solidity</a> </p> <a href="https://publications.waset.org/abstracts/54216/effect-of-thickness-and-solidity-on-the-performance-of-straight-type-vertical-axis-wind-turbine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54216.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">702</span> Implemented Cascade with Feed Forward by Enthalpy Balance Superheated Steam Temperature Control for a Boiler with Distributed Control System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kanpop%20Saion">Kanpop Saion</a>, <a href="https://publications.waset.org/abstracts/search?q=Sakreya%20Chitwong"> Sakreya Chitwong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Control of superheated steam temperature in the steam generation is essential for the efficiency safety and increment age of the boiler. Conventional cascade PID temperature control in the super heater is known to be efficient to compensate disturbance. However, the complex of thermal power plant due to nonlinearity, load disturbance and time delay of steam of superheater system is bigger than other control systems. The cascade loop with feed forward steam temperature control with energy balance compensator using thermodynamic model has been used for the compensation the complex structure of superheater. In order to improve the performance of steam temperature control. The experiment is implemented for 100% load steady and load changing state. The cascade with feed forward with energy balance steam temperature control has stabilized the system as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cascade%20with%20feed%20forward" title="cascade with feed forward">cascade with feed forward</a>, <a href="https://publications.waset.org/abstracts/search?q=boiler" title=" boiler"> boiler</a>, <a href="https://publications.waset.org/abstracts/search?q=superheated%20steam%20temperature%20control" title=" superheated steam temperature control"> superheated steam temperature control</a>, <a href="https://publications.waset.org/abstracts/search?q=enthalpy%20balance" title=" enthalpy balance"> enthalpy balance</a> </p> <a href="https://publications.waset.org/abstracts/55760/implemented-cascade-with-feed-forward-by-enthalpy-balance-superheated-steam-temperature-control-for-a-boiler-with-distributed-control-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55760.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">701</span> Effect of Blade Shape on the Performance of Wells Turbine for Wave Energy Conversion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Katsuya%20Takasaki">Katsuya Takasaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Manabu%20Takao"> Manabu Takao</a>, <a href="https://publications.waset.org/abstracts/search?q=Toshiaki%20Setoguchi"> Toshiaki Setoguchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effect of 3-dimensional (3D) blade on the turbine characteristics of Wells turbine for wave energy conversion has been investigated experimentally by model testing under steady flow conditions in the study, in order to improve the peak efficiency and the stall characteristics. The aim of the use of 3D blade is to prevent flow separation on the suction surface near the tip. The chord length is constant with radius and the blade profile changes gradually from mean radius to tip. The proposed blade profiles in the study are NACA0015 from hub to mean radius and NACA0025 at the tip. The performances of Wells turbine with 3D blades has been compared with those of the original Wells turbine, i.e. the turbine with 2-dimensional (2D) blades. As a result, it was concluded that although the peak efficiency of Wells turbine can be improved by the use of the proposed 3D blade, its blade does not overcome the weakness of stalling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluid%20machinery" title="fluid machinery">fluid machinery</a>, <a href="https://publications.waset.org/abstracts/search?q=ocean%20engineering" title=" ocean engineering"> ocean engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=stall" title=" stall"> stall</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20energy%20conversion" title=" wave energy conversion"> wave energy conversion</a>, <a href="https://publications.waset.org/abstracts/search?q=wells%20turbine" title=" wells turbine"> wells turbine</a> </p> <a href="https://publications.waset.org/abstracts/17316/effect-of-blade-shape-on-the-performance-of-wells-turbine-for-wave-energy-conversion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17316.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">700</span> Thermodynamic Analysis of GT Cycle with Naphtha or Natural Gas as the Fuel: A Thermodynamic Comparison</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Arpit">S. Arpit</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20K.%20Das"> P. K. Das</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Dash"> S. K. Dash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a comparative study is done between two fuels, naphtha and natural gas (NG), for a gas turbine (GT) plant of 32.5 MW with the same thermodynamic configuration. From the energy analysis, it is confirmed that the turbine inlet temperature (TIT) of the gas turbine in the case of natural gas is higher as compared to naphtha, and hence the isentropic efficiency of the turbine is better. The result from the exergy analysis also confirms that due to high turbine inlet temperature in the case of natural gas, exergy destruction in combustion chamber is less. But comparing two fuels for overall analysis, naphtha has higher energy and exergetic efficiency as compared to natural gas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exergy%20analysis" title="exergy analysis">exergy analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20turbine" title=" gas turbine"> gas turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=naphtha" title=" naphtha"> naphtha</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20gas" title=" natural gas"> natural gas</a> </p> <a href="https://publications.waset.org/abstracts/101550/thermodynamic-analysis-of-gt-cycle-with-naphtha-or-natural-gas-as-the-fuel-a-thermodynamic-comparison" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101550.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">699</span> Testing of Gas Turbine KingTech with Biodiesel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nicolas%20Lipchak">Nicolas Lipchak</a>, <a href="https://publications.waset.org/abstracts/search?q=Franco%20Aiducic"> Franco Aiducic</a>, <a href="https://publications.waset.org/abstracts/search?q=Santiago%20Baieli"> Santiago Baieli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work is a part of the research project called ‘Testing of gas turbine KingTech with biodiesel’, carried out by the Department of Industrial Engineering of the National Technological University at Buenos Aires. The research group aims to experiment with biodiesel in a gas turbine Kingtech K-100 to verify the correct operation of it. In this sense, tests have been developed to obtain real data of parameters inherent to the work cycle, to be used later as parameters of comparison and performance analysis. In the first instance, the study consisted in testing the gas turbine with a mixture composition of 50% Biodiesel and 50% Diesel. The parameters arising from the measurements made were compared with the parameters of the gas turbine with a composition of 100% Diesel. In the second instance, the measured parameters were used to calculate the power generated and the thermal efficiency of the Kingtech K-100 turbine. The turbine was also inspected to verify the status of the internals due to the use of biofuels. The conclusions obtained allow empirically demonstrate that it is feasible to use biodiesel in this type of gas turbines, without the use of this fuel generates a loss of power or degradation of internals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=KingTech" title=" KingTech"> KingTech</a>, <a href="https://publications.waset.org/abstracts/search?q=turbine" title=" turbine"> turbine</a> </p> <a href="https://publications.waset.org/abstracts/92969/testing-of-gas-turbine-kingtech-with-biodiesel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">698</span> Genetic Algorithm and Multi-Parametric Programming Based Cascade Control System for Unmanned Aerial Vehicles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dao%20Phuong%20Nam">Dao Phuong Nam</a>, <a href="https://publications.waset.org/abstracts/search?q=Do%20Trong%20Tan"> Do Trong Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=Pham%20Tam%20Thanh"> Pham Tam Thanh</a>, <a href="https://publications.waset.org/abstracts/search?q=Le%20Duy%20Tung"> Le Duy Tung</a>, <a href="https://publications.waset.org/abstracts/search?q=Tran%20Hoang%20Anh"> Tran Hoang Anh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper considers the problem of cascade control system for unmanned aerial vehicles (UAVs). Due to the complicated modelling technique of UAV, it is necessary to separate them into two subsystems. The proposed cascade control structure is a hierarchical scheme including a robust control for inner subsystem based on H infinity theory and trajectory generator using genetic algorithm (GA), outer loop control law based on multi-parametric programming (MPP) technique to overcome the disadvantage of a big amount of calculations. Simulation results are presented to show that the equivalent path has been found and obtained by proposed cascade control scheme. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title="genetic algorithm">genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=GA" title=" GA"> GA</a>, <a href="https://publications.waset.org/abstracts/search?q=H%20infinity" title=" H infinity"> H infinity</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-parametric%20programming" title=" multi-parametric programming"> multi-parametric programming</a>, <a href="https://publications.waset.org/abstracts/search?q=MPP" title=" MPP"> MPP</a>, <a href="https://publications.waset.org/abstracts/search?q=unmanned%20aerial%20vehicles" title=" unmanned aerial vehicles"> unmanned aerial vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=UAVs" title=" UAVs"> UAVs</a> </p> <a href="https://publications.waset.org/abstracts/81434/genetic-algorithm-and-multi-parametric-programming-based-cascade-control-system-for-unmanned-aerial-vehicles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81434.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">697</span> Improving the Performance of Gas Turbine Power Plant by Modified Axial Turbine </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hakim%20T.%20Kadhim">Hakim T. Kadhim</a>, <a href="https://publications.waset.org/abstracts/search?q=Faris%20A.%20Jabbar"> Faris A. Jabbar</a>, <a href="https://publications.waset.org/abstracts/search?q=Aldo%20Rona"> Aldo Rona</a>, <a href="https://publications.waset.org/abstracts/search?q=Audrius%20Bagdanaviciu"> Audrius Bagdanaviciu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Computer-based optimization techniques can be employed to improve the efficiency of energy conversions processes, including reducing the aerodynamic loss in a thermal power plant turbomachine. In this paper, towards mitigating secondary flow losses, a design optimization workflow is implemented for the casing geometry of a 1.5 stage axial flow turbine that improves the turbine isentropic efficiency. The improved turbine is used in an open thermodynamic gas cycle with regeneration and cogeneration. Performance estimates are obtained by the commercial software Cycle &ndash; Tempo. Design and off design conditions are considered as well as variations in inlet air temperature. Reductions in both the natural gas specific fuel consumption and in CO<sub>2</sub> emissions are predicted by using the gas turbine cycle fitted with the new casing design. These gains are attractive towards enhancing the competitiveness and reducing the environmental impact of thermal power plant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axial%20flow%20turbine" title="axial flow turbine">axial flow turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20turbine%20power%20plant" title=" gas turbine power plant"> gas turbine power plant</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/93179/improving-the-performance-of-gas-turbine-power-plant-by-modified-axial-turbine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93179.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">696</span> Starting Torque Study of Darrieus Wind Turbine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Douak">M. Douak</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Aouachria"> Z. Aouachria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of our study is to project an optimized wind turbine of Darrieus type. This type of wind turbine is characterized by a low starting torque in comparison with the Savonius rotor allowing them to operate for a period greater than wind speed. This led us to reconsider the Darrieus rotor to optimize a design which will increase its starting torque. The study of a system of monitoring and control of the angle of attack of blade profile, which allows an auto start to wind speeds as low as possible is presented for the straight blade of Darrieus turbine. The study continues to extend to other configurations namely those of parabolic type. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Darrieus%20turbine" title="Darrieus turbine">Darrieus turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=pitch%20angle" title=" pitch angle"> pitch angle</a>, <a href="https://publications.waset.org/abstracts/search?q=self%20stating" title=" self stating"> self stating</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20energy" title=" wind energy "> wind energy </a> </p> <a href="https://publications.waset.org/abstracts/26727/starting-torque-study-of-darrieus-wind-turbine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">695</span> Adaptive Envelope Protection Control for the below and above Rated Regions of Wind Turbines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Sahin">Mustafa Sahin</a>, <a href="https://publications.waset.org/abstracts/search?q=%C4%B0lkay%20Yavrucuk"> İlkay Yavrucuk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a wind turbine envelope protection control algorithm that protects Variable Speed Variable Pitch (VSVP) wind turbines from damage during operation throughout their below and above rated regions, i.e. from cut-in to cut-out wind speed. The proposed approach uses a neural network that can adapt to turbines and their operating points. An algorithm monitors instantaneous wind and turbine states, predicts a wind speed that would push the turbine to a pre-defined envelope limit and, when necessary, realizes an avoidance action. Simulations are realized using the MS Bladed Wind Turbine Simulation Model for the NREL 5 MW wind turbine equipped with baseline controllers. In all simulations, through the proposed algorithm, it is observed that the turbine operates safely within the allowable limit throughout the below and above rated regions. Two example cases, adaptations to turbine operating points for the below and above rated regions and protections are investigated in simulations to show the capability of the proposed envelope protection system (EPS) algorithm, which reduces excessive wind turbine loads and expectedly increases the turbine service life. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20envelope%20protection%20control" title="adaptive envelope protection control">adaptive envelope protection control</a>, <a href="https://publications.waset.org/abstracts/search?q=limit%20detection%20and%20avoidance" title=" limit detection and avoidance"> limit detection and avoidance</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=ultimate%20load%20reduction" title=" ultimate load reduction"> ultimate load reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine%20power%20control" title=" wind turbine power control"> wind turbine power control</a> </p> <a href="https://publications.waset.org/abstracts/121488/adaptive-envelope-protection-control-for-the-below-and-above-rated-regions-of-wind-turbines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">694</span> Investigation of Cascade Loop Heat Pipes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nandy%20Putra">Nandy Putra</a>, <a href="https://publications.waset.org/abstracts/search?q=Atrialdipa%20Duanovsah"> Atrialdipa Duanovsah</a>, <a href="https://publications.waset.org/abstracts/search?q=Kristofer%20Haliansyah"> Kristofer Haliansyah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this research is to design a LHP with low thermal resistance and low condenser temperature. A Self-designed cascade LHP was tested by using biomaterial, sintered copper powder, and aluminum screen mesh as the wick. Using pure water as the working fluid for the first level of the LHP and 96% alcohol as the working fluid for the second level of LHP, the experiments were run with 10W, 20W, and 30W heat input. Experimental result shows that the usage of biomaterial as wick could reduce more temperature at evaporator than by using sintered copper powder and screen mesh up to 22.63% and 37.41% respectively. The lowest thermal resistance occurred during the usage of biomaterial as wick of heat pipe, which is 2.06 <sup>o</sup>C/W. The usage of cascade system could be applied to LHP to reduce the temperature at condenser and reduced thermal resistance up to 17.6%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomaterial" title="biomaterial">biomaterial</a>, <a href="https://publications.waset.org/abstracts/search?q=cascade%20loop%20heat%20pipe" title=" cascade loop heat pipe"> cascade loop heat pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=screen%20mesh" title=" screen mesh"> screen mesh</a>, <a href="https://publications.waset.org/abstracts/search?q=sintered%20Cu" title=" sintered Cu"> sintered Cu</a> </p> <a href="https://publications.waset.org/abstracts/30592/investigation-of-cascade-loop-heat-pipes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">693</span> Thermodynamic Analysis of Cascade Refrigeration System Using R12-R13, R290-R23 and R404A-23</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20D.%20Parekh">A. D. Parekh</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20R.%20Tailor"> P. R. Tailor </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Montreal protocol and Kyoto protocol underlined the need of substitution of CFC’s and HCFC’s due to their adverse impact on atmospheric ozone layer which protects earth from U.V rays. The CFCs have been entirely ruled out since 1995 and a long-term basis HCFCs must be replaced by 2020. All this events motivated HFC refrigerants which are harmless to ozone layer. In this paper thermodynamic analysis of cascade refrigeration system has been done using three different refrigerant pairs R13-R12, R290-R23, and R404A-R23. Effect of various operating parameters i.e evaporator temperature, condenser temperature, temperature difference in cascade condenser and low temperature cycle condenser temperature on performance parameters viz. COP, exergetic efficiency and refrigerant mass flow ratio have been studied. Thermodynamic analysis shows that out of three refrigerant pairs R12-R13, R290-R23 and R404A-R23 the COP of R290-R23 refrigerant pair is highest. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermodynamic%20analysis" title="thermodynamic analysis">thermodynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=cascade%20refrigeration%20system" title=" cascade refrigeration system"> cascade refrigeration system</a>, <a href="https://publications.waset.org/abstracts/search?q=COP" title=" COP"> COP</a>, <a href="https://publications.waset.org/abstracts/search?q=exergetic%20efficiency" title=" exergetic efficiency"> exergetic efficiency</a> </p> <a href="https://publications.waset.org/abstracts/12727/thermodynamic-analysis-of-cascade-refrigeration-system-using-r12-r13-r290-r23-and-r404a-23" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">692</span> Aerodynamic Bicycle Torque Augmentation with a Wells Turbine in Wheels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tsuyoshi%20Yamazaki">Tsuyoshi Yamazaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Etsuo%20Morishita"> Etsuo Morishita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cyclists often run through a crosswind and sometimes we experience the adverse pressure. We came to an idea that Wells turbine can be used as power augmentation device in the crosswind something like sails of a yacht. Wells turbine always rotates in the same direction irrespective of the incoming flow direction, and we use it in the small-scale power generation in the ocean where waves create an oscillating flow. We incorporate the turbine to the wheel of a bike. A commercial device integrates strain gauges in the crank of a bike and transmitted force and torque applied to the pedal of the bike as an e-mail to the driver&rsquo;s mobile phone. We can analyze the unsteady data in a spreadsheet sent from the crank sensor. We run the bike with the crank sensor on the rollers at the exit of a low-speed wind tunnel and analyze the effect of the crosswind to the wheel with a Wells turbine. We also test the aerodynamic characteristics of the turbine separately. Although power gain depends on the flow direction, several Watts increase might be possible by the Wells turbine incorporated to a bike wheel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamics" title="aerodynamics">aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=Wells%20turbine" title=" Wells turbine"> Wells turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=bicycle" title=" bicycle"> bicycle</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20engineering" title=" wind engineering"> wind engineering</a> </p> <a href="https://publications.waset.org/abstracts/84277/aerodynamic-bicycle-torque-augmentation-with-a-wells-turbine-in-wheels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84277.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">691</span> A Design Method for Wind Turbine Blade to Have Uniform Strength and Optimum Power Generation Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pengfei%20Liu">Pengfei Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yiyi%20Xu"> Yiyi Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There have been substantial incidents of wind turbine blade fractures and failures due to the lack of systematic blade strength design method incorporated with the aerodynamic forces and power generation efficiency. This research was to develop a methodology and procedure for the wind turbine rotor blade strength taking into account the strength, integration, and aerodynamic performance in terms of power generation efficiency. The wind turbine blade designed using this method and procedure will have a uniform strength across the span to save unnecessary thickness in many blade radial locations and yet to maintain the optimum power generation performance. A turbine rotor code, taking into account both aerodynamic and structural properties, was developed. An existing wind turbine blade was used as an example. For a condition of extreme wind speed of 100 km per hour, the design reduced about 19% of material usage while maintaining the optimum power regeneration efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title="renewable energy">renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine" title=" wind turbine"> wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=turbine%20blade%20strength" title=" turbine blade strength"> turbine blade strength</a>, <a href="https://publications.waset.org/abstracts/search?q=aerodynamics-strength%20coupled%20optimization" title=" aerodynamics-strength coupled optimization"> aerodynamics-strength coupled optimization</a> </p> <a href="https://publications.waset.org/abstracts/120082/a-design-method-for-wind-turbine-blade-to-have-uniform-strength-and-optimum-power-generation-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120082.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">690</span> Environmental Life Cycle Assessment of Two Technologic Scenario of Wind Turbine Blades Composition for an Optimized Wind Turbine Design Using the Impact 2002+ Method and Using 15 Environmental Impact Indicators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Jarrou">A. Jarrou</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Iranzo"> A. Iranzo</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Nana"> C. Nana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rapid development of the onshore/offshore wind industry and the continuous, strong, and long-term support from governments have made it possible to create factories specializing in the manufacture of the different parts of wind turbines, but in the literature, Life Cycle Assessment (LCA) analyzes consider the wind turbine as a whole and do not allow the allocation of impacts to the different components of the wind turbine. Here we propose to treat each part of the wind turbine as a system in its own right. This is more in line with the current production system. Environmental Life Cycle Assessment of two technological scenarios of wind turbine blades composition for an optimized wind turbine design using the impact 2002+ method and using 15 environmental impact indicators. This article aims to assess the environmental impacts associated with 1 kg of wind turbine blades. In order to carry out a realistic and precise study, the different stages of the life cycle of a wind turbine installation are included in the study (manufacture, installation, use, maintenance, dismantling, and waste treatment). The Impact 2002+ method used makes it possible to assess 15 impact indicators (human toxicity, terrestrial and aquatic ecotoxicity, climate change, land use, etc.). Finally, a sensitivity study is carried out to analyze the different types of uncertainties in the data collected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title="life cycle assessment">life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine" title=" wind turbine"> wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=turbine%20blade" title=" turbine blade"> turbine blade</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20impact" title=" environmental impact"> environmental impact</a> </p> <a href="https://publications.waset.org/abstracts/152116/environmental-life-cycle-assessment-of-two-technologic-scenario-of-wind-turbine-blades-composition-for-an-optimized-wind-turbine-design-using-the-impact-2002-method-and-using-15-environmental-impact-indicators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152116.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">689</span> Performance Study of Cascade Refrigeration System Using Alternative Refrigerants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gulshan%20Sachdeva">Gulshan Sachdeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Vaibhav%20Jain"> Vaibhav Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Kachhwaha"> S. S. Kachhwaha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cascade refrigeration systems employ series of single stage vapor compression units which are thermally coupled with evaporator/condenser cascades. Different refrigerants are used in each of the circuit depending on the optimum characteristics shown by the refrigerant for a particular application. In the present research study, a steady state thermodynamic model is developed which simulates the working of an actual cascade system. The model provides COP and all other system parameters like total compressor work, temperature, pressure, enthalpy and entropy at different state points. The working fluid in Low Temperature Circuit (LTC) is CO2 (R744) while ammonia (R717), propane (R290), propylene (R1270), R404A and R12 are the refrigerants in High Temperature Circuit (HTC). The performance curves of ammonia, propane, propylene, and R404A are compared with R12 to find its nearest substitute. Results show that ammonia is the best substitute of R12. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cascade%20system" title="cascade system">cascade system</a>, <a href="https://publications.waset.org/abstracts/search?q=refrigerants" title=" refrigerants"> refrigerants</a>, <a href="https://publications.waset.org/abstracts/search?q=thermodynamic%20model" title=" thermodynamic model"> thermodynamic model</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20engineering" title=" production engineering"> production engineering</a> </p> <a href="https://publications.waset.org/abstracts/4923/performance-study-of-cascade-refrigeration-system-using-alternative-refrigerants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">688</span> Optimization of Solar Chimney Power Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olusola%20Bamisile">Olusola Bamisile</a>, <a href="https://publications.waset.org/abstracts/search?q=Oluwaseun%20Ayodele"> Oluwaseun Ayodele</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Dagbasi"> Mustafa Dagbasi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this research is to optimize the power produced by a solar chimney wind turbine. The cut out speed and the maximum possible production are considered while performing the optimization. Solar chimney is one of the solar technologies that can be used in rural areas at cheap cost. With over 50% of rural areas still yet to have access to electricity. The OptimTool in MATLAB is used to maximize power produced by the turbine subject to certain constraints. The results show that an optimized turbine produces about ten times the power of the normal turbine which is 111 W/h. The rest of the research discuss in detail solar chimney power plant and the optimization simulation used in this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20chimney" title="solar chimney">solar chimney</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine" title=" wind turbine"> wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy%20systems" title=" renewable energy systems"> renewable energy systems</a> </p> <a href="https://publications.waset.org/abstracts/59066/optimization-of-solar-chimney-power-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59066.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">585</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">687</span> Fractional-Order PI Controller Tuning Rules for Cascade Control System </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Truong%20Nguyen%20Luan%20Vu">Truong Nguyen Luan Vu</a>, <a href="https://publications.waset.org/abstracts/search?q=Le%20Hieu%20Giang"> Le Hieu Giang</a>, <a href="https://publications.waset.org/abstracts/search?q=Le%20Linh"> Le Linh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fractional&ndash;order proportional integral (FOPI) controller tuning rules based on the fractional calculus for the cascade control system are systematically proposed in this paper. Accordingly, the ideal controller is obtained by using internal model control (IMC) approach for both the inner and outer loops, which gives the desired closed-loop responses. On the basis of the fractional calculus, the analytical tuning rules of FOPI controller for the inner loop can be established in the frequency domain. Besides, the outer loop is tuned by using any integer PI/PID controller tuning rules in the literature. The simulation study is considered for the stable process model and the results demonstrate the simplicity, flexibility, and effectiveness of the proposed method for the cascade control system in compared with the other methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bode%E2%80%99s%20ideal%20transfer%20function" title="Bode’s ideal transfer function">Bode’s ideal transfer function</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20calculus" title=" fractional calculus"> fractional calculus</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%E2%80%93order%20proportional%20integral%20%28FOPI%29%20controller" title=" fractional–order proportional integral (FOPI) controller"> fractional–order proportional integral (FOPI) controller</a>, <a href="https://publications.waset.org/abstracts/search?q=cascade%20control%20system" title=" cascade control system"> cascade control system</a> </p> <a href="https://publications.waset.org/abstracts/48740/fractional-order-pi-controller-tuning-rules-for-cascade-control-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48740.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">686</span> Thermal Assessment of Outer Rotor Direct Drive Gearless Small-Scale Wind Turbines </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yusuf%20Yasa">Yusuf Yasa</a>, <a href="https://publications.waset.org/abstracts/search?q=Erkan%20Mese"> Erkan Mese</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the thermal issue of permanent magnet synchronous generator which is frequently used in direct drive gearless small-scale wind turbine applications. Permanent magnet synchronous generator (PMSG) is designed with 2.5 kW continuous and 6 kW peak power. Then considering generator geometry, mechanical design of wind turbine is performed. Thermal analysis and optimization is carried out considering all wind turbine components to reach realistic results. These issue is extremely important in research and development(R&D) process for wind turbine applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=direct%20drive" title="direct drive">direct drive</a>, <a href="https://publications.waset.org/abstracts/search?q=gearless%20wind%20turbine" title=" gearless wind turbine"> gearless wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20synchronous%20generator%20%28PMSG%29" title=" permanent magnet synchronous generator (PMSG)"> permanent magnet synchronous generator (PMSG)</a>, <a href="https://publications.waset.org/abstracts/search?q=small-scale%20wind%20turbine" title=" small-scale wind turbine"> small-scale wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20management" title=" thermal management"> thermal management</a> </p> <a href="https://publications.waset.org/abstracts/29834/thermal-assessment-of-outer-rotor-direct-drive-gearless-small-scale-wind-turbines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29834.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">696</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">685</span> Emulation of a Wind Turbine Using Induction Motor Driven by Field Oriented Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Benaaouinate">L. Benaaouinate</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Khafallah"> M. Khafallah</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Martinez"> A. Martinez</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mesbahi"> A. Mesbahi</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Bouragba"> T. Bouragba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper concerns with the modeling, simulation, and emulation of a wind turbine emulator for standalone wind energy conversion systems. By using emulation system, we aim to reproduce the dynamic behavior of the wind turbine torque on the generator shaft: it provides the testing facilities to optimize generator control strategies in a controlled environment, without reliance on natural resources. The aerodynamic, mechanical, electrical models have been detailed as well as the control of pitch angle using Fuzzy Logic for horizontal axis wind turbines. The wind turbine emulator consists mainly of an induction motor with AC power drive with torque control. The control of the induction motor and the mathematical models of the wind turbine are designed with MATLAB/Simulink environment. The simulation results confirm the effectiveness of the induction motor control system and the functionality of the wind turbine emulator for providing all necessary parameters of the wind turbine system such as wind speed, output torque, power coefficient and tip speed ratio. The findings are of direct practical relevance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20generator" title="electrical generator">electrical generator</a>, <a href="https://publications.waset.org/abstracts/search?q=induction%20motor%20drive" title=" induction motor drive"> induction motor drive</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=pitch%20angle%20control" title=" pitch angle control"> pitch angle control</a>, <a href="https://publications.waset.org/abstracts/search?q=real%20time%20control" title=" real time control"> real time control</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine" title=" wind turbine"> wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine%20emulator" title=" wind turbine emulator"> wind turbine emulator</a> </p> <a href="https://publications.waset.org/abstracts/80827/emulation-of-a-wind-turbine-using-induction-motor-driven-by-field-oriented-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=low-pressure%20turbine%20cascade&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=low-pressure%20turbine%20cascade&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=low-pressure%20turbine%20cascade&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=low-pressure%20turbine%20cascade&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=low-pressure%20turbine%20cascade&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=low-pressure%20turbine%20cascade&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=low-pressure%20turbine%20cascade&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=low-pressure%20turbine%20cascade&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=low-pressure%20turbine%20cascade&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=low-pressure%20turbine%20cascade&amp;page=23">23</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=low-pressure%20turbine%20cascade&amp;page=24">24</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=low-pressure%20turbine%20cascade&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10