CINXE.COM
special orthogonal group in nLab
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> special orthogonal group in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> special orthogonal group </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussions/?CategoryID=0" title="Discuss this page on the nForum. It does not yet have a dedicated thread; feel free to create one, giving it the same name as the title of this page" style="color:black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="group_theory">Group Theory</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/group+theory">group theory</a></strong></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/group">group</a>, <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-group">∞-group</a></li> <li><a class="existingWikiWord" href="/nlab/show/group+object">group object</a>, <a class="existingWikiWord" href="/nlab/show/group+object+in+an+%28%E2%88%9E%2C1%29-category">group object in an (∞,1)-category</a></li> <li><a class="existingWikiWord" href="/nlab/show/abelian+group">abelian group</a>, <a class="existingWikiWord" href="/nlab/show/spectrum">spectrum</a></li> <li><a class="existingWikiWord" href="/nlab/show/super+abelian+group">super abelian group</a></li> <li><a class="existingWikiWord" href="/nlab/show/group+action">group action</a>, <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-action">∞-action</a></li> <li><a class="existingWikiWord" href="/nlab/show/representation">representation</a>, <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-representation">∞-representation</a></li> <li><a class="existingWikiWord" href="/nlab/show/progroup">progroup</a></li> <li><a class="existingWikiWord" href="/nlab/show/homogeneous+space">homogeneous space</a></li> </ul> <p><strong>Classical groups</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/general+linear+group">general linear group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/unitary+group">unitary group</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/special+unitary+group">special unitary group</a>. <a class="existingWikiWord" href="/nlab/show/projective+unitary+group">projective unitary group</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/orthogonal+group">orthogonal group</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/special+orthogonal+group">special orthogonal group</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/symplectic+group">symplectic group</a></p> </li> </ul> <p><strong>Finite groups</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/finite+group">finite group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/symmetric+group">symmetric group</a>, <a class="existingWikiWord" href="/nlab/show/cyclic+group">cyclic group</a>, <a class="existingWikiWord" href="/nlab/show/braid+group">braid group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/classification+of+finite+simple+groups">classification of finite simple groups</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/sporadic+finite+simple+groups">sporadic finite simple groups</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Monster+group">Monster group</a>, <a class="existingWikiWord" href="/nlab/show/Mathieu+group">Mathieu group</a></li> </ul> </li> </ul> <p><strong>Group schemes</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/algebraic+group">algebraic group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/abelian+variety">abelian variety</a></p> </li> </ul> <p><strong>Topological groups</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+group">topological group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/compact+topological+group">compact topological group</a>, <a class="existingWikiWord" href="/nlab/show/locally+compact+topological+group">locally compact topological group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/maximal+compact+subgroup">maximal compact subgroup</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/string+group">string group</a></p> </li> </ul> <p><strong>Lie groups</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Lie+group">Lie group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/compact+Lie+group">compact Lie group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Kac-Moody+group">Kac-Moody group</a></p> </li> </ul> <p><strong>Super-Lie groups</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/super+Lie+group">super Lie group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/super+Euclidean+group">super Euclidean group</a></p> </li> </ul> <p><strong>Higher groups</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/2-group">2-group</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/crossed+module">crossed module</a>, <a class="existingWikiWord" href="/nlab/show/strict+2-group">strict 2-group</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/n-group">n-group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-group">∞-group</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/simplicial+group">simplicial group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/crossed+complex">crossed complex</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/k-tuply+groupal+n-groupoid">k-tuply groupal n-groupoid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/spectrum">spectrum</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/circle+n-group">circle n-group</a>, <a class="existingWikiWord" href="/nlab/show/string+2-group">string 2-group</a>, <a class="existingWikiWord" href="/nlab/show/fivebrane+Lie+6-group">fivebrane Lie 6-group</a></p> </li> </ul> <p><strong>Cohomology and Extensions</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/group+cohomology">group cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/group+extension">group extension</a>,</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-group+extension">∞-group extension</a>, <a class="existingWikiWord" href="/nlab/show/Ext-group">Ext-group</a></p> </li> </ul> <p><strong>Related concepts</strong></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/quantum+group">quantum group</a></li> </ul> </div></div> <h4 id="lie_theory"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-Lie theory</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-Lie+theory">∞-Lie theory</a></strong> (<a class="existingWikiWord" href="/nlab/show/higher+geometry">higher geometry</a>)</p> <p><strong>Background</strong></p> <p><em>Smooth structure</em></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/generalized+smooth+space">generalized smooth space</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/smooth+manifold">smooth manifold</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/diffeological+space">diffeological space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Fr%C3%B6licher+space">Frölicher space</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/smooth+topos">smooth topos</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Cahiers+topos">Cahiers topos</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/smooth+%E2%88%9E-groupoid">smooth ∞-groupoid</a>, <a class="existingWikiWord" href="/nlab/show/concrete+smooth+%E2%88%9E-groupoid">concrete smooth ∞-groupoid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/synthetic+differential+%E2%88%9E-groupoid">synthetic differential ∞-groupoid</a></p> </li> </ul> <p><em>Higher groupoids</em></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-groupoid">∞-groupoid</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/groupoid">groupoid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/2-groupoid">2-groupoid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/strict+%E2%88%9E-groupoid">strict ∞-groupoid</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/crossed+complex">crossed complex</a></li> </ul> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-group">∞-group</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/simplicial+group">simplicial group</a></li> </ul> </li> </ul> <p><em>Lie theory</em></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Lie+theory">Lie theory</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Lie+integration">Lie integration</a>, <a class="existingWikiWord" href="/nlab/show/Lie+differentiation">Lie differentiation</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Lie%27s+three+theorems">Lie's three theorems</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Lie+theory+for+stacky+Lie+groupoids">Lie theory for stacky Lie groupoids</a></p> </li> </ul> </li> </ul> <p><strong>∞-Lie groupoids</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-Lie+groupoid">∞-Lie groupoid</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-Lie+groupoid">strict ∞-Lie groupoid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Lie+groupoid">Lie groupoid</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/differentiable+stack">differentiable stack</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/orbifold">orbifold</a></p> </li> </ul> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-Lie+group">∞-Lie group</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Lie+group">Lie group</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/simple+Lie+group">simple Lie group</a>, <a class="existingWikiWord" href="/nlab/show/semisimple+Lie+group">semisimple Lie group</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Lie+2-group">Lie 2-group</a></p> </li> </ul> </li> </ul> <p><strong>∞-Lie algebroids</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-Lie+algebroid">∞-Lie algebroid</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Lie+algebroid">Lie algebroid</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Lie+%E2%88%9E-algebroid+representation">Lie ∞-algebroid representation</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/L-%E2%88%9E-algebra">L-∞-algebra</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/model+structure+for+L-%E2%88%9E+algebras">model structure for L-∞ algebras</a>: <a class="existingWikiWord" href="/nlab/show/model+structure+on+dg-Lie+algebras">on dg-Lie algebras</a>, <a class="existingWikiWord" href="/nlab/show/model+structure+on+dg-coalgebras">on dg-coalgebras</a>, <a class="existingWikiWord" href="/nlab/show/model+structure+on+simplicial+Lie+algebras">on simplicial Lie algebras</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Lie+algebra">Lie algebra</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/semisimple+Lie+algebra">semisimple Lie algebra</a>, <a class="existingWikiWord" href="/nlab/show/compact+Lie+algebra">compact Lie algebra</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Lie+2-algebra">Lie 2-algebra</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/strict+Lie+2-algebra">strict Lie 2-algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+crossed+module">differential crossed module</a></p> </li> </ul> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Lie+3-algebra">Lie 3-algebra</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/differential+2-crossed+module">differential 2-crossed module</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/dg-Lie+algebra">dg-Lie algebra</a>, <a class="existingWikiWord" href="/nlab/show/simplicial+Lie+algebra">simplicial Lie algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/super+L-%E2%88%9E+algebra">super L-∞ algebra</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/super+Lie+algebra">super Lie algebra</a></li> </ul> </li> </ul> <p><strong>Formal Lie groupoids</strong></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/formal+group">formal group</a>, <a class="existingWikiWord" href="/nlab/show/formal+groupoid">formal groupoid</a></li> </ul> <p><strong>Cohomology</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Lie+algebra+cohomology">Lie algebra cohomology</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Chevalley-Eilenberg+algebra">Chevalley-Eilenberg algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Weil+algebra">Weil algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/invariant+polynomial">invariant polynomial</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Killing+form">Killing form</a></li> </ul> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/nonabelian+Lie+algebra+cohomology">nonabelian Lie algebra cohomology</a></p> </li> </ul> <p><strong>Homotopy</strong></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/homotopy+groups+of+a+Lie+groupoid">homotopy groups of a Lie groupoid</a></li> </ul> <p><strong>Related topics</strong></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-Chern-Weil+theory">∞-Chern-Weil theory</a></li> </ul> <p><strong>Examples</strong></p> <p><em><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-Lie groupoids</em></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Atiyah+Lie+groupoid">Atiyah Lie groupoid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fundamental+%E2%88%9E-groupoid">fundamental ∞-groupoid</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/path+groupoid">path groupoid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/path+n-groupoid">path n-groupoid</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/principal+%E2%88%9E-bundle">smooth principal ∞-bundle</a></p> </li> </ul> <p><em><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-Lie groups</em></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/orthogonal+group">orthogonal group</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/special+orthogonal+group">special orthogonal group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/spin+group">spin group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/string+2-group">string 2-group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fivebrane+6-group">fivebrane 6-group</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/unitary+group">unitary group</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/special+unitary+group">special unitary group</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-Lie+groupoid">circle Lie n-group</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/circle+group">circle group</a></li> </ul> </li> </ul> <p><em><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-Lie algebroids</em></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/tangent+Lie+algebroid">tangent Lie algebroid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/action+Lie+algebroid">action Lie algebroid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Atiyah+Lie+algebroid">Atiyah Lie algebroid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/symplectic+Lie+n-algebroid">symplectic Lie n-algebroid</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/symplectic+manifold">symplectic manifold</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Poisson+Lie+algebroid">Poisson Lie algebroid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Courant+Lie+algebroid">Courant Lie algebroid</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/generalized+complex+geometry">generalized complex geometry</a></li> </ul> </li> </ul> </li> </ul> <p><em><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-Lie algebras</em></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/general+linear+Lie+algebra">general linear Lie algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/orthogonal+Lie+algebra">orthogonal Lie algebra</a>, <a class="existingWikiWord" href="/nlab/show/special+orthogonal+Lie+algebra">special orthogonal Lie algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/endomorphism+L-%E2%88%9E+algebra">endomorphism L-∞ algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/automorphism+%E2%88%9E-Lie+algebra">automorphism ∞-Lie algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/string+Lie+2-algebra">string Lie 2-algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fivebrane+Lie+6-algebra">fivebrane Lie 6-algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/supergravity+Lie+3-algebra">supergravity Lie 3-algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/supergravity+Lie+6-algebra">supergravity Lie 6-algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/line+Lie+n-algebra">line Lie n-algebra</a></p> </li> </ul> </div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#definition'>Definition</a></li> <li><a href='#properties'>Properties</a></li> <ul> <li><a href='#HomologyAndCohomology'>Homology and cohomology</a></li> <li><a href='#as_part_of_the_ade_pattern'>As part of the ADE pattern</a></li> <li><a href='#relation_to_orientation_of_manifolds'>Relation to orientation of manifolds</a></li> </ul> <li><a href='#examples'>Examples</a></li> <li><a href='#related_concepts'>Related concepts</a></li> <li><a href='#References'>References</a></li> </ul> </div> <h2 id="definition">Definition</h2> <p>The <em>special orthogonal group</em> or <em>rotation group</em>, denoted <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>SO</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">SO(n)</annotation></semantics></math>, is the <a class="existingWikiWord" href="/nlab/show/group">group</a> of <a class="existingWikiWord" href="/nlab/show/rotations">rotations</a> in a <a class="existingWikiWord" href="/nlab/show/Cartesian+space">Cartesian space</a> of <a class="existingWikiWord" href="/nlab/show/dimension">dimension</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math>.</p> <p>This is one of the <a class="existingWikiWord" href="/nlab/show/classical+Lie+groups">classical Lie groups</a>. It is the <a class="existingWikiWord" href="/nlab/show/connected+component">connected component</a> of the neutral element in the <a class="existingWikiWord" href="/nlab/show/orthogonal+group">orthogonal group</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>O</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">O(n)</annotation></semantics></math>.</p> <p>For instance for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi><mo>=</mo><mn>2</mn></mrow><annotation encoding="application/x-tex">n=2</annotation></semantics></math> we have <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>SO</mi><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">SO(2)</annotation></semantics></math> the <a class="existingWikiWord" href="/nlab/show/circle+group">circle group</a>.</p> <p>It is the first step in the <a class="existingWikiWord" href="/nlab/show/Whitehead+tower">Whitehead tower</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>O</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">O(n)</annotation></semantics></math></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>⋯</mi><mo>→</mo><mi>Fivebrane</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>→</mo><mi>String</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>→</mo><mi>Spin</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>→</mo><mi>SO</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>→</mo><mi mathvariant="normal">O</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>,</mo></mrow><annotation encoding="application/x-tex"> \cdots \to Fivebrane(n) \to String(n) \to Spin(n) \to SO(n) \to \mathrm{O}(n) \,, </annotation></semantics></math></div> <p>the next step of which is the <a class="existingWikiWord" href="/nlab/show/spin+group">spin group</a>.</p> <p>In <a class="existingWikiWord" href="/nlab/show/physics">physics</a> the rotation group is related to <a class="existingWikiWord" href="/nlab/show/angular+momentum">angular momentum</a>.</p> <h2 id="properties">Properties</h2> <h3 id="HomologyAndCohomology">Homology and cohomology</h3> <p>On the <a class="existingWikiWord" href="/nlab/show/ordinary+cohomology">ordinary cohomology</a> of the <a class="existingWikiWord" href="/nlab/show/classifying+spaces">classifying spaces</a> <a class="existingWikiWord" href="/nlab/show/BO%28n%29"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"> <semantics> <mrow> <mi>B</mi> <mi>O</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> <annotation encoding="application/x-tex">B O(n)</annotation> </semantics> </math></a> and <a class="existingWikiWord" href="/nlab/show/BSO%28n%29"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"> <semantics> <mrow> <mi>B</mi> <mi>SO</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> <annotation encoding="application/x-tex">B SO(n)</annotation> </semantics> </math></a></p> <ul> <li> <p>with <a class="existingWikiWord" href="/nlab/show/cyclic+group+of+order+2"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"> <semantics> <mrow> <msub><mi>ℤ</mi> <mn>2</mn></msub> </mrow> <annotation encoding="application/x-tex">\mathbb{Z}_2</annotation> </semantics> </math></a> <a class="existingWikiWord" href="/nlab/show/coefficients">coefficients</a>:</p> <p>generated by the <a class="existingWikiWord" href="/nlab/show/Stiefel-Whitney+classes">Stiefel-Whitney classes</a></p> <p>(e.g. <a href="#MilnorStasheff74">Milnor & Stasheff 74, Theorem 7.1. & Theorem 12.4.</a>)</p> </li> <li> <p>with <a class="existingWikiWord" href="/nlab/show/integer">integer</a> <a class="existingWikiWord" href="/nlab/show/coefficients">coefficients</a> (<a class="existingWikiWord" href="/nlab/show/integral+cohomology">integral cohomology</a>):</p> <p>generated by the <a class="existingWikiWord" href="/nlab/show/integral+Stiefel-Whitney+classes">integral Stiefel-Whitney classes</a> and the <a class="existingWikiWord" href="/nlab/show/Pontrjagin+classes">Pontrjagin classes</a></p> <p>(e.g. <a href="#Brown82">Brown 82</a>, <a href="#Feshbach83">Feshbach 83</a>, <a href="#Pittie91">Pittie 91</a>, <a href="#RudolphSchmidt17">Rudolph-Schmidt 17, Theorem 4.2.23</a>)</p> </li> </ul> <h3 id="as_part_of_the_ade_pattern">As part of the ADE pattern</h3> <div> <p><strong><a class="existingWikiWord" href="/nlab/show/ADE+classification">ADE classification</a></strong> and <strong><a class="existingWikiWord" href="/nlab/show/McKay+correspondence">McKay correspondence</a></strong></p> <table><thead><tr><th><a class="existingWikiWord" href="/nlab/show/Dynkin+diagram">Dynkin diagram</a>/ <br /> <a class="existingWikiWord" href="/nlab/show/Dynkin+quiver">Dynkin quiver</a></th><th><a class="existingWikiWord" href="/nlab/show/dihedron">dihedron</a>,<br /> <a class="existingWikiWord" href="/nlab/show/Platonic+solid">Platonic solid</a></th><th><a class="existingWikiWord" href="/nlab/show/classification+of+finite+rotation+groups">finite subgroups of SO(3)</a></th><th><a class="existingWikiWord" href="/nlab/show/classification+of+finite+rotation+groups">finite subgroups of SU(2)</a></th><th><a class="existingWikiWord" href="/nlab/show/simple+Lie+group">simple Lie group</a></th></tr></thead><tbody><tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>A</mi> <mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></msub></mrow><annotation encoding="application/x-tex">A_{n \geq 1}</annotation></semantics></math></td><td style="text-align: left;"></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/cyclic+group">cyclic group</a> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>ℤ</mi> <mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></mrow><annotation encoding="application/x-tex">\mathbb{Z}_{n+1}</annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/cyclic+group">cyclic group</a> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>ℤ</mi> <mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></mrow><annotation encoding="application/x-tex">\mathbb{Z}_{n+1}</annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/special+unitary+group">special unitary group</a> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>SU</mi><mo stretchy="false">(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">SU(n+1)</annotation></semantics></math></td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/A1">A1</a></td><td style="text-align: left;"></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/cyclic+group+of+order+2">cyclic group of order 2</a> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>ℤ</mi> <mn>2</mn></msub></mrow><annotation encoding="application/x-tex">\mathbb{Z}_2</annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/cyclic+group+of+order+2">cyclic group of order 2</a> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>ℤ</mi> <mn>2</mn></msub></mrow><annotation encoding="application/x-tex">\mathbb{Z}_2</annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/SU%282%29">SU(2)</a></td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/A2">A2</a></td><td style="text-align: left;"></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/cyclic+group+of+order+3">cyclic group of order 3</a> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>ℤ</mi> <mn>3</mn></msub></mrow><annotation encoding="application/x-tex">\mathbb{Z}_3</annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/cyclic+group+of+order+3">cyclic group of order 3</a> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>ℤ</mi> <mn>3</mn></msub></mrow><annotation encoding="application/x-tex">\mathbb{Z}_3</annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/SU%283%29">SU(3)</a></td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/A3">A3</a> <br /> = <br /> <a class="existingWikiWord" href="/nlab/show/D3">D3</a></td><td style="text-align: left;"></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/cyclic+group+of+order+4">cyclic group of order 4</a> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>ℤ</mi> <mn>4</mn></msub></mrow><annotation encoding="application/x-tex">\mathbb{Z}_4</annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/cyclic+group+of+order+4">cyclic group of order 4</a> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>2</mn><msub><mi>D</mi> <mn>2</mn></msub><mo>≃</mo><msub><mi>ℤ</mi> <mn>4</mn></msub></mrow><annotation encoding="application/x-tex">2 D_2 \simeq \mathbb{Z}_4</annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/SU%284%29">SU(4)</a> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>≃</mo></mrow><annotation encoding="application/x-tex">\simeq</annotation></semantics></math> <br /> <a class="existingWikiWord" href="/nlab/show/Spin%286%29">Spin(6)</a></td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/D4">D4</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/dihedron">dihedron</a> on <br /> <a class="existingWikiWord" href="/nlab/show/bigon">bigon</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Klein+four-group">Klein four-group</a> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>D</mi> <mn>4</mn></msub><mo>≃</mo><msub><mi>ℤ</mi> <mn>2</mn></msub><mo>×</mo><msub><mi>ℤ</mi> <mn>2</mn></msub></mrow><annotation encoding="application/x-tex">D_4 \simeq \mathbb{Z}_2 \times \mathbb{Z}_2</annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/quaternion+group">quaternion group</a> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>2</mn><msub><mi>D</mi> <mn>4</mn></msub><mo>≃</mo></mrow><annotation encoding="application/x-tex">2 D_4 \simeq</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/Q8">Q8</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/SO%288%29">SO(8)</a>, <a class="existingWikiWord" href="/nlab/show/Spin%288%29">Spin(8)</a></td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/D5">D5</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/dihedron">dihedron</a> on <br /> <a class="existingWikiWord" href="/nlab/show/triangle">triangle</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/dihedral+group+of+order+6">dihedral group of order 6</a> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>D</mi> <mn>6</mn></msub></mrow><annotation encoding="application/x-tex">D_6</annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/binary+dihedral+group+of+order+12">binary dihedral group of order 12</a> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>2</mn><msub><mi>D</mi> <mn>6</mn></msub></mrow><annotation encoding="application/x-tex">2 D_6</annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/SO%2810%29">SO(10)</a>, <a class="existingWikiWord" href="/nlab/show/Spin%2810%29">Spin(10)</a></td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/D6">D6</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/dihedron">dihedron</a> on <br /> <a class="existingWikiWord" href="/nlab/show/square">square</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/dihedral+group+of+order+8">dihedral group of order 8</a> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>D</mi> <mn>8</mn></msub></mrow><annotation encoding="application/x-tex">D_8</annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/binary+dihedral+group+of+order+16">binary dihedral group of order 16</a> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>2</mn><msub><mi>D</mi> <mn>8</mn></msub></mrow><annotation encoding="application/x-tex">2 D_{8}</annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/SO%2812%29">SO(12)</a>, <a class="existingWikiWord" href="/nlab/show/Spin%2812%29">Spin(12)</a></td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>D</mi> <mrow><mi>n</mi><mo>≥</mo><mn>4</mn></mrow></msub></mrow><annotation encoding="application/x-tex">D_{n \geq 4}</annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/dihedron">dihedron</a>, <br /> <a class="existingWikiWord" href="/nlab/show/hosohedron">hosohedron</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/dihedral+group">dihedral group</a> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>D</mi> <mrow><mn>2</mn><mo stretchy="false">(</mo><mi>n</mi><mo>−</mo><mn>2</mn><mo stretchy="false">)</mo></mrow></msub></mrow><annotation encoding="application/x-tex">D_{2(n-2)}</annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/binary+dihedral+group">binary dihedral group</a> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>2</mn><msub><mi>D</mi> <mrow><mn>2</mn><mo stretchy="false">(</mo><mi>n</mi><mo>−</mo><mn>2</mn><mo stretchy="false">)</mo></mrow></msub></mrow><annotation encoding="application/x-tex">2 D_{2(n-2)}</annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/special+orthogonal+group">special orthogonal group</a>, <a class="existingWikiWord" href="/nlab/show/spin+group">spin group</a> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>SO</mi><mo stretchy="false">(</mo><mn>2</mn><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">SO(2n)</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Spin</mi><mo stretchy="false">(</mo><mn>2</mn><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Spin(2n)</annotation></semantics></math></td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>E</mi> <mn>6</mn></msub></mrow><annotation encoding="application/x-tex">E_6</annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/tetrahedron">tetrahedron</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/tetrahedral+group">tetrahedral group</a> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/binary+tetrahedral+group">binary tetrahedral group</a> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>2</mn><mi>T</mi></mrow><annotation encoding="application/x-tex">2T</annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/E6">E6</a></td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>E</mi> <mn>7</mn></msub></mrow><annotation encoding="application/x-tex">E_7</annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/cube">cube</a>, <br /> <a class="existingWikiWord" href="/nlab/show/octahedron">octahedron</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/octahedral+group">octahedral group</a> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>O</mi></mrow><annotation encoding="application/x-tex">O</annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/binary+octahedral+group">binary octahedral group</a> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>2</mn><mi>O</mi></mrow><annotation encoding="application/x-tex">2O</annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/E7">E7</a></td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>E</mi> <mn>8</mn></msub></mrow><annotation encoding="application/x-tex">E_8</annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/dodecahedron">dodecahedron</a>, <br /> <a class="existingWikiWord" href="/nlab/show/icosahedron">icosahedron</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/icosahedral+group">icosahedral group</a> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/binary+icosahedral+group">binary icosahedral group</a> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>2</mn><mi>I</mi></mrow><annotation encoding="application/x-tex">2I</annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/E8">E8</a></td></tr> </tbody></table> </div> <h3 id="relation_to_orientation_of_manifolds">Relation to orientation of manifolds</h3> <p>For <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> an <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math>-dimensional <a class="existingWikiWord" href="/nlab/show/manifold">manifold</a> a lift of <a class="existingWikiWord" href="/nlab/show/generalized+the">the</a> classifying map <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo>→</mo><mi>ℬ</mi><mi>O</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">X \to \mathcal{B}O(n)</annotation></semantics></math> of the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>O</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">O(n)</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/principal+bundle">principal bundle</a> to which the <a class="existingWikiWord" href="/nlab/show/tangent+bundle">tangent bundle</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi><mi>X</mi></mrow><annotation encoding="application/x-tex">T X</annotation></semantics></math> is <a class="existingWikiWord" href="/nlab/show/associated+bundle">associated</a> is the same as a choice of <a class="existingWikiWord" href="/nlab/show/orientation">orientation</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math>.</p> <h2 id="examples">Examples</h2> <ul> <li> <p>For the almost degenerate case <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi><mo>=</mo><mn>2</mn></mrow><annotation encoding="application/x-tex">n = 2</annotation></semantics></math> there are exceptional <a class="existingWikiWord" href="/nlab/show/isomorphisms">isomorphisms</a> of <a class="existingWikiWord" href="/nlab/show/Lie+groups">Lie groups</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>SO</mi><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo><mo>≃</mo><mi>U</mi><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo><mo>≃</mo><mi>Spin</mi><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex"> SO(2) \simeq U(1) \simeq Spin(2) </annotation></semantics></math></div> <p>with the <a class="existingWikiWord" href="/nlab/show/circle+group">circle group</a> and <a class="existingWikiWord" href="/nlab/show/spin+group">spin group</a> in dimension 2.</p> </li> <li> <p>the case of <a class="existingWikiWord" href="/nlab/show/SO%288%29">SO(8)</a> is special, since in the <a class="existingWikiWord" href="/nlab/show/ADE+classification">ADE classification</a> of <a class="existingWikiWord" href="/nlab/show/simple+Lie+groups">simple Lie groups</a> it corresponds to <a class="existingWikiWord" href="/nlab/show/D4">D4</a>, which makes its <a class="existingWikiWord" href="/nlab/show/representation+theory">representation theory</a> enjoy <em><a class="existingWikiWord" href="/nlab/show/triality">triality</a></em>.</p> </li> </ul> <p><br /></p> <div> <p><strong><a class="existingWikiWord" href="/nlab/show/rotation+groups">rotation groups</a> in <a class="existingWikiWord" href="/nlab/show/low-dimensional+topology">low</a> <a class="existingWikiWord" href="/nlab/show/dimensions">dimensions</a></strong>:</p> <table><thead><tr><th><a class="existingWikiWord" href="/nlab/show/classification+of+simple+Lie+groups">Dynkin label</a></th><th><a class="existingWikiWord" href="/nlab/show/special+orthogonal+group">sp. orth. group</a></th><th><a class="existingWikiWord" href="/nlab/show/spin+group">spin group</a></th><th><a class="existingWikiWord" href="/nlab/show/pin+group">pin group</a></th><th><a class="existingWikiWord" href="/nlab/show/semi-spin+group">semi-spin group</a></th></tr></thead><tbody><tr><td style="text-align: left;"></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/SO%282%29">SO(2)</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Spin%282%29">Spin(2)</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Pin%282%29">Pin(2)</a></td><td style="text-align: left;"></td></tr> <tr><td style="text-align: left;">B1</td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/SO%283%29">SO(3)</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Spin%283%29">Spin(3)</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Pin%283%29">Pin(3)</a></td><td style="text-align: left;"></td></tr> <tr><td style="text-align: left;">D2</td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/SO%284%29">SO(4)</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Spin%284%29">Spin(4)</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Pin%284%29">Pin(4)</a></td><td style="text-align: left;"></td></tr> <tr><td style="text-align: left;">B2</td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/SO%285%29">SO(5)</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Spin%285%29">Spin(5)</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Pin%285%29">Pin(5)</a></td><td style="text-align: left;"></td></tr> <tr><td style="text-align: left;">D3</td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/SO%286%29">SO(6)</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Spin%286%29">Spin(6)</a></td><td style="text-align: left;"></td><td style="text-align: left;"></td></tr> <tr><td style="text-align: left;">B3</td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/SO%287%29">SO(7)</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Spin%287%29">Spin(7)</a></td><td style="text-align: left;"></td><td style="text-align: left;"></td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/D4">D4</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/SO%288%29">SO(8)</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Spin%288%29">Spin(8)</a></td><td style="text-align: left;"></td><td style="text-align: left;"><a href="semi-spin+group#SemiSpin8">SO(8)</a></td></tr> <tr><td style="text-align: left;">B4</td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/SO%289%29">SO(9)</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Spin%289%29">Spin(9)</a></td><td style="text-align: left;"></td><td style="text-align: left;"></td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/D5">D5</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/SO%2810%29">SO(10)</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Spin%2810%29">Spin(10)</a></td><td style="text-align: left;"></td><td style="text-align: left;"></td></tr> <tr><td style="text-align: left;">B5</td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/SO%2811%29">SO(11)</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Spin%2811%29">Spin(11)</a></td><td style="text-align: left;"></td><td style="text-align: left;"></td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/D6">D6</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/SO%2812%29">SO(12)</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Spin%2812%29">Spin(12)</a></td><td style="text-align: left;"></td><td style="text-align: left;"></td></tr> <tr><td style="text-align: left;"></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>⋮</mi></mrow><annotation encoding="application/x-tex">\vdots</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>⋮</mi></mrow><annotation encoding="application/x-tex">\vdots</annotation></semantics></math></td><td style="text-align: left;"></td><td style="text-align: left;"></td></tr> <tr><td style="text-align: left;">D8</td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/SO%2816%29">SO(16)</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Spin%2816%29">Spin(16)</a></td><td style="text-align: left;"></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/SemiSpin%2816%29">SemiSpin(16)</a></td></tr> <tr><td style="text-align: left;"></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>⋮</mi></mrow><annotation encoding="application/x-tex">\vdots</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>⋮</mi></mrow><annotation encoding="application/x-tex">\vdots</annotation></semantics></math></td><td style="text-align: left;"></td><td style="text-align: left;"></td></tr> <tr><td style="text-align: left;">D16</td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/SO%2832%29">SO(32)</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Spin%2832%29">Spin(32)</a></td><td style="text-align: left;"></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/SemiSpin%2832%29">SemiSpin(32)</a></td></tr> </tbody></table> <p>see also</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Spin%285%29.Spin%283%29">Spin(5).Spin(3)</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/finite+rotation+groups">finite rotation groups</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/ADE-classification">ADE-classification</a></p> </li> </ul> </div> <p><br /></p> <h2 id="related_concepts">Related concepts</h2> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>⋯</mi><mo>→</mo></mrow><annotation encoding="application/x-tex">\cdots \to</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/Fivebrane+group">Fivebrane group</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>→</mo></mrow><annotation encoding="application/x-tex">\to</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/string+group">string group</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>→</mo></mrow><annotation encoding="application/x-tex">\to</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/spin+group">spin group</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>→</mo></mrow><annotation encoding="application/x-tex">\to</annotation></semantics></math> <strong>special orthogonal group</strong> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>→</mo></mrow><annotation encoding="application/x-tex">\to</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/orthogonal+group">orthogonal group</a>.</p> <div> <table><thead><tr><th><a class="existingWikiWord" href="/nlab/show/group">group</a></th><th>symbol</th><th><a class="existingWikiWord" href="/nlab/show/universal+cover">universal cover</a></th><th>symbol</th><th>higher cover</th><th>symbol</th></tr></thead><tbody><tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/orthogonal+group">orthogonal group</a></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi mathvariant="normal">O</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathrm{O}(n)</annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Pin+group">Pin group</a></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Pin</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Pin(n)</annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Tring+group">Tring group</a></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Tring</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Tring(n)</annotation></semantics></math></td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/special+orthogonal+group">special orthogonal group</a></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>SO</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">SO(n)</annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Spin+group">Spin group</a></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Spin</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Spin(n)</annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/String+group">String group</a></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>String</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">String(n)</annotation></semantics></math></td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Lorentz+group">Lorentz group</a></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi mathvariant="normal">O</mi><mo stretchy="false">(</mo><mi>n</mi><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathrm{O}(n,1)</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mspace width="thinmathspace"></mspace></mrow><annotation encoding="application/x-tex">\,</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Spin</mi><mo stretchy="false">(</mo><mi>n</mi><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Spin(n,1)</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mspace width="thinmathspace"></mspace></mrow><annotation encoding="application/x-tex">\,</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mspace width="thinmathspace"></mspace></mrow><annotation encoding="application/x-tex">\,</annotation></semantics></math></td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/anti+de+Sitter+group">anti de Sitter group</a></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi mathvariant="normal">O</mi><mo stretchy="false">(</mo><mi>n</mi><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathrm{O}(n,2)</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mspace width="thinmathspace"></mspace></mrow><annotation encoding="application/x-tex">\,</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Spin</mi><mo stretchy="false">(</mo><mi>n</mi><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Spin(n,2)</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mspace width="thinmathspace"></mspace></mrow><annotation encoding="application/x-tex">\,</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mspace width="thinmathspace"></mspace></mrow><annotation encoding="application/x-tex">\,</annotation></semantics></math></td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/conformal+group">conformal group</a></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi mathvariant="normal">O</mi><mo stretchy="false">(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>,</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathrm{O}(n+1,t+1)</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mspace width="thinmathspace"></mspace></mrow><annotation encoding="application/x-tex">\,</annotation></semantics></math></td><td style="text-align: left;"></td><td style="text-align: left;"></td><td style="text-align: left;"></td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Narain+group">Narain group</a></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>O</mi><mo stretchy="false">(</mo><mi>n</mi><mo>,</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">O(n,n)</annotation></semantics></math></td><td style="text-align: left;"></td><td style="text-align: left;"></td><td style="text-align: left;"></td><td style="text-align: left;"></td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Poincar%C3%A9+group">Poincaré group</a></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ISO</mi><mo stretchy="false">(</mo><mi>n</mi><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">ISO(n,1)</annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Poincar%C3%A9+spin+group">Poincaré spin group</a></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mover><mi>ISO</mi><mo>^</mo></mover><mo stretchy="false">(</mo><mi>n</mi><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\widehat {ISO}(n,1)</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mspace width="thinmathspace"></mspace></mrow><annotation encoding="application/x-tex">\,</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mspace width="thinmathspace"></mspace></mrow><annotation encoding="application/x-tex">\,</annotation></semantics></math></td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/super+Poincar%C3%A9+group">super Poincaré group</a></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>sISO</mi><mo stretchy="false">(</mo><mi>n</mi><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">sISO(n,1)</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mspace width="thinmathspace"></mspace></mrow><annotation encoding="application/x-tex">\,</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mspace width="thinmathspace"></mspace></mrow><annotation encoding="application/x-tex">\,</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mspace width="thinmathspace"></mspace></mrow><annotation encoding="application/x-tex">\,</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mspace width="thinmathspace"></mspace></mrow><annotation encoding="application/x-tex">\,</annotation></semantics></math></td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/superconformal+group">superconformal group</a></td><td style="text-align: left;"></td><td style="text-align: left;"></td><td style="text-align: left;"></td><td style="text-align: left;"></td><td style="text-align: left;"></td></tr> </tbody></table> </div> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Euler+angles">Euler angles</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/finite+rotation+group">finite rotation group</a></p> </li> </ul> <h2 id="References">References</h2> <p>For general references see also at <em><a class="existingWikiWord" href="/nlab/show/orthogonal+group">orthogonal group</a></em>.</p> <p><a class="existingWikiWord" href="/nlab/show/ordinary+cohomology">ordinary cohomology</a> of the <a class="existingWikiWord" href="/nlab/show/classifying+spaces">classifying spaces</a>:</p> <ul> <li id="MilnorStasheff74"> <p><a class="existingWikiWord" href="/nlab/show/John+Milnor">John Milnor</a>, <a class="existingWikiWord" href="/nlab/show/Jim+Stasheff">Jim Stasheff</a>, <em>Characteristic classes</em>, Princeton Univ. Press (1974) [<a href="https://press.princeton.edu/books/paperback/9780691081229/characteristic-classes-am-76-volume-76">ISBN:9780691081229</a>, <a href="https://doi.org/10.1515/9781400881826">doi:10.1515/9781400881826</a>, <a href="https://www.maths.ed.ac.uk/~v1ranick/papers/milnstas.pdf">pdf</a>]</p> </li> <li id="Brown82"> <p><a class="existingWikiWord" href="/nlab/show/Edgar+H.+Brown">Edgar H. Brown</a>, <em>The Cohomology of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi><msub><mi>SO</mi> <mi>n</mi></msub></mrow><annotation encoding="application/x-tex">B SO_n</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>BO</mi> <mi>n</mi></msub></mrow><annotation encoding="application/x-tex">BO_n</annotation></semantics></math> with Integer Coefficients</em>, Proceedings of the American Mathematical Society Vol. 85, No. 2 (Jun., 1982), pp. 283-288 (<a href="https://www.jstor.org/stable/2044298">jstor:2044298</a>)</p> </li> <li id="Feshbach83"> <p>Mark Feshbach, <em>The Integral Cohomology Rings of the Classifying Spaces of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi mathvariant="normal">O</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathrm{O}(n)</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi mathvariant="normal">SO</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathrm{SO}(n)</annotation></semantics></math>,</em> Indiana Univ. Math. J. 32 (1983), 511-516 (<a href="https://doi.org/10.1512/iumj.1983.32.32036">doi:10.1512/iumj.1983.32.32036</a>)</p> </li> <li id="Pittie91"> <p><a class="existingWikiWord" href="/nlab/show/Harsh+Pittie">Harsh Pittie</a>, <em>The integral homology and cohomology rings of SO(n) and Spin(n)</em>, Journal of Pure and Applied Algebra Volume 73, Issue 2, 19 August 1991, Pages 105–153 (<a href="https://doi.org/10.1016/0022-4049(91)90108-E">doi:10.1016/0022-4049(91)90108-E</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Howard+Georgi">Howard Georgi</a>, §21 & 22 in: <em>Lie Algebras In Particle Physics</em>, Westview Press (1999), CRC Press (2019) [<a href="https://doi.org/10.1201/9780429499210">doi:10.1201/9780429499210</a>]</p> <blockquote> <p>with an eye towards application to <a class="existingWikiWord" href="/nlab/show/spinors">spinors</a> in (the <a class="existingWikiWord" href="/nlab/show/standard+model+of+particle+physics">standard model</a> of) <a class="existingWikiWord" href="/nlab/show/particle+physics">particle physics</a></p> </blockquote> </li> <li id="RudolphSchmidt17"> <p><a class="existingWikiWord" href="/nlab/show/Gerd+Rudolph">Gerd Rudolph</a>, <a class="existingWikiWord" href="/nlab/show/Matthias+Schmidt">Matthias Schmidt</a>, around Theorem 4.2.23 of: <em>Differential Geometry and Mathematical Physics: Part II. Fibre Bundles, Topology and Gauge Fields</em>, Theoretical and Mathematical Physics series, Springer 2017 (<a href="https://link.springer.com/book/10.1007/978-94-024-0959-8">doi:10.1007/978-94-024-0959-8</a>)</p> </li> </ul> <p>See also</p> <ul> <li id="Stasheff13"><a class="existingWikiWord" href="/nlab/show/Jim+Stasheff">Jim Stasheff</a>, <em>The topology and algebra of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>SO</mi><mo stretchy="false">(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo stretchy="false">)</mo><mo>→</mo><mi>SO</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>→</mo><msup><mi>S</mi> <mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow><annotation encoding="application/x-tex">SO(n-1) \to SO(n) \to S^{n-1}</annotation></semantics></math></em>, Herman’s seminar July 2013 (<a class="existingWikiWord" href="/nlab/files/StasheffSOn.pdf" title="pdf slides">pdf slides</a>)</li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on March 4, 2024 at 22:04:10. See the <a href="/nlab/history/special+orthogonal+group" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/special+orthogonal+group" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussions/?CategoryID=0">Discuss</a><span class="backintime"><a href="/nlab/revision/special+orthogonal+group/25" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/special+orthogonal+group" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/special+orthogonal+group" accesskey="S" class="navlink" id="history" rel="nofollow">History (25 revisions)</a> <a href="/nlab/show/special+orthogonal+group/cite" style="color: black">Cite</a> <a href="/nlab/print/special+orthogonal+group" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/special+orthogonal+group" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>