CINXE.COM

Search results for: semantic similarity

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: semantic similarity</title> <meta name="description" content="Search results for: semantic similarity"> <meta name="keywords" content="semantic similarity"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="semantic similarity" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="semantic similarity"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1151</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: semantic similarity</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1151</span> Measuring Text-Based Semantics Relatedness Using WordNet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Madiha%20Khan">Madiha Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sidrah%20Ramzan"> Sidrah Ramzan</a>, <a href="https://publications.waset.org/abstracts/search?q=Seemab%20Khan"> Seemab Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahzad%20Hassan"> Shahzad Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamran%20Saeed"> Kamran Saeed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Measuring semantic similarity between texts is calculating semantic relatedness between texts using various techniques. Our web application (Measuring Relatedness of Concepts-MRC) allows user to input two text corpuses and get semantic similarity percentage between both using WordNet. Our application goes through five stages for the computation of semantic relatedness. Those stages are: Preprocessing (extracts keywords from content), Feature Extraction (classification of words into Parts-of-Speech), Synonyms Extraction (retrieves synonyms against each keyword), Measuring Similarity (using keywords and synonyms, similarity is measured) and Visualization (graphical representation of similarity measure). Hence the user can measure similarity on basis of features as well. The end result is a percentage score and the word(s) which form the basis of similarity between both texts with use of different tools on same platform. In future work we look forward for a Web as a live corpus application that provides a simpler and user friendly tool to compare documents and extract useful information. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Graphviz%20representation" title="Graphviz representation">Graphviz representation</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20relatedness" title=" semantic relatedness"> semantic relatedness</a>, <a href="https://publications.waset.org/abstracts/search?q=similarity%20measurement" title=" similarity measurement"> similarity measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=WordNet%20similarity" title=" WordNet similarity"> WordNet similarity</a> </p> <a href="https://publications.waset.org/abstracts/95106/measuring-text-based-semantics-relatedness-using-wordnet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95106.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1150</span> Multi-Objective Optimal Threshold Selection for Similarity Functions in Siamese Networks for Semantic Textual Similarity Tasks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kriuk%20Boris">Kriuk Boris</a>, <a href="https://publications.waset.org/abstracts/search?q=Kriuk%20Fedor"> Kriuk Fedor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a comparative study of fundamental similarity functions for Siamese networks in semantic textual similarity (STS) tasks. We evaluate various similarity functions using the STS Benchmark dataset, analyzing their performance and stability. Additionally, we introduce a multi-objective approach for optimal threshold selection. Our findings provide insights into the effectiveness of different similarity functions and offer a straightforward method for threshold selection optimization, contributing to the advancement of Siamese network architectures in STS applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=siamese%20networks" title="siamese networks">siamese networks</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20textual%20similarity" title=" semantic textual similarity"> semantic textual similarity</a>, <a href="https://publications.waset.org/abstracts/search?q=similarity%20functions" title=" similarity functions"> similarity functions</a>, <a href="https://publications.waset.org/abstracts/search?q=STS%20benchmark%20dataset" title=" STS benchmark dataset"> STS benchmark dataset</a>, <a href="https://publications.waset.org/abstracts/search?q=threshold%20selection" title=" threshold selection"> threshold selection</a> </p> <a href="https://publications.waset.org/abstracts/187407/multi-objective-optimal-threshold-selection-for-similarity-functions-in-siamese-networks-for-semantic-textual-similarity-tasks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">37</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1149</span> Graph Planning Based Composition for Adaptable Semantic Web Services</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rihab%20Ben%20Lamine">Rihab Ben Lamine</a>, <a href="https://publications.waset.org/abstracts/search?q=Raoudha%20Ben%20Jemaa"> Raoudha Ben Jemaa</a>, <a href="https://publications.waset.org/abstracts/search?q=Ikram%20Amous%20Ben%20Amor"> Ikram Amous Ben Amor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a graph planning technique for semantic adaptable Web Services composition. First, we use an ontology based context model for extending Web Services descriptions with information about the most suitable context for its use. Then, we transform the composition problem into a semantic context aware graph planning problem to build the optimal service composition based on user's context. The construction of the planning graph is based on semantic context aware Web Service discovery that allows for each step to add most suitable Web Services in terms of semantic compatibility between the services parameters and their context similarity with the user's context. In the backward search step, semantic and contextual similarity scores are used to find best composed Web Services list. Finally, in the ranking step, a score is calculated for each best solution and a set of ranked solutions is returned to the user. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=semantic%20web%20service" title="semantic web service">semantic web service</a>, <a href="https://publications.waset.org/abstracts/search?q=web%20service%20composition" title=" web service composition"> web service composition</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptation" title=" adaptation"> adaptation</a>, <a href="https://publications.waset.org/abstracts/search?q=context" title=" context"> context</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20planning" title=" graph planning"> graph planning</a> </p> <a href="https://publications.waset.org/abstracts/62455/graph-planning-based-composition-for-adaptable-semantic-web-services" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">520</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1148</span> Hybrid Approximate Structural-Semantic Frequent Subgraph Mining</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Montaceur%20Zaghdoud">Montaceur Zaghdoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Moussaoui"> Mohamed Moussaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Jalel%20Akaichi"> Jalel Akaichi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Frequent subgraph mining refers usually to graph matching and it is widely used in when analyzing big data with large graphs. A lot of research works dealt with structural exact or inexact graph matching but a little attention is paid to semantic matching when graph vertices and/or edges are attributed and typed. Therefore, it seems very interesting to integrate background knowledge into the analysis and that extracted frequent subgraphs should become more pruned by applying a new semantic filter instead of using only structural similarity in graph matching process. Consequently, this paper focuses on developing a new hybrid approximate structuralsemantic graph matching to discover a set of frequent subgraphs. It uses simultaneously an approximate structural similarity function based on graph edit distance function and a possibilistic vertices similarity function based on affinity function. Both structural and semantic filters contribute together to prune extracted frequent set. Indeed, new hybrid structural-semantic frequent subgraph mining approach searches will be suitable to be applied to several application such as community detection in social networks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=approximate%20graph%20matching" title="approximate graph matching">approximate graph matching</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20frequent%20subgraph%20mining" title=" hybrid frequent subgraph mining"> hybrid frequent subgraph mining</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20mining" title=" graph mining"> graph mining</a>, <a href="https://publications.waset.org/abstracts/search?q=possibility%20theory" title=" possibility theory"> possibility theory</a> </p> <a href="https://publications.waset.org/abstracts/34195/hybrid-approximate-structural-semantic-frequent-subgraph-mining" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34195.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1147</span> Network Word Discovery Framework Based on Sentence Semantic Vector Similarity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ganfeng%20Yu">Ganfeng Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuefeng%20Ma"> Yuefeng Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Shanliang%20Yang"> Shanliang Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The word discovery is a key problem in text information retrieval technology. Methods in new word discovery tend to be closely related to words because they generally obtain new word results by analyzing words. With the popularity of social networks, individual netizens and online self-media have generated various network texts for the convenience of online life, including network words that are far from standard Chinese expression. How detect network words is one of the important goals in the field of text information retrieval today. In this paper, we integrate the word embedding model and clustering methods to propose a network word discovery framework based on sentence semantic similarity (S³-NWD) to detect network words effectively from the corpus. This framework constructs sentence semantic vectors through a distributed representation model, uses the similarity of sentence semantic vectors to determine the semantic relationship between sentences, and finally realizes network word discovery by the meaning of semantic replacement between sentences. The experiment verifies that the framework not only completes the rapid discovery of network words but also realizes the standard word meaning of the discovery of network words, which reflects the effectiveness of our work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=text%20information%20retrieval" title="text information retrieval">text information retrieval</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20language%20processing" title=" natural language processing"> natural language processing</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20word%20discovery" title=" new word discovery"> new word discovery</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20extraction" title=" information extraction"> information extraction</a> </p> <a href="https://publications.waset.org/abstracts/153917/network-word-discovery-framework-based-on-sentence-semantic-vector-similarity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1146</span> Text Similarity in Vector Space Models: A Comparative Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omid%20Shahmirzadi">Omid Shahmirzadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20Lugowski"> Adam Lugowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Kenneth%20Younge"> Kenneth Younge</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automatic measurement of semantic text similarity is an important task in natural language processing. In this paper, we evaluate the performance of different vector space models to perform this task. We address the real-world problem of modeling patent-to-patent similarity and compare TFIDF (and related extensions), topic models (e.g., latent semantic indexing), and neural models (e.g., paragraph vectors). Contrary to expectations, the added computational cost of text embedding methods is justified only when: 1) the target text is condensed; and 2) the similarity comparison is trivial. Otherwise, TFIDF performs surprisingly well in other cases: in particular for longer and more technical texts or for making finer-grained distinctions between nearest neighbors. Unexpectedly, extensions to the TFIDF method, such as adding noun phrases or calculating term weights incrementally, were not helpful in our context. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=big%20data" title="big data">big data</a>, <a href="https://publications.waset.org/abstracts/search?q=patent" title=" patent"> patent</a>, <a href="https://publications.waset.org/abstracts/search?q=text%20embedding" title=" text embedding"> text embedding</a>, <a href="https://publications.waset.org/abstracts/search?q=text%20similarity" title=" text similarity"> text similarity</a>, <a href="https://publications.waset.org/abstracts/search?q=vector%20space%20model" title=" vector space model"> vector space model</a> </p> <a href="https://publications.waset.org/abstracts/102930/text-similarity-in-vector-space-models-a-comparative-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102930.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1145</span> Evaluation and Compression of Different Language Transformer Models for Semantic Textual Similarity Binary Task Using Minority Language Resources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ma.%20Gracia%20Corazon%20Cayanan">Ma. Gracia Corazon Cayanan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kai%20Yuen%20Cheong"> Kai Yuen Cheong</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Sha"> Li Sha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Training a language model for a minority language has been a challenging task. The lack of available corpora to train and fine-tune state-of-the-art language models is still a challenge in the area of Natural Language Processing (NLP). Moreover, the need for high computational resources and bulk data limit the attainment of this task. In this paper, we presented the following contributions: (1) we introduce and used a translation pair set of Tagalog and English (TL-EN) in pre-training a language model to a minority language resource; (2) we fine-tuned and evaluated top-ranking and pre-trained semantic textual similarity binary task (STSB) models, to both TL-EN and STS dataset pairs. (3) then, we reduced the size of the model to offset the need for high computational resources. Based on our results, the models that were pre-trained to translation pairs and STS pairs can perform well for STSB task. Also, having it reduced to a smaller dimension has no negative effect on the performance but rather has a notable increase on the similarity scores. Moreover, models that were pre-trained to a similar dataset have a tremendous effect on the model’s performance scores. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=semantic%20matching" title="semantic matching">semantic matching</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20textual%20similarity%20binary%20task" title=" semantic textual similarity binary task"> semantic textual similarity binary task</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20resource%20minority%20language" title=" low resource minority language"> low resource minority language</a>, <a href="https://publications.waset.org/abstracts/search?q=fine-tuning" title="fine-tuning">fine-tuning</a>, <a href="https://publications.waset.org/abstracts/search?q=dimension%20reduction" title=" dimension reduction"> dimension reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=transformer%20models" title=" transformer models"> transformer models</a> </p> <a href="https://publications.waset.org/abstracts/145745/evaluation-and-compression-of-different-language-transformer-models-for-semantic-textual-similarity-binary-task-using-minority-language-resources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145745.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1144</span> A Context-Sensitive Algorithm for Media Similarity Search </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guang-Ho%20Cha">Guang-Ho Cha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a context-sensitive media similarity search algorithm. One of the central problems regarding media search is the semantic gap between the low-level features computed automatically from media data and the human interpretation of them. This is because the notion of similarity is usually based on high-level abstraction but the low-level features do not sometimes reflect the human perception. Many media search algorithms have used the Minkowski metric to measure similarity between image pairs. However those functions cannot adequately capture the aspects of the characteristics of the human visual system as well as the nonlinear relationships in contextual information given by images in a collection. Our search algorithm tackles this problem by employing a similarity measure and a ranking strategy that reflect the nonlinearity of human perception and contextual information in a dataset. Similarity search in an image database based on this contextual information shows encouraging experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=context-sensitive%20search" title="context-sensitive search">context-sensitive search</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20search" title=" image search"> image search</a>, <a href="https://publications.waset.org/abstracts/search?q=similarity%20ranking" title=" similarity ranking"> similarity ranking</a>, <a href="https://publications.waset.org/abstracts/search?q=similarity%20search" title=" similarity search"> similarity search</a> </p> <a href="https://publications.waset.org/abstracts/65150/a-context-sensitive-algorithm-for-media-similarity-search" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65150.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1143</span> Semantic Search Engine Based on Query Expansion with Google Ranking and Similarity Measures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Shahin">Ahmad Shahin</a>, <a href="https://publications.waset.org/abstracts/search?q=Fadi%20Chakik"> Fadi Chakik</a>, <a href="https://publications.waset.org/abstracts/search?q=Walid%20Moudani"> Walid Moudani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Our study is about elaborating a potential solution for a search engine that involves semantic technology to retrieve information and display it significantly. Semantic search engines are not used widely over the web as the majorities are still in Beta stage or under construction. Many problems face the current applications in semantic search, the major problem is to analyze and calculate the meaning of query in order to retrieve relevant information. Another problem is the ontology based index and its updates. Ranking results according to concept meaning and its relation with query is another challenge. In this paper, we are offering a light meta-engine (QESM) which uses Google search, and therefore Google’s index, with some adaptations to its returned results by adding multi-query expansion. The mission was to find a reliable ranking algorithm that involves semantics and uses concepts and meanings to rank results. At the beginning, the engine finds synonyms of each query term entered by the user based on a lexical database. Then, query expansion is applied to generate different semantically analogous sentences. These are generated randomly by combining the found synonyms and the original query terms. Our model suggests the use of semantic similarity measures between two sentences. Practically, we used this method to calculate semantic similarity between each query and the description of each page’s content generated by Google. The generated sentences are sent to Google engine one by one, and ranked again all together with the adapted ranking method (QESM). Finally, our system will place Google pages with higher similarities on the top of the results. We have conducted experimentations with 6 different queries. We have observed that most ranked results with QESM were altered with Google’s original generated pages. With our experimented queries, QESM generates frequently better accuracy than Google. In some worst cases, it behaves like Google. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=semantic%20search%20engine" title="semantic search engine">semantic search engine</a>, <a href="https://publications.waset.org/abstracts/search?q=Google%20indexing" title=" Google indexing"> Google indexing</a>, <a href="https://publications.waset.org/abstracts/search?q=query%20expansion" title=" query expansion"> query expansion</a>, <a href="https://publications.waset.org/abstracts/search?q=similarity%20measures" title=" similarity measures"> similarity measures</a> </p> <a href="https://publications.waset.org/abstracts/10857/semantic-search-engine-based-on-query-expansion-with-google-ranking-and-similarity-measures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10857.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1142</span> Semantic Textual Similarity on Contracts: Exploring Multiple Negative Ranking Losses for Sentence Transformers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yogendra%20Sisodia">Yogendra Sisodia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Researchers are becoming more interested in extracting useful information from legal documents thanks to the development of large-scale language models in natural language processing (NLP), and deep learning has accelerated the creation of powerful text mining models. Legal fields like contracts benefit greatly from semantic text search since it makes it quick and easy to find related clauses. After collecting sentence embeddings, it is relatively simple to locate sentences with a comparable meaning throughout the entire legal corpus. The author of this research investigated two pre-trained language models for this task: MiniLM and Roberta, and further fine-tuned them on Legal Contracts. The author used Multiple Negative Ranking Loss for the creation of sentence transformers. The fine-tuned language models and sentence transformers showed promising results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=legal%20contracts" title="legal contracts">legal contracts</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20negative%20ranking%20loss" title=" multiple negative ranking loss"> multiple negative ranking loss</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20language%20inference" title=" natural language inference"> natural language inference</a>, <a href="https://publications.waset.org/abstracts/search?q=sentence%20transformers" title=" sentence transformers"> sentence transformers</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20textual%20similarity" title=" semantic textual similarity"> semantic textual similarity</a> </p> <a href="https://publications.waset.org/abstracts/156624/semantic-textual-similarity-on-contracts-exploring-multiple-negative-ranking-losses-for-sentence-transformers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156624.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1141</span> Lexico-Semantic and Contextual Analysis of the Concept of Joy in Modern English Fiction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zarine%20Avetisyan">Zarine Avetisyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concepts are part and parcel of everyday text and talk. Their ubiquity predetermines the topicality of the given research which aims at the semantic decomposition of concepts in general and the concept of joy in particular, as well as the study of lexico-semantic variants as means of realization of a certain concept in different “semantic settings”, namely in a certain context. To achieve the stated aim, the given research departs from the methods of componential and contextual analysis, studying lexico-semantic variants /LSVs/ of the concept of joy and the semantic signs embedded in those LSVs, such as the semantic sign of intensity, supporting emotions, etc. in the context of Modern English fiction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concept" title="concept">concept</a>, <a href="https://publications.waset.org/abstracts/search?q=context" title=" context"> context</a>, <a href="https://publications.waset.org/abstracts/search?q=lexico-semantic%20variant" title=" lexico-semantic variant"> lexico-semantic variant</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20sign" title=" semantic sign"> semantic sign</a> </p> <a href="https://publications.waset.org/abstracts/67474/lexico-semantic-and-contextual-analysis-of-the-concept-of-joy-in-modern-english-fiction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67474.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1140</span> Static vs. Stream Mining Trajectories Similarity Measures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Musaab%20Riyadh">Musaab Riyadh</a>, <a href="https://publications.waset.org/abstracts/search?q=Norwati%20Mustapha"> Norwati Mustapha</a>, <a href="https://publications.waset.org/abstracts/search?q=Dina%20Riyadh"> Dina Riyadh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Trajectory similarity can be defined as the cost of transforming one trajectory into another based on certain similarity method. It is the core of numerous mining tasks such as clustering, classification, and indexing. Various approaches have been suggested to measure similarity based on the geometric and dynamic properties of trajectory, the overlapping between trajectory segments, and the confined area between entire trajectories. In this article, an evaluation of these approaches has been done based on computational cost, usage memory, accuracy, and the amount of data which is needed in advance to determine its suitability to stream mining applications. The evaluation results show that the stream mining applications support similarity methods which have low computational cost and memory, single scan on data, and free of mathematical complexity due to the high-speed generation of data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=global%20distance%20measure" title="global distance measure">global distance measure</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20distance%20measure" title=" local distance measure"> local distance measure</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20trajectory" title=" semantic trajectory"> semantic trajectory</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20dimension" title=" spatial dimension"> spatial dimension</a>, <a href="https://publications.waset.org/abstracts/search?q=stream%20data%20mining" title=" stream data mining"> stream data mining</a> </p> <a href="https://publications.waset.org/abstracts/94763/static-vs-stream-mining-trajectories-similarity-measures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94763.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1139</span> Semantic-Based Collaborative Filtering to Improve Visitor Cold Start in Recommender Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Baba%20Mbaye">Baba Mbaye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In collaborative filtering recommendation systems, a user receives suggested items based on the opinions and evaluations of a community of users. This type of recommendation system uses only the information (notes in numerical values) contained in a usage matrix as input data. This matrix can be constructed based on users' behaviors or by offering users to declare their opinions on the items they know. The cold start problem leads to very poor performance for new users. It is a phenomenon that occurs at the beginning of use, in the situation where the system lacks data to make recommendations. There are three types of cold start problems: cold start for a new item, a new system, and a new user. We are interested in this article at the cold start for a new user. When the system welcomes a new user, the profile exists but does not have enough data, and its communities with other users profiles are still unknown. This leads to recommendations not adapted to the profile of the new user. In this paper, we propose an approach that improves cold start by using the notions of similarity and semantic proximity between users profiles during cold start. We will use the cold-metadata available (metadata extracted from the new user's data) useful in positioning the new user within a community. The aim is to look for similarities and semantic proximities with the old and current user profiles of the system. Proximity is represented by close concepts considered to belong to the same group, while similarity groups together elements that appear similar. Similarity and proximity are two close but not similar concepts. This similarity leads us to the construction of similarity which is based on: a) the concepts (properties, terms, instances) independent of ontology structure and, b) the simultaneous representation of the two concepts (relations, presence of terms in a document, simultaneous presence of the authorities). We propose an ontology, OIVCSRS (Ontology of Improvement Visitor Cold Start in Recommender Systems), in order to structure the terms and concepts representing the meaning of an information field, whether by the metadata of a namespace, or the elements of a knowledge domain. This approach allows us to automatically attach the new user to a user community, partially compensate for the data that was not initially provided and ultimately to associate a better first profile with the cold start. Thus, the aim of this paper is to propose an approach to improving cold start using semantic technologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=visitor%20cold%20start" title="visitor cold start">visitor cold start</a>, <a href="https://publications.waset.org/abstracts/search?q=recommender%20systems" title=" recommender systems"> recommender systems</a>, <a href="https://publications.waset.org/abstracts/search?q=collaborative%20filtering" title=" collaborative filtering"> collaborative filtering</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20filtering" title=" semantic filtering"> semantic filtering</a> </p> <a href="https://publications.waset.org/abstracts/82415/semantic-based-collaborative-filtering-to-improve-visitor-cold-start-in-recommender-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82415.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1138</span> Language Development and Growing Spanning Trees in Children Semantic Network </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Somayeh%20Sadat%20Hashemi%20Kamangar">Somayeh Sadat Hashemi Kamangar</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Bakouie"> Fatemeh Bakouie</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahriar%20Gharibzadeh"> Shahriar Gharibzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we target to exploit Maximum Spanning Trees (MST) of children's semantic networks to investigate their language development. To do so, we examine the graph-theoretic properties of word-embedding networks. The networks are made of words children learn prior to the age of 30 months as the nodes and the links which are built from the cosine vector similarity of words normatively acquired by children prior to two and a half years of age. These networks are weighted graphs and the strength of each link is determined by the numerical similarities of the two words (nodes) on the sides of the link. To avoid changing the weighted networks to the binaries by setting a threshold, constructing MSTs might present a solution. MST is a unique sub-graph that connects all the nodes in such a way that the sum of all the link weights is maximized without forming cycles. MSTs as the backbone of the semantic networks are suitable to examine developmental changes in semantic network topology in children. From these trees, several parameters were calculated to characterize the developmental change in network organization. We showed that MSTs provides an elegant method sensitive to capture subtle developmental changes in semantic network organization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maximum%20spanning%20trees" title="maximum spanning trees">maximum spanning trees</a>, <a href="https://publications.waset.org/abstracts/search?q=word-embedding" title=" word-embedding"> word-embedding</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20networks" title=" semantic networks"> semantic networks</a>, <a href="https://publications.waset.org/abstracts/search?q=language%20development" title=" language development"> language development</a> </p> <a href="https://publications.waset.org/abstracts/114481/language-development-and-growing-spanning-trees-in-children-semantic-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114481.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1137</span> Resume Ranking Using Custom Word2vec and Rule-Based Natural Language Processing Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Subodh%20Chandra%20Shakya">Subodh Chandra Shakya</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajendra%20Sapkota"> Rajendra Sapkota</a>, <a href="https://publications.waset.org/abstracts/search?q=Aakash%20Tamang"> Aakash Tamang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shushant%20Pudasaini"> Shushant Pudasaini</a>, <a href="https://publications.waset.org/abstracts/search?q=Sujan%20Adhikari"> Sujan Adhikari</a>, <a href="https://publications.waset.org/abstracts/search?q=Sajjan%20Adhikari"> Sajjan Adhikari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lots of efforts have been made in order to measure the semantic similarity between the text corpora in the documents. Techniques have been evolved to measure the similarity of two documents. One such state-of-art technique in the field of Natural Language Processing (NLP) is word to vector models, which converts the words into their word-embedding and measures the similarity between the vectors. We found this to be quite useful for the task of resume ranking. So, this research paper is the implementation of the word2vec model along with other Natural Language Processing techniques in order to rank the resumes for the particular job description so as to automate the process of hiring. The research paper proposes the system and the findings that were made during the process of building the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chunking" title="chunking">chunking</a>, <a href="https://publications.waset.org/abstracts/search?q=document%20similarity" title=" document similarity"> document similarity</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20extraction" title=" information extraction"> information extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20language%20processing" title=" natural language processing"> natural language processing</a>, <a href="https://publications.waset.org/abstracts/search?q=word2vec" title=" word2vec"> word2vec</a>, <a href="https://publications.waset.org/abstracts/search?q=word%20embedding" title=" word embedding"> word embedding</a> </p> <a href="https://publications.waset.org/abstracts/129534/resume-ranking-using-custom-word2vec-and-rule-based-natural-language-processing-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129534.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1136</span> Fuzzy Semantic Annotation of Web Resources </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sahar%20Ma%C3%A2lej%20Dammak">Sahar Maâlej Dammak</a>, <a href="https://publications.waset.org/abstracts/search?q=Anis%20Jedidi"> Anis Jedidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafik%20Bouaziz"> Rafik Bouaziz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the great mass of pages managed through the world, and especially with the advent of the Web, their manual annotation is impossible. We focus, in this paper, on the semiautomatic annotation of the web pages. We propose an approach and a framework for semantic annotation of web pages entitled “Querying Web”. Our solution is an enhancement of the first result of annotation done by the “Semantic Radar” Plug-in on the web resources, by annotations using an enriched domain ontology. The concepts of the result of Semantic Radar may be connected to several terms of the ontology, but connections may be uncertain. We represent annotations as possibility distributions. We use the hierarchy defined in the ontology to compute degrees of possibilities. We want to achieve an automation of the fuzzy semantic annotation of web resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20semantic%20annotation" title="fuzzy semantic annotation">fuzzy semantic annotation</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20web" title=" semantic web"> semantic web</a>, <a href="https://publications.waset.org/abstracts/search?q=domain%20ontologies" title=" domain ontologies"> domain ontologies</a>, <a href="https://publications.waset.org/abstracts/search?q=querying%20web" title=" querying web"> querying web</a> </p> <a href="https://publications.waset.org/abstracts/1854/fuzzy-semantic-annotation-of-web-resources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1854.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1135</span> Optimization Query Image Using Search Relevance Re-Ranking Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20G.%20Asmitha%20Chandini">T. G. Asmitha Chandini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Web-based image search re-ranking, as an successful method to get better the results. In a query keyword, the first stair is store the images is first retrieve based on the text-based information. The user to select a query keywordimage, by using this query keyword other images are re-ranked based on their visual properties with images.Now a day to day, people projected to match images in a semantic space which is used attributes or reference classes closely related to the basis of semantic image. though, understanding a worldwide visual semantic space to demonstrate highly different images from the web is difficult and inefficient. The re-ranking images, which automatically offline part learns dissimilar semantic spaces for different query keywords. The features of images are projected into their related semantic spaces to get particular images. At the online stage, images are re-ranked by compare their semantic signatures obtained the semantic précised by the query keyword image. The query-specific semantic signatures extensively improve both the proper and efficiency of image re-ranking. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Query" title="Query">Query</a>, <a href="https://publications.waset.org/abstracts/search?q=keyword" title=" keyword"> keyword</a>, <a href="https://publications.waset.org/abstracts/search?q=image" title=" image"> image</a>, <a href="https://publications.waset.org/abstracts/search?q=re-ranking" title=" re-ranking"> re-ranking</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic" title=" semantic"> semantic</a>, <a href="https://publications.waset.org/abstracts/search?q=signature" title=" signature"> signature</a> </p> <a href="https://publications.waset.org/abstracts/28398/optimization-query-image-using-search-relevance-re-ranking-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28398.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">550</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1134</span> Graph-Based Semantical Extractive Text Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mina%20Samizadeh">Mina Samizadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the past few decades, there has been an explosion in the amount of available data produced from various sources with different topics. The availability of this enormous data necessitates us to adopt effective computational tools to explore the data. This leads to an intense growing interest in the research community to develop computational methods focused on processing this text data. A line of study focused on condensing the text so that we are able to get a higher level of understanding in a shorter time. The two important tasks to do this are keyword extraction and text summarization. In keyword extraction, we are interested in finding the key important words from a text. This makes us familiar with the general topic of a text. In text summarization, we are interested in producing a short-length text which includes important information about the document. The TextRank algorithm, an unsupervised learning method that is an extension of the PageRank (algorithm which is the base algorithm of Google search engine for searching pages and ranking them), has shown its efficacy in large-scale text mining, especially for text summarization and keyword extraction. This algorithm can automatically extract the important parts of a text (keywords or sentences) and declare them as a result. However, this algorithm neglects the semantic similarity between the different parts. In this work, we improved the results of the TextRank algorithm by incorporating the semantic similarity between parts of the text. Aside from keyword extraction and text summarization, we develop a topic clustering algorithm based on our framework, which can be used individually or as a part of generating the summary to overcome coverage problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=keyword%20extraction" title="keyword extraction">keyword extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=n-gram%20extraction" title=" n-gram extraction"> n-gram extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=text%20summarization" title=" text summarization"> text summarization</a>, <a href="https://publications.waset.org/abstracts/search?q=topic%20clustering" title=" topic clustering"> topic clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20analysis" title=" semantic analysis"> semantic analysis</a> </p> <a href="https://publications.waset.org/abstracts/160526/graph-based-semantical-extractive-text-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160526.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1133</span> Challenges over Two Semantic Repositories - OWLIM and AllegroGraph</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paria%20Tajabor">Paria Tajabor</a>, <a href="https://publications.waset.org/abstracts/search?q=Azin%20Azarbani"> Azin Azarbani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this research study is exploring two kind of semantic repositories with regards to various factors to find the best approaches that an artificial manager can use to produce ontology in a system based on their interaction, association and research. To this end, as the best way to evaluate each system and comparing with others is analysis, several benchmarking over these two repositories were examined. These two semantic repositories: OWLIM and AllegroGraph will be the main core of this study. The general objective of this study is to be able to create an efficient and cost-effective manner reports which is required to support decision making in any large enterprise. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=OWLIM" title="OWLIM">OWLIM</a>, <a href="https://publications.waset.org/abstracts/search?q=allegrograph" title=" allegrograph"> allegrograph</a>, <a href="https://publications.waset.org/abstracts/search?q=RDF" title=" RDF"> RDF</a>, <a href="https://publications.waset.org/abstracts/search?q=reasoning" title=" reasoning"> reasoning</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20repository" title=" semantic repository"> semantic repository</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic-web" title=" semantic-web"> semantic-web</a>, <a href="https://publications.waset.org/abstracts/search?q=SPARQL" title=" SPARQL"> SPARQL</a>, <a href="https://publications.waset.org/abstracts/search?q=ontology" title=" ontology"> ontology</a>, <a href="https://publications.waset.org/abstracts/search?q=query" title=" query"> query</a> </p> <a href="https://publications.waset.org/abstracts/41697/challenges-over-two-semantic-repositories-owlim-and-allegrograph" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41697.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1132</span> A Semantic E-Learning and E-Assessment System of Learners </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wiem%20Ben%20Khalifa">Wiem Ben Khalifa</a>, <a href="https://publications.waset.org/abstracts/search?q=Dalila%20Souilem"> Dalila Souilem</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Neji"> Mahmoud Neji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The evolutions of Social Web and Semantic Web lead us to ask ourselves about the way of supporting the personalization of learning by means of intelligent filtering of educational resources published in the digital networks. We recommend personalized courses of learning articulated around a first educational course defined upstream. Resuming the context and the stakes in the personalization, we also suggest anchoring the personalization of learning in a community of interest within a group of learners enrolled in the same training. This reflection is supported by the display of an active and semantic system of learning dedicated to the constitution of personalized to measure courses and in the due time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Semantic%20Web" title="Semantic Web">Semantic Web</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20system" title=" semantic system"> semantic system</a>, <a href="https://publications.waset.org/abstracts/search?q=ontology" title=" ontology"> ontology</a>, <a href="https://publications.waset.org/abstracts/search?q=evaluation" title=" evaluation"> evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=e-learning" title=" e-learning"> e-learning</a> </p> <a href="https://publications.waset.org/abstracts/72932/a-semantic-e-learning-and-e-assessment-system-of-learners" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72932.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1131</span> Single-Camera Basketball Tracker through Pose and Semantic Feature Fusion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adri%C3%A0%20Arbu%C3%A9s-Sang%C3%BCesa">Adrià Arbués-Sangüesa</a>, <a href="https://publications.waset.org/abstracts/search?q=Coloma%20Ballester"> Coloma Ballester</a>, <a href="https://publications.waset.org/abstracts/search?q=Gloria%20Haro"> Gloria Haro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tracking sports players is a widely challenging scenario, specially in single-feed videos recorded in tight courts, where cluttering and occlusions cannot be avoided. This paper presents an analysis of several geometric and semantic visual features to detect and track basketball players. An ablation study is carried out and then used to remark that a robust tracker can be built with Deep Learning features, without the need of extracting contextual ones, such as proximity or color similarity, nor applying camera stabilization techniques. The presented tracker consists of: (1) a detection step, which uses a pretrained deep learning model to estimate the players pose, followed by (2) a tracking step, which leverages pose and semantic information from the output of a convolutional layer in a VGG network. Its performance is analyzed in terms of MOTA over a basketball dataset with more than 10k instances. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=basketball" title="basketball">basketball</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20extraction" title=" feature extraction"> feature extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=single-camera" title=" single-camera"> single-camera</a>, <a href="https://publications.waset.org/abstracts/search?q=tracking" title=" tracking"> tracking</a> </p> <a href="https://publications.waset.org/abstracts/109446/single-camera-basketball-tracker-through-pose-and-semantic-feature-fusion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109446.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1130</span> Approximately Similarity Measurement of Web Sites Using Genetic Algorithms and Binary Trees</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Doru%20Anastasiu%20Popescu">Doru Anastasiu Popescu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dan%20R%C4%83dulescu"> Dan Rădulescu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we determine the similarity of two HTML web applications. We are going to use a genetic algorithm in order to determine the most significant web pages of each application (we are not going to use every web page of a site). Using these significant web pages, we will find the similarity value between the two applications. The algorithm is going to be efficient because we are going to use a reduced number of web pages for comparisons but it will return an approximate value of the similarity. The binary trees are used to keep the tags from the significant pages. The algorithm was implemented in Java language. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tag" title="Tag">Tag</a>, <a href="https://publications.waset.org/abstracts/search?q=HTML" title=" HTML"> HTML</a>, <a href="https://publications.waset.org/abstracts/search?q=web%20page" title=" web page"> web page</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=similarity%20value" title=" similarity value"> similarity value</a>, <a href="https://publications.waset.org/abstracts/search?q=binary%20tree" title=" binary tree"> binary tree</a> </p> <a href="https://publications.waset.org/abstracts/50460/approximately-similarity-measurement-of-web-sites-using-genetic-algorithms-and-binary-trees" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50460.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1129</span> Quick Similarity Measurement of Binary Images via Probabilistic Pixel Mapping</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adnan%20A.%20Y.%20Mustafa">Adnan A. Y. Mustafa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we present a quick technique to measure the similarity between binary images. The technique is based on a probabilistic mapping approach and is fast because only a minute percentage of the image pixels need to be compared to measure the similarity, and not the whole image. We exploit the power of the Probabilistic Matching Model for Binary Images (PMMBI) to arrive at an estimate of the similarity. We show that the estimate is a good approximation of the actual value, and the quality of the estimate can be improved further with increased image mappings. Furthermore, the technique is image size invariant; the similarity between big images can be measured as fast as that for small images. Examples of trials conducted on real images are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=big%20images" title="big images">big images</a>, <a href="https://publications.waset.org/abstracts/search?q=binary%20images" title=" binary images"> binary images</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20matching" title=" image matching"> image matching</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20similarity" title=" image similarity"> image similarity</a> </p> <a href="https://publications.waset.org/abstracts/89963/quick-similarity-measurement-of-binary-images-via-probabilistic-pixel-mapping" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1128</span> Annotation Ontology for Semantic Web Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hadeel%20Al%20Obaidy">Hadeel Al Obaidy</a>, <a href="https://publications.waset.org/abstracts/search?q=Amani%20Al%20Heela"> Amani Al Heela</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main purpose of this paper is to examine the concept of semantic web and the role that ontology and semantic annotation plays in the development of semantic web services. The paper focuses on semantic web infrastructure illustrating how ontology and annotation work to provide the learning capabilities for building content semantically. To improve productivity and quality of software, the paper applies approaches, notations and techniques offered by software engineering. It proposes a conceptual model to develop semantic web services for the infrastructure of web information retrieval system of digital libraries. The developed system uses ontology and annotation to build a knowledge based system to define and link the meaning of a web content to retrieve information for users’ queries. The results are more relevant through keywords and ontology rule expansion that will be more accurate to satisfy the requested information. The level of results accuracy would be enhanced since the query semantically analyzed work with the conceptual architecture of the proposed system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=semantic%20web%20services" title="semantic web services">semantic web services</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20engineering" title=" software engineering"> software engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20library" title=" semantic library"> semantic library</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20representation" title=" knowledge representation"> knowledge representation</a>, <a href="https://publications.waset.org/abstracts/search?q=ontology" title=" ontology"> ontology</a> </p> <a href="https://publications.waset.org/abstracts/103442/annotation-ontology-for-semantic-web-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103442.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1127</span> Secure Bio Semantic Computing Scheme</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hiroshi%20Yamaguchi">Hiroshi Yamaguchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Phillip%20C.%20Y.%20Sheu"> Phillip C. Y. Sheu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryo%20Fujita"> Ryo Fujita</a>, <a href="https://publications.waset.org/abstracts/search?q=Shigeo%20Tsujii"> Shigeo Tsujii</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the secure BioSemantic Scheme is presented to bridge biological/biomedical research problems and computational solutions via semantic computing. Due to the diversity of problems in various research fields, the semantic capability description language (SCDL) plays and important role as a common language and generic form for problem formalization. SCDL is expected the essential for future semantic and logical computing in Biosemantic field. We show several example to Biomedical problems in this paper. Moreover, in the coming age of cloud computing, the security problem is considered to be crucial issue and we presented a practical scheme to cope with this problem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomedical%20applications" title="biomedical applications">biomedical applications</a>, <a href="https://publications.waset.org/abstracts/search?q=private%20information%20retrieval%20%28PIR%29" title=" private information retrieval (PIR)"> private information retrieval (PIR)</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20capability%20description%20language%20%28SCDL%29" title=" semantic capability description language (SCDL)"> semantic capability description language (SCDL)</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20computing" title=" semantic computing"> semantic computing</a> </p> <a href="https://publications.waset.org/abstracts/27808/secure-bio-semantic-computing-scheme" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1126</span> Investigating the Concept of Joy in Modern English Fiction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zarine%20Avetisyan">Zarine Avetisyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paradigm of Modern Linguistics incorporates disciplines which allow to analyze both language and discourse units and to demonstrate the multi-layeredness of lingo-cultural consciousness. By implementing lingo-cognitive approach to discourse and communication studies, the present paper tries to create the integral linguistic picture of the concept of joy and to analyze the lexico-semantic groups and relevant lexico-semantic variants of its realization in the context of Modern English fiction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concept%20of%20joy" title="concept of joy">concept of joy</a>, <a href="https://publications.waset.org/abstracts/search?q=lexico-semantic%20variant" title=" lexico-semantic variant"> lexico-semantic variant</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20sign" title=" semantic sign"> semantic sign</a>, <a href="https://publications.waset.org/abstracts/search?q=cognition" title=" cognition"> cognition</a> </p> <a href="https://publications.waset.org/abstracts/50821/investigating-the-concept-of-joy-in-modern-english-fiction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50821.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1125</span> Towards a Large Scale Deep Semantically Analyzed Corpus for Arabic: Annotation and Evaluation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Alansary">S. Alansary</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Nagi"> M. Nagi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an approach of conducting semantic annotation of Arabic corpus using the Universal Networking Language (UNL) framework. UNL is intended to be a promising strategy for providing a large collection of semantically annotated texts with formal, deep semantics rather than shallow. The result would constitute a semantic resource (semantic graphs) that is editable and that integrates various phenomena, including predicate-argument structure, scope, tense, thematic roles and rhetorical relations, into a single semantic formalism for knowledge representation. The paper will also present the Interactive Analysis​ tool for automatic semantic annotation (IAN). In addition, the cornerstone of the proposed methodology which are the disambiguation and transformation rules, will be presented. Semantic annotation using UNL has been applied to a corpus of 20,000 Arabic sentences representing the most frequent structures in the Arabic Wikipedia. The representation, at different linguistic levels was illustrated starting from the morphological level passing through the syntactic level till the semantic representation is reached. The output has been evaluated using the F-measure. It is 90% accurate. This demonstrates how powerful the formal environment is, as it enables intelligent text processing and search. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=semantic%20analysis" title="semantic analysis">semantic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20annotation" title=" semantic annotation"> semantic annotation</a>, <a href="https://publications.waset.org/abstracts/search?q=Arabic" title=" Arabic"> Arabic</a>, <a href="https://publications.waset.org/abstracts/search?q=universal%20networking%20language" title=" universal networking language"> universal networking language</a> </p> <a href="https://publications.waset.org/abstracts/17455/towards-a-large-scale-deep-semantically-analyzed-corpus-for-arabic-annotation-and-evaluation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">582</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1124</span> Review and Suggestions of the Similarity between Employee and Its Workplace</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gi%20Ryung%20Song">Gi Ryung Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyoung%20Seok%20Kim"> Kyoung Seok Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study reviewed the literature that focused on similarity of various characteristics such as values, personality, or demographics between employee and other elements in its organization for example employee with leader, job, and organization. We divided a body of this study into two parts and organized and demonstrated recent studies in first part. Three issues appeared in this part, which are statistical ways of measuring similarity, supervisor-subordinate similarity, and person-organization fit with person-job fit. In the latter part, based on the three issues of recent studies, we suggested three propositions about points that the recent studies missed or the studies did not orient. First proposition argued about the direction of similarity, which could also be interpreted as there is causal relation between employee and its workplace environments. Second, we suggested a consideration of eliminating common variance buried in one’s characteristics or its profiles. Third proposition was about the similarity of extra role behavior between individual and organization, and we treated this organization’s level of extra role behavior as a kind of its culture. In doing so, similarity of individual’s extra role behavior and organization’s has the meaning that individual’s congruence against their organization culture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=similarity" title="similarity">similarity</a>, <a href="https://publications.waset.org/abstracts/search?q=person-organization%20fit" title=" person-organization fit"> person-organization fit</a>, <a href="https://publications.waset.org/abstracts/search?q=supervisor-subordinate%20similarity" title=" supervisor-subordinate similarity"> supervisor-subordinate similarity</a>, <a href="https://publications.waset.org/abstracts/search?q=literature%20review" title=" literature review"> literature review</a> </p> <a href="https://publications.waset.org/abstracts/54492/review-and-suggestions-of-the-similarity-between-employee-and-its-workplace" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54492.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1123</span> A Network of Nouns and Their Features :A Neurocomputational Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Skiker%20Kaoutar">Skiker Kaoutar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mounir%20Maouene"> Mounir Maouene </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Neuroimaging studies indicate that a large fronto-parieto-temporal network support nouns and their features, with some areas store semantic knowledge (visual, auditory, olfactory, gustatory,…), other areas store lexical representation and other areas are implicated in general semantic processing. However, it is not well understood how this fronto-parieto-temporal network can be modulated by different semantic tasks and different semantic relations between nouns. In this study, we combine a behavioral semantic network, functional MRI studies involving object’s related nouns and brain network studies to explain how different semantic tasks and different semantic relations between nouns can modulate the activity within the brain network of nouns and their features. We first describe how nouns and their features form a large scale brain network. For this end, we examine the connectivities between areas recruited during the processing of nouns to know which configurations of interaction areas are possible. We can thus identify if, for example, brain areas that store semantic knowledge communicate via functional/structural links with areas that store lexical representations. Second, we examine how this network is modulated by different semantic tasks involving nouns and finally, we examine how category specific activation may result from the semantic relations among nouns. The results indicate that brain network of nouns and their features is highly modulated and flexible by different semantic tasks and semantic relations. At the end, this study can be used as a guide to help neurosientifics to interpret the pattern of fMRI activations detected in the semantic processing of nouns. Specifically; this study can help to interpret the category specific activations observed extensively in a large number of neuroimaging studies and clinical studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nouns" title="nouns">nouns</a>, <a href="https://publications.waset.org/abstracts/search?q=features" title=" features"> features</a>, <a href="https://publications.waset.org/abstracts/search?q=network" title=" network"> network</a>, <a href="https://publications.waset.org/abstracts/search?q=category%20specificity" title=" category specificity"> category specificity</a> </p> <a href="https://publications.waset.org/abstracts/18889/a-network-of-nouns-and-their-features-a-neurocomputational-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18889.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1122</span> Semantic Data Schema Recognition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A%C3%AFcha%20Ben%20Salem">Aïcha Ben Salem</a>, <a href="https://publications.waset.org/abstracts/search?q=Faouzi%20Boufares"> Faouzi Boufares</a>, <a href="https://publications.waset.org/abstracts/search?q=Sebastiao%20Correia"> Sebastiao Correia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The subject covered in this paper aims at assisting the user in its quality approach. The goal is to better extract, mix, interpret and reuse data. It deals with the semantic schema recognition of a data source. This enables the extraction of data semantics from all the available information, inculding the data and the metadata. Firstly, it consists of categorizing the data by assigning it to a category and possibly a sub-category, and secondly, of establishing relations between columns and possibly discovering the semantics of the manipulated data source. These links detected between columns offer a better understanding of the source and the alternatives for correcting data. This approach allows automatic detection of a large number of syntactic and semantic anomalies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=schema%20recognition" title="schema recognition">schema recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20data%20profiling" title=" semantic data profiling"> semantic data profiling</a>, <a href="https://publications.waset.org/abstracts/search?q=meta-categorisation" title=" meta-categorisation"> meta-categorisation</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20dependencies%20inter%20columns" title=" semantic dependencies inter columns"> semantic dependencies inter columns</a> </p> <a href="https://publications.waset.org/abstracts/34129/semantic-data-schema-recognition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34129.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=semantic%20similarity&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=semantic%20similarity&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=semantic%20similarity&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=semantic%20similarity&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=semantic%20similarity&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=semantic%20similarity&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=semantic%20similarity&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=semantic%20similarity&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=semantic%20similarity&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=semantic%20similarity&amp;page=38">38</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=semantic%20similarity&amp;page=39">39</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=semantic%20similarity&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10