CINXE.COM
Search results for: Gennady V. Krasnikov
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Gennady V. Krasnikov</title> <meta name="description" content="Search results for: Gennady V. Krasnikov"> <meta name="keywords" content="Gennady V. Krasnikov"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Gennady V. Krasnikov" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Gennady V. Krasnikov"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 7</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Gennady V. Krasnikov</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Phase Synchronization of Skin Blood Flow Oscillations under Deep Controlled Breathing in Human</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arina%20V.%20Tankanag">Arina V. Tankanag</a>, <a href="https://publications.waset.org/abstracts/search?q=Gennady%20V.%20Krasnikov"> Gennady V. Krasnikov</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikolai%20K.%20Chemeris"> Nikolai K. Chemeris</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of respiration-dependent oscillations in the peripheral blood flow may occur by at least two mechanisms. The first mechanism is related to the change of venous pressure due to mechanical activity of lungs. This phenomenon is known as ‘respiratory pump’ and is one of the mechanisms of venous return of blood from the peripheral vessels to the heart. The second mechanism is related to the vasomotor reflexes controlled by the respiratory modulation of the activity of centers of the vegetative nervous system. Early high phase synchronization of respiration-dependent blood flow oscillations of left and right forearm skin in healthy volunteers at rest was shown. The aim of the work was to study the effect of deep controlled breathing on the phase synchronization of skin blood flow oscillations. 29 normotensive non-smoking young women (18-25 years old) of the normal constitution without diagnosed pathologies of skin, cardiovascular and respiratory systems participated in the study. For each of the participants six recording sessions were carried out: first, at the spontaneous breathing rate; and the next five, in the regimes of controlled breathing with fixed breathing depth and different rates of enforced breathing regime. The following rates of controlled breathing regime were used: 0.25, 0.16, 0.10, 0.07 and 0.05 Hz. The breathing depth amounted to 40% of the maximal chest excursion. Blood perfusion was registered by laser flowmeter LAKK-02 (LAZMA, Russia) with two identical channels (wavelength 0.63 µm; emission power, 0.5 mW). The first probe was fastened to the palmar surface of the distal phalanx of left forefinger; the second probe was attached to the external surface of the left forearm near the wrist joint. These skin zones were chosen as zones with different dominant mechanisms of vascular tonus regulation. The degree of phase synchronization of the registered signals was estimated from the value of the wavelet phase coherence. The duration of all recording was 5 min. The sampling frequency of the signals was 16 Hz. The increasing of synchronization of the respiratory-dependent skin blood flow oscillations for all controlled breathing regimes was obtained. Since the formation of respiration-dependent oscillations in the peripheral blood flow is mainly caused by the respiratory modulation of system blood pressure, the observed effects are most likely dependent on the breathing depth. It should be noted that with spontaneous breathing depth does not exceed 15% of the maximal chest excursion, while in the present study the breathing depth was 40%. Therefore it has been suggested that the observed significant increase of the phase synchronization of blood flow oscillations in our conditions is primarily due to an increase of breathing depth. This is due to the enhancement of both potential mechanisms of respiratory oscillation generation: venous pressure and sympathetic modulation of vascular tone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20controlled%20breathing" title="deep controlled breathing">deep controlled breathing</a>, <a href="https://publications.waset.org/abstracts/search?q=peripheral%20blood%20flow%20oscillations" title=" peripheral blood flow oscillations"> peripheral blood flow oscillations</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20synchronization" title=" phase synchronization"> phase synchronization</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelet%20phase%20coherence" title=" wavelet phase coherence"> wavelet phase coherence</a> </p> <a href="https://publications.waset.org/abstracts/98130/phase-synchronization-of-skin-blood-flow-oscillations-under-deep-controlled-breathing-in-human" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98130.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Role of von Willebrand Factor and ADAMTS13 In The Prediction of Thrombotic Complications In Patients With COVID-19</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nataliya%20V.%20Dolgushina">Nataliya V. Dolgushina</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20A.%20Gorodnova"> Elena A. Gorodnova</a>, <a href="https://publications.waset.org/abstracts/search?q=Olga%20S.%20Beznoshenco"> Olga S. Beznoshenco</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrey%20Yu%20Romanov"> Andrey Yu Romanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Irina%20V.%20Menzhinskaya"> Irina V. Menzhinskaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyubov%20V.%20Krechetova"> Lyubov V. Krechetova</a>, <a href="https://publications.waset.org/abstracts/search?q=Gennady%20T.%20Suchich"> Gennady T. Suchich</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In patients with COVID-19, generalized hypercoagulability can lead to the development of severe coagulopathy. This event is accompanied by the development of a pronounced inflammatory reaction. The observational prospective study included 39 patients with mild COVID-19 and 102 patients with moderate and severe COVID-19. Patients were then stratified into groups depending on the risk of venous thromboembolism. vWF to ADAMTS-13 concentrations and activity ratios were significantly higher in patients with a high venous thromboembolism risks in patients with moderate and severe forms COVID-19. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ADAMTS-13" title="ADAMTS-13">ADAMTS-13</a>, <a href="https://publications.waset.org/abstracts/search?q=COVID-19" title=" COVID-19"> COVID-19</a>, <a href="https://publications.waset.org/abstracts/search?q=hypercoagulation" title=" hypercoagulation"> hypercoagulation</a>, <a href="https://publications.waset.org/abstracts/search?q=thrombosis" title=" thrombosis"> thrombosis</a>, <a href="https://publications.waset.org/abstracts/search?q=von%20Willebrand%20factor" title=" von Willebrand factor"> von Willebrand factor</a> </p> <a href="https://publications.waset.org/abstracts/150818/role-of-von-willebrand-factor-and-adamts13-in-the-prediction-of-thrombotic-complications-in-patients-with-covid-19" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150818.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> The Quotation-Based Algorithm for Distributed Decision Making</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gennady%20P.%20Ginkul">Gennady P. Ginkul</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergey%20Yu.%20Soloviov"> Sergey Yu. Soloviov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article proposes to use so-called "quotation-based algorithm" for simulation of decision making process in distributed expert systems and multi-agent systems. The idea was adopted from the techniques for group decision-making. It is based on the assumption that one expert system to perform its logical inference may use rules from another expert system. The application of the algorithm was demonstrated on the example in which the consolidated decision is the decision that requires minimal quotation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=backward%20chaining%20inference" title="backward chaining inference">backward chaining inference</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20expert%20systems" title=" distributed expert systems"> distributed expert systems</a>, <a href="https://publications.waset.org/abstracts/search?q=group%20decision%20making" title=" group decision making"> group decision making</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-agent%20systems" title=" multi-agent systems"> multi-agent systems</a> </p> <a href="https://publications.waset.org/abstracts/61196/the-quotation-based-algorithm-for-distributed-decision-making" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61196.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Numerical Modelling of Laminated Shells Made of Functionally Graded Elastic and Piezoelectric Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gennady%20M.%20Kulikov">Gennady M. Kulikov</a>, <a href="https://publications.waset.org/abstracts/search?q=Svetlana%20V.%20Plotnikova"> Svetlana V. Plotnikova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focuses on implementation of the sampling surfaces (SaS) method for the three-dimensional (3D) stress analysis of functionally graded (FG) laminated elastic and piezoelectric shells. The SaS formulation is based on choosing inside the nth layer In not equally spaced SaS parallel to the middle surface of the shell in order to introduce the electric potentials and displacements of these surfaces as basic shell variables. Such choice of unknowns permits the presentation of the proposed FG piezoelectric shell formulation in a very compact form. The SaS are located inside each layer at Chebyshev polynomial nodes that improves the convergence of the SaS method significantly. As a result, the SaS formulation can be applied efficiently to 3D solutions for FG piezoelectric laminated shells, which asymptotically approach the exact solutions of piezoelectricity as the number of SaS In goes to infinity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electroelasticity" title="electroelasticity">electroelasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=functionally%20graded%20material" title=" functionally graded material"> functionally graded material</a>, <a href="https://publications.waset.org/abstracts/search?q=laminated%20piezoelectric%20shell" title=" laminated piezoelectric shell"> laminated piezoelectric shell</a>, <a href="https://publications.waset.org/abstracts/search?q=sampling%20surfaces%20method" title=" sampling surfaces method"> sampling surfaces method</a> </p> <a href="https://publications.waset.org/abstracts/18393/numerical-modelling-of-laminated-shells-made-of-functionally-graded-elastic-and-piezoelectric-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18393.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">691</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Mechanism of Modeling the Level of Bcr-Abl Oncoprotein by Ubiquitin-Proteasome System in Chronic Myeloid Leukemia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Svitlana%20Antonenko">Svitlana Antonenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Gennady%20Telegeev"> Gennady Telegeev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introductive statement: The development of chronic myeloid leukemia (CML) is caused by Bcr-Abl oncoprotein. Modern treatments with tyrosine kinase inhibitors are greatly complicated by the mutational variability of the Bcr-Abl oncoprotein, which causes drug resistance. Therefore, there is an urgent need to develop new approaches to the treatment of the disease, which will allow modeling the level of Bcr-Abl oncoprotein in the cell. Promising in this direction is the identification of proteases that can selectively promote cellular proteolysis of oncoproteins. The aim of the study was to study the effect of the interaction of Bcr-Abl with deubiquitinase USP1 on the level of oncoprotein in CML cells. Methodology: K562 cells were selected for the experiment. Сells were incubated with ML323 inhibitor for 24 hours. Precipitation of endogenous proteins from K562 cell lysate was performed using anti-Bcr-Abl antibodies. Cell lysates and precipitation results were studied by Western blot. Subcellular localization of proteins was studied by immunofluorescence analysis followed by confocal microscopy. The results were analyzed quantitatively and statistically. Major findings: The Bcr-Abl/USP1 protein complex was detected in CML cells, and it was found that inhibition of USP1 deubiquitinating activity by the compound ML323 leads to disruption of this protein complex and a decrease in the level of Bcr-Abl oncoprotein in cells. The interaction of Bcr-Abl with USP1 may result in deubiquitination of the oncoprotein, which disrupts its proteasomal degradation and leads to the accumulation of CML in cells. Conclusion: We believe that the interaction of oncoprotein with USP1 may be one of the prerequisites that contribute to malignant cell transformation due to the deubiquitination of oncoprotein, which leads to its accumulation and disease progression. A correlation was found between the deubiquitinating activity of USP1 and the level of oncoprotein in CML cells. Thus, we identify deubiquitinase USP1 as a promising therapeutic target for the development of a new strategy for the treatment of CML by modulating the level of Bcr-Abl in the cell. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chronic%20myeloid%20leukemia" title="chronic myeloid leukemia">chronic myeloid leukemia</a>, <a href="https://publications.waset.org/abstracts/search?q=Bcr-Abl" title=" Bcr-Abl"> Bcr-Abl</a>, <a href="https://publications.waset.org/abstracts/search?q=USP1" title=" USP1"> USP1</a>, <a href="https://publications.waset.org/abstracts/search?q=deubiquitination%20Bcr-Abl" title=" deubiquitination Bcr-Abl"> deubiquitination Bcr-Abl</a>, <a href="https://publications.waset.org/abstracts/search?q=K562%20cell" title=" K562 cell"> K562 cell</a> </p> <a href="https://publications.waset.org/abstracts/149255/mechanism-of-modeling-the-level-of-bcr-abl-oncoprotein-by-ubiquitin-proteasome-system-in-chronic-myeloid-leukemia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149255.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Possibilities of Postmortem CT to Detection of Gas Accumulations in the Vessels of Dead Newborns with Congenital Sepsis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Uliana%20N.%20Tumanova">Uliana N. Tumanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Viacheslav%20M.%20Lyapin"> Viacheslav M. Lyapin</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20G.%20Bychenko"> Vladimir G. Bychenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandr%20I.%20Shchegolev"> Alexandr I. Shchegolev</a>, <a href="https://publications.waset.org/abstracts/search?q=Gennady%20T.%20Sukhikh"> Gennady T. Sukhikh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is well known that the gas formed as a result of postmortem decomposition of tissues can be detected already 24-48 hours after death. In addition, the conditions of keeping and storage of the corpse (temperature and humidity of the environment) significantly determine the rate of occurrence and development of posthumous changes. The presence of sepsis is accompanied by faster postmortem decomposition and decay of the organs and tissues of the body. The presence of gas in the vessels and cavities can be revealed fully at postmortem CT. Radiologists must certainly report on the detection of intraorganic or intravascular gas, wich was detected at postmortem CT, to forensic experts or pathologists before the autopsy. This gas can not be detected during autopsy, but it can be very important for establishing a diagnosis. To explore the possibility of postmortem CT for the evaluation of gas accumulations in the newborns' vessels, who died from congenital sepsis. Researched of 44 newborns bodies (25 male and 19 female sex, at the age from 6 hours to 27 days) after 6 - 12 hours of death. The bodies were stored in the refrigerator at a temperature of +4°C in the supine position. Grouped 12 bodies of newborns that died from congenital sepsis. The control group consisted of 32 bodies of newborns that died without signs of sepsis. Postmortem CT examination was performed at the GEMINI TF TOF16 device, before the autopsy. The localizations of gas accumulations in the vessels were determined on the CT tomograms. The sepsis diagnosis was on the basis of clinical and laboratory data and autopsy results. Gases in the vessels were detected in 33.3% of cases in the group with sepsis, and in the control group - in 34.4%. A group with sepsis most often the gas localized in the heart and liver vessels - 50% each, of observations number with the detected gas in the vessels. In the heart cavities, aorta and mesenteric vessels - 25% each. In control most often gas was detected in the liver (63.6%) and abdominal cavity (54.5%) vessels. In 45.5% the gas localized in the cavities, and in 36.4% in the vessels of the heart. In the cerebral vessels and in the aorta gas was detected in 27.3% and 9.1%, respectively. Postmortem CT has high diagnostic capabilities to detect free gas in vessels. Postmortem changes in newborns that died from sepsis do not affect intravascular gas production within 6-12 hours. Radiation methods should be used as a supplement to the autopsy, including as a kind of ‘guide’, with the indication to the forensic medical expert of certain changes identified during CT studies, for better definition of pathological processes during the autopsy. Postmortem CT can be recommend as a first stage of autopsy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=congenital%20sepsis" title="congenital sepsis">congenital sepsis</a>, <a href="https://publications.waset.org/abstracts/search?q=gas" title=" gas"> gas</a>, <a href="https://publications.waset.org/abstracts/search?q=newborn" title=" newborn"> newborn</a>, <a href="https://publications.waset.org/abstracts/search?q=postmortem%20CT" title=" postmortem CT"> postmortem CT</a> </p> <a href="https://publications.waset.org/abstracts/97758/possibilities-of-postmortem-ct-to-detection-of-gas-accumulations-in-the-vessels-of-dead-newborns-with-congenital-sepsis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97758.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Changes in Kidney Tissue at Postmortem Magnetic Resonance Imaging Depending on the Time of Fetal Death</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Uliana%20N.%20Tumanova">Uliana N. Tumanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Viacheslav%20M.%20Lyapin"> Viacheslav M. Lyapin</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20G.%20Bychenko"> Vladimir G. Bychenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandr%20I.%20Shchegolev"> Alexandr I. Shchegolev</a>, <a href="https://publications.waset.org/abstracts/search?q=Gennady%20T.%20Sukhikh"> Gennady T. Sukhikh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> All cases of stillbirth undoubtedly subject to postmortem examination, since it is necessary to find out the cause of the stillbirths, as well as a forecast of future pregnancies and their outcomes. Determination of the time of death is an important issue which is addressed during the examination of the body of a stillborn. It is mean the period from the time of death until the birth of the fetus. The time for fetal deaths determination is based on the assessment of the severity of the processes of maceration. To study the possibilities of postmortem magnetic resonance imaging (MRI) for determining the time of intrauterine fetal death based on the evaluation of maceration in the kidney. We have conducted MRI morphological comparisons of 7 dead fetuses (18-21 gestational weeks) and 26 stillbirths (22-39 gestational weeks), and 15 bodies of died newborns at the age of 2 hours – 36 days. Postmortem MRI 3T was performed before the autopsy. The signal intensity of the kidney tissue (SIK), pleural fluid (SIF), external air (SIA) was determined on T1-WI and T2-WI. Macroscopic and histological signs of maceration severity and time of death were evaluated in the autopsy. Based on the results of the morphological study, the degree of maceration varied from 0 to 4. In 13 cases, the time of intrauterine death was up to 6 hours, in 2 cases - 6-12 hours, in 4 -12-24 hours, in 9 -2-3 days, in 3 -1 week, in 2 -1,5-2 weeks. At 15 dead newborns, signs of maceration were absent, naturally. Based on the data from SIK, SIF, SIA on MR-tomograms, we calculated the coefficient of MR-maceration (M). The calculation of the time of intrauterine death (MP-t) (hours) was performed by our formula: МR-t = 16,87+95,38×М²-75,32×М. A direct positive correlation of MR-t and autopsy data from the dead at the gestational ages 22-40 weeks, with a dead time, not more than 1 week, was received. The maceration at the antenatal fetal death is characterized by changes in T1-WI and T2-WI signals at postmortem MRI. The calculation of MP-t allows defining accurately the time of intrauterine death within one week at the stillbirths who died on 22-40 gestational weeks. Thus, our study convincingly demonstrates that radiological methods can be used for postmortem study of the bodies, in particular, the bodies of stillborn to determine the time of intrauterine death. Postmortem MRI allows for an objective and sufficiently accurate analysis of pathological processes with the possibility of their documentation, storage, and analysis after the burial of the body. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intrauterine%20death" title="intrauterine death">intrauterine death</a>, <a href="https://publications.waset.org/abstracts/search?q=maceration" title=" maceration"> maceration</a>, <a href="https://publications.waset.org/abstracts/search?q=postmortem%20MRI" title=" postmortem MRI"> postmortem MRI</a>, <a href="https://publications.waset.org/abstracts/search?q=stillborn" title=" stillborn"> stillborn</a> </p> <a href="https://publications.waset.org/abstracts/97757/changes-in-kidney-tissue-at-postmortem-magnetic-resonance-imaging-depending-on-the-time-of-fetal-death" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97757.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>