CINXE.COM
Search results for: baseline drift
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: baseline drift</title> <meta name="description" content="Search results for: baseline drift"> <meta name="keywords" content="baseline drift"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="baseline drift" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="baseline drift"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1216</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: baseline drift</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1216</span> A Novel NRIS Index to Evaluate Brain Activity in Prefrontal Regions While Listening to First and Second Languages for Long Time Periods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kensho%20Takahashi">Kensho Takahashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ko%20Watanabe"> Ko Watanabe</a>, <a href="https://publications.waset.org/abstracts/search?q=Takashi%20Kaburagi"> Takashi Kaburagi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroshi%20Tanaka"> Hiroshi Tanaka</a>, <a href="https://publications.waset.org/abstracts/search?q=Kajiro%20Watanabe"> Kajiro Watanabe</a>, <a href="https://publications.waset.org/abstracts/search?q=Yosuke%20Kurihara"> Yosuke Kurihara </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Near-infrared spectroscopy (NIRS) has been widely used as a non-invasive method to measure brain activity, but it is corrupted by baseline drift noise. Here we present a method to measure regional cerebral blood flow as a derivative of NIRS output. We investigate whether, when listening to languages, blood flow can reasonably localize and represent regional brain activity or not. The prefrontal blood flow distribution pattern when advanced second-language listeners listened to a second language (L2) was most similar to that when listening to their first language (L1) among the patterns of mean and standard deviation. In experiments with 25 healthy subjects, the maximum blood flow was localized to the left BA46 of advanced listeners. The blood flow presented is robust to baseline drift and stably localizes regional brain activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NIRS" title="NIRS">NIRS</a>, <a href="https://publications.waset.org/abstracts/search?q=oxy-hemoglobin" title=" oxy-hemoglobin"> oxy-hemoglobin</a>, <a href="https://publications.waset.org/abstracts/search?q=baseline%20drift" title=" baseline drift"> baseline drift</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20flow" title=" blood flow"> blood flow</a>, <a href="https://publications.waset.org/abstracts/search?q=working%20memory" title=" working memory"> working memory</a>, <a href="https://publications.waset.org/abstracts/search?q=BA46" title=" BA46"> BA46</a>, <a href="https://publications.waset.org/abstracts/search?q=first%20language" title=" first language"> first language</a>, <a href="https://publications.waset.org/abstracts/search?q=second%20language" title=" second language"> second language</a> </p> <a href="https://publications.waset.org/abstracts/22459/a-novel-nris-index-to-evaluate-brain-activity-in-prefrontal-regions-while-listening-to-first-and-second-languages-for-long-time-periods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22459.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">558</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1215</span> Nonparametric Specification Testing for the Drift of the Short Rate Diffusion Process Using a Panel of Yields</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=John%20Knight">John Knight</a>, <a href="https://publications.waset.org/abstracts/search?q=Fuchun%20Li"> Fuchun Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20Xu"> Yan Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Based on a new method of the nonparametric estimator of the drift function, we propose a consistent test for the parametric specification of the drift function in the short rate diffusion process using observations from a panel of yields. The test statistic is shown to follow an asymptotic normal distribution under the null hypothesis that the parametric drift function is correctly specified, and converges to infinity under the alternative. Taking the daily 7-day European rates as a proxy of the short rate, we use our test to examine whether the drift of the short rate diffusion process is linear or nonlinear, which is an unresolved important issue in the short rate modeling literature. The testing results indicate that none of the drift functions in this literature adequately captures the dynamics of the drift, but nonlinear specification performs better than the linear specification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diffusion%20process" title="diffusion process">diffusion process</a>, <a href="https://publications.waset.org/abstracts/search?q=nonparametric%20estimation" title=" nonparametric estimation"> nonparametric estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=derivative%20security%20price" title=" derivative security price"> derivative security price</a>, <a href="https://publications.waset.org/abstracts/search?q=drift%20function%20and%20volatility%20function" title=" drift function and volatility function"> drift function and volatility function</a> </p> <a href="https://publications.waset.org/abstracts/52056/nonparametric-specification-testing-for-the-drift-of-the-short-rate-diffusion-process-using-a-panel-of-yields" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1214</span> Design of a Drift Assist Control System Applied to Remote Control Car</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sheng-Tse%20Wu">Sheng-Tse Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Wu-Sung%20Yao"> Wu-Sung Yao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a drift assist control system is proposed for remote control (RC) cars to get the perfect drift angle. A steering servo control scheme is given powerfully to assist the drift driving. A gyroscope sensor is included to detect the machine's tail sliding and to achieve a better automatic counter-steering to prevent RC car from spinning. To analysis tire traction and vehicle dynamics is used to obtain the dynamic track of RC cars. It comes with a control gain to adjust counter-steering amount according to the sensor condition. An illustrated example of 1:10 RC drift car is given and the real-time control algorithm is realized by Arduino Uno. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drift%20assist%20control%20system" title="drift assist control system">drift assist control system</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20control%20cars" title=" remote control cars"> remote control cars</a>, <a href="https://publications.waset.org/abstracts/search?q=gyroscope" title=" gyroscope"> gyroscope</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20dynamics" title=" vehicle dynamics"> vehicle dynamics</a> </p> <a href="https://publications.waset.org/abstracts/47436/design-of-a-drift-assist-control-system-applied-to-remote-control-car" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1213</span> Concept Drifts Detection and Localisation in Process Mining</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20V.%20Manoj%20Kumar">M. V. Manoj Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Likewin%20Thomas"> Likewin Thomas</a>, <a href="https://publications.waset.org/abstracts/search?q=Annappa"> Annappa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Process mining provides methods and techniques for analyzing event logs recorded in modern information systems that support real-world operations. While analyzing an event-log, state-of-the-art techniques available in process mining believe that the operational process as a static entity (stationary). This is not often the case due to the possibility of occurrence of a phenomenon called concept drift. During the period of execution, the process can experience concept drift and can evolve with respect to any of its associated perspectives exhibiting various patterns-of-change with a different pace. Work presented in this paper discusses the main aspects to consider while addressing concept drift phenomenon and proposes a method for detecting and localizing the sudden concept drifts in control-flow perspective of the process by using features extracted by processing the traces in the process log. Our experimental results are promising in the direction of efficiently detecting and localizing concept drift in the context of process mining research discipline. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=abrupt%20drift" title="abrupt drift">abrupt drift</a>, <a href="https://publications.waset.org/abstracts/search?q=concept%20drift" title=" concept drift"> concept drift</a>, <a href="https://publications.waset.org/abstracts/search?q=sudden%20drift" title=" sudden drift"> sudden drift</a>, <a href="https://publications.waset.org/abstracts/search?q=control-flow%20perspective" title=" control-flow perspective"> control-flow perspective</a>, <a href="https://publications.waset.org/abstracts/search?q=detection%20and%20localization" title=" detection and localization"> detection and localization</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20mining" title=" process mining"> process mining</a> </p> <a href="https://publications.waset.org/abstracts/44971/concept-drifts-detection-and-localisation-in-process-mining" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44971.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1212</span> Estimation of Seismic Deformation Demands of Tall Buildings with Symmetric Setbacks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Alirezaei">Amir Alirezaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahram%20Vahdani"> Shahram Vahdani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study estimates the seismic demands of tall buildings with central symmetric setbacks by using nonlinear time history analysis. Three setback structures, all 60-story high with setback in three levels, are used for evaluation. The effects of irregularities occurred by setback, are evaluated by determination of global-drift, story-displacement and story drift. Story-displacement is modified by roof displacement and first story displacement and story drift is modified by global drift. All results are calculated at the center of mass and in x and y direction. Also the absolute values of these quantities are determined. The results show that increasing of vertical irregularities increases the global drift of the structure and enlarges the deformations in the height of the structure. It is also observed that the effects of geometry irregularity in the seismic deformations of setback structures are higher than those of mass irregularity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deformation%20demand" title="deformation demand">deformation demand</a>, <a href="https://publications.waset.org/abstracts/search?q=drift" title=" drift"> drift</a>, <a href="https://publications.waset.org/abstracts/search?q=setback" title=" setback"> setback</a>, <a href="https://publications.waset.org/abstracts/search?q=tall%20building" title=" tall building"> tall building</a> </p> <a href="https://publications.waset.org/abstracts/22134/estimation-of-seismic-deformation-demands-of-tall-buildings-with-symmetric-setbacks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1211</span> Estimation of Seismic Drift Demands for Inelastic Shear Frame Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Etemadi">Ali Etemadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Polat%20H.%20Gulkan"> Polat H. Gulkan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The drift spectrum derived through the continuous shear-beam and wave propagation theory is known to be useful appliance to measure of the demand of pulse like near field ground motions on building structures. As regards, many of old frame buildings with poor or non-ductile column elements, pass the elastic limits and blurt the post yielding hysteresis degradation responses when subjected to such impulsive ground motions. The drift spectrum which, is based on a linear system cannot be predicted the overestimate drift demands arising from inelasticity in an elastic plastic systems. A simple procedure to estimate the drift demands in shear-type frames which, respond over the elastic limits is described and effect of hysteresis degradation behavior on seismic demands is clarified. Whereupon the modification factors are proposed to incorporate the hysteresis degradation effects parametrically. These factors are defined with respected to the linear systems. The method can be applicable for rapid assessment of existing poor detailed, non-ductile buildings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drift%20spectrum" title="drift spectrum">drift spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=shear-type%20frame" title=" shear-type frame"> shear-type frame</a>, <a href="https://publications.waset.org/abstracts/search?q=stiffness%20and%20strength%20degradation" title=" stiffness and strength degradation"> stiffness and strength degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=pinching" title=" pinching"> pinching</a>, <a href="https://publications.waset.org/abstracts/search?q=smooth%20hysteretic%20model" title=" smooth hysteretic model"> smooth hysteretic model</a>, <a href="https://publications.waset.org/abstracts/search?q=quasi%20static%20analysis" title=" quasi static analysis"> quasi static analysis</a> </p> <a href="https://publications.waset.org/abstracts/24161/estimation-of-seismic-drift-demands-for-inelastic-shear-frame-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24161.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">524</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1210</span> Efficacy and Safety by Baseline A1c with Once-Weekly Dulaglutide in the AWARD Program</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alaa%20Mostafa">Alaa Mostafa</a>, <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Dagogo-Jack"> Samuel Dagogo-Jack</a>, <a href="https://publications.waset.org/abstracts/search?q=Vivian%20Thieu"> Vivian Thieu</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Yu"> Maria Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Nan%20Zhang"> Nan Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Dara%20Schuster"> Dara Schuster</a>, <a href="https://publications.waset.org/abstracts/search?q=Luis-Emilio%20Garcia-Perez"> Luis-Emilio Garcia-Perez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dulaglutide (DU), a once-weekly glucagon-like peptide-1 receptor agonist, was studied in the AWARD clinical trial program in adult patients with type 2 diabetes (T2D) and demonstrated significant hemoglobin A1c (A1c) reduction and potential for weight loss. To evaluate the efficacy and safety of DU 1.5 mg and DU 0.75 mg in patients with T2D by baseline A1c <8.5% or ≥8.5%, a post-hoc analysis was conducted on AWARD-1 to -6 and -8 at 6 months. Across 7 studies, 55% to 82% of the DU-treated patients had a baseline A1c <8.5%, and 18% to 45% had a baseline A1c ≥8.5%. The ranges of A1c reductions with baseline A1c <8.5% and ≥8.5%, respectively, were: DU 1.5 mg: -0.67% to -1.25% and -1.22% to -2.37%; DU 0.75 mg: -0.53% to -1.07% and -1.37% to -2.19%. The A1c reduction from the pooled analysis was greater in patients with baseline A1c ≥8.5% than patients with baseline A1c <8.5%, respectively: DU 1.5 mg: -1.86% and -1.02%; DU 0.75 mg: -1.75% and -0.83%. DU treatments were well tolerated among baseline A1c subgroups. Across the AWARD program, DU 1.5 mg and DU 0.75 mg demonstrated significant A1c reduction in both subgroups with an acceptable safety profile. Compared to patients with baseline A1c <8.5%, patients with baseline A1c ≥8.5% had greater A1c reduction. Disclosures: This study was supported and conducted by Eli Lilly and Company, Indianapolis, IN, USA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=A1c%20reduction" title="A1c reduction">A1c reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=dulaglutide" title=" dulaglutide"> dulaglutide</a>, <a href="https://publications.waset.org/abstracts/search?q=type%202%20diabetes" title=" type 2 diabetes"> type 2 diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=weight%20loss" title=" weight loss"> weight loss</a> </p> <a href="https://publications.waset.org/abstracts/62989/efficacy-and-safety-by-baseline-a1c-with-once-weekly-dulaglutide-in-the-award-program" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1209</span> Adaptive Online Object Tracking via Positive and Negative Models Matching</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shaomei%20Li">Shaomei Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yawen%20Wang"> Yawen Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chao%20Gao"> Chao Gao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To improve tracking drift which often occurs in adaptive tracking, an algorithm based on the fusion of tracking and detection is proposed in this paper. Firstly, object tracking is posed as a binary classification problem and is modeled by partial least squares (PLS) analysis. Secondly, tracking object frame by frame via particle filtering. Thirdly, validating the tracking reliability based on both positive and negative models matching. Finally, relocating the object based on SIFT features matching and voting when drift occurs. Object appearance model is updated at the same time. The algorithm cannot only sense tracking drift but also relocate the object whenever needed. Experimental results demonstrate that this algorithm outperforms state-of-the-art algorithms on many challenging sequences. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=object%20tracking" title="object tracking">object tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=tracking%20drift" title=" tracking drift"> tracking drift</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20least%20squares%20analysis" title=" partial least squares analysis"> partial least squares analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=positive%20and%20negative%20models%20matching" title=" positive and negative models matching"> positive and negative models matching</a> </p> <a href="https://publications.waset.org/abstracts/19382/adaptive-online-object-tracking-via-positive-and-negative-models-matching" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19382.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">529</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1208</span> The Estimation Method of Inter-Story Drift for Buildings Based on Evolutionary Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyu%20Jin%20Kim">Kyu Jin Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Byung%20Kwan%20Oh"> Byung Kwan Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyo%20Seon%20Park"> Hyo Seon Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The seismic responses-based structural health monitoring system has been performed to reduce seismic damage. The inter-story drift ratio which is the major index of the seismic capacity assessment is employed for estimating the seismic damage of buildings. Meanwhile, seismic response analysis to estimate the structural responses of building demands significantly high computational cost due to increasing number of high-rise and large buildings. To estimate the inter-story drift ratio of buildings from the earthquake efficiently, this paper suggests the estimation method of inter-story drift for buildings using an artificial neural network (ANN). In the method, the radial basis function neural network (RBFNN) is integrated with optimization algorithm to optimize the variable through evolutionary learning that refers to evolutionary radial basis function neural network (ERBFNN). The estimation method estimates the inter-story drift without seismic response analysis when the new earthquakes are subjected to buildings. The effectiveness of the estimation method is verified through a simulation using multi-degree of freedom system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structural%20health%20monitoring" title="structural health monitoring">structural health monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=inter-story%20drift%20ratio" title=" inter-story drift ratio"> inter-story drift ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title=" artificial neural network"> artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20basis%20function%20neural%20network" title=" radial basis function neural network"> radial basis function neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a> </p> <a href="https://publications.waset.org/abstracts/52253/the-estimation-method-of-inter-story-drift-for-buildings-based-on-evolutionary-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52253.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1207</span> TransDrift: Modeling Word-Embedding Drift Using Transformer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nishtha%20Madaan">Nishtha Madaan</a>, <a href="https://publications.waset.org/abstracts/search?q=Prateek%20Chaudhury"> Prateek Chaudhury</a>, <a href="https://publications.waset.org/abstracts/search?q=Nishant%20Kumar"> Nishant Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Srikanta%20Bedathur"> Srikanta Bedathur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In modern NLP applications, word embeddings are a crucial backbone that can be readily shared across a number of tasks. However, as the text distributions change and word semantics evolve over time, the downstream applications using the embeddings can suffer if the word representations do not conform to the data drift. Thus, maintaining word embeddings to be consistent with the underlying data distribution is a key problem. In this work, we tackle this problem and propose TransDrift, a transformer-based prediction model for word embeddings. Leveraging the flexibility of the transformer, our model accurately learns the dynamics of the embedding drift and predicts future embedding. In experiments, we compare with existing methods and show that our model makes significantly more accurate predictions of the word embedding than the baselines. Crucially, by applying the predicted embeddings as a backbone for downstream classification tasks, we show that our embeddings lead to superior performance compared to the previous methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NLP%20applications" title="NLP applications">NLP applications</a>, <a href="https://publications.waset.org/abstracts/search?q=transformers" title=" transformers"> transformers</a>, <a href="https://publications.waset.org/abstracts/search?q=Word2vec" title=" Word2vec"> Word2vec</a>, <a href="https://publications.waset.org/abstracts/search?q=drift" title=" drift"> drift</a>, <a href="https://publications.waset.org/abstracts/search?q=word%20embeddings" title=" word embeddings"> word embeddings</a> </p> <a href="https://publications.waset.org/abstracts/165423/transdrift-modeling-word-embedding-drift-using-transformer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165423.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1206</span> Linear Study of Electrostatic Ion Temperature Gradient Mode with Entropy Gradient Drift and Sheared Ion Flows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Yaqub%20Khan">M. Yaqub Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Usman%20Shabbir"> Usman Shabbir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> History of plasma reveals that continuous struggle of experimentalists and theorists are not fruitful for confinement up to now. It needs a change to bring the research through entropy. Approximately, all the quantities like number density, temperature, electrostatic potential, etc. are connected to entropy. Therefore, it is better to change the way of research. In ion temperature gradient mode with the help of Braginskii model, Boltzmannian electrons, effect of velocity shear is studied inculcating entropy in the magnetoplasma. New dispersion relation is derived for ion temperature gradient mode, and dependence on entropy gradient drift is seen. It is also seen velocity shear enhances the instability but in anomalous transport, its role is not seen significantly but entropy. This work will be helpful to the next step of tokamak and space plasmas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=entropy" title="entropy">entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20shear" title=" velocity shear"> velocity shear</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20temperature%20gradient%20mode" title=" ion temperature gradient mode"> ion temperature gradient mode</a>, <a href="https://publications.waset.org/abstracts/search?q=drift" title=" drift"> drift</a> </p> <a href="https://publications.waset.org/abstracts/70221/linear-study-of-electrostatic-ion-temperature-gradient-mode-with-entropy-gradient-drift-and-sheared-ion-flows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1205</span> Aerodynamic Investigation of Baseline-IV Bird-Inspired BWB Aircraft Design: Improvements over Baseline-III BWB </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20M.%20Nur%20Syazwani">C. M. Nur Syazwani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Ahmad%20Imran"> M. K. Ahmad Imran</a>, <a href="https://publications.waset.org/abstracts/search?q=Rizal%20E.%20M.%20Nasir"> Rizal E. M. Nasir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study on BWB UV begins in UiTM since 2005 and three designs have been studied and published. The latest designs are Baseline-III and inspired by birds that have features and aerodynamics behaviour of cruising birds without flapping capability. The aircraft featuring planform and configuration are similar to the bird. Baseline-III has major flaws particularly in its low lift-to-drag ratio, stability and issues regarding limited controllability. New design known as Baseline-IV replaces straight, swept wing to delta wing and have a broader tail compares to the Baseline-III’s. The objective of the study is to investigate aerodynamics of Baseline-IV bird-inspired BWB aircraft. This will be achieved by theoretical calculation and wind tunnel experiments. The result shows that both theoretical and wind tunnel experiments of Baseline-IV graph of CL and CD versus alpha are quite similar to each other in term of pattern of graph slopes and values. Baseline-IV has higher lift coefficient values at wide range of angle of attack compares to Baseline-III. Baseline-IV also has higher maximum lift coefficient, higher maximum lift-to-drag and lower parasite drag. It has stable pitch moment versus lift slope but negative moment at zero lift for zero angle-of-attack tail setting. At high angle of attack, Baseline-IV does not have stability reversal as shown in Baseline-III. Baseline-IV is proven to have improvements over Baseline-III in terms of lift, lift-to-drag ratio and pitch moment stability at high angle-of-attack. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blended%20wing-body" title="blended wing-body">blended wing-body</a>, <a href="https://publications.waset.org/abstracts/search?q=bird-inspired%20blended%20wing-body" title=" bird-inspired blended wing-body"> bird-inspired blended wing-body</a>, <a href="https://publications.waset.org/abstracts/search?q=aerodynamic" title=" aerodynamic"> aerodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/24050/aerodynamic-investigation-of-baseline-iv-bird-inspired-bwb-aircraft-design-improvements-over-baseline-iii-bwb" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24050.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">508</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1204</span> Long Short-Term Memory Stream Cruise Control Method for Automated Drift Detection and Adaptation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Abu-Shaira">Mohammad Abu-Shaira</a>, <a href="https://publications.waset.org/abstracts/search?q=Weishi%20Shi"> Weishi Shi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Adaptive learning, a commonly employed solution to drift, involves updating predictive models online during their operation to react to concept drifts, thereby serving as a critical component and natural extension for online learning systems that learn incrementally from each example. This paper introduces LSTM-SCCM “Long Short-Term Memory Stream Cruise Control Method”, a drift adaptation-as-a-service framework for online learning. LSTM-SCCM automates drift adaptation through prompt detection, drift magnitude quantification, dynamic hyperparameter tuning, performing shortterm optimization and model recalibration for immediate adjustments, and, when necessary, conducting long-term model recalibration to ensure deeper enhancements in model performance. LSTM-SCCM is incorporated into a suite of cutting-edge online regression models, assessing their performance across various types of concept drift using diverse datasets with varying characteristics. The findings demonstrate that LSTM-SCCM represents a notable advancement in both model performance and efficacy in handling concept drift occurrences. LSTM-SCCM stands out as the sole framework adept at effectively tackling concept drifts within regression scenarios. Its proactive approach to drift adaptation distinguishes it from conventional reactive methods, which typically rely on retraining after significant degradation to model performance caused by drifts. Additionally, LSTM-SCCM employs an in-memory approach combined with the Self-Adjusting Memory (SAM) architecture to enhance real-time processing and adaptability. The framework incorporates variable thresholding techniques and does not assume any particular data distribution, making it an ideal choice for managing high-dimensional datasets and efficiently handling large-scale data. Our experiments, which include abrupt, incremental, and gradual drifts across both low- and high-dimensional datasets with varying noise levels, and applied to four state-of-the-art online regression models, demonstrate that LSTM-SCCM is versatile and effective, rendering it a valuable solution for online regression models to address concept drift. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automated%20drift%20detection%20and%20adaptation" title="automated drift detection and adaptation">automated drift detection and adaptation</a>, <a href="https://publications.waset.org/abstracts/search?q=concept%20drift" title=" concept drift"> concept drift</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperparameters%20optimization" title=" hyperparameters optimization"> hyperparameters optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=online%20and%20adaptive%20learning" title=" online and adaptive learning"> online and adaptive learning</a>, <a href="https://publications.waset.org/abstracts/search?q=regression" title=" regression"> regression</a> </p> <a href="https://publications.waset.org/abstracts/193474/long-short-term-memory-stream-cruise-control-method-for-automated-drift-detection-and-adaptation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193474.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">11</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1203</span> Drift-Wave Turbulence in a Tokamak Edge Plasma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Belgherras%20Bekkouche">S. Belgherras Bekkouche</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Benouaz"> T. Benouaz</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20A.%20Bekkouche"> S. M. A. Bekkouche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tokamak plasma is far from having a stable background. The study of turbulent transport is an important part of the current research and advanced scenarios were devised to minimize it. To do this, we used a three-wave interaction model which allows to investigate the occurrence drift-wave turbulence driven by pressure gradients in the edge plasma of a tokamak. In order to simulate the energy redistribution among different modes, the growth/decay rates for the three waves was added. After a numerical simulation, we can determine certain aspects of the temporal dynamics exhibited by the model. Indeed for a wide range of the wave decay rate, an intermittent transition from periodic behavior to chaos is observed. Then, a control strategy of chaos was introduced with the aim of reducing or eliminating the weak turbulence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wave%20interaction" title="wave interaction">wave interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20drift%20waves" title=" plasma drift waves"> plasma drift waves</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20turbulence" title=" wave turbulence"> wave turbulence</a>, <a href="https://publications.waset.org/abstracts/search?q=tokamak" title=" tokamak"> tokamak</a>, <a href="https://publications.waset.org/abstracts/search?q=edge%20plasma" title=" edge plasma"> edge plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=chaos" title=" chaos"> chaos</a> </p> <a href="https://publications.waset.org/abstracts/2104/drift-wave-turbulence-in-a-tokamak-edge-plasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2104.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">552</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1202</span> Seismic Performance of Two-Storey RC Frame Designed EC8 under In-Plane Cyclic Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20H.%20Hamid">N. H. Hamid</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Azmi"> A. Azmi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20I.%20Adiyanto"> M. I. Adiyanto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This main purpose of this paper is to evaluate the seismic performance of double bay two-storey reinforced concrete frame under in-plane lateral cyclic loading which designed using Eurocode 8 (EC8) by taking into account of seismic loading. The prototype model of reinforced concrete frame was constructed in one-half scale tested under in-plane lateral cyclic loading starts with ±0.2% drift, ±0.25% up to ±3.0% drift with the increment of ±0.25%. The performance of the RC frame is evaluated in terms of the hysteresis loop (load vs. displacement), stiffness, ductility, lateral strength, stress-strain relationship and equivalent viscous damping. Visual observation of the crack pattern after testing were observed where the beam- column joint suffer the most severe damage as it is the critical part in moment resisting frame. Spalling of concrete starts occurred at ±2.0% drift and become worse at ±2.5% drift. The experimental result shows that the maximum lateral strength of specimen is 99.98 kN and ductility of the specimen is µ=4.07 which lies between 3≤µ≤6 in order to withstand moderate to severe earthquakes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ductility" title="ductility">ductility</a>, <a href="https://publications.waset.org/abstracts/search?q=equivalent%20viscous%20damping" title=" equivalent viscous damping"> equivalent viscous damping</a>, <a href="https://publications.waset.org/abstracts/search?q=hysteresis%20loops" title=" hysteresis loops"> hysteresis loops</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20strength" title=" lateral strength"> lateral strength</a>, <a href="https://publications.waset.org/abstracts/search?q=stiffness" title=" stiffness"> stiffness</a> </p> <a href="https://publications.waset.org/abstracts/35769/seismic-performance-of-two-storey-rc-frame-designed-ec8-under-in-plane-cyclic-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35769.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1201</span> Development of a Non-Dispersive Infrared Multi Gas Analyzer for a TMS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20V.%20Dinh">T. V. Dinh</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Y.%20Choi"> I. Y. Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20W.%20Ahn"> J. W. Ahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20H.%20Oh"> Y. H. Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Bo"> G. Bo</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Y.%20Lee"> J. Y. Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20C.%20Kim"> J. C. Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A Non-Dispersive Infrared (NDIR) multi-gas analyzer has been developed to monitor the emission of carbon monoxide (CO) and sulfur dioxide (SO2) from various industries. The NDIR technique for gas measurement is based on the wavelength absorption in the infrared spectrum as a way to detect particular gasses. NDIR analyzers have popularly applied in the Tele-Monitoring System (TMS). The advantage of the NDIR analyzer is low energy consumption and cost compared with other spectroscopy methods. However, zero/span drift and interference are its urgent issues to be solved. Multi-pathway technique based on optical White cell was employed to improve the sensitivity of the analyzer in this work. A pyroelectric detector was used to detect the Infrared radiation. The analytical range of the analyzer was 0 ~ 200 ppm. The instrument response time was < 2 min. The detection limits of CO and SO2 were < 4 ppm and < 6 ppm, respectively. The zero and span drift of 24 h was less than 3%. The linearity of the analyzer was less than 2.5% of reference values. The precision and accuracy of both CO and SO2 channels were < 2.5% of relative standard deviation. In general, the analyzer performed well. However, the detection limit and 24h drift should be improved to be a more competitive instrument. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analyzer" title="analyzer">analyzer</a>, <a href="https://publications.waset.org/abstracts/search?q=CEMS" title=" CEMS"> CEMS</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring" title=" monitoring"> monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=NDIR" title=" NDIR"> NDIR</a>, <a href="https://publications.waset.org/abstracts/search?q=TMS" title=" TMS"> TMS</a> </p> <a href="https://publications.waset.org/abstracts/50922/development-of-a-non-dispersive-infrared-multi-gas-analyzer-for-a-tms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50922.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1200</span> Evaluating the Baseline Chatacteristics of Static Balance in Young Adults</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Abuzayan">K. Abuzayan</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Alabed"> H. Alabed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objectives of this study (baseline study, n = 20) were to implement Matlab procedures for quantifying selected static balance variables, establish baseline data of selected variables which characterize static balance activities in a population of healthy young adult males, and to examine any trial effects on these variables. The results indicated that the implementation of Matlab procedures for quantifying selected static balance variables was practical and enabled baseline data to be established for selected variables. There was no significant trial effect. Recommendations were made for suitable tests to be used in later studies. Specifically it was found that one foot-tiptoes tests either in static balance is too challenging for most participants in normal circumstances. A one foot-flat eyes open test was considered to be representative and challenging for static balance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=static%20balance" title="static balance">static balance</a>, <a href="https://publications.waset.org/abstracts/search?q=base%20of%20support" title=" base of support"> base of support</a>, <a href="https://publications.waset.org/abstracts/search?q=baseline%20data" title=" baseline data"> baseline data</a>, <a href="https://publications.waset.org/abstracts/search?q=young%20adults" title=" young adults"> young adults</a> </p> <a href="https://publications.waset.org/abstracts/10009/evaluating-the-baseline-chatacteristics-of-static-balance-in-young-adults" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10009.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1199</span> Improved Non-Ideal Effects in AlGaN/GaN-Based Ion-Sensitive Field-Effect Transistors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wei-Chou%20Hsu">Wei-Chou Hsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ching-Sung%20Lee"> Ching-Sung Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Han-Yin%20Liu"> Han-Yin Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work uses H2O2 oxidation technique to improve the pH sensitivity of the AlGaN/GaN-based ion-sensitive field-effect transistors (ISFETs). 10-nm-thick Al2O3 was grown on the surface of the AlGaN. It was found that the pH sensitivity was improved from 41.6 mV/pH to 55.2 mV/pH. Since the H2O2-grown Al2O3 was served as a passivation layer and the problem of Fermi-level pinning was suppressed for the ISFET with the H2O2 oxidation process. Hysteresis effect in the ISFET with the H2O2 treatment also became insignificant. The hysteresis effect was observed by dipping the ISFETs into different pH value solutions and comparing the voltage difference between the initial and final conditions. The hysteresis voltage (Vhys) of the ISFET with the H2O2 oxidation process was improved from 8.7 mV to 4.8 mV. The hysteresis effect is related to the buried binding sites which are related to the material defects like threading dislocations in the AlGaN/GaN heterostructure which was grown by the hetero-epitaxy technique. The H2O2-grown Al2O3 passivate these material defects and the Al2O3 has less material defects. The long-term stability of the ISFET is estimated by the drift effect measurement. The drift measurement was conducted by dipping the ISFETs into a specific pH value solution for 12 hours and the ISFETs were operating at a specific quiescent point. The drift rate is estimated by the drift voltage divided by the total measuring time. It was found that the drift rate of the ISFET was improved from 10.1 mV/hour to 1.91 mV/hour in the pH 7 solution, from 14.06 mV/hour to 6.38 mV/pH in the pH 2 solution, and from 12.8 mV/hour to 5.48 mV/hour in the pH 12 solution. The drift effect results from the capacitance variation in the electric double layer. The H2O2-grown Al2O3 provides an additional capacitance connection in series with the electric double layer. Therefore, the capacitance variation of the electric double layer became insignificant. Generally, the H2O2 oxidation process is a simple, fast, and cost-effective method for the AlGaN/GaN-based ISFET. Furthermore, the performance of the AlGaN/GaN ISFET was improved effectively and the non-ideal effects were suppressed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AlGaN%2FGaN" title="AlGaN/GaN">AlGaN/GaN</a>, <a href="https://publications.waset.org/abstracts/search?q=Al2O3" title=" Al2O3"> Al2O3</a>, <a href="https://publications.waset.org/abstracts/search?q=hysteresis%20effect" title=" hysteresis effect"> hysteresis effect</a>, <a href="https://publications.waset.org/abstracts/search?q=drift%20effect" title=" drift effect"> drift effect</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=passivation" title=" passivation"> passivation</a>, <a href="https://publications.waset.org/abstracts/search?q=pH%20sensors" title=" pH sensors"> pH sensors</a> </p> <a href="https://publications.waset.org/abstracts/45952/improved-non-ideal-effects-in-algangan-based-ion-sensitive-field-effect-transistors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45952.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1198</span> An Assessment into the Drift in Direction of International Migration of Labor: Changing Aspirations for Religiosity and Cultural Assimilation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syed%20Toqueer%20Akhter">Syed Toqueer Akhter</a>, <a href="https://publications.waset.org/abstracts/search?q=Rabia%20Zulfiqar"> Rabia Zulfiqar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper attempts to trace the determining factor- as far as individual preferences and expectations are concerned- of what causes the direction of international migration to drift in certain ways owing to factors such as Religiosity and Cultural Assimilation. The narrative on migration has graduated from the age long ‘push/pull’ debate to that of complex factors that may vary across each individual. We explore the longstanding factor of religiosity widely acknowledged in mentioned literature as a key variable in the assessment of migration, wherein the impact of religiosity in the form of a drift into the intent of migration has been analyzed. A more conventional factor cultural assimilation is used in a contemporary way to estimate how it plays a role in affecting the drift in direction. In particular what our research aims at achieving is to isolate the effect our key variables: Cultural Assimilation and Religiosity have on direction of migration, and to explore how they interplay as a composite unit- and how we may be able to justify the change in behavior displayed by these key variables. In order to establish a true sense of what drives individual choices we employ the method of survey research and use a questionnaire to conduct primary research. The questionnaire was divided into six sections covering subjects including household characteristics, perceptions and inclinations of the respondents relevant to our study. Religiosity was quantified using a proxy of Migration Network that utilized secondary data to estimate religious hubs in recipient countries. To estimate the relationship between Intent of Migration and its variants three competing econometric models namely: the Ordered Probit Model, the Ordered Logit Model and the Tobit Model were employed. For every model that included our key variables, a highly significant relationship with the intent of migration was estimated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=international%20migration" title="international migration">international migration</a>, <a href="https://publications.waset.org/abstracts/search?q=drift%20in%20direction" title=" drift in direction"> drift in direction</a>, <a href="https://publications.waset.org/abstracts/search?q=cultural%20assimilation" title=" cultural assimilation"> cultural assimilation</a>, <a href="https://publications.waset.org/abstracts/search?q=religiosity" title=" religiosity"> religiosity</a>, <a href="https://publications.waset.org/abstracts/search?q=ordered%20probit%20model" title=" ordered probit model"> ordered probit model</a> </p> <a href="https://publications.waset.org/abstracts/32297/an-assessment-into-the-drift-in-direction-of-international-migration-of-labor-changing-aspirations-for-religiosity-and-cultural-assimilation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1197</span> Multi-Objective Random Drift Particle Swarm Optimization Algorithm Based on RDPSO and Crowding Distance Sorting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yiqiong%20Yuan">Yiqiong Yuan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Sun"> Jun Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Dongmei%20Zhou"> Dongmei Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianan%20Sun"> Jianan Sun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we presented a Multi-Objective Random Drift Particle Swarm Optimization algorithm (MORDPSO-CD) based on RDPSO and crowding distance sorting to improve the convergence and distribution with less computation cost. MORDPSO-CD makes the most of RDPSO to approach the true Pareto optimal solutions fast. We adopt the crowding distance sorting technique to update and maintain the archived optimal solutions. Introducing the crowding distance technique into MORDPSO can make the leader particles find the true Pareto solution ultimately. The simulation results reveal that the proposed algorithm has better convergence and distribution <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-objective%20optimization" title="multi-objective optimization">multi-objective optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20drift%20particle%20swarm%20optimization" title=" random drift particle swarm optimization"> random drift particle swarm optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=crowding%20distance%20sorting" title=" crowding distance sorting"> crowding distance sorting</a>, <a href="https://publications.waset.org/abstracts/search?q=pareto%20optimal%20solution" title=" pareto optimal solution"> pareto optimal solution</a> </p> <a href="https://publications.waset.org/abstracts/44631/multi-objective-random-drift-particle-swarm-optimization-algorithm-based-on-rdpso-and-crowding-distance-sorting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44631.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1196</span> Optimization of Temperature Coefficients for MEMS Based Piezoresistive Pressure Sensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vijay%20Kumar">Vijay Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaspreet%20Singh"> Jaspreet Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Manoj%20Wadhwa"> Manoj Wadhwa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Piezo-resistive pressure sensors were one of the first developed micromechanical system (MEMS) devices and still display a significant growth prompted by the advancements in micromachining techniques and material technology. In MEMS based piezo-resistive pressure sensors, temperature can be considered as the main environmental condition which affects the system performance. The study of the thermal behavior of these sensors is essential to define the parameters that cause the output characteristics to drift. In this work, a study on the effects of temperature and doping concentration in a boron implanted piezoresistor for a silicon-based pressure sensor is discussed. We have optimized the temperature coefficient of resistance (TCR) and temperature coefficient of sensitivity (TCS) values to determine the effect of temperature drift on the sensor performance. To be more precise, in order to reduce the temperature drift, a high doping concentration is needed. And it is well known that the Wheatstone bridge in a pressure sensor is supplied with a constant voltage or a constant current input supply. With a constant voltage supply, the thermal drift can be compensated along with an external compensation circuit, whereas the thermal drift in the constant current supply can be directly compensated by the bridge itself. But it would be beneficial to also compensate the temperature coefficient of piezoresistors so as to further reduce the temperature drift. So, with a current supply, the TCS is dependent on both the TCπ and TCR. As TCπ is a negative quantity and TCR is a positive quantity, it is possible to choose an appropriate doping concentration at which both of them cancel each other. An exact cancellation of TCR and TCπ values is not readily attainable; therefore, an adjustable approach is generally used in practical applications. Thus, one goal of this work has been to better understand the origin of temperature drift in pressure sensor devices so that the temperature effects can be minimized or eliminated. This paper describes the optimum doping levels for the piezoresistors where the TCS of the pressure transducers will be zero due to the cancellation of TCR and TCπ values. Also, the fabrication and characterization of the pressure sensor are carried out. The optimized TCR value obtained for the fabricated die is 2300 ± 100ppm/ᵒC, for which the piezoresistors are implanted at a doping concentration of 5E13 ions/cm³ and the TCS value of -2100ppm/ᵒC is achieved. Therefore, the desired TCR and TCS value is achieved, which are approximately equal to each other, so the thermal effects are considerably reduced. Finally, we have calculated the effect of temperature and doping concentration on the output characteristics of the sensor. This study allows us to predict the sensor behavior against temperature and to minimize this effect by optimizing the doping concentration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piezo-resistive" title="piezo-resistive">piezo-resistive</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20sensor" title=" pressure sensor"> pressure sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=doping%20concentration" title=" doping concentration"> doping concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=TCR" title=" TCR"> TCR</a>, <a href="https://publications.waset.org/abstracts/search?q=TCS" title=" TCS"> TCS</a> </p> <a href="https://publications.waset.org/abstracts/137637/optimization-of-temperature-coefficients-for-mems-based-piezoresistive-pressure-sensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137637.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1195</span> Model Observability – A Monitoring Solution for Machine Learning Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amreth%20Chandrasehar">Amreth Chandrasehar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Machine Learning (ML) Models are developed and run in production to solve various use cases that help organizations to be more efficient and help drive the business. But this comes at a massive development cost and lost business opportunities. According to the Gartner report, 85% of data science projects fail, and one of the factors impacting this is not paying attention to Model Observability. Model Observability helps the developers and operators to pinpoint the model performance issues data drift and help identify root cause of issues. This paper focuses on providing insights into incorporating model observability in model development and operationalizing it in production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=model%20observability" title="model observability">model observability</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring" title=" monitoring"> monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=drift%20detection" title=" drift detection"> drift detection</a>, <a href="https://publications.waset.org/abstracts/search?q=ML%20observability%20platform" title=" ML observability platform"> ML observability platform</a> </p> <a href="https://publications.waset.org/abstracts/174152/model-observability-a-monitoring-solution-for-machine-learning-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174152.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1194</span> High Frequency Memristor-Based BFSK and 8QAM Demodulators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nahla%20Elazab">Nahla Elazab</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Aboudina"> Mohamed Aboudina</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghada%20Ibrahim"> Ghada Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossam%20Fahmy"> Hossam Fahmy</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Khalil"> Ahmed Khalil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the developed memristor based demodulators for eight circular Quadrature Amplitude Modulation (QAM) and Binary Frequency Shift Keying (BFSK) operating at relatively high frequency. In our implementations, the experimental-based ‘nonlinear’ dopant drift model is adopted along with the proposed circuits providing incorporation of all known non-idealities of practically realized memristor and gaining high operation frequency. The suggested designs leverage the distinctive characteristics of the memristor device, definitely, its changeable average memristance versus the frequency, phase and amplitude of the periodic excitation input. The proposed demodulators feature small integration area, low power consumption, and easy implementation. Moreover, the proposed QAM demodulator precludes the requirement for the carrier recovery circuits. In doing so, the designs were validated by transient simulations using the nonlinear dopant drift memristor model. The simulations results show high agreement with the theory presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BFSK" title="BFSK">BFSK</a>, <a href="https://publications.waset.org/abstracts/search?q=demodulator" title=" demodulator"> demodulator</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20frequency%20memristor%20applications" title=" high frequency memristor applications"> high frequency memristor applications</a>, <a href="https://publications.waset.org/abstracts/search?q=memristor%20based%20analog%20circuits" title=" memristor based analog circuits"> memristor based analog circuits</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20dopant%20drift%20model" title=" nonlinear dopant drift model"> nonlinear dopant drift model</a>, <a href="https://publications.waset.org/abstracts/search?q=QAM" title=" QAM"> QAM</a> </p> <a href="https://publications.waset.org/abstracts/125099/high-frequency-memristor-based-bfsk-and-8qam-demodulators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125099.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1193</span> Long-Baseline Single-epoch RTK Positioning Method Based on BDS-3 and Galileo Penta-Frequency Ionosphere-Reduced Combinations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liwei%20Liu">Liwei Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuguo%20Pan"> Shuguo Pan</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Gao"> Wang Gao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to take full advantages of the BDS-3 penta-frequency signals in the long-baseline RTK positioning, a long-baseline RTK positioning method based on the BDS-3 penta-frequency ionospheric-reduced (IR) combinations is proposed. First, the low noise and weak ionospheric delay characteristics of the multi-frequency combined observations of BDS-3is analyzed. Second, the multi-frequency extra-wide-lane (EWL)/ wide-lane (WL) combinations with long-wavelengths are constructed. Third, the fixed IR EWL combinations are used to constrain the IR WL, then constrain narrow-lane (NL)ambiguityies and start multi-epoch filtering. There is no need to consider the influence of ionospheric parameters in the third step. Compared with the estimated ionospheric model, the proposed method reduces the number of parameters by half, so it is suitable for the use of multi-frequency and multi-system real-time RTK. The results using real data show that the stepwise fixed model of the IR EWL/WL/NL combinations can realize long-baseline instantaneous cimeter-level positioning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=penta-frequency" title="penta-frequency">penta-frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=ionospheric-reduced%20%28IR%29" title=" ionospheric-reduced (IR)"> ionospheric-reduced (IR)</a>, <a href="https://publications.waset.org/abstracts/search?q=RTK%20positioning" title=" RTK positioning"> RTK positioning</a>, <a href="https://publications.waset.org/abstracts/search?q=long-baseline" title=" long-baseline"> long-baseline</a> </p> <a href="https://publications.waset.org/abstracts/145983/long-baseline-single-epoch-rtk-positioning-method-based-on-bds-3-and-galileo-penta-frequency-ionosphere-reduced-combinations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145983.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1192</span> Prognosis of Interstitial Lung Disease (ILD) Based on Baseline Pulmonary Function Test (PFT) Results in Omani Adult Patients Diagnosed with ILD In Sultan Qaboos University Hospital</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manal%20Al%20Bahri">Manal Al Bahri</a>, <a href="https://publications.waset.org/abstracts/search?q=Saif%20Al%20Mubahisi"> Saif Al Mubahisi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shamsa%20Al%20Shahaimi"> Shamsa Al Shahaimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Asma%20Al%20Qasabi"> Asma Al Qasabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamal%20Al%20Aghbari"> Jamal Al Aghbari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: ILD is a common disease worldwide and in Oman. No previous Omani study was published regarding ILD prognosis based on baseline PFT results and other factors. This study aims to determine the severity of ILD by the baseline PFT, correlate between baseline PFT and outcome, and study other factors that influence disease mortality. Method: It is a retrospective cohort study; data was collected from January 2011 to December 2021 from electronic patient records (EPR). Means, Standard Deviations, frequencies, and Chi-square tests were used to examine the different variables in the study. Results: The total population of the study was 146 patients; 87 (59.6%) were females, and 59 (40.4%) were males. The median age was 59 years. Age at diagnosis, CVA, rheumatological disease, and baseline FVC were found to be statistically significant predictors of mortality .59.6% of the patients are diagnosed with IPF. Most of our study patients had mild disease based on baseline FVC. Death was higher with the more severe disease based on FVC. In mild disease (FVC >70%), 26.9% of the patients died. In moderate disease (FVC 50-69%),55.7% of the patients died, and in the severe group (FVC <50 %), 55.1% died. This was statistically significant with a P value of 0. 001. There is no statistically significant difference in the overall survival distribution between the different groups of DLCO. Conclusion: In our study, we found that ILD is more common among females, but death is more common among males. Based on baseline PFT, we can predict mortality by FVC level, as moderate to severe limitation is associated with a lower survival rate. DLCO was not a statistically significant parameter associated with mortality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PFT" title="PFT">PFT</a>, <a href="https://publications.waset.org/abstracts/search?q=ILD" title=" ILD"> ILD</a>, <a href="https://publications.waset.org/abstracts/search?q=FVC" title=" FVC"> FVC</a>, <a href="https://publications.waset.org/abstracts/search?q=DLCO" title=" DLCO"> DLCO</a>, <a href="https://publications.waset.org/abstracts/search?q=mortality" title=" mortality"> mortality</a> </p> <a href="https://publications.waset.org/abstracts/187425/prognosis-of-interstitial-lung-disease-ild-based-on-baseline-pulmonary-function-test-pft-results-in-omani-adult-patients-diagnosed-with-ild-in-sultan-qaboos-university-hospital" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">32</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1191</span> Gas Pressure Evaluation through Radial Velocity Measurement of Fluid Flow Modeled by Drift Flux Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aicha%20Rima%20Cheniti">Aicha Rima Cheniti</a>, <a href="https://publications.waset.org/abstracts/search?q=Hatem%20Besbes"> Hatem Besbes</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Haggege"> Joseph Haggege</a>, <a href="https://publications.waset.org/abstracts/search?q=Christophe%20Sintes"> Christophe Sintes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we consider a drift flux mixture model of the blood flow. The mixture consists of gas phase which is carbon dioxide and liquid phase which is an aqueous carbon dioxide solution. This model was used to determine the distributions of the mixture velocity, the mixture pressure, and the carbon dioxide pressure. These theoretical data are used to determine a measurement method of mean gas pressure through the determination of radial velocity distribution. This method can be applicable in experimental domain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mean%20carbon%20dioxide%20pressure" title="mean carbon dioxide pressure">mean carbon dioxide pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20mixture%20pressure" title=" mean mixture pressure"> mean mixture pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=mixture%20velocity" title=" mixture velocity"> mixture velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20velocity" title=" radial velocity"> radial velocity</a> </p> <a href="https://publications.waset.org/abstracts/52258/gas-pressure-evaluation-through-radial-velocity-measurement-of-fluid-flow-modeled-by-drift-flux-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52258.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1190</span> Distribution of Maximum Loss of Fractional Brownian Motion with Drift</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ceren%20Vardar%20Acar">Ceren Vardar Acar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mine%20Caglar"> Mine Caglar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In finance, the price of a volatile asset can be modeled using fractional Brownian motion (fBm) with Hurst parameter H>1/2. The Black-Scholes model for the values of returns of an asset using fBm is given as, 〖Y_t=Y_0 e^((r+μ)t+σB)〗_t^H, 0≤t≤T where Y_0 is the initial value, r is constant interest rate, μ is constant drift and σ is constant diffusion coefficient of fBm, which is denoted by B_t^H where t≥0. Black-Scholes model can be constructed with some Markov processes such as Brownian motion. The advantage of modeling with fBm to Markov processes is its capability of exposing the dependence between returns. The real life data for a volatile asset display long-range dependence property. For this reason, using fBm is a more realistic model compared to Markov processes. Investors would be interested in any kind of information on the risk in order to manage it or hedge it. The maximum possible loss is one way to measure highest possible risk. Therefore, it is an important variable for investors. In our study, we give some theoretical bounds on the distribution of maximum possible loss of fBm. We provide both asymptotical and strong estimates for the tail probability of maximum loss of standard fBm and fBm with drift and diffusion coefficients. In the investment point of view, these results explain, how large values of possible loss behave and its bounds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maximum%20drawdown" title="maximum drawdown">maximum drawdown</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20loss" title=" maximum loss"> maximum loss</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20brownian%20motion" title=" fractional brownian motion"> fractional brownian motion</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20deviation" title=" large deviation"> large deviation</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20process" title=" Gaussian process"> Gaussian process</a> </p> <a href="https://publications.waset.org/abstracts/18394/distribution-of-maximum-loss-of-fractional-brownian-motion-with-drift" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18394.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1189</span> A Case Study on the Collapse Assessment of the Steel Moment-Frame Setback High-Rise Tower</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marzie%20Shahini">Marzie Shahini</a>, <a href="https://publications.waset.org/abstracts/search?q=Rasoul%20Mirghaderi"> Rasoul Mirghaderi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes collapse assessments of a steel moment-frame high-rise tower with setback irregularity, designed per the 2010 ASCE7 code, under spectral-matched ground motion records. To estimate a safety margin against life-threatening collapse, an analytical model of the tower is subjected to a suite of ground motions with incremental intensities from maximum considered earthquake hazard level to the incipient collapse level. Capability of the structural system to collapse prevention is evaluated based on the similar methodology reported in FEMA P695. Structural performance parameters in terms of maximum/mean inter-story drift ratios, residual drift ratios, and maximum plastic hinge rotations are also compared to the acceptance criteria recommended by the TBI Guidelines. The results demonstrate that the structural system satisfactorily safeguards the building against collapse. Moreover, for this tower, the code-specified requirements in ASCE7-10 are reasonably adequate to satisfy seismic performance criteria developed in the TBI Guidelines for the maximum considered earthquake hazard level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high-rise%20buildings" title="high-rise buildings">high-rise buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=set%20back" title=" set back"> set back</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20drift" title=" residual drift"> residual drift</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20performance" title=" seismic performance"> seismic performance</a> </p> <a href="https://publications.waset.org/abstracts/57732/a-case-study-on-the-collapse-assessment-of-the-steel-moment-frame-setback-high-rise-tower" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57732.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1188</span> Challenge of Baseline Hydrology Estimation at Large-Scale Watersheds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Can%20Liu">Can Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Graham%20Markowitz"> Graham Markowitz</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Balay"> John Balay</a>, <a href="https://publications.waset.org/abstracts/search?q=Ben%20Pratt"> Ben Pratt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Baseline or natural hydrology is commonly employed for hydrologic modeling and quantification of hydrologic alteration due to manmade activities. It can inform planning and policy related efforts for various state and federal water resource agencies to restore natural streamflow flow regimes. A common challenge faced by hydrologists is how to replicate unaltered streamflow conditions, particularly in large watershed settings prone to development and regulation. Three different methods were employed to estimate baseline streamflow conditions for 6 major subbasins the Susquehanna River Basin; those being: 1) incorporation of consumptive water use and reservoir operations back into regulated gaged records; 2) using a map correlation method and flow duration (exceedance probability) regression equations; 3) extending the pre-regulation streamflow records based on the relationship between concurrent streamflows at unregulated and regulated gage locations. Parallel analyses were perform among the three methods and limitations associated with each are presented. Results from these analyses indicate that generating baseline streamflow records at large-scale watersheds remain challenging, even with long-term continuous stream gage records available. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=baseline%20hydrology" title="baseline hydrology">baseline hydrology</a>, <a href="https://publications.waset.org/abstracts/search?q=streamflow%20gage" title=" streamflow gage"> streamflow gage</a>, <a href="https://publications.waset.org/abstracts/search?q=subbasin" title=" subbasin"> subbasin</a>, <a href="https://publications.waset.org/abstracts/search?q=regression" title=" regression"> regression</a> </p> <a href="https://publications.waset.org/abstracts/62920/challenge-of-baseline-hydrology-estimation-at-large-scale-watersheds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62920.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1187</span> Strategic Shear Wall Arrangement in Buildings under Seismic Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akram%20Khelaifia">Akram Khelaifia</a>, <a href="https://publications.waset.org/abstracts/search?q=Salah%20Guettala"> Salah Guettala</a>, <a href="https://publications.waset.org/abstracts/search?q=Nesreddine%20Djafar%20Henni"> Nesreddine Djafar Henni</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Chebili"> Rachid Chebili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reinforced concrete shear walls are pivotal in protecting buildings from seismic forces by providing strength and stiffness. This study highlights the importance of strategically placing shear walls and optimizing the shear wall-to-floor area ratio in building design. Nonlinear analyses were conducted on an eight-story building situated in a high seismic zone, exploring various scenarios of shear wall positioning and ratios to floor area. Employing the performance-based seismic design (PBSD) approach, the study aims to meet acceptance criteria such as inter-story drift ratio and damage levels. The results indicate that concentrating shear walls in the middle of the structure during the design phase yields superior performance compared to peripheral distributions. Utilizing shear walls that fully infill the frame and adopting compound shapes (e.g., Box, U, and L) enhances reliability in terms of inter-story drift. Conversely, the absence of complete shear walls within the frame leads to decreased stiffness and degradation of shorter beams. Increasing the shear wall-to-floor area ratio in building design enhances structural rigidity and reliability regarding inter-story drift, facilitating the attainment of desired performance levels. The study suggests that a shear wall ratio of 1.0% is necessary to meet validation criteria for inter-story drift and structural damage, as exceeding this percentage leads to excessive performance levels, proving uneconomical as structural elements operate near the elastic range. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20analyses" title="nonlinear analyses">nonlinear analyses</a>, <a href="https://publications.waset.org/abstracts/search?q=pushover%20analysis" title=" pushover analysis"> pushover analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20wall" title=" shear wall"> shear wall</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20hinge" title=" plastic hinge"> plastic hinge</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20level" title=" performance level"> performance level</a> </p> <a href="https://publications.waset.org/abstracts/182474/strategic-shear-wall-arrangement-in-buildings-under-seismic-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182474.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">50</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=baseline%20drift&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=baseline%20drift&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=baseline%20drift&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=baseline%20drift&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=baseline%20drift&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=baseline%20drift&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=baseline%20drift&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=baseline%20drift&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=baseline%20drift&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=baseline%20drift&page=40">40</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=baseline%20drift&page=41">41</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=baseline%20drift&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>