CINXE.COM
Search results for: angle
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: angle</title> <meta name="description" content="Search results for: angle"> <meta name="keywords" content="angle"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="angle" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="angle"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1416</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: angle</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1386</span> Diagnostic Investigation of Aircraft Performance at Different Winglet Cant Angles </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Dinesh">M. Dinesh</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Kenny%20Mark"> V. Kenny Mark</a>, <a href="https://publications.waset.org/abstracts/search?q=Dharni%20Vasudhevan%20Venkatesan"> Dharni Vasudhevan Venkatesan</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Santhosh%20Kumar"> B. Santhosh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Sree%20Radesh"> R. Sree Radesh</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20R.%20Sanal%20Kumar"> V. R. Sanal Kumar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Comprehensive numerical studies have been carried out to examine the best aerodynamic performance of subsonic aircraft at different winglet cant angles using a validated 3D k-ω SST model. In the parametric analytical studies, NACA series of airfoils are selected. Basic design of the winglet is selected from the literature and flow features of the entire wing including the winglet tip effects have been examined with different cant angles varying from 150 to 600 at different angles of attack up to 140. We have observed, among the cases considered in this study that a case with 150 cant angle the aerodynamics performance of the subsonic aircraft during takeoff was found better up to an angle of attack of 2.80 and further its performance got diminished at higher angles of attack. Analyses further revealed that increasing the winglet cant angle from 150 to 600 at higher angles of attack could negate the performance deterioration and additionally it could enhance the peak CL/CD on the order of 3.5%. The investigated concept of variable-cant-angle winglets appears to be a promising alternative for improving the aerodynamic efficiency of aircraft. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamic%20efficiency" title="aerodynamic efficiency">aerodynamic efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=cant%20angle" title=" cant angle"> cant angle</a>, <a href="https://publications.waset.org/abstracts/search?q=drag%20reduction" title=" drag reduction"> drag reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20winglets" title=" flexible winglets "> flexible winglets </a> </p> <a href="https://publications.waset.org/abstracts/18421/diagnostic-investigation-of-aircraft-performance-at-different-winglet-cant-angles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18421.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">523</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1385</span> Prediction of the Aerodynamic Stall of a Helicopter’s Main Rotor Using a Computational Fluid Dynamics Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Assel%20Thami%20Lahlou">Assel Thami Lahlou</a>, <a href="https://publications.waset.org/abstracts/search?q=Soufiane%20Stouti"> Soufiane Stouti</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Lagrat"> Ismail Lagrat</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Mounir"> Hamid Mounir</a>, <a href="https://publications.waset.org/abstracts/search?q=Oussama%20Bouazaoui"> Oussama Bouazaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this research work is to predict the helicopter from stalling by finding the minimum and maximum values that the pitch angle can take in order to fly in a hover state condition. The stall of a helicopter in hover occurs when the pitch angle is too small to generate the thrust required to support its weight or when the critical angle of attack that gives maximum lift is reached or exceeded. In order to find the minimum pitch angle, a 3D CFD simulation was done in this work using ANSYS FLUENT as the CFD solver. We started with a small value of the pitch angle θ, and we kept increasing its value until we found the thrust coefficient required to fly in a hover state and support the weight of the helicopter. For the CFD analysis, the Multiple Reference Frame (MRF) method with k-ε turbulent model was used to study the 3D flow around the rotor for θmin. On the other hand, a 2D simulation of the airfoil NACA 0012 was executed with a velocity inlet Vin=ΩR/2 to visualize the flow at the location span R/2 of the disk rotor using the Spallart-Allmaras turbulent model. Finding the critical angle of attack at this position will give us the ability to predict the stall in hover flight. The results obtained will be exposed later in the article. This study was so useful in analyzing the limitations of the helicopter’s main rotor and thus, in predicting accidents that can lead to a lot of damage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamic" title="aerodynamic">aerodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=helicopter" title=" helicopter"> helicopter</a>, <a href="https://publications.waset.org/abstracts/search?q=stall" title=" stall"> stall</a>, <a href="https://publications.waset.org/abstracts/search?q=blades" title=" blades"> blades</a>, <a href="https://publications.waset.org/abstracts/search?q=main%20rotor" title=" main rotor"> main rotor</a>, <a href="https://publications.waset.org/abstracts/search?q=minimum%20pitch%20angle" title=" minimum pitch angle"> minimum pitch angle</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20pitch%20angle" title=" maximum pitch angle"> maximum pitch angle</a> </p> <a href="https://publications.waset.org/abstracts/186086/prediction-of-the-aerodynamic-stall-of-a-helicopters-main-rotor-using-a-computational-fluid-dynamics-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186086.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1384</span> Effect of Angles Collision, Absorption, Dash and Their Relationship with the Finale Results Case the Algerian Elite Team Triple Jump</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guebli%20Abdelkader">Guebli Abdelkader</a>, <a href="https://publications.waset.org/abstracts/search?q=Zerf%20Mohammed"> Zerf Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mekkades%20Moulay%20Idriss"> Mekkades Moulay Idriss</a>, <a href="https://publications.waset.org/abstracts/search?q=BenGoua%20Ali"> BenGoua Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Atouti%20Nouredinne"> Atouti Nouredinne</a>, <a href="https://publications.waset.org/abstracts/search?q=Habchi%20Nawel"> Habchi Nawel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper aims to show the influence of angles in the results of triple jump. Whereas our background confirms that a series of motions are characterized by complex angles in the properties phase (hop, step, and jump) as a combination of the pushed phase on ultimate phases in the result. For the purpose, our results are obtained from the National Athletics Championship 2013, which was filmed and analysis by the software kinovea. Based on the statistical analysis we confirm: there is a positive relationship between angle of the leg, hip angle, angle of the trunk in the collision during (hop, step, and jump), and there is a negative correlation to the angle of the knee relationship in a collision during. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=kinematics%20variables" title="kinematics variables">kinematics variables</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20triple%20jump" title=" the triple jump"> the triple jump</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20finale%20results" title=" the finale results"> the finale results</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20achievement" title=" digital achievement"> digital achievement</a> </p> <a href="https://publications.waset.org/abstracts/52357/effect-of-angles-collision-absorption-dash-and-their-relationship-with-the-finale-results-case-the-algerian-elite-team-triple-jump" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52357.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1383</span> An Experimental Study of the Influence of Particle Breakage on the Interface Friction Angle and Shear Strength of Carbonate Sands</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruben%20Dario%20Tovar-Valencia">Ruben Dario Tovar-Valencia</a>, <a href="https://publications.waset.org/abstracts/search?q=Eshan%20Ganju"> Eshan Ganju</a>, <a href="https://publications.waset.org/abstracts/search?q=Fei%20Han"> Fei Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Monica%20Prezzi"> Monica Prezzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rodrigo%20Salgado"> Rodrigo Salgado</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Particle breakage occurs even in strong silica sand particles. There is compelling evidence that suggests that particle breakage causes changes in several properties such as permeability, peak strength, dilatancy and critical state friction angle. Current pile design methods that are based on soil properties do not account for particle breakage that occurs during driving or jacking of displacement piles. This may lead to significant overestimation of pile capacity in sands dominated by particles susceptible to breakage, such as carbonate sands. The objective of this paper is to study the influence of shear displacement on particle breakage and friction angle of carbonate sands, and to furthermore quantify the change in friction angle observed with different levels of particle breakage. To study the phenomenon of particle breakage, multiple ring shear tests have been performed at different levels of vertical confinement on a thoroughly characterized carbonate sand to find i) the shear displacement necessary to reach stable friction angles and ii) the effect of particle breakage on the mobilized friction angle of the tested sand. The findings of this study can potentially be used to update the current pile design methods by developing a friction angle which is a function of shear displacement and breakage characteristics of the sand instead of being a constant value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breakage" title="breakage">breakage</a>, <a href="https://publications.waset.org/abstracts/search?q=carbonate%20sand" title=" carbonate sand"> carbonate sand</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20angle" title=" friction angle"> friction angle</a>, <a href="https://publications.waset.org/abstracts/search?q=pile%20design" title=" pile design"> pile design</a>, <a href="https://publications.waset.org/abstracts/search?q=ring%20shear%20test" title=" ring shear test"> ring shear test</a> </p> <a href="https://publications.waset.org/abstracts/73091/an-experimental-study-of-the-influence-of-particle-breakage-on-the-interface-friction-angle-and-shear-strength-of-carbonate-sands" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73091.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1382</span> Experimental Studies on the Effect of Rake Angle on Turning Ti-6Al-4V with TiAlN Coated Carbides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Satyanarayana%20Kosaraju">Satyanarayana Kosaraju</a>, <a href="https://publications.waset.org/abstracts/search?q=Venu%20Gopal%20Anne"> Venu Gopal Anne</a>, <a href="https://publications.waset.org/abstracts/search?q=Sateesh%20Nagari"> Sateesh Nagari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the effect of cutting speed, feedrate and rake angle in tool geometry on cutting forces and temperature generated on the tool tip in turning were investigated. The data used for the investigation derived from experiments conducted on precision lathe according to the full factorial design to observe the effect of each factor level on the process performance. During the tests, depth of cut were kept constant and each test was conducted with a sharp coated tool insert. Ti-6Al-4V was used as the workpiece material. The effects of cutting parameters and tool geometry on cutting forces and tool tip temperature were analyzed. The main cutting force was observed to have a decreasing trend and temperature found to be increasing trend as the rake angle increased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cutting%20force" title="cutting force">cutting force</a>, <a href="https://publications.waset.org/abstracts/search?q=tool%20tip%20temperature" title=" tool tip temperature"> tool tip temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=rake%20angle" title=" rake angle"> rake angle</a>, <a href="https://publications.waset.org/abstracts/search?q=machining" title=" machining"> machining</a> </p> <a href="https://publications.waset.org/abstracts/37425/experimental-studies-on-the-effect-of-rake-angle-on-turning-ti-6al-4v-with-tialn-coated-carbides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">507</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1381</span> Root System Architecture Analysis of Sorghum Genotypes and Its Effect on Drought Adaptation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hailemariam%20Solomon">Hailemariam Solomon</a>, <a href="https://publications.waset.org/abstracts/search?q=Taye%20Tadesse"> Taye Tadesse</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Nadew"> Daniel Nadew</a>, <a href="https://publications.waset.org/abstracts/search?q=Firezer%20Girma"> Firezer Girma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sorghum is an important crop in semi-arid regions and has shown resilience to drought stress. However, recurrent drought is affecting its productivity. Therefore, it is necessary to explore genes that contribute to drought stress adaptation to increase sorghum productivity. The aim of this study is to evaluate and determine the effect of root system traits, specifically root angle, on drought stress adaptation and grain yield performance in sorghum genotypes. A total of 428 sorghum genotypes from the Ethiopian breeding program were evaluated in three drought-stress environments. Field trials were conducted using a row-column design with three replications. Root system traits were phenotyped using a high-throughput phenotyping platform and analyzed using a row-column design with two replications. Data analysis was performed using R software and regression analysis. The study found significant variations in root system architecture among the sorghum genotypes. Non-stay-green genotypes had a grain yield ranging from 1.63 to 3.1 tons/ha, while stay-green genotypes had a grain yield ranging from 2.4 to 2.9 tons/ha. The analysis of root angle showed that non-stay-green genotypes had an angle ranging from 8.0 to 30.5 degrees, while stay-green genotypes had an angle ranging from 12.0 to 29.0 degrees. Improved varieties exhibited angles between 14.04 and 19.50 degrees. Positive and significant correlations were observed between leaf areas and shoot dry weight, as well as between leaf width and shoot dry weight. Negative correlations were observed between root angle and leaf area, as well as between root angle and root length. This research highlights the importance of root system architecture, particularly root angle traits, in enhancing grain yield production in drought-stressed conditions. It also establishes an association between root angle and grain yield traits for maximizing sorghum productivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=roor%20sysytem%20architecture" title="roor sysytem architecture">roor sysytem architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=root%20angle" title=" root angle"> root angle</a>, <a href="https://publications.waset.org/abstracts/search?q=narrow%20root%20angle" title=" narrow root angle"> narrow root angle</a>, <a href="https://publications.waset.org/abstracts/search?q=wider%20root%20angle" title=" wider root angle"> wider root angle</a>, <a href="https://publications.waset.org/abstracts/search?q=drought" title=" drought"> drought</a> </p> <a href="https://publications.waset.org/abstracts/170823/root-system-architecture-analysis-of-sorghum-genotypes-and-its-effect-on-drought-adaptation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170823.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1380</span> A Multi-Stage Learning Framework for Reliable and Cost-Effective Estimation of Vehicle Yaw Angle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhiyong%20Zheng">Zhiyong Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Xu%20Li"> Xu Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang%20Huang"> Liang Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhengliang%20Sun"> Zhengliang Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianhua%20Xu"> Jianhua Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Yaw angle plays a significant role in many vehicle safety applications, such as collision avoidance and lane-keeping system. Although the estimation of the yaw angle has been extensively studied in existing literature, it is still the main challenge to simultaneously achieve a reliable and cost-effective solution in complex urban environments. This paper proposes a multi-stage learning framework to estimate the yaw angle with a monocular camera, which can deal with the challenge in a more reliable manner. In the first stage, an efficient road detection network is designed to extract the road region, providing a highly reliable reference for the estimation. In the second stage, a variational auto-encoder (VAE) is proposed to learn the distribution patterns of road regions, which is particularly suitable for modeling the changing patterns of yaw angle under different driving maneuvers, and it can inherently enhance the generalization ability. In the last stage, a gated recurrent unit (GRU) network is used to capture the temporal correlations of the learned patterns, which is capable to further improve the estimation accuracy due to the fact that the changes of deflection angle are relatively easier to recognize among continuous frames. Afterward, the yaw angle can be obtained by combining the estimated deflection angle and the road direction stored in a roadway map. Through effective multi-stage learning, the proposed framework presents high reliability while it maintains better accuracy. Road-test experiments with different driving maneuvers were performed in complex urban environments, and the results validate the effectiveness of the proposed framework. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gated%20recurrent%20unit" title="gated recurrent unit">gated recurrent unit</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-stage%20learning" title=" multi-stage learning"> multi-stage learning</a>, <a href="https://publications.waset.org/abstracts/search?q=reliable%20estimation" title=" reliable estimation"> reliable estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=variational%20auto-encoder" title=" variational auto-encoder"> variational auto-encoder</a>, <a href="https://publications.waset.org/abstracts/search?q=yaw%20angle" title=" yaw angle"> yaw angle</a> </p> <a href="https://publications.waset.org/abstracts/127783/a-multi-stage-learning-framework-for-reliable-and-cost-effective-estimation-of-vehicle-yaw-angle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127783.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1379</span> Enhancement of Hydrophobicity of Thermally Evaporated Bi Thin Films by Oblique Angle Deposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ravish%20K.%20Jain">Ravish K. Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Jatinder%20Kaur"> Jatinder Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaira%20Arora"> Shaira Arora</a>, <a href="https://publications.waset.org/abstracts/search?q=Arun%20Kumar"> Arun Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Amit%20K.%20Chawla"> Amit K. Chawla</a>, <a href="https://publications.waset.org/abstracts/search?q=Atul%20Khanna"> Atul Khanna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Surface-dependent properties such as hydrophobicity can be modified significantly by oblique angle deposition technique. Bi thin films were studied for their hydrophobic nature. The effects of oblique angle deposition on structural, surface morphology, electrical and wettability properties of Bi thin films have been studied and a comparison of these physical properties of normally deposited and obliquely deposited Bi films has been carried out in this study. X-ray diffraction studies found that films have highly oriented hexagonal crystal structure and crystallite size is smaller for obliquely deposited (70 nm) film as compared to that of the normally deposited film (111 nm). Raman spectra of the films consist of peaks corresponding to E_g and A_1g first-order Raman modes of bismuth. The atomic force and scanning electron microscopy studies show that the surface roughness of obliquely deposited film is higher as compared to that of normally deposited film. Contact angle measurements revealed that both films are strongly hydrophobic in nature with the contact angles of 105ᵒ and 119ᵒ for normally and obliquely deposited films respectively. Oblique angle deposition enhances the hydrophobicity of the film. The electrical conductivity of the film is significantly reduced by oblique angle deposition. The activation energies for electrical conduction were determined by four-probe measurements and are 0.016 eV and 0.018 eV for normally and obliquely deposited films respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bi%20thin%20films" title="bi thin films">bi thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophobicity" title=" hydrophobicity"> hydrophobicity</a>, <a href="https://publications.waset.org/abstracts/search?q=oblique%20angle%20deposition" title=" oblique angle deposition"> oblique angle deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20morphology" title=" surface morphology"> surface morphology</a> </p> <a href="https://publications.waset.org/abstracts/97326/enhancement-of-hydrophobicity-of-thermally-evaporated-bi-thin-films-by-oblique-angle-deposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97326.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1378</span> Effect of Slope Angle on Gougerd Landslide Stability in Northwest of Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akbar%20Khodavirdizadeh">Akbar Khodavirdizadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gougerd village landslide with area about 150 hectares is located in southwest of Khoy city in northwest of the Iran. This Landslide was commenced more than 21 years and caused some damages in houses like some fissures on walls and some cracks on ground and foundations. The main mechanism of landslide is rotational with the high different of top and foot is about 230 m. The thickness of slide mass based on geoelectrical investigation is about 16m obtained. The upper layer of slope is silty sand and the lower layer of clayey gravel. In this paper, the stability of landslide are analyzed based in static analysis under different groundwater surface conditions and at slope angle changes with limit eqlibrium method and the simplified Bishop method. The results of the 72 stability analysis showed that the slope stability of Gougerd landslide increased with increasing of the groundwater surface depth of slope crown. And especially when decreased of slope angle, the safety facter more than in previous state is increased. The required of safety factor for stability in groundwater surface depth from slope crown equal 14 m and with decreased of slope angle to 3 degree at decrease of groundwater surface depth from slope crown equal 6.5 m obtained. The safety factor in critical conditions under groundwater surface depth from slope crown equal 3.5 m and at decreased of slope angle to 3 degree equal 0.5 m obtained. At groudwater surface depth from slope crown of 3 m, 7 m and 10 m respectively equal to 0.97, 1.19 and 1.33 obtained. At groudwater surface depth from slope crown of 3 m, 7 m and 10 m with decreased of slope angle to 3 degree, respectively equal to 1.27, 1.54 and 1.72 obtained. According to the results of this study, for 1 m of groundwater level decrease, the safety factor increased by 5%, and for 1 degree of reduction of the slope angle, safety factor increased by 15%. And the effect of slope angle on Gougerd landslide stability was felt more than groundwater effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gougerd%20landslide" title="Gougerd landslide">Gougerd landslide</a>, <a href="https://publications.waset.org/abstracts/search?q=stability%20analysis" title=" stability analysis"> stability analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=slope%20angle" title=" slope angle"> slope angle</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=Khoy" title=" Khoy"> Khoy</a> </p> <a href="https://publications.waset.org/abstracts/137553/effect-of-slope-angle-on-gougerd-landslide-stability-in-northwest-of-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137553.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1377</span> Numerical Investigation of the Diffuser: Geometrical Parameters Effect on Flow Characteristics for Diffuser Augmented Wind Turbine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hany%20El%20Said%20Fawaz">Hany El Said Fawaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study deals with numerical simulation using a commercial package 'ANSYS FLUENT 14.5' for flow characteristics of a flanged diffuser wind turbine. Influence of geometrical parameters such as flange height, diffuser length, and expansion angle on the lift and drag performance were investigated. As the angle of expansion increases, a considerable flow acceleration through the diffuser occur at expansion angle ranged from 0° and 12° due to the presence of undisturbed streamlines. after that flow circulation is developed near the diffuser outlet and increase with increasing expansion angle which causes a negligible effect of expansion angle. The effect of diffuser length on flow behavior shows that when the diffuser length ratio is less than 1.25, flow acceleration is observed and increased with diffuser length ratio. After this value, the flow field at diffuser outlet is characterized by a recirculation zone. The diffuser flange has an impact effect of the flow behavior as a low pressure zone is developed behind the flange, while a high pressure zone is generated in front of it. As the flange height increase, the intensity of both low and high pressure regions increase which tend to accelerate the flow inside the diffuser till flange height ratio reaches to 0.75. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine" title="wind turbine">wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=flanged%20diffuser" title=" flanged diffuser"> flanged diffuser</a>, <a href="https://publications.waset.org/abstracts/search?q=expansion%20angle" title=" expansion angle"> expansion angle</a>, <a href="https://publications.waset.org/abstracts/search?q=diffuser%20length" title=" diffuser length"> diffuser length</a> </p> <a href="https://publications.waset.org/abstracts/76610/numerical-investigation-of-the-diffuser-geometrical-parameters-effect-on-flow-characteristics-for-diffuser-augmented-wind-turbine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76610.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1376</span> Lookup Table Reduction and Its Error Analysis of Hall Sensor-Based Rotation Angle Measurement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Young-San%20Shin">Young-San Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Seongsoo%20Lee"> Seongsoo Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hall sensor is widely used to measure rotation angle. When the Hall voltage is measured for linear displacement, it is converted to angular displacement using arctangent function, which requires a large lookup table. In this paper, a lookup table reduction technique is presented for angle measurement. When the input of the lookup table is small within a certain threshold, the change of the outputs with respect to the change of the inputs is relatively small. Thus, several inputs can share same output, which significantly reduce the lookup table size. Its error analysis was also performed, and the threshold was determined so as to maintain the error less than 1°. When the Hall voltage has 11-bit resolution, the lookup table size is reduced from 1,024 samples to 279 samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hall%20sensor" title="hall sensor">hall sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=angle%20measurement" title=" angle measurement"> angle measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=lookup%20table" title=" lookup table"> lookup table</a>, <a href="https://publications.waset.org/abstracts/search?q=arctangent" title=" arctangent"> arctangent</a> </p> <a href="https://publications.waset.org/abstracts/60862/lookup-table-reduction-and-its-error-analysis-of-hall-sensor-based-rotation-angle-measurement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60862.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1375</span> Two Degree of Freedom Spherical Mechanism Design for Exact Sun Tracking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Osman%20Acar">Osman Acar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sun tracking systems are the systems following the sun ray by a right angle or by predetermined certain angle. In this study, we used theoretical trajectory of sun for latitude of central Anatolia in Turkey. A two degree of freedom spherical mechanism was designed to have a large workspace able to follow the sun's theoretical motion by the right angle during the whole year. An inverse kinematic analysis was generated to find the positions of mechanism links for the predicted trajectory. Force and torque analysis were shown for the first day of the year. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sun%20tracking" title="sun tracking">sun tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=theoretical%20sun%20trajectory" title=" theoretical sun trajectory"> theoretical sun trajectory</a>, <a href="https://publications.waset.org/abstracts/search?q=spherical%20mechanism" title=" spherical mechanism"> spherical mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20kinematic%20analysis" title=" inverse kinematic analysis"> inverse kinematic analysis</a> </p> <a href="https://publications.waset.org/abstracts/37062/two-degree-of-freedom-spherical-mechanism-design-for-exact-sun-tracking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37062.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1374</span> Prediction of Turbulent Separated Flow in a Wind Tunel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karima%20Boukhadia">Karima Boukhadia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, the subsonic flow in an asymmetrical diffuser was simulated numerically using code CFX 11.0 and its generator of grid ICEM CFD. Two models of turbulence were tested: K- ε and K- ω SST. The results obtained showed that the K- ε model singularly over-estimates the speed value close to the wall and that the K- ω SST model is qualitatively in good agreement with the experimental results of Buice and Eaton 1997. They also showed that the separation and reattachment of the fluid on the tilted wall strongly depends on its angle of inclination and that the length of the zone of separation increases with the angle of inclination of the lower wall of the diffuser. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymmetric%20diffuser" title="asymmetric diffuser">asymmetric diffuser</a>, <a href="https://publications.waset.org/abstracts/search?q=separation" title=" separation"> separation</a>, <a href="https://publications.waset.org/abstracts/search?q=reattachment" title=" reattachment"> reattachment</a>, <a href="https://publications.waset.org/abstracts/search?q=tilt%20angle" title=" tilt angle"> tilt angle</a>, <a href="https://publications.waset.org/abstracts/search?q=separation%20zone" title=" separation zone"> separation zone</a> </p> <a href="https://publications.waset.org/abstracts/26379/prediction-of-turbulent-separated-flow-in-a-wind-tunel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26379.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">576</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1373</span> Numerical Investigation into the Effect of Axial Fan Blade Angle on the Fan Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shayan%20Arefi">Shayan Arefi</a>, <a href="https://publications.waset.org/abstracts/search?q=Qadir%20Esmaili"> Qadir Esmaili</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Ali%20Jazayeri"> Seyed Ali Jazayeri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The performance of cooling system affects on efficiency of turbo generators and temperature of winding. Fan blade is one of the most important components of cooling system which plays a significant role in ventilation of generators. Fan performance curve depends on the blade geometry and boundary condition. This paper calculates numerically the performance curve of axial flow fan mounted on turbo generator with 160 MW output power. The numerical calculation was implemented by Ansys-workbench software. The geometrical model of blade was created by bladegen, grid generation and configuration was made by turbogrid and finally, the simulation was implemented by CFX. For the first step, the performance curves consist of pressure rise and efficiency flow rate were calculated in the original angle of blade. Then, by changing the attack angle of blade, the related performance curves were calculated. CFD results for performance curve of each angle show a good agreement with experimental results. Additionally, the field velocity and pressure gradient of flow near the blade were investigated and simulated numerically with varying of angle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=turbo%20generator" title="turbo generator">turbo generator</a>, <a href="https://publications.waset.org/abstracts/search?q=axial%20fan" title=" axial fan"> axial fan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ansys" title=" Ansys"> Ansys</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a> </p> <a href="https://publications.waset.org/abstracts/9953/numerical-investigation-into-the-effect-of-axial-fan-blade-angle-on-the-fan-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9953.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1372</span> Effect of Two Bouts of Eccentric Exercise on Knee Flexors Changes in Muscle-Tendon Lengths</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shang-Hen%20Wu">Shang-Hen Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yung-Chen%20Lin"> Yung-Chen Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Song%20Chang"> Wei-Song Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming-Ju%20Lin"> Ming-Ju Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigated whether the repeated bout effect (RBE) of knee flexors (KF) eccentric exercise would be changed in muscle-tendon lengths. Eight healthy university male students used their KF of non-dominant leg and performed a bout of 60 maximal isokinetic (30°/s) eccentric contractions (MaxECC1). A week after MaxECC1, all subjects used the same KF to perform a subsequent bout of MaxECC2. Changes in maximal isokinetic voluntary contraction torque (MVC-CON), muscle soreness (SOR), relaxed knee joint angle (RANG), leg circumference (CIR), and ultrasound images (UI; muscle-tendon length and muscle angle) were measured before, immediately after, 1-5 days after each bout. Two-way ANOVA was used to analyze all the dependent variables. After MaxECC1, all the dependent variables (e.g. MVC-CON: ↓30%, muscle-tendon length: ↑24%, muscle angle: ↑15%) showed significantly change. Following MaxECC2, all the above dependent variables (e.g. MVC-CON:↓21%, tendon length: ↑16%, muscle angle: ↑6%) were significantly smaller than those of MaxECC1. These results of this study found that protective effect conferred by MaxECC1 against MaxECC2, and changes in muscle damage indicators, muscle-tendon length and muscle angle following MaxECC2 were smaller than MaxECC1. Thus, the amount of shift of muscle-tendon length and muscle angle was related to the RBE. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eccentric%20exercise" title="eccentric exercise">eccentric exercise</a>, <a href="https://publications.waset.org/abstracts/search?q=maximal%20isokinetic%20voluntary%20contraction%20torque" title=" maximal isokinetic voluntary contraction torque"> maximal isokinetic voluntary contraction torque</a>, <a href="https://publications.waset.org/abstracts/search?q=repeated%20bout%20effect" title=" repeated bout effect"> repeated bout effect</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a> </p> <a href="https://publications.waset.org/abstracts/70166/effect-of-two-bouts-of-eccentric-exercise-on-knee-flexors-changes-in-muscle-tendon-lengths" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70166.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1371</span> Wettability Behavior of Organic Silane Molecules with Different Alkyl-Chain Length Coated Si Surface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Takahiro%20Ishizaki">Takahiro Ishizaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Shutaro%20Hisada"> Shutaro Hisada</a>, <a href="https://publications.waset.org/abstracts/search?q=Oi%20Lun%20Li"> Oi Lun Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Control of surface wettability is very important in various industrial fields. Thus, contact angle hysteresis which is defined as the difference between advancing and receding water contact angles has been paid attention because the surface having low contact angle hysteresis can control wetting behavior of water droplet. Self-assembled monolayer (SAM) formed using organic silane molecules has been used to control surface wettability, in particular, static contact angles, however, the effect of alkyl-chain length in organic silane molecules on the contact angle hysteresis has not yet clarified. In this study, we aimed to investigate the effect of alkyl-chain length (C1-C18) in organic silane molecules on the contact angle hysteresis. SAMs were formed on Si wafer by thermal CVD method using silane coupling agents having different alkyl-chain length. The static water contact angles increased with an increase in the alkyl-chain length. On the other hand, although the water contact angle hysteresis tended to decrease with an increase in the alkyl-chain length, in case of the alkyl-chain length of more than C16 the contact angle hysteresis increased. This could be due to the decrease in the molecular mobility because of the increase in the molecular packing density in chemisorbed silane molecules. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkyl-chain%20length" title="alkyl-chain length">alkyl-chain length</a>, <a href="https://publications.waset.org/abstracts/search?q=self-assembled%20monolayer" title=" self-assembled monolayer"> self-assembled monolayer</a>, <a href="https://publications.waset.org/abstracts/search?q=silane%20coupling%20agent" title=" silane coupling agent"> silane coupling agent</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20wettability" title=" surface wettability"> surface wettability</a> </p> <a href="https://publications.waset.org/abstracts/68943/wettability-behavior-of-organic-silane-molecules-with-different-alkyl-chain-length-coated-si-surface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68943.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1370</span> Chip Morphology and Cutting Forces Investigation in Dry High Speed Orthogonal Turning of Titanium Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Benghersallah">M. Benghersallah</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Boulanouar"> L. Boulanouar</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20List"> G. List</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Sutter"> G. Sutter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work is an experimental study on the dry high speed turning of Ti-6Al-4V titanium alloy. The objective of this study is to see for high cutting speeds, how wear occurs on the face of insert and how to evolve cutting forces and chip formation. Cutting speeds tested is 600, 800, 1000 and 1200 m / min in orthogonal turning with a carbide insert tool H13A uncoated on a cylindrical titanium alloy part. Investigation on the wear inserts with 3D scanning microscope revered the crater formation is instantaneous and a chip adhesion (welded chip) causes detachment of carbide particles. In these experiments, the chip shape was systematically investigated at each cutting conditions using optical microscopy. The chips produced were collected and polished to measure the thicknesses t2max and t2min, dch the distance between each segments and ɸseg the inclination angle As described in the introduction part, the shear angle f and the inclination angle of a segment ɸseg are differentiated. The angle ɸseg is actually measured on the collected chips while the shear angle f cannot be. The angle ɸ represents the initial shear similar to the one that describes the formation of a continuous chip in the primary shear zone. Cutting forces increase and stabilize before removing the tool. The chip reaches a very high temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dry%20high%20speed" title="dry high speed">dry high speed</a>, <a href="https://publications.waset.org/abstracts/search?q=orthogonal%20turning" title=" orthogonal turning"> orthogonal turning</a>, <a href="https://publications.waset.org/abstracts/search?q=chip%20formation" title=" chip formation"> chip formation</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20speed" title=" cutting speed"> cutting speed</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20forces" title=" cutting forces"> cutting forces</a> </p> <a href="https://publications.waset.org/abstracts/46188/chip-morphology-and-cutting-forces-investigation-in-dry-high-speed-orthogonal-turning-of-titanium-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46188.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1369</span> Study of the Phenomenon of Collapse and Buckling the Car Body Frame</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Didik%20Sugiyanto">Didik Sugiyanto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conditions that often occur in the framework of a particular vehicle at a car is a collision or collision with another object, an example of such damage is to the frame or chassis for the required design framework that is able to absorb impact energy. Characteristics of the material are influenced by the value of the stiffness of the material that need to be considered in choosing the material properties of the material. To obtain material properties that can be adapted to the experimental conditions tested the tensile and compression testing. In this study focused on the chassis at an angle of 150, 300, and 450. It is based on field studies that vehicle primarily for freight cars have a point of order light between 150 to 450. Research methods include design tools, design framework, procurement of materials and experimental tools, tool-making, the manufacture of the test framework, and the testing process, experiment is testing the power of the press to know the order. From this test obtained the maximum force on the corner of 150 was 569.76 kg at a distance of 16 mm, angle 300 is 370.3 kg at a distance of 15 mm, angle 450 is 391.71 kg at a distance of 28 mm. After reaching the maximum force the order will occur collapse, followed by a decrease in the next distance. It can be concluded that the greatest strain energy occurs at an angle of 150. So it is known that the frame at an angle of 150 produces the best level of security. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buckling" title="buckling">buckling</a>, <a href="https://publications.waset.org/abstracts/search?q=collapse" title=" collapse"> collapse</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20frame" title=" body frame"> body frame</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle" title=" vehicle"> vehicle</a> </p> <a href="https://publications.waset.org/abstracts/22797/study-of-the-phenomenon-of-collapse-and-buckling-the-car-body-frame" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">578</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1368</span> Pressure Angle and Profile Shift Factor Effects on the Natural Frequency of Spur Tooth Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Raad%20Hassan">Ali Raad Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, an (irregular) case relating to base circle, root circle, and pressure angle has been discussed and a computer programme has been developed to simulate and plot spur gear tooth profile, including involute and trochoid curves based on the formulation of rack cutter using different values of pressure angle and profile shift factor and it gave the values of all important geometric parameters. The results showed the flexibility of this approach and versatility of the programme to draw many different cases of spur gear teeth of any module, pressure angle, profile shift factor, number of teeth and rack cutter tip radius. The procedure developed can be extended to produce finite element models of heretofore intractable geometrical forms, to exploring fabrication of nonstandard tooth forms also. Finite elements model of these irregular cases have been built using above programme, and modal analysis has been done using ANSYS software, and natural frequencies of these selected cases have been obtained and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=involute" title="involute">involute</a>, <a href="https://publications.waset.org/abstracts/search?q=trochoid" title=" trochoid"> trochoid</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20angle" title=" pressure angle"> pressure angle</a>, <a href="https://publications.waset.org/abstracts/search?q=profile%20shift%20factor" title=" profile shift factor"> profile shift factor</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequency" title=" natural frequency"> natural frequency</a> </p> <a href="https://publications.waset.org/abstracts/88687/pressure-angle-and-profile-shift-factor-effects-on-the-natural-frequency-of-spur-tooth-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88687.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1367</span> Flexural Behavior for Prefabricated Angle Truss Composite Beams Using Precast Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jo%20Kwang-Won">Jo Kwang-Won</a>, <a href="https://publications.waset.org/abstracts/search?q=Lee%20Ho-Jun"> Lee Ho-Jun</a>, <a href="https://publications.waset.org/abstracts/search?q=Choi%20In-Rak"> Choi In-Rak</a>, <a href="https://publications.waset.org/abstracts/search?q=Park%20Hong-Gun"> Park Hong-Gun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Prefabricated angle truss composited beam is a kind of concrete encased composite beam. It is prefabricated at factory as Pratt truss with steel members. Double angle is used for top, bottom chords and vertical web member. Moreover, diagonal web member is steel plate. Its sectional shape looks like I-shape. This beam system has two stages. The first is construction stage in which the beam is directly connected to the column for resist construction load. This stage beam consists of Pratt truss and precast concrete. The stability of the beam is verified. The second is service stage. After the connection, cast-in-place concrete is used for composite action. Ultimate flexural capacity is verified and show advantage than RC and steel. In this paper, the beam flexural capacity is verified in both stages. And examined the flexural behavior of the beam. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20beam" title="composite beam">composite beam</a>, <a href="https://publications.waset.org/abstracts/search?q=prefabrication" title=" prefabrication"> prefabrication</a>, <a href="https://publications.waset.org/abstracts/search?q=angle" title=" angle"> angle</a>, <a href="https://publications.waset.org/abstracts/search?q=precast%20concrete" title=" precast concrete"> precast concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=pratt%20truss" title=" pratt truss"> pratt truss</a> </p> <a href="https://publications.waset.org/abstracts/60429/flexural-behavior-for-prefabricated-angle-truss-composite-beams-using-precast-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60429.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1366</span> Performance Comparisons between PID and Adaptive PID Controllers for Travel Angle Control of a Bench-Top Helicopter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Mansor">H. Mansor</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20B.%20Mohd-Noor"> S. B. Mohd-Noor</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20S.%20Gunawan"> T. S. Gunawan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Khan"> S. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20I.%20Othman"> N. I. Othman</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Tazali"> N. Tazali</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20B.%20Islam"> R. B. Islam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper provides a comparative study on the performances of standard PID and adaptive PID controllers tested on travel angle of a 3-Degree-of-Freedom (3-DOF) Quanser bench-top helicopter. Quanser, a well-known manufacturer of educational bench-top helicopter has developed Proportional Integration Derivative (PID) controller with Linear Quadratic Regulator (LQR) for all travel, pitch and yaw angle of the bench-top helicopter. The performance of the PID controller is relatively good; however its performance could also be improved if the controller is combined with adaptive element. The objective of this research is to design adaptive PID controller and then compare the performances of the adaptive PID with the standard PID. The controller design and test is focused on travel angle control only. Adaptive method used in this project is self-tuning controller, which controller’s parameters are updated online. Two adaptive algorithms those are pole-placement and deadbeat have been chosen as the method to achieve optimal controller’s parameters. Performance comparisons have shown that the adaptive (deadbeat) PID controller has produced more desirable performance compared to standard PID and adaptive (pole-placement). The adaptive (deadbeat) PID controller attained very fast settling time (5 seconds) and very small percentage of overshoot (5% to 7.5%) for 10° to 30° step change of travel angle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20control" title="adaptive control">adaptive control</a>, <a href="https://publications.waset.org/abstracts/search?q=deadbeat" title=" deadbeat"> deadbeat</a>, <a href="https://publications.waset.org/abstracts/search?q=pole-placement" title=" pole-placement"> pole-placement</a>, <a href="https://publications.waset.org/abstracts/search?q=bench-top%20helicopter" title=" bench-top helicopter"> bench-top helicopter</a>, <a href="https://publications.waset.org/abstracts/search?q=self-tuning%20control" title=" self-tuning control"> self-tuning control</a> </p> <a href="https://publications.waset.org/abstracts/15094/performance-comparisons-between-pid-and-adaptive-pid-controllers-for-travel-angle-control-of-a-bench-top-helicopter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15094.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">501</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1365</span> Simulation of Optimum Sculling Angle for Adaptive Rowing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pornthep%20Rachnavy">Pornthep Rachnavy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is twofold. First, we believe that there are a significant relationship between sculling angle and sculling style among adaptive rowing. Second, we introduce a methodology used for adaptive rowing, namely simulation, to identify effectiveness of adaptive rowing. For our study we simulate the arms only single scull of adaptive rowing. The method for rowing fastest under the 1000 meter was investigated by study sculling angle using the simulation modeling. A simulation model of a rowing system was developed using the Matlab software package base on equations of motion consist of many variation for moving the boat such as oars length, blade velocity and sculling style. The boat speed, power and energy consumption on the system were compute. This simulation modeling can predict the force acting on the boat. The optimum sculling angle was performing by computer simulation for compute the solution. Input to the model are sculling style of each rower and sculling angle. Outputs of the model are boat velocity at 1000 meter. The present study suggests that the optimum sculling angle exist depends on sculling styles. The optimum angle for blade entry and release with respect to the perpendicular through the pin of the first style is -57.00 and 22.0 degree. The optimum angle for blade entry and release with respect to the perpendicular through the pin of the second style is -57.00 and 22.0 degree. The optimum angle for blade entry and release with respect to the perpendicular through the pin of the third style is -51.57 and 28.65 degree. The optimum angle for blade entry and release with respect to the perpendicular through the pin of the fourth style is -45.84 and 34.38 degree. A theoretical simulation for rowing has been developed and presented. The results suggest that it may be advantageous for the rowers to select the sculling angles proper to sculling styles. The optimum sculling angles of the rower depends on the sculling styles made by each rower. The investigated of this paper can be concludes in three directions: 1;. There is the optimum sculling angle in arms only single scull of adaptive rowing. 2. The optimum sculling angles depend on the sculling styles. 3. Computer simulation of rowing can identify opportunities for improving rowing performance by utilizing the kinematic description of rowing. The freedom to explore alternatives in speed, thrust and timing with the computer simulation will provide the coach with a tool for systematic assessments of rowing technique In addition, the ability to use the computer to examine the very complex movements during rowing will help both the rower and the coach to conceptualize the components of movements that may have been previously unclear or even undefined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=simulation" title="simulation">simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=sculling" title=" sculling"> sculling</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive" title=" adaptive"> adaptive</a>, <a href="https://publications.waset.org/abstracts/search?q=rowing" title=" rowing"> rowing</a> </p> <a href="https://publications.waset.org/abstracts/36003/simulation-of-optimum-sculling-angle-for-adaptive-rowing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36003.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1364</span> Investigating the Effects of Thermal and Surface Energy on the Two-Dimensional Flow Characteristics of Oil in Water Mixture between Two Parallel Plates: A Lattice Boltzmann Method Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20Hasan">W. Hasan</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Farhat"> H. Farhat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A hybrid quasi-steady thermal lattice Boltzmann model was used to study the combined effects of temperature and contact angle on the movement of slugs and droplets of oil in water (O/W) system flowing between two parallel plates. The model static contact angle due to the deposition of the O/W droplet on a flat surface with simulated hydrophilic characteristic at different fluid temperatures, matched very well the proposed theoretical calculation. Furthermore, the model was used to simulate the dynamic behavior of droplets and slugs deposited on the domain’s upper and lower surfaces, while subjected to parabolic flow conditions. The model accurately simulated the contact angle hysteresis for the dynamic droplets cases. It was also shown that at elevated temperatures the required power to transport the mixture diminished remarkably. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lattice%20Boltzmann%20method" title="lattice Boltzmann method">lattice Boltzmann method</a>, <a href="https://publications.waset.org/abstracts/search?q=Gunstensen%20model" title=" Gunstensen model"> Gunstensen model</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal" title=" thermal"> thermal</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20angle" title=" contact angle"> contact angle</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20viscosity%20ratio" title=" high viscosity ratio"> high viscosity ratio</a> </p> <a href="https://publications.waset.org/abstracts/74061/investigating-the-effects-of-thermal-and-surface-energy-on-the-two-dimensional-flow-characteristics-of-oil-in-water-mixture-between-two-parallel-plates-a-lattice-boltzmann-method-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74061.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1363</span> Experimental Investigation of Cutting Forces and Temperature in Bone Drilling </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vishwanath%20Mali">Vishwanath Mali</a>, <a href="https://publications.waset.org/abstracts/search?q=Hemant%20Warhatkar"> Hemant Warhatkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Raju%20Pawade"> Raju Pawade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drilling of bone has been always challenging for surgeons due to the adverse effect it may impart to bone tissues. Force has to be applied manually by the surgeon while performing conventional bone drilling which may lead to permanent death of bone tissues and nerves. During bone drilling the temperature of the bone tissues increases to higher values above 47 ⁰C that causes thermal osteonecrosis resulting into screw loosening and subsequent implant failures. An attempt has been made here to study the input drilling parameters and surgical drill bit geometry affecting bone health during bone drilling. A One Factor At a Time (OFAT) method is used to plan the experiments. Input drilling parameters studied include spindle speed and feed rate. The drill bit geometry parameter studied include point angle and helix angle. The output variables are drilling thrust force and bone temperature. The experiments were conducted on goat femur bone at room temperature 30 ⁰C. For measurement of thrust forces KISTLER cutting force dynamometer Type 9257BA was used. For continuous data acquisition of temperature NI LabVIEW software was used. Fixture was made on RPT machine for holding the bone specimen while performing drilling operation. Bone specimen were preserved in deep freezer (LABTOP make) under -40 ⁰C. In case of drilling parameters, it is observed that at constant feed rate when spindle speed increases, thrust force as well as temperature decreases and at constant spindle speed when feed rate increases thrust force as well as temperature increases. The effect of drill bit geometry shows that at constant helix angle when point angle increases thrust force as well as temperature increases and at constant point angle when helix angle increase thrust force as well as temperature decreases. Hence it is concluded that as the thrust force increases temperature increases. In case of drilling parameter, the lowest thrust force and temperature i.e. 35.55 N and 36.04 ⁰C respectively were recorded at spindle speed 2000 rpm and feed rate 0.04 mm/rev. In case of drill bit geometry parameter, the lowest thrust force and temperature i.e. 40.81 N and 34 ⁰C respectively were recorded at point angle 70⁰ and helix angle 25⁰ Hence to avoid thermal necrosis of bone it is recommended to use higher spindle speed, lower feed rate, low point angle and high helix angle. The hard nature of cortical bone contributes to a greater rise in temperature whereas a considerable drop in temperature is observed during cancellous bone drilling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone%20drilling" title="bone drilling">bone drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=helix%20angle" title=" helix angle"> helix angle</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20angle" title=" point angle"> point angle</a>, <a href="https://publications.waset.org/abstracts/search?q=thrust%20force" title=" thrust force"> thrust force</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20necrosis" title=" thermal necrosis"> thermal necrosis</a> </p> <a href="https://publications.waset.org/abstracts/52171/experimental-investigation-of-cutting-forces-and-temperature-in-bone-drilling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1362</span> Studying the Impact of Soil Characteristics in Displacement of Retaining Walls Using Finite Element</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Ahmadabadi">Mojtaba Ahmadabadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Akbar%20Masoudi"> Akbar Masoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Rezai"> Morteza Rezai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, using the finite element method, the effect of soil and wall characteristics was investigated. Thirty and two different models were studied by different parameters. These studies could calculate displacement at any height of the wall for frictional-cohesive soils. The main purpose of this research is to determine the most effective soil characteristics in reducing the wall displacement. Comparing different models showed that the overall increase in internal friction angle, angle of friction between soil and wall and modulus of elasticity reduce the replacement of the wall. In addition, increase in special weight of soil will increase the wall displacement. Based on results, it can be said that all wall displacements were overturning and in the backfill, soil was bulging. Results show that the highest impact is seen in reducing wall displacement, internal friction angle, and the angle friction between soil and wall. One of the advantages of this study is taking into account all the parameters of the soil and walls replacement distribution in wall and backfill soil. In this paper, using the finite element method and considering all parameters of the soil, we investigated the impact of soil parameter in wall displacement. The aim of this study is to provide the best conditions in reducing the wall displacement and displacement wall and soil distribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=retaining%20wall" title="retaining wall">retaining wall</a>, <a href="https://publications.waset.org/abstracts/search?q=fem" title=" fem"> fem</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20and%20wall%20interaction" title=" soil and wall interaction"> soil and wall interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=angle%20of%20internal%20friction%20of%20the%20soil" title=" angle of internal friction of the soil"> angle of internal friction of the soil</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20displacement" title=" wall displacement"> wall displacement</a> </p> <a href="https://publications.waset.org/abstracts/44288/studying-the-impact-of-soil-characteristics-in-displacement-of-retaining-walls-using-finite-element" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44288.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1361</span> Adaptive Beamforming with Steering Error and Mutual Coupling between Antenna Sensors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ju-Hong%20Lee">Ju-Hong Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Ching-Wei%20Liao"> Ching-Wei Liao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Owing to close antenna spacing between antenna sensors within a compact space, a part of data in one antenna sensor would outflow to other antenna sensors when the antenna sensors in an antenna array operate simultaneously. This phenomenon is called mutual coupling effect (MCE). It has been shown that the performance of antenna array systems can be degraded when the antenna sensors are in close proximity. Especially, in a systems equipped with massive antenna sensors, the degradation of beamforming performance due to the MCE is significantly inevitable. Moreover, it has been shown that even a small angle error between the true direction angle of the desired signal and the steering angle deteriorates the effectiveness of an array beamforming system. However, the true direction vector of the desired signal may not be exactly known in some applications, e.g., the application in land mobile-cellular wireless systems. Therefore, it is worth developing robust techniques to deal with the problem due to the MCE and steering angle error for array beamforming systems. In this paper, we present an efficient technique for performing adaptive beamforming with robust capabilities against the MCE and the steering angle error. Only the data vector received by an antenna array is required by the proposed technique. By using the received array data vector, a correlation matrix is constructed to replace the original correlation matrix associated with the received array data vector. Then, the mutual coupling matrix due to the MCE on the antenna array is estimated through a recursive algorithm. An appropriate estimate of the direction angle of the desired signal can also be obtained during the recursive process. Based on the estimated mutual coupling matrix, the estimated direction angle, and the reconstructed correlation matrix, the proposed technique can effectively cure the performance degradation due to steering angle error and MCE. The novelty of the proposed technique is that the implementation procedure is very simple and the resulting adaptive beamforming performance is satisfactory. Simulation results show that the proposed technique provides much better beamforming performance without requiring complicated complexity as compared with the existing robust techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20beamforming" title="adaptive beamforming">adaptive beamforming</a>, <a href="https://publications.waset.org/abstracts/search?q=mutual%20coupling%20effect" title=" mutual coupling effect"> mutual coupling effect</a>, <a href="https://publications.waset.org/abstracts/search?q=recursive%20algorithm" title=" recursive algorithm"> recursive algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=steering%20angle%20error" title=" steering angle error"> steering angle error</a> </p> <a href="https://publications.waset.org/abstracts/84628/adaptive-beamforming-with-steering-error-and-mutual-coupling-between-antenna-sensors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84628.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1360</span> Scaling Analysis of the Contact Line and Capillary Interaction Induced by a Floating Tilted Cylinder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=ShiQing%20Gao">ShiQing Gao</a>, <a href="https://publications.waset.org/abstracts/search?q=XingYi%20Zhang"> XingYi Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=YouHe%20Zhou"> YouHe Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When a floating tilted cylinder pierces a fluid interface, the fulfilment of constant-contact-angle condition along the cylinder results in shift, stretch and distortion of the contact line, thus leading to a capillary interaction. We perform an investigation of the scaling dependence of tilt angle, contact angle, and cylinder radius on the contact line profile and the corresponding capillary interaction by numerical simulation and experiment. Characterized by three characteristic parameters respectively, the dependences for each deformation mode are systematically analyzed. Both the experiment and simulation reveals an invariant structure that is independent of contact angle and radius to characterize the stretch of the contact line for every tilted case. Based on this observation, we then propose a general capillary force scaling law to incredibly grasp all the simulated results, by simply approximating the contact line profile as tilted ellipse. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas-liquid%2Fliquid-fluid%20interface" title="gas-liquid/liquid-fluid interface">gas-liquid/liquid-fluid interface</a>, <a href="https://publications.waset.org/abstracts/search?q=colloidal%20particle" title=" colloidal particle"> colloidal particle</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20line%20shape" title=" contact line shape"> contact line shape</a>, <a href="https://publications.waset.org/abstracts/search?q=capillary%20interaction" title=" capillary interaction"> capillary interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20evolver%20%28SE%29" title=" surface evolver (SE)"> surface evolver (SE)</a> </p> <a href="https://publications.waset.org/abstracts/53570/scaling-analysis-of-the-contact-line-and-capillary-interaction-induced-by-a-floating-tilted-cylinder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53570.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1359</span> Comparative Study of Bending Angle in Laser Forming Process Using Artificial Neural Network and Fuzzy Logic System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Hassani">M. Hassani</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Hassani"> Y. Hassani</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Ajudanioskooei"> N. Ajudanioskooei</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20N.%20Benvid"> N. N. Benvid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laser Forming process as a non-contact thermal forming process is widely used to forming and bending of metallic and non-metallic sheets. In this process, according to laser irradiation along a specific path, sheet is bent. One of the most important output parameters in laser forming is bending angle that depends on process parameters such as physical and mechanical properties of materials, laser power, laser travel speed and the number of scan passes. In this paper, Artificial Neural Network and Fuzzy Logic System were used to predict of bending angle in laser forming process. Inputs to these models were laser travel speed and laser power. The comparison between artificial neural network and fuzzy logic models with experimental results has been shown both of these models have high ability to prediction of bending angles with minimum errors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title="artificial neural network">artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20angle" title=" bending angle"> bending angle</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic" title=" fuzzy logic"> fuzzy logic</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20forming" title=" laser forming"> laser forming</a> </p> <a href="https://publications.waset.org/abstracts/34045/comparative-study-of-bending-angle-in-laser-forming-process-using-artificial-neural-network-and-fuzzy-logic-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34045.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">597</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1358</span> Numerical Study on the Effect of Obstacle Structure on Two-Phase Detonation Initiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ding%20Yu">Ding Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ge%20Yang"> Ge Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Hong-Tao"> Wang Hong-Tao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aiming at the detonation performance and detonation wave propagation distance of liquid fuel detonation engine, the kerosene/oxygen-enriched air mixture is chosen as the research object; its detonation initiation and detonation wave propagation process by mild energy input are numerically studied by using Euler-Lagrange method in the present study. The effects of a semicircular obstacle, rectangular obstacle, and triangular obstacle on the detonation characteristic parameters in the detonation tube are compared and analyzed, and the effect of the angle between obstacle and flame propagation direction on flame propagation characteristics and detonation process when the blocking ratio is constant are studied. The results show that the flame propagation velocity decreases with the increase of the angle in the range of 0-90°, and when the angle is 0° which corresponds to the semicircle obstacle gets the highest detonation wave propagation velocity. With the increase of the angle in the range of 0-90°, DDT (Deflagration to detonation transition) distance decreases first and then increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deflagration%20to%20detonation%20transition" title="deflagration to detonation transition">deflagration to detonation transition</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=obstacle%20structure" title=" obstacle structure"> obstacle structure</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20flame" title=" turbulent flame"> turbulent flame</a> </p> <a href="https://publications.waset.org/abstracts/165628/numerical-study-on-the-effect-of-obstacle-structure-on-two-phase-detonation-initiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165628.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1357</span> Longitudinal Vortices Mixing in Three-Stream Micromixers with Two Inlets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yi-Tun%20Huang">Yi-Tun Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chih-Yang%20Wu"> Chih-Yang Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Shu-Wei%20Huang"> Shu-Wei Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we examine fluid mixing in a full three-stream mixing channel with longitudinal vortex generators (LVGs) built on the channel bottom by numerical simulation and experiment. The effects of the asymmetrical arrangement and the attack angle of the LVGs on fluid mixing are investigated. The results show that the micromixer with LVGs at a small asymmetry index (defined by the ratio of the distance from the center plane of the gap between the winglets to the center plane of the main channel to the width of the main channel) is superior to the micromixer with symmetric LVGs and that with LVGs at a large asymmetry index. The micromixer using five mixing modules of the LVGs with an attack angle between 16.5 degrees and 22.5 degrees can achieve excellent mixing over a wide range of Reynolds numbers. Here, we call a section of channel with two pairs of staggered asymmetrical LVGs a mixing module. Besides, the micromixer with LVGs at a small attack angle is more efficient than that with a larger attack angle when pressure losses are taken into account. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microfluidics" title="microfluidics">microfluidics</a>, <a href="https://publications.waset.org/abstracts/search?q=mixing" title=" mixing"> mixing</a>, <a href="https://publications.waset.org/abstracts/search?q=longitudinal%20vortex%20generators" title=" longitudinal vortex generators"> longitudinal vortex generators</a>, <a href="https://publications.waset.org/abstracts/search?q=two%20stream%20interfaces" title=" two stream interfaces"> two stream interfaces</a> </p> <a href="https://publications.waset.org/abstracts/7216/longitudinal-vortices-mixing-in-three-stream-micromixers-with-two-inlets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7216.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=angle&page=1" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=angle&page=1">1</a></li> <li class="page-item active"><span class="page-link">2</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=angle&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=angle&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=angle&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=angle&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=angle&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=angle&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=angle&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=angle&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=angle&page=47">47</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=angle&page=48">48</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=angle&page=3" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>