CINXE.COM
Search results for: hybrid algorithm
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: hybrid algorithm</title> <meta name="description" content="Search results for: hybrid algorithm"> <meta name="keywords" content="hybrid algorithm"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="hybrid algorithm" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="hybrid algorithm"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5095</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: hybrid algorithm</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5095</span> A Comparative Study of GTC and PSP Algorithms for Mining Sequential Patterns Embedded in Database with Time Constraints</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Safa%20Adi">Safa Adi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper will consider the problem of sequential mining patterns embedded in a database by handling the time constraints as defined in the GSP algorithm (level wise algorithms). We will compare two previous approaches GTC and PSP, that resumes the general principles of GSP. Furthermore this paper will discuss PG-hybrid algorithm, that using PSP and GTC. The results show that PSP and GTC are more efficient than GSP. On the other hand, the GTC algorithm performs better than PSP. The PG-hybrid algorithm use PSP algorithm for the two first passes on the database, and GTC approach for the following scans. Experiments show that the hybrid approach is very efficient for short, frequent sequences. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=database" title="database">database</a>, <a href="https://publications.waset.org/abstracts/search?q=GTC%20algorithm" title=" GTC algorithm"> GTC algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=PSP%20algorithm" title=" PSP algorithm"> PSP algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=sequential%20patterns" title=" sequential patterns"> sequential patterns</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20constraints" title=" time constraints"> time constraints</a> </p> <a href="https://publications.waset.org/abstracts/97812/a-comparative-study-of-gtc-and-psp-algorithms-for-mining-sequential-patterns-embedded-in-database-with-time-constraints" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97812.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5094</span> A Hybrid ICA-GA Algorithm for Solving Multiobjective Optimization of Production Planning Problems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omar%20Ramzi%20Jasim">Omar Ramzi Jasim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jalal%20Sultan%20Ashour"> Jalal Sultan Ashour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Production Planning or Master Production Schedule (MPS) is a key interface between marketing and manufacturing, since it links customer service directly to efficient use of production resources. Mismanagement of the MPS is considered as one of fundamental problems in operation and it can potentially lead to poor customer satisfaction. In this paper, a hybrid evolutionary algorithm (ICA-GA) is presented, which integrates the merits of both imperialist competitive algorithm (ICA) and genetic algorithm (GA) for solving multi-objective MPS problems. In the presented algorithm, the colonies in each empire has be represented a small population and communicate with each other using genetic operators. By testing on 5 production scenarios, the numerical results of ICA-GA algorithm show the efficiency and capabilities of the hybrid algorithm in finding the optimum solutions. The ICA-GA solutions yield the lower inventory level and keep customer satisfaction high and the required overtime is also lower, compared with results of GA and SA in all production scenarios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=master%20production%20scheduling" title="master production scheduling">master production scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=imperialist%20competitive%20algorithm" title=" imperialist competitive algorithm"> imperialist competitive algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20algorithm" title=" hybrid algorithm"> hybrid algorithm</a> </p> <a href="https://publications.waset.org/abstracts/46493/a-hybrid-ica-ga-algorithm-for-solving-multiobjective-optimization-of-production-planning-problems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46493.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">471</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5093</span> A Hybrid Multi-Objective Firefly-Sine Cosine Algorithm for Multi-Objective Optimization Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gaohuizi%20Guo">Gaohuizi Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ning%20Zhang"> Ning Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Firefly algorithm (FA) and Sine Cosine algorithm (SCA) are two very popular and advanced metaheuristic algorithms. However, these algorithms applied to multi-objective optimization problems have some shortcomings, respectively, such as premature convergence and limited exploration capability. Combining the privileges of FA and SCA while avoiding their deficiencies may improve the accuracy and efficiency of the algorithm. This paper proposes a hybridization of FA and SCA algorithms, named multi-objective firefly-sine cosine algorithm (MFA-SCA), to develop a more efficient meta-heuristic algorithm than FA and SCA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=firefly%20algorithm" title="firefly algorithm">firefly algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20algorithm" title=" hybrid algorithm"> hybrid algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-objective%20optimization" title=" multi-objective optimization"> multi-objective optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=sine%20cosine%20algorithm" title=" sine cosine algorithm"> sine cosine algorithm</a> </p> <a href="https://publications.waset.org/abstracts/129731/a-hybrid-multi-objective-firefly-sine-cosine-algorithm-for-multi-objective-optimization-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129731.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5092</span> A High-Level Co-Evolutionary Hybrid Algorithm for the Multi-Objective Job Shop Scheduling Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aydin%20Teymourifar">Aydin Teymourifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Gurkan%20Ozturk"> Gurkan Ozturk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a hybrid distributed algorithm has been suggested for the multi-objective job shop scheduling problem. Many new approaches are used at design steps of the distributed algorithm. Co-evolutionary structure of the algorithm and competition between different communicated hybrid algorithms, which are executed simultaneously, causes to efficient search. Using several machines for distributing the algorithms, at the iteration and solution levels, increases computational speed. The proposed algorithm is able to find the Pareto solutions of the big problems in shorter time than other algorithm in the literature. Apache Spark and Hadoop platforms have been used for the distribution of the algorithm. The suggested algorithm and implementations have been compared with results of the successful algorithms in the literature. Results prove the efficiency and high speed of the algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20algorithms" title="distributed algorithms">distributed algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=Apache%20Spark" title=" Apache Spark"> Apache Spark</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadoop" title=" Hadoop"> Hadoop</a>, <a href="https://publications.waset.org/abstracts/search?q=job%20shop%20scheduling" title=" job shop scheduling"> job shop scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-objective%20optimization" title=" multi-objective optimization"> multi-objective optimization</a> </p> <a href="https://publications.waset.org/abstracts/72317/a-high-level-co-evolutionary-hybrid-algorithm-for-the-multi-objective-job-shop-scheduling-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72317.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5091</span> Hybrid Bee Ant Colony Algorithm for Effective Load Balancing and Job Scheduling in Cloud Computing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Yeboah">Thomas Yeboah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cloud Computing is newly paradigm in computing that promises a delivery of computing as a service rather than a product, whereby shared resources, software, and information are provided to computers and other devices as a utility (like the electricity grid) over a network (typically the Internet). As Cloud Computing is a newly style of computing on the internet. It has many merits along with some crucial issues that need to be resolved in order to improve reliability of cloud environment. These issues are related with the load balancing, fault tolerance and different security issues in cloud environment.In this paper the main concern is to develop an effective load balancing algorithm that gives satisfactory performance to both, cloud users and providers. This proposed algorithm (hybrid Bee Ant Colony algorithm) is a combination of two dynamic algorithms: Ant Colony Optimization and Bees Life algorithm. Ant Colony algorithm is used in this hybrid Bee Ant Colony algorithm to solve load balancing issues whiles the Bees Life algorithm is used for optimization of job scheduling in cloud environment. The results of the proposed algorithm shows that the hybrid Bee Ant Colony algorithm outperforms the performances of both Ant Colony algorithm and Bees Life algorithm when evaluated the proposed algorithm performances in terms of Waiting time and Response time on a simulator called CloudSim. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ant%20colony%20optimization%20algorithm" title="ant colony optimization algorithm">ant colony optimization algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=bees%20life%20algorithm" title=" bees life algorithm"> bees life algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=scheduling%20algorithm" title=" scheduling algorithm"> scheduling algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title=" cloud computing"> cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20balancing" title=" load balancing"> load balancing</a> </p> <a href="https://publications.waset.org/abstracts/27139/hybrid-bee-ant-colony-algorithm-for-effective-load-balancing-and-job-scheduling-in-cloud-computing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27139.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">628</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5090</span> A Hybrid Distributed Algorithm for Multi-Objective Dynamic Flexible Job Shop Scheduling Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aydin%20Teymourifar">Aydin Teymourifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Gurkan%20Ozturk"> Gurkan Ozturk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a hybrid distributed algorithm has been suggested for multi-objective dynamic flexible job shop scheduling problem. The proposed algorithm is high level, in which several algorithms search the space on different machines simultaneously also it is a hybrid algorithm that takes advantages of the artificial intelligence, evolutionary and optimization methods. Distribution is done at different levels and new approaches are used for design of the algorithm. Apache spark and Hadoop frameworks have been used for the distribution of the algorithm. The Pareto optimality approach is used for solving the multi-objective benchmarks. The suggested algorithm that is able to solve large-size problems in short times has been compared with the successful algorithms of the literature. The results prove high speed and efficiency of the algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20algorithms" title="distributed algorithms">distributed algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=apache-spark" title=" apache-spark"> apache-spark</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadoop" title=" Hadoop"> Hadoop</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20dynamic%20job%20shop%20scheduling" title=" flexible dynamic job shop scheduling"> flexible dynamic job shop scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-objective%20optimization" title=" multi-objective optimization"> multi-objective optimization</a> </p> <a href="https://publications.waset.org/abstracts/72319/a-hybrid-distributed-algorithm-for-multi-objective-dynamic-flexible-job-shop-scheduling-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72319.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5089</span> Hybrid Algorithm for Frequency Channel Selection in Wi-Fi Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cesar%20Hern%C3%A1ndez">Cesar Hern谩ndez</a>, <a href="https://publications.waset.org/abstracts/search?q=Diego%20Giral"> Diego Giral</a>, <a href="https://publications.waset.org/abstracts/search?q=Ingrid%20P%C3%A1ez"> Ingrid P谩ez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article proposes a hybrid algorithm for spectrum allocation in cognitive radio networks based on the algorithms Analytical Hierarchical Process (AHP) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) to improve the performance of the spectrum mobility of secondary users in cognitive radio networks. To calculate the level of performance of the proposed algorithm a comparative analysis between the proposed AHP-TOPSIS, Grey Relational Analysis (GRA) and Multiplicative Exponent Weighting (MEW) algorithm is performed. Four evaluation metrics is used. These metrics are the accumulative average of failed handoffs, the accumulative average of handoffs performed, the accumulative average of transmission bandwidth, and the accumulative average of the transmission delay. The results of the comparison show that AHP-TOPSIS Algorithm provides 2.4 times better performance compared to a GRA Algorithm and, 1.5 times better than the MEW Algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cognitive%20radio" title="cognitive radio">cognitive radio</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20making" title=" decision making"> decision making</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20algorithm" title=" hybrid algorithm"> hybrid algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=spectrum%20handoff" title=" spectrum handoff"> spectrum handoff</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20networks" title=" wireless networks"> wireless networks</a> </p> <a href="https://publications.waset.org/abstracts/34830/hybrid-algorithm-for-frequency-channel-selection-in-wi-fi-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">541</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5088</span> A Hybrid Method for Determination of Effective Poles Using Clustering Dominant Pole Algorithm </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anuj%20Abraham">Anuj Abraham</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Pappa"> N. Pappa</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Honc"> Daniel Honc</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahul%20Sharma"> Rahul Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, an analysis of some model order reduction techniques is presented. A new hybrid algorithm for model order reduction of linear time invariant systems is compared with the conventional techniques namely Balanced Truncation, Hankel Norm reduction and Dominant Pole Algorithm (DPA). The proposed hybrid algorithm is known as Clustering Dominant Pole Algorithm (CDPA) is able to compute the full set of dominant poles and its cluster center efficiently. The dominant poles of a transfer function are specific eigenvalues of the state space matrix of the corresponding dynamical system. The effectiveness of this novel technique is shown through the simulation results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=balanced%20truncation" title="balanced truncation">balanced truncation</a>, <a href="https://publications.waset.org/abstracts/search?q=clustering" title=" clustering"> clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=dominant%20pole" title=" dominant pole"> dominant pole</a>, <a href="https://publications.waset.org/abstracts/search?q=Hankel%20norm" title=" Hankel norm"> Hankel norm</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20reduction" title=" model reduction"> model reduction</a> </p> <a href="https://publications.waset.org/abstracts/17480/a-hybrid-method-for-determination-of-effective-poles-using-clustering-dominant-pole-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17480.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">599</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5087</span> A Hybrid System of Hidden Markov Models and Recurrent Neural Networks for Learning Deterministic Finite State Automata</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pavan%20K.%20Rallabandi">Pavan K. Rallabandi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kailash%20C.%20Patidar"> Kailash C. Patidar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present an optimization technique or a learning algorithm using the hybrid architecture by combining the most popular sequence recognition models such as Recurrent Neural Networks (RNNs) and Hidden Markov models (HMMs). In order to improve the sequence or pattern recognition/ classification performance by applying a hybrid/neural symbolic approach, a gradient descent learning algorithm is developed using the Real Time Recurrent Learning of Recurrent Neural Network for processing the knowledge represented in trained Hidden Markov Models. The developed hybrid algorithm is implemented on automata theory as a sample test beds and the performance of the designed algorithm is demonstrated and evaluated on learning the deterministic finite state automata. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20systems" title="hybrid systems">hybrid systems</a>, <a href="https://publications.waset.org/abstracts/search?q=hidden%20markov%20models" title=" hidden markov models"> hidden markov models</a>, <a href="https://publications.waset.org/abstracts/search?q=recurrent%20neural%20networks" title=" recurrent neural networks"> recurrent neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=deterministic%20finite%20state%20automata" title=" deterministic finite state automata"> deterministic finite state automata</a> </p> <a href="https://publications.waset.org/abstracts/37759/a-hybrid-system-of-hidden-markov-models-and-recurrent-neural-networks-for-learning-deterministic-finite-state-automata" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37759.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5086</span> An Experimental Study on Some Conventional and Hybrid Models of Fuzzy Clustering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeugert%20Kujtila">Jeugert Kujtila</a>, <a href="https://publications.waset.org/abstracts/search?q=Kristi%20Hoxhalli"> Kristi Hoxhalli</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramazan%20Dalipi"> Ramazan Dalipi</a>, <a href="https://publications.waset.org/abstracts/search?q=Erjon%20Cota"> Erjon Cota</a>, <a href="https://publications.waset.org/abstracts/search?q=Ardit%20Murati"> Ardit Murati</a>, <a href="https://publications.waset.org/abstracts/search?q=Erind%20Bedalli"> Erind Bedalli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Clustering is a versatile instrument in the analysis of collections of data providing insights of the underlying structures of the dataset and enhancing the modeling capabilities. The fuzzy approach to the clustering problem increases the flexibility involving the concept of partial memberships (some value in the continuous interval [0, 1]) of the instances in the clusters. Several fuzzy clustering algorithms have been devised like FCM, Gustafson-Kessel, Gath-Geva, kernel-based FCM, PCM etc. Each of these algorithms has its own advantages and drawbacks, so none of these algorithms would be able to perform superiorly in all datasets. In this paper we will experimentally compare FCM, GK, GG algorithm and a hybrid two-stage fuzzy clustering model combining the FCM and Gath-Geva algorithms. Firstly we will theoretically dis-cuss the advantages and drawbacks for each of these algorithms and we will describe the hybrid clustering model exploiting the advantages and diminishing the drawbacks of each algorithm. Secondly we will experimentally compare the accuracy of the hybrid model by applying it on several benchmark and synthetic datasets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20clustering" title="fuzzy clustering">fuzzy clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20c-means%20algorithm%20%28FCM%29" title=" fuzzy c-means algorithm (FCM)"> fuzzy c-means algorithm (FCM)</a>, <a href="https://publications.waset.org/abstracts/search?q=Gustafson-Kessel%20algorithm" title=" Gustafson-Kessel algorithm"> Gustafson-Kessel algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20clustering%20model" title=" hybrid clustering model"> hybrid clustering model</a> </p> <a href="https://publications.waset.org/abstracts/67863/an-experimental-study-on-some-conventional-and-hybrid-models-of-fuzzy-clustering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67863.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">514</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5085</span> Tabu Random Algorithm for Guiding Mobile Robots</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kevin%20Worrall">Kevin Worrall</a>, <a href="https://publications.waset.org/abstracts/search?q=Euan%20McGookin"> Euan McGookin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of optimization algorithms is common across a large number of diverse fields. This work presents the use of a hybrid optimization algorithm applied to a mobile robot tasked with carrying out a search of an unknown environment. The algorithm is then applied to the multiple robots case, which results in a reduction in the time taken to carry out the search. The hybrid algorithm is a Random Search Algorithm fused with a Tabu mechanism. The work shows that the algorithm locates the desired points in a quicker time than a brute force search. The Tabu Random algorithm is shown to work within a simulated environment using a validated mathematical model. The simulation was run using three different environments with varying numbers of targets. As an algorithm, the Tabu Random is small, clear and can be implemented with minimal resources. The power of the algorithm is the speed at which it locates points of interest and the robustness to the number of robots involved. The number of robots can vary with no changes to the algorithm resulting in a flexible algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algorithms" title="algorithms">algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=control" title=" control"> control</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-agent" title=" multi-agent"> multi-agent</a>, <a href="https://publications.waset.org/abstracts/search?q=search%20and%20rescue" title=" search and rescue"> search and rescue</a> </p> <a href="https://publications.waset.org/abstracts/92647/tabu-random-algorithm-for-guiding-mobile-robots" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92647.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5084</span> Improving the Security of Internet of Things Using Encryption Algorithms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amirhossein%20Safi">Amirhossein Safi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Internet of things (IOT) is a kind of advanced information technology which has drawn societies’ attention. Sensors and stimulators are usually recognized as smart devices of our environment. Simultaneously, IOT security brings up new issues. Internet connection and possibility of interaction with smart devices cause those devices to involve more in human life. Therefore, safety is a fundamental requirement in designing IOT. IOT has three remarkable features: overall perception, reliable transmission, and intelligent processing. Because of IOT span, security of conveying data is an essential factor for system security. Hybrid encryption technique is a new model that can be used in IOT. This type of encryption generates strong security and low computation. In this paper, we have proposed a hybrid encryption algorithm which has been conducted in order to reduce safety risks and enhancing encryption's speed and less computational complexity. The purpose of this hybrid algorithm is information integrity, confidentiality, non-repudiation in data exchange for IOT. Eventually, the suggested encryption algorithm has been simulated by MATLAB software, and its speed and safety efficiency were evaluated in comparison with conventional encryption algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=internet%20of%20things" title="internet of things">internet of things</a>, <a href="https://publications.waset.org/abstracts/search?q=security" title=" security"> security</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20algorithm" title=" hybrid algorithm"> hybrid algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=privacy" title=" privacy"> privacy</a> </p> <a href="https://publications.waset.org/abstracts/69919/improving-the-security-of-internet-of-things-using-encryption-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69919.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5083</span> Model Order Reduction Using Hybrid Genetic Algorithm and Simulated Annealing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Salah">Khaled Salah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Model order reduction has been one of the most challenging topics in the past years. In this paper, a hybrid solution of genetic algorithm (GA) and simulated annealing algorithm (SA) are used to approximate high-order transfer functions (TFs) to lower-order TFs. In this approach, hybrid algorithm is applied to model order reduction putting in consideration improving accuracy and preserving the properties of the original model which are two important issues for improving the performance of simulation and computation and maintaining the behavior of the original complex models being reduced. Compared to conventional mathematical methods that have been used to obtain a reduced order model of high order complex models, our proposed method provides better results in terms of reducing run-time. Thus, the proposed technique could be used in electronic design automation (EDA) tools. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title="genetic algorithm">genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=simulated%20annealing" title=" simulated annealing"> simulated annealing</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20reduction" title=" model reduction"> model reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer%20function" title=" transfer function"> transfer function</a> </p> <a href="https://publications.waset.org/abstracts/97897/model-order-reduction-using-hybrid-genetic-algorithm-and-simulated-annealing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97897.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5082</span> Mutual Information Based Image Registration of Satellite Images Using PSO-GA Hybrid Algorithm </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dipti%20Patra">Dipti Patra</a>, <a href="https://publications.waset.org/abstracts/search?q=Guguloth%20Uma"> Guguloth Uma</a>, <a href="https://publications.waset.org/abstracts/search?q=Smita%20Pradhan"> Smita Pradhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Registration is a fundamental task in image processing. It is used to transform different sets of data into one coordinate system, where data are acquired from different times, different viewing angles, and/or different sensors. The registration geometrically aligns two images (the reference and target images). Registration techniques are used in satellite images and it is important in order to be able to compare or integrate the data obtained from these different measurements. In this work, mutual information is considered as a similarity metric for registration of satellite images. The transformation is assumed to be a rigid transformation. An attempt has been made here to optimize the transformation function. The proposed image registration technique hybrid PSO-GA incorporates the notion of Particle Swarm Optimization and Genetic Algorithm and is used for finding the best optimum values of transformation parameters. The performance comparision obtained with the experiments on satellite images found that the proposed hybrid PSO-GA algorithm outperforms the other algorithms in terms of mutual information and registration accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20registration" title="image registration">image registration</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimization" title=" particle swarm optimization"> particle swarm optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20PSO-GA%20algorithm%20and%20mutual%20information" title=" hybrid PSO-GA algorithm and mutual information"> hybrid PSO-GA algorithm and mutual information</a> </p> <a href="https://publications.waset.org/abstracts/9683/mutual-information-based-image-registration-of-satellite-images-using-pso-ga-hybrid-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5081</span> A Hybrid Tabu Search Algorithm for the Multi-Objective Job Shop Scheduling Problems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aydin%20Teymourifar">Aydin Teymourifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Gurkan%20Ozturk"> Gurkan Ozturk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a hybrid Tabu Search (TS) algorithm is suggested for the multi-objective job shop scheduling problems (MO-JSSPs). The algorithm integrates several shifting bottleneck based neighborhood structures with the Giffler & Thompson algorithm, which improve efficiency of the search. Diversification and intensification are provided with local and global left shift algorithms application and also new semi-active, active, and non-delay schedules creation. The suggested algorithm is tested in the MO-JSSPs benchmarks from the literature based on the Pareto optimality concept. Different performances criteria are used for the multi-objective algorithm evaluation. The proposed algorithm is able to find the Pareto solutions of the test problems in shorter time than other algorithm of the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tabu%20search" title="tabu search">tabu search</a>, <a href="https://publications.waset.org/abstracts/search?q=heuristics" title=" heuristics"> heuristics</a>, <a href="https://publications.waset.org/abstracts/search?q=job%20shop%20scheduling" title=" job shop scheduling"> job shop scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-objective%20optimization" title=" multi-objective optimization"> multi-objective optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=Pareto%20optimality" title=" Pareto optimality"> Pareto optimality</a> </p> <a href="https://publications.waset.org/abstracts/71920/a-hybrid-tabu-search-algorithm-for-the-multi-objective-job-shop-scheduling-problems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71920.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5080</span> A Hybrid Algorithm for Collaborative Transportation Planning among Carriers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elham%20Jelodari%20Mamaghani">Elham Jelodari Mamaghani</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Prins"> Christian Prins</a>, <a href="https://publications.waset.org/abstracts/search?q=Haoxun%20Chen"> Haoxun Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, there is concentration on collaborative transportation planning (CTP) among multiple carriers with pickup and delivery requests and time windows. This problem is a vehicle routing problem with constraints from standard vehicle routing problems and new constraints from a real-world application. In the problem, each carrier has a finite number of vehicles, and each request is a pickup and delivery request with time window. Moreover, each carrier has reserved requests, which must be served by itself, whereas its exchangeable requests can be outsourced to and served by other carriers. This collaboration among carriers can help them to reduce total transportation costs. A mixed integer programming model is proposed to the problem. To solve the model, a hybrid algorithm that combines Genetic Algorithm and Simulated Annealing (GASA) is proposed. This algorithm takes advantages of GASA at the same time. After tuning the parameters of the algorithm with the Taguchi method, the experiments are conducted and experimental results are provided for the hybrid algorithm. The results are compared with those obtained by a commercial solver. The comparison indicates that the GASA significantly outperforms the commercial solver. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=centralized%20collaborative%20transportation" title="centralized collaborative transportation">centralized collaborative transportation</a>, <a href="https://publications.waset.org/abstracts/search?q=collaborative%20transportation%20with%20pickup%20and%20delivery" title=" collaborative transportation with pickup and delivery"> collaborative transportation with pickup and delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=collaborative%20transportation%20with%20time%20windows" title=" collaborative transportation with time windows"> collaborative transportation with time windows</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20algorithm%20of%20GA%20and%20SA" title=" hybrid algorithm of GA and SA"> hybrid algorithm of GA and SA</a> </p> <a href="https://publications.waset.org/abstracts/81528/a-hybrid-algorithm-for-collaborative-transportation-planning-among-carriers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81528.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5079</span> Satellite Image Classification Using Firefly Algorithm </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paramjit%20Kaur">Paramjit Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Harish%20Kundra"> Harish Kundra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the recent years, swarm intelligence based firefly algorithm has become a great focus for the researchers to solve the real time optimization problems. Here, firefly algorithm is used for the application of satellite image classification. For experimentation, Alwar area is considered to multiple land features like vegetation, barren, hilly, residential and water surface. Alwar dataset is considered with seven band satellite images. Firefly Algorithm is based on the attraction of less bright fireflies towards more brightener one. For the evaluation of proposed concept accuracy assessment parameters are calculated using error matrix. With the help of Error matrix, parameters of Kappa Coefficient, Overall Accuracy and feature wise accuracy parameters of user鈥檚 accuracy & producer鈥檚 accuracy can be calculated. Overall results are compared with BBO, PSO, Hybrid FPAB/BBO, Hybrid ACO/SOFM and Hybrid ACO/BBO based on the kappa coefficient and overall accuracy parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20classification" title="image classification">image classification</a>, <a href="https://publications.waset.org/abstracts/search?q=firefly%20algorithm" title=" firefly algorithm"> firefly algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite%20image%20classification" title=" satellite image classification"> satellite image classification</a>, <a href="https://publications.waset.org/abstracts/search?q=terrain%20classification" title=" terrain classification"> terrain classification</a> </p> <a href="https://publications.waset.org/abstracts/64829/satellite-image-classification-using-firefly-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64829.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5078</span> Application of Hybrid Honey Bees Mating Optimization Algorithm in Multiuser Detection of Wireless Communication Systems </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Larbi">N. Larbi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Debbat"> F. Debbat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wireless communication systems have changed dramatically and shown spectacular evolution over the past two decades. These radio technologies are engaged in a quest endless high-speed transmission coupled to a constant need to improve transmission quality. Various radio communication systems being developed use code division multiple access (CDMA) technique. This work analyses a hybrid honey bees mating optimization algorithm (HBMO) applied to multiuser detection (MuD) in CDMA communication systems. The HBMO is a swarm-based optimization algorithm, which simulates the mating process of real honey bees. We apply a hybridization of HBMO with simulated annealing (SA) in order to improve the solution generated by the HBMO. Simulation results show that the detection based on Hybrid HBMO, in term of bit error rate (BER), is viable option when compared with the classic detectors from literature under Rayleigh flat fading channel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BER" title="BER">BER</a>, <a href="https://publications.waset.org/abstracts/search?q=DS-CDMA%20multiuser%20detection" title=" DS-CDMA multiuser detection"> DS-CDMA multiuser detection</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20HBMO" title=" hybrid HBMO"> hybrid HBMO</a>, <a href="https://publications.waset.org/abstracts/search?q=simulated%20annealing" title=" simulated annealing "> simulated annealing </a> </p> <a href="https://publications.waset.org/abstracts/13833/application-of-hybrid-honey-bees-mating-optimization-algorithm-in-multiuser-detection-of-wireless-communication-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13833.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5077</span> Cooperative Spectrum Sensing Using Hybrid IWO/PSO Algorithm in Cognitive Radio Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deepa%20Das">Deepa Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Susmita%20Das"> Susmita Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cognitive Radio (CR) is an emerging technology to combat the spectrum scarcity issues. This is achieved by consistently sensing the spectrum, and detecting the under-utilized frequency bands without causing undue interference to the primary user (PU). In soft decision fusion (SDF) based cooperative spectrum sensing, various evolutionary algorithms have been discussed, which optimize the weight coefficient vector for maximizing the detection performance. In this paper, we propose the hybrid invasive weed optimization and particle swarm optimization (IWO/PSO) algorithm as a fast and global optimization method, which improves the detection probability with a lesser sensing time. Then, the efficiency of this algorithm is compared with the standard invasive weed optimization (IWO), particle swarm optimization (PSO), genetic algorithm (GA) and other conventional SDF based methods on the basis of convergence and detection probability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cognitive%20radio" title="cognitive radio">cognitive radio</a>, <a href="https://publications.waset.org/abstracts/search?q=spectrum%20sensing" title=" spectrum sensing"> spectrum sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20decision%20fusion" title=" soft decision fusion"> soft decision fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=GA" title=" GA"> GA</a>, <a href="https://publications.waset.org/abstracts/search?q=PSO" title=" PSO"> PSO</a>, <a href="https://publications.waset.org/abstracts/search?q=IWO" title=" IWO"> IWO</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20IWO%2FPSO" title=" hybrid IWO/PSO"> hybrid IWO/PSO</a> </p> <a href="https://publications.waset.org/abstracts/9362/cooperative-spectrum-sensing-using-hybrid-iwopso-algorithm-in-cognitive-radio-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9362.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">467</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5076</span> Case-Based Reasoning: A Hybrid Classification Model Improved with an Expert's Knowledge for High-Dimensional Problems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bruno%20Trstenjak">Bruno Trstenjak</a>, <a href="https://publications.waset.org/abstracts/search?q=Dzenana%20Donko"> Dzenana Donko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Data mining and classification of objects is the process of data analysis, using various machine learning techniques, which is used today in various fields of research. This paper presents a concept of hybrid classification model improved with the expert knowledge. The hybrid model in its algorithm has integrated several machine learning techniques (Information Gain, K-means, and Case-Based Reasoning) and the expert’s knowledge into one. The knowledge of experts is used to determine the importance of features. The paper presents the model algorithm and the results of the case study in which the emphasis was put on achieving the maximum classification accuracy without reducing the number of features. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=case%20based%20reasoning" title="case based reasoning">case based reasoning</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=expert%27s%20knowledge" title=" expert's knowledge"> expert's knowledge</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20model" title=" hybrid model"> hybrid model</a> </p> <a href="https://publications.waset.org/abstracts/51511/case-based-reasoning-a-hybrid-classification-model-improved-with-an-experts-knowledge-for-high-dimensional-problems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51511.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5075</span> Hybrid Intelligent Optimization Methods for Optimal Design of Horizontal-Axis Wind Turbine Blades</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Tandis">E. Tandis</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Assareh"> E. Assareh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Designing the optimal shape of MW wind turbine blades is provided in a number of cases through evolutionary algorithms associated with mathematical modeling (Blade Element Momentum Theory). Evolutionary algorithms, among the optimization methods, enjoy many advantages, particularly in stability. However, they usually need a large number of function evaluations. Since there are a large number of local extremes, the optimization method has to find the global extreme accurately. The present paper introduces a new population-based hybrid algorithm called Genetic-Based Bees Algorithm (GBBA). This algorithm is meant to design the optimal shape for MW wind turbine blades. The current method employs crossover and neighborhood searching operators taken from the respective Genetic Algorithm (GA) and Bees Algorithm (BA) to provide a method with good performance in accuracy and speed convergence. Different blade designs, twenty-one to be exact, were considered based on the chord length, twist angle and tip speed ratio using GA results. They were compared with BA and GBBA optimum design results targeting the power coefficient and solidity. The results suggest that the final shape, obtained by the proposed hybrid algorithm, performs better compared to either BA or GA. Furthermore, the accuracy and speed convergence increases when the GBBA is employed <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Blade%20Design" title="Blade Design">Blade Design</a>, <a href="https://publications.waset.org/abstracts/search?q=Optimization" title=" Optimization"> Optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=Genetic%20Algorithm" title=" Genetic Algorithm"> Genetic Algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=Bees%20Algorithm" title=" Bees Algorithm"> Bees Algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=Genetic-Based%20Bees%20Algorithm" title=" Genetic-Based Bees Algorithm"> Genetic-Based Bees Algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=Large%20Wind%20Turbine" title=" Large Wind Turbine"> Large Wind Turbine</a> </p> <a href="https://publications.waset.org/abstracts/52022/hybrid-intelligent-optimization-methods-for-optimal-design-of-horizontal-axis-wind-turbine-blades" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5074</span> Optimum Design of Steel Space Frames by Hybrid Teaching-Learning Based Optimization and Harmony Search Algorithms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alper%20Akin">Alper Akin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Aydogdu"> Ibrahim Aydogdu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents a hybrid metaheuristic algorithm to obtain optimum designs for steel space buildings. The optimum design problem of three-dimensional steel frames is mathematically formulated according to provisions of LRFD-AISC (Load and Resistance factor design of American Institute of Steel Construction). Design constraints such as the strength requirements of structural members, the displacement limitations, the inter-story drift and the other structural constraints are derived from LRFD-AISC specification. In this study, a hybrid algorithm by using teaching-learning based optimization (TLBO) and harmony search (HS) algorithms is employed to solve the stated optimum design problem. These algorithms are two of the recent additions to metaheuristic techniques of numerical optimization and have been an efficient tool for solving discrete programming problems. Using these two algorithms in collaboration creates a more powerful tool and mitigates each other鈥檚 weaknesses. To demonstrate the powerful performance of presented hybrid algorithm, the optimum design of a large scale steel building is presented and the results are compared to the previously obtained results available in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimum%20structural%20design" title="optimum structural design">optimum structural design</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20techniques" title=" hybrid techniques"> hybrid techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=teaching-learning%20based%20optimization" title=" teaching-learning based optimization"> teaching-learning based optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=harmony%20search%20algorithm" title=" harmony search algorithm"> harmony search algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=minimum%20weight" title=" minimum weight"> minimum weight</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20space%20frame" title=" steel space frame"> steel space frame</a> </p> <a href="https://publications.waset.org/abstracts/25612/optimum-design-of-steel-space-frames-by-hybrid-teaching-learning-based-optimization-and-harmony-search-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25612.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">545</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5073</span> Multi-Objective Variable Neighborhood Search Algorithm to Solving Scheduling Problem with Transportation Times</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Majid%20Khalili">Majid Khalili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with a bi-objective hybrid no-wait flowshop scheduling problem minimizing the makespan and total weighted tardiness, in which we consider transportation times between stages. Obtaining an optimal solution for this type of complex, large-sized problem in reasonable computational time by using traditional approaches and optimization tools is extremely difficult. This paper presents a new multi-objective variable neighborhood algorithm (MOVNS). A set of experimental instances are carried out to evaluate the algorithm by advanced multi-objective performance measures. The algorithm is carefully evaluated for its performance against available algorithm by means of multi-objective performance measures and statistical tools. The related results show that a variant of our proposed MOVNS provides sound performance comparing with other algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=no-wait%20hybrid%20flowshop%20scheduling%3B%20multi-objective%20variable%20neighborhood%20algorithm%3B%20makespan%3B%20total%20weighted%20tardiness" title="no-wait hybrid flowshop scheduling; multi-objective variable neighborhood algorithm; makespan; total weighted tardiness">no-wait hybrid flowshop scheduling; multi-objective variable neighborhood algorithm; makespan; total weighted tardiness</a> </p> <a href="https://publications.waset.org/abstracts/15098/multi-objective-variable-neighborhood-search-algorithm-to-solving-scheduling-problem-with-transportation-times" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5072</span> A Hybrid Pareto-Based Swarm Optimization Algorithm for the Multi-Objective Flexible Job Shop Scheduling Problems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aydin%20Teymourifar">Aydin Teymourifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Gurkan%20Ozturk"> Gurkan Ozturk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a new hybrid particle swarm optimization algorithm is proposed for the multi-objective flexible job shop scheduling problem that is very important and hard combinatorial problem. The Pareto approach is used for solving the multi-objective problem. Several new local search heuristics are integrated into an algorithm based on the critical block concept to enhance the performance of the algorithm. The algorithm is compared with the recently published multi-objective algorithms based on benchmarks selected from the literature. Several metrics are used for quantifying performance and comparison of the achieved solutions. The algorithms are also compared based on the Weighting summation of objectives approach. The proposed algorithm can find the Pareto solutions more efficiently than the compared algorithms in less computational time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=swarm-based%20optimization" title="swarm-based optimization">swarm-based optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20search" title=" local search"> local search</a>, <a href="https://publications.waset.org/abstracts/search?q=Pareto%20optimality" title=" Pareto optimality"> Pareto optimality</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20job%20shop%20scheduling" title=" flexible job shop scheduling"> flexible job shop scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-objective%20optimization" title=" multi-objective optimization"> multi-objective optimization</a> </p> <a href="https://publications.waset.org/abstracts/72144/a-hybrid-pareto-based-swarm-optimization-algorithm-for-the-multi-objective-flexible-job-shop-scheduling-problems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72144.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5071</span> Optimal Design of Redundant Hybrid Manipulator for Minimum Singularity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arash%20Rahmani">Arash Rahmani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Ghanbari"> Ahmad Ghanbari</a>, <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Baghernezhad"> Abbas Baghernezhad</a>, <a href="https://publications.waset.org/abstracts/search?q=Babak%20Safaei"> Babak Safaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the design of parallel manipulators, usually mean value of a dexterity measure over the workspace volume is considered as the objective function to be used in optimization algorithms. The mentioned indexes in a hybrid parallel manipulator (HPM) are quite complicated to solve thanks to infinite solutions for every point within the workspace of the redundant manipulators. In this paper, spatial isotropic design axioms are extended as a well-known method for optimum design of manipulators. An upper limit for the isotropy measure of HPM is calculated and instead of computing and minimizing isotropy measure, minimizing the obtained limit is considered. To this end, two different objective functions are suggested which are obtained from objective functions of comprising modules. Finally, by using genetic algorithm (GA), the best geometric parameters for a specific hybrid parallel robot which is composed of two modified Gough-Stewart platforms (MGSP) are achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20manipulator" title="hybrid manipulator">hybrid manipulator</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20isotropy" title=" spatial isotropy"> spatial isotropy</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=optimum%20design" title=" optimum design"> optimum design</a> </p> <a href="https://publications.waset.org/abstracts/41885/optimal-design-of-redundant-hybrid-manipulator-for-minimum-singularity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41885.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5070</span> Neural Network Based Fluctuation Frequency Control in PV-Diesel Hybrid Power System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Heri%20Suryoatmojo">Heri Suryoatmojo</a>, <a href="https://publications.waset.org/abstracts/search?q=Adi%20Kurniawan"> Adi Kurniawan</a>, <a href="https://publications.waset.org/abstracts/search?q=Feby%20A.%20Pamuji"> Feby A. Pamuji</a>, <a href="https://publications.waset.org/abstracts/search?q=Nursalim"> Nursalim</a>, <a href="https://publications.waset.org/abstracts/search?q=Syaffaruddin"> Syaffaruddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Herbert%20Innah"> Herbert Innah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photovoltaic (PV) system hybrid with diesel system is utilized widely for electrification in remote area. PV output power fluctuates due to uncertainty condition of temperature and sun irradiance. When the penetration of PV power is large, the reliability of the power utility will be disturbed and seriously impact the unstable frequency of system. Therefore, designing a robust frequency controller in PV-diesel hybrid power system is very important. This paper proposes new method of frequency control application in hybrid PV-diesel system based on artificial neural network (ANN). This method can minimize the frequency deviation without smoothing PV output power that controlled by maximum power point tracking (MPPT) method. The neural network algorithm controller considers average irradiance, change of irradiance and frequency deviation. In order the show the effectiveness of proposed algorithm, the addition of battery as energy storage system is also presented. To validate the proposed method, the results of proposed system are compared with the results of similar system using MPPT only. The simulation results show that the proposed method able to suppress frequency deviation smaller compared to the results of system using MPPT only. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20storage%20system" title="energy storage system">energy storage system</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20deviation" title=" frequency deviation"> frequency deviation</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20power%20generation" title=" hybrid power generation"> hybrid power generation</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network%20algorithm" title=" neural network algorithm"> neural network algorithm</a> </p> <a href="https://publications.waset.org/abstracts/4960/neural-network-based-fluctuation-frequency-control-in-pv-diesel-hybrid-power-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4960.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">504</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5069</span> An Efficient Hybrid Approach Based on Multi-Agent System and Emergence Method for the Integration of Systematic Preventive Maintenance Policies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelhadi%20Adel">Abdelhadi Adel</a>, <a href="https://publications.waset.org/abstracts/search?q=Kadri%20Ouahab"> Kadri Ouahab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a hybrid algorithm for the integration of systematic preventive maintenance policies in hybrid flow shop scheduling to minimize makespan. We have implemented a problem-solving approach for optimizing the processing time, methods based on metaheuristics. The proposed approach is inspired by the behavior of the human body. This hybridization is between a multi-agent system and inspirations of the human body, especially genetics. The effectiveness of our approach has been demonstrated repeatedly in this paper. To solve such a complex problem, we proposed an approach which we have used advanced operators such as uniform crossover set and single point mutation. The proposed approach is applied to three preventive maintenance policies. These policies are intended to maximize the availability or to maintain a minimum level of reliability during the production chain. The results show that our algorithm outperforms existing algorithms. We assumed that the machines might be unavailable periodically during the production scheduling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-agent%20systems" title="multi-agent systems">multi-agent systems</a>, <a href="https://publications.waset.org/abstracts/search?q=emergence" title=" emergence"> emergence</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=makespan" title=" makespan"> makespan</a>, <a href="https://publications.waset.org/abstracts/search?q=systematic%20maintenance" title=" systematic maintenance"> systematic maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=scheduling" title=" scheduling"> scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20flow%20shop%20scheduling" title=" hybrid flow shop scheduling"> hybrid flow shop scheduling</a> </p> <a href="https://publications.waset.org/abstracts/46553/an-efficient-hybrid-approach-based-on-multi-agent-system-and-emergence-method-for-the-integration-of-systematic-preventive-maintenance-policies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46553.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5068</span> Intelligent Path Tracking Hybrid Fuzzy Controller for a Unicycle-Type Differential Drive Robot</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20M.%20Almeshal">Abdullah M. Almeshal</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20R.%20Alenezi"> Mohammad R. Alenezi</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Moaz"> Muhammad Moaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we discuss the performance of applying hybrid spiral dynamic bacterial chemotaxis (HSDBC) optimisation algorithm on an intelligent controller for a differential drive robot. A unicycle class of differential drive robot is utilised to serve as a basis application to evaluate the performance of the HSDBC algorithm. A hybrid fuzzy logic controller is developed and implemented for the unicycle robot to follow a predefined trajectory. Trajectories of various frictional profiles and levels were simulated to evaluate the performance of the robot at different operating conditions. Controller gains and scaling factors were optimised using HSDBC and the performance is evaluated in comparison to previously adopted optimisation algorithms. The HSDBC has proven its feasibility in achieving a faster convergence toward the optimal gains and resulted in a superior performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=differential%20drive%20robot" title="differential drive robot">differential drive robot</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20fuzzy%20controller" title=" hybrid fuzzy controller"> hybrid fuzzy controller</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=path%20tracking" title=" path tracking"> path tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=unicycle%20robot" title=" unicycle robot"> unicycle robot</a> </p> <a href="https://publications.waset.org/abstracts/30098/intelligent-path-tracking-hybrid-fuzzy-controller-for-a-unicycle-type-differential-drive-robot" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5067</span> Design of Permanent Sensor Fault Tolerance Algorithms by Sliding Mode Observer for Smart Hybrid Powerpack</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sungsik%20Jo">Sungsik Jo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyeonwoo%20Kim"> Hyeonwoo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Iksu%20Choi"> Iksu Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hunmo%20Kim"> Hunmo Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the SHP, LVDT sensor is for detecting the length changes of the EHA output, and the thrust of the EHA is controlled by the pressure sensor. Sensor is possible to cause hardware fault by internal problem or external disturbance. The EHA of SHP is able to be uncontrollable due to control by feedback from uncertain information, on this paper; the sliding mode observer algorithm estimates the original sensor output information in permanent sensor fault. The proposed algorithm shows performance to recovery fault of disconnection and short circuit basically, also the algorithm detect various of sensor fault mode. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smart%20hybrid%20powerpack%20%28SHP%29" title="smart hybrid powerpack (SHP)">smart hybrid powerpack (SHP)</a>, <a href="https://publications.waset.org/abstracts/search?q=electro%20hydraulic%20actuator%20%28EHA%29" title=" electro hydraulic actuator (EHA)"> electro hydraulic actuator (EHA)</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20sensor%20fault%20tolerance" title=" permanent sensor fault tolerance"> permanent sensor fault tolerance</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20mode%20observer%20%28SMO%29" title=" sliding mode observer (SMO)"> sliding mode observer (SMO)</a>, <a href="https://publications.waset.org/abstracts/search?q=graphic%20user%20interface%20%28GUI%29" title=" graphic user interface (GUI)"> graphic user interface (GUI)</a> </p> <a href="https://publications.waset.org/abstracts/9250/design-of-permanent-sensor-fault-tolerance-algorithms-by-sliding-mode-observer-for-smart-hybrid-powerpack" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9250.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">549</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5066</span> A Hybrid Distributed Algorithm for Solving Job Shop Scheduling Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aydin%20Teymourifar">Aydin Teymourifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Gurkan%20Ozturk"> Gurkan Ozturk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a distributed hybrid algorithm is proposed for solving the job shop scheduling problem. The suggested method executes different artificial neural networks, heuristics and meta-heuristics simultaneously on more than one machine. The neural networks are used to control the constraints of the problem while the meta-heuristics search the global space and the heuristics are used to prevent the premature convergence. To attain an efficient distributed intelligent method for solving big and distributed job shop scheduling problems, Apache Spark and Hadoop frameworks are used. In the algorithm implementation and design steps, new approaches are applied. Comparison between the proposed algorithm and other efficient algorithms from the literature shows its efficiency, which is able to solve large size problems in short time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20algorithms" title="distributed algorithms">distributed algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=Apache%20Spark" title=" Apache Spark"> Apache Spark</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadoop" title=" Hadoop"> Hadoop</a>, <a href="https://publications.waset.org/abstracts/search?q=job%20shop%20scheduling" title=" job shop scheduling"> job shop scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a> </p> <a href="https://publications.waset.org/abstracts/72320/a-hybrid-distributed-algorithm-for-solving-job-shop-scheduling-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72320.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hybrid%20algorithm&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hybrid%20algorithm&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hybrid%20algorithm&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hybrid%20algorithm&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hybrid%20algorithm&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hybrid%20algorithm&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hybrid%20algorithm&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hybrid%20algorithm&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hybrid%20algorithm&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hybrid%20algorithm&page=169">169</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hybrid%20algorithm&page=170">170</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hybrid%20algorithm&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>