CINXE.COM

CSPDarknet53 Explained | Papers With Code

<!doctype html> <html lang="en"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no"> <script> const GTAG_ENABLED = true ; const GTAG_TRACKING_ID = "UA-121182717-1"; const SENTRY_DSN_FRONTEND = "".trim(); const GLOBAL_CSRF_TOKEN = 'nwgDByhxZapjaY8UgH0MCZAA5jNZVISveQSOf8UdcSxiOwNST7y5PwfDUXX0ucL0'; const MEDIA_URL = "https://production-media.paperswithcode.com/"; const ASSETS_URL = "https://production-assets.paperswithcode.com"; run_after_frontend_loaded = window.run_after_frontend_loaded || []; </script> <link rel="preconnect" href="https://production-assets.paperswithcode.com"><link rel="dns-prefetch" href="https://production-assets.paperswithcode.com"><link rel="preload" as="font" type="font/woff2" href="https://production-assets.paperswithcode.com/perf/fonts/65e877e527022735c1a1.woff2" crossorigin><link rel="preload" as="font" type="font/woff2" href="https://production-assets.paperswithcode.com/perf/fonts/917632e36982ca7933c8.woff2" crossorigin><link rel="preload" as="font" type="font/woff2" href="https://production-assets.paperswithcode.com/perf/fonts/f1405bd8a987c2ea8a67.woff2" crossorigin><script>(()=>{if(GTAG_ENABLED){const t=document.createElement("script");function n(){window.dataLayer.push(arguments)}t.src=`https://www.googletagmanager.com/gtag/js?id=${GTAG_TRACKING_ID}`,document.head.appendChild(t),window.dataLayer=window.dataLayer||[],window.gtag=n,n("js",new Date),n("config",GTAG_TRACKING_ID),window.captureOutboundLink=function(t){n("event","click",{event_category:"outbound",event_label:t})}}else window.captureOutboundLink=function(n){document.location=n}})();</script><link rel="preload" as="script" href="https://production-assets.paperswithcode.com/perf/766.4af6b88b.js"><link rel="preload" as="script" href="https://production-assets.paperswithcode.com/perf/351.a22a9607.js"><link rel="preload" as="script" href="https://production-assets.paperswithcode.com/perf/814.49dcf06c.js"><link rel="preload" as="style" href="https://production-assets.paperswithcode.com/perf/918.c41196c3.css"><link rel="preload" as="style" href="https://production-assets.paperswithcode.com/perf/view_method.e499b4af.css"><link rel="preload" as="script" href="https://production-assets.paperswithcode.com/perf/view_method.c1f0a493.js"><link rel="stylesheet" href="https://production-assets.paperswithcode.com/perf/918.c41196c3.css"><link rel="stylesheet" href="https://production-assets.paperswithcode.com/perf/view_method.e499b4af.css"> <!-- Metadata --> <title>CSPDarknet53 Explained | Papers With Code</title> <meta name="description" content="CSPDarknet53 is a convolutional neural network and backbone for object detection that uses DarkNet-53. It employs a CSPNet strategy to partition the feature map of the base layer into two parts and then merges them through a cross-stage hierarchy. The use of a split and merge strategy allows for more gradient flow through the network. This CNN is used as the backbone for YOLOv4." /> <!-- Open Graph protocol metadata --> <meta property="og:title" content="Papers with Code - CSPDarknet53 Explained"> <meta property="og:description" content="CSPDarknet53 is a convolutional neural network and backbone for object detection that uses DarkNet-53. It employs a CSPNet strategy to partition the feature map of the base layer into two parts and then merges them through a cross-stage hierarchy. The use of a split and merge strategy allows for more gradient flow through the network. This CNN is used as the backbone for YOLOv4."> <meta property="og:image" content="https://production-media.paperswithcode.com/methods/Screen_Shot_2020-06-25_at_3.55.20_PM_fTGbeXg.png"> <meta property="og:url" content="https://paperswithcode.com/method/cspdarknet53"> <!-- Twitter metadata --> <meta name="twitter:card" content="summary_large_image"> <meta name="twitter:site" content="@paperswithcode"> <meta name="twitter:title" content="Papers with Code - CSPDarknet53 Explained"> <meta name="twitter:description" content="CSPDarknet53 is a convolutional neural network and backbone for object detection that uses DarkNet-53. It employs a CSPNet strategy to partition the feature map of the base layer into two parts and then merges them through a cross-stage hierarchy. The use of a split and merge strategy allows for more gradient flow through the network. This CNN is used as the backbone for YOLOv4."> <meta name="twitter:creator" content="@paperswithcode"> <meta name="twitter:url" content="https://paperswithcode.com/method/cspdarknet53"> <meta name="twitter:domain" content="paperswithcode.com"> <!-- JSON LD --> <script type="application/ld+json">{ "@context": "http://schema.org", "@graph": { "@type": "CreativeWork", "@id": "cspdarknet53", "name": "CSPDarknet53 Explained", "description": "CSPDarknet53 is a convolutional neural network and backbone for object detection that uses DarkNet-53. It employs a CSPNet strategy to partition the feature map of the base layer into two parts and then merges them through a cross-stage hierarchy. The use of a split and merge strategy allows for more gradient flow through the network. \n\nThis CNN is used as the backbone for YOLOv4.", "url": "https://paperswithcode.com/method/cspdarknet53", "image": "https://production-media.paperswithcode.com/methods/Screen_Shot_2020-06-25_at_3.55.20_PM_fTGbeXg.png", "headline": "CSPDarknet53 Explained" } }</script> <meta name="theme-color" content="#fff"/> <link rel="manifest" href="https://production-assets.paperswithcode.com/static/manifest.web.json"> </head> <body> <nav class="navbar navbar-expand-lg navbar-light header"> <a class="navbar-brand" href="/"> <span class=" icon-wrapper" data-name="pwc"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path d="M88 128h48v256H88zm144 0h48v256h-48zm-72 16h48v224h-48zm144 0h48v224h-48zm72-16h48v256h-48z"/><path d="M104 104V56H16v400h88v-48H64V104zm304-48v48h40v304h-40v48h88V56z"/></svg></span> </a> <div class="navbar-mobile-twitter d-lg-none"> <a rel="noreferrer" href="https://twitter.com/paperswithcode"> <span class=" icon-wrapper icon-fa icon-fa-brands" data-name="twitter"><svg viewBox="0 0 512.001 515.25" xmlns="http://www.w3.org/2000/svg"><path d="M459.37 152.016c.326 4.548.326 9.097.326 13.645 0 138.72-105.583 298.558-298.559 298.558C101.685 464.22 46.457 447 0 417.114c8.447.973 16.568 1.298 25.34 1.298 49.054 0 94.213-16.568 130.274-44.832-46.132-.975-84.792-31.188-98.113-72.772 6.499.975 12.996 1.624 19.819 1.624 9.42 0 18.843-1.3 27.613-3.573-48.08-9.747-84.142-51.98-84.142-102.984v-1.3c13.968 7.798 30.213 12.67 47.43 13.32-28.263-18.843-46.78-51.006-46.78-87.391 0-19.492 5.196-37.36 14.294-52.954 51.654 63.674 129.3 105.258 216.364 109.807-1.624-7.797-2.599-15.918-2.599-24.04 0-57.827 46.782-104.934 104.934-104.934 30.214 0 57.502 12.67 76.671 33.136 23.715-4.548 46.455-13.319 66.599-25.34-7.798 24.367-24.366 44.834-46.132 57.828 21.117-2.274 41.584-8.122 60.426-16.244-14.292 20.791-32.161 39.309-52.628 54.253z"/></svg></span> </a> </div> <button class="navbar-toggler" type="button" data-toggle="collapse" data-bs-toggle="collapse" data-target="#top-menu" data-bs-target="#top-menu" aria-controls="top-menu" aria-expanded="false" aria-label="Toggle navigation" > <span class="navbar-toggler-icon"></span> </button> <div class="collapse navbar-collapse" id="top-menu"> <ul class="navbar-nav mr-auto navbar-nav__left light-header"> <li class="nav-item header-search"> <form action="/search" method="get" id="id_global_search_form" autocomplete="off"> <input type="text" name="q_meta" style="display:none" id="q_meta" /> <input type="hidden" name="q_type" id="q_type" /> <input id="id_global_search_input" autocomplete="off" value="" name='q' class="global-search" type="search" placeholder='Search'/> <button type="submit" class="icon"><span class=" icon-wrapper icon-fa icon-fa-light" data-name="search"><svg viewBox="0 0 512.025 520.146" xmlns="http://www.w3.org/2000/svg"><path d="M508.5 482.6c4.7 4.7 4.7 12.3 0 17l-9.9 9.9c-4.7 4.7-12.3 4.7-17 0l-129-129c-2.2-2.3-3.5-5.3-3.5-8.5v-10.2C312 396 262.5 417 208 417 93.1 417 0 323.9 0 209S93.1 1 208 1s208 93.1 208 208c0 54.5-21 104-55.3 141.1H371c3.2 0 6.2 1.2 8.5 3.5zM208 385c97.3 0 176-78.7 176-176S305.3 33 208 33 32 111.7 32 209s78.7 176 176 176z"/></svg></span></button> </form> </li> <li class="nav-item"> <a class="nav-link" href="/sota"> Browse State-of-the-Art </a> </li> <li class="nav-item"> <a class="nav-link" href="/datasets"> Datasets </a> </li> <li class="nav-item"> <a class="nav-link" href="/methods">Methods</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" role="button" id="navbarDropdownRepro" data-toggle="dropdown" data-bs-toggle="dropdown" aria-haspopup="true" aria-expanded="false" > More </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownRepro"> <a class="dropdown-item" href="/newsletter">Newsletter</a> <a class="dropdown-item" href="/rc2022">RC2022</a> <div class="dropdown-divider"></div> <a class="dropdown-item" href="/about">About</a> <a class="dropdown-item" href="/trends">Trends</a> <a class="dropdown-item" href="https://portal.paperswithcode.com/"> Portals </a> <a class="dropdown-item" href="/libraries"> Libraries </a> </div> </li> </ul> <ul class="navbar-nav ml-auto navbar-nav__right navbar-subscribe justify-content-center align-items-center"> <li class="nav-item"> <a class="nav-link" rel="noreferrer" href="https://twitter.com/paperswithcode"> <span class="nav-link-social-icon icon-wrapper icon-fa icon-fa-brands" data-name="twitter"><svg viewBox="0 0 512.001 515.25" xmlns="http://www.w3.org/2000/svg"><path d="M459.37 152.016c.326 4.548.326 9.097.326 13.645 0 138.72-105.583 298.558-298.559 298.558C101.685 464.22 46.457 447 0 417.114c8.447.973 16.568 1.298 25.34 1.298 49.054 0 94.213-16.568 130.274-44.832-46.132-.975-84.792-31.188-98.113-72.772 6.499.975 12.996 1.624 19.819 1.624 9.42 0 18.843-1.3 27.613-3.573-48.08-9.747-84.142-51.98-84.142-102.984v-1.3c13.968 7.798 30.213 12.67 47.43 13.32-28.263-18.843-46.78-51.006-46.78-87.391 0-19.492 5.196-37.36 14.294-52.954 51.654 63.674 129.3 105.258 216.364 109.807-1.624-7.797-2.599-15.918-2.599-24.04 0-57.827 46.782-104.934 104.934-104.934 30.214 0 57.502 12.67 76.671 33.136 23.715-4.548 46.455-13.319 66.599-25.34-7.798 24.367-24.366 44.834-46.132 57.828 21.117-2.274 41.584-8.122 60.426-16.244-14.292 20.791-32.161 39.309-52.628 54.253z"/></svg></span> </a> </li> <li class="nav-item"> <a id="signin-link" class="nav-link" href="/accounts/login?next=/method/cspdarknet53">Sign In</a> </li> </ul> </div> </nav> <!-- Page modals --> <div class="modal fade" id="emailModal" tabindex="-1" role="dialog" aria-labelledby="emailModalLabel" aria-hidden="true"> <div class="modal-dialog" role="document"> <div class="modal-content"> <div class="modal-header"> <h3 class="modal-title" id="emailModalLabel">Subscribe to the PwC Newsletter</h3> <button type="button" class="close" data-dismiss="modal" data-bs-dismiss="modal" aria-label="Close"> <span aria-hidden="true">&times;</span> </button> </div> <form action="" method="post"> <div class="modal-body"> <div class="modal-body-info-text"> Stay informed on the latest trending ML papers with code, research developments, libraries, methods, and datasets.<br/><br/> <a href="/newsletter">Read previous issues</a> </div> <input type="hidden" name="csrfmiddlewaretoken" value="nwgDByhxZapjaY8UgH0MCZAA5jNZVISveQSOf8UdcSxiOwNST7y5PwfDUXX0ucL0"> <input placeholder="Enter your email" type="email" class="form-control pwc-email" name="address" id="id_address" max_length="100" required> </div> <div class="modal-footer"> <button type="submit" class="btn btn-primary">Subscribe</button> </div> </form> </div> </div> </div> <!-- Login --> <div class="modal fade" id="loginModal" tabindex="-1" role="dialog" aria-labelledby="loginModalLabel" aria-hidden="true"> <div class="modal-dialog" role="document"> <div class="modal-content"> <div class="modal-header"> <h5 class="modal-title" id="loginModalLabel">Join the community</h5> <button type="button" class="close btn-close" data-dismiss="modal" data-bs-dismiss="modal" aria-label="Close"> <span aria-hidden="true">&times;</span> </button> </div> <div class="login-modal-message"> You need to <a href="/accounts/login?next=/method/cspdarknet53">log in</a> to edit.<br/> You can <a href="/accounts/register?next=/method/cspdarknet53">create a new account</a> if you don't have one.<br/><br/> </div> </div> </div> </div> <!-- Edit Method --> <div class="modal fade" id="editMethod" role="dialog" aria-labelledby="editMethodLabel" aria-hidden="true"> <div class="modal-dialog modal-lg" role="document"> <div class="modal-content"> <div class="modal-header"> <h5 class="modal-title" id="editMethodLabel">Edit Method</h5> <button type="button" class="close btn-close" data-bs-dismiss="modal" aria-label="Close"> <span aria-hidden="true">&times;</span> </button> </div> <div class="modal-body"> <form action="" method="post" enctype="multipart/form-data"> <input type="hidden" name="csrfmiddlewaretoken" value="nwgDByhxZapjaY8UgH0MCZAA5jNZVISveQSOf8UdcSxiOwNST7y5PwfDUXX0ucL0"> <div id="div_id_name" class="form-group"> <label for="id_name" class=" requiredField"> Method Name:<span class="asteriskField">*</span> </label> <div class=""> <input type="text" name="name" value="CSPDarknet53" maxlength="200" class="textinput textInput form-control" required id="id_name"> </div> </div> <div id="div_id_full_name" class="form-group"> <label for="id_full_name" class=" requiredField"> Method Full Name:<span class="asteriskField">*</span> </label> <div class=""> <input type="text" name="full_name" value="CSPDarknet53" maxlength="200" class="textinput textInput form-control" required id="id_full_name"> </div> </div> <div id="div_id_description" class="form-group"> <label for="id_description" class=""> Description with Markdown (optional): </label> <div class=""> <textarea name="description" cols="40" rows="12" class="textarea form-control" id="id_description"> **CSPDarknet53** is a convolutional neural network and backbone for object detection that uses [DarkNet-53](https://paperswithcode.com/method/darknet-53). It employs a CSPNet strategy to partition the feature map of the base layer into two parts and then merges them through a cross-stage hierarchy. The use of a split and merge strategy allows for more gradient flow through the network. This CNN is used as the backbone for [YOLOv4](https://paperswithcode.com/method/yolov4).</textarea> </div> </div> <div id="div_id_code_snippet_url" class="form-group"> <label for="id_code_snippet_url" class=""> Code Snippet URL (optional): </label> <div class=""> <input type="text" name="code_snippet_url" value="https://github.com/Tianxiaomo/pytorch-YOLOv4/blob/be3a20bb4a87988b30dddb018d74ee677d1434e8/tool/darknet2pytorch.py#L134" maxlength="200" class="textinput textInput form-control" id="id_code_snippet_url"> </div> </div> <div id="div_id_image" class="form-group"> <label for="id_image" class=""> Image </label> <div class=""> Currently: <a href="https://production-media.paperswithcode.com/methods/Screen_Shot_2020-06-25_at_3.55.20_PM_fTGbeXg.png">methods/Screen_Shot_2020-06-25_at_3.55.20_PM_fTGbeXg.png</a> <input type="checkbox" name="image-clear" id="image-clear_id"> <label for="image-clear_id">Clear</label><br> Change: <input type="file" name="image" accept="image/*" class="clearablefileinput form-control-file" id="id_image"> </div> </div> <div class="modal-footer"> <button type="submit" class="btn btn-primary"> Submit </button> </div> </form> </div> </div> </div> </div> <!-- Add Collection --> <div class="modal fade" id="addCollection" role="dialog" aria-labelledby="addCollectionLabel" aria-hidden="true"> <div class="modal-dialog" role="document"> <div class="modal-content"> <div class="modal-header"> <h5 class="modal-title" id="addCollectionLabel">Add A Method Collection</h5> <button type="button" class="close btn-close" data-bs-dismiss="modal" aria-label="Close"> <span aria-hidden="true">&times;</span> </button> </div> <div class="modal-body"> <div class="current-tasks-title">Attached collections:</div> <ul class="list-unstyled"> <li> <a href="/methods/category/convolutional-neural-networks"> <span class="badge badge-primary">CONVOLUTIONAL NEURAL NETWORKS</span> </a> </li> </ul> <form action="" method="post"> <input type="hidden" name="csrfmiddlewaretoken" value="nwgDByhxZapjaY8UgH0MCZAA5jNZVISveQSOf8UdcSxiOwNST7y5PwfDUXX0ucL0"> <div id="div_id_collection" class="form-group"> <label for="id_collection" class=""> Add: </label> <div class=""> <select name="collection" class="modelselect2 form-control" id="id_collection" data-autocomplete-light-language="en" data-autocomplete-light-url="/method-collection-autocomplete/" data-autocomplete-light-function="select2"> <option value="" selected>---------</option> </select> </div> </div> <div class="modal-help-text"> Not in the list?<br/> <a href="#" id="show-new-collection-form-hidden"> <span class=" icon-wrapper icon-ion" data-name="add"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path fill="none" stroke="#000" stroke-linecap="round" stroke-linejoin="round" stroke-width="32" d="M256 112v288m144-144H112"/></svg></span> Create a new collection</a>. </div> <div class="new-collection-form-hidden"> <div id="div_id_new_collection_name" class="form-group"> <label for="id_new_collection_name" class=""> New collection name: </label> <div class=""> <input type="text" name="new_collection_name" maxlength="200" class="textinput textInput form-control" id="id_new_collection_name"> </div> </div> <div id="div_id_new_collection_area" class="form-group"> <label for="id_new_collection_area" class=""> Top-level area: </label> <div class=""> <select name="new_collection_area" class="select form-control" id="id_new_collection_area"> <option value="" selected>---------</option> <option value="7">Audio</option> <option value="1">Computer Vision</option> <option value="3">General</option> <option value="4">Graphs</option> <option value="2">Natural Language Processing</option> <option value="5">Reinforcement Learning</option> <option value="6">Sequential</option> </select> </div> </div> <div id="div_id_new_collection_parent" class="form-group"> <label for="id_new_collection_parent" class=""> Parent collection (if any): </label> <div class=""> <select name="new_collection_parent" class="modelselect2 form-control" id="id_new_collection_parent" data-autocomplete-light-language="en" data-autocomplete-light-url="/method-collection-autocomplete/" data-autocomplete-light-function="select2"> <option value="" selected>---------</option> </select> </div> </div> <div id="div_id_new_collection_desc" class="form-group"> <label for="id_new_collection_desc" class=""> Description (optional): </label> <div class=""> <textarea name="new_collection_desc" cols="40" rows="3" class="textarea form-control" id="id_new_collection_desc"> </textarea> </div> </div> </div> <div class="modal-footer"> <button type="submit" class="btn btn-primary"> Submit </button> </div> </form> </div> </div> </div> </div> <!-- Remove Collection --> <div class="modal fade" id="removeCollection" tabindex="-1" role="dialog" aria-labelledby="removeCollectionLabel" aria-hidden="true"> <div class="modal-dialog" role="document"> <div class="modal-content"> <div class="modal-header"> <h5 class="modal-title" id="removeCollectionLabel">Remove a collection</h5> <button type="button" class="close btn-close" data-bs-dismiss="modal" aria-label="Close"> <span aria-hidden="true">&times;</span> </button> </div> <form action="" method="post"> <div class="modal-body"> <ul class="list-unstyled"> <form action="" method="post"> <li> <a href="/methods/category/convolutional-neural-networks"> <span class="badge badge-primary">CONVOLUTIONAL NEURAL NETWORKS</span> </a> <input type="hidden" name="csrfmiddlewaretoken" value="nwgDByhxZapjaY8UgH0MCZAA5jNZVISveQSOf8UdcSxiOwNST7y5PwfDUXX0ucL0"> <input type="hidden" name="remove_collection_pk" value="126"> <button type="submit" class="btn btn-danger" style="width:2.5em">- </button> </li> </form> </ul> </div> </form> </div> </div> </div> <!-- Add Component --> <div class="modal fade" id="addComponent" role="dialog" aria-labelledby="addComponentLabel" aria-hidden="true"> <div class="modal-dialog" role="document"> <div class="modal-content"> <div class="modal-header"> <h5 class="modal-title" id="addComponentLabel">Add A Method Component</h5> <button type="button" class="close btn-close" data-bs-dismiss="modal" aria-label="Close"> <span aria-hidden="true">&times;</span> </button> </div> <div class="modal-body"> <div class="current-tasks-title">Attached components:</div> <ul class="list-unstyled"> <li> <a href="/method/darknet-53"> <span class="badge badge-primary">DARKNET-53</span> </a> </li> </ul> <form action="" method="post"> <input type="hidden" name="csrfmiddlewaretoken" value="nwgDByhxZapjaY8UgH0MCZAA5jNZVISveQSOf8UdcSxiOwNST7y5PwfDUXX0ucL0"> <div id="div_id_dependency" class="form-group"> <label for="id_dependency" class=" requiredField"> Add:<span class="asteriskField">*</span> </label> <div class=""> <select name="dependency" class="modelselect2 form-control" required id="id_dependency" data-autocomplete-light-language="en" data-autocomplete-light-url="/method-autocomplete/" data-autocomplete-light-function="select2"> <option value="" selected>---------</option> </select> </div> </div> <div class="form-group"> <div id="div_id_optional" class="form-check"> <input type="checkbox" name="optional" class="checkboxinput form-check-input" id="id_optional"> <label for="id_optional" class="form-check-label"> Tick if this dependency is optional </label> </div> </div> <div class="modal-footer"> <button type="submit" class="btn btn-primary"> Submit </button> </div> </form> </div> </div> </div> </div> <!-- Remove Component --> <div class="modal fade" id="removeComponent" tabindex="-1" role="dialog" aria-labelledby="removeComponentLabel" aria-hidden="true"> <div class="modal-dialog" role="document"> <div class="modal-content"> <div class="modal-header"> <h5 class="modal-title" id="removeCompoenntnLabel">Remove a method component</h5> <button type="button" class="close btn-close" data-bs-dismiss="modal" aria-label="Close"> <span aria-hidden="true">&times;</span> </button> </div> <form action="" method="post"> <div class="modal-body"> <ul class="list-unstyled"> <form action="" method="post"> <li> <a href="/method/darknet-53"> <span class="badge badge-primary">DARKNET-53</span> </a> <input type="hidden" name="csrfmiddlewaretoken" value="nwgDByhxZapjaY8UgH0MCZAA5jNZVISveQSOf8UdcSxiOwNST7y5PwfDUXX0ucL0"> <input type="hidden" name="remove_component_pk" value="238"> <button type="submit" class="btn btn-danger" style="width:2.5em">- </button> </li> </form> </ul> </div> </form> </div> </div> </div> <div class="container content content-buffer "> <div class="mobile-width"> <div class="method-header"> <a href="/methods/category/convolutional-neural-networks"> <span class="badge badge-primary"> <img src="https://production-media.paperswithcode.com/thumbnails/method/89d208bf-ac5b-4330-9f3b-b87f820f3ac2.jpg"> <span>Convolutional Neural Networks</span> </span> </a> <div class="method-title"> <div class="row"> <div class="col-md-11"> <h1>CSPDarknet53</h1> <span class="method-subtitle">Introduced by Bochkovskiy et al. in <a href="/paper/yolov4-optimal-speed-and-accuracy-of-object">YOLOv4: Optimal Speed and Accuracy of Object Detection</a></span> </div> <div class="col-md-1"> <div class="float-right">聽 <div class="dropdown edit-button"> <a data-bs-toggle="modal" data-bs-target="#loginModal"> <span class="badge badge-method-edit" style="padding-top:10px;"><span class=" icon-wrapper icon-fa icon-fa-solid" data-name="edit"><svg viewBox="0 0 576 514.999" xmlns="http://www.w3.org/2000/svg"><path d="M402.6 85.198l90.2 90.2c3.8 3.8 3.8 10 0 13.8l-218.399 218.4-92.8 10.3c-12.4 1.4-22.9-9.1-21.5-21.5l10.3-92.8 218.4-218.4c3.799-3.8 10-3.8 13.799 0zm162-22.9c15.2 15.2 15.2 39.9 0 55.2l-35.4 35.4c-3.8 3.8-10 3.8-13.8 0l-90.2-90.2c-3.8-3.8-3.8-10 0-13.8l35.4-35.4c15.3-15.2 40-15.2 55.2 0zM384 348.198c0-3.2 1.3-6.2 3.5-8.5l40-40c7.6-7.5 20.5-2.2 20.5 8.5v157.8c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48v-352c0-26.5 21.5-48 48-48h285.8c10.7 0 16.1 12.9 8.5 20.5l-40 40c-2.3 2.2-5.3 3.5-8.5 3.5H64v320h320v-101.8z"/></svg></span> Edit</span> </a> </div> </div> </div> </div> </div> <div class="method-content" style="margin-top: 2rem;"> <div class="row"> <div class="col-md-8 description"> <p><strong>CSPDarknet53</strong> is a convolutional neural network and backbone for object detection that uses <a href="https://paperswithcode.com/method/darknet-53">DarkNet-53</a>. It employs a CSPNet strategy to partition the feature map of the base layer into two parts and then merges them through a cross-stage hierarchy. The use of a split and merge strategy allows for more gradient flow through the network. </p> <p>This CNN is used as the backbone for <a href="https://paperswithcode.com/method/yolov4">YOLOv4</a>.</p> <span class="description-source"> Source: <a href="https://arxiv.org/abs/2004.10934v1"><span class=" icon-wrapper icon-ion" data-name="document-outline"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M416 221.25V416a48 48 0 0 1-48 48H144a48 48 0 0 1-48-48V96a48 48 0 0 1 48-48h98.75a32 32 0 0 1 22.62 9.37l141.26 141.26a32 32 0 0 1 9.37 22.62z" fill="none" stroke="#000" stroke-linejoin="round" stroke-width="32"/><path d="M256 56v120a32 32 0 0 0 32 32h120" fill="none" stroke="#000" stroke-linecap="round" stroke-linejoin="round" stroke-width="32"/></svg></span> YOLOv4: Optimal Speed and Accuracy of Object Detection</a> </span> <div class="context"> <div class="row"> <div class="col-md-12"> <a href="https://arxiv.org/abs/2004.10934v1" onclick="captureOutboundLink('https://arxiv.org/abs/2004.10934v1'); return true;" class="badge badge-light"> Read Paper </a> <a href="https://github.com/Tianxiaomo/pytorch-YOLOv4/blob/be3a20bb4a87988b30dddb018d74ee677d1434e8/tool/darknet2pytorch.py#L134" onclick="captureOutboundLink('https://github.com/Tianxiaomo/pytorch-YOLOv4/blob/be3a20bb4a87988b30dddb018d74ee677d1434e8/tool/darknet2pytorch.py#L134'); return true;" class="badge badge-light"> See Code </a> </div> </div> </div> </div> <div class="col-md-4"> <a href="#" id="pop"> <a href="https://production-media.paperswithcode.com/methods/Screen_Shot_2020-06-25_at_3.55.20_PM_fTGbeXg.png" data-lightbox="imageresource"> <img id="imageresource" width=100% src="https://production-media.paperswithcode.com/methods/Screen_Shot_2020-06-25_at_3.55.20_PM_fTGbeXg.png"> </a> </a> <div class="modal fade" id="imagemodal" tabindex="-1" role="dialog" aria-labelledby="imagePreview" aria-hidden="true"> <div class="modal-dialog modal-lg"> <div class="modal-content"> <div class="modal-body text-center"> <img class="method-image" src="" id="imagepreview" style="max-width: 750px;"> </div> </div> </div> </div> </div> </div> <div id="papers"> <h4 style="margin-bottom: 0.5rem">Papers</h4> <hr> <div class="sota-table-preview papers-datatable-component"> <table style="width: 100% !important;" id="datatable-papers" class="table-striped table-responsive"> <thead style="width: 100% !important;"> <tr> <th style="text-left"><span>Paper</span></th> <th class="text-center"><span>Code</span></th> <th class="text-center"><span>Results</span></th> <th class="text-right"><span>Date</span></th> <th class="text-center"><span>Stars</span></th> </tr> </thead> </table> </div> <script> const DATATABLE_PAPERS_FILTER_NAME = 'papermethod__method_id'; const DATATABLE_PAPERS_FILTER_VALUE = '30'; </script> </div> <div id="tasks"> <h4 style="margin-bottom: 0.5rem">Tasks</h4> <hr> <div class="row"> <div class="col-lg-6"> <figure class="highcharts-figure"> <div id="usage-container"></div> </figure> </div> <div class="col-lg-6 task-methods"> <table> <tr> <th>Task</th> <th class="text-right">Papers</th> <th class="text-right">Share</th> </tr> <tr> <td><span class="dot" style="background-color: #2f7ed8"></span> <a href="/task/object-detection">Object Detection</a> </td> <td class="text-right">73</td> <td class="text-right">25.35%</td> </tr> <tr> <td><span class="dot" style="background-color: #0d233a"></span> <a href="/task/object">Object</a> </td> <td class="text-right">42</td> <td class="text-right">14.58%</td> </tr> <tr> <td><span class="dot" style="background-color: #8bbc21"></span> <a href="/task/real-time-object-detection">Real-Time Object Detection</a> </td> <td class="text-right">15</td> <td class="text-right">5.21%</td> </tr> <tr> <td><span class="dot" style="background-color: #f28f43"></span> <a href="/task/deep-learning">Deep Learning</a> </td> <td class="text-right">9</td> <td class="text-right">3.13%</td> </tr> <tr> <td><span class="dot" style="background-color: rgb(128, 133, 233)"></span> <a href="/task/autonomous-driving">Autonomous Driving</a> </td> <td class="text-right">8</td> <td class="text-right">2.78%</td> </tr> <tr> <td><span class="dot" style="background-color: rgb(241, 92, 128)"></span> <a href="/task/semantic-segmentation">Semantic Segmentation</a> </td> <td class="text-right">6</td> <td class="text-right">2.08%</td> </tr> <tr> <td><span class="dot" style="background-color: rgb(228, 211, 84)"></span> <a href="/task/object-tracking">Object Tracking</a> </td> <td class="text-right">6</td> <td class="text-right">2.08%</td> </tr> <tr> <td><span class="dot" style="background-color: rgb(43, 144, 143)"></span> <a href="/task/2d-object-detection">2D Object Detection</a> </td> <td class="text-right">6</td> <td class="text-right">2.08%</td> </tr> <tr> <td><span class="dot" style="background-color: rgb(255, 116, 116)"></span> <a href="/task/multi-object-tracking">Multi-Object Tracking</a> </td> <td class="text-right">5</td> <td class="text-right">1.74%</td> </tr> </table> </div> </div> </div> <div id="trends"> <h4 style="margin-bottom: 0.5rem">Usage Over Time</h4> <hr> <figure style="margin-top: 2.5rem" class="highcharts-figure"> <div id="container"></div> </figure> <span class="experimental-note hidden-element"><span class=" icon-wrapper icon-ion" data-name="flask-outline"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path fill="none" stroke="#000" stroke-linecap="round" stroke-miterlimit="10" stroke-width="32" d="M176 48h160M118 304h276M208 48v93.48a64.09 64.09 0 0 1-9.88 34.18L73.21 373.49C48.4 412.78 76.63 464 123.08 464h265.84c46.45 0 74.68-51.22 49.87-90.51L313.87 175.66a64.09 64.09 0 0 1-9.87-34.18V48"/></svg></span> This feature is experimental; we are continuously improving our matching algorithm.</span> </div> <div id="components"> <h4 style="margin-bottom: 0.5rem">Components</h4> <hr> <table> <tr> <th>Component</th> <th>Type</th> <th class="hidden-element"> <div class="float-right"> <div class="dropdown edit-button"> <button class="dropdown-toggle badge badge-edit" type="button" id="compEditMenu" data-bs-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> <span class=" icon-wrapper icon-fa icon-fa-solid" data-name="edit"><svg viewBox="0 0 576 514.999" xmlns="http://www.w3.org/2000/svg"><path d="M402.6 85.198l90.2 90.2c3.8 3.8 3.8 10 0 13.8l-218.399 218.4-92.8 10.3c-12.4 1.4-22.9-9.1-21.5-21.5l10.3-92.8 218.4-218.4c3.799-3.8 10-3.8 13.799 0zm162-22.9c15.2 15.2 15.2 39.9 0 55.2l-35.4 35.4c-3.8 3.8-10 3.8-13.8 0l-90.2-90.2c-3.8-3.8-3.8-10 0-13.8l35.4-35.4c15.3-15.2 40-15.2 55.2 0zM384 348.198c0-3.2 1.3-6.2 3.5-8.5l40-40c7.6-7.5 20.5-2.2 20.5 8.5v157.8c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48v-352c0-26.5 21.5-48 48-48h285.8c10.7 0 16.1 12.9 8.5 20.5l-40 40c-2.3 2.2-5.3 3.5-8.5 3.5H64v320h320v-101.8z"/></svg></span> Edit </button> <div class="dropdown-menu dropdown-menu-end" aria-labelledby="compEditMenu" x-placement="bottom-end" style="position: absolute; transform: translate3d(55px, 35px, 0px); top: 0px; left: 0px; will-change: transform;"> <a class="dropdown-item" href="#loginModal" data-bs-toggle="modal"> <span class=" icon-wrapper icon-ion" data-name="add"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path fill="none" stroke="#000" stroke-linecap="round" stroke-linejoin="round" stroke-width="32" d="M256 112v288m144-144H112"/></svg></span> Add</a> <a class="dropdown-item" href="#loginModal" data-bs-toggle="modal"> <span class=" icon-wrapper icon-ion" data-name="remove"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path fill="none" stroke="#000" stroke-linecap="round" stroke-linejoin="round" stroke-width="32" d="M400 256H112"/></svg></span> Remove</a> </div> </div> </div> </th> </tr> <tr> <td><a href="/method/darknet-53"> <div class="method-image"> <img src="https://production-media.paperswithcode.com/thumbnails/method/method-0000000238-e5282d2f_6URXJsm.jpg"> Darknet-53 </div> </a> </td> <td> <a href="/methods/category/convolutional-neural-networks"> Convolutional Neural Networks </a> </td> <td class="hidden-element"> </td> </tr> </table> </div> <div class="collections"> <h4> Categories <div class="float-right"> <div class="dropdown edit-button"> <button class="dropdown-toggle badge badge-edit" type="button" id="evalEditMenu" data-bs-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> <span class=" icon-wrapper icon-fa icon-fa-solid" data-name="edit"><svg viewBox="0 0 576 514.999" xmlns="http://www.w3.org/2000/svg"><path d="M402.6 85.198l90.2 90.2c3.8 3.8 3.8 10 0 13.8l-218.399 218.4-92.8 10.3c-12.4 1.4-22.9-9.1-21.5-21.5l10.3-92.8 218.4-218.4c3.799-3.8 10-3.8 13.799 0zm162-22.9c15.2 15.2 15.2 39.9 0 55.2l-35.4 35.4c-3.8 3.8-10 3.8-13.8 0l-90.2-90.2c-3.8-3.8-3.8-10 0-13.8l35.4-35.4c15.3-15.2 40-15.2 55.2 0zM384 348.198c0-3.2 1.3-6.2 3.5-8.5l40-40c7.6-7.5 20.5-2.2 20.5 8.5v157.8c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48v-352c0-26.5 21.5-48 48-48h285.8c10.7 0 16.1 12.9 8.5 20.5l-40 40c-2.3 2.2-5.3 3.5-8.5 3.5H64v320h320v-101.8z"/></svg></span> Edit </button> <div class="dropdown-menu dropdown-menu-end" aria-labelledby="evalEditMenu" x-placement="bottom-end" style="position: absolute; transform: translate3d(55px, 35px, 0px); top: 0px; left: 0px; will-change: transform;"> <a class="dropdown-item" href="#loginModal" data-bs-toggle="modal"> <span class=" icon-wrapper icon-ion" data-name="add"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path fill="none" stroke="#000" stroke-linecap="round" stroke-linejoin="round" stroke-width="32" d="M256 112v288m144-144H112"/></svg></span> Add</a> <a class="dropdown-item" href="#loginModal" data-bs-toggle="modal"> <span class=" icon-wrapper icon-ion" data-name="remove"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path fill="none" stroke="#000" stroke-linecap="round" stroke-linejoin="round" stroke-width="32" d="M400 256H112"/></svg></span> Remove</a> </div> </div> </div><hr> </h4> </div> <div class="row"> <div class="col-md-12"> <ul class="list-unstyled"> <li> <a href="/methods/category/convolutional-neural-networks"> <span class="badge badge-primary"> <img src="https://production-media.paperswithcode.com/thumbnails/method/89d208bf-ac5b-4330-9f3b-b87f820f3ac2.jpg"> <span>Convolutional Neural Networks</span> </span> </a> </li> </ul> </div> </div> </div> </div> <script id="task_data" type="application/json">[{"name": "Object Detection", "slug": "object-detection", "papers": 73, "y": 25.34722222222222, "dot_color": "#2f7ed8"}, {"name": "Object", "slug": "object", "papers": 42, "y": 14.583333333333334, "dot_color": "#0d233a"}, {"name": "Real-Time Object Detection", "slug": "real-time-object-detection", "papers": 15, "y": 5.208333333333334, "dot_color": "#8bbc21"}, {"name": "Deep Learning", "slug": "deep-learning", "papers": 9, "y": 3.125, "dot_color": "#f28f43"}, {"name": "Autonomous Driving", "slug": "autonomous-driving", "papers": 8, "y": 2.7777777777777777, "dot_color": "rgb(128, 133, 233)"}, {"name": "Semantic Segmentation", "slug": "semantic-segmentation", "papers": 6, "y": 2.083333333333333, "dot_color": "rgb(241, 92, 128)"}, {"name": "Object Tracking", "slug": "object-tracking", "papers": 6, "y": 2.083333333333333, "dot_color": "rgb(228, 211, 84)"}, {"name": "2D Object Detection", "slug": "2d-object-detection", "papers": 6, "y": 2.083333333333333, "dot_color": "rgb(43, 144, 143)"}, {"name": "Multi-Object Tracking", "slug": "multi-object-tracking", "papers": 5, "y": 1.7361111111111112, "dot_color": "rgb(255, 116, 116)"}, {"name": "Other", "y": 40.972222222222165, "dot_color": "rgb(170, 255, 250)"}]</script> <script id="time_series_data" type="application/json">[{"name": "CSPDarknet53", "data": [{"time": "2017-12-31 00:00:00", "prop": 0.0}, {"time": "2018-03-31 00:00:00", "prop": 0.0}, {"time": "2018-06-30 00:00:00", "prop": 0.0}, {"time": "2018-09-30 00:00:00", "prop": 0.0}, {"time": "2018-12-31 00:00:00", "prop": 0.0}, {"time": "2019-03-31 00:00:00", "prop": 0.0}, {"time": "2019-06-30 00:00:00", "prop": 0.0}, {"time": "2019-09-30 00:00:00", "prop": 0.0}, {"time": "2019-12-31 00:00:00", "prop": 2.7084123286929202e-05}, {"time": "2020-03-31 00:00:00", "prop": 0.0}, {"time": "2020-06-30 00:00:00", "prop": 2.190340597962983e-05}, {"time": "2020-09-30 00:00:00", "prop": 0.0001075453841521122}, {"time": "2020-12-31 00:00:00", "prop": 0.00020012897200418048}, {"time": "2021-03-31 00:00:00", "prop": 0.00015282341254680218}, {"time": "2021-06-30 00:00:00", "prop": 0.00016536100374129272}, {"time": "2021-09-30 00:00:00", "prop": 0.00016861273869240822}, {"time": "2021-12-31 00:00:00", "prop": 7.972733252277213e-05}, {"time": "2022-03-31 00:00:00", "prop": 0.00019562665739251403}, {"time": "2022-06-30 00:00:00", "prop": 0.00016672571535752246}, {"time": "2022-09-30 00:00:00", "prop": 0.00023690558235699518}, {"time": "2022-12-31 00:00:00", "prop": 0.00025587025409884467}, {"time": "2023-03-31 00:00:00", "prop": 0.00020796073701285196}, {"time": "2023-06-30 00:00:00", "prop": 0.000113464447806354}, {"time": "2023-09-30 00:00:00", "prop": 9.431115135053569e-05}, {"time": "2023-12-31 00:00:00", "prop": 6.957368723148905e-05}, {"time": "2024-03-31 00:00:00", "prop": 0.00010289830217801406}, {"time": "2024-06-30 00:00:00", "prop": 6.58165364047717e-05}, {"time": "2024-09-30 00:00:00", "prop": 0.0}]}, {"name": "ResNet", "data": [{"time": "2017-12-31 00:00:00", "prop": 0.0012339490224810088}, {"time": "2018-03-31 00:00:00", "prop": 0.0016115718721748358}, {"time": "2018-06-30 00:00:00", "prop": 0.0013996517939439455}, {"time": "2018-09-30 00:00:00", "prop": 0.0017584994138335288}, {"time": "2018-12-31 00:00:00", "prop": 0.0018080847216841018}, {"time": "2019-03-31 00:00:00", "prop": 0.0018282154585773775}, {"time": "2019-06-30 00:00:00", "prop": 0.0029278290147855364}, {"time": "2019-09-30 00:00:00", "prop": 0.001888866961743396}, {"time": "2019-12-31 00:00:00", "prop": 0.0023563187259628407}, {"time": "2020-03-31 00:00:00", "prop": 0.002164087111354609}, {"time": "2020-06-30 00:00:00", "prop": 0.0026503121235352096}, {"time": "2020-09-30 00:00:00", "prop": 0.0017422352232642174}, {"time": "2020-12-31 00:00:00", "prop": 0.002290364901825621}, {"time": "2021-03-31 00:00:00", "prop": 0.0029291154071470417}, {"time": "2021-06-30 00:00:00", "prop": 0.0017776307902188967}, {"time": "2021-09-30 00:00:00", "prop": 0.0021498124183282046}, {"time": "2021-12-31 00:00:00", "prop": 0.0017141376492396006}, {"time": "2022-03-31 00:00:00", "prop": 0.0017823762117984612}, {"time": "2022-06-30 00:00:00", "prop": 0.0016047350103161537}, {"time": "2022-09-30 00:00:00", "prop": 0.001313749138525155}, {"time": "2022-12-31 00:00:00", "prop": 0.0016729978152616766}, {"time": "2023-03-31 00:00:00", "prop": 0.001684481969804101}, {"time": "2023-06-30 00:00:00", "prop": 0.001418305597579425}, {"time": "2023-09-30 00:00:00", "prop": 0.0015655651124188924}, {"time": "2023-12-31 00:00:00", "prop": 0.0014958342754770146}, {"time": "2024-03-31 00:00:00", "prop": 0.00138912707940319}, {"time": "2024-06-30 00:00:00", "prop": 0.0011682435211846976}, {"time": "2024-09-30 00:00:00", "prop": 0.001287995878413189}]}, {"name": "VGG", "data": [{"time": "2017-12-31 00:00:00", "prop": 0.0004627308834303783}, {"time": "2018-03-31 00:00:00", "prop": 0.0004323729413151999}, {"time": "2018-06-30 00:00:00", "prop": 0.0005120677294916874}, {"time": "2018-09-30 00:00:00", "prop": 0.0005861664712778429}, {"time": "2018-12-31 00:00:00", "prop": 0.0003874467260751647}, {"time": "2019-03-31 00:00:00", "prop": 0.0004739817855570979}, {"time": "2019-06-30 00:00:00", "prop": 0.0005855658029571073}, {"time": "2019-09-30 00:00:00", "prop": 0.00036649657466662907}, {"time": "2019-12-31 00:00:00", "prop": 0.0005145983424516548}, {"time": "2020-03-31 00:00:00", "prop": 0.0006300506779893165}, {"time": "2020-06-30 00:00:00", "prop": 0.000525681743511116}, {"time": "2020-09-30 00:00:00", "prop": 0.0004086724597780263}, {"time": "2020-12-31 00:00:00", "prop": 0.0005559138111227236}, {"time": "2021-03-31 00:00:00", "prop": 0.0006112936501872087}, {"time": "2021-06-30 00:00:00", "prop": 0.0005374232621592013}, {"time": "2021-09-30 00:00:00", "prop": 0.00042153184673102053}, {"time": "2021-12-31 00:00:00", "prop": 0.0004385003288752467}, {"time": "2022-03-31 00:00:00", "prop": 0.00036951701951919315}, {"time": "2022-06-30 00:00:00", "prop": 0.0003334514307150449}, {"time": "2022-09-30 00:00:00", "prop": 0.00017229496898690558}, {"time": "2022-12-31 00:00:00", "prop": 0.0003345995630523353}, {"time": "2023-03-31 00:00:00", "prop": 0.00033273717922056314}, {"time": "2023-06-30 00:00:00", "prop": 0.000264750378214826}, {"time": "2023-09-30 00:00:00", "prop": 0.00028293345405160705}, {"time": "2023-12-31 00:00:00", "prop": 0.0001913276398865949}, {"time": "2024-03-31 00:00:00", "prop": 0.0001543474532670211}, {"time": "2024-06-30 00:00:00", "prop": 0.000213903743315508}, {"time": "2024-09-30 00:00:00", "prop": 0.00013738622703074016}]}, {"name": "MobileNetV2", "data": [{"time": "2017-12-31 00:00:00", "prop": 0.0}, {"time": "2018-03-31 00:00:00", "prop": 3.9306631028654534e-05}, {"time": "2018-06-30 00:00:00", "prop": 3.413784863277916e-05}, {"time": "2018-09-30 00:00:00", "prop": 3.448038066340252e-05}, {"time": "2018-12-31 00:00:00", "prop": 0.00032287227172930386}, {"time": "2019-03-31 00:00:00", "prop": 6.771168365101398e-05}, {"time": "2019-06-30 00:00:00", "prop": 0.0004098960620699751}, {"time": "2019-09-30 00:00:00", "prop": 0.00036649657466662907}, {"time": "2019-12-31 00:00:00", "prop": 0.0005958507123124424}, {"time": "2020-03-31 00:00:00", "prop": 0.0003287220928639912}, {"time": "2020-06-30 00:00:00", "prop": 0.0003504544956740773}, {"time": "2020-09-30 00:00:00", "prop": 0.00025810892196506923}, {"time": "2020-12-31 00:00:00", "prop": 0.00035578483911854304}, {"time": "2021-03-31 00:00:00", "prop": 0.0005348819439138076}, {"time": "2021-06-30 00:00:00", "prop": 0.00028938175654726224}, {"time": "2021-09-30 00:00:00", "prop": 0.0004847616237406736}, {"time": "2021-12-31 00:00:00", "prop": 0.0003189093300910885}, {"time": "2022-03-31 00:00:00", "prop": 0.0002173629526583489}, {"time": "2022-06-30 00:00:00", "prop": 0.00020840714419690306}, {"time": "2022-09-30 00:00:00", "prop": 0.00040920055134390074}, {"time": "2022-12-31 00:00:00", "prop": 0.0003936465447674533}, {"time": "2023-03-31 00:00:00", "prop": 0.00037432932662313356}, {"time": "2023-06-30 00:00:00", "prop": 0.00034039334341906205}, {"time": "2023-09-30 00:00:00", "prop": 0.00028293345405160705}, {"time": "2023-12-31 00:00:00", "prop": 0.0001913276398865949}, {"time": "2024-03-31 00:00:00", "prop": 0.00010289830217801406}, {"time": "2024-06-30 00:00:00", "prop": 0.00024681201151789385}, {"time": "2024-09-30 00:00:00", "prop": 0.00029194573244032285}]}, {"name": "DenseNet", "data": [{"time": "2017-12-31 00:00:00", "prop": 0.0003470481625727837}, {"time": "2018-03-31 00:00:00", "prop": 0.0003537596792578908}, {"time": "2018-06-30 00:00:00", "prop": 0.00047792988085890826}, {"time": "2018-09-30 00:00:00", "prop": 0.0005516860906144403}, {"time": "2018-12-31 00:00:00", "prop": 0.00032287227172930386}, {"time": "2019-03-31 00:00:00", "prop": 0.00023699089277854894}, {"time": "2019-06-30 00:00:00", "prop": 0.0006734006734006734}, {"time": "2019-09-30 00:00:00", "prop": 0.0005356488398973809}, {"time": "2019-12-31 00:00:00", "prop": 0.00037917772601700885}, {"time": "2020-03-31 00:00:00", "prop": 0.0003561156006026572}, {"time": "2020-06-30 00:00:00", "prop": 0.0007228123973277845}, {"time": "2020-09-30 00:00:00", "prop": 0.00030112707562591416}, {"time": "2020-12-31 00:00:00", "prop": 0.0005781503635676325}, {"time": "2021-03-31 00:00:00", "prop": 0.00045847023764040653}, {"time": "2021-06-30 00:00:00", "prop": 0.00012402075280596952}, {"time": "2021-09-30 00:00:00", "prop": 2.1076592336551027e-05}, {"time": "2021-12-31 00:00:00", "prop": 3.986366626138606e-05}, {"time": "2022-03-31 00:00:00", "prop": 0.0}, {"time": "2022-06-30 00:00:00", "prop": 2.0840714419690307e-05}, {"time": "2022-09-30 00:00:00", "prop": 6.461061337008959e-05}, {"time": "2022-12-31 00:00:00", "prop": 1.9682327238372666e-05}, {"time": "2023-03-31 00:00:00", "prop": 2.0796073701285196e-05}, {"time": "2023-06-30 00:00:00", "prop": 3.7821482602118e-05}, {"time": "2023-09-30 00:00:00", "prop": 0.0001508978421608571}, {"time": "2023-12-31 00:00:00", "prop": 0.0001913276398865949}, {"time": "2024-03-31 00:00:00", "prop": 0.00020579660435602812}, {"time": "2024-06-30 00:00:00", "prop": 0.00018099547511312217}, {"time": "2024-09-30 00:00:00", "prop": 0.00013738622703074016}]}, {"name": "AlexNet", "data": [{"time": "2017-12-31 00:00:00", "prop": 0.0004627308834303783}, {"time": "2018-03-31 00:00:00", "prop": 0.0007075193585157816}, {"time": "2018-06-30 00:00:00", "prop": 0.0007168948212883624}, {"time": "2018-09-30 00:00:00", "prop": 0.0006206468519412454}, {"time": "2018-12-31 00:00:00", "prop": 0.0005165956347668862}, {"time": "2019-03-31 00:00:00", "prop": 0.0006432609946846328}, {"time": "2019-06-30 00:00:00", "prop": 0.0007026789635485288}, {"time": "2019-09-30 00:00:00", "prop": 0.0003946886188717544}, {"time": "2019-12-31 00:00:00", "prop": 0.0005958507123124424}, {"time": "2020-03-31 00:00:00", "prop": 0.000438296123818655}, {"time": "2020-06-30 00:00:00", "prop": 0.0003285510896944475}, {"time": "2020-09-30 00:00:00", "prop": 2.150907683042244e-05}, {"time": "2020-12-31 00:00:00", "prop": 0.0}, {"time": "2021-03-31 00:00:00", "prop": 0.0}, {"time": "2021-06-30 00:00:00", "prop": 4.134025093532318e-05}, {"time": "2021-09-30 00:00:00", "prop": 2.1076592336551027e-05}, {"time": "2021-12-31 00:00:00", "prop": 0.0}, {"time": "2022-03-31 00:00:00", "prop": 0.0}, {"time": "2022-06-30 00:00:00", "prop": 0.0}, {"time": "2022-09-30 00:00:00", "prop": 2.1536871123363198e-05}, {"time": "2022-12-31 00:00:00", "prop": 0.0}, {"time": "2023-03-31 00:00:00", "prop": 0.0}, {"time": "2023-06-30 00:00:00", "prop": 0.0}, {"time": "2023-09-30 00:00:00", "prop": 0.0}, {"time": "2023-12-31 00:00:00", "prop": 0.0}, {"time": "2024-03-31 00:00:00", "prop": 1.714971702966901e-05}, {"time": "2024-06-30 00:00:00", "prop": 0.0}, {"time": "2024-09-30 00:00:00", "prop": 0.0}]}]</script> </div> <div class="footer"> <div class="footer-contact"> <span class="footer-contact-item">Contact us on:</span> <a class="footer-contact-item" href="mailto:hello@paperswithcode.com"> <span class=" icon-wrapper icon-ion" data-name="mail"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M424 80H88a56.06 56.06 0 0 0-56 56v240a56.06 56.06 0 0 0 56 56h336a56.06 56.06 0 0 0 56-56V136a56.06 56.06 0 0 0-56-56zm-14.18 92.63l-144 112a16 16 0 0 1-19.64 0l-144-112a16 16 0 1 1 19.64-25.26L256 251.73l134.18-104.36a16 16 0 0 1 19.64 25.26z"/></svg></span> hello@paperswithcode.com </a>. <span class="footer-contact-item"> Papers With Code is a free resource with all data licensed under <a rel="noreferrer" href="https://creativecommons.org/licenses/by-sa/4.0/">CC-BY-SA</a>. </span> </div> <div class="footer-links"> <a href="/site/terms">Terms</a> <a href="/site/data-policy">Data policy</a> <a href="/site/cookies-policy">Cookies policy</a> <a href="/about#team" class="fair-logo"> from <img src=""> </a> </div> </div> <script> // MathJax window.MathJax = { tex: { inlineMath: [ ["$", "$"], ["\\(", "\\)"], ], }, }; const mathjaxScript = document.createElement("script"); mathjaxScript.src = "https://production-assets.paperswithcode.com/static/js/mathjax/tex-chtml.js"; document.head.appendChild(mathjaxScript); </script> <script src="https://production-assets.paperswithcode.com/perf/766.4af6b88b.js" defer></script><script src="https://production-assets.paperswithcode.com/perf/351.a22a9607.js" defer></script><script src="https://production-assets.paperswithcode.com/perf/814.49dcf06c.js" defer></script><script src="https://production-assets.paperswithcode.com/perf/view_method.c1f0a493.js" defer></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10